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Abstract

Essays in Environmental and Resource Economics

by

Daniel Alexander Kannell

Doctor of Philosophy in Agricultural and Resource Economics

University of California, Berkeley

Professor Michael L. Anderson, Chair

The fields of environmental and resource economics provide us with the tools that allow us
to better understand the world around us and the ways in which humans interact with it.
People benefit from goods and resources provided by the environment, but can also harm
the environment through externalities created by their economic activity. The utilization of
environmental resources often requires government and society to implement policies in order
to protect and preserve these resources for the future. This dissertation explores three topics
in environmental and resource economics. The first measures an environmental externality
caused by urban development and proposes a policy that balances continued development
with the welfare of those harmed by the externality. The second explores how people adapt
to changes in climate resulting from migration, which may inform us about adaptation to
climate change and migration in the future. The third topic studies the effectiveness of
policies aimed at protecting marine resources, at a time when marine protection is rapidly
expanding.

The first chapter, titled “Shadow Prices: Measuring the Cost of Shadows from New Con-
struction in New York City,” studies one negative externality of urbanization – the blocking
of sunlight by construction – and a policy that can be implemented to ensure a balance be-
tween urban development and the welfare of those who are harmed by their reduced access
to sunlight. I begin by measuring the externality of urban shadows by estimating the impact
of shadows created by new highrise construction on nearby housing prices. Making use of
publicly available housing transactions data and building shapefiles for New York City, I
create a shadow accumulation model to measure the amount of shadow created by highrises
that are cast on residential units in Manhattan in each year for highrises constructed between
2005 and 2014. I then use a differenced regression model with spatial-time fixed effects to
estimate the effect of a change in shadows on nearby residential unit sale prices. I estimate
that a 10 percentage point increase in average daily shadow received by a unit (e.g. 1 hour
of additional shadow in a day with 10 hours of sunlight) is associated with an approximately
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3.78% decrease in unit price. Finally, I propose a policy that incorporates this estimate in
regulating building height.

In the second chapter, titled “Estimating the Relationship Between Inter-Climate Migration
and Air Conditioning Adoption,” which I coauthored with Léopold Biardeau, we measure
the relative increase in residential air-conditioning (AC) adoption rates in states that see
higher levels of migration from relatively cooler states, within the contiguous United States.
We consider how the average percent increase in Cooling Degree Days (CDDs) by migrants
to a given destination state increases the average rate of residential AC adoption in the
four decades spanning from the 1960s to the end of the 20th century. We find significant
positive effects of the percent increase in CDDs experienced by migrants on rates of air
conditioning adoption. To confirm the validity of this relationship, we rely on an instrumental
variables approach using origin state determinants of emigration, along with the distance
between states, to provide evidence that this result is not the byproduct of a reverse causality
relationship in which higher residential AC-adoption levels would be responsible for increased
immigration from relatively cooler states. These results provide some insights regarding the
expected impact relative temperature changes may have on Climate Change adaptation.
In particular, we might expect that an increase in population displacements from warmer
countries to relatively cooler ones lead to a lower increase in energy demand for cooling
purposes that what would have been anticipated.

In the third and final chapter, titled “Evaluating the Effectiveness of Very Large Marine
Protected Areas at Deterring Fishing Effort,” which I coauthored with Léopold Biardeau
and David Zilberman, we study the extent to which Very Large Marine Protected Areas
(VLMPAs) have been successful at deterring fishing effort. The last decade has witnessed
a considerable increase in the designation of VLMPAs, Marine Protected Areas spanning
at least 100,000 km2. On paper, these protected areas offer conservation benefits not seen
in smaller ones. Yet, their large sizes may constitute a challenge for enforcement. Using
on satellite-based data that tracks vessel fishing hours, we find evidence that VLMPAs
have, on average, been able to deter fishing effort, although a case-by-case analysis reveals
varying levels of success. To better understand the nature of possible illegal fishing in these
VLMPAs, we investigate the characteristics of the vessels infringing on the fishing bans in
these VLMPAs and find that most of the infractions can be traced back to a few industrialized
countries.

These three chapters fall back on three important question in environmental and resource
economics: What are the environmental externalities associated with economic activity and
what policies can be implemented to compensate those harmed while balancing the interest of
allowing continued economic activity? How do people adapt to changes in their environment?
And finally, how successful are current policies that are designed to protect the environment
and its resources? The research contained in this dissertation applies each of these questions
in different contexts, and in doing so, helps us to better understand the economics of resources
and the environment.
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Chapter 1

Shadow Prices: Measuring the Cost of
Shadows from New Construction in
New York City

1.1 Introduction

The reduction in access to sunlight due to shadows created by new construction is a classic
externality problem. As cities grow taller and denser, more people will be shadowed from
the sun. The first citywide zoning ordinance in the US, New York’s 1916 Zoning Resolution,
was a direct response to the rise of skyscrapers which were perceived as preventing sunlight
and air from reaching the street. The zoning ordinance required that buildings be further
set back from the street as they rose past certain heights. This law contributed directly to
the development of Art Deco-style skyscrapers in NY, with some of New York’s most iconic
buildings incorporating these setbacks into their design (Bliss, 2016).

In an interview on buildingtheskyline.org, economist Edward Glaeser of Harvard University
said “I think that the starting point [in the debate on taxing or regulating the construction
of tall luxury apartment buildings] has to be a serious quantification of the externalities
[from height]. Almost none of the land use regulations that cities have ardently adopted
for over a century have been justified by any serious quantitative work. The existence of
even the smallest externality, such as a shadow, has been seen as justification for massive
interventions in the housing market” (Barr, 2018). In 2017, the City of Berkeley, California
was sued over its denying a permit to a contractor that planned to demolish a home and
replace it with three smaller units on a single lot. A focal point that led to the permit’s
denial was a shadow that would be cast on the neighboring lot’s vegetable garden. Sophie
Hahn, at the time a member of Berkeley’s Zoning Adjustments Board, said with respect
to the project, “When you completely shadow all of the open space, you really impact the
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ability for anybody to possibly grow food in this community” (Dougherty, 2017).

There are a few channels through which access to sunlight may impact housing prices.
Fist, sunlight is an amenity which may directly affect people’s utility of living in a certain
location, for example, by directly impacting people’s health. An et al. (2016) find that
exposure to sunlight was a dominant predictor of anxiety, depressed mood, job satisfaction,
and organizational commitment. Lambert et al. (2002) find that the duration of bright
sunlight relates directly to serotonin production in the brain. Beaulieu and Dumont (2007)
find that sunlight influences the secretion of melatonin which regulates the sleep-wake cycle
and can be used to treat some mood and sleep disorders. Holick (2004) finds that exposure
to sunlight can help with vitamin D sufficiency.

Second, sunlight may affect energy use. For example, there may be a positive benefit of
summer shadows and a negative effect of winter shadows due to decreased cooling costs in
summer and increased heating costs in winter. Donovan and Butry (2009) find in Sacramento
that shade trees located to the south or west of a house reduced summertime energy use by
5.2%, a potential positive benefit of shadows.

Some papers that have attempted to answer the question of what is the cost of the exter-
nality of shadows. Fleming et al. (2018) estimated the value of sunlight for housing sales in
Wellington, New Zealand using a hedonic regression and found that an extra hour of average
daily sunlight is associated with a 2.6% increase in house sale price. Li (2022), however,
finds that while new highrises decrease nearby rents, there does not appear to be any affect
of new building height on nearby rental prices, a finding which the author suggests makes it
implausible that shadows can explain the negative effect of new highrises .

There is now a desire to use new sources of “big” data at fine geographic scales to answer
questions in urban economics (Glaeser et al., 2018). Methods to estimate specific directional-
ity of shadows from buildings have recently been developed using highly detailed 3D models
of New York City’s buildings. Miranda et al. (2019) use the properties of sun movement and
ray tracing to develop a shadow accrual map for all of New York City.

In this paper, I estimate the external cost of shadow from the construction of new buildings
in Manhattan between 2005 and 2014. I first computationally generate data on shadows
cast by the stock of buildings in each year. I next measure the amount of additional shadow
received by shaded buildings from each shadow-casting building. Then, making use of year-
by-year changes in shadow on residential properties from the construction of new high-rises,
I measure the effect of additional average shadow on housing prices.

My empirical strategy differs from that of previous papers estimating the impact of shadows
on housing prices in that this paper’s methodology makes use of quasi-experimental changes
in shadows. I regress changes in housing prices on changes in average daily shadow, control-
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ling for a quadratic function of distance to the newly constructed building, which is designed
to control for most non-shadow externalities of the new building, including views. In order
to control for neighborhood-level changes in housing prices over time, I use spatial-time fixed
effects, which control for average housing price changes within the neighborhood of a given
apartment unit over time. This method exploits variation in shadow position, in that some
units nearby to new construction may receive more shadow than others at a similar radius
from the new building based on their direction from the new building, resulting from relative
solar position. While this does not completely rule out the effect of views, as long as there
is not a consistent direction towards which views are favored that aligns with solar position,
views can be ruled out as the primary driver of my results.

In the results section, I demonstrate that a 10 percentage point increase in average daily
shadow for a unit is associated with an approximately 3.78% decrease in unit price. I further
test whether this percentage varies based on existing shadow. I find that the more existing
shadow there already is, the larger will be the percentage decrease in price resulting from a
10 percentage point increase in average daily shadow, although this effect is not significant
across specifications. A subsection considers robustness checks for the potential impact of
views on my results.

Finally, I describe a potential policy that can result from this research. In cities with existing
height restrictions, my proposal is to give developers the ability to build past the height
restriction, in exchange for paying a tax on the shadow externality that they create. This
tax is proposed specifically based on the proportion of the building surpassing existing height
restrictions, as the tax does not simultaneously subsidize positive externalities (e.g. due to
job or amenity effects). I work through the details of such a policy, and present a case study
of what the tax would look like for a current building under development, and how we could
determine the optimal height of the building under the tax which maximizes profits for the
developer.

The paper proceeds as follows. In Section 2, I describe my sources of data and explain how
I generate the shadow data. In Section 3, I describe my empirical strategy. In Section 4,
I describe the results of my estimation, including a subsection for robustness to views. In
Section 5, I describe a policy that could be implemented based on these results, including a
subsection with a real-world application. Section 6 concludes.

1.2 Data

My paper relies on three primary sources of data: transactions data, which provide the
transaction prices of residential units in NYC; buildings data, which provide the shape data
for each building in NYC and the year of its construction; and shadow data, which I generate
myself for each observation in the transactions data in Manhattan between 2004 and 2014
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based on the shadows generated by buildings in the buildings data. (Note that 2004 is one
year prior to the first year that I measure changes in shadow from the construction of new
buildings, as baseline shadows need to exist prior to a new building’s construction in order
to estimate a change in shadow for a given residential unit.) I additionally use solar position
data from the Pysolar Python package to assist in generating the shadow data.

Transactions data uses the City of New York’s Annualized Sales Update data.1 These data
list all property sales in New York City since 2003. These data include variables for building
class (e.g. walkup apartment), address, apartment number (if applicable), number of resi-
dential units, number of commercial units, square feet of land, square feet of property, year
built, sale price, and sale date, among others. I use the Google Maps API to geocode street
addresses into latitude and longitude (lat-lon) coordinates, which allows for merging with
other sources of data. I use these transactions to estimate the prices of transactions of NYC
housing units, restricting the observations to transactions of individual residential units.

Buildings data uses the City of New York’s Building Footprints data.2 These data contain
the shapes of each NYC building’s footprint in latitude and longitude coordinates, year of
construction of the building, and height of the building. I use these data both to determine
the shape of the building that houses each residential unit, and also the shape of all other
buildings in Manhattan for determining the height and shape of the shadows that they cast.

I generate shadow data computationally for each residential transaction in the transactions
data occurring in Manhattan between 2004 and 2014, based on the shapes of their building
in the building footprints data. I begin by matching the location of each residential address
to a building from my buildings data. Using the lat-lon coordinates for a given residential
building using Google Maps for geocoding addresses, I see which building footprint in the
buildings data contains each residential unit’s geocoded location. This gives me the shape
and height of the building containing each residential unit.

Once I determine each building that hosts a residential unit in my data, I estimate the
shadow received by that building in a given year. As shadows vary both across times within
a day, and across days within a year, to limit my computation time, I calculate shadows on
three specific dates at 5 minute intervals: on December 21 (winter solstice) between 9am
and 2:55pm EST (UTC–05:00), on June 20 (summer solstice) between 7:30am and 4:25pm
EST, and September 22 (fall equinox) between 6am and 5:55pm EST, for each year between
2004 and 2014. (Note the use of EST for all dates, which centers the measurement for each
date on approximately solar noon.) For each of these dates, I use solar position based on
the 2016 solar position regardless of year of observation, both for simplicity and consistency
in comparing times of day with equal solar positions across years. The date of the spring

1https://www1.nyc.gov/site/finance/taxes/property-annualized-sales-update.page
2https://data.cityofnewyork.us/Housing-Development/Building-Footprints/nqwf-w8eh
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equinox (March 20) is approximately equal in solar position to the fall equinox, so applying
the fall equinox shadow data to the spring equinox gives me four dates worth of shadow
data, one representing each season.

Next, for each date-time beginning in 2004 and ending in 2014, I calculate the shadow of
each building in my buildings data with a height greater than or equal to 50 feet tall, (I
implement the 50-foot restriction to limit computation time), built in that year or earlier.
For each building b, I first determine the length of the shadow cast by building b at a given
point in time τ using the angle of the sun above the horizon θτ , which I get from the Pysolar
Python package,3 and the height of building b, heightb. I calculate the length of building b’s
shadow as

lenbτ = heightb/ tan(θτ ).

I next determine the direction of shadow at a given time of day τ using the azimuth of the
sun (the position of the sun in clockwise degrees from North), ϕτ , which I also get from the
Pysolar Python package. The shadow’s direction can be determined in terms of coordinates
on a unit circle, (sin(ϕτ − 180), cos(ϕτ − 180)), with the positive x-axis representing east,
and the positive y-axis representing north. These coordinates are multiplied by lenbτ to
determine the relative length of the shadow in feet in the horizontal (east-west) and vertical
(north-south) direction from the building.

Next, I construct the shadow polygon for each building b at time τ . For any two side-by-side
coordinates in the building footprint, I consider those two coordinates to form a wall. I then
project those two coordinates by the length of the shadow and in the direction of the shadow
to generate two new coordinates, which are the shadow of the wall’s upper corners. That is,
I add lenbτ × (sin(ϕτ − 180), cos(ϕτ − 180)) to both coordinates that form the wall. Drawing
a parallelogram around these four coordinates gives me the shadow of that wall. I generate
a shadow for each wall of a building, and finally take the union of these shadows, which
approximates the entire shadow of the building.

Figure 1.1 shows an example of the shadow projection from the New York Federal Reserve
(NY Fed) building at 7am, 9:30am, 12pm, 2:30pm, and 5pm EST during the Summer (June
20), Fall (September 22), and Winter (December 21), respectively (removing 7am and 5pm
for winter and fall). The base polygon of the NY Fed is in red, while the shadow polygon is
in blue. All times are in Eastern Standard Time (UTC-05:00) such that 12pm is the hour
closest to solar noon on all three dates. (Note that New York uses Eastern Daylight Time
(UTC-04:00) on June 20 and September 22. All times in this paper follow EST (UTC-05:00).)
The choice of a single timezone EST for all three dates by ignoring the timezone shift for

3https://pysolar.org/
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Figure 1.1: Shadow Projection From the New York Federal Reserve

The red polygon towards the center of each plot represents the New York Federal Reserve’s
(NY Fed) building footprint. The surrounding blue polygon represents the NY Fed’s shadow
polygon. The first row labeled Summer shows the shadow on June 20. The second row
labeled Fall shows the shadow on September 22. The third row labeled Winter shows the
shadow on December 21. Columns represent shadows at different times of day in UTC-05:00.
Shadows at 7am and 5pm are not included during Fall and Winter.

daylight savings is done for simplicity. Choice of timezone does not affect the analysis, as
the measure of shadow considers the fraction of total daylight hours shadowed and is not
based on specific times of day.

For each residential building r hosting a residential unit i in my transactions data, I generate
a variable determining the amount of shadow on r at time τ , shadowrτ . shadowrτ will range
from 0 to 1 based on the height of the building covered by shadow, with 0 meaning that
building r receives no shadow at time τ , 1 meaning that building r receives a shadow up
to the height of its roof at time τ , and a number in between meaning that some fraction
shadowrτ of building r’s height is covered in shadow.

To calculate shadowrτ , I first check if building b’s shadow falls on building r at time τ . I
simplify this step by checking only if the centroid of address r’s building footprint falls within
building b’s shadow polygon at time τ . If it does, I then calculate the fraction of building r’s
height that is shadowed by comparing the height of the shadow at the coordinate of building
r’s centroid to the height of building r. To calculate the height of building b’s shadow at
the centroid of building r at time τ , heightbrτ , I next calculate the distance between the
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two buildings, distbr, using the Euclidean distance between the centroids of the respective
buildings’ footprint polygons. I then calculate the height of the shadow at the centroid of
building r using the formula

heightbrτ =
lenbτ − distbr

lenbτ

× heightb.

To determine the amount of shadow on the residential address r, shadowbrτ , I then calculate
the height of the shadow as a fraction of building r’s height, heightr, not to surpass 1.

shadowbrτ = min

{
1,

heightbrτ
heightr

}
.

Finally, I calculate the total shadow on building r at time τ , shadowrτ , as a fraction of
building r’s height to be the maximum fraction of shadow shadowbrτ cast by all buildings b
on building r at time τ .

shadowrτ = max
b

shadowbrτ .

Figure 1.2 shows the red building (red polygon) casting a shadow (blue polygon) in the
direction of the green building (green polygon). At 10:30am, the shadow partially covers
the green building. However, for simplicity, as the centroid of the green building falls just
outside of the shadow, I do not consider the green building as shadowed by the red building
at 10:30am (note that other buildings may still shadow the green building). At 11am, the
centroid of the green building is clearly within the shadow of the blue building, so I consider
the green building to be shadowed by the red building. At 11:30am, the centroid of the
green building again falls just outside of the shadow, so I do not consider the green building
as shadowed by the red building. While at 10:30am and 11:30am, it appears that the green
building could be considered about half shadowed by the red building, this should balance
out, as if the green building’s centroid were to fall just slightly inside of the blue shadow
polygon, which would also lead the green building to appear half shadowed, I would calculate
a full shadow on the green building. As I measure shadows at 5-minute intervals, the green
building is considered shadowed by the red building for all times starting from 10:35am and
ending at 11:20am.

Figure 1.3 shows how the vertical shadow of building b (red) on building r (green) is measured
at time τ . The shadow is shown in blue, where θτ is the angle of the sun above the horizon,
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Figure 1.2: Throwing Shade: Shadowing Another Building

The red polygon towards the bottom of each plot represents World Trade Center One’s
(WTC) building footprint at 10:30am, 11am, and 11:30am (UTC-5:00) on December 21.
The surrounding blue polygon represents the WTC’s shadow polygon. The green building
towards the center represents the footprint of a building shadowed by the WTC. Centroids
are plotted at the center of each building’s footprint polygon. The vertical shadow cast by
the World Trade Center is measured at 11am when green building’s centroid is within the
WTC’s shadow, but not at 10:30am or 11:30am when the green building’s centroid is outside
of the WTC’s shadow.

heightr is the height of building r, and heightb is the height of building b. heightbrτ is the
vertical height of building b’s shadow on building r at time τ

To convert these data into annual shadow data for each residential address, I calculate the
average shadow received by building r across the 5 minute intervals for each of the three dates,
then calculate the average shadow across the three dates for each year, double weighting the
fall equinox, September 22, to account for the Spring equinox, March 19. I use this average as
an approximation of the average annual shadow across a given year. That is, for residential
building r in year t, I calculate
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Figure 1.3: Vertical Shadow Measurement

The vertical red line on the right represents the height of a building b that we are measuring
the shadow of, with height heightb. The vertical green line towards the left represents a
building r that is being shadowed by the red building, with height heightr. The diagonal
blue line represents the maximum height of the shadow cast by building b as it falls towards
the ground, where θτ is the angle of the sun above the horizon at time τ . heightbrτ is the
measured height of the shadow cast by building b on building r at time τ .

shadowrt =
1

4

∑
S

[
1

NS

∑
τ∈tS

shadowrτ

]

where S is the season, representing Winter, Summer, Fall, and Spring, NS is the number of
5 minute intervals in the respective date for season S, and tS represents the set of 5 minute
intervals in the respective date for season S in year t.

1.3 Empirical Strategy

My empirical approach compares changes in housing prices for residential units to changes
in average daily shadow received by those units. I calculate the average daily shadow for
unit i in year t

Sit = shadowrit,
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where ri is the building r containing unit i. (Calculation of shadowrt is detailed in the
previous section.) Sit ranges from 0 to 1, with 0 meaning that building ri receives no shadow
at all times that I measure in year t, 1 meaning that a shadow up to the roof of building ri
is being cast on building ri at all times that I measure in year t, and a number in between 0
and 1 meaning that some fraction Sit of building ri’s height is covered in shadow on average
in year t. Ideally, I would know what floor or side of building ri unit i is located on, which
could allow me to calculate a more precise measure of shadow received by unit i. However,
this is not allowed by the data, which does not include specific data on where in a given
building an apartment or condo unit is located. As such, I approximate the shadow received
by the unit using the average shadow received by its building.

I use a differenced regression model with spatial-time fixed effects, based on the spatial fixed
effects model from Anderson (2020). For a given variable uit, I define ũitj = uitj − ūitj , where
ūitj is the mean of variable u within radius k of unit i in year tj. This regression is of the
form

∆ỹitj = β∆x̃itj +∆ε̃itj ,

with j ∈ {2, 3, . . . , ni}, where ni is the number of observations for unit i in the sample, and
∆ represents the change from tj−1 to tj. That is,

∆x̃itj = x̃itj − x̃itj−1
.

Because transactions for each unit do not necessarily take place every year, tj−1 and tj may
be one or more years apart. The inclusion of spatial-time fixed effects control for average
changes in housing values between periods tj−1 and tj that are within radius k of unit i.
This allows the regression to account for the panel imbalance by netting out time-related
housing price changes that affect all units within radius k, allowing me to focus on unit-level
housing price variation over time rather than neighborhood-level variation (e.g. removing
the effect general housing price changes in a given neighborhood). Due to panel imbalance,
the spatial-time fixed effects within the same radius may be averaged over a different set of
units for any two years tj−1 and tj, but for each period, the spatial time fixed effect still
represents the average housing sale price within a given neighborhood in year t.

Writing out the differences in longer form, the regression can be written as

ỹitj − ỹitj−1
= β

(
x̃itj − x̃itj−1

)
+
(
ε̃itj − ε̃itj−1

)
.
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Writing out the spatial-time fixed effects as well, this becomes

(
yitj − ȳitj

)
−

(
yitj−1

− ȳitj−1

)
= β

((
xitj − x̄itj

)
−
(
xitj−1

− x̄itj−1

))
+
((
εitj − ε̄itj

)
−
(
εitj−1

− ε̄itj−1

))
.

Note that the differences and spatial-time fixed effects can be swapped.

(
yitj − yitj−1

)
−

(
ȳitj − ȳitj−1

)
= β

((
xitj − xitj−1

)
−
(
x̄itj − x̄itj−1

))
+
((
εitj − εitj−1

)
−
(
ε̄itj − ε̄itj−1

))
.

The spatial-time fixed effects can thus be thought of similarly to a standard spatial fixed
effects, but in the differenced model the spatial-time fixed effects are also differenced over
time.

To estimate the effect of shadows on housing prices, I regress changes in log housing prices
on changes in average daily sunlight, S, using this differenced model with spatial-time fixed
effects. This regression follows the equation

∆ ˜log(pitj) = β∆S̃itj +∆ε̃itj . (1.1)

In Equation (1.1), log(pitj) is the log sale price of housing unit i in year tj. Sitj is the average
daily shadow received by unit i, averaged over year tj, as previously defined. εitj is an error
term.

For a given unit i in my data with ni transactions, the number of differenced observations
is ni − 1 for ni > 1. A unit with only one transaction does not appear as an observation for
estimating the regression, but is included for the calculation of spatial-time fixed effects, as
the averages are taken before differencing.

Note that due to differencing, ∆S̃itj is only non-0 when there is a change in shadow on unit
i between periods tj−1 and tj, or a change in the spatial-time fixed effect of unit i resulting
from a change in shadow to one or more nearby units between periods tj−1 and tj. As a
result of differencing, a richer set of unit-specific controls such as square footage, number of
bathrooms, etc., is not needed, as differencing removes variation in pricing resulting from
such fixed features of units.
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Figure 1.4: Locations of new buildings over 50 feet tall constructed between 2005 and 2014

Each blue dot represents a building in Manhattan over (or equal to) 50 feet tall for which
construction was completed between 2005 and 2014.

The identification of a causal effect in this model is derived from the fact that shadows
generated by a new building are not spread uniformly to existing units. The additional
shadow received by two units located at the same distance from a new building depends
on both the direction from the new building that the existing unit is located (e.g. units
directly to the south of a new building will not receive any additional shadow) and the pre-
existing shadow on the new building (e.g. if the building is already fully shadowed, there will
not be additional shadow generated). This allows me to identify the changes in unit prices
due to shadows separately from the changes in unit prices due to other neighborhood-level
externalities from the the construction of a new building.

In order to control for potential neighborhood effects resulting from the construction of a
new building, I additionally run a regression which includes as controls a quadratic function
of the distance to a new building over 50 feet tall within 500 meters of unit i (see Figure 1.4).
This accounts for the effect of the shadow-generating building’s neighborhood price effect
on all housing units within 500 meters of the new building, and assumes this effect changes
with distance from the new building. For the intercept term of this quadratic function, I
first define a constant term D500itj , which is equal to the number of new buildings over 50
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feet tall within 500 meters of unit i built between the start of my sample and period tj. For
example, if three new buildings over 50 feet tall within 500 meters of unit i are built between
tj−1 and tj, then ∆D500itj = 3. The linear term in the quadratic function, dist500itj , is the
sum of the distances to unit i of all buildings over 50 feet tall within 500 meters of unit i
built between the start of my sample and period tj. The quadratic term in the quadratic
function, dist500sqitj , is the sum of the squares of the distances to unit i of all buildings over
50 feet tall within 500 meters of unit i built between the start of my sample and period tj.
Summing the values of the quadratic function of distance is equivalent to having a separate
quadratic function of distance for each building within 500 meters of unit i with the same
coefficients. This regression follows the equation

∆ ˜log(pitj) = β∆S̃itj + γ1∆ ˜D500itj + γ2∆ ˜dist500itj + γ3∆ ˜dist500sqitj +∆ε̃itj . (1.2)

Due to differencing, all terms of the quadratic function will be 0 if there is no new building
built within 500 meters of unit i between tj−1 and tj, and no change in the spatial-time fixed
effect resulting from a new building built within 500 meters of a nearby unit.

In a third regression specification, I interact the quadratic function of distance to new build-
ings with a linear function of the height of the new building. There are three new con-
trols used in this regression. height500itj is the sum of the height of all buildings over 50
feet tall within 500 meters of unit i built between the start of my sample and period tj.
dist500 height500itj is the sum of the distances to unit i times the height of that building
of all buildings over 50 feet tall within 500 meters of unit i built between the start of my
sample and period tj. dist500sq height500itj is the sum of the squares of the distances to
unit i times the height of that building of all buildings over 50 feet tall within 500 meters of
unit i built between the start of my sample and period tj. These additional terms account for
the possibility that the shadow-generating building’s neighborhood price effect on housing
units within a 500 meter radius varies with the height of the new building, independent of
the additional shadow cast by that building. This regression, including the interaction with
new building height terms, follows the equation

∆ ˜log(pitj) = β∆S̃itj + γ1∆ ˜D500itj + γ2∆ ˜dist500itj + γ3∆ ˜dist500sqitj (1.3)

+ γ4∆ ˜height500itj + γ5∆ ˜dist500 height500itj + γ6∆ ˜dist500sq height500itj

+∆ε̃itj .

Views are not directly controlled for in Equations (1.1) – (1.3). However, as long as views are
not consistently more valuable in a direction that covaries with relative solar position, the
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third specification should best control for the effect of views, as the height of new buildings
which may block views and the distance to the new building are both controlled for separately
from variation in shadow. As such, this is my preferred specification.

I additionally test whether the amount of baseline shadow in period tj−1, Sitj−1
, modifies the

effect of a given change in shadow. That is, for a given change in shadow, Sitj − Sitj−1
, does

a larger baseline shadow Sitj−1
result in a larger price change? I estimate this by adding an

interaction term of the change in shadow with the baseline shadow in period tj−1, Sitj−1
, such

that the interaction term is ∆Sitj × Sitj−1
. Without spatial-time fixed effects, this would be

a regression of the form

∆ log(pitj) = β∆Sitj + δ
(
∆Sitj × Sitj−1

)
+∆εitj . (1.4)

In order to calculate the spatial-time fixed effects for ∆Sitj × Sitj−1
, I first distribute the

interacted baseline shadow Sitj−1
across ∆Sitj = Sitj − Sitj−1

. That is, ∆Sitj × Sitj−1
=

SitjSitj−1
− (Sitj−1

)2. I then separately calculate spatial-time fixed effects for SitjSitj−1
only

using units with a price observation in period tj, and for (Sitj−1
)2 only using units with a

price observation in period tj−1. This ensures that I am taking the spatial-time fixed effects
over the same set of units for SitjSitj−1

and (Sitj−1
)2 as for Sitj and Sitj−1

, respectively. The
regression that I thus estimate to test for the impact of baseline shadow on the effect of a
change in shadow on housing price follows the equation

∆ ˜log(pitj) = β∆S̃itj + δ
( ˜SitjSitj−1

− ˜(Sitj−1
)2
)
+∆ε̃itj . (1.5)

1.4 Results

Table 1.1 displays the estimates of regressions following Equations (1.1), (1.2), and (1.3) in
Columns (1), (2), and (3), respectively. Standard errors are clustered using a 250 meter2

grid. The spatial-time fixed effects use a 250 meter radius. Columns (2) and (3) both include
as controls a quadratic function of distances to newly constructed buildings. Column (3)
additionally interacts this quadratic function with the height of the new building.

Column (3), my preferred specification, suggests that a 10 percentage point increase in
average daily shadow for a unit is associated with an approximately 3.78% decrease in unit
price. To put this into context, assume a one million dollar unit receives on average 6 hours
out of a 12 hour day in shadow. Suppose a new building increases the shadow on this unit

4Appendix Table A.1 includes estimates similar to those in Table 1.1 but using a 500 meter radius for
spatial-time fixed effects and a 500 square meter spatial grid for clustering of standard errors.
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by one hour to 7 out of 12 hours, equal to an 8.3 percentage point increase in average daily
shadow. Assume a similar 8.3 percentage point increase in average daily shadow across
all days of the year. Then the value of the housing unit would be predicted to fall by
.378× .083 = 3.14%, or approximately $31,400.

Table 1.2 displays the results from the regression given by Equation (1.5) in Column (1),
with the addition of distance and distance×height controls in Columns (2) and (3), similar
to those in Equations (1.2) and (1.3), respectively. Standard errors are clustered using a 250
meter2 grid. The spatial-time fixed effects also use a 250 meter radius.

These regressions test if the amount of baseline shadow modifies the effect of a given change
in shadow. That is, for a given change in shadow, does a larger baseline shadow result in
a larger price change? While the interacted results are not consistently significant across
specifications, they are consistently signed and of similar magnitude, suggesting there may
be some (weak) effect of baseline shadow on the effect of the shadow externality. Column

Table 1.1: Effect of changes in shadow on changes in housing price

∆ ˜log(pitj)

(1) (2) (3)

∆S̃it -0.451∗∗∗ -0.432∗∗∗ -0.378∗∗∗

(0.142) (0.136) (0.134)

Spatial-Time FE radius 250m 250m 250m
Cluster Grid 250m2 250m2 250m2

Distance terms No Yes Yes
Height terms No No Yes

Observations 35,180 35,180 35,180

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

∆ ˜log(pitj) represents the change in spatial-time demeaned log housing price. ∆S̃it represents
the change in spatial-time demeaned shadow. Column (1) estimates Equation (1.1). Column
(2) estimates Equation (1.2). Column (3) estimates Equation (1.3). Spatial-time fixed effects
are measured with a 250 meter radius prior to differencing. Standard errors are clustered
using a 250 square meter spatial grid.4

5Appendix Table A.2 includes estimates similar to those in Table 1.2 but using a 500 meter radius for
spatial-time fixed effects and a 500 square meter spatial grid for clustering of standard errors.
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(3) suggests that, for a given change in shadow, a 10 percentage point higher average daily
baseline shadow for a unit is associated with an approximately 1.16 percentage point larger
decrease in unit price.

To put this into perspective, assume that there are two one-million dollar units, one which
receives an average of 0 hours out of a 12 hour day in shadow, and the other which receives
an average of 11 hours out of a 12 hour day in shadow. Suppose a new building increases the
shadow on both units by one hour out of the 12 hour day. That is, the shadow on the first
unit is now 1 out of 12 hours, and for the second unit, it is 12 out of 12 hours. For both units,
this is equal to an 8.3 percentage point increase in daily shadow. The first unit, however,
began with 0 percent of the day in shadow, and the second unit began with 91.7% of the day

Table 1.2: Effect of changes in shadow relative to baseline shadow on changes in housing
price

∆ ˜log(pitj)

(1) (2) (3)

∆S̃itj -0.355∗∗∗ -0.343∗∗ -0.295∗∗

(0.135) (0.134) (0.133)˜(
∆Sitj

)
× Sitj−1

-0.131∗ -0.122 -0.116
(0.079) (0.076) (0.079)

Spatial-Time FE radius 250m 250m 250m
Cluster Grid 250m2 250m2 250m2

Distance terms No Yes Yes
Height terms No No Yes

Observations 35,180 35,180 35,180

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

∆ ˜log(pitj) represents the change in spatial-time demeaned log housing price. ∆S̃it repre-

sents the change in spatial-time demeaned shadow. ˜(
∆Sitj

)
× Sitj−1

represents the change
in spatial-time demeaned shadow interacted with baseline shadow. Column (1) estimates
Equation (1.5). Column (2) estimates Equation (1.5) with the inclusion of distance fixed
effects as in Equation (1.2). Column (3) estimates Equation (1.5) with the inclusion of dis-
tance and height fixed effects as in Equation (1.3). Spatial-time fixed effects are measured
with a 250 meter radius prior to differencing. Standard errors are clustered using a 250
square meter spatial grid.5
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in shadow. Assume these percentages are similar across all days of the year. Then the value
of the first unit would be predicted to fall by .295× .083 = 2.44%, or about $24,400, and the
value of the second unit would be predicted to fall by (.295 + .116 × .917) × .083 = 3.33%,
or about $33,300.

Robustness Check - Views

Perhaps the most important potential confounder with shadows is views. Views throughout
a city, however, are difficult to quantify, as one would need to apply a numerical value to
many different possible views. As described in Section 1.3, the distance and distance-times-
height control variables are designed to capture the effect of views, under the assumption
that there is not a consistent direction towards which views are favored that aligns with
solar position. For example, this would assume that buildings to the south of a new building
which do not receive as much new shadow have the same potential for blocked views of
similar value when compared to buildings to the north, east, or west of a new building which
would receive relatively more new shadows. This is conditional on an assumption that the
quality of views in New York does not covary with relative solar position.

One way to test if the distance and distance-times-height control variables should work as
intended is to see if the height of existing residential buildings co-varies with direction from
new buildings, as taller residential buildings likely have better existing views. In order to
perform this test, I first consider all existing residential buildings within a given radius of
new buildings constructed between 2005 and 2014, where the residential building was built
prior to the construction of the new building. I divide these residential buildings into four
quadrants: South of the new building, North of the new building, East of the new building,
and West of the new building. I perform this directional classification by considering where
residential buildings within this given radius lie with respect to an X-shape centered on
the new building’s centroid. The X-shape is made up of two 45-degree lines running from
north-west to south-east and from south-west to north-east. Residential buildings whose
centroids fall to the south of the X are classified as South, to the north of the X as North,
to the east of the X as East, and to the west of the X as West. For simplicity, I classify
buildings whose centroids lie exactly along the lines forming the X as either South or North,
as opposed to East or West. Figure 1.5 demonstrates this classification, using the New York
Federal Reserve (NY Fed) as the central building. (Note that for the purpose of Figure 1.5,
there is no restriction on construction year of residential buildings being prior to that of the
NY Fed. The NY Fed would not be included in the sample of new buildings considered as
it was not constructed between 2005 and 2014.

Table 1.3 presents summary statistics for the heights of residential buildings in the given
quadrants of new buildings constructed between 2005 and 2014. This is repeated both for
residential buildings within a radius of 500 meters of a new building, and within a radius
equal to two times the new building’s height.
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Figure 1.5: 500m Directional Quadrants Centered on NY Federal Reserve

Each polygon represents a building, which contains a dot representing its centroid. The
central polygon in black represents the NY Federal Reserve. The black X divides nearby
residential buildings into quadrants. The red polygons represent buildings in the South
quadrant. The blue polygons represent buildings in the North quadrant. The yellow polygons
represent buildings in the East quadrant. The green polygons represent buildings in the West
quadrant.

As I perform the directional classification of residential buildings for each new building, I
allow for repeated observations of residential buildings in the sample of residential building
heights: for example, if a residential building is in the South quadrant of one new building,
and in the North quadrant of a different new building, I will consider its height as belonging
to both the South quadrant of the first new building, and to the North quadrant of the
second new building, allowing its height to be included in the calculation of mean height
in both the South quadrant sample and the North quadrant sample. Similarly, if the same
residential building is in both of the South quadrants of two different new buildings, the
residential building’s height will be repeated in the South quadrant sample.

The summary statistics in Table 1.3 show that the numbers of residential buildings within
each quadrant are of a similar order of magnitude. The mean heights of the residential
buildings are, at the maximum difference, 8.92 feet, when measured between the North and
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Table 1.3: Height of residential buildings by direction from new buildings

500m Radius 2×Height Radius

(1) (2) (3) (4) (5) (6)
Obs Mean SD Obs Mean SD

South 35616 75.69 56.81 1320 110.54 99.69
North 33026 77.17 59.46 1422 111.00 99.46
East 34645 74.80 57.88 1604 107.95 92.14
West 32841 77.50 56.96 1479 102.08 89.52

Columns (1) – (3) show summary statistics for residential buildings within 500 meters of a
new building. Columns (4) – (6) show summary statistics for residential buildings within a
radius of a new building equal to two times the new building’s height. The columns marked
Obs are the number of observations within each quadrant for the given radius. The columns
marked Mean are the mean heights within each quadrant for the given radius. The columns
marked SD are the standard deviation of heights within each quadrant for the given radius.

West quadrant given a radius of two times the new building’s height. 8.92 feet is less than the
height one might consider for a typical story (Hickey, 2014), suggesting that the direction
of new shadows does not substantially co-vary with residential building height, and thus
there is not a greater potential for blocked views in quadrants that are more likely to be
shadowed. This allows us to more safely assume that the distance and distance-times-height
control variables will control for the effect of blocked views, under the assumption that view
quality is roughly equal across quadrants.

An additional test for robustness to the impact of views on the results is to determine if the
results hold while removing units that are likely to have the best views in the city. While
quantifying views is difficult, views of Central Park are considered to be among the most
valuable views in Manhattan (Biggs, 2019). Therefore, I re-estimate the regressions in Table
1.1, but removing units falling within 500 meters of Central Park (see Figure 1.6).

Table 1.4 shows the estimates of regressions removing units within 500 meters of Central
Park, which removes 5,923 observations from the sample. I keep the spatial-time fixed
effects unchanged. Each column corresponds to its matching column in Table 1.1. While
the coefficient estimate in each column falls somewhat in magnitude, the coefficients each
remain within one standard deviation of the coefficients estimated in Table 1.1, and remain
statistically significant at the 5% level.
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Figure 1.6: Central Park with 500 meter buffer

The green rectangle at the center represents Central Park. The surrounding red area repre-
sents a buffer of 500 meters from Central Park.

While the building fixed effects and these robustness checks do not entirely rule out correla-
tion between increased shadows and blocked views that may affect the results, the robustness
checks provide evidence that shadows remain a significant determinant of housing prices in
New York City independent of views. Note that for the purpose of the policy implications
presented in the next section, that some of the estimated drop in housing prices may be the
result of views rather than shadows does not affect the conclusion inasmuch as one might
consider pricing blocked views as part of a price on negative externalities.

1.5 Policy Implications

In theory, such externalities as shadows from development could be handled by the market if
the conditions of the Coase theorem were satisfied. Two assumptions of the Coase theorem

6Appendix Table A.3 includes estimates similar to those in Table 1.4 but using a 500 meter radius for
spatial-time fixed effects and a 500 square meter spatial grid for clustering of standard errors. Appendix
Tables A.4 and A.5 include estimates similar to those in Tables 1.2 and A.2, respectively, but removing
observations within 500 meters of Central Park.
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Table 1.4: Effect of changes in shadow on changes in housing price, excluding units within
500 meters of Central Park

∆ ˜log(pit)

(1) (2) (3)

∆S̃itj -0.386∗∗ -0.375∗∗ -0.330∗∗

(0.154) (0.148) (0.148)

Spatial-Time FE radius 250m 250m 250m
Cluster Grid 250m2 250m2 250m2

Distance terms No Yes Yes
Height terms No No Yes

Observations 29,257 29,257 29,257

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

∆ ˜log(pitj) represents the change in spatial-time demeaned log housing price. ∆S̃it represents
the change in spatial-time demeaned shadow. Column (1) estimates Equation (1.1). Column
(2) estimates Equation (1.2). Column (3) estimates Equation (1.3). Observations do not
include units within 500 meters of Central Park. Spatial-time fixed effects are measured with
a 250 meter radius prior to differencing and prior to removing observations near Central Park.
Standard errors are clustered using a 250 square meter spatial grid.6

that fail in this instance are the assumption of clearly defined property rights, and that there
must be few affected parties. Regarding property rights: do incumbent buildings have the
right to not be shadowed, or do new developers have the right to build and create shadows
as they see fit? In the former case, the owners of a new development could pay incumbent
nearby residential unit owners for the right to shadow their units. In the latter case, the
owners of shadowed units could pay the owners of a new development to not throw shade
in their direction. Regarding the number of affected parties: there are both many potential
unit owners who could be shadowed by a new building, and many potential new buildings
that could throw shade at a given residential unit.

Currently, NYC has a system of height restrictions based on a floor area ratio (FAR), com-
monly called “air rights.” The FAR is the maximum ratio of floor area to lot area allowed by
city zoning laws. For example, a building on a lot with a FAR of 10 could be up to 10 stories
tall if taking up the whole lot, 20 stories tall if taking up half of the lot, 40 stories tall if
taking up a quarter of the lot, etc. From the law’s perspective, two adjoining lots can merge
their air rights, allowing the owner of one lot to sell unused air rights to the neighboring lot.
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For example, if two equally sized adjoining lots each have an allowable FAR of 10, but the
building on one of the lots only has a FAR of 5, the owner of that lot could sell the unused
FAR to the neighboring lot, allowing the neighboring lot to build up to a FAR of 15.

If the intent of height regulation is to maximize social welfare, a policy directly targeted at
the externalities of height could improve welfare relative a policy that targets height itself.
For example, if shadows were the only externality from height, an efficient policy would
directly price this externality by taxing the creation of shadows.

An optimal pricing policy which maximizes welfare would set a tax on construction equal
to the net externality of new development. Besides shadows, there may be other be other
externalities of new construction. This might include positive externalities of development,
such as providing additional jobs and amenities to residents (Couture, 2016; Li, 2022). I
refer to negative externalities minus positive externalities as the net negative externality. At
the optimal height, the marginal net negative externality of building taller would equal the
marginal profit to developers of building taller.

In order for there to be an optimal height of new construction which maximizes social welfare,
I first assume that the marginal net negative externality is increasing. This assumes that
either the marginal positive externality of new construction is decreasing with height, or
the marginal negative externality of of new construction is increasing with height, or both.
The former can be rationalized in that many of the positive spillovers from density and
new construction, such as new public infrastructure and amenities, can be assumed to be a
concave function of the size of a new development. For example, a larger development may
encourage more and better shops at the ground level or make it more likely that a new bus or
metro line will come through the neighborhood, but only so many shops and public transit
lines can be packed into a given area even as buildings grow ever taller. The latter case of
increasing marginal negative externalities from height can be seen in this research: while
an equally sized shadow created by the 10th floor or the 100th floor of a new building may
have the same average effect, the taller a building is relative to those around it, the more
additional shadow the new building is likely to create for each new story, as the building is
more likely to rise above the height of existing shadows. Together, the concavity of positive
externalities and convexity of negative externalities from height rationalizes an increasing
marginal net negative externality from height. Figure 1.7 shows this marginal net negative
externality.

I next assume that marginal profits to developers are decreasing in height, or downward-U
shaped, such that marginal profits are eventually decreasing in height, even if initially in-
creasing. To justify this assumption, I first assume that marginal construction costs are
increasing with height (Glaeser, Gyourko, and Saks, 2005; Chau et al., 2007; Ahlfeldt
and McMillen, 2018). With respect to marginal revenue, research has shown increasing
marginal revenues with height (Wong, 2004; Chau et al., 2007). However, it must be that
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Figure 1.7: Graph of marginal net negative externality

The red line represents the marginal negative externality. The green line represents the
marginal positive externality. The blue line represents the marginal net negative externality.
Marginal net negative externality is the difference between marginal negative externality and
marginal positive externality.

marginal construction costs begin below marginal revenues from height, but eventually sur-
pass marginal revenues; otherwise, an unregulated city would see either zero construction, or
infinite building heights. Therefore, it is necessary that marginal construction costs increase
more quickly than construction costs (implying downward-sloping marginal profits), or that
either marginal construction costs are convex or that marginal revenues are concave in height
(or both) - implying downward-U shaped marginal profits. Therefore, marginal profits of
building taller must either be decreasing, or downward-U shaped. Figure 1.8 demonstrates
downward sloping marginal profits with linear marginal construction cost and marginal rev-
enue functions.7

7Appendix Table A.1 demonstrates a downward-U shaped marginal profit curve with both a convex
marginal construction cost function and a concave marginal revenue function.



1.5. POLICY IMPLICATIONS 24

Figure 1.8: Graph of marginal profits

The red line represents the linear marginal construction cost. The green line represents the
marginal revenue. The blue line represents the marginal profit to the developer. Marginal
profits is the difference between marginal revenue and marginal construction cost.

Combining the assumptions of an increasing marginal net negative externality and decreas-
ing or downward-U shaped marginal profits, an optimal height exists where the increasing
marginal net negative externality from height crosses the eventually-decreasing marginal
profits of developers. Figure 1.9 shows the optimal height at the intersection of the marginal
net negative externality and marginal profits.8

In a city in which incumbent residents have all of the power in deciding construction policy,
and in which policies are designed efficiently by incumbents to maximize their own welfare,
the FAR would allow height up to the point at which the marginal net negative externality
of height is zero. Assuming further that incumbents live in a city in order to benefit from
some of the positive externalities associated with density, I assume that the marginal net

8Appendix Table A.2 shows the optimal height at the intersection of the marginal net negative externality
and marginal profits with a downward-U shaped marginal profits curve.
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Figure 1.9: Finding optimal height

The red line represents the marginal net negative externality. The green line represents the
marginal profit to the developer. The optimal height, labelled Height∗, can be found where
the marginal net negative externality equals the marginal profits.

negative externality is initially negative (that is, for lower stories, the marginal positive
spillovers from development, such as the amenity effect, outweigh negative spillovers), such
that incumbents would want some positive level of nearby development. In an unregulated
city in which developers have all of the power, developers would build beyond the socially
optimal height to maximize their own welfare, reaching the point where marginal profits from
development are zero. Assuming current height regulations are designed by policymakers
considering both the positions of rational incumbents and developers, and assuming that
developers would build beyond current height regulations if they could, the FAR policy
would be set such that building heights are somewhere in between the two extremes of the
height preferred by incumbents where marginal net negative externalities are zero, and the
optimal height preferred by developers where marginal profits are zero. I therefore assume
that under current policy, both the marginal net negative externality and the marginal profits
to developers are greater than or equal to zero.
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Somewhere in between the two extremes of the best policy for incumbents and the best policy
for developers lies the optimal regulation. At this optimal regulation, marginal profits to
developers equal the marginal net negative externality, maximizing total surplus. However,
without a full accounting of all positive and negative externalities of new construction, it
would be practically impossible for a policymaker to pinpoint the specific height regulation
which would achieve this optimum. However, it is possible for policymakers to use incomplete
information on externalities to design “better” policies that push regulation closer to this
optimum. A tax equal to the marginal net negative externality for shadows that are in
excess of those that would be allowed under current FAR policy would be weakly social
welfare improving.

I refer to the shadows allowed under current FAR regulations as “baseline” shadow. The
proposed tax on shadows created in excess of baseline shadow is weakly social welfare im-
proving in that if current FAR regulation is to the “left” of the optimal regulation (meaning
that current height restrictions are more stringent than at the social optimum), developers
could build beyond the height allowed under the FAR regulation in exchange for paying a
tax for the additional shadows they create. Developers would then equalize their marginal
pre-tax profits from height to the tax, increasing social surplus. Figure 1.10 demonstrates
the effect of the proposed shadow tax when FAR is to the left of the optimal regulation.

If current FAR regulation is to the “right” of the optimal regulation (meaning current height
restrictions are less stringent than at the optimum), this policy would have no effect: since the
tax would already be in excess of the pre-tax marginal profit to developers, developers would
not build past what is already allowed under current FAR regulations. Figure 1.11 shows
the effect of the proposed shadow tax when FAR is to the right of the optimal regulation.

The reason for not proposing to tax baseline shadow already allowed under current FAR
policy is to ensure that the policy proposal does not potentially push the policy away from
the optimum level of development. Taxing all shadow, including baseline shadow, could
potentially improve social welfare in the scenario that current FAR regulation is to the right
of the optimal regulation, meaning that that current regulations allow for more development
than socially optimal, as the tax in this case would tend to reduce development. However,
such a tax on baseline shadow, absent subsidies for positive externalities from development,
would have the potential to reduce social welfare. Notably, a tax on shadow does not require
a full accounting of positive externalities of height. It is possible that with such a tax on
baseline shadow, the tax, being potentially larger than the marginal net negative externality,
could reduce new development even when current regulations are already to the left of the
optimal regulation. In this scenario, the tax would tend to push policy away from the social
optimum rather than towards it. By only taxing shadows in excess of baseline shadows, this
tax proposal avoids reducing development away from the social optimum.

In practice, a tax on shadows would effectively act as an indirect transfer of welfare from
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Figure 1.10: FAR to the left of the optimal regulation

The red line represents the marginal net negative externality. The green line represents
the marginal profit to the developer. The blue dotted line represents the marginal shadow
externality. The solid blue line is the tax on shadows, which applies only to shadows in
excess of FAR. In this simplified example, the FAR policy acts as a quantity restriction on
height. The tax results in building heights of Height’, closer to the social optimum than
FAR. Assuming government surplus is transferred to incumbents, incumbent residents get
an additional incumbent surplus IS relative to the FAR policy, represented by the shaded
blue area. Developers get an additional developer surplus DS relative to the FAR policy,
represented by the shaded green area.

developers to incumbent residents via the public budget. The underlying idea is that if
developers build taller than current height restrictions allow, this will impose a larger net
negative externality on incumbent residents. Assuming public taxation and spending are
designed on behalf of a city’s residents to improve their welfare, incumbent residents would
indirectly benefit from increases in public revenue. This welfare gain could come through
reducing other taxes on incumbent residents, or by increasing spending on public goods.
Therefore, the proposed tax frees developers to build taller than current height restrictions
allow, but with the tax offsetting the welfare loss to incumbent residents.
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Figure 1.11: FAR to the right of the optimal regulation

The red line represents the marginal net negative externality. The green line represents
the marginal profit to the developer. The blue dotted line represents the marginal shadow
externality. The solid blue line is the tax on shadows, which applies only to shadows in
excess of FAR. In this simplified example, the FAR policy acts as a quantity restriction on
height. Developers would build up to Height’, which equals the height allowed under FAR.
Since FAR is already to the right of the social optimum, the tax has no effect on building
heights.

The remaining question is: how large should this tax be? The tax could in theory be directly
based on the expected externality on existing units. That is, one could calculate the increase
in shadows on each existing unit, determine the value of those units, and make the tax
directly proportional to that external cost. Some issues arise here: one is that each existing
unit in potentially many different buildings would need to be valued at the time that any
new development project is considered. Another is that as the external cost is proportional
to the value of the unit being shadowed, this could disadvantage lower-income incumbent
residents, who would on average have units that are less expensive to the developer to cast
a shadow on, all else equal.
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A more straightforward calculation of the tax would be to make the size of the tax propor-
tional to the value of the new building, rather than directly proportional to the external
cost. That is, one would calculate the total new shadow made by the new building, find the
value of the new building, and make the tax on this new shadow proportional to the value
of the new building. Taxing the new building in proportion to its own value would simplify
accounting without needing to value all shadowed units, while also preventing developers
from receiving effective tax breaks by building in lower income areas with less expensive
existing residential units.

To calculate the shadow created by the new building, one could consider the potential sun-
light blocked by the new building. This would be equal to the proportion of unshadowed area
on the new building itself. This is equivalent to calculating 1− shadowrt, where shadowrt is
defined as as in Section 2, r is the new building, and t is the year of building approval or
completion.

To avoid taxing buildings that satisfy the allowable FAR, and to ensure that only new
shadows created due to exceeding the allowable FAR are taxed, we would also need to
know how much of the shadow created by the new building is due to the building exceeding
current FAR regulations. FAR regulations allow buildings of many shapes, which could
lead to varying amounts of shadow from buildings satisfying FAR. As such, without an
exact method to calculate which specific shadows of the new building are created due to the
building exceeding FAR, this amount could be approximated as proportional to the ratio by
which the FAR regulation has been exceeded. With FAR representing the FAR of the new
building, and FAR′ representing the allowable FAR under current regulations, the ratio by
which the new building would have exceeded the FAR regulation is

FAR− FAR′

FAR
.

It remains to multiply this ratio by the amount of shadow created by the new building to
determine the amount of shadow exceeding FAR. This follows the formula

(1− shadowrt)×
FAR− FAR′

FAR
.

This value can then be multiplied by the negative of one of our point estimates from Table
1.1, and again by 100, to determine the applicable shadow tax on the building’s value as a
percentage of the building’s total value.
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Case Study - Extell Building

This subsection will consider the shadow cast by a 69-story residential tower currently under
development at 50 West 66th Street in Manhattan, which I refer to as the “Extell Building,”
after its developer, the Extell Development Company. The Extell Building’s plans, with
a height of 775 feet, created much controversy due to the inclusion of 198 feet of vertical
mechanical space in its design, allowing the building to be made taller without counting
against its FAR (Kim, 2020). New York City has since amended its laws to limit the
loophole to the FAR policy caused by mechanical “voids.”9 A New York State Senate bill
that is currently in committee, Senate Bill S3820A, would more strictly define stories and
limit mechanical voids for the purpose of FAR regulations: up to 20 feet for a ground floor,
up to 12 feet for other floors, and up to 5% of the building’s total height for mechanical
spaces not counted towards the FAR (New York State Senate, 2019).

In this case study, I will consider the tax as it might be applied to the Extell Building under
its current design, assuming a 5% limit on untaxed mechanical space, and further consider
what might be the developer’s optimal height under the proposed tax. The Extell Building
has received $967 million in construction financing, and aims to generate $188 million in
sales for the first 22 apartments, with 127 units in total(TRD Staff, 2022). Extrapolating
from here, under the assumption that $967 million represents the total construction cost,
and that total revenues for the developer are $1085 million (assuming all apartments sell for
the same price as the first 22), I estimate developer profits of $118 million.

I next approximate the amount of space in excess of the building’s FAR. As the developer
was able to buy air rights, the exact FAR allowed exceeds the building’s zoning. As such,
I will use the ratio of excess height as a stand-in for the exact calculation of the ratio of
excess FAR. As the mechanical space is 198 feet and the overall height is 775 feet tall, the
building’s height without the mechanical space is 577 feet. Assuming the developer had only
been allowed up to 5% mechanical space before being taxed, this would lead to an untaxed
building height of 607 feet, with 30 feet of mechanical space. I therefore estimate the FAR
ratio to be (775 − 607)/775 = .22, suggesting that 22% of the 775-foot building’s height
exceeds its allowable height under a FAR policy that incorporates a 5% limit on mechanical
space.

I next approximate the shadow cast onto the Extell Building, shadowrt, where r is the Extell
Building, and setting t = 2014, since this is when my current shadow data ends. I find that
shadowrt = .05. This implies that (1 − .05) × .22 =20.7% of the building should fall under
the shadow tax. With a shadow tax rounded slightly based on Table 1.1, Column (3) of
3.75%, the tax would amount to 7.8% of the building’s total value, or $84.1 million based on
$1085 million in expected sales. Note that this amounts to over two-thirds of the expected
total profits from the building: the developer would still go ahead with construction, but

9https://www1.nyc.gov/site/planning/plans/voids/voids.page
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in exchange, the city would receive $84.1 million in tax revenue and the developer would
receive $33.9 million in profits.

What would be the optimal height of the Extell Building, assuming the developer was freed
from height limits under the new tax regime? This exercise requires a few additional as-
sumptions. First, I need to determine the value and construction cost of an additional story.
For simplicity, I assume a marginal revenue and marginal cost per story equal to average
revenue and average cost per story. However, I additionally assume that there are no sales on
the mechanical space floors or the lobby. As such, I divide the height of the building without
the mechanical space by the height of the building, (775− 198)/775 = .74 to determine the
fraction of existing stories that are not mechanical space. Based on this formula, with 69
stories of height, approximately 51 stories are not mechanical space. Removing the lobby,
this gives 50 floors that generate sales revenue for the developer. I therefore calculate a
revenue per story of 1085/50 = $21.7 million. I approximate a cost per story of 967/69 =
$14.0 million. This leaves an estimated $7.7 million in marginal profit per upper story.

Based on the height of the building and the number of stories, I approximate the height
of each story to be 775/69 = 11.2 feet. With an additional 11.2 feet of height, shadowrt

would remain about the same. The excess height ratio, however, would increase to about
.23 (accounting for an 11.2× 5% increase in allowable mechanical space), leading to the tax
rate increasing to 8.2%, and the total additional tax therefore being .082× (1085 + 21.7)−
.078 × 1085 = $7.1 million in tax for adding the 70th story, leading to a marginal profit of
$0.6 million for the 70th story. The developer would therefore build the 70th story.

I continue this process to determine the optimal height of the building. I find that the
difference in tax between a 73-story Extell Building and a 72-story building is $7.8 million,
surpassing the estimated net profit per story. Therefore, the optimal height of the Extell
Building would be 72 stories, or about 808.6 feet. With an additional three stories, the
government would receive $106 million in tax revenue, and the developer would receive
$34.9 million in profit.

While the tax on top of the FAR regulation does encourage the Extell Building’s developer
to build taller than they would have even with the mechanical void, there are two important
distinctions that make the newly proposed policy social welfare improving. First, the negative
external cost of the mechanical space is transferred back to the city via the tax, which could
benefit incumbent city residents through increased public spending or via tax reductions
elsewhere. Second, paying the tax frees the developer to convert the mechanical space into
additional useful space, thus allowing for a potential increase in the housing supply without
needing to create additional shadow.
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1.6 Conclusion

This paper measures the externality of urban shadows in New York City by estimating the
impact of shadows created by new highrise construction on nearby housing prices. I find
that a 10 percentage point increase in average daily shadow is associated with a 3.78%
decrease in housing price, and provide robustness checks to demonstrate that this result is
not likely to be driven by views. I present a policy that would potentially benefit developers,
while offsetting the external costs to incumbent residents on average, pushing us closer to the
socially optimal level of development, in the form of a tax on the externality created in excess
of that allowed under existing regulation. I then provide a case study for a building that
had exploited a previous loophole in current regulations by creating a mechanical “void,”
and show that while the building would potentially be taller under the proposed tax, the
city would collect a substantial proportion of the profit from the building, which it could
use to benefit incumbent residents that otherwise might receive the shadow externality, thus
pushing development closer to a “socially optimal” level.

Future research in this area could be expanded upon by more precise shadow calculations.
This paper made simplifying assumptions in calculating shadows for computational reasons,
such as limiting the the number of days for which shadows are calculated, relying on 2D
footprint data rather than 3D building models, and limiting the buildings for which shadows
are calculated to those over 50-feet tall. A data limitation is that we do not know specifically
which story of a given building the residential units in our sample are on, requiring us to
estimate the shadow on a given unit using the average shadow received by the building
containing it. Such future research could benefit from improved shadow computation that
allows for the use of 3D shadow models for both the new buildings creating shadows, and the
residential buildings receiving the shadows. Future research could also benefit from data that
specifies the specific story or side of a building that residential units are on. In addition, the
policy design in this paper uses a tax based on the shadow externality found in this paper. A
Pigouvian tax that fully accounts for both negative and positive externalities of height could
improve welfare beyond that of the tax proposed in this paper. As such, more research on
both the positive and negative externalities of new construction would help policy makers
to design better policy regulations for building height.
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Chapter 2

Estimating the Relationship Between
Inter-Climate Migration and Air
Conditioning Adoption1

2.1 Introduction

As Earth’s climate changes, people may respond to these changes through adaptation. Such
adaptations may be in response to changes in productivity, such as a drop in crop yield,
or for personal health and comfort, such as to reduce heat stress. Many such adaptations
exist, including migration towards milder climates, or investments in temperature-regulating
devices such as air conditioning (AC).

In this paper, we investigate the question of how people adapt to changes in climate resulting
from migration by investment in air conditioning. In particular, we explore whether the rate
of air conditioning adoption is higher in states made up of more migrants experiencing a
relatively larger increase in climate-related temperature changes as a result of their migration.
To answer this question, we look at data from the United States between 1960 and 1990
on air conditioning adoption by state, and migration between states from census data. We
additionally use data on cooling degree days (CDDs) as a measure of how hot a given climate
is. Linking data on migration and CDDs, we can determine the average increase (or decrease)
in cooling degree days experienced by migrants to a given state. We can then determine if
states with migrants experiencing larger average increases in CDDs have relatively higher
air conditioning adoption rates.

We find that air conditioning adoption rates are higher in states with migrants who expe-
rience larger average temperature increases, controlling for the overall inter-state migrant

1The material in this chapter was co-authored with Léopold Biardeau.
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Figure 2.1: Evolution of residential AC adoption rates in the contiguous US between 1960
and 2000
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This figure displays the evolution of residential AC adoption between 1960 and 2000 at a
decadal level for all contiguous US states (excluding Alaska and Hawaii).

share of the population. This result suggests that migrants who experience relatively larger
increases in temperature are more likely to own air conditioners, although some of this effect
could be driven by spillovers to other migrant groups or to the local population. Our results
imply that relative increases in temperature matter for determining adaptive responses, not
just absolute temperature.

It is plausible that reverse causality or omitted variables may be driving our result. One
consideration that would imply reverse causality is that states with higher rates of air condi-
tioning adoption are better able to draw migrants who would experience a relatively larger
temperature increase due to moving between climates. To provide evidence that our result
is not driven by reverse causality or omitted variables bias, we use an instrumental variables
approach, instrumenting for migration. Our coefficient estimate is relatively unchanged and
remains significant. Although reverse causality does not seem to be driving our result, note
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that we do not rule out that air conditioning may attract migrants from relatively cooler
climates to relatively warmer climates. This question is an interesting research topic in its
own right, but outside of the scope of our analysis.

This paper builds on literatures in air conditioning adoption and migration. With respect to
air conditioning, Biddle (2008) investigates some of the potential drivers of air conditioning
adoption in the US from the 1950s until 1980, including cooling degree days, although he
does not consider migration as a driver of air conditioning adoption. Barreca et al. (2016)
show that air conditioning adoption in the US has modified the relationship between extreme
temperatures and mortality, reducing heat-related deaths. Auffhammer (2014) shows that
air conditioning adoption in China is higher the year following a hot summer.

While this paper does not directly address the causes of migration, we find the literature on
migration in response to environmental factors to be relevant to our study. Deschênes and
Moretti (2009) find that migration from colder states to warmer states in the US resulted
in a decrease in mortality due to a reduction in exposure to cold weather. Chen, Oliva, and
Zhang (2022) find that in China, increased air pollution in a county results in outmigra-
tion to other counties. Bohra-Mishra, Oppenheimer, and Hsiang (2014) find that increases
in temperatures in Indonesia above 25 degrees Celsius result in permanent outmigration
within Indonesia. Beine and Parsons (2015), however, do not find evidence of international
migration resulting directly from long-run climate variation.

Previous papers combining questions on migration and air conditioning generally consider
if air conditioning has resulted in migration to warmer climates. However, the literature
finds mixed evidence of this. Rappaport (2007) finds that while people in the US have been
moving away from cold winters, and that air conditioning was important in the growth of
some states with hot climates, people have also moved towards cool summers. Biddle (2012)
does not find strong evidence that air conditioners led to increased migration to warmer
climates in the US. He does, however, find evidence that migration to a hot climate is less
attractive to those from a cool climate than it is to those from another hot climate. This
latter finding provides some justification for our finding that larger positive temperature
differentials between origin and destination state would increase air conditioning adoption
more for relatively warm states with more migrants from relatively cooler states.

Our paper fits into this broader literature in two ways. First, we may want to know if
adaptive responses to climate change are based not only on the static climate at a given point
in time, but on the relative changes in climate. This paper adds to the climate literature
by suggesting that relative changes are an important determinant of adaptive responses to
climate change. That is, even if two regions end up at the same temperature in the next
century, if one started from a lower baseline temperature in this century, we may expect
to see larger adaptive responses in that region, such as increased rates of air conditioning
ownership.
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Second, this paper fits into the migration and climate literature by investigating if there is an
interaction between migration and adaptive responses to climate differentials. Migration can
itself be an adaptation to climate change, but adaptive technologies could in turn facilitate
migration to less favorable climates. Therefore, regions with a higher proportion of migrants
from different climates may have differing rates of adoption of adaptive technologies when
compared to regions with fewer migrants, or compared to regions with a high proportion of
migrants but from more similar climates. Our paper helps us to understand this relationship
as it pertains to temperature and air conditioning.

This paper proceeds as follows. In Section 2, we describe our data and their sources. In
Section 3, we describe our estimation strategy and our instrumental variables approach. In
Section 4, we present our results and provide a test for reverse causality, a robustness check,
and data simulations. Section 5 concludes.

2.2 Data

Migration History data for individual US states was obtained from America’s Great Migra-
tions project, curated by Dr. James Gregory from the University of Washington.2 Covering
the period 1850-2017, it allows for the disaggregation of migrant stocks at the race level for
all state pairs. The following categories are present: Asian, Black, Latinx, Native, Other,
White. For the purpose of this analysis, we retain the observations concerning all races at
the aggregate level, over the period 1960–1990.

The prevalence of residential air conditioning for each state comes from Barreca et al. (2016).
Using US Census of Population ownership estimates, the authors initially performed a linear
interpolation to obtain data at the state-year level between 1960 and 2004. For the purpose
of this analysis, we aggregate the data back at the state-decade level between 1960 and 1990
in order to match the resolution and span of the migration data.

Temperature data came from Berkeley Earth’s daily gridded temperatures experimental
dataset.3 We proceed to calculate daily Cooling Degree Days (CDDs), using a threshold
of 18.3◦C (65◦F),4 for each cell and sum them up at the year level, before calculating the
annual average for each decade at the cell level. Last, the estimates are aggregated at the
state level by taking the average of all the cells falling within the boundaries of each state.
The resulting variable captures the average annual CDDs at the state level for each decade
over the period 1960–1990.

Income and population data were obtained at the state-year level from the Bureau of Eco-

2https://depts.washington.edu/moving1/migrationhistory-states.shtml
3https://berkeleyearth.org/data/#Gridded%20Data
4A common threshold used in the AC potential literature, as discussed by Biardeau et al. (2020).



2.3. EMPIRICAL MODEL 37

nomic Analysis’ Regional Data.5 The income variable, which corresponds to the aggregate
income level in the state, is measured in millions of current USD. Both variables were sub-
sequently averaged at the state-decade level.

Annual Cost-Of-Living (COL) estimates were obtained thanks to Dr. Richard Fording from
Berry, Fording, and Hanson (2000). The authors updated their original estimates in 2009 to
cover the period 1960–2007. The benchmark of 100 corresponds to the median cost of living
in 2007, calculated using the average value of the index for the two states New Mexico and
Wyoming. The decadal average was then calculated for each state for the period 1960–1990.

Last, lat-lon coordinates of each state’s centroid, contiguities and bilateral distances between
pairs of state centroids were calculated directly from the Census Cartographic Boundary
shapefiles.

2.3 Empirical Model

In order to measure if a higher proportion of migration from relatively cooler states to
relatively warmer states influences the rate of air conditioning adoption in the destination
state, we regress the air conditioning adoption rate, ACdt, on the average percent increase
in CDDs experienced by migrants to the destination state, weighted by the migrant share of
the destination state’s population. We model this percent increase in CDDs as

∑
o

(
CDDdt−CDDot

(CDDdt+CDDot)/2

)
Migrantsodt∑

o Migrantsodt
×

∑
o Migrantsodt

Populationdt

. (2.1)

Here, o refers to origin state, d refers to destination state, and t refers to time. (Note
that we do not include observations with o = d such that a destination state is its own
origin state. We therefore use

∑
o throughout this paper as equivalent to

∑
o ̸=d, dropping

o ̸= d for notational simplicity.) The term CDDdt−CDDot

(CDDdt+CDDot)/2
inside the sum in the numerator

on the left-hand side represents the relative percent increase in CDDs experienced by a
migrant from state o to state d, in which the percentage is measured as the change in CDDs,
CDDdt − CDDot, divided by the midpoint between the CDDs of the two states, given by
(CDDdt + CDDot)/2. Using the midpoint percentage change allows for the percent increase
in CDDs when moving from a given origin state to destination state to be equivalent to
the percent decrease in CDDs when moving in the opposite direction, i.e. reversing the
origin and destination states. We then weight this term by the number of migrants in the
destination state who came from a given origin state, Migrantsodt, sum across origin states
for a given destination state, then divide by the total number of migrants from all origin

5https://apps.bea.gov/iTable/iTable.cfm?reqid=70&step=1&acrdn=2



2.3. EMPIRICAL MODEL 38

states
∑

o Migrantsodt to get an average percent change in CDDs experienced by all migrants
to destination state d, as shown on the left of the multiplication sign × in Equation (2.1).

As an example of why we use a midpoint percentage change, as opposed to a standard
percentage change measured that is measured relative to origin state CDDs, consider a
migrant from New York to Florida. As the CDDs in New York are small compared to those
in Florida, using a traditional percentage change, there would be a relatively large magnitude
percent increase in CDDs experienced by this migrant. Next, consider a migrant from
Florida to New York, which is also measured in our sample. Using a traditional percentage
change, this migrant, moving from Florida to New York, would experience a relatively small
magnitude percent decrease in CDDs, as the CDDs in Florida are large relative to those in
New York. Additionally, as states cannot have negative CDDs, this would restrict the CDD
change term to the interval [−1,∞), as one could not have more than a 100% decrease in
CDDs. Using midpoint percentage changes, the percent change in CDDs moving from New
York to Florida, or from Florida to New York, would be the additive inverse of the other.
This would be better suited to ensuring consistently measured magnitudes of the percent
change in CDDs between states. As such, we prefer to use midpoint percent changes in our
model.

The right-hand-side of Equation (2.1) is the fraction of migrants from the origin states in
our sample relative to the destination state’s population, giving us the migrant share of the
destination state’s population. Equation (2.1) simplifies to

∑
o

(
CDDdt − CDDot

(CDDdt + CDDot)/2

)
Migrantsodt
Populationdt

. (2.2)

The variable in Equations 2.1 and 2.2 is the independent variable of interest in our regressions,
which we refer to as the migration-induced relative change in CDDs.

In addition to this term, our regressions include a variable equal to the migrant share of the
destination state’s population,

∑
o

Migrantsodt
Populationdt

to control for the overall effect of migration on

air conditioning adoption, independent of relative changes in climate. Note that this term
is equal to the right-hand side of Equation (2.1). Our regression also includes controls for
the log of income per capita in the destination state, log(Income pcdt), the consumer price
index in the destination state, CPIdt, and the log of the CDDs in the destination state,
log(CDDdt). We also include destination state fixed effects, νd, and time fixed effects, τt.
Our main regression equation is thus
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ACdt =β1

∑
o

Migrantsodt
Populationdt

+ β2

∑
o

(
CDDdt − CDDot

(CDDdt + CDDot)/2

)
Migrantsodt
Populationdt

(2.3)

+ β3 log(Income pcdt) + β4CPIdt + β5 log(CDDdt) + νd + τt + εdt.

where ACdt is the air conditioning adoption rate in state d at time t and εdt is an error
term. β2 will be our main coefficient of interest, as this tells us the relationship between the
migration-induced relative change in CDDs and air conditioning adoption in the destination
state.

Instrumental Variables

We additionally use an instrumental variables approach. One possible concern in our main
regression using ordinary least squares is that of reverse causality: that a higher rate of
existing air conditioning adoption may attract people from relatively cooler states to migrate
to relatively warmer states. The possibility of such an effect makes it plausible that an
increase in the rate of AC adoption causes an increase in the migration-induced relative
change in CDDs.

In addition, it is plausible that our regression could suffer from omitted variables bias. For
example, it is possible that lower construction costs in a state results in both an increase in
migration to that state due to a lower cost of housing, and in higher rates of AC adoption
due to a newer housing stock that is more likely to include central air conditioning. Another
possible omitted variable is unmeasured intra-state migration, which might crowd out inter-
state migration while simultaneously increasing AC adoption rates. While AC adoption
resulting from intra-state migration would be important to measure in understanding the
effect of migration on AC adoption, we lack the data to incorporate the effect of intra-state
migration into our estimates.

In order to control for the possible effects of reverse causality and omitted variables bias, we
make use of an instrumental variables approach to estimate Equation (2.3). While we need
to instrument for the entire independent variable of interest, which is the migration-induced
relative change in CDDs (Equation (2.2)), the target of our instruments is the relative share
of migrants in the destination state from each origin state, Migrantsodt

Populationdt
. We therefore consider

instruments which may cause changes in migration between two states, without directly
causing changes in air conditioning adoption in the destination state. CDDs themselves
are plausibly exogenous, so we include the percent difference in CDDs between origin and
destination states in defining our instruments. We additionally instrument for the control
variable representing the migrant share in the destination state population,

∑
o

Migrantsodt
Populationdt

,

as this control variable is made up of the same migration terms instrumented for in our
independent variable of interest.
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We first describe our instruments for the migrant share of the population control variable.
The construction of instruments for the migration-induced relative change in CDDs will be
similar in construction, but multiplying the instruments for migrant shares by the relative
percent increase in CDDs experienced by a migrant before summing. The instrumental
variables for these terms will be made up of instruments for migrant shares from a given
origin state, weighted and summed across origin states, for each given destination state.

The instruments for the migrant share of the population for each origin-destination pair,
Migrantsodt
Populationdt

, include a combination of origin-state-specific variables, including the rate of air

conditioning adoption in the origin state, ACot, the log of income per capita in the origin
state, log(Income pcot), the log of the consumer price index in the origin state, CPIot, and
the log of the CDDs in the origin state, log(CDDot). The instruments also include fixed
exogenous parameters that might affect migration between an origin and destination state,
including the log of distance between the origin and destination state, log(Distanceod), and
an indicator for whether or not the origin and destination state share a border, Borderod

For each destination state, in order to construct an instrumental variable for the sum of
migrant shares from each origin state, we weight each of these instruments by the relative
population of the given origin state relative to the total of possible origin state populations
in period t, Populationot∑

o Populationot
, and then sum across origin states. For example, we construct the

instrumental variable representing air conditioning adoption in origin states as

∑
o

ACot
Populationot∑
o Populationot

. (2.4)

We similarly construct the instrumental variables representing log income per capita in
origin states, the CPI in the origin states, the log of CDDs in the origin states, the log of
distance between the origin states and destination state, and indicators for bordering origin
states (note that this latter term is no longer an indicator after weighting by population and
summing across origin states).

The construction of instrumental variables for our independent variable of interest given in
Equations 2.1 and 2.2, the migration-induced relative change in CDDs, follows similarly. We
use the same set of instruments as we do for the migrant share of the population for each
origin-destination pair. To construct the instrumental variables for a given destination state,
for each origin state, we multiply each of the instruments for migrant shares by the relative
percent increase in CDDs experienced by a migrant from the origin state to the destination
state, in addition to weighting by the relative population of the given origin state, before
summing across origin states. That is, we construct the instrumental variable representing
air conditioning adoption in origin states as
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∑
o

(
CDDdt − CDDot

(CDDdt + CDDot)/2

)
ACot

Populationot∑
o Populationot

. (2.5)

As before, we similarly construct the instrumental variables representing log income per
capita in origin states, the CPI in the origin states, the log of CDDs in the origin states, the
log of distance between the origin states and destination state, and indicators for bordering
origin states.

2.4 Estimation Results

Table 2.1 displays the results of an ordinary least squares regression based on Equation (2.3),
and an instrumental variables regression using the instruments described in Section 2.3. We
cluster our errors by destination state d. In both regressions, the coefficient on the migration-
induced relative change in CDDs is positive and significant at confidence levels below 1%.
The simplest interpretation of the coefficient on the instrumental variables estimate, although
extrapolating outside of the range of the data, would be that in a state made up entirely
of migrants who originate from a state with approximately 500 annual CDDs (close to the
average in our sample of 475.8) and move to a state with 100 more annual CDDs, the rate of

AC adoption in the destination state would on average be 1.13×
(

600−500
(600+500)/2

)
= .21 higher

due to the climate shift, which is about a 21 percentage point increase in AC adoption.

The first stage of the instrumental variables regression for the control variable representing
the migrant share may suffer from weak instruments: the F-statistic is 8.62. However, the F-
statistic on the migration-induced relative change in CDDs is substantially higher, at 39.37.
The estimated coefficients in the instrumental variables regression remain fairly close to the
OLS results, suggesting that our result is less likely to be driven by reverse causality or
omitted variables bias.

If interpreting these results as the effect of a migration-induced relative change in CDDs for
an average resident of a given origin state, then one might be concerned about selection –
those who can tolerate higher temperatures would be more likely to migrate to relatively
warmer states. This would tend to bias our estimate downward, as, unconditional on moving,
those with higher heat tolerance would be less likely to invest in air conditioning compared
to others, all else equal. Similarly, if those with higher heat tolerance are more likely to
migrate to states with lower existing rates of AC adoption, this would also tend to bias
our estimate downward, as migrants would sort towards states where existing rates of AC
adoption better match their preferences. This implies that when considering the effect of
a migration-induced relative change in CDDs on an average origin state resident, the true
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Table 2.1: Effect of migrant share and migration-induced relative change in CDDs on AC
adoption

Dependent variable:
AC Adoption

(1) (2)
OLS IV∑

Migrant share 0.454∗ 0.323
(0.262) (0.436)∑

%∆CDD × Migrant share 0.840∗∗∗ 1.126∗∗∗

(0.232) (0.276)

log(Income per capita) 0.239∗ 0.223
(0.134) (0.160)

CPI −0.001 0.001
(0.003) (0.003)

log(CDD) −0.099 −0.152
(0.125) (0.137)

Observations 196 196
R2 0.961 0.959
Adjusted R2 0.945 0.943
Residual Std. Error (df = 139) 0.068 0.069

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Column (1) estimates Equation (2.3) using OLS. Column (2) estimates Equation (2.3) using
two-stage least squares, instrumenting for

∑
Migrant share and

∑
%∆CDD×Migrant share

using the instrumental variables described in Section 2.3.
∑

Migrant share is the migrant
share of the population, Migrantsodt

Populationdt
.
∑

%∆CDD × Migrant share is the migration-induced

relative change in CDDs,
∑

o

(
CDDdt−CDDot

(CDDdt+CDDot)/2

)
Migrantsodt
Populationdt

. Standard errors are clustered by

destination state.

coefficient on our independent variable of interest may be larger than the estimates we
provide.

Investigating Reverse Causality With a Granger Causality Test

While this paper analyzes the adoption of air conditioners by states with a higher proportion
of migrants from relatively cooler states, it is possible that migrants are more likely to move to



2.4. ESTIMATION RESULTS 43

locations that already have higher rates of air conditioning adoption. One example of why
existing rates of air conditioning adoption could encourage migration is that the expense
associated with adopting air conditioning, either by installing central air conditioning or
purchasing a new window unit, causes people to prefer locations with a higher stock of
pre-installed central air conditioning or used air conditioning units.

In order to test this hypothesis, we run a Granger causality test to see if a lag in air con-
ditioning adoption predicts an increase in the migration-induced relative change in CDDs.
A positive and significant outcome would indicate the possible presence of reverse causality.
While our instrumental variables approach would help to reduce the impact of such reverse
causality on our result regardless, it would nonetheless be interesting to see if such reverse
causality exists, and help justify our use of an instrumental variables design.

We follow Holtz-Eakin, Newey, and Rosen (1988) to estimate a Granger test in a panel set-
ting. In particular, rewriting the migration-induced relative change in CDDs from Equations
2.1 and 2.2 as Cdt for notational simplicity, we run a regression to estimate the equation

Cdt − Cdt−1 = δ1(Cdt−1 − Cdt−2) + δ2(ACdt−1 − ACdt−2) + τt + εdt. (2.6)

Here, a significant and positive value of δ2 would suggest the presence of reverse causality.
We present the coefficient estimates of this regression in Table 2.2.

We find in Table 2.2 that δ2 is positive and significant. This suggests that air conditioning
adoption rates may cause future migration from relatively cooler climates, and so reverse
causality may be present. This justifies our use of an instrumental variables approach to our
main regression Equation (2.3) in Table 2.1.

Robustness check - Falsification with HDDs

We perform a robustness check to see if the variation in air conditioning adoption is being
driven by the relative change in CDDs experienced by migrants, and not potentially the result
of another variable that is closely correlated with the difference in CDDs between the origin
and destination states of migrants. This acts as a falsification test, and lends credibility
to our analysis as we cannot easily instrument for CDDs to rule out omitted variables bias
in the relationship between relative CDD change and AC adoption. We begin by using a
regression to estimate an equation similar to Equation (2.3), but instead of using the relative
change in CDDs, we use an independent variable representing the migration-induced relative
change in heating degree days (HDDs). That is, we define our independent variable in this
regression as
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Table 2.2: Granger causality test for effect of AC adoption on the migration-induced relative
change in CDDs

Dependent variable:
Cdt − Cdt−1

Cdt−1 − Cdt−2 −0.464∗∗∗

(0.082)

ACdt−1 − ACdt−2 0.455∗∗∗

(0.058)

Observations 98
R2 0.465
Adjusted R2 0.447
Residual Std. Error 0.039 (df = 94)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
This table estimates Equation (2.6) using OLS. Cdt − Cdt−1 is the change in the migration-
induced relative change in CDDs in state d between period t− 1 and period t (similarly for
Cdt−1 −Cdt−2 as the change between period t− 2 and t− 1). ACdt−1 −ACdt−2 is the change
in air conditioning rate in state d between period t− 2 and t− 1.

∑
o

(
HDDdt − HDDot

(HDDdt +HDDot)/2

)
Migrantsodt
Populationdt

(2.7)

CDDs and HDDs are closely correlated, but not identical. When the average temperature
changes above 65◦F, only CDDs are affected. Conversely, when the average temperature
changes below 65◦F, only HDDs are affected. Warmer climates, on average, will have more
CDDs and fewer HDDs. HDDs thus have a strong inverse correlation with CDDs, with a
correlation of −0.928 in our sample.

We should therefore expect the migration-induced relative change in HDDs to be a significant
negative predictor of AC adoption in the destination state. However, when including both
the migration-induced relative change in CDDs and the migration-induced relative change
in HDDs in the same regression, the migration-induced relative change in HDDs should not
have a strong influence on the AC adoption rate, as we expect that variation in the migration-
induced relative change in CDDs explains any variation in the AC adoption rate that could be
explained by the migration-induced relative change in HDDs, plus some additional variation
that would be more relevant to AC adoption than that of HDDs.
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Table 2.3: Effect of migrant share and migration-induced relative change in CDDs and HDDs
on AC adoption

Dependent variable:
AC Adoption

(1) (2) (3)∑
Migrant share 0.454∗ 0.075 0.476∗∗

(0.262) (0.300) (0.231)∑
%∆CDD × Migrant share 0.840∗∗∗ 0.906∗∗

(0.232) (0.419)∑
%∆HDD × Migrant share −1.244∗ 0.152

(0.658) (0.881)

log(Income per capita) 0.239∗ 0.242 0.249
(0.134) (0.174) (0.149)

CPI −0.001 −0.004 −0.001
(0.003) (0.004) (0.003)

log(CDD) −0.099 0.026 −0.111
(0.125) (0.110) (0.114)

Observations 196 196 196
R2 0.961 0.958 0.961
Adjusted R2 0.945 0.942 0.944
Residual Std. Error 0.068 (df = 139) 0.070 (df = 139) 0.068 (df = 138)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Column (1) estimates Equation (2.3) using OLS. Column (2) estimates Equation (2.3), but
replacing the migration-induced relative change in CDDs with the migration-induced relative
change in HDDs. Column (3) estimates Equation (2.3), but including both the migration-
induced relative change in CDDs and the migration-induced relative change in HDDs.

∑
Migrant share is Migrantsodt

Populationdt
.
∑

%∆CDD × Migrant share is the migration-induced rela-

tive change in CDDs,
∑

o

(
CDDdt−CDDot

(CDDdt+CDDot)/2

)
Migrantsodt
Populationdt

.
∑

%∆HDD × Migrant share is the

migration-induced relative change in HDDs,
∑

o

(
HDDdt−HDDot

(HDDdt+HDDot)/2

)
Migrantsodt
Populationdt

. Standard er-

rors are clustered by destination state.

In Table 2.3, we show the OLS results of regressions based on variations of Equation (2.3).
Column (1) is the main result based on Equation (2.3), with the migration-induced relative
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change in CDDs as the main independent variable. This is the same as Column (1) of Table
2.1. Column (2) takes Equation (2.3) but replaces the migration-induced relative change
in CDDs with the migration-induced relative change in HDDs. Column (3) takes Equation
(2.3) but includes separate terms for both the migration-induced relative change in CDDs
and the migration-induced relative change in HDDs. We cluster errors by destination state
in all three columns.

As can be seen in Column (2), the migration-induced relative change in HDDs inversely
predicts the rate of AC adoption, but with a much larger standard error relative to the
coefficient and therefore less significance as compared to the estimate for the migration-
induced relative change in CDDs in Column (1). Column (3) shows that including both
the migration-induced relative change in CDDs and the migration-induced relative change
in HDDs in our regression leaves the coefficient estimate on the migration-induced relative
change in CDDs roughly the same as in Column (1), albeit with a somewhat larger standard
error, but still significant at a 5% level. On the other hand, the coefficient on the migration-
induced relative change in HDDs changes in sign and shrinks in magnitude relative to Column
(2), while its standard error increases, removing its significance as a predictor of AC adoption.

The regressions in Table 2.3 thus provide evidence that it is unlikely that the effect of the
relative change in CDDs experienced by migrants on AC adoption rates is driven by another
variable that closely correlates with the relative CDD change experienced by migrants. We
do not additionally provide a version of these regressions using the instrumental variables
approach used in Column (2) of Table 2.1, as the migration-induced relative change in HDDs
would require the same set of instruments as the migration-induced relative change in CDDs.

Simulation

We further consider the presence of potential model-generated biases that could manifest
themselves when dealing with panel data. Such biases could generate spurious correlations
that would lead us to attribute a causal effect to a variable when there is in fact none.

To mitigate the risk that such biases are driving the results described in the previous sections,
we perform 10,000 randomization tests in which we randomly reallocate three treatment
variables used in the analysis (CDDs in the origin state, CDDs in the destination state,
and migrant stocks in each destination state) in three different ways, before re-estimating
Equation (2.3) using the OLS and IV regressions that we used in Table 2.1, a procedure
described by Hsiang and Jina (2014). The coefficients on the migrant share of the population
(β̂1) and the migration-induced relative change in CDDs (β̂2) obtained through the OLS and
IV specifications are then plotted and compared to the ones presented earlier in the analysis
to show how likely it was that one would have gotten the coefficients that were presented in
Table 2.1 had the data been randomly distributed rather than how it was actually observed.
As in Hsiang and Jina (2014), the randomization is performed in the three following ways :
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1. Entire sample: The treatment variable to be reassigned is randomly assigned across
time (decade) and space (origin/destination state, depending on the treatment vari-
able).

2. Between panel variable: In this case, we reassign the respective variable to another
state, while preserving the decade that the observation was associated with. This
particular randomization procedure preserves the time structure within the data, thus
allowing us to check whether temporal trends might lead to spurious correlations.

3. Within panel variable: For this third and last procedure, we shuffle each state’s
time-series, while ensuring that the observations remain assigned to their respective
state. This particular procedure allows us to test whether cross-sectional patterns
might generate spurious correlations.

The distributions of the β̂OLS
1 , β̂OLS

2 , β̂IV
1 , and β̂IV

2 coefficients obtained after shuffling the
underlying variables CDDot, CDDdt and Migrantsodt 10,000 times each, for each of the three
randomization procedures detailed above, are shown in Figures 2.2 and 2.3.

These simulations show that the coefficients associated with the actual data would have
been very unlikely to be found had the data been distributed any other way. Indeed, with
the exception of the within randomization procedure6, our estimates fall in the tails of
the distributions of the coefficients obtained after randomizing the data. Two-sided t-tests
systematically reject the hypothesis that the mean of the distribution could fall within an
interval that would contain the estimates obtained when using the actual data.

Taken together, this analysis implies that the results obtained in Table 2.1 rely on the
particular data generating process that yielded the data we gathered, as other data generating
processes would have given very different results on average to those that we presented.

2.5 Conclusion

In this paper, we show that a higher proportion of migrants from relatively cooler climates
increases a state’s air conditioning adoption rate compared to states with a smaller propor-
tion of migrants from relatively cooler states. This effect is positive and significant, and
separate from a pure migration effect, which we control for. This suggests that larger rel-
ative changes in climate may lead to larger adaptation to climate change. Climate change
may therefore result in larger adaptive responses to future temperature increases in a given
location than could be predicted by comparing to the adaptive response in a location with
a similar temperature today.

6Which is based on the permutations of four decades for each state, yielding 24 possible permutations
in total.
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Figure 2.2: Distributions of coefficient estimates for migrant share of the population from
10,000 randomizations
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Distributions of the coefficients associated with the migrant share of the population obtained
after the variables CDDot (CDD 65 o), CDDdt (CDD 65 d) and Migrantsodt (migrant stock)
were randomized in three different ways (entire sample, between panel variable, and within
panel variable) 10,000 times each. After each randomization, we re-estimated Equation
(2.3) on the resampled data using the OLS and IV regressions that we used in Table 2.1.
The solid black vertical line marks a value of zero for the β coefficient. The blue vertical

dotted line corresponds to the value of β̂OLS
1 estimated by OLS using the true observations

(β̂OLS
1 = 0.454), while the red vertical dotted line corresponds to the value of β̂IV

1 estimated

by IV using the true observations (β̂IV
1 = 0.323).
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Figure 2.3: Distributions of coefficient estimates for migration-induced relative change in
CDDs from 10,000 randomizations

OLS IV

E
n

tire
 sa

m
p

le
B

e
tw

e
e

n
 p

a
n

e
l va

ria
b

le
W

ith
in

 p
a

n
e

l va
ria

b
le

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

β2
^

S
c
a
le

d
 d

e
n
si

ty Randomized variable

CDD_65_o

CDD_65_d

migrant_stock

Distributions of the coefficients associated with the migration-induced relative change
in CDDs are obtained after the variables CDDot (CDD 65 o), CDDdt (CDD 65 d) and
Migrantsodt (migrant stock) were randomized in three different ways (entire sample, between
panel variable, and within panel variable) 10,000 times each. After each randomization, we
re-estimated Equation (2.3) on the resampled data using the OLS and IV regressions that
we used in Table 2.1. The solid black vertical line marks a value of zero for the β coefficient.

The blue vertical dotted line corresponds to the value of β̂OLS
2 estimated by OLS using the

true observations (β̂OLS
2 = 0.840), while the red vertical dotted line corresponds to the value

of β̂IV
2 estimated by IV using the true observations (β̂IV

2 = 1.126).



2.5. CONCLUSION 50

Our results also demonstrate how migrants may shift the adoption rate of adaptive technolo-
gies based on differences between their home climate and destination climate. As it is often
assumed that air conditioning made warmer climates more attractive to those from cooler
climates, it could be expected that migrants from cooler climates would invest more heavily
in air conditioning than those from already warmer climates. This paper provides evidence
that higher rates of migration from relatively cooler climates increases adoption of adaptive
technologies in the destination.

Future research on this topic could benefit from the use of micro-level data on air condi-
tioning adoption by individual migrants or groups of migrants from specific origin locations.
Our paper relies on macro-level census data by state, so we are unable to make inferences
regarding the specific increase in statewide air conditioning adoption that can be attributed
to adoption by out-of-state migrants. Micro-level data could allow us to distinguish if in-
dividual migrant groups are more likely to adopt air conditioning in the destination state.
Micro-level data could also allow us to investigate if some of the observed increase in air
conditioning adoption in states with a higher proportion of migrants from relatively cooler
states may be driven by spillover effects, such that locals or migrants groups from relatively
warmer climates adopt more air conditioning in response to the higher rates of adoption by
migrants from relatively cooler states.
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Chapter 3

Evaluating the Effectiveness of Very
Large Marine Protected Areas at
Deterring Fishing Effort1

3.1 Introduction

In October 2010, the tenth meeting of the Conference of the Parties adopted in Nagoya
(Japan) the Strategic Plan for Biodiversity. The plan included the Aichi Biodiversity Targets,
a set of goals named after the prefecture that hosted the meeting. Aichi Target 11 of the
United Nations’ Convention on Biological Diversity (CBD) stipulated that 10% of the ocean
should be protected by some form of Marine Protected Area (MPA) by 2020 (Convention
on Biological Diversity (CBD), 2010). While the 10% target was not achieved by 2020, the
global coverage of MPAs did more than triple, from 2.5% coverage in 2010 to 7.7% coverage
by 2020, totaling an additional 19.1 million km2 (UN Environment Programme WCMC and
IUCN, 2020).

MPAs are marine areas where certain activities are limited, or prohibited, in an attempt
to protect part, or all, of the natural resources it contains. They are classified in various
categories by the International Union for Conservation of Nature (IUCN) (International
Union for Conservation of Nature (IUCN), 1988). Marine reserves (IUCN category Ia), also
known as “no-take” areas, refer to MPAs in which fishing, hunting, or collecting are entirely
prohibited in order to protect sensitive habitats or threatened species.

There is scientific evidence that MPAs can be effective at increasing biomass, species richness,
and population size within the boundaries of the reserves (Lester et al., 2009; Zupan et al.,
2018). In particular, marine reserves appear to be the most effective type of MPA when it

1The material in this chapter was co-authored with Léopold Biardeau and David Zilberman.
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comes to achieving conservation targets (Costello and Ballantine, 2015; Sala and Giakoumi,
2017; Claudet et al., 2008; Edgar et al., 2014).

However, this body of knowledge has focused on smaller MPAs. This is not surprising, given
the fact that 87% of the 13,000+ existing MPAs are no larger than 100km2, while 95.7% are
smaller than 1,000 km2 (MCI, 2019). Recent years however have seen the emergence of Very
Large Marine Protected Areas (VLMPAs), MPAs spanning more than 100,000 km2. Estab-
lishing large MPAs has become a new trend in an attempt to meet the CBD conservation
targets (Boonzaier and Pauly, 2016; Dulvy, 2013; Magris and Pressey, 2018; Toonen et al.,
2013). As such, 31 of the 35 VLMPAs created by 2019 have been created since 2009 (MCI,
2019), as shown in Panel B of Figure 3.1.

There exists scientific support for large MPAs. In theory, they may better at protecting
diverse ecosystem than their smaller counterparts, since their size makes them more likely
to encompass species’ ranges (O’leary et al., 2018). Even so, VLMPAs are not yet well-
understood, an observation shared by researchers (Gruby et al., 2016; Ban et al., 2017) and
policymakers alike. As such, Dr. Jane Lubchenco, the head of the US National Oceanic and
Atmospheric Administration declared in 2011: “We don’t have the resources that we need to
actually monitor, enforce and understand these areas” (Cressey, 2011).

A lack of enforcement could lead to a failure in meeting the initial objectives of the creation
of MPAs (Jone, Qiu, and De Santo, 2011; Dureuil et al., 2018; Zupan et al., 2018). Indeed,
the effectiveness of MPAs in providing ecological benefits has been shown to be eroded by
illegal fishing effort (Arias et al., 2015; Pollnac et al., 2010; Bergseth, Russ, and Cinner,
2015; Bergseth et al., 2018).

In the meantime, recent years have marked the emergence of new data which have offered
new means to assess fishing effort across the globe. In particular, the Global Fishing Watch
(GFW), a non-profit organization, has made available to the public a database which tracks
vessels using their Automatic Identification System (AIS) data. This database allows users to
track individual fishing vessels at an unprecedented spatio-temporal resolution2 and manages
to detect whether these vessels are currently fishing, by looking at their speed and trajectory
(Kroodsma et al., 2018) (see Panel A of Figure 3.1 to see the evolution of the number of
fishing hours and vessels tracked by GFW). A growing number of studies have used this
database to study fishing effort in a variety of contexts (Guiet et al., 2019; Queiroz et al.,
2019; Dureuil et al., 2018; Englander, 2019; Bradley et al., 2019; McDermott et al., 2019).

In this paper, we use data on fishing effort gathered by GFW to study whether the eight “no-
take” VLMPAs implemented between 2012 and 2018 (Figure 3.2 and Table 3.1) have been
successful at deterring fishing effort. We also investigate the characteristics of the vessels

2The data are available at a 0.1◦×0.1◦ resolution, on a daily basis from January 2012 to December 2020.
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Figure 3.1: Evolution of tracked vessels and fishing hours and expansion of VLMPAs over
time
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Figure (A) presents the evolution of the number of vessels and fishing hours tracked by
GFW over the period from 2012 through 2018. The horizontal axis represents the date. The
vertical axis represents the number of vessels tracked. The size of the (overlapping) dots
represents the number of daily global fishing hours on each date. Figure (B) presents the
expansion of all types of Very Large Marine Protected Areas over time between 1975 and
2019. VLMPAs now cover 17,002,904 km2, which includes 7,802,962 km2 of marine reserves,
i.e. areas where no fishing is permitted (also known as “no-take” areas).

associated with illegal fishing effort in these protected areas.

Our analysis shows that the introduction of VLMPAs has reduced overall fishing effort in
these important ecological areas, although the impact varies by region. Since each VLMPA
is supporting its own unique marine life, it is important to enforce policies that would reduce
fishing throughout all of these reserves.

This paper proceeds as follows. Section 2 provides an overview of our data. Section 3
analyzes the average reduction in fishing effort across VLMPAs. Section 4 investigates the
displacement of fishing effort within each VLMPA. Section 5 analyzes the profile of infringing
vessels. Section 6 concludes.
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Figure 3.2: Eight Very Large Marine Protected Areas (VLMPAs) in sample
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VLMPAs are shaded in green. Exclusive Economic Zones (EEZ) are shaded in blue. The
deepest location inside each of the eight VLMPAs is shown in orange. 1 corresponds to the
Ross Sea Protected Area, 2 to the Papahānaumokuākea Marine National Monument, 3 to
the Pacific Remote Islands Marine National Monument, 4 to the Terres Australes Françaises,
5 to the Pitcairn Islands Marine Reserve, 6 to the Phoenix Islands Protected Area, 7 to the
Nazca-Desventuradas Marine Park, and 8 to the Revillagigedo National Park.

3.2 Data

Data on daily fishing effort are provided by the Global Fishing Watch (GFW), a non-profit
organization that offers near real-time tracking of global commercial fishing activity. The
database gathers Automatic Identification System (AIS) data gathered from ships at sea. It
allows to track individual vessels by using their individual Maritime Mobile Service Identity
(MMSI) and is available at a daily, 0.1◦ × 0.1◦ resolution from January 2012 to December
2018. Fishing effort detection is based on a machine learning algorithm that tracks the
behaviors associated with specific fishing activities (long-lining, purse seining, trawling, etc.),
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a methodology described in Kroodsma et al. (2018).

MPA shapefiles are obtained from UNEP-WCMC and IUCN (2019). The land polygons
drawn in Figure 3.2 are downloaded from Natural Earth. We obtain EEZ boundaries from
Flanders Marine Institute (n.d.).

Seven out of the eight areas under consideration in this paper are managed by one of only
six sovereign states, including one Small Island Developing State (SIDS) (see Table 3.1).
The world’s largest VLMPA, the Ross Sea Protected Area, is managed by the Commission
for the Conservation of Antarctic Marine Living Resources (CCAMLR), an international
commission composed of 26 Members. Table 3.1 shows that it has taken on average 525 days
(17.5 months) for the no-take areas to come into effect after the original announcement that
an area would eventually become protected was made.

Figure 3.3 shows the daily sum of fishing hours per 1,000 km2 in each of the 8 VLMPAs
over the period 2012 to 2018. It distinguishes hours fished by vessels tracked by GFW prior
to the announcement of the creation of each of the areas from hours fished by vessels first
tracked after the announcement. One can see that fishing intensity varies widely between
the 8 areas. Prior to the date when the the announcement of the creation of the Phoenix
Islands Protected Area became public, fishing effort averaged 0.263 hours per 1,000 km2, as
opposed to 0.013 hours per 1,000 km2 for the extended portion of the Papahānaumokuākea
Marine National Monument. For comparison, the Global Fishing Watch has measured on
average 83,991 daily fishing hours over the period 2012–2018 across all oceans. Given that
oceans span approximately 360 million km2, this would yield 0.223 hours (14 minutes) of
fishing effort per 1,000 km2, a conservative estimate of fishing effort intensity (Weimerskirch
et al., 2020), given that many active fishing vessels are yet to be tracked by AIS. At a glance,
it would appear that some areas experience overall declines in the intensity of fishing effort
after the fishing ban comes into effect (Phoenix Islands Protected Area, Revillagigedo Na-
tional Park and Ross Sea Protected Area) while others do not (Nazca-Desventuradas Marine
Park, Pacific Remote Islands Marine National Monument, Papahānaumokuākea Marine Na-
tional Monument,Pitcairn Islands Marine Reserve, Terres Australes Françaises). In spite of
the apparent heterogeneity in the intensity of fishing effort over time between these eight
VLMPAs, it would appear that on average, fishing effort dropped after the enforcement of
the ban relative to the period preceding the original announcement, especially when one re-
stricts their attention to the vessels that were tracked prior to the announcement date (blue
dots in Figure 3.3). This is highlighted further in Figure 3.4 by averaging the daily sums
fishing hours for all eight VLMPAs.

The type of fishing effort practiced in each of these eight areas also varies, as shown in
Table 3.2. The table nonetheless shows that the most prevalent fishing methods in the
VLMPAs are set longlines and drifting longlines, regardless of the period under consideration
(pre-announcement, post-announcement & pre-implementation and post-implementation).
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Figure 3.4: Evolution of average daily hours of fishing effort per 1,000 km2 in all VLMPAs
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Blue dots measure the sum of fishing hours spent by vessels emitting prior to the announce-
ment of the creation of an VLMPA. Red dots show the sum of fishing hours spent by vessels
emitting for the first time after the announcement. The dates have been standardized so that
each period – before announcement, between announcement & implementation, and after
implementation – would last for 100 days, meaning that the period ranging from January
1, 2012 to December 31, 2018 corresponds to 300 days under this standardized date format.
The announcement of the creation of an VLMPA occurs on the 100th day (solid green line).
The implementation occurs on the 200th day (solid orange line).
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Trawling, a particularly destructive fishing method where a net is dragged across the ocean
sea floor, is observed at some point between 2012 and 2018 in three out of the eight VLMPAs,
and even accounts for 1% of all of the illegal fishing effort monitored in the Terres Australes
Françaises VLMPA.

3.3 Estimating the Average Reduction in Fishing

Effort3

We begin by investigating the average deterrence effect across VLMPAs by estimating the
reduction in the average daily hours fished per 1,000 km2 in the VLMPAs in our sample
after the ban comes into effect, compared to the average daily hours fished per 1,000 km2

prior to the announcement of the ban. We additionally estimate the change in average
daily fishing hours during the time period between the announcement of the VLMPAs and
their implementation (announcement period). We also consider the possibility of spillovers
of fishing activity from VLMPAs into their surrounding waters after implementation of the
ban by estimating a separate announcement and implementation effect for “donut” shaped
areas of varying sizes surrounding the VLMPAs, ranging from the waters within 10 km of a
VLMPA, up to the waters within 50 km of a VLMPA.

As shown in panel A of Figure 3.1, the cumulative number of vessels tracked by the GFW
database has skyrocketed over the years 2012 – 2018, as countries started mandating their
fleets to acquire AIS tracking devices4 Incorrectly assuming that a vessel only started fishing
upon being tracked by AIS could lead to biases in our analysis. For instance, we cannot
rule out that vessels appearing after the implementation of an MPA were not fishing prior
to being monitored. Should such vessels fish in the area yet to be announced respect the
ban and get tracked by the GFW after the announcement, our results would underestimate
the extent of the deterrence effect. Therefore, our regression only considers fishing effort
during the period after 2014, and only includes fishing effort by ships that were tracked prior
to January 1, 2014. This 2014 cutoff strikes a balance between allowing us to include the
pre-announcement periods for most of the considered VLMPAs in the analysis (all but one,
Nazca-Desventuradas Marine Park, which was announced prior to 2014, although it was not
implemented until 20165), while still leaving us with fishing data for approximately 28.5%
of all ships that GFW began tracking between 2012 and 2019.

We use a difference-in-difference design with multiple treatment effects to simultaneously esti-
mate the effect of the implementation of the VLMPA on fishing effort inside the VLMPA, the
effect of implementation of the VLMPA on the donut immediately surrounding the VLMPA

3This section was produced using updated data from GFW. Other sections have not yet been edited to
include the updated data.

4This can also be inferred from Figure B.2.
5See Table 3.1.
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(spillover effect from implementation), the effect of the announcement of the VLMPA on
fishing effort both inside the VLMPA, and the effect of the announcement in the donut
immediately surrounding the VLMPA. We estimate the following linear regression model:

log(yit) = αi + αy + αUim + βA
V V

A
it + βI

V V
I
it + βA

DD
A
it + βI

DD
I
it +Xitγ + ηit. (3.1)

In Equation (3.1), log(yit) represents the natural log of average daily fishing hours per 1,000
km2 occurring in area i during period t. αi is a fixed effect for area i. αy represents annual
fixed effects for year y. αUim represents joint fixed effects for each VLMPA-donut pair Ui and
each month m (across years), accounting for seasonal variation in a given VLMPA and its
surrounding donut. V A

it is an indicator for VLMPAs during the announcement period, which
is 1 if i is a VLMPA and t is during the announcement period for area i. V I

it is an indicator
for VLMPAs after implementation, which is 1 if i is a VLMPA and t after implementation
of VLMPA i (this value takes on a fraction during the month of implementation, described
in the next paragraph). DA

it is an indicator for the donuts around VLMPAs during the
announcement period, which is 1 if i is a VLMPA’s donut and t is during the announcement
period for the VLMPA associated with i (this value also takes on a fraction during the month
of announcement, and the month of implementation, described in the next paragraph). V I

it

is an indicator for the donuts around VLMPAs after implementation, which is 1 if i is a
VLMPA’s donut and t is after implementation of the VLMPA associated with i. Xit is a
vector of control variables, for which we consider the log of average wind speed and the log
of average net primary productivity (NPP). ηit is an error term.

Before running the regression, we aggregate the data to monthly averages. That is, period t
represents a year-month. Since we know the specific dates of each VLMPA’s announcement
and implementation, we allow the indicators V A

it , V
I
it , D

A
it , and DI

it to take on values between
0 and 1 for the month of announcement or implementation based on the fraction of days
of the month that were within the respective announcement period or post-implementation
period. For example, if a VLMPA was implemented on November 10th of a given year (a 30
day month), then V A

it and DA
jt would be 9/30 = .3, and V I

it and DI
jt would be 21/30 = .7 for

that VLMPA i and its respective donut j during that month (assuming the announcement
did not also take place during that same month).

βA
V , βI

V , βA
D, and βI

D each represent one of four treatment effects. βA
V is the announce-

ment period effect for VLMPAs. βI
V is the implementation effect for VLMPAs. βA

D is the
spillover effect to the waters surrounding VLMPAs during the announcement period. βI

D is
the spillover effect to the waters surrounding VLMPAs after implementation. We consider βI

V

to be the most important treatment effect that we estimate, as this measures the reduction
in fishing effort within the VLMPA itself resulting from implementation of the VLMPA.
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To control for changes in global fishing trends, we use as a control group fishing effort in the
rest of the world, beyond the VLMPAs and their surrounding donuts. In order to minimize
the possible impact of spillovers from the VLMPAs into the “rest of world” control, we
exclude all fishing within a buffer of 100 km from each VLMPA from the rest of the world
data. The largest donuts that we consider for spillover effects stretch out to 50 km from the
VLMPAs, such that all donuts fall within the 100 km buffer from the “rest of world” area.
Since we only have one control observation and eight each of VLMPAs and their respective
donuts, we weight the control observation by eight, such that control, VLMPA, and donut
observations are balanced. Note that the rest of world control is given its own monthly fixed
effects αUim.

6

There are some 0’s in the data for average daily fishing hours by month in some areas and
months. In order to take logs of yit, we add a small value to yit. We choose one-one millionth,
or 0.000001, as this is a small value two orders of magnitude below the smallest non-zero
value of yit observed in the data.

Table 3.3 presents estimates for the regression in Equation (3.1), with standard errors clus-
tered by VLMPA-donut pairs. Each column represents a regression using a different size
for the donut surrounding the VLMPA: 10 km, 30 km, and 50 km. The main coefficient
representing the treatment effect of implementing the VLMPA, listed as VLMPA Implemen-
tation, is large and significant across specifications. This table provides statistical evidence
that the creation of the VLMPAs has reduced fishing effort on average.

Notably, however, we are unable to detect a significant positive announcement effect or
spillover effect in our sample. The sign on VLMPA Announcement is negative across spec-
ifications, with marginal significance in some of the specifications, suggesting a possible
reduction in average fishing effort already during the announcement period. The sign is also
negative for Donut Implementation, suggesting that spillovers may lead to a reduction of
fishing effort nearby the VLMPA. However, we cannot firmly draw any conclusions regard-
ing spillover effects resulting from the implementation VLMPAs due to the large standard
errors on these coefficients, and so we do not rule out the possible existence of positive
spillover effects from the creation of VLMPAs.

In the next section, we investigate the changes in fishing effort within the individual VLMPAs
to better understand how fishing effort has been displaced within each individual VLMPA.

6The rest of the world data leaves out three VLMPAs that were implemented in 2018, and their respective
100 km buffers: Rapa Nui Rahui, Mar de Juan Fernández, and Coral Sea Australian Marine Park.
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Table 3.3: Effect of VLMPA announcement and implementation on average daily fishing

log(Fishing Hours)

(1) (2) (3) (4) (5) (6)

10 km 30 km 50 km 10 km 30 km 50 km

VLMPA Announcement −1.478 −1.449 −1.503∗ −1.477∗ −1.427∗ −1.507∗

(0.801) (0.789) (0.771) (0.775) (0.760) (0.752)

VLMPA Implementation −2.353∗ −2.320∗∗ −2.367∗ −2.325∗∗ −2.240∗∗ −2.363∗∗

(1.028) (0.999) (1.029) (0.968) (0.917) (0.962)

Donut Announcement −0.611 0.021 0.117 −0.618 0.036 0.107
(1.206) (1.057) (0.904) (1.189) (1.049) (0.897)

Donut Implementation −1.063 −1.058 −1.134 −1.039 −0.978 −1.132
(0.858) (1.011) (0.926) (0.834) (1.006) (0.942)

log(Wind Speed) N N N Y Y Y
log(NPP) N N N Y Y Y

Observations 1,020 1,020 1,020 1,020 1,020 1,020
R2 0.772 0.779 0.778 0.772 0.779 0.778
Adjusted R2 0.740 0.748 0.747 0.740 0.748 0.747

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Columns (1) and (4), (2) and (5), and (3) and (6) represent the inclusion of donuts extending
10 km, 30 km, and 50 km from the VLMPA, respectively. Columns (1) – (3) do not include
any control variables, while Columns (4) – (6) include controls for the log of average wind
speed and the log of average net primary productivity (NPP). VLMPA Announcement is
an indicator for being in a VLMPA during the announcement period, V A

it . VLMPA Imple-
mentation is an indicator for being in a VLMPA during after implementation, V I

it . Donut
Implementation is an indicator for being in the donut of a VLMPA during the announcement
period, DA

it . Donut Implementation is an indicator for being in the donut of a VLMPA after
implementation, DI

it. Standard errors are clustered by VLMPA-donut pairs.
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3.4 Investigating Displacement of Fishing Effort

In order to analyze the deterrence effect of the VLMPAs in our sample, we investigate the
change between annualized fishing effort inside the area prior to the announcement and after
the implementation of the fishing ban. For this endeavor, we rely on the Incursion Ratio
(IR), which we define as the ratio of the distance between the location of fishing effort and
the closest point on the VLMPA border, over the distance to the border for the deepest
location inside the VLMPA, i.e.

IR =
distance of fishing effort to border

distance of deepest point to border
(3.2)

For example, the most isolated point within the Revillagigedo National Park is located 130.7
km away from the nearest boundary point. On January 31, 2018, a vessel was identified to
be illegally fishing 23.8 km away from the nearest point on the border. It would consequently
correspond to IR = 0.18. We represent the deepest point inside each VLMPA in Figure 3.2
(note that this point may not be unique). The evolution of the distribution of fishing effort
inside each of the eight VLMPAs is shown in Figure 3.5, along with the distribution shift for
all areas combined (last panel). We display the counts of fishing hours per incursion ratio to
convey the change in magnitude along with the level of displacement. The horizontal axis in
Figure 3.5 displays the Incursion Ratio. The two vertical green lines show the limits of the
range of values IR could take. Whenever IR = 0, this would imply that a vessel if fishing
right on the border of the VLMPA. Whenever IR = 1, the vessel would be fishing at the
deepest possible location inside of the VLMPA.

At first glance, it would appear that there is also heterogeneity between the eight VLMPAs
when it comes to the displacement of fishing effort during the period following the imple-
mentation of the fishing ban relative to the period preceding the announcement that the
area would eventually become a marine reserve. The entire distribution shifted towards
the border for Phoenix Islands Protected Area and for Revillagigedo National Park. The
spread of the distributions seems to have remained virtually unchanged for the remaining
areas. When it comes to the overall magnitude, it would appear that the overall count of
fishing hours dropped in seven out of eight areas. Pacific Remote Islands Marine National
Monument appears to be the only VLMPA witnessing a slight increase in the count of post-
implementation annualized fishing hours relative to the pre-announcement period. As was
the case for Figure 3.3, Figure 3.5 would indicate that, at the aggregate level, fishing effort
decreased after the ban, and would also indicate a general displacement of fishing effort
towards the border of the VLMPA.

In Figure 3.5 and for the rest of our analysis, we exclude the period of time between the
announcement and the implementation of the VLMPAs. Provided that fishing effort during
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the announcement period does not cause stocks to fall below the minimum viable stock
threshold, a permanent ban that successfully deters fishing effort will eventually allow the
resource to recover inside the marine reserve. By excluding this period, we therefore see how
fishing effort has decreased relative to the time when vessels fished in an area not scheduled
to be protected. We additionally focus solely on the evolution of fishing effort inside the
areas for vessels tracked by GFW prior to the announcement of the VLMPAs.7.

In order to measure the displacement of fishing effort within each VLMPA in our sample,
we estimate the following fourth-order polynomial equation:

di =
4∑

k=0

βk · IRk
i + εi, (3.3)

where di corresponds to the difference in the number of annualized fishing hours after the
implementation of the fishing ban and the number of annualized fishing hours preceding the
announcement that a marine reserve would eventually be created. IRi corresponds to the in-
cursion ratio, rounded to the second decimal, and εi corresponds to heteroskedasticity-robust
disturbances. The fitted regression curves and their associated 95% confidence intervals are
shown in Figure 3.6.

After estimating Equation (3.3), we calculate the area between the curve and the horizontal
axis. A positive (negative) number would imply that fishing effort has increased (decreased)
overall after the implementation of the ban, relative to the period preceding the announce-
ment of the possible creation of a marine reserve. The area calculations are displayed in
Table 3.4.8

When pooling all the eight VLMPAs together using this method, we would conclude that “no-
take” VLMPAs have overall been successful at deterring fishing effort since the area between
the fitted fourth-order polynomial and 0 (represented by the horizontal red-dashed line)
would be negative (-86.9) and significant at a 5% significance level with an associated 95%
confidence interval of [−120.1;−53.7]. Should we only value the aggregate effectiveness of
VLMPAs to deter fishing effort, then this is good news. Unfortunately, a closer look at each of
the VLMPAs projects a more nuanced picture. As shown in Table 3.4, seven out of the eight
VLMPAs are associated with an overall reduction in fishing effort after the ban. The Pacific

7Restricting the number of vessels practicing banned fishing to those tracked prior to the announcement
of an eventual ban has a heterogeneous impact across countries. China, Taiwan, the United States, Japan
and South Korea are the most affected by the restriction while most of the other countries have their fleet
virtually unaffected by the restriction

8In Table B.3, we display the area calculations corresponding to third-order polynomial and fifth-order
polynomial curves, along with their corresponding heteroskedasticity-robust 95% confidence intervals.



3.4. INVESTIGATING DISPLACEMENT OF FISHING EFFORT 67

F
ig
u
re

3.
6:

Q
u
ar
ti
c
p
ol
y
n
om

ia
l
cu
rv
es

of
b
es
t
fi
t
an

d
th
ei
r
as
so
ci
at
ed

95
%

co
n
fi
d
en
ce

in
te
rv
al
s

Ro
ss

 S
ea

 P
ro

te
ct

ed
 A

re
a

Te
rre

s 
Au

st
ra

le
s 

Fr
an

ça
is

es
Po

ol
ed

 V
LM

PA
s

Ph
oe

ni
x 

Is
la

nd
s 

Pr
ot

ec
te

d 
Ar

ea
Pi

tc
ai

rn
 Is

la
nd

s 
M

ar
in

e 
Re

se
rv

e
Re

vi
lla

gi
ge

do
 N

at
io

na
l P

ar
k

N
az

ca
-D

es
ve

nt
ur

ad
as

 M
ar

in
e 

Pa
rk

Pa
ci

fic
 R

em
ot

e 
Is

la
nd

s 
M

ar
in

e 
N

at
io

na
l M

on
um

en
t

Pa
pa

hā
na

um
ok

uā
ke

a 
M

ar
in

e 
N

at
io

na
l M

on
um

en
t

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

-2
0

-1
0010 -7
5

-5
0

-2
50

-7
50

-5
00

-2
500

-4
004080 -7
5

-5
0

-2
50

-1
00-5

00

-2
0

-1
0010

-7
50

-5
00

-2
500

-7
5

-5
0

-2
50

In
cu

rs
io

n 
ra

tio

Difference in annualized fishing hours

T
h
e
sc
at
te
r
p
oi
n
ts

re
p
re
se
n
t
th
e
d
iff
er
en
ce

b
et
w
ee
n
th
e
an

n
u
al
iz
ed

fi
sh
in
g
h
ou

rs
at

a
gi
ve
n
in
cu
rs
io
n
ra
ti
o
af
te
r
th
e

im
p
le
m
en
ta
ti
on

of
th
e
b
an

an
d
p
ri
or

to
th
e
an

n
ou

n
ce
m
en
t
of

th
e
cr
ea
ti
on

of
th
e
V
L
M
P
A
.
N
eg
at
iv
e
va
lu
es

si
gn

if
y
th
at

th
er
e
w
er
e
fe
w
er

fi
sh
in
g
h
ou

rs
at

a
gi
ve
n
d
ep
th

in
si
d
e
th
e
V
L
M
P
A

af
te
r
th
e
b
an

w
as

p
u
t
in

p
la
ce

th
an

d
u
ri
n
g
th
e
p
er
io
d

p
re
ce
d
in
g
th
e
an

n
ou

n
ce
m
en
t
of

a
p
ot
en
ti
al

m
ar
in
e
re
se
rv
e.



3.4. INVESTIGATING DISPLACEMENT OF FISHING EFFORT 68

Remote Islands Marine National Monument, an VLMPA managed by the United States, is
associated with an overall increase in annualized fishing effort during the period following
the creation following the implementation of the ban, relative to the period preceding the
announcement that a ban would eventually be implemented. Four of the VLMPAs – the
Ross Sea Protected Area, Papahānaumokuākea Marine National Monument, Revillagigedo
National Park and Phoenix Islands Protected Area – are associated with reductions in fishing
effort that are significant at the 5% level. The largest reduction in fishing effort occurs in
Phoenix Islands Protected Area, a VLMPA managed by the Republic of Kiribati. Kiribati
is a country listed among the Small Island Developing States (SIDS).

Table 3.4: Area under the 4th-order polynomial curve estimating the difference in annualized
fishing hours

VLMPA name Lower bound Estimate Upper bound

Ross Sea Protected Area -10.6 -6.1 -1.6
Papahānaumokuākea Marine National Monument -4.1 -2.1 -0.1
Pacific Remote Islands Marine National Monument -3.4 9 21.3
Pitcairn Islands Marine Reserve -5.4 -2.5 0.4
Terres Australes Françaises -14.3 -6.2 1.8
Phoenix Islands Protected Area -407.9 -332.7 -257.4
Nazca-Desventuradas Marine Park -3.1 -1.5 0.2
Revillagigedo National Park -12.6 -7.1 -1.6
Pooled VLMPAs -120.1 -86.9 -53.7

A positive (negative) number means that annualized banned fishing effort exceeds (falls
below) annualized fishing effort during the period preceding the announcement of a possible
VLMPA creation.

Figure 3.5 shows that with the exception of the Papahānaumokuākea Marine National mon-
ument, a VLMPA managed by the United States, the VLMPAs where fishing took place
deep within the to-be-protected area prior to the announcement of the VLMPA witnessed
a significant shift of the distribution of fishing effort by the vessels tracked prior to the an-
nouncement towards the border of the respective VLMPA (Phoenix Islands Protected Area,
Revillagigedo National Park). We fail to observe similar shifts in the spatial distribution of
fishing effort for VLMPAs where the bulk of pre-announcement fishing effort took place at
an incursion ratio smaller than halfway to the deepest point inside of the VLMPA.
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3.5 Analyzing the Profile of Infringing Vessels

As we have at our disposal a plethora of information concerning the vessels responsible for
fishing effort inside these areas, we are able to investigate the characteristics of ships engaging
in illegal fishing effort. Indeed, thanks to the MMSI uniquely identifying each fishing vessel,
GFW is able to track each vessel’s length, tonnage, engine size, class, and its flag. Table 3.5
ranks the countries of origin of all the vessels associated with banned fishing by the number
of infractions committed by vessels carrying their flag.

Table 3.5 shows that the five countries most responsible for banned fishing are associated
with 80.7% of all the infractions observed in the eight VLMPAs, while their trespassing fleet
represents 72.3% of all infringing vessels.

We also note that the average size of the trespassing vessels stands at 58.4 meters long, which
corresponds to about 2.3 times the size of the average vessel (25.7 meters long) tracked by
GFW over the 2012–2018 period. This might be explained by the remoteness of the VLMPAs
under analysis, which would require larger vessels to make the journey and allow for a catch
large enough to make the fishing excursion profitable.

3.6 Discussion

We leverage a database tracking fishing effort at an unprecedented resolution to evaluate
the effectiveness of “no-take” very large marine protected areas (areas spanning more than
100,000 km2) to deter fishing effort, measured in hours spent fishing inside the protected
areas. We find evidence that, on average, VLMPAs have been successful at deterring fishing
effort. This finding is encouraging. However, a more granular approach reveals some het-
erogeneity in the reduction in fishing effort across the eight VLMPAs under consideration,
which might be problematic if each area was designed to preserve a distinct ecosystem. We
find find that the area associated with the largest reduction in fishing effort (Phoenix Is-
lands Protected Area) is managed by the Republic of Kiribati, a Small Island Developing
States, while the least successful one (Pacific Remote Islands Marine National Monument)
is managed by the United States.

The wealth of information on the vessels tracked by GFW allows us to identify the char-
acteristics of the infringing vessels. We consequently analyze the profile of fishing vessels
practicing banned fishing in the VLMPAs and find that they can be traced back to just
24 countries, and that the five countries most responsible for banned fishing are associated
with more than 80% of all the infractions observed in the eight VLMPAs. We also find
that trespassing vessels are on average more than twice as large as the average vessel in our
sample.
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Table 3.5: Ranking of the countries associated with prohibited fishing inside of the estab-
lished VLMPAs

Rank Country of Origin
All VLMPAs

Infractions Vessels Mean Length

1. South Korea 1,527 112 58
2. Taiwan 1,264 122 38
3. China 872 114 50
4. United States 613 84 42
5. France 559 8 58
6. Japan 376 52 50
7. Kiribati 254 12 68
8. Vanuatu 104 23 51
9. Spain 89 5 64
10. Papua New Guinea 70 17 75
11. Micronesia (Federated States) 38 12 73
12. Marshall Islands 33 7 71
13. Honduras 31 1 54
14. Mexico 31 15 72
15. Solomon Islands 26 3 68
16. Slovakia 24 2 29
17. New Zealand 23 4 50
18. Maldives 13 2 55
19. Russia 6 1 56
20. Australia 5 1 68
21. Ukraine 4 1 55
22. Cook Islands 3 1 57
23. El Salvador 3 2 83
24. Kosovo (UNK) 1 1 72

Unidentified 21 6 44
Total 5,990 608 58.4

We define infractions at the VLMPA-daily-vessel level. If a vessel were to fish illegally two
days in a row in a given VLMPA, each daily occurrence would be counted as a distinct
infraction. If a vessel were to fish in two VLMPAs during the same day, these would also
get counted as two separate infractions.
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The results in this paper provide insights into the effectiveness of VLMPAs implemented
during the last decade. Increasing our understanding of VLMPAs and their ability to deter
fishing effort will be important to policy makers moving forward. In 2021, Chile, Costa
Rica, France, the United Kingdom, and the United States announced the development of a
partnership to advance the use of MPAs as a tool to fight climate change (National Oceanic
and Atmospheric Administration, 2021). At the UN Ocean Conference in 2022, a target of
protecting 30% of the global ocean by MPAs by 2030 received the voluntary commitments
of over 150 countries, with the Protecting Our Planet Challenge offering to invest at least
$1 billion USD into creating, expanding, and managing MPAs (UN News Africa Renewal,
2022). Learning from the implementation of VLMPAs and their past successes and failures
will aid policymakers in better designing and enforcing marine protection policies in the
future.
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Appendix A

Chapter 1 Appendix

A.1 Additional tables and figures

Additional tables
Table A.1: Effect of changes in shadow on changes in housing price with 500 meter fixed
effects and cluster grid

∆ ˜log(pit)

(1) (2) (3)

∆S̃itj -0.331∗∗ -0.334∗∗ -0.292∗∗

(0.148) (0.147) (0.143)

Spatial-Time FE radius 500m 500m 500m
Cluster Grid 500m2 500m2 500m2

Distance terms No Yes Yes
Height terms No No Yes

Observations 35,180 35,180 35,180

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

∆ ˜log(pitj) represents the change in spatial-time demeaned log housing price. ∆S̃it represents
the change in spatial-time demeaned shadow. Column (1) estimates Equation (1.1). Column
(2) estimates Equation (1.2). Column (3) estimates Equation (1.3). Spatial-Time Fixed
Effects are measured with a 500 meter radius prior to differencing. Standard errors are
clustered using a 500 square meter spatial grid.
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Table A.2: Effect of changes in shadow relative to baseline shadow on changes in housing
price with 500 meter fixed effects and cluster grid

∆ ˜log(pit)

(1) (2) (3)

∆S̃itj -0.259∗ -0.273∗∗ -0.237∗

(0.136) (0.139) (0.132)˜(
∆Sitj

)
× Sitj−1

-0.111∗ -0.094 -0.087
(0.065) (0.064) (0.074)

Spatial-Time FE radius 500m 500m 500m
Cluster Grid 500m2 500m2 500m2

Distance terms No Yes Yes
Height terms No No Yes

Observations 35,180 35,180 35,180

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

∆ ˜log(pitj) represents the change in spatial-time demeaned log housing price. ∆S̃it repre-

sents the change in spatial-time demeaned shadow. ˜(
∆Sitj

)
× Sitj−1

represents the change
in spatial-time demeaned shadow interacted with baseline shadow. Column (1) estimates
Equation (1.5). Column (2) estimates Equation (1.5) with the inclusion of distance fixed
effects as in Equation (1.2). Column (3) estimates Equation (1.5) with the inclusion of dis-
tance and height fixed effects as in Equation (1.3). Spatial-Time Fixed Effects are measured
with a 500 meter radius prior to differencing. Standard errors are clustered using a 500
square meter spatial grid.
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Table A.3: Effect of changes in shadow on changes in housing price with 500 meter fixed
effects and cluster grid, excluding units within 500 meters of Central Park

∆ ˜log(pit)

(1) (2) (3)

∆S̃itj -0.303∗∗ -0.301∗∗ -0.249
(0.153) (0.150) (0.152)

Spatial-Time FE radius 500m 500m 500m
Cluster Grid 500m2 500m2 500m2

Distance terms No Yes Yes
Height terms No No Yes

Observations 29,257 29,257 29,257

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

∆ ˜log(pitj) represents the change in spatial-time demeaned log housing price. ∆S̃it represents
the change in spatial-time demeaned shadow. Column (1) estimates Equation (1.1). Column
(2) estimates Equation (1.2). Column (3) estimates Equation (1.3). Observations do not
include units within 500 meters of Central Park. Spatial-Time Fixed Effects are measured
with a 500 meter radius prior to differencing and prior to removing observations near Central
Park. Standard errors are clustered using a 500 square meter spatial grid.
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Table A.4: Effect of changes in shadow relative to baseline shadow on changes in housing
price with 250 meter fixed effects and cluster grid, excluding units within 500 meters of
Central Park

∆ ˜log(pit)

(1) (2) (3)

∆S̃itj -0.258∗ -0.254∗ -0.214
(0.145) (0.144) (0.146)˜(

∆Sitj

)
× Sitj−1

-0.169∗ -0.160∗ -0.155
(0.095) (0.093) (0.095)

Spatial-Time FE radius 250m 250m 250m
Cluster Grid 250m2 250m2 250m2

Distance terms No Yes Yes
Height terms No No Yes

Observations 29,257 29,257 29,257

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

∆ ˜log(pitj) represents the change in spatial-time demeaned log housing price. ∆S̃it repre-

sents the change in spatial-time demeaned shadow. ˜(
∆Sitj

)
× Sitj−1

represents the change
in spatial-time demeaned shadow interacted with baseline shadow. Column (1) estimates
Equation (1.5). Column (2) estimates Equation (1.5) with the inclusion of distance fixed
effects as in Equation (1.2). Column (3) estimates Equation (1.5) with the inclusion of dis-
tance and height fixed effects as in Equation (1.3). Observations do not include units within
500 meters of Central Park. Spatial-Time Fixed Effects are measured with a 250 meter
radius prior to differencing and prior to removing observations near Central Park. Standard
errors are clustered using a 250 square meter spatial grid.
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Table A.5: Effect of changes in shadow relative to baseline shadow on changes in housing
price with 500 meter fixed effects and cluster grid, excluding units within 500 meters of
Central Park

∆ ˜log(pit)

(1) (2) (3)

∆S̃itj -0.246∗ -0.258∗ -0.207
(0.146) (0.147) (0.144)˜(

∆Sitj

)
× Sitj−1

-0.085 -0.065 -0.064
(0.076) (0.076) (0.087)

Spatial-Time FE radius 500m 500m 500m
Cluster Grid 500m2 500m2 500m2

Distance terms No Yes Yes
Height terms No No Yes

Observations 29,257 29,257 29,257

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

∆ ˜log(pitj) represents the change in spatial-time demeaned log housing price. ∆S̃it repre-

sents the change in spatial-time demeaned shadow. ˜(
∆Sitj

)
× Sitj−1

represents the change
in spatial-time demeaned shadow interacted with baseline shadow. Column (1) estimates
Equation (1.5). Column (2) estimates Equation (1.5) with the inclusion of distance fixed
effects as in Equation (1.2). Column (3) estimates Equation (1.5) with the inclusion of dis-
tance and height fixed effects as in Equation (1.3). Observations do not include units within
500 meters of Central Park. Spatial-Time Fixed Effects are measured with a 500 meter
radius prior to differencing and prior to removing observations near Central Park. Standard
errors are clustered using a 500 square meter spatial grid.
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Additional figures

Figure A.1: Graph of downward-U shaped marginal profits

The red curve represents a convex marginal construction cost. The green curve represents a
concave marginal revenue. The blue curve represents the marginal profit to the developer.
Marginal profits is the difference between marginal revenue and marginal construction cost.
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Figure A.2: Finding optimal height with downward-U shaped marginal profits

The red line represents the marginal net negative externality. The green curve represents
the marginal profit to the developer. The optimal height, labelled Height∗, can be found
where the marginal net negative externality equals the marginal profits.
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Appendix B

Chapter 3 Appendix

B.1 Additional tables and figures

Additional tables
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Table B.1: Effect of VLMPA announcement and implementation on average daily fishing,
all donut sizes, no controls

log(Fishing Hours)

(1) (2) (3) (4) (5)

10 km 20 km 30 km 40 km 50 km

VLMPA Announcement −1.478 −1.419 −1.449 −1.439∗ −1.503∗

(0.801) (0.797) (0.789) (0.770) (0.771)

VLMPA Implementation −2.353∗ −2.192∗ −2.320∗∗ −2.296∗ −2.367∗

(1.028) (1.031) (0.999) (1.022) (1.029)

Donut Announcement −0.611 −0.001 0.021 0.265 0.117
(1.206) (1.145) (1.057) (1.058) (0.904)

Donut Implementation −1.063 −0.796 −1.058 −0.882 −1.134
(0.858) (1.091) (1.011) (1.008) (0.926)

log(Wind Speed) N N N N N
log(NPP) N N N N N

Observations 1,020 1,020 1,020 1,020 1,020
R2 0.772 0.772 0.779 0.781 0.778
Adjusted R2 0.740 0.741 0.748 0.751 0.747

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Columns (1) – (5) represent the inclusion of donuts extending 10 km, 20 km, 30 km, 40
km, and 50 km from the VLMPA, respectively. Control variables are not included in any
of the columns. VLMPA Announcement is an indicator for being in a VLMPA during the
announcement period, V A

it . VLMPA Implementation is an indicator for being in a VLMPA
during after implementation, V I

it . Donut Implementation is an indicator for being in the
donut of a VLMPA during the announcement period, DA

it . Donut Implementation is an
indicator for being in the donut of a VLMPA after implementation, DI

it. Standard errors are
clustered by VLMPA-donut pairs.
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Table B.2: Effect of VLMPA announcement and implementation on average daily fishing,
all donut sizes, with controls

log(Fishing Hours)

(1) (2) (3) (4) (5)

10 km 20 km 30 km 40 km 50 km

VLMPA Announcement −1.477∗ −1.405 −1.427∗ −1.432∗ −1.507∗

(0.775) (0.764) (0.760) (0.744) (0.752)

VLMPA Implementation −2.325∗∗ −2.123∗ −2.240∗∗ −2.256∗∗ −2.363∗∗

(0.968) (0.947) (0.917) (0.947) (0.962)

Donut Announcement −0.618 0.003 0.036 0.265 0.107
(1.189) (1.137) (1.049) (1.054) (0.897)

Donut Implementation −1.039 −0.728 −0.978 −0.843 −1.132
(0.834) (1.095) (1.006) (1.013) (0.942)

log(Wind Speed) Y Y Y Y Y
log(NPP) Y Y Y Y Y

Observations 1,020 1,020 1,020 1,020 1,020
R2 0.772 0.772 0.779 0.781 0.778
Adjusted R2 0.740 0.740 0.748 0.750 0.747

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Columns (1) – (5) represent the inclusion of donuts extending 10 km, 20 km, 30 km, 40
km, and 50 km from the VLMPA, respectively. All columns include controls for the log
of average wind speed and the log of average net primary productivity (NPP). VLMPA
Announcement is an indicator for being in a VLMPA during the announcement period, V A

it .
VLMPA Implementation is an indicator for being in a VLMPA during after implementation,
V I
it . Donut Implementation is an indicator for being in the donut of a VLMPA during the

announcement period, DA
it . Donut Implementation is an indicator for being in the donut of

a VLMPA after implementation, DI
it. Standard errors are clustered by VLMPA-donut pairs.
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Additional figures

The inclusion of all the vessels to ever fish in the VLMPAs area (Figure B.1) reveals a general
displacement of fishing effort towards the border, meaning that vessels which appeared later
during the 2012–2018 period have been more prone to fishing closer to the border than vessels
which were tracked prior to the announcement. Unfortunately, there is no way to rule out
that these vessels were fishing at those same spots prior to being tracked by AIS. Should
one be willing to assume that the date when the vessels were first tracked and the date
when they actually started fishing coincided, then this would reinforce the narrative that the
implementation of these “no-fishing” areas has been somewhat taken seriously by the fishers,
i.e. that fear of getting apprehended may have pushed them to move their operations closer
to the boundary of the restricted area. Should that be the case, it could imply that fishers
are more worried of physical interception by the managing authority than they are of being
observed practicing illegal fishing effort by satellite.
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B.2 VLMPA Creation Timelines

Ross Sea Protected Area

Announced by the Commission for the Conservation of Marine Living Resources (CCAMLR)
on October 27, 2016, the Ross Sea protected area came into force on December 1, 2017 and
has become the largest MPA in the world. The VLMPA’s no-take zone covers three separate
areas that cover 1.12 million km2, or 72% of the 1.55 million km2.

Papahānaumokuākea Marine National monument

The Papahānaumokuākea Marine National monument was originally established on June
15, 2006 by the Bush administration. Efforts to expand the monument started on January
29, 2015 when a group of prominent Native Hawaiians wrote to president Barack Obama
asking the federal government to expand its protections around the Northwestern Hawaiian
Islands. The monument was expanded from its original size of 362,073 km2 to 1,508,870 km2

on August 26, 2016 by presidential proclamation. It is now the fourth largest MPA in the
world. It is a fully “no-take” area.

Pacific Remote Islands Marine National Monument

The Pacific Remote Islands Marine National Monument was originally established by presi-
dential proclamation on January 6, 2009. On May 20, 2014 of a scientific report promoting
the expansion of the existing monument was published. On September 25, 2014 presi-
dent Barack Obama expanded the Pacific Remote Islands Marine National Monument from
215,000 km2 to 1,270,000 km2, making it the sixth largest MPA to date.

Terres Australes Françaises

On October 3, 2006, an inter-ministerial decree established the original natural reserve in
the territorial waters of the French Southern Territories. On June 14 and June 15, 2016, the
scientific council in charge of monitoring the reserve discussed the possibility of extending
the coverage of the reserve (TAAF, 2017). On December 12, 2016, the French government
published a decree extending the existing MPA by 672,969 km2, setting up “no-take” zones,
covering more than 120,000 km2. Enforcement started on March 31, 2017, upon publication
of the prefectoral order.

Pitcairn Islands Marine Reserve

On March 18, 2015, the BBC reported the British government’s intention to create a marine
reserve covering 834,000 km2 around the Pitcairn Islands, once monitoring and enforcement
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of the reserve could be funded (BBC News, 2015). The ordinance implementing the area
was then promulgated on September 12, 2016.

Phoenix Islands Protected Area

The area was established in 2006. For years however, the government of Kiribati claimed
that the Phoenix Islands Protected Area was a “no-take area” despite evidence that it was
the most fished MPA in the world. Eventually, the cabinet of president Anote Tong voted
on January 29, 2014 to actually close the reserve by January 1, 2015. News of the vote only
broke on May 9, 2014 (Science News, 2014), since no public announcement was made at the
time of the vote.

Nazca-Desventuradas Marine Park

In February 2013, the National Geographic and Oceana launched the “Pristine Seas” expedi-
tion in the Desventuradas islands, off the coast of Chile. The expedition led to the publication
on February 23, 2013 of a report calling for the creation of an MPA (National Geographic
Society & Oceana, 2013). On August 24, 2016, the Chilean government officially ordered
the creation of the Nazca-Desventuradas Marine Park, a 300,000 km2 “no-take” reserve.

Revillagigedo National Park

On July 17, 2016, the United Nations Educational, Scientific and Cultural Organization
(UNESCO) recognized the Revillagigedo islands as a World Heritage site (UNESCO, 2016),
a first step toward the sanctuarization of the area. On November 24, 2017, Mexican presi-
dent Enrique Peña Nieto officially created of the Revillagigedo National Park, a “no-take”
protected area spanning 150,000 km2.




