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ABSTRACT

Cellular reprogramming is a promising technology
to develop disease models and cell-based therapies.
Identification of the key regulators defining the cell
type specificity is pivotal to devising reprogramming
cocktails for successful cell conversion but remains
a great challenge. Here, we present a systems bi-
ology approach called Taiji-reprogram to efficiently
uncover transcription factor (TF) combinations for
conversion between 154 diverse cell types or tis-
sues. This method integrates the transcriptomic and
epigenomic data to construct cell-type specific ge-
netic networks and assess the global importance of
TFs in the network. Comparative analysis across cell
types revealed TFs that are specifically important in a
particular cell type and often tightly associated with
cell-type specific functions. A systematic search of
TFs with differential importance in the source and tar-
get cell types uncovered TF combinations for desired
cell conversion. We have shown that Taiji-reprogram
outperformed the existing methods to better recover
the TFs in the experimentally validated reprogram-
ming cocktails. This work not only provides a com-
prehensive catalog of TFs defining cell specializa-
tion but also suggests TF combinations for direct
cell conversion.

INTRODUCTION

Transcription factors (TFs) play pivotal roles during devel-
opment, cell type specification and aging (1). Identification
of the key TFs in each cell type would facilitate understand-
ing the regulatory mechanisms that decide cell fate and cell
identity, and provide clues and intervention strategies for
cell fate determination. The best known example for cellu-
lar reprogramming is the generation of induced pluripotent
stem cells (iPSCs) from somatic cells by the introduction of

four TFs (Oct4, Sox2, Klf4 and c-Myc) (2), which demon-
strated that using TFs as reprogramming factors can in-
duce drastic cell conversion. Subsequently, transdifferentia-
tion between different pairs of terminally differentiated cell
types without going through a pluripotent state has been
achieved (3,4).

Cellular reprogramming opens new doors towards un-
derstanding the mechanisms underlying development as
well as developing new cell therapy (5–8). A major road-
block toward achieving cell conversion is to develop effec-
tive reprogramming cocktails. The main challenges include
how to identify key regulators in the source and target cell
types/tissues that can serve as the candidate reprogram-
ming factors and how to efficiently consider the exponen-
tially increasing combinations given a set of candidate TFs.
Furthermore, as epigenetic state is crucial in deciding cell
state and cell type specificity (9–11), how to consider the
epigenomes of the source and target cell types/tissues is also
pivotal to developing reprogramming cocktails.

Efforts have been devoted to addressing these challenges.
High expression level is useful to select important TFs
in a particular cell type while its limitation is also well
acknowledged as the activity of a TF can be regulated
through post-translational modifications and other non-
transcriptional mechanisms. Methods such as Schacht et al.
(12) and Arrieta-Ortiz et al. (13) have been developed to
consider the target genes of a TF whose expression levels
reflect the TF’s regulatory activity. Other methods includ-
ing CellNet (14), Mogrify (15) and PANDA (16) predict the
key TFs by reconstructing genetic network based on expres-
sion or protein–protein interaction data and how the com-
binations of TFs would regulate the differentially expressed
genes in the source and target cell types in cellular conver-
sion. While such an approach has helped to identify key TFs
that are not found by only considering their own expres-
sions, it does not fully consider the regulatory effect of a TF
propagating through the genetic network, i.e. a TF impacts
not only its direct targets but also their descendants and the
feedback from the descendants to the TF is also crucial to
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affect the phenotypic outcome. Therefore, considering the
complexity of the genetic network and assessing the global
importance of a TF in the network is critical to identify the
key regulators for cell type/tissue specification.

Previously we developed a systems biology method called
Taiji (17) that integrates transcriptomic and epigenomic
data to construct a cell-type specific genetic network, based
on which the global importance of each TF is evaluated by
a personalized PageRank algorithm. We have shown that
Taiji is robust and resistant to noise that is unavoidable in
constructing genetic networks. The effectiveness of identi-
fying key regulators by Taiji has been confirmed using sim-
ulated data and experimental validations (17,18).

Here, we leverage the power of Taiji to develop a system-
atic approach called Taiji-reprogram for efficiently devel-
oping reprogramming cocktails. Taking advantage of the
vast amount of epigenomic data generated by the EN-
CODE (19,20) and the NIH Epigenomics Roadmap (21)
projects, we have applied Taiji to identify key TFs in di-
verse cell types and tissues. Because the epigenomic data
are highly cell-type specific, the genetic network constructed
by Taiji captures the regulatory interactions specifically
present in a particular cell type and the key regulators with
the most global importance in the network are expected to
be tightly associated with cell-type specific functions. Us-
ing the PageRank scores of the top TFs, we can efficiently
evaluate the TF combinations and find the most promising
cocktails for a defined reprogramming task. We showed the
superior performance of our approach in comparison with
the existing methods on identifying reprogramming factors
in the experimentally achieved cocktails.

MATERIALS AND METHODS

Data acquisition

Taiji integrates gene expression and open chromatin
(ATAC-Seq or DNase-seq) or H3K27ac ChIP-Seq data to
identify key regulators. By 1 February 2019, there were
154 cell-types with matched open chromatin/H3K27ac (in-
dicating active promoters/enhancers) and gene expression
data in the same cell type/tissue from ENCODE and the
NIH Epigenomics Roadmap projects. Bam files for open-
chromatin and text files for expression were downloaded
from the project portals (Supplementary Table S1).

Taiji-reprogram prediction and evaluation

The Taiji PageRank score Stf reflects the global importance
of the TF. We first calculated PageRank score ratio.abs for
each TF as the larger ratio between its PageRanks in the
target and source cell types: if St

tf
Ss

tf
>1, ratio.abs = St

tf
Ss

tf
; other-

wise, ratio.abs = Ss
tf

St
tf

. A higher ratio.abs suggests that the TF
has distinct importance in the target and source cell types
and its perturbation is likely to have a significant contribu-
tion to cell conversion. We selected the top 30 TFs based
on ratio.abs as candidate TFs to search for reprogramming
cocktails. We next calculated the product of PageRank score
ratio.abs of any three candidate TFs. These values for all the
possible combinations (cocktails) of the top 30 TFs were

transformed to z-scores, and P-value of 0.001 was used as a
cut-off to select as candidate cocktails.

To compare the performance of Taiji-reprogram with the
other methods, we ranked the TFs by their frequencies ap-
pearing in the candidate cocktails. To have the same num-
ber of TFs predicted by other methods for assessing the
performance, we selected the top 8 TFs with the highest

frequency. A score
√

N/R
N0/R0

× 100 was computed to evalu-

ate each method, where N is the number of correctly pre-
dicted TFs by the method, R is the average rank of the cor-
rectly predicted TFs, N0is the number of TFs in experimen-
tally validated cocktails (ground truth), and R0is the aver-
age rank of TFs in experimentally validated cocktails. The
optimum prediction will get a score equal to 100.

RESULTS

Identification of key TFs in human cells and tissues

We collected 154 matched RNA-seq and open-chromatin
or H3K27ac datasets in human cell lines, primary cells and
tissues from the ENCODE and the NIH Roadmap Epige-
nomics projects in diverse cell types/tissues, including 54 in
the embryonic and 100 postnatal stages (Supplementary Ta-
ble S1). We further divided the 100 postnatal tissues into 5
newborn, 18 child and 77 adult tissues, following the EN-
CODE definition (20). We analyzed these data using Taiji
to define the regulatory roles of a total 745 TFs that have
experimentally determined motifs.

Taiji is a method integrating transcriptomic and epige-
nomic data to identify the global importance of TFs in the
genetic network (Figure 1A). Specifically, Taiji first iden-
tifies active regulatory regions, including active promot-
ers and active enhancers, defined by ATAC-seq, DNase or
H3K27ac ChIP-seq peaks. Enhancers are then linked to
their interacting promoters using chromatin interactions
predicted by EpiTensor (22). In order to construct tran-
scriptional regulatory networks, Taiji scans all active reg-
ulatory regions to identify putative TF binding sites based
on motifs from the CIS-BP database (23). TFs with puta-
tive binding sites in active promoters or enhancers are then
linked to the target genes. The global importance of the TFs
are evaluated by applying the personalized PageRank algo-
rithm. In this study, we used the node and edge weights to
personalize the ranking algorithm. The node weights were
determined by the z-scores of gene expression levels, which
assign higher ranks to TFs regulating more differentially ex-
pressed genes. The edge weights were set to be proportional
to TFs’ expression levels, which help to remove TFs that
are not expressed or with low-expression levels. Our previ-
ous studies have confirmed that Taiji can effectively identify
important TFs using simulated data and experimental vali-
dations (17,24).

Using the Taiji pipeline, we calculated the PageRank
scores for 745 TFs in the 154 cell types/tissues (Figure
1B). Based on the TF PageRank scores, we clustered the
tissues/cell types and similar ones were largely close to each
other in the clustering tree, obviously better than the clus-
ters generated using the TF expression profiles (Supplemen-
tary Figure S1). For example, embryonic stem cell lines (H1,
H7) were clustered with iPSC GM23338; embryonic mus-
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Figure 1. (A) The overview of the Taiji-reprogram framework. Taking the open-chromatin data and RNA-Seq data as input, the Taiji pipeline generates
cell-specific PageRank scores and cell-specific regulatory networks. To predict the reprogramming cocktails, the Taiji-reprogram first calculates the ratios
of PageRank scores between the target and source cell types and selects the TFs with significant ratios as candidates. Next, the candidate cocktails are
selected based on the product of the PageRank ratios of the composing TFs. (B) PageRank z-scores of the 745 TFs across 154 cell-types.
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cles of arm, back, trunk, leg, forelimb and hindlimb were
clustered together. There were several tissues that share high
similarity between embryonic and postnatal stages, such as
testis and ovary, while most embryonic and postnatal tis-
sues were clustered with the other tissues in the same de-
velopmental stage, such as heart and lung tissues. Based on
this observation, we analyzed the embryonic and postnatal
tissues separately and comparatively.

Identification of TFs important in development and differen-
tiation

The PageRank scores represent the TFs’ global importance.
Starting from the PageRank score matrix with 745 TFs and
154 cell-types/tissues, we identified the important TFs in
development and differentiation. We found 43 and 27 TFs
that are constitutively active in the embryonic and postna-
tal stages, respectively, with an averaged PageRank score
ranked within 10% in all TFs and coefficient of variance
(CV) <0.5. These TFs are involved in general biological
functions, such as metabolic process, biological regulation
and cellular process, suggesting the basic roles for these
TFs in embryogenesis (Figure 2A). Twenty-two of them are
common in the two developmental stages, including pro-
teins such as CTCF and YY1 that have broad functions.

We next identified TFs that are specifically important in
either embryonic or postnatal stage using Mann–Whitney
U test with a Q-value cutoff of 0.01 (Figure 2B). The 71
embryo-specific TFs are largely involved in development
with enriched GO terms of cellular developmental process,
anatomical structure morphogenesis and pattern specifica-
tion process. For example, Gli2 and Gli3 play essential roles
in the development of lung, trachea and esophagus dur-
ing embryo development (25). In contrast, the 21 postnatal-
specific TFs are associated with specialized functions, such
as immune system development, response to stress, and re-
sponse to the chemical. For example, RUNX3 plays impor-
tant roles in the B-cell proliferation (26,27) and T-cell de-
velopment (28).

As three germ-layers (ectoderm, endoderm and meso-
derm) form during embryonic development and give rise to
all the tissues, it is important to identify the germ-layer spe-
cific TFs. Each of the 54 embryonic cell types was assigned
to a germ layer. We compared the PageRank scores of TFs
from one germ layer to the other two using Mann–Whitney
U test, and defined the germ-layer specific TFs (Figure 2C).
Many well-known germ-layer specific TFs were identified,
including PAX6 (29,30), ZIC2 (31), ZIC5 (32), SOX2 (33),
SOX3 (34), SOX21 (35) and POU3F1 (36) for ectoderm,
SNAI1 (37) and MEF2D (38) for mesoderm, and FOXA2
(39), RFX6 (40) for endoderm. Besides the well studied
germ-layer specific TFs, we also identified some new TFs
whose roles in the germ-layer remain unreported. For in-
stance, FOXF1, expressed in the splanchnic mesoderm, is
involved in mesenchymal-epithelial signaling required for
development of organs derived from foregut endoderm such
as lung, liver, gallbladder and pancreas (41,42). The GO
analysis showed that the ectoderm-specific TFs are enriched
in the development of tissues derived from ectoderm, such
as neural tissues, brain, glial cell, spinal cord and epider-
mis (Supplementary Table S2). The mesoderm-specific TFs

are involved in the development of mesoderm derived tis-
sues, such as kidney, muscle and cardiac ventricle. The
endoderm-specific TFs are associated with the development
of epithelium and lung. Similarly, we identified the germ-
layer specific TFs based on the postnatal cell types in Sup-
plementary Figure S2.

Identification of cell-type and tissue-specific TFs

To identify the tissue/cell-type specific TFs, we first se-
lected the variable TFs with the coefficient of variance (CV)
across all cell-types larger than 1, which resulted in 231
TFs for the embryonic group and 289 TFs for the post-
natal group. There are 169 TFs in common between the
embryonic and postnatal groups. The 231 variable TFs in
the embryonic stage are enriched at the central nervous sys-
tem development, anterior/posterior pattern specification
and embryonic organ morphogenesis (Supplementary Ta-
ble S3). The 289 variable TFs in the postnatal stage are over-
represented in the anterior/posterior pattern specification,
embryonic organ morphogenesis and epithelium develop-
ment. The variable TFs in either stage contain many key
regulators in the tissue development and morphogenesis.

To identify the cell-type and tissue-specific TFs, we
further calculated the z-score and P-value in each cell-
type/tissue assuming each TF’s PageRank score across all
cell-types following a log-normal distribution. The cell-
type specific TFs were identified using a P-value cut-off of
0.05. We list the identified specific TFs in 7 common cell-
types/tissues in Figure 3 and Supplementary Table S4. We
manually searched the literature and found that, 33% of the
identified TFs were reported to play key roles in the corre-
sponding cell-type, and 26% of them were associated with
corresponding diseases, while the remaining 41% were play-
ing unknown roles. Taking heart as an example, we found 8
heart-specific TFs in the 3 embryonic (Figure 3A) and 20 in
the 8 postnatal heart-related cell-types (Figure 3C). Five of
them [TBX5 (43), GATA4 (44), HAND2 (45), TBX20 (46)
and NKX2-5 (47)] are pivotal to heart development and
they were indeed identified in both embryonic and postnatal
stages. Among the remaining three TFs (NR4A3, NKX2-6
and RXRG), NKX2-6 and RXRG are specific to the car-
diac muscle cells while NR4A3 was found important in
the embryonic heart tissue analyzed by ENCODE. In fact,
NKX2-6 is related to congenital heart defects (48). NR4A3,
also known as NOR-1, can modulate vascular smooth mus-
cle cell proliferation (49) and is related to coronary artery
disease (50). There are 398 regulatees of NR4A3 in the reg-
ulatory network constructed by Taiji and they are enriched
in the regulation of vasculogenesis and cardiac muscle cell
action potential (Figure 3B). CACNA1C, a regulatee of
NR4A3, encodes cardiac L-type calcium channel (Cav1.2)
which is essential for cardiomyocyte action potential dura-
tion. Mutations of CACNA1C may cause cardiac arrhyth-
mia syndromes (51). RXRG is not known to function in
heart development but it is highly expressed in the embry-
onic cardiac muscle cells in the ENCODE dataset. Retinoid
X receptors (RXRs) play a key role in the formation of the
heart (52). As a member of RXRs family, RXRG’s impor-
tance in cardiac muscle cells is not surprising.



NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 4 5

Figure 2. (A) There are 43 housekeeping TFs in the embryonic stage, and 27 in the postnatal stage, while 22 of them are in common. The identified
housekeeping TFs are enriched mainly in the metabolic process, biological regulation and cellular process for both stages. (B) The 71 embryo-specific
TFs and 21 postnatal-specific TFs are identified by the Mann–Whitney U test. The embryo-specific TFs are over-represented in the biological processes
related to development such as cellular developmental process, anatomical structure morphogenesis, pattern specification process. In contrast, the postnatal
specific TFs are enriched at the cytokine production, response to stress and response to the chemical. (C) Cell-types from the embryonic stage are split by
their corresponding germ layers. The germ-layer specific TFs, which were identified for each germ-layer by comparing it with the remaining germ-layers,
include many well-known ones, such as PAX6, ZIC2, ZIC5, SOX2, SOX21, SOX3, SOX11 and POU3F1 for ectoderm, SNAI1 and MEF2D for mesoderm,
and FOXA2, RFX6 for endoderm.
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Figure 3. Specifically important TFs in heart-related cell types. (A) Eight embryonic-stage-specific TFs. The color codes represent the normalized PageRank
scores, while the node size represents the logarithmic expression level (transcripts per million, TPM). Five out of the eight TFs are associated with heart
development, and two of them are heart-disease associated. (B) The subnetwork for NR4A3, a TF related to heart disease, and its 398 regulatees in the
embryonic heart cell types. Larger nodes represent TFs with higher PageRanks. The bottom shows the three enriched Gene Ontology (GO) terms for
NR4A3’s regulatees. (C) Twenty postnatal-stage-specific TFs. Nine of them are known to be related to heart development, and five TFs are also found
important in the embryonic stage. (D) The subnetwork for HES4. HES4 has not been reported to regulate heart function. Among its regulatees, HEY2
plays an essential role in heart development.
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For the 20 identified TFs specific in the postnatal heart-
related cell-types (Figure 3C), nine of them [NKX2-5 (47),
TBX20 (46), TBX5 (43), GATA4 (44), HEY2 (53), HAND2
(45), SOX18 (54), SOX7 (54) and MITF (55)] have been
reported to be important in heart development. NKX2-
5, TBX20, TBX5, GATA4 and HAND2 are also identi-
fied specific in the embryonic heart cell-types. SOX18 and
SOX7 are important regulators of heart muscle differenti-
ation (54). Knockout of SOX17 (closely related to SOX18
and SOX7) in mouse significantly increased the ventricular
internal dimension (56). For the PRRX1, the suppression
of its expression is associated with increased risk of atrial
fibrillation and shortening of the cardiac action potential
(57). ESRRG, highly expressed in heart muscle, is an es-
sential transcriptional coordinator of cardiac energy pro-
duction and consumption (58). Although the role of HES4
in ventricles development has not been reported, the 142
regulatees of HES4 from Taiji’s network are enriched for
functions of vasculature development, cardiovascular sys-
tem development and blood vessel morphogenesis (Figure
3D). HES4 also interacts with HEY2 in the genetic net-
work, a TF involved in the cardiovascular system devel-
opment. HES/HEY genes encode a family of basic helix-
loop-helix (bHLH) transcription factors, and they are also
the direct targets of the Notch signaling pathway (59). The
Notch2, Hey1, and Hey2 initiate a signaling cascade that
delimits the non-chamber atrioventricular canal and inner
curvature regions (60). The remaining eight TFs (ZNF524,
CREB3L1, MYPOP, SOX8, POU6F1, HOXD3, ZFHX3
and HMG20B) had unknown regulatory roles in heart func-
tions but there are some suggestive evidence to support their
importance. For example, the orthologous gene of Pou6f1 is
pouC in zebrafish whose knockdown impairs cardiac mor-
phogenesis and affects cardiovascular function (61).

Identifying TF cocktails for cell reprogramming

We developed a method based on PageRank scores to pre-
dict reprogramming cocktails that can convert one cell type
to another. Since the Taiji PageRank score reflects the
global importance of a TF in a particular cell type, we
first identified the TFs with significantly different PageR-
ank scores in the target and source cells. We calculated the
ratio between the larger and the smaller PageRank scores in
the target and source cells, i.e. this ratio is always ≥1 and a
large value indicates that the TFs are much more important
in the target (or source) than in the source (or target) cells
(see Materials and Methods). We selected the top 30 TFs
with largest ratio values as candidates for cell reprogram-
ming factors. We then calculated the product of PageRank
ratios of three candidate TFs for all possible combinations.
The products were transformed to z-scores and P-value of
0.001 was used as a cut-off to select candidate reprogram-
ming cocktails. Because many 3-TF combinations may have
very similar product scores, we considered the TFs that oc-
curred most often in the candidate cocktails as the most
promising reprogramming factors. To compare the repro-
gramming result with other methods, the top 8 TFs with
highest PageRank ratios were selected since other methods
predicted eight candidate TFs.

We first assessed the prediction performance of our
method (Taiji-reprogram) by comparing the predicted re-
programming cocktails with the established ones. Repro-
gramming from terminally differentiated fibroblast cells to
the pluripotent state to generate iPSC has been widely
studied and many different reprogramming cocktails have
been identified, including the original Yamanaka factors
(Pou5f1, Sox2, Klf4 and cMyc) and its variations (Pou5f1,
Sox2, Nanog, and Lin28) (62). Pou5f1 (also known as
Oct4), Nanog and Sox2 are critical regulators of embryonic
stem cells (ESCs). The other factors such as Klf4, cMyc and
Lin28 affect the reprogramming efficiency. Among the eight
candidate TFs, POU5F1 and SOX2 were the top 2 TFs,
while NANOG ranked the 5th. ZSCAN10 was ranked the
third in our prediction list, which has been reported to re-
cover genomic stability by normalizing the homeostatic bal-
ance of ROS (reactive oxygen species)–glutathione and the
DNA damage response (63), supporting its roles in gener-
ating iPSC.

We compared Taiji-reprogram with other three popu-
lar methods including Mogrify (15), CellNet (14) and D-
Alessio et al. method (64) on 13 experimentally validated
cocktails that convert between cell types included in our
analysis. We compared the number of correctly identified
candidate TFs and the average rank of the published TFs.
For doing this, we first computed the average rank by sum-
ming the ranks of all correctly identified TFs and then di-
vided by the total number of correctly identified TFs. The
optimal case would be that all published TFs were correctly
identified and had the highest ranks in the predicted cock-
tail. Cocktail score was then calculated by first multiplying
the number of correctly predicted TFs with the inverse of av-
erage rank and then normalized by setting the optimal case
as 100 (see Materials and Methods, Supplementary Figure
S3). Using this score, Taiji-reprogram achieved the best per-
formance on 9 out of 13 cocktails while Mogrify performed
best on the other four cocktails (Figure 4A).

In one of the validated transdifferentiation cocktails from
fibroblast cell to heart cell, both Taiji-reprogram and Mo-
grify predicted three out of four TFs. Specifically, Taiji-
reprogram took the right atrium auricular region tissue
from ENCODE as the target cell-type. Taiji-reprogram per-
formed better when comparing the average rank of three
TFs (Figure 4B, top). Four (TBX5, HAND2, GATA4, ES-
RRG) out of eight TFs in the Taiji-reprogram cocktail have
been identified as key regulators during the transdifferen-
tiation from fibroblast to heart cells. KLF15 is a new TF
identified in our analysis that plays a potential role in the
transdifferentiation from fibroblast to heart cells. We ex-
tracted the regulatees of the KLF15 in the regulatory net-
work of embryonic heart cells and performed the GO term
and KEGG pathway analysis on the 378 TF regulatees. Fig-
ure 4E shows the top 30 most significant GO terms based on
the P-values, including heart morphogenesis, heart looping
and Notch signaling involved in heart development. Among
all the identified GO terms, heart development is the most
significant one with nearly 30 genes involved, suggesting
that a non-negligible portion of regulatees of KLF15 have
actively participated in the heart development and differen-
tiation.
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Figure 4. (A) Performance comparison of the reprogramming cocktails predicted by Taiji and Mogrify. The scores in the axis take account of both count
and average ranks of correctly predicted candidate TFs. (B) Two examples of predicted reprogramming cocktails of various methods. (Top) cocktail from
fibroblast to heart; (bottom) cocktail from fibroblast to liver. (C) Fourteen predicted TFs in two reprogramming cocktails from fibroblast to heart and liver.
(D) Enriched GO term and KEGG pathways of TF regulatees of HNF4G in E.emb.liver. (E) Enriched GO term and KEGG pathways of TF regulatees
of KLF15 in E.emb.heart.
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Another example in which the Taiji-reprogram per-
formed the best is the ‘liver 3’ cocktail, where liver sam-
ple was taken from the right lobe of the liver in ENCODE.
While all other three methods only predicted one correct TF
HNF4A, Taiji-reprogram identified three TFs: HNF1A,
HNF4A and GATA4 (Figure 4B, bottom). HNF4G is also
one of the eight candidates in the cocktail from fibroblast
to liver cell, which remained poorly investigated before. We
performed similar functional analyses of HNF4G’s regu-
latees in the embryonic liver cells and found two items re-
lated to liver: liver regeneration and liver development (Fig-
ure 4D). Interestingly, heart development also showed up as
the enriched GO term in HNF4G’s regulatees in the embry-
onic liver cells. Similarly, liver regeneration is one of the en-
riched GO terms in the regulatees of KLF15 in the embry-
onic heart cells. The bubble plot in Figure 4C shows the can-
didate TFs in the two aforementioned cocktails predicted by
Taiji-reprogram with size representing the gene expression
level and color representing PageRank score. PROX1 and
GATA4 were predicted as candidate TFs in both ‘heart 1’
and ‘liver 3’ cocktails and both of them display relatively
high expression levels and PageRank scores in the heart cells
and liver cells compared to that in the fibroblast cells. The
overlap of two groups of candidate TFs suggests that some
downstream regulatees of the candidate regulators are in
common, which corresponds to the shared GO terms shown
in Figure 4D and E.

In addition to the 13 experimental validated cocktails, we
also evaluated whether Taiji-reprogram is able to predict so-
matic barriers identified using shRNA screening in (65).
Qin et al. combined the genome-wide RNAi screening and
Yamanaka factors together in the reprogramming from fi-
broblast to iPSCs. They reported the log odds and P-value
of 6072 genes, and 956 of them were identified as poten-
tial barriers with P-value < 0.05 (FDR < 0.07). The 6072
reported genes include 249 TFs overlapping with our ana-
lyzed TFs (i.e. their motifs are known), and 35 of them with
a FDR < 0.07 (i.e. they are considered as somatic barriers).
We found that the average PageRank ratio (hESCs versus fi-
broblast cells) within the FDR < 0.07 group of 35 TFs was
0.85, which is significantly lower than the average PageRank
ratio of 1.34 in the FDR ≥ 0.07 group of the remaining 214
TFs (P-value = 0.013). A lower PageRank ratio means the
TF plays a more important role in the fibroblast cell, which
is consistent with the experimental findings.

Furthermore, in addition to the assessment of the somat-
ics barriers, we also validated the Taiji-reprogram on the
prediction of TFs which can induce the human pluripotent
stem cells (hPSCs) to differentiate and decrease the pluripo-
tency. Ng et al. (66) screened 1,564 TFs and found 290 TFs
that can induce differentiation of hPSCs. Among the 290
TFs, 125 have known motifs and were included in our Taiji
analysis. We calculated the 745 TFs’ PageRank ratios in all
possible conversions between the 3 hESCs and 151 non-
hESC cell-types collected in this study, and selected the top
20 TFs with the highest PageRank ratio (non-hESC/hESC)
in each conversion, i.e. these 20 TFs had higher PageRank
scores in non-hESC cells than in hESCs. Over-expression
of these TFs in hESCs is expected to induce the differenti-
ation of hESCs to the target cells. We pooled together all
the top 20 TFs in each conversion and ranked them by their

frequency. We selected the top 125 TF with the higher fre-
quency as our prediction of inducing TFs, among which 29
were found in the Ng et al. study. The chi-square test showed
a P-value of 0.048, which suggests a significant overlap be-
tween our predictions and those found by Ng et al. (Sup-
plementary Figure S4). Note that Ng et al. identified TFs
inducing loss of pluripotency but not direct differentiation
into a specific cell type, while our analysis found TFs for
direct conversion between hESC and a particular differenti-
ated cell type, which is the best mimic of losing pluripotency.
Considering this difference, we argue the overlap between
the predicted and identified TFs is satisfactory.

DISCUSSION

We present here a comprehensive identification of TFs that
are key regulators of deciding cell specificity in diverse hu-
man cell types and tissues using a systems biology approach
called Taiji. Taiji integrates gene expression and epigenomic
data (open chromatin or histone modification) to construct
a genetic network. Compared to using protein–protein in-
teraction networks that are not cell-type specific in other
methods, Taiji analyzes expression and epigenomic data in
the cell type or tissue under consideration, which better rep-
resents cell-type/tissue-specific regulatory interactions. Im-
portantly, the PageRank score of a TF naturally considers
the impacts of its upstream regulators and downstream reg-
ulatees in the network including the feedback from its regu-
latees. Therefore, the PageRank score represents the global
importance of a TF in the genetic network, i.e. the top
ranked TFs by PageRank score are master regulators and
any perturbation on them would have significant impact on
the network.

By comparing the key TFs found in each cell type/tissue,
we successfully identified lineage-specific and cell-
type/tissue-specific regulators including many well-known
key regulators. In particular, the previously unknown TFs
were uncovered to be responsible for tissue development
and differentiation in the human embryonic and postnatal
stages, which can serve as a valuable reference for future
mechanistic studies to better understand the regulatory
mechanisms of development. Furthermore, given the fast
advancement of mapping human tissues using RNA-seq,
ATAC-seq and other epigenetic assays, our analysis is
readily applicable to these data and can provide a powerful
way to integrate gene expression and epigenomic data
at the systems level. Importantly, Taiji is applicable to
individual data sets and thus expansion to include addi-
tional data is straightforward. Comparative analysis on
more diverse cell types and tissues would also better define
cell/tissue-specific regulatory roles of TFs and further our
understanding of the mechanisms underlying cell/tissue
specification.

By leveraging the TF PageRank scores’ measurement of
global importance in individual cell-types, we developed a
systematic approach to identifying TF cocktails that can
convert one cell type to another. This new approach is
straightforward and computationally efficient. By consider-
ing the TFs that have the most differential PageRank scores
in the target and source cells, we find the candidate regu-
lators whose perturbation would likely facilitate cell con-
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version. Given the PageRanks scores, we can easily con-
sider a large number of TF combinations to select the most
promising reprogramming cocktails. In particular, because
the PageRank scores reflect the global importance of the
TFs, we can directly use the product of PageRank scores
of the TFs in a cocktail to rank the candidate TF combi-
nations. This way, we avoid the heuristic process to select a
set of differentially expressed genes between the target and
source cells to score the reprogramming TF combinations.
We demonstrated the superior power of this approach on
predicting reprogramming cocktails compared to the ex-
isting popular methods. The functional analysis of novel
TF candidates in reprogramming cocktails indicates the po-
tential roles in the conversion between different cell types,
which can guide further experimental investigations. As the
ongoing efforts such as Human Cell Atlas aim to measure
transcriptome and epigenome in all the cell types of the hu-
man body, our approach will be readily applicable to iden-
tify key regulators defining the cell types and develop repro-
gramming cocktails for cell conversion, which will greatly
facilitate devising disease models and new cell-based thera-
peutics.
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Badimon,L. (2003) Neuron-derived orphan receptor-1 (NOR-1)
modulates vascular smooth muscle cell proliferation. Circ. Res., 92,
96–103.

50. Rodrı́guez-Calvo,R., Guadall,A., Calvayrac,O., Navarro,M.A.,
Alonso,J., Ferrán,B., de Diego,A., Muniesa,P., Osada,J.,
Rodrı́guez,C. et al. (2013) Over-expression of neuron-derived orphan
receptor-1 (NOR-1) exacerbates neointimal hyperplasia after vascular
injury. Hum. Mol. Genet., 22, 1949–1959.

51. Betzenhauser,M., Pitt,G. and Antzelevitch,C. (2015) Calcium
channel mutations in cardiac arrhythmia syndromes. Curr. Mol.
Pharmacol., 8, 133–142.

52. Stefanovic,S. and Zaffran,S. (2017) Mechanisms of retinoic acid
signaling during cardiogenesis. Mech. Dev., 143, 9–19.

53. Koibuchi,N. and Chin,M.T. (2007) CHF1/Hey2 plays a pivotal role
in left ventricular maturation through suppression of ectopic atrial
gene expression. Circ. Res., 100, 850–855.

54. Afouda,B.A., Lynch,A.T., de Paiva Alves,E. and Hoppler,S. (2018)
Genome-wide transcriptomics analysis identifies sox7 and sox18 as
specifically regulated by gata4 in cardiomyogenesis. Dev. Biol., 434,
108–120.

55. Tshori,S., Gilon,D., Beeri,R., Nechushtan,H., Kaluzhny,D.,
Pikarsky,E. and Razin,E. (2006) Transcription factor MITF regulates
cardiac growth and hypertrophy. J. Clin. Invest., 116, 2673–2681.

56. Lange,A.W., Haitchi,H.M., LeCras,T.D., Sridharan,A., Xu,Y.,
Wert,S.E., James,J., Udell,N., Thurner,P.J. and Whitsett,J.A. (2014)
Sox17 is required for normal pulmonary vascular morphogenesis.
Dev. Biol., 387, 109–120.

57. Tucker,N.R., Dolmatova,E.V., Lin,H., Cooper,R.R., Ye,J.,
Hucker,W.J., Jameson,H.S., Parsons,V.A., Weng,L.-C., Mills,R.W.
et al. (2017) Diminished PRRX1 expression is associated with
increased risk of atrial fibrillation and shortening of the cardiac
action potential. Circulation, 10, e001902.

58. Wang,T., McDonald,C., Petrenko,N.B., Leblanc,M., Wang,T.,
Giguere,V., Evans,R.M., Patel,V.V. and Pei,L. (2015) Estrogen-related
receptor � (ERR�) and ERR� are essential coordinators of cardiac
metabolism and function. Mol. Cell. Biol., 35, 1281–1298.

59. Zhou,M., Yan,J., Ma,Z., Zhou,Y., Abbood,N.N., Liu,J., Su,L., Jia,H.
and Guo,A.-Y. (2012) Comparative and evolutionary analysis of the
HES/HEY gene family reveal exon/intron loss and teleost specific
duplication events. PLoS One, 7, e40649.

60. Rutenberg,J.B., Fischer,A., Jia,H., Gessler,M., Zhong,T.P. and
Mercola,M. (2006) Developmental patterning of the cardiac
atrioventricular canal by notch and Hairy-related transcription
factors. Development, 133, 4381–4390.

61. Bhakta,M., Padanad,M.S., Harris,J.P., Lubczyk,C., Amatruda,J.F.
and Munshi,N.V. (2018) pouC regulates expression of bmp4 during
atrioventricular canal formation in zebrafish. Dev. Dyn., 248,
173–188.

62. Yu,J. (2007) Induced pluripotent stem cell lines derived from human
somatic cells. Science, 318, 1917–1920.

63. Skamagki,M., Correia,C., Yeung,P., Baslan,T., Beck,S., Zhang,C.,
Ross,C.A., Dang,L., Liu,Z., Giunta,S. et al. (2017) ZSCAN10
expression corrects the genomic instability of iPSCs from aged
donors. Nat. Cell Biol., 19, 1037–1048.

64. D’Alessio,A.C., Fan,Z.P., Wert,K.J., Baranov,P., Cohen,M.A.,
Saini,J.S., Cohick,E., Charniga,C., Dadon,D., Hannett,N.M. et al.
(2015) A systematic approach to identify candidate transcription
factors that control cell identity. Stem Cell Rep., 5, 763–775.

65. Qin,H., Diaz,A., Blouin,L., Lebbink,R.J., Patena,W., Tanbun,P.,
LeProust,E.M., McManus,M.T., Song,J.S. and Ramalho-Santos,M.
(2014) Systematic identification of barriers to human iPSC
generation. Cell, 158, 449–461.

66. Ng,A.H.M., Khoshakhlagh,P., Rojo Arias,J.E., Pasquini,G.,
Wang,K., Swiersy,A., Shipman,S.L., Appleton,E., Kiaee,K.,
Kohman,R.E. et al. (2021) A comprehensive library of human
transcription factors for cell fate engineering. Nat. Biotechnol., 39,
510–519.




