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Temporal and state abstractions for efficient learning, transfer 
and composition in humans

Liyu Xia, Anne G. E. Collins
University of California, Berkeley

Abstract

Humans use prior knowledge to efficiently solve novel tasks, but how they structure past 

knowledge during learning to enable such fast generalization is not well understood. We recently 

proposed that hierarchical state abstraction enabled generalization of simple one-step rules, 

by inferring context clusters for each rule. However, humans’ daily tasks are often temporally

extended, and necessitate more complex multi-step, hierarchically structured strategies. The 

options framework in hierarchical reinforcement learning provides a theoretical framework for 

representing such transferable strategies. Options are abstract multi-step policies, assembled from 

simpler one-step actions or other options, that can represent meaningful reusable strategies as 

temporal abstractions. We developed a novel sequential decision making protocol to test if humans 

learn and transfer multi-step options. In a series of four experiments, we found transfer effects 

at multiple hierarchical levels of abstraction that could not be explained by flat reinforcement 

learning models or hierarchical models lacking temporal abstraction. We extended the options 

framework to develop a quantitative model that blends temporal and state abstractions. Our model 

captures the transfer effects observed in human participants. Our results provide evidence that 

humans create and compose hierarchical options, and use them to explore in novel contexts, 

consequently transferring past knowledge and speeding up learning.
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1. Introduction

Reinforcement learning theory (RL, (Sutton & Barto, 2018)) offers a computational level 

account of how agents can learn to make choices that will maximize their future cumulative 

rewards. Recent advances have shown that RL can give rise to extremely powerful artificial 

intelligence (AI) systems (Mnih et al., 2015; Silver et al., 2018). RL modeling has also 

greatly helped advance our understanding of motivated human behavior in both simple 

conditioning contexts and much more complex learning environments (Collins & Frank, 

2012, 2013; Farashahi, Rowe, Aslami, Lee & Soltani, 2017; Gläscher, Daw, Dayan & 

O’Doherty, 2010; Leong, Radulescu, Daniel, DeWoskin & Niv, 2017; Niv, 2009). However, 

despite tremendous recent progress, artificial RL agents are unable to mimic and capture 

humans’ ability to learn fast, efficiently, as well as transfer and generalize knowledge 

(Botvinick, Niv & Barto, 2009; Collins, 2019; Diuk, Schapiro et al., 2013; Lake, Ullman, 

Tenenbaum & Gershman, 2017).
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Human behavior and cognition possesses two key features that are essential to humans’ 

efficient and flexible learning: cognitive representations are hierarchical (Badre, 2008; 

Koechlin & Jubault, 2006; Koechlin, Ody & Kouneiher, 2003; Solway et al., 2014) and 

compositional (Lake et al., 2017). Hierarchy has been identified as a crucial element of 

cognition (Anderson et al., 2004; Taatgen, Lebiere & Anderson, 2006) in multiple domains 

such as perception (Bill, Pailian, Gershman & Drugowitsch, 2019; Lee & Mumford, 2003; 

Van Essen & Maunsell, 1983; Wessinger et al., 2001), decision making (Badre, 2008; Badre 

& D’Esposito, 2007; Badre & D’esposito, 2009; Balleine, Dezfouli, Ito & Doya, 2015; 

Dezfouli & Balleine, 2012, 2013; Eckstein & Collins, 2019; Krigolson & Holroyd, 2006; 

Tomov, Yagati, Kumar, Yang & Gershman, 2018; Zarr & Brown, 2016), and learning (Badre 

& Frank, 2011; Collins, Cavanagh & Frank, 2014; Collins & Frank, 2013; Eckstein & 

Collins, 2019; Frank & Badre, 2011). Hierarchy in choices is often temporal (Botvinick, 

2007; Botvinick & Plaut, 2004): choices may be described at multiple degrees of granularity 

by breaking them down into more and more basic chunks. For example, the task of 

making dinner can be broken down to making potatoes and making black beans; making 

potatoes can be broken down into sub-tasks such as cutting potatoes, boiling, etc. However, 

hierarchical levels may also represent different degrees of state abstractions at a similar 

time scale (Badre, 2008; Collins, 2018; Collins & Frank, 2013; Koechlin et al., 2003): for 

example, you may decide to make dinner (highest, most abstract level), which will consist of 

a salad, which will specifically be a Cesar salad (lowest, most concrete level).

Human behavior is also compositional: humans are able to compose simpler skills together 

in novel ways to solve new tasks in real life. For example, we can combine cutting 

potatoes with different routines to accomplish various tasks including fried potatoes, meshed 

potatoes, etc. Compositionality goes hand in hand with hierarchy, as it assumes the existence 

of different levels of skills. It has also been central to the study of human cognition 

(Biederman, 1987; Franklin & Frank, 2018; Lake, Salakhutdinov & Tenenbaum, 2015) and 

artificial agents (Andreas, Klein & Levine, 2017; Peng, Chang, Zhang, Abbeel & Levine, 

2019; Wingate, Diuk, O’Donnell, Tenenbaum & Gershman, 2013; Xu et al., 2018).

While it is well established that human behavior is hierarchical and compositional, how 

we learn such representations remains poorly characterized. A theoretical framework of 

interest is the hierarchical reinforcement learning (HRL) options framework (Sutton, Precup 

& Singh, 1999), originally proposed in AI, which incorporates aspects of both hierarchy 

and compositionality in an effort to make learning more flexible and efficient. The options 

framework augments traditional RL algorithms by allowing agents to select not only simple 

actions, but also options in different states. Broadly summarized, options are temporally

extended multi-step policies assembled from simple actions or other simpler options to 

achieve a meaningful subgoal (see (Sutton et al., 1999) for a formal definition). Consider 

making potatoes as an example option. We can break down the task into sub-options such 

as cutting potatoes, boiling, etc. (Fig. 1). These sub-options can be further divided into 

simpler tasks. In the HRL options framework, agents can learn option-specific policies (e.g. 

how to make potatoes) by using, for example, subgoals as pseudo-rewards that reinforce 

within-option choices.
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Options are referred to as temporal abstractions because selecting an option is a single 

decision step, but this single decision may trigger a series of decisions constrained by the 

option (until the option terminates), so that time is compressed in a single decision.

Each option is additionally characterized by an initiation set (the set of states where the 

option can be initiated), and a termination function that maps each state to the probability 

of terminating the current option. For example, the initiation set for the option of making 

potatoes might be kitchen, and the option might terminate when the potatoes are cooked. 

Agents learn when to select options in the same way they learn to select actions (e.g. make 

potatoes for breakfast in the US, but not in France) by using normal reinforcement signals. 

Agents learn the policies determined by an option using pseudo-rewards obtained when 

reaching the subgoal option.

The options framework provides many theoretical benefits for learning (Botvinick et al., 

2009; Botvinick & Weinstein, 2014), assuming that useful options are available. Unlike 

traditional RL algorithms that only learn step-by-step policies, options help explore more 

efficiently and plan longer term. For example, when we learn how to cook a new kind 

of potato, we already know how to cut potatoes. Moreover, we can plan with high-level 

behavioral modules such as cutting potatoes, instead of planning in terms of reaching, 

grabbing, and peeling. If non-useful options are available, the options framework predicts 

that learning can be instead slowed down (Botvinick et al., 2009). The question of how to 

identify and create useful options has been a topic of active and intense research in AI (Fox, 

Krishnan, Stoica & Goldberg, 2017; Jayaraman, Ebert, Efros & Levine, 2018; Jiang, Gu, 

Murphy & Finn, 2019; Marios C Machado, Bellemare & Bowling, 2017; Marlos C Machado 

et al., 2017; McGovern & Barto, 2001; Menache, Mannor & Shimkin, 2002; Nair & Finn, 

2019; Şimşek & Barto, 2004; Xu et al., 2019).

Recent literature (Diuk, Schapiro et al., 2013; Diuk, Tsai, Wallis, Botvinick & Niv, 2013; 

Ribas-Fernandes, Shahnazian, Holroyd & Botvinick, 2019; Ribas-Fernandes et al., 2011; 

Schapiro, Rogers, Cordova, Turk-Browne & Botvinick, 2013) shows early evidence that 

the options framework could be a useful model of human learning and decision making. 

(Diuk, Schapiro et al., 2013; Schapiro et al., 2013) showed that participants were able 

to spontaneously identify bottleneck states from transition statistics, which aligned with 

graph-theoretic objectives for option discovery developed in AI (Menache et al., 2002). In 

addition, in hierarchical decision-making tasks, (Diuk, Tsai et al., 2013; Ribas-Fernandes 

et al., 2019; Ribas-Fernandes et al., 2011) showed that human participants signaled reward 

prediction error (RPE), a key construct for RL algorithms, for both subgoals and overall 

goals. These results indicate that humans are able to identify meaningful subgoals, and to 

track sub-task progression, both key features of the options framework. (Botvinick, 2012; 

Holroyd & Yeung, 2012) have also suggested potential neural correlates for implementing 

the computations required to use options.

However, the fundamental question of whether and how humans learn and use options 

during learning remains unanswered (Diuk, Schapiro et al., 2013): there is little work 

probing the learning dynamics in tasks with a temporal hierarchy, or directly testing the 

theoretical benefits of options in a behavioral setting. In this paper, we aim to 1) characterize 
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how humans learn representations that support hierarchical and compositional behavior, and 

2) investigate whether an expanded options framework can account for it. In particular, do 

humans create options in such a way that they can flexibly reuse them in new problems? 

If so, how flexible is this transfer? In order to address these questions, we need to first 

identify aspects of human learning and transfer that reflect the use of options, but cannot be 

explained by traditional RL, from a modeling perspective.

Previous research (Collins et al., 2014; Collins & Frank, 2013, 2016) showed evidence for 

flexible creation and transfer of a simple type of options that operate in non-sequential 

environments: one-step policies, also called task-sets (Monsell, 2003). While a vanilla flat 

RL model learns about state-action mappings (policies) as they are, such as cutting, boiling 

and stir frying potatoes (Fig. 1), RL models that learn task-sets achieve transfer by learning 

state abstractions. For example, the model, after learning the policy of cutting potatoes, 

can generalize to cutting other vegetables by clustering the vegetables that it has never 

encountered before to the context of potatoes. (Collins et al., 2014; Collins & Frank, 2013, 

2016) showed that humans can create multiple task-sets over the same state space in a 

context-dependent manner in a contextual multi-armed bandit task; furthermore, humans 

can cluster different contexts together if the task-set is successful. This clustering structure 

provides opportunities for transfer, since anything newly learned for one of the contexts can 

be immediately generalized to all the others in the same cluster (Fig. 1). Moreover, human 

participants can identify novel contexts as part of an existing cluster if the cluster-defined 

strategy proves successful, resulting in more efficient exploration and faster learning.

However, the task-sets framework only supports hierarchy in “state abstraction”, not 

hierarchical structure in time (also called “temporal abstraction”, Fig. 1), an essential 

component of the options framework. Since most real world tasks require multiple steps, 

RL models that only learn one-step task-sets are not sufficient. In particular, note that RL 

models that only learn task-sets might still get confused about whether it should boil or 

stir fry after the vegetable is cut. This is due to the non-Markovian (or semi-Markovian 

(Sutton et al., 1999)) aspect of the environment: for the same observed state (cut vegetable), 

the optimal action might be different depending on the over-arching goal, that cannot be 

currently observed. An RL model that further learns temporal abstractions such as options 

would instead combine one-step task-sets together as one abstract behavioral module. 

Once a specific option is activated, it resolves the ambiguity regarding the optimal action 

following cutting vegetable.

Here, we propose that combining state abstraction from task-set transfer (Collins et al., 

2014; Collins & Frank, 2013, 2016) and temporal abstraction from the options framework 

(Sutton et al., 1999) can provide important insights into complex human cognition. The 

additional temporal hierarchical structure offered by options should enable transfer of prior 

knowledge at multiple levels of hierarchy, providing rich opportunity for capturing the 

flexibility of human transfer. For example, in addition of being able to resolve the optimal 

action in a non-Markovian task (Fig. 1), if humans have learned the simple sub-option of 

boiling water while learning how to make coffee, they do not need to re-learn it for learning 

to make tea or steamed potatoes; this sub-option can instead be naturally incorporated into a 

tea-making option, speeding up learning.
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In this paper, we present a new experimental protocol that allows us to characterize how 

humans develop hierarchical, compositional representations to guide behavior during trial

by-trial learning from reward feedback. In particular, it allows us to test whether humans 

create options during learning, and whether they use them in new contexts to explore more 

efficiently and transfer learned skills, at multiple levels of hierarchy. Our new two-stage 

learning game provides participants opportunities to create and transfer options at multiple 

levels of complexity.

To characterize how humans learn hierarchical and compositional representations to interact 

with the world and to test various predictions of learning and transferring temporal 

abstractions, we conducted a series of four experiments. The structure of the environment in 

Experiment 1 was non-Markovian, encouraging participants to learn option-like temporally

extended policies, and included test phases in which options could be transferred or re

composed; indeed, we found evidence of participants learning and transferring options at 

multiple levels. Experiment 2 provided a replication of Experiment 1 and further revealed 

interesting interaction between option transfer and meta-learning, as well as the complexity 

of credit assignment in hierarchical tasks. Experiment 3 mimicked Experiment 1, but 

removed the non-Markovian feature of Experiment 1: because all relevant information 

was observable, there was no additional benefit to creating options. Thus, Experiment 3 

allowed us to test whether participants would spontaneously learn and transfer options even 

when there was no behavioral benefit to do so. Last, Experiment 4 aimed to test whether 

participants could compose options learned at different time and different levels. Given that 

humans can transfer task-sets to novel contexts (Collins et al., 2014; Collins & Frank, 2013, 

2016), we hypothesized that humans would learn and transfer options to guide exploration 

and achieve better learning performance. The results of these four experiments (3 replicated 

in an independent sample) showed that human participants are able to learn, flexibly transfer 

and compose option-like temporally-extended policies at multiple levels.

We also present a formal computational RL model that brings together aspects of the 

classic hierarchical RL options framework with the task-set model’s Bayesian inference 

mechanisms for clustering and transfer. The model combines the benefits of both 

frameworks. Specifically, the model relies on HRL-like options at three levels of hierarchy, 

and uses HRL-like learning mechanisms (using both rewards and pseudo-rewards) to 

learn policies and option-specific policies, respectively. Furthermore, our model uses 

Bayesian inference with a non-parametric prior to guide exploration and selection of 

options, inspired by the task-set model, and in that sense departing from traditional HRL 

framework. Our model makes specific predictions about learning, transfer, exploration, 

and error types in the four experiments. Our computational model captured the observed 

patterns of behavior, supporting the importance of hierarchical representations of choices for 

flexible, efficient, generalizable learning and exploration. Additionally, we showed that other 

models, including flat RL models, hierarchical RL models with no temporal abstraction, 

or sequence-learning models are insufficient in explaining the learning and transfer 

patterns we observe in human participants. Thus, our new experimental and theoretical 

framework characterizes how humans learn hierarchical and compositional representations 

to interact with our environment, and shows how this supports flexible transfer and efficient 

exploration.
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2. Experiment 1

Experiment 1 was designed to test if human participants are able to learn and flexibly 

transfer options. We designed a sequential 2-step decision-making paradigm (where each 

step was a contextual 4-armed bandit) to allow participants to learn options at multiple levels 

of complexities. Options changed between blocks, but the design provided participants with 

opportunities to practice reusing previously learned options. In two final test blocks, we 

directly tested creation and transfer of options by changing and/or combining previously 

learned options in novel ways.

2.1. Methods

2.1.1. Participants—All experiments were approved by the Institutional Review Board 

of the University of California, Berkeley (UCB). Experiment 1 was administered in-lab to 

UCB undergraduates who received course credit for their participation. 34 (22 female; age: 

mean = 20.6, sd = 1.6, min = 18, max = 24) UCB undergraduates participated in Experiment 

1, and 9 participants were excluded due to incomplete data or poor learning performance, 

resulting in 25 participants for data analysis.

For replication purposes, we also recruited participants through Amazon Mechanical Turk 

(MTurk, (Paolacci, Chandler & Ipeirotis, 2010)) who performed the same experiment online. 

Participants were compensated a minimum of $3 per hour for their participation, with a 

bonus depending on their performance to incentivize them. 116 participants (65 female; 

see age range distribution in Table 3) finished the experiment. 61 participants were further 

excluded due to poor performance (see Sec 2.1.4 for explanations about the high exclusion 

rate), resulting in 55 participants for data analysis.

2.1.2. Experiment 1 in-lab Protocol—Experiment 1 consisted of eight 60-trial blocks 

(Fig. 2A), with optional 20-second breaks in between blocks. In each block, participants 

used deterministic truthful feedback to learn which of four keys to press for four different 

shapes. Each trial included two stages; each stage involved participants making choices in 

response to a single stimulus (Fig. 2A) by pressing one of four keys. Each trial started 

with one of two possible stimuli, henceforth the first stage stimuli (e.g. circle and square). 

Participants had 2 seconds to make a choice. Participants only moved on to the second 

stage of the trial when they pressed the correct key for the first stage stimulus, or after 10 

unsuccessful key presses, which enabled them to potentially try all four keys for a given 

stimulus in a single trial. Specifically, unsuccessful key-presses led to a repeat of the exact 

same first-stage shape. Successful key press for the first stage of a trial did not result 

in reward feedback, but triggered a transition to the second stage, where participants saw 

one of the two other stimuli, henceforth labeled second stage stimuli (e.g. diamond and 

triangle). To prevent participants from learning action sequences, the second stage stimuli 

were unpredictable: both first stage stimuli led to both second stage stimuli equally often. 

Shapes were randomly assigned to either first or second stage across participants. In the 

second stage, participants also could not move on until they selected the correct choice 

(or selected wrong 10 times in a row for the same image). Participants received explicit 

feedback after each second stage choice: the screen indicated 1/0 point for pressing the 
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correct/incorrect key, displayed for 0.5 second (Fig. 2A). After a correct second stage 

choice, participants saw a fixation cross for 0.5 second, followed by the next trial’s first 

stage stimulus. Each block contained 60 trials, with each first stage stimulus leading to each 

second stage stimulus 15 times in a pseudo-randomized sequence of trials.

Crucially, the correct stimulus-action assignments were designed to create a non-Markovian 

environment, and thus to encourage the creation of multi-step policies. In particular, second 

stage correct choices were dependent on what the first stage stimulus was - for example, 

in Block 1’s second stage, pressing action A2 for a triangle only led to a reward if the 

first stage stimulus was a circle; if it was a square, participants needed to press action A3 

for the triangle to obtain reward (Fig. 2A). This encouraged participants to make temporally

extended choices (potentially options): their second stage strategies needed to depend on the 

first stage. The contingencies were also designed to test their grouping into sets of policies 

at multiple levels. Indeed, assignments, illustrated in Fig. 2A, changed across blocks. Blocks 

1, 3, 5 shared the same assignments; Blocks 2, 4, 6 shared the same assignments; this 

encouraged participants to not unlearn policies, but rather discover that they could reuse 

previously learned multi-level policies as a whole in new blocks.

Assignments in Blocks 7 and 8 intermixed some of the learning blocks assignments with 

new ones to test (positive and negative) transfer of options at various hierarchy levels. 

Specifically, the protocol was set up so that participants could learn up to 3 levels of 

hierarchical task structure (low, mid, and high level policies). More precisely, low-level 

options (LO) corresponded to second stage policies (a pair of stimulus-action associations, 

commonly labelled a task-set) (Monsell, 2003). Mid-level options (MO) were policies over 

both first and second stage stimuli. High-level options (HO) were policies over MOs (a pair 

of stimulus-MO associations in the first stage, which could be thought of as a task-set over 
options). As a concrete analogy, in Blocks 1, 3, 5, the participants learned how to make 

breakfast (HO1), consisting of potatoes (MO1) and eggs (MO2). Making potatoes (MO1) was 

broken down into cutting potatoes (the first stage) and then roasting (the second stage, LO1). 

In Blocks 2, 4, 6, participants learned how to make lunch (HO2), consisting of carrots (MO3) 

and sandwich (MO4). Making carrots (MO3) was broken down into washing carrots (the first 

stage) and then steaming (the second stage, LO3).

Block 7 tested positive transfer of second stage policies and negative transfer of first stage 

policies. In particular, we combined the policies for potatoes from breakfast (MO1) and 

sandwich from lunch (MO4) to form a new policy HO3 (dinner). If participants build 

three levels of options, we expect positive transfer of mid-level options MO1 and MO4: 

participants should be unimpaired in making potatoes or a sandwich. However, we expect 

negative transfer of high-level options HO1 and HO2: participants seeing that making 

potatoes was rewarded might start making eggs as usual in breakfast (HO1), instead of 

sandwich as rewarded here.

Block 8 tested positive transfer of first stage policies and negative transfer of second stage 

policies. In particular, the first stage of Block 8 shared the same assignments as Blocks 

1, 3, 5 in the first stage, allowing participants to immediately transfer HO1. However, the 

second stage policies (LO5 and LO6) were novel, which might potentially result in negative 
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transfer: for example, participants might try to transfer LO1 (roasting) following MO1 (make 

potatoes), but the second stage policy was changed to LO5 (e.g. frying).

2.1.3. Experiment 1 MTurk Protocol—To replicate our findings, we ran a minimally 

modified version of Experiment 1 online via MTurk. The task was slightly shortened, due to 

evidence that in-lab participants reached asymptotic behavior (Fig. S17) early in a block, and 

to make the experiment more acceptable to online workers. Blocks 1 and 2 had a minimum 

of 32 and a maximum of 60 trials, but participants moved on to the next block as soon as 

they reached a criterion of less than 1.5 key presses per second stage trial in the last 10 trials 

(the 55 Mturk participants included for data analysis on average used 42 (SD = 10, median 

= 37, min = 32, max = 60) trials in Block 1 and 39 (SD = 10, median = 33, min = 32, max 

= 60) trials in Block 2). Blocks 3–8 were all shortened to 32 trials, with each first stage 

stimulus leading to each second stage stimulus 8 times.

2.1.4. Data analysis—We used the number of key presses until correct choice in each 

stage of a trial as an index of performance. Since the experiment would not progress unless 

the participants chose the correct action, more key presses indicates worse performance. 

Ceiling performance was 1 press per stage within a trial. Chance level was 2.5, assuming 

choosing 1 out of 4 keys randomly, unless indicated otherwise. To probe for any potential 

transfer effects, we calculated the average number of key presses at the beginning of each 

block (trials 1–10), before learning has saturated. As a stronger test of option transfer, we 

also calculated the probability that the first press for a given stimulus at each stage of a trial 

was correct in different blocks.

To rule out participants who were not engaged in the task, we excluded any participant who 

did not complete Blocks 5–8 within an allotted amount of time (6 minutes each) - indeed 

this could only happen if participants often reached the 10 key presses needed to move on to 

the next stage without the correct answer, a clear sign of no engagement.

We additionally excluded any participant whose average performance in the last 10 trials of 

either first or second stage in either Block 5 or 6 was at or below chance, since it indicated 

a lack of learning and engagement in both stages of the task. These exclusion criteria were 

applied to all experiments, including Mturk participants.

Note that the analysis of the first 10 trials and the last 10 trials served different purposes, 

since they reflected different stages of learning. The beginning of each block when 

participants had not yet integrated all the new block information was where we expected 

to see transfer effects. On the other hand, the last 10 trials of a block showed asymptotic 

performance and were used to ensure learning had occurred, in particular for exclusion 

criteria. In short, the performance in the last 10 trials answered the question of how 

participants made choices after repeated exposure to the same environments for many 

iterations, while the first 10 focused on learning (and potentially transfer) in a new 

environment.

Among 116 Mturk participants in Experiment 1, 104 were above chance in the second stage 

(the more difficult one), but only 55 were above chance in the first stage (the easier one). 
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Thus most participants were excluded due to the first stage performance criterion. The same 

trend was true for the other two Mturk experiments: most Mturk participants were excluded 

due to performance in the first stage in Experiment 3 and Experiment 4. We hypothesize 

that the poor first stage performance in many is due to the task’s incentive structure - 

participants knew they only earned points (which were converted to monetary bonus for 

MTurk participants) in the second stage. All second stage results were qualitatively similar 

to the ones reported in this paper for all experiments when we relaxed the exclusion criterion 

to include participants at chance in the first stage.

The options framework makes predictions about the specific choices made in response 

to a stimulus, beyond whether a choice is correct: the nature of the errors made can 

be informative (Collins & Frank, 2013). We categorized the specific choices participants 

made into meaningful choice types, to further test our predictions about potential option 

transfer effects. As the choice types were stage and experiment dependent, we describe the 

choice type definitions in the result sections where necessary. When performing choice type 

analysis, we only considered the first key press of the first or second stage in each trial. 

We also compared reaction time of different choice types to test potential sequence learning 

effects.

For statistical testing, we used parametric tests (ANOVAs and paired t-test) when normality 

assumptions held, and non-parametric tests (Kruskall-Wallis and sign test) otherwise.

2.1.5. Computational modeling—To quantitatively formalize our predictions, we 

designed a computational model for learning and transferring options, inspired by the classic 

HRL framework as well as other hierarchical RL literature (Collins & Frank, 2013; Sutton 

et al., 1999). We simulated this model, as well as four other learning models that embody 

different hypotheses about learning in this task, and compared which model best captures 

patterns of human learning and transfer. All models were simulated 500 times. We did not 

fit the model to the trial-by-trial choices of participants because computing the likelihood 

of the hierarchical models is intractable. In flat reinforcement learning models, state, action 

and rewards on each trial are fully observed. However, for the main HRL model used in this 

paper, we assume that participants first select an option, conditioned on which they select 

a primitive action. Note that we only observed the primitive action from participants’ key 

presses, not the selection of options. Therefore, in order to calculate the full likelihood, one 

would have to marginalize the option choices for each trial, resulting in the integration of 

exponentially many trajectories throughout the experiment. Even if participants only needed 

to choose between 2 hidden options, participants often made more than 1000 key presses 

in our experiment, which would require summing over 21000(> 10300) trajectories, rendering 

the calculation of the likelihood function intractable.

All results presented in the main text figures were simulated with parameters chosen 

to match participants’ behavioral patterns qualitatively and quantitatively well (Table 1). 

However, our qualitative predictions are largely independent of specific model parameters: 

we show in Sec. 9.4 that a single set of parameters (Table 2), consistent across all 

experiments, makes the same qualitative predictions regarding transfer effects.
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2.1.5.1. The Naive Flat Model.: The Naive Flat Model is a classic reinforcement learning 

model that learns Q-values to guide action selection in response to stimuli. In the first stage, 

it learns a Q-value table Q1 Fi, Aj
1 , where F1 and F2 are two first stage stimuli, A1,...,A4 are 

four possible actions. We use superscript to index stage (1 means first stage, 2 means second 

stage). The Q-values are initialized to uninformative Q-values 1/# possible actions = 1
4 , 

since each of the four actions has an equal probability of resulting in a pseudo-reward of 

1 for transitioning into the second stage. On each choice, a first stage policy is computed 

based on the first stage stimulus, Fi, with the softmax function:

P Aj
1 ∣ Fi =

exp β1 * Q1 Fi, Aj
1

∑kexp β1 * Q1 Fi, Ak
1 , (1)

where β1 is the inverse temperature parameter. A first stage action A1, ranging from A1 to 

A4, is then sampled from this softmax policy. After observing the outcome (moving on to 

the second stage or not), the Q-values is updated with Q-learning (Sutton & Barto, 2018):

Q1 Fi, A1 = Q1 Fi, A1 + α1 * r − Q1 Fi, A1 , (2)

where α1 is the learning rate parameter, and the pseudo-reward r is 1 if A1 is correct and 0 

otherwise.

In the second stage, the model similarly learns another Q-value table Q2 Si, Aj
2 , where S1 

and S2 are two second stage stimuli, with learning rate α2 and inverse temperature β2. Note 

that this disregards the non-Markovian nature of the task: it learns the Q-values for the two 

second stage stimuli without remembering the first stage stimulus. As such, this model is a 

straw man model that cannot perform the task accurately, but exemplifies the limitations of 

classic RL in more realistic tasks, and serves as a benchmark.

At the start of a new block, the Naive Flat Model resets all Q-values to 1
4 , and thus has to 

re-learn all Q-values from scratch. To better account for human behavior, we also included 

two forgetting parameters, f1 and f2. After each choice, the model decays all Q-values for the 

first stage based on f1:

Q1 Fi, Aj
1 = 1 − f1 * Q1 Fi, Aj

1 + f1 * 1
4 . (3)

Forgetting in the second stage is implemented similarly.

Participants very quickly learned that the correct second stage action was different from 

the first stage one (see results). To account for this meta-learning heuristic, we add a free 

meta-learning parameter, m, that discourages selecting the same action in the second stage as 

in the first stage. Specifically, if π is the second stage policy as computed from softmax, we 

set P A1 ∣ Si = m, where A1 is the action chosen in the first stage, and re-normalize:
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P Aotℎer ∣ Si = (1 − m) × π Aotℎer / 1 − π A1 , (4)

where Aotℎer is any action other than A1.

Parameters f1, f2 and m, which capture memory mechanisms and heuristics orthogonal to 

option learning, are included in all models and implemented in the same way. In total, the 

Naive Flat Model has 7 parameters: α1,β1,f1,α2,β2,f2,m.

2.1.5.2. The Flat Model.: The Flat Model extends the Naive Flat Model with a single 

addition of first-stage memory, which makes this model able to perform the task well in both 

stages. Specifically, in the second stage, the Flat Model remembers the first stage stimulus 

by treating each of the 4 combinations of the first and second stage stimuli as a distinct state 

and learns Q-values for all 4 combinations. The Flat Model has the same 7 parameters as the 

Naive Flat Model.

2.1.5.3. The Task-Set Model.: The Task-Set Model is given the capability of transferring 

previously learned task-sets (one-step policies) with Bayesian inference. In particular, the 

Task-Set Model uses Chinese Restaurant Process (CRP, (Pitman, 2006)), a nonparametric 

Bayesian prior, that specifies the probability of transferring one of the previously learned 

task-sets and the probability of creating a new task-set and learning from scratch. In the 

first stage, the model tracks the probability P1 of selecting each first stage task-set HOi in 

different first stage contexts cj1, which encodes the current temporal (block) context (e.g. 

8 contexts in the first stage of Experiment 1 due to 8 blocks). The model uses CRP to 

select HO: if contexts c1:n
1  are clustered on N1 ≤ nHO’s, when the model encounters a new 

context cn + 1
1 , the prior probability of selecting a new high-level option HOn + 1 in this new 

context is set to:

P1 HOn + 1 ∣ cn + 1
1 = γ1

Z1 ; (5)

and the probability of reusing a previously created high-level option HOi is set to:

P1 HOi ∣ cn + 1
1 = Ni

1

Z1 , (6)

where γ1 is the clustering coefficient for the CRP, Ni
1 is the number of first stage contexts 

clustered on HOi, and Z1 = γ1 + ∑iNi
1 is the normalization constant. The new HOn + 1

policy is initialized with uninformative Q-values 1/# possible actions = 1
4 . The model 

samples HO based on the conditional distribution over all HOs given the current temporal 

context. The model also tracks HO-specific policies via Q-learning. Once an HO is selected, 

a first stage policy is computed based on the HO’s Q-values and the first stage stimulus Fi 

with softmax:
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P Aj
1 ∣ Fi, HO =

exp β1 * QHO
1 Fi, Aj

1

∑kexp β1 * QHO
1 Fi, Ak

1 , (7)

where β1 is the inverse temperature. A first stage action A1, ranging from A1 to A4, is then 

sampled from this softmax policy. After observing the outcome (moving on to the second 

stage or not), the model uses Bayes’ Theorem to update P1:

P1 HOk ∣ cj1 =
P r ∣ Fi, A1, HOk P HOk ∣ cj1

∑lP r ∣ Fi, A1, HOl P HOl ∣ cj1
, (8)

where the pseudo-reward r is 1 if A1 is correct and 0 otherwise, and 

P r ∣ Fi, A1, HOl = 1 − QHOl
1 Fi, A1  if r = 0, or QHOl

1 Fi, A1  if r = 1. Then the Q-values of 

the HO with the highest posterior probability is updated:

QHO
1 Fi, A1 = QHO

1 Fi, A1 + α1 * r − QHO
1 Fi, A1 , (9)

where α1 is the learning rate.

The second stage runs a separate CRP with P2, similar to P1 in the first stage, which guides 

selection of task-sets LO over second stage stimuli. All other aspects are identical to the first 

stage except that the second stage contexts are determined by both temporal (block) context 

and the first stage stimulus (e.g. 16 contexts in the second stage of Experiment 1 due to 8 

blocks and 2 first stage stimuli). All the equations of CRP, action selection and Q-learning 

remain the same. The Task-Set Model has 9 parameters: α1, β1, γ1, f1, α2, β2, γ2, f2, m.

2.1.5.4. The Option Model.: The Option Model extends the task-set model to include 

multi-step decisions (mid-level options MO). The first stage is identical to the Task-Set 

Model. However, instead of just choosing an action for the first stage, a whole MO is 

activated. For example, if the circle is observed in Block 1, HO1 may trigger the model 

to select MO1, which triggers the selection of A1. The selection of MO1 would then 

make the model likely to select LO1 for the second stage (Fig. 2B). To simplify credit 

assignment, we make the simplifying assumption - warranted in our task - that there is a 

one-on-one mapping between first-stage actions and options, allowing us to index MOs by 

their first-stage action. This is meant as a technical simplification, rather than a theoretical 

assumption.

The second stage is the same as the Task-Set Model, except that each MO has an MO

specific probability table PMO
2 . In the Task-Set Model, the CRP in the second stage using 

P2 is independent of the first stage choices. In contrast, in the Option Model, the first stage 

choice determines which MO is activated, which then determines which probability table, 

PMO
2 , to use for running the CRP in the second stage to select LOs. This implementation 

captures the essence of options in the HRL framework, in that selection of MO in the 

first stage constrains the policy chosen until the end of the second stage (where the option 
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terminates). The Option Model has the same 9 parameters as the Task-Set Model. A full 

description can be found in the supplement.

Note that in our Option Model, there are two ways in which the option selection is 

instantiated. (1) One way is to use inference with a CRP prior (Pitman, 2006): instead 

of estimating the values of different HO’s through incremental Q-learning, we estimated 

the likelihood of reward after selecting each HO’s using Bayes’ formula. This is inspired 

from our previous task-set model (Collins & Frank, 2013), and equips our Option Model 

with a level of flexibility in transfer (by inferring which option is likely to be useful in 

a new environment), something that traditional HRL options framework cannot achieve. 

We discuss this departure from classic HRL options framework further in the discussion 

(Sec. 6.1.2). (2) We also implemented the option value functions by learning the values 

of different MO’s within each HO’s. Since MO are indexed by their first-stage action, the 

Q-values that participants learned for actions in the first stage correspond to MO option 

values. This is in line with the classic option values in the HRL options framework (Sutton 

et al., 1999).

2.1.5.5. Sequence learning model.: For completeness, and to show that sequence learning 

cannot account for learning in this experiment, we also simulated a simple sequence learning 

model. This model stores perfect memories of 2-action sequences, and of their association 

with a first-stage stimulus when that sequence leads to reward. We assume that the model 

can perfectly store 2-action sequences associated with each first stage shape in each block. 

On every trial, the model selects from the 2-action sequences associated with the first stage 

shape, each with 0.5 chance. For example, in Blocks 1, 3, 5 (Fig. 2A), the model would pick 

from sequences (A1, A4) and (A1, A2) for the circle in the first stage. However, since the 

model cannot predict which shape will come up in the second stage, there is 0.5 chance that 

the selected action sequence would be incorrect, in which case the model would immediately 

choose the second stage action of the other action sequence in the next attempt. For example, 

if the model selects sequence (A1, A4) upon encountering circle in the first stage, there is 

0.5 chance that it will encounter a diamond in the second stage, which the model would 

get the correct answer in 1 press. However, there is also 0.5 chance that it will encounter 

a triangle, in which case it will make an error by pressing A4 as it was selected as part of 

the action sequence, and then the model would choose A2, resulting in 2 presses. Therefore, 

the sequence learning model will have an asymptotic performance of 1.5 presses/trial in the 

second stage.

Note that the sequence learning model does not have any model parameters as we 

assumed perfect memory of the action sequences as well as optimal decision making. 

Including parameters such as learning rate and inverse temperature would only worsen the 

performance.

2.2. Experiment 1 Results

2.2.1. Participants do not use flat RL—Participants’ performance improved over 

Blocks 1–6 (Fig. 2B) and within blocks (Fig. S17). This improvement may reflect the 

usual process of learning the task observed in most cognitive experiments, as indicated by 
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the improvement between Block 1 and 2 (paired t-test, first stage: t(26) = 2.2,p = 0.03; 

second stage: t(26) = 3.9,p = 0.0006). However, it could also reflect participants’ ability to 

create options at three different levels in Blocks 1 and 2, and to successfully reuse them in 

Blocks 3–6 to adapt to changes in contingencies more efficiently. Below, we present specific 

analyses to probe option creation in test blocks. We used participants’ performance averaged 

over Blocks 5 and 6 as a benchmark for comparing against performance in test Blocks 7 and 

8.

We probed potential option transfer effects over the first 10 trials for each block (Fig. 2C), 

before behavior reached asymptote (Fig. S17). In the first stage, there was a main effect 

of block on number of key presses (1-way repeated measure ANOVA, F(2, 48) = 6.9, p = 

0.002). Specifically, participants pressed significantly more times in Block 7 than Blocks 

5–6 and Block 8 (paired t-test, Blocks 5–6: t(24) = 3.0, p = 0.006; Block 8: t(24) = 3.0, 

p = 0.006). We also found no significant difference between the performance of circle and 

square in Block 7 (Potential Asymmetry in Block 7 of Experiment 1 in Supplementary 

section). These results provide preliminary evidence for negative transfer of previously 

learned HO in Block 7: participants might attempt to reuse HO1 or HO2, since either policy 

is successful for half the trials, but is incorrect and thus results in more key presses in the 

first stage for the other half of the trials. There was no significant difference between Block 

8 and Blocks 5–6 (paired t-test, t(24) = 0.25, p = 0.81). This provides initial evidence for 

positive transfer of HO1 in Block 8, since performance in the first stage of Block 8 was on 

par with Blocks 5–6.

In the second stage (Fig. 2C), there was also a main effect of block in number of key presses 

(1-way repeated measure ANOVA, F(2, 48) = 11, p < 0.0001). Specifically, participants 

pressed significantly more times in Block 8 than Block 7 and Blocks 5–6 (paired t-test, 

Block 7: t(24) = 2.4, p = 0.025; Blocks 5–6: t(24) = 5.8, p < 0.0001). The difference between 

Block 7 and Blocks 5–6 was marginally significant (paired t-test, t(24) = 2.0, p = 0.06). 

These results suggests that participants negatively transferred MO in the second stage of 

Block 8, where the first stage choice that respected the current MO was followed by a new 

LO for correct performance, and thus necessitated to create a new MO.

Behavioral results in both the first and second stages provide initial evidence for option 

learning and transfer at distinct levels, both positive – when previous policies can be 

helpfully reused – and negative – when they impair learning. To further validate our 

hypothesis that participants learned options, we compared the simulations of five models 

with human behavior (Table 1).

Among the five models (Fig. 3A), only the Option Model and the Task-Set Model could 

account for the transfer effects in the second stage shown by the number of key presses. 

The Naive Flat Model could not achieve reasonable performance in the second stage because 

it ignored the non-Markovian aspect of the task - it was unable to learn two different sets 

of correct choices for a given second stage stimulus, because this required conditioning on 

the first stage stimulus (Fig. 2B). Thus, it serves to illustrate the limitations of classic RL, 

but is a straw man model in this task. The Flat Model achieved reasonable performance in 

both the first and second stages, being able to take into account the first stage in second 
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stage decisions, but did not demonstrate any transfer effects. The sequence learning model 

can never achieve reasonable asymptotic performance in the second stage (Fig. 3D). This 

is because the learned action sequences disregard the state in the second stage (see Sec. 

2.1.5): the model cannot disambiguate which action sequence to choose in the first stage 

without knowing which shape will be shown in the second stage, which is random. Thus the 

model is equally likely to need 1 or 2 presses in the second stage, resulting in an average 

of 1.5 presses/trial. Note that, despite assuming perfect memory and choice of sequences, 

this performance is much worse than participants’ performance, which reaches ceiling 

performance in the last 10 trials (trials 51–60) of Blocks 5 and 6 at around 1.1 presses/trial 

(Fig. 3D). This suggests that participants behavior in this task cannot be accounted for by a 

pure sequence learning model.

Since both the Option Model and the Task-Set Model demonstrate the transfer effects 

in terms of average number of presses in the first and second stages, results so far 

invalidate other models and replicate previous findings that participants create one-step 

policies or task-sets, that they can reuse in new contexts, leading to positive and negative 

transfer (Collins et al., 2014; Collins & Frank, 2013, 2016). However, results so far do 

not discriminate between the Option Model and the Task-Set Model. We now present new 

analyses to show that the findings extend to creating multi-step policies or options.

2.2.2. Second stage choices reveal option transfer—To strengthen our results, we 

further examined the specific errors that participants made, as they can reveal the latent 

structure used to make decisions. To further disambiguate between the Option Model and 

the Task-Set Model, we categorized errors into meaningful choice types (Collins & Frank, 

2013). We focused on the second stage choices for model comparison (Fig. 3), the part 

of the experiment designed so that temporally-extended policies could have an impact on 

decision making.

We hypothesized that participants learned MOs that paired the policies in the first and 

second stages into a single mid-level, temporally-extended option. Therefore, positive 

transfer in the second stage of Block 7 and negative transfer in the second stage of Block 

8 should be due to participants selecting the entire MO that was previously learned in 

response to a first stage stimulus, including the correct key press for the first stage stimulus 

as well as the corresponding LO for the second stage. We defined choice types based on this 

hypothesis (Fig. 3B). For example, for the second stage of Block 8, consider the diamond 

following the circle in Block 8 (Fig. 2A): A2 is the correct action; an A1 error corresponds 

to the correct action in the first stage (“f-choice” type); an A4 error would be the correct 

action if selecting MO1 as a whole (“option transfer” type); an A3 error is labeled “other” 

type. Therefore, we have a 1-to-1 mapping between the four possible actions and four choice 

types, three of which are error types.

We computed the proportion of the 3 error types for the first 3 trials of each of the 4 

branches in the second stage of Block 8 (Fig. 3B). Note that we picked the first 3 repetitions 

to match the time frame of the first 10 trials used in previous analyses (Fig. 2C); results for 

the first 2 repetitions were qualitatively similar. There was a main effect of error type (1-way 

repeated measure ANOVA, F(2, 48) = 44, p < 0.0001). In particular, we found more “option 
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transfer” errors than the “other” errors (paired t-test, t(24) = 2.5, p = 0.02), suggesting that 

participants selected previously learned MOs as a whole at the beginning of the second stage 

of Block 8. The Option Model could reproduce this effect because the agent selects an entire 

option (MO) in the first stage: not only its immediate response to the first stage stimulus, but 

also its policy over LO choice in the second stage. The Task-Set Model could not reproduce 

this effect, because the first stage choice was limited to the first stage, and the second stage 

did not use any information from the first stage. Therefore, the error type profile in Block 

8 could not be accounted for by transfer of one-step task-sets alone, ruling out the Task-Set 

Model.

There was also more “other” type than “f-choice” errors (paired t-test, t(24) = 8.8, p < 
0.0001). There were few “f-choice” errors, likely due to meta-learning (Harlow, 1949; Wang 

et al., 2018): participants observed that the correct action in the second stage was always 

different from the first stage (Fig. 2A). We included a free meta-learning parameter m in all 

models (Sec. 2.1.5) to capture this heuristic and quantitatively capture behavior better.

We next analyzed Block 7 second stage errors. Because Block 7 allowed for full MO 
transfer, we predicted that there would not be any specific error pattern in the second stage. 

The same choice type definitions were not well-defined for the second stage of blocks other 

than Block 8. Therefore, we categorized errors differently in Blocks 1–7. For example, 

consider the diamond following the circle in Blocks 1, 3, and 5 (Fig. 2A): A4 is the “correct” 

choice; an A1 error corresponds to the correct choice in the first stage (“f-choice” type); an 

A2 error corresponds to the correct action for the other second stage stimulus, triangle, in 

the same LO, thus we defined it to be the “sequence” type, because A2 followed the first 

stage correct action A1 half of the time, as opposed to the “non-sequence” action A3, which 

never happened after A1. Indeed, aggregating the first 3 trials for each of the 4 branches in 

the second stage of Blocks 5–7 (Fig. S6), we did not find any significant difference in any 

of the 4 choice types between the second stage of Block 7 and that of Blocks 5–6 (paired 

t-test, all (t(24) ≤ 1, all p’s> 0.30). While participants were pressing marginally more times 

in Block 7 compared to Blocks 5 and 6 (Fig. 2C), this is likely due to the sudden change in 

the mappings. The similarity in choice type distributions indicates that the positive transfer 

in the second stage of Block 7 was not interfered by the negative transfer in the first stage 

of Block 7, further confirming that participants were selecting learned MOs as a whole, but 

re-composing them together into a new HO. The Option Model is also able to quantitatively 

capture the similarity of the choice type profiles between Block 7 and Blocks 5–6 (Fig. S6). 

We also compared the reaction time of the “sequence” and “non-sequence” types to look for 

potential signatures of sequence learning (see supplement for details).

2.2.3. The first press in the second stage reveals theoretical benefit of 
options—While the first several trials demonstrated transfer effects, the Option Model 

predicts immediate transfer effect on the first press in the second stage of a new block 

without any experience. Therefore, we computed the probability of a correct choice on the 

first press for the 4 branches in the second stage (Fig. 3C), and compared to chance (1
3 , 

accounting for the meta-learning effect that the correct action in the second stage was always 

different from the first stage). The probability of a correct first key press in Block 7 and 
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Blocks 5–6 was significantly above chance (sign test, Block 7: p = 0.015; Blocks 5–6: 

p < 0.0001), without significant difference between the two (sign test, p = 0.26). These 

positive transfer effects on the first press supports our prediction that participants were using 

previously learned MO to guide exploration and thus speed up learning even without any 

experience in Blocks 5–7. Block 8 was significantly below chance (sign test, p = 0.004), 

independently indicating, via negative transfer, exploration with previously learned MO in 

the very first trials. The Option Model was able to quantitatively reproduce these positive 

and negative transfer effects evident in the first press in the second stage, since the first stage 

choice can immediately help inform which LO to use in the second stage.

2.2.4. First stage choices reveal transfer of policies over options—To test 

whether participants learned HOs in the first stage, we investigated errors in the first stage. 

We hypothesized that the increase in key presses in the first stage of Block 7 (Fig. 2C) 

was due to selecting a previously learned but now wrong HO in the first stage, which 

would be characterized by a specific error. We categorized first stage errors (Fig. 4A) into 

3 types (“wrong shape”, “wrong HO”, and “both wrong”), which we exemplify for the 

circle in Blocks 1, 3, and 5 (Fig. 2B): A1 is the “correct” action; an A2 error corresponds 

to the correct action for the square in the same block (“wrong shape” type); an A3 error 

corresponds to the correct action for the circle in Blocks 2, 4, and 6 (“wrong HO” type); and 

A4 is the “both wrong” type.

According to our hypothesis, we expected that the worse performance in the first stage of 

Block 7 (Fig. 2C) should be primarily due to the “wrongour hypothesis, we expeHO” errors. 

We found a main effect of choice type (2-way repeated measure ANOVA, F(3, 72) = 195, p 
< 0.0001) and a significant interaction between block and choice type (F(3, 72) = 2.9, p = 

0.04). In particular, this significant interaction was driven by an increase in Block 7 “wrong 

HO” errors (Fig. 4B), compared to Blocks 5–6, although the direct comparison did not reach 

significance (paired t-test, Wrong HO, t(24) = 1.9, p = 0.07; other two error types: paired 

t-test, both p’s > 0.28). The Option Model predicted this choice type profile in the first stage 

(Fig. 4C), by attempting to transfer previously learned HO, which would hurt performance 

in the first stage of Block 7.

2.2.5. Experiment 1 Mturk replicates option transfer in the second stage—
While in-lab participants’ behavior showed promising evidence in favor of transferring 

multi-step options, we sought to replicate our results in a larger and more diverse population. 

Therefore, we ran a shorter version of Experiment 1 on Mturk (Fig. 5). In the second stage, 

we replicated the main effect of block on the number of presses (1-way repeated measure 

ANOVA, F(2, 108) = 19, p < 0.0001). Specifically, the average number of key presses (Fig. 

5A) in the first 10 trials of Block 7 was not significantly different from that of Blocks 5–6 

(paired t-test, t(54) = 0.72, p = 0.47). Participants pressed significantly more times in Block 

8 compared to Block 7 and Blocks 5–6 (paired t-test, Block 7: t(54) = 4.5, p < 0.0001; 

Blocks 5–6: t(54) = 5.3, p < 0.0001), replicating results from in-lab participants (Fig. 2C).

In the second stage of Block 8 (Fig. 5B), there was a main effect of error type (1-way 

repeated measure ANOVA, F(2, 108) = 62, p < 0.0001). The “option transfer” errors were 

significantly more frequent than the “other” type errors (paired t-test, t(54) = 4.7, p < 
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0.0001), and the “other” type was significantly more frequent than the “f-choice” type 

(paired t-test, t(54) = 6.7, p < 0.0001). This also replicates the error type profile of in-lab 

participants.

For the probability of correct choice in the first press (Fig. 5C), we also found participants 

were performing significantly above chance in the second stage of Blocks 3–4, Blocks 5–6 

and Block 7 (sign test, Blocks 3–4: p = 0.001; Blocks 5–6: p = 0.003; Block 7: p = 0.001), 

but not significantly different from chance in Block 8 (sign test, p = 0.18). There was also 

no significant difference between Block 7 and Blocks 5–6 (sign test, p = 1). This supported 

the previous finding that participants used temporally-extended MOs to explore in a new 

context.

We did not replicate the negative transfer in the first stage of Block 7 (Fig. S8B) shown in 

in-lab participants (Fig. 2C). There was no main effect of block on the number of presses 

(1-way repeated measure ANOVA, F(2, 108) = 0.19, p = 0.83). Mturk participants did not 

press significantly more times in the first stage of Block 7 than Block 8 or Blocks 5–6 

(paired t-test, Block 7: t(54) = 0.30, p = 0.77; Blocks 5–6: t(54) = 0.32, p = 0.75). This is 

potentially due to the lack of motivation among Mturk participants to exploit structure in the 

first stage, since participants did not receive points for being correct in the first stage. On the 

other hand, participants received points for choices in the second stage, which, as indicated 

by the Mturk experiment instruction, would impact their bonus. This might explain why the 

transfer effects in the first stage did not replicate, but the second stage transfer did. Note that 

in this case, the absence of transfer allowed the Mturk participants to make fewer errors in 

Block 7 than they might otherwise, highlighting the fact that engaging in a cognitive task 

and building and using structure is not always beneficial.

The Option Model was able to account for Experiment 1 Mturk data, despite the lack of 

transfer in the first stage, by assuming either a faster forgetting of HOs (higher f1) or a lower 

prior for reusing previously learned HO policies (higher γ1, Table 1). Indeed, simulations 

reproduced the lack of transfer in the first stage (Fig. S8B), and also captured all option 

transfer effects demonstrated by Mturk participants in the second stage (Fig. 5).

We conclude that, in the Mturk sample, similar to the in-lab sample, we successfully 

replicated the main option transfer effects in the second stage due to selecting a temporally

extended policy MO as a whole. This is reflected by number of presses, proportion of 

error types in Block 8, and the probability of correct choice in the first press (Fig. 5). 

While we did not replicate transfer of high-level options (task-sets of options), this could be 

accommodated by the model, and understood as a lack of motivation at learning the highest 

level of hierarchy HO.

3. Experiment 2

Experiment 2 was administered to UCB undergraduates in exchange for course credit. 31 

(21 females; age: mean = 20.2, sd = 1.8, min = 18.3, max = 26.3) UCB undergraduates 

participated in Experiment 2. 4 participants in Experiment 2 were excluded due to 

incomplete data or below chance performance, resulting in 27 participants for data analysis.
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3.1. Experiment 2 Protocol

Experiment 1’s Block 8 comes after a first testing block that includes re-composing of 

previous options, which could interfere with our interpretation of positive and negative 

transfer results in Block 8, for example by making participants aware of the potential for 

structure transfer. In Experiment 2, we removed Block 7 of Experiment 1 to eliminate this 

potential interference (Fig. 6A). Therefore, Block 7 in Experiment 2 was identical to Block 8 

in Experiment 1. In addition, to limit experiment length and loss of motivation at asymptote 

in each block, we decreased the length of Blocks 3–7 to 32 trials each, with each first stage 

stimulus leading to each second stage stimulus 8 times. All other aspects were identical to 

Experiment 1.

3.2. Experiment 2 Results

3.2.1. Second stage choices replicate option transfer—Participants were able to 

learn the correct actions in both the first and second stages and their performance improved 

over Blocks 1–6 (Fig. S9A). The within-block learning curves also showed that participants 

performance improved and then reached asymptote as they progressed within a block (Fig. 

S19).

We replicated the negative transfer effects in the second stage of Experiment 1 (Fig. 2C) 

both in terms of number of presses (Fig. 6B) and error types in Block 7 (Fig. 6C). 

Participants pressed significantly more times in the second stage of Block 7 compared to 

Blocks 5–6 (paired t-test, t(25) = 6.4, p < 0.0001). In Block 7 specifically, there was a main 

effect of error type (1-way repeated measure ANOVA, F(2, 50) = 30, p < 0.0001). The 

proportion of the error type “option transfer” was significantly higher than the error type 

“other” (paired t-test, t(25) = 3.2, p = 0.004).

We also observed transfer effects on the first press in the second stage (Fig. 6D). We found 

that the probability of a correct choice was significantly above chance in Blocks 3–4 and 

Blocks 5–6 (sign test, Blocks 3–4: p = 0.0094; Blocs 5–6: p < 0.0001), and significantly 

below chance in Block 7 (sign test, p < 0.0001). This replicates results in Blocks 3–6 and 

8 in Experiment 1 (Fig. 3C). The Option Model could quantitatively reproduce all these 

transfer effects (Fig. 6B-D).

3.2.2. Second stage choices in Block 7 reveal interaction between meta
learning and option transfer—Because there was no Block 7 from Experiment 1, we 

had a less interfered test of negative transfer in the second stage of Block 7 of Experiment 2. 

Therefore, we further broke down the second stage choice types for each of the 4 branches in 

the second stage of Block 7 in Experiment 2 (Fig. 7A). Consider (Fig. 2A) the two first stage 

stimuli as F1 (circle) and F2 (square), and the two second stage stimuli as S1 (diamond) and 

S2 (triangle). We found a main effect of error type on proportion of errors and a marginally 

significant interaction between branch and error type (2-way repeated measure ANOVA, 

error type: F(2, 36) = 20, p < 0.0001; interaction: F(6, 108) = 2.1, p = 0.055). Specifically, 

we found the error type profile in Fig. 6C was mainly contributed by F1 S1, i.e. circle in 

the first stage followed by diamond in the second stage, and F2 S2 (paired t-test, F1 S1: 

t(23) = 2.7, p = 0.013; F2 S2: t(23) = 3.1, p = 0.005). On the other hand, there was no 
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significant difference between the “option transfer” and “other” error types for F1 S2 and 

F2 S1 (paired t-test, F1 S2: t(22) = 0.9, p = 0.38; F2 S1: t(22) = 0.81, p = 0.43). It is 

striking that this highly non-intuitive result is perfectly predicted by the Option Model (Fig. 

7B).

The Option Model offers an explanation as the interaction between option transfer and 

meta-learning (Fig. 7C). Meta-learning discourages participants from selecting second-stage 

actions that repeat the correct first-stage action, and as such, discourage them from sampling 

some, but not other LOs (e.g. LO2 in the example of Fig. 7C). This interference in 

the exploration of potential LOs leads to some transfer errors being more likely, in an 

asymmetrical way.

3.2.3. Influence of the second stage on the first stage—For the first stage choices 

(Fig. S9B), we found that participants pressed significantly more times in the first 10 trials 

of Block 7 compared to Blocks 5–6 (paired t-test, t(25) = 2.4, p = 0.024). This effect was not 

found in Experiment 1 between Block 8 and Blocks 5–6 (Fig. 2C), and was not predicted by 

the model.

One potential explanation for this surprising result is that the error signals in the second 

stage propagated back to the first stage. Specifically, the errors participants made by 

selecting the wrong LO in the second stage are credited to the chosen LOs policy, but 

participants might also credit these errors to using the wrong HO in the first stage. Going 

back to our example, if your meal is not tasty, it might not be because you roasted the 

potatoes instead of boiling them, but it might be because you wanted meat instead of 

potatoes in the first place. To test this explanation, we further probed choice types in the first 

stage of Experiment 2 (Fig. S10). Indeed, we found significantly more “wrong HO” errors 

in Block 7, compared to Blocks 5–6 (paired t-test, p = 0.045). Therefore, the increase in 

number of key presses in the first stage of Block 7 was mainly contributed by more “wrong 

HO” errors, indicating that participants explored another high-level option (making carrots). 

The same effect was not seen in the first stage of Experiment 1 between Block 8 and Blocks 

5–6 (Fig. 2C), potentially due to the interference of Block 7 in Experiment 1.

The Option Model could not capture this effect, since the selection of HO was only affected 

by learning in the first stage (Sec. 2.1.5), as a way of simplifying credit assignment (see Sec. 

6.1.3 for a more detailed discussion on credit assignment). This will be a target for future 

model improvements.

4. Experiment 3

Experiment 3 was administered to UCB undergraduates in exchange for course credit. 35 

(22 females; age: mean = 20.5, sd = 2.5, min = 18, max = 30) UCB undergraduates 

participated in Experiment 3. 10 participants in Experiment 3 were excluded due to 

incomplete data or below chance performance, resulting in 25 participants for data analysis.

An additional 65 (37 female; see age range distribution in Table 3) Mturk participants 

finished the experiment. 34 participants were further excluded due to poor performance, 
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resulting in 31 participants for data analysis (62 of these 65 participants were above chance 

in the second stage, but only 32 were above chance in the first stage, so Mturk participants 

were mostly excluded due to performance in the first stage; see Sec. 2.1.4 for more details).

4.1. Experiment 3 in-lab Protocol

In Experiment 1, to perform well in the second stage, participants had to learn option

specific policies, due to the non-Markovian nature of the task (the correct action for the 

same second stage stimulus was dependent on the first stage stimulus). In Experiment 3, we 

removed this non-Markovian feature of the protocol and tested whether the removal would 

reduce or eliminate option transfer. Based on previous research on task-sets showing that 

participants build structure when it is not needed (Collins et al., 2014; Collins & Frank, 

2016), we predicted that participants might still show some evidence of transfer. However, 

we predicted that any evidence of transfer would be weaker than in previous experiments.

In Experiment 3, the second stage stimuli following the two first stage stimuli were 

different (Fig. 8A). This eliminated the key non-Markovian feature from Experiment 1, 

since participants could simply learn the correct key for each of the 4 second stage stimuli 

individually without learning option-specific policies. Blocks 1 and 2 had 60 trials; we 

shortened Blocks 3 to 8 to 32 trials for the same reason as in Experiment 2. All other aspects 

of the protocol were identical to Experiment 1.

4.2. Experiment 3 Mturk Protocol

In the Mturk version, Blocks 1 and 2 had a minimum of 32 and a maximum of 60 trials, 

but participants moved on to the next block as soon as they reached a criterion of less than 

1.5 key presses per second stage trial in the last 10 trials (the 31 Mturk participants included 

for data analysis on average used 36 (SD = 7, median = 32, min = 32, max = 60) trials in 

Block 1 and 35 (SD = 4, median = 32, min = 32, max = 59) trials in Block 2). Blocks 3 to 

8 all had 32 trials each. Experiment 3 MTurk was thus perfectly comparable to Experiment 

1 MTurk in terms of trial numbers, as such, we focus first on MTurk results, since the same 

comparison could not be drawn between Experiments 1 and 3 for in-lab participants.

4.3. Experiment 3 Results

4.3.1. Mturk participants show weak evidence of options—Mturk participants 

were able to learn the correct actions in both the first and second stages, and their 

performance improved over Blocks 1–6 (Fig. S11A). The within-block learning curves 

also showed that participants performance improved and then reached asymptote as they 

progressed within a block (Fig. S20).

We first analyzed the average number of key presses in the first 10 trials of each block 

and stage. For the first stage (Fig. S12), we found no effect of block on number of presses 

across Blocks 5–8 (1-way repeated measure ANOVA, F(2, 60) = 0.13, p = 0.88), as in 

Experiment 1 MTurk. For the critical second stage (Fig. S11B), there was a main effect of 

Block (1-way repeated measure ANOVA, F(2, 60) = 3.3, p = 0.043). Specifically, there was 

no significant difference between Block 7 and Blocks 5–6 (paired t-test, t(30) = 0.25, p = 
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0.81). Participants pressed significantly more times in Block 8 than in Block 7 and Blocks 

5–6 (paired t-test, Block 7: t(30) = 2.1, p = 0.048; Blocks 5–6: t(30) = 2.2, p = 0.036).

The negative transfer effect observed in the first stage of Block 7 in Experiment 1 (Fig. 

2C) was not present here in Experiment 3 (Fig. S12). In addition to the fact that the first 

stage was never explicitly rewarded, as in Experiment 1, participants in Experiment 3 were 

even less motivated to exploit structure in the first stage. This is because the first stage in 

Experiment 3 was not necessary for resolving the second stage actions (Fig. 8A), while 

the non-Markovian aspect of Experiment 1 (Fig. 2A) forced participants to incorporate first 

stage information to resolve the correct choice for the second stage.

We calculated the proportion of error types in the second stage of Block 8 (Fig. 8B). Unlike 

in Experiment 1, we did not observe significantly more “option transfer” error than “other” 

error (paired t-test, t(30) = 1.6, p = 0.11). This choice type profile, compared to that in 

Experiment 1 and Experiment 2 (Fig. 3B, Fig. 5B, Fig. 6C), suggests a lack of option 

transfer in the second stage.

We also calculated the probability of a correct second stage first press for each of the 4 

branches in the second stage (Fig. 8C). The probability was significantly above chance in 

Blocks 3–4 and Blocks 5–6 (sign test, Blocks 3–4: p = 0.0002; Blocks 5–6: p < 0.0001). It 

was marginally above chance in Block 7 (sign test, p = 0.07) and not significantly different 

from chance in Block 8 (sign test, p = 1). Compared to the results in Experiment 1 (Fig. 3C, 

Fig. 5C), these results suggest participants were still taking advantage of previously learned 

options to speed up learning at the beginning of each block, but potentially to a lesser extent 

compared to Experiment 1 and Experiment 2.

To formally quantify the effect of the experimental manipulation, we compared Experiment 

1 and Experiment 3 for Mturk participants. In particular, we compared the proportion of 

“option transfer” and “other” error types in the second stage of Block 8 between the two 

experiments (Fig. 8D). We found a main effect of error type (2-way mixed ANOVA, F(2, 

168) = 76, p < 0.0001), but there was no interaction between experiment and error type 

(2-way mixed ANOVA, F(2, 168) = 0.89, p = 0.41). In particular, the proportion of “option 

transfer” error type was not significantly higher in Experiment 1, compared to that in 

Experiment 3 (unpaired t-test, t(84) = 1, p = 0.32). This further shows that while there might 

be a lack of option transfer in the second stage of Block 8 based on the error type profile 

(Fig. 8B), learning might still not be completely flat in Experiment 3 (Fig. S11B).

The Option Model could capture the lack of option transfer (Fig. 8BC), with an increase in 

the second stage clustering coefficient γ2, which controls how likely the model is to select 

a new blank policy compared to previously learned LOs in the second stage, as well as the 

forgetting parameter in the second stage, f2, which increases the speed at which the model 

forgets previously learned LO (Table 1).

4.3.2. In-lab participants replicate results from Mturk participants—In-lab 

participants replicated all aforementioned trends shown in Mturk participants (Fig. S13). 

In particular, there was a main effect of block on number of choices in the second stage 
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(F(2, 46) = 7.2, p = 0.002). In-lab participants also pressed significantly more times in the 

second stage of Block 8 than Blocks 5–6 (paired t-test, t(23) = 3.6, p = 0.0017), but only 

marginally more than Block 7 (paired t-test, t(23) = 1.9, p = 0.067). Moreover, similar 

to Mturk participants, the proportion of “option transfer” error type was not significantly 

different from “other” error type (paired t-test, t(23) = 0.8, p = 0.43). These results replicated 

a lack of option transfer in the second stage in a separate in-lab population. Note that 

we could not do the same comparison between Experiment 1 and Experiment 3 for in-lab 

participants, because the number of trials per block for Experiment 1 and Experiment 3 was 

different in-lab.

5. Experiment 4

Experiment 4 was administered to UCB undergraduates in exchange for course credit. 31 

(23 females; age: mean = 20.2, sd = 1.4, min = 18, max = 23) UCB undergraduates 

participated in Experiment 4. 12 participants were excluded due to incomplete data or below 

chance performance, resulting in 19 participants for data analysis.

An additional 110 (50 females; see age range distribution in Table 3) Mturk participants 

finished the experiment. 49 participants were excluded due to poor performance, resulting 

in 61 participants for data analysis (106 of the 110 participants were above chance in the 

second stage, but only 61 were above chance in the first stage; thus most Mturk participants 

were excluded by performance criterion in the first stage; see Sec. 2.1.4 for more details).

5.1. Experiment 4 in-lab Protocol

Experiment 4 (Fig. 9A) was designed to test whether participants were able to compose 

options learned separately, for example by expanding a low-level option’s initiation set 

and selecting it as part of a new mid and high-level option. Specifically, the protocol was 

identical to Experiment 1, except for Blocks 7 and 8. Block 8 in Experiment 4 was similar 

to Block 8 in Experiment 1, introducing two new LOs (LOnew) at the second stage as a 

benchmark for pure negative transfer.

The main difference between Experiment 4 and Experiment 1 was Block 7. In Block 7, one 

of the first stage stimuli (e.g. square) elicited the same extended policy MO2 (A2 followed 

by LO2 in the second stage), allowing positive MO transfer (“match” condition LOmatch). In 

contrast, the other first stage stimulus (e.g. circle) elicited a new policy recomposed of old 

subpolicies: participants needed to combine what they learned in the first stage of MO1 in 

Blocks 1, 3, and 5 (A1) (allowing for first stage transfer of HO1), and the second stage of 

Blocks 2, 4, and 6 (LO3; “mismatch” condition LOmismatch). Extending the food analogy, 

in Blocks 1, 3, 5, participants learned to make potatoes (MO1) by cutting potatoes (the first 

stage) and then roasting (LO1). In Block 7, participants also needed to cut potatoes, but then 

steam them (LO3), which was already learned as part of MO3 (make carrots) in Blocks 2, 4, 

6. All blocks had 60 trials each.

5.1.1. Experiment 4 Mturk Protocol—The Mturk version was shortened for online 

workers. Blocks 1 and 2 had a minimum of 32 and a maximum of 60 trials, but participants 

moved on to the next block as soon as they reached a criterion of less than 1.5 key presses 
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per second stage trial in the last 10 trials (the 61 Mturk participants included for data 

analysis on average used 46 (SD = 11, median = 42, min = 32, max = 60) trials in Block 1 

and 43 (SD = 11, median = 38, min = 32, max = 60) trials in Block 2). All other blocks had 

32 trials each.

5.2. Experiment 4 Results

5.2.1. Mismatch impacted performance of in-lab participants—Participants’ 

performance improved over Blocks 1–6 (Fig. S14A) and within each block (Fig. S22). 

To test more specifically whether participants were able to compose options, we focused on 

comparing the second stage behavior for old LOs (LOmatch and LOmismatch) and the average 

of LO5 and LO6 (LOnew) in Blocks 7–8. The Option Model predicted that performance for 

LOmatch in Block 7 should be the best due to positive transfer, since participants should have 

learned the extended MO2 policy whereby LO2 followed A2 in Blocks 1, 3, and 5 (Fig. 9A). 

LOnew should be the worst due to negative transfer, with all 4 stimulus-action assignments 

in the second stage novel. Performance for LOmismatch in Block 7 should fall in between (as 

observed in the number of key pressed, Fig. 9B1). While there should be negative transfer, 

as MO1 was usually followed by LO1, LO3 had been previously learned, so its performance 

should still surpass the performance in the second stage of Block 8, where LO5 and LO6 

were completely novel to the participants. Therefore, we predicted LOmatch > LOmismatch > 
LOnew in terms of performance.

In the second stage (Fig. 9B1), there was a main effect of block on number of presses 

(1-way repeated measure ANOVA, F(2, 36) = 9.9, p = 0.0004). Specifically, the average 

number of key presses in LOnew (Block 8) was significantly more than Blocks 5–6 and 

LOmatch (paired t-test, Blocks 5–6: t(18) = 4.1, p = 0.0007; LOmatch: t(18) = 3.6, p = 

0.002). There was no significant difference between Blocks 5–6 and LOmatch (paired t-test, 

t(18) = 0.7, p = 0.49), supporting the model’s prediction of positive MO transfer in this 

condition. The model predicted that LOmismatch performance should be between LOnew 

and LOmatch: LOmismatch performance should reflect positive LO transfer but negative MO 
transfer. Indeed, we observed a significant effect of LO condition on performance (1-way 

repeated ANOVA, F(2, 36) = 5, p = 0.01), driven by the predicted qualitative pattern. 

However, the paired comparisons were not significant (paired t-test, LOmatch: t(18) = 1.6, p 
= 0.13; LOnew: t(18) = 1.4, p = 0.18). These results replicate the negative transfer effects in 

the second stage of Block 8 shown in Experiment 1 (Fig. 2C) and Experiment 2 (Fig. 6B). In 

addition, they provide initial support for the compositionality hypothesis of the model, with 

intermediary transfer in the mismatch condition.

We confirmed the previous results by analyzing the proportion of trials in which the first 

key press was correct. We found that, in the first 3 trials for each of the 4 branches in the 

second stage (Fig. 9B2), there was a main effect of LO condition (1-way repeated measure 

ANOVA, F(2, 36) = 7.2, p = 0.002) on the proportion of correct choices for the first press of 

each trial. In particular, we found no significant difference between LOmismatch and LOnew 

(paired t-test, t(18) = 0.56, p = 0.58), while the performance of LOmatch was significantly 

higher than LOmismatch and LOnew (paired t-test, LOmismatch: t(18) = 2.6, p = 0.017; LOnew: 

t(18) = 4.4, p = 0.0003). These results suggested that the mismatch between MO1 and 
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LO3 impacted participants’ performance, a marker of negative option (MO) transfer. The 

first three iterations indicated that participants were not able to efficiently re-compose the 

LOmismatch into a new mid-level option.

To better investigate participants’ choices before they experienced any new information in 

a new block, we also computed the probability of a correct first key press for the second 

stage of the first trial of each of the 4 branches in the Blocks 5–8 (Fig. 9B4). We found 

a main effect of block (Friedman Test, χ2(2, 36) = 20, p < 0.0001). Specifically, Blocks 

5–6 and LOmatch were significantly above chance (sign test, both p < 0.0001); LOmismatch 

was not significantly different from chance (sign test, p = 0.34); LOnew was significantly 

below chance (sign test, p = 0.0007). There was a marginal difference between LOmatch 

and LOmismatch (sign test, p = 0.09), but no significant difference between LOmismatch and 

LOnew (sign test, p = 0.24). These results further showed that the mismatch condition 

impacted participants’ performance on the first press due to negative option (MO) transfer, 

and replicated the strong negative transfer in Block 8 in Experiment 1 and Experiment 2. 

The Option Model captured participants’ behavior well (Fig. 9B1, 2, 4, see Table 1 for 

model parameters).

5.2.2. Second press reveals benefit of option composition—The results so far 

supported one of our predictions, LOmatch > LOmismatch, by showing that performance in the 

mismatch condition was impacted due to negative MO transfer. We next sought evidence for 

our second prediction, LOmismatch > LOnew, where we hypothesized better performance in 

the mismatch condition by composing the first stage policy of MO1 and LO3.

In terms of performance on the first press in each trial, we did not find a significant 

difference between the two conditions (Fig. 9B2). However, this might be because the 

negative MO transfer reduced the benefit of compositionality, making it less detectable on 

the first press, also reflected by the small effect from the Option Model in Fig. 9B2. Positive 

LO transfer thus might only show a more significant effect after the first press unexpectedly 

failed (from negative transfer of MO1).

Therefore, we further computed the proportion of correct choices on the second press 

in those trials where the first press was incorrect (Fig. 9B3). Indeed, we found that the 

proportion of correct choices on the second press was significantly higher in the mismatch 

condition than the new condition (paired t-test, t(17) = 2.8, p = 0.012). This result supports 

our second prediction, LOmismatch > LOnew, revealing a benefit in the mismatch condition 

compared to the new condition in participants re-composing an old LO into a non-matching 

MO.

5.2.3. Mturk participants showed benefits of option composition—We 

collected a larger and independent sample on Mturk. Mturk participants also improved over 

Blocks 1–6 (Fig. S14B) and within block (Fig. S23), though their asymptotic performance 

(Blocks 5–6) was lower than the in-lab population. Specifically, we compared the average 

number of key presses in Blocks 5–6 in the first and second stages for both in-lab and Mturk 

populations. There was a main effect of stage and a marginal interaction of population and 

stage (2-way mixed ANOVA, stage: F(1, 78) = 7.1, p = 0.009; interaction: F(1, 78) = 3.1, p 
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= 0.08). In particular, for the first stage, Mturk population was not significantly worse than 

the in-lab population (unpaired t-test, t(78) = 0.17, p = 0.86); but for the second stage, which 

was the focus of our analysis, Mturk population was significantly worse than the in-lab 

population (unpaired t-test, t(76) = 3.2, p = 0.002).

In the second stage (Fig. 9B5), there was a main effect of block on number of presses (1-way 

repeated measure ANOVA, F(2, 120) = 17, p < 0.0001). Specifically, the average number 

of key presses in LOnew was significantly more than LOmatch and LOmismatch (paired t-test, 

LOmatch: t(60) = 4.6, p < 0.0001; LOmismatch: t(60) = 3.8, p = 0.0004). LOmatch was not 

significantly different from Blocks 5–6 and LOmismatch (paired t-test, Blocks 5–6: t(60) = 

0.26, p = 0.8; LOmismatch: t(60) = 0.8, p = 0.42).

The proportion of correct first press choices (Fig. 9B6) showed a similar pattern: there was a 

main effect of LO condition (1-way repeated measure ANOVA, F(2, 120) = 15, p < 0.0001) 

on the proportion of correct choices. In particular, the proportion of correct choice for LOnew 

was significantly lower than LOmismatch and LOmatch (paired t-test, LOmismatch: t(60) = 4.7, 

p < 0.0001; LOmatch: t(60) = 5.1, p < 0.0001) in Block 7. There was no significant difference 

between LOmismatch and LOmatch performance (paired t-test, t(60) = 0.54, p = 0.59). There 

was no difference between the mismatch condition and the new condition for second key 

presses (paired t-test, t(52) = 0.08, p = 0.94, Fig. 9B7), contrary to in-lab participants (Fig. 

9B3). This difference could be attributed to MTurk participants’ lower task engagement. 

Indeed, contrary to in lab participants, MTurk participants’ performance was at chance for 

second key press (paired t-test against 0.5, Mturk: t(53) = 1.6, p = 0.13; in-lab: t(17) = 3.4, 

p = 0.003). Directly comparing MTurk and in-lab population for the proportion of correct 

second key press in both the mismatch and new conditions revealed a marginal effect of 

condition and a marginal interaction of population and condition (2-way mixed ANOVA, 

condition: F(1, 69) = 3.3, p = 0.07; interaction: F(1, 69) = 3.7, p = 0.06). This supports our 

interpretation that MTurk participants did not attempt to find the correct answer following an 

error, making the second press error analysis in this population difficult to interpret.

Finally, we looked at the probability of a correct first press in the very first trial of each 

of the 4 branches in the second stage (Fig. 9B8). There was a main effect of block 

(Friedman test, χ2(2, 120) = 17, p = 0.0002). In particular, Blocks 5–6 and LOmismatch 

were significantly above chance (sign test, both p = 0.004); LOmatch was marginally above 

chance (sign test, p = 0.07); LOnew was significantly below chance (sign test, p < 0.0001).

These results can be interpreted in one of two ways. The similar performance between 

LOmatch and LOmismatch suggests that participants were able to efficiently re-compose the 

first stage of MO1 with LO3 in the mismatch condition in Block 7, so that they did not suffer 

from MO negative transfer, as did in-lab participants. Alternatively, this result might indicate 

a lack of MO transfer (and only positive LO transfer) in both the match and mismatch 

condition. The latter interpretation is supported by the fact that second stage performance in 

LOmatch was lower in MTurk participants than it was for in-lab participants in all measures 

(unpaired t-test, number of key presses in the first 10 trials of Blocks 5–6: t(78) = 1.8, p = 

0.08; proportion of correct choices in match condition: t(78) = 2.4, p = 0.019).
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The Option Model could capture the negative transfer effect in LOnew and thus the 

difference between LOnew and LOmismatch (Fig. 9B5, 6). However, it could not fully 

reproduce the lack of difference between LOmatch and LOmismatch, since the model would 

first try to transfer LO1 in the mismatch condition, resulting in worse performance for 

LOmismatch. One possibility for this discrepancy might be that Mturk participants did not 

learn or transfer MO well, reflected by their overall worse performance in the second stage 

compared to in-lab participants (Fig. 9B).

This interpretation might suggest that the Task-Set Model explains the Mturk population 

better, indicating a lack of temporally-extended options, and makes a specific prediction: 

second stage errors should not be impacted by first stage information. To test this prediction, 

we analyzed the specific errors participants made, as this is a hallmark of temporally

extended option transfer vs. task-sets (Fig. 3B). Contrary to the prediction made by the 

Task-Set model, but consistent with the Option Model prediction, Mturk participants did 

demonstrate the behavioral signature of negative option (MO) transfer in the mismatch 

condition (Fig. S15): they made significantly more “option transfer” errors than “other” 

errors (paired t-test, t(53) = 4.8, p < 0.0001). While the comparison was not significant for 

in-lab participants (paired t-test, t(17) = 1.5, p = 0.16), a direct comparison between in-lab 

and Mturk populations did not reveal an effect of population (2-way mixed ANOVA, F(2, 

140) = 0.74, p = 0.48), but did reveal an effect of error type (2-way mixed ANOVA, F(2, 

140) = 39, p < 0.0001). Thus, our results indicate that both MTurk participants and in-lab 

participants used temporally-extended MOs, although MTurk participants were overall less 

successful at transferring them to facilitate decision making in the second stage. The results 

are consistent with participants re-composing low-level options into higher-level options.

6. Discussion

Our findings provide novel insight into how humans learn hierarchical representations they 

can compose for flexible generalization. They offer strong support for the acquisition of 

option-like representations in healthy human adults. Options can be thought of as choices 

that are more abstract, complex, and extended than simple motor actions, but can similarly 

be selected in a single decision. Using a novel two-stage protocol, we provide evidence 

that humans create multi-step policies than can be selected as a whole (options), and 

flexibly transfer and compose previously learned options. This transfer and composition 

ability guides exploration in novel contexts and speeds up learning when the options are 

appropriate, but impairs performance otherwise, as predicted by the options framework 

(Botvinick et al., 2009). Model simulations showed that only a model including temporal 

hierarchy could account for all results, suggesting that human participants not only build 

state abstractions with one-step task-sets (Monsell, 2003), but also temporal abstractions in 

the action space with multi-step options.

6.1. The Option Model

We developed a new model, the Option Model, to account for participants’ behavior. The 

Option Model includes features from our previous hierarchical structure learning model 

(Collins et al., 2014; Collins & Frank, 2013, 2016) and the hierarchical reinforcement 
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learning (HRL) options framework (Sutton et al., 1999). In our previous hierarchical 

structure learning model, we used non-parametric priors (Chinese restaurant Process, or 

CRP (Pitman, 2006)) over latent variables that represented the currently valid policy to 

create state abstractions: this allowed the model to cluster different contexts together if the 

same task-set applied. This CRP prior enables the agent to identify (via Bayesian inference) 

novel contexts as part of an existing cluster if the cluster-defined task-set proves successful, 

resulting in more efficient exploration and faster learning.

On the other hand, the original formulation of the HRL options framework (Sutton et al., 

1999) augments the action space of traditional flat RL with temporal abstractions called 

options. Each option is characterized by an initiation set that specifies in which states 

the option can be activated, a termination function that maps states to a probability of 

terminating the current option, and an option-specific policy (that leads the agent to a 

potentially meaningful and useful subgoal). Multi-step options allow even more efficient 

transfer than task-sets, which can be thought of as simpler one-step options.

Our Option Model is inspired by the fact that task-sets and options are similar in essentials: 

they are policies that an agent can select as a whole, and then apply at a lower level of 

abstraction (applying it to make a motor choice in response to a stimulus for task-sets, or 

applying it across time until termination in the case of an option (Collins, 2018)). Thus, our 

model brings together state and temporal abstractions by using option-specific CRP priors to 

implement option-specific policies that can be flexibly selected in different contexts if they 

share the same environmental contingencies. Our model captures the essence of the options 

framework despite some subtle differences. Here, we further discuss how our Option Model 

relates to each part of the HRL options framework.

6.1.1. Option-specific policy—The most important component of an option is the 

option-specific policy: what lower level-choices (either simpler options or basic actions) 

it constrains. In this paper, we focused on the transfer of option-specific policy to test 

theoretical benefits of the options framework.

Theoretical work (Botvinick et al., 2009) suggested that useful options should facilitate 

exploration and speed up learning. Indeed, we observed speed up in learning through the 

positive transfer effects. For example, in Experiment 1, the second stage of Block 7 provided 

a test of positive option transfer in terms of choice types (Fig. S6). Importantly, this positive 

transfer was not interfered by the negative transfer in its first stage (Fig. 2C), suggesting 

that participants transferred mid-level options (MO) as a whole. Moreover, the learning 

benefit was evident even in the first press (Fig. 3C, Fig. 5C, Fig. 6D): participants were 

already significantly above chance in the first press, indicating that they could explore more 

efficiently by immediately transferring previously learned options.

Previously learned option-specific policies also helped with option composition in the 

mismatch condition of Experiment 4 (Fig. 9). While MO1 was usually followed by LO1 

in Blocks 1, 3, 5, in the mismatch condition, MO1 was followed by LO3 instead. This 

change indeed resulted in “option transfer” errors (Fig. S15). However, the fact that LO3 

had been previously learned helped participants explore more efficiently. For example, once 
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participants figured out A2 was correct for the diamond, they would more likely explore 

LO3, and thus A4 for triangle.

The HRL options framework also suggested that non-useful options can slow down learning 

(Botvinick et al., 2009). Indeed, we observed negative option transfer effects in the second 

stage across multiple experiments in terms of number of presses (Fig. 2C, Fig. 5A, Fig. 6B, 

Fig. 9B1, 5), and more importantly, error types (Fig. 3B, Fig. 5B, Fig. 6C, Fig. 7, Fig. S15), 

that are consistent with the predictions of the options framework. Note that the slow down 

was due to negative transfer of previously learned option-specific policies. Thus testing how 

having a wrong subgoal can impact learning performance is an interesting future direction.

We sought to confirm that participants were indeed learning option-specific policies, not just 

action sequences. Our protocol specifically used two second stage stimuli following each 

first stage stimulus (Fig. 2A) to avoid this potential confound. If, for example, circle was 

always followed by diamond and square by triangle, participants would not need to pay 

attention to the actual stimulus in the second stage, and could instead plan a sequence of 

actions in the first stage. In contrast, here, participants could only perform well by selecting 

options (i.e. stimulus-dependent temporally-extended policies). Indeed, we showed (Fig. 3D) 

that a sequence learning model would show ceiling performance at 1.5 presses per second

stage trials, while participants’ asymptotic performance were significantly better than 1.5 

presses across all datasets (paired t-test, all p’s < 0.002, Fig. S16). While pure sequence 

learning could not account for our results, we investigated whether it could contribute to 

some of its aspects. Sequence learning would predict faster reaction times for actions that 

often follow in a sequence (Clegg, DiGirolamo & Keele, 1998). Therefore, we compared the 

reaction time for the “sequence” and “non-sequence” error types in the second stage. We did 

not find significant difference between the reaction time for “sequence” and “non-sequence” 

error types at the beginning of blocks; we only found such difference at the end of blocks 

(see supplement for full details). This suggests that while the transfer effects we observe at 

the beginning of each block could not be explained by pure sequence learning, participants 

might develop sequence learning-like expectations over time in a block, speeding up choices 

that came more frequently after each other.

6.1.2. Initiation set—The initiation set of an option specifies the set of states where 

the option can be selected. The observable states in our tasks are the shapes shown on the 

screen. Therefore, at first, the initiation sets of HO and MO are first stage stimuli (e.g. circle 

and square, Fig. 2A), whereas the initiation sets of LO are second stage stimuli. However, 

the optimal policies were also dependent on the block; thus participants needed to infer the 

latent states (state abstraction) dictated by block. Our extension of classic options with a 

CRP prior inference process over latent states can thus be thought of as continuously adding 

new block contexts to the initiation set of an option throughout the task. The ability to add 

new contexts to the initiation sets provides our Option Model the crucial flexibility needed 

to achieve transfer and composition, as demonstrated by human participants. For example, 

if LO3 was tied solely to the context of Block 2, where it was first learned, we would not 

observe the benefit of option composition in Experiment 4 in the mismatch condition.
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6.1.3. Termination function—An option’s termination function maps each state to 

the probability of terminating the current option (i.e. not using its policy anymore). How 

to terminate an option is closely related to the underlying theoretical question of credit 

assignment, which arises naturally in tasks that require hierarchical reasoning (Sarafyazd & 

Jazayeri, 2019): if the current policy does not generate any (pseudo-) reward for a while, 

should the agent continue improving the current policy or terminate it and use another policy 

or even something new?

With a termination function as described in the original HRL options framework, credit 

assignment happens in a very specific way: the policy of the currently selected option (or 

options if multiple nested options are selected) is updated until termination is reached. 

However, this would make behavior very inflexible. For example, in our task, when an agent 

enters the second stage of Block 8 in Experiment 1 (Fig. 2A) for the first time after having 

correctly made a choice for the circle in the first stage, the agent would likely use LO1 due 

to negative transfer of MO1 and thus not receive reward. Because the termination function 

only takes state as an input, the agent would keep overwriting the LO1 policy with LO5 

policy until termination, and thus not be able to reuse LO1 down the line.

Thus, our Option Model, uses a more flexible form of option termination. Specifically, 

we use Bayesian inference (Sec. 2.1.5), which was introduced in our previous hierarchical 

structure learning model (Collins & Frank, 2013). At the end of each choice, the model 

updates the likelihood of each option being valid based on the observed reward feedback, 

which then determines whether the model should stop using the current option. Moreover, 

Q-learning only operates on the option that has the highest posterior, thus assigning credit 

retrospectively to the best cause (Moran, Keramati, Dayan & Dolan, 2019). Therefore, the 

Option Model is more likely to create a new LO5 and learn its policy from scratch, making 

it more flexible at learning and selecting options. The crucial benefit of our new Option 

Model termination policy is that the agent can create a new LO5 and learn its policy from 

scratch, without overwriting the original LO1 policy. While the Option Model can capture 

participants’ choices well across all four experiments, the current experimental protocol was 

not designed specifically to test credit assignment to options. This remains an important 

question for future research.

There is another credit assignment problem that is not fully addressed by our current 

protocol and modeling: choices by lower level options may affect the termination of higher 

level options. For example, if you get punished for roasting potatoes, should you credit this 

to the lower level option (roasting) or to the higher level option (making potatoes) in the 

first place? Should you plan to cook meat instead, or just boil the potatoes? We have some 

evidence for both levels of credit assignment (e.g. in Block 7 of Experiment 2, or Block 8 

in Experiment 1; Fig. 2C), when participants were experiencing many errors in the second 

stage using LO1 and LO2. Participants might not only consider terminating or re-learning 

the current LO, but also naturally attribute some of the negative feedback to the choices they 

made in the first stage regarding MO or HO. Indeed, we observed that second stage errors 

potentially resulted in more “wrong HO” errors in the first stage of Experiment 2 (Fig. S9B, 

Fig. S10).
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In our Option Model (Sec. 2.1.5), for simplicity, first stage choices were only determined by 

learning within the first stage and were not sensitive to reward feedback in the second stage. 

It will be important in future research to better understand interactions between option levels 

for credit assignment. When considered together with the termination problem, these future 

directions may help trace the underlying neural mechanisms for credit assignment in human 

learning and hierarchical decision making.

6.2. Possible extensions

We tested predictions of HRL options framework through positive and negative transfer 

of option-specific policies in the simplest possible set up of tabular representation of state 

and action space. Multiple aspects could be expanded on in future research to increase the 

generalizability of the policy in real world scenarios.

First, real world policies apply to much more complex (continuous, multidimensional) state 

spaces. Recent work in AI expands the options framework to more realistic situations 

(Konidaris & Barto, 2007), where artificial agents learn how to navigate a sequence of 

rooms with different shapes and sizes. If each state in a room is naively paramatrized in a 

tabular way by (x, y) coordinates, when the agent is placed in a new room of a different 

shape, previously learned policy would be of not use. It is thus crucial to identify meaningful 

features of the state space shared by different rooms. (Konidaris & Barto, 2007) proposed 

learning options in a state space parametrized by distance from goals (“agent space”) to 

bypass this limitation.

Second, the low-level action space in real life conditions is also more complex. A 

good example is our flexible use of tools (Allen, Smith & Tenenbaum, 2019). We can 

conceptualize using various tools as taking actions. Humans demonstrate great flexibility 

when improvising using different tools to solve the same problem or even crafting new tools. 

If we simply represent actions in a tabular way, after participants associated a particular tool 

(action) to solve a task, the policy would be of no use if this particular tool is no longer 

provided in the future. The key might again be figuring out meaningful dimensions of the 

tool (action) space that are shared in different task scenarios, such as shape and weight of the 

tool.

Finally, even if two problems are different in terms of both state and action space (e.g. 

learning to play piano vs learning to play violin (Franklin & Frank, 2018)), knowledge of 

one might still help the other. Once one learned a piece on the piano, the knowledge of 

music theory might serve as a model to guide option transfer when learning the same piece 

on violin. These are important future directions for testing how humans transfer in those 

more real life scenarios, which might provide insight into developing more flexible and 

human-like AI systems with the HRL options framework.

6.3. Option discovery

One of the most important questions regarding options in AI is how to discover meaningful 

options. Discovering useful options entails learning all components of an option: initiation 

set, termination function, and option-specific policy that leads to a meaningful sub-goal. 
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In this paper, we designed a protocol that focused on learning option-specific policies by 

making all other features, including subgoals, trivial.

Discovering options may be useful because of a key feature of our interactions with our 

environment. In real world scenarios, it is frequent that for a given observable state, the 

right choice to make depends on hidden context, task demand, or past information. This 

property is refered to as non-Markovian: the current observable information is insufficient 

to determine the next step. For example, when potatoes are peeled, we can use them to 

make either roasted potatoes or mashed potatoes. Therefore, the state “ peeled potatoes” is a 

meaningful subgoal state, and peeling potatoes is its corresponding option-specific policy.

This non-Markovian property might encourage the hierarchical and compositional nature of 

human behavior. It is central to the original formulation of the options framework (Sutton et 

al., 1999), and is also a natural objective for option discovery. In relation to our protocol, the 

correct action for diamond (Fig. 2B) varies from time to time in the same block. It makes 

sense to create different options to capture this, and relate it to the inferred hidden cause 

for why the correct actions change. Indeed, we observed that the non-Markovian feature in 

our experiments encouraged participants to create and transfer options at multiple levels of 

abstractions.

We tested whether the environment needs to be non-Markovian to trigger option creation. 

Specifically, we designed Experiment 3 by eliminating the non-Markovian property 

from Experiment 1 and testing if that affects option learning and transfer (Fig. 8A). 

Unsurprisingly, we found weaker option transfer effects in Experiment 3; however, 

participants’ behavior was still not flat (Fig. 8, Fig. S13). Thus, our results hint at the 

possibility that participants create temporal options (MO), even in the absence of a need for 

it, echoing past results showing that humans tend to create structure unnecessarily (Collins, 

2017; Collins & Frank, 2013; Collins & Frank, 2016; Yu & Cohen, 2009). Furthermore, this 

may also show that objectives for option discovery are not limited to solving non-markovian 

problems. For example, (Diuk, Schapiro et al., 2013) showed that humans could identify 

bottleneck states from transition statistics, reflecting graph-theoretic objectives for option 

discovery in humans.

6.4. The options framework and other learning systems and models

While our Option Model uses a simple form of model-free RL (Q-learning; (Sutton & Barto, 

2018)) to learn option-specific policies, the options framework is general and not limited 

to just Q-learning. Options can be learned or used with model-free methods (Botvinick 

et al., 2009) and model-based methods (Botvinick & Weinstein, 2014). It also has strong 

connections to successor representations (Momennejad et al., 2017; Stachenfeld, Botvinick 

& Gershman, 2017), which might provide objectives for subgoal discovery.

Moreover, in this paper, we gave examples of potential interaction of options with the 

meta-learning system (Fig. 7) and sequence learning (see supplement) in human participants. 

How options might interact with other learning systems is an important question for future 

research.
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Finally, the options framework is not the first attempt to incorporate hierarchy and 

compositionality to model complex human cognition. Within psychology in particular, 

the concept of “options” echoes the idea of “chunking” in the cognitive architecture 

literature (Anderson et al., 2004; Lehman, Laird, Rosenbloom et al., 1996). Cognitive 

architectures models such as ACT-R (Anderson et al., 2004) rely strongly on the hierarchical 

representation of behaviors, whereby procedures frequently executed in successions can 

become “chunks” that can be selected at a higher level of abstraction. However, we 

were not able to find examples of such cognitive models that focused on how humans 

might rapidly learn and transfer hierarchical representations. Furthermore, a distinct aspect 

of the RL options framework (compared to cognitive architectures) is its objective of 

reward maximization (Botvinick et al., 2009), which is inherited as an augmentation of 

traditional flat RL. In that sense, options proposes a computational framework at Marr’s 

computational level of analysis (Niv & Langdon, 2016), not only at the “algorithm and 

representation” one. In our model, this reward objective also allows us to naturally include 

Bayesian inference as a way of optimal option selection and transfer. However, there 

have also been initial attempts to combine ideas from reward maximization of RL with 

cognitive architectures (Fu & Anderson, 2006; Nason & Laird, 2005). It would be especially 

interesting to consider potential connections between the options framework and various 

cognitive architectures, which were designed to explain a wide range of human cognition 

and not limited to structural learning from trial-by-trial interactions with the environment 

and reward feedbacks.

7. Conclusion

In summary, we found compelling evidence of option learning and transfer in human 

participants by examining the learning dynamics of a novel two-stage experimental 

paradigm. Through analyzing participants’ behavioral patterns and model simulations, we 

demonstrated the flexibility of option transfer and composition at distinct levels in humans. 

We proposed a novel computational framework, unifying temporal and state abstraction in 

a hierarchical reinforcement learning framework, to account for human flexible decision 

making.

Humans’ ability to flexibly transfer previously learned skills is crucial for learning and 

adaptation in complex real world scenarios. This ability is also one of the fundamental 

gaps that sets humans apart from current state-of-the-art AI algorithms. Therefore, our work 

trying to probe learning and transfer in humans might also help provide inspirations for AI 

algorithms to be more flexible and human-like.
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Figure 1: 
Schematics of how state and temporal abstractions can be used to describe increasingly 

more complex human cognition. Flat Model. The usual flat RL model learns one-step 

policies for different vegetables (potatoes and carrots) separately as different states (gray), 

with potentially multiple actions leading to reward in a given state (e.g. boil or stir fry 

potatoes). Task-set Model. The task-set model clusters both potatoes and carrots into the 

same state abstraction, namely, vegetable, thus everything learned about one vegetable will 

be immediately transferable to all the other vegetables. However, the task-set model only 

learns one-step policies, and in this non-Markovian task is unable to resolve the optimal 

action after the vegetable is cut, since it can be either boiled (blue) or stir fried (green). 

Option Model. The option model learns state abstractions, but also temporal abstractions by 

combining one-step rules into temporally-extended policies, resolving the action selection 
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after the vegetable is cut by activating a temporal abstraction from the beginning. Now 

one activates either the option of boiling vegetable (blue) or stir frying vegetable (green) 

from the start of cutting vegetable. Sequence learning Model. The sequence learning model 

learns about optimal action sequences starting from the initial state ((cut, boil) for boiling 

vegetable, i.e. blue; (cut, stir fry) for stir frying vegetable, i.e. green); however, it does not 

learn full-fledged policies, and thus cannot deal with tasks that require state-dependency (see 

Experiment 1 design, Fig. 2A for an example) once a sequence is initiated.
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Figure 2: 
Experiment 1 protocol and overall performance. (A) Experiment 1 design. Left: Block and 

trial structure; Blocks 1–6 were learning blocks, followed by two testing blocks: Blocks 

7 and 8. Each block had 60 trials. In each trial, participants needed to select the correct 

response for the first stage stimulus (e.g. circle) in order to move on to the second stage 

stimulus (e.g. triangle), where they could win points by selecting the correct response. 

Right: Stimulus-action assignments; in Blocks 1–6, participants had the opportunity to learn 

options (temporally-extended policies) at three levels of complexity: high, middle, and low

level options (HO, MO, and LO). In the testing phase, Block 7 tested participants’ ability to 

reuse MO policies outside of their HO context, potentially eliciting positive transfer (green) 

of LOs in the second stage, and negative transfer (red) of choices in the first stage. Block 

8 tested predicted positive transfer in the first stage, but negative transfer of MO policies in 

the second stage, by replacing old LOs with new ones. Blocks were color-coded for later 

result figures: Blocks 1–4 gray; Blocks 5–6 purple; Block 7 rose; Block 8 blue. (B) Average 

number of key presses in the first and the second stages per block. Chance is 2.5; ceiling 

is 1 press. (C) Average number of key presses for the first 10 trials of Blocks 5–8 for the 

first (left) and second stages (right). We use n.s. to indicate p ≥ 0.1; † for p < 0.1; * for p < 

0.05; ** for p < 0.01; *** for p < 0.001; and >*** for p < 0.0001. We indicated all statistical 

significance with these notations in further figures.
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Figure 3: 
Experiment 1 second stage analysis. (A) Average number of second stage key presses in 

the first 10 trials of Block 5–8 for participants as well as model simulations. We ran 500 

simulations of each hierarchical model (top) and flat model (bottom). See Table 1 for model 

parameters. Behavioral results show patterns of positive and negative transfer predicted by 

hierarchical, but not flat RL models. (B) Error type analysis of the second stage choices 

in Block 8. Top: We defined 1-to-1 mappings from the 4 actions to 4 choice types, 3 of 

which are error types. Bottom: Participants made significantly more option transfer errors 

than other errors. This was predicted by the Option Model, but not by the Task-Set Model. 

(C) Probability of a correct first key press for the second stage of the first trial of each of the 

4 branches in Blocks 7–8 reveals positive and negative transfer prior in first attempt (left), 

as predicted by the Option Model (right). (D) While participants’ performance is close to 

ceiling, the sequence learning model cannot do better than 1.5 presses/trial on average in the 

second stage because it ignores the stimulus-dependency in the second stage.
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Figure 4: 
Experiment 1 first stage choices. (A) Definition of choice types in the first stage. (B) Choice 

type analysis of the first stage in Blocks 5–7 for participants (top) and the Option Model 

(bottom). Participants made significantly more wrong HO errors in Block 7 than in Blocks 

5–6, but no change for the other two error types. This suggests that participants were 

negatively transferring HO in the first stage of Block 7, as predicted by the Option Model.

Xia and Collins Page 42

Psychol Rev. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: 
Experiment 1 Mturk results. (A) Average number of key presses for the first 10 trials of 

Blocks 5–8 for the second stage for participants (left) and the Option Model (right). (B) 

Error type analysis of the second stage in Block 8 for participants (left) and the Option 

Model (right). We replicated the same pattern as the in-lab population (Fig. 3B). (C) 

Probability of a correct first key press for the second stage of the first trial of each of 

the 4 branches in Blocks 7–8 for participants (left) and the Option Model (right).
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Figure 6: 
Experiment 2 protocol and results. (A) To eliminate potential interference of Block 7 on 

Block 8 in Experiment 1, Block 7 of Experiment 1 was removed in Experiment 2. Therefore, 

Block 7 in Experiment 2 was identical to Block 8 in Experiment 1. (B) Average number of 

key presses for the first 10 trials of Blocks 5–7 for the second stage for participants (left) 

and the Option Model (right). (C) Error type analysis of the second stage in Block 7 for 

participants (left) and the Option Model (right). We replicated the same pattern as in Block 8 

of Experiment 1 (Fig. 3C, Fig. 5B). (D) Probability of a correct first key press for the second 

stage of the first trial of each of the 4 branches in Blocks 5–7 for participants (left) and the 

Option Model (right).

Xia and Collins Page 44

Psychol Rev. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7: 
Experiment 2 second stage choice shows interaction between option transfer and meta 

learning. Error type analysis for each of the 4 branches in the second stage of Block 8 for 

participants (A) and the Option Model (B). The option transfer error was more than other 

error only for F1 S1 and F2 S2, which was predicted by the Option Model. (C) Example 

schematic for the interaction: learning A2 for the diamond activates LO3; learning A3 for the 

triangle activates LO2; meta-learning only suppresses LO2 but not LO3.
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Figure 8: 
Experiment 3 protocol and Mturk results. (A) The second stage stimuli following each first 

stage stimuli were different: for example, diamond and triangle followed circle; hexagon 

and star followed square. All state-action assignments remained the same as Experiment 1. 

This manipulation allowed us to test whether participants would naturally learn and transfer 

options in the second stage even when they could simply learn the correct key for each of 

the 4 second stage stimuli individually, rather than needing to take into account first stage 

information. (B) Error type analysis of the second stage in Block 8 for participants (left) 

and the Option Model (right). For Mturk participants, the proportion of option transfer error 

was not significantly different from other error, unlike Experiment 1 and Experiment 2, 

suggesting a lack of option transfer. (C) Probability of a correct first key press for the second 

stage of the first trial of each of the 4 branches in Blocks 7–8 for participants (left) and 

the Option Model (right). (D) Comparison of Experiment 1 Mturk and Experiment 3 Mturk 

participants in terms of error types in the second stage of Block 8: There was no significant 

effect of experimental condition.
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Figure 9: 
Experiment 4 protocol and results. (A) Experiment 4 design. In Experiment 4, we tested 

participants’ ability to recompose LO policies within MO policies. Blocks 1–6 were 

identical to Experiment 1. In Block 7, green indicates positions of potential positive transfer: 

MO2 followed by LO2 was learned in Blocks 1, 3, 5. Orange indicates positions of option 

composition: although MO1 previously included LO1 for second stage stimuli, it was 

modified to LO3 in Block 7. In Block 8, red indicates positions of negative transfer: LO5 

and LO6 were completely novel to participants. Blocks were color coded for later analysis: 

Blocks 1–4 gray; Blocks 5–6 purple; Block 7 orange; Block 8 blue. (B) Second stage 

behavioral results. (1) Average number of key presses for the first 3 trials for each of the 

4 branches in the second stage of Blocks 5–8 for participants (left) and the Option Model 

(right). Block 7 was split into LOmatch and LOmismatch; Block 8 corresponded to LOnew. (2) 

Proportion of correct choices on the first press of trials 1–3 for each of the 4 branches in 

the second stage for LOmatch, LOmismatch and LOnew for participants (left) and the Option 

Model (right). (3) Proportion of correct choices on the second press (for trials 1–3 for each 

of the 4 branches with an incorrect first key press) for the mismatch (left) and the new (right) 

condition. (4) Probability of a correct first key press for the second stage of the first trial of 

each of the 4 branches in Blocks 5–8 for participants (left) and the Option Model (right). 

(5)–(8) Same as (1)–(4) for Mturk participants.
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