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A High Order Cartesian Grid, Finite Volume Method for Elliptic Interface
Problems

Will Thachera,b,∗, Hans Johansenb, Daniel Martinb

a Graduate Student Researcher, Applied Science and Technology Group, University of California
Berkeley, Berkeley, CA, 94720, United States

b Applied Numerical Algorithms Group, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States

Abstract

We present a higher-order finite volume method for solving elliptic PDEs with jump conditions on interfaces

embedded in a 2D Cartesian grid. Second, fourth, and sixth order accuracy is demonstrated on a variety

of tests including problems with high-contrast and spatially varying coefficients, large discontinuities in the

source term, and complex interface geometries. We include a generalized truncation error analysis based

on cell-centered Taylor series expansions, which then define stencils in terms of local discrete solution data

and geometric information. In the process, we develop a simple method based on Green’s theorem for

computing exact geometric moments directly from an implicit function definition of the embedded interface.

This approach produces stencils with a simple bilinear representation, where spatially-varying coefficients

and jump conditions can be easily included and finite volume conservation can be enforced.

Keywords: Elliptic Interface Problem, High Order, Embedded Boundary, Cut Cell, Finite Volume,

Discontinuous Coefficients

1. Introduction1

Elliptic PDEs with discontinuities in the source term, coefficients and solution form an important class2

of equations in computational science and engineering. These equations arise from mathematical models of3

multi-material systems, multi-phase flows, crystal growth, and many other physical processes [1]. Solving4

such equations numerically is not straightforward because the accuracy of the scheme is typically based on5

smoothness assumptions that do not in general apply at the interface.6

Numerous schemes have been proposed to solve this problem based on finite difference, finite volume,7

and finite element formulations. These methods can roughly be classified into those that treat the interface8

explicitly by creating elements that conform to the shape of the interface, or those that represent the9

interface implicitly by “embedding” it onto a non-conforming mesh (see [2] for a thorough review and further10

references). In the finite element realm, methods such as [3] body-fit the mesh to the interface whereas11
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methods such as [4] use a fixed mesh and modify basis functions where the interface crosses elements. A12

widely used and influential method in the finite difference category is the Immersed Interface Method (IIM)13

[5]. The IIM uses standard Cartesian grid finite difference stencils away from the interface and modifies14

stencils near the interface using one-sided Taylor series expansions that incorporate jump conditions. The15

Ghost Fluid Method [6] extrapolates the solution across the interface to nearby grid points by incorporating16

jump conditions so that standard stencils can still be used at all grid points. These various finite difference17

methods are closely related to various schemes for imposing boundary conditions; jump conditions can be18

thought of as a sort of implicit boundary condition that depends on the solution itself.19

This paper is concerned with the third category: finite volume schemes. These methods are conservative20

(in the sense that the divergence theorem is applied to a control volume), and have well-studied stability21

properties [7]. The embedded boundary (EB) method of [8] combines the implicit and explicit interface22

representations: the interface is embedded onto a Cartesian grid, forming cut-cell volumes of arbitrary23

shapes where it intersects rectangular cells. The elliptic equation is then discretized in flux divergence form24

using techniques developed in [7] and [9] with appropriate modifications made at the interface to enforce25

jump conditions. The method developed in [8] is second-order accurate L∞ and L1 norm, but is difficult26

to extend to higher order accuracy. For low-order methods, cell averages can be treated as point values27

to second-order accuracy, so finite difference type schemes can be employed to create stencils. This is not28

the case for higher order finite volume methods; integration must be performed over arbitrarily-shaped “cut29

cells.” Techniques such as choosing a midpoint or centroid as a quadrature rule for surface integrals of the30

flux is not sufficient for higher-order accuracy.31

Many of these difficulties are being addressed by recent developments in higher-order finite volume and32

EB methods, which are summarized in [10]. One example is the use of weighted least-squares interpolation33

for stencil construction in complex geometries ([11], [12]) as well as the derivation of high-order stencils on34

Cartesian grids [13]. Given the close relationship between boundary conditions and jump conditions, we35

propose extending the methodology of [12] to the elliptic interface problem. The primary contribution of36

this research is a finite volume method for the variable coefficient 2D elliptic interface problem that is 1)37

high order accurate and 2) conservative. In the process, we have also created approaches for 1) an efficient38

technique for generating exact geometric information from an implicit function and 2) a method for building39

high-order finite volume stencils for variable coefficient elliptic operators on arbitrary cut-cell meshes.40

The outline of the paper is as follows: In Section 2, we define mesh and geometric quantities and give a41

general truncation error analysis which allows us to design stencils of arbitrarily high order. In Section 3,42

we describe in detail our method for constructing stencils. In Section 4, we present results that validate the43

approach using a series of model problems that test different aspects of the scheme.44
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Figure 1: Cut cell geometric quantities that make up the finite volume notation.

2. Discretization45

Let Ω be a physical domain that is divided into the subdomains Ω+ and Ω− by an interface Γ. We46

consider the variable coefficient elliptic interface problem for u(x):47

αu−∇ · (β∇u) = f on Ω (1)

[u] = w on Γ (2)

[β∂nu] = v on Γ . (3)

Here, [·] denotes a jump in some quantity at the interface: [u] = u+(x) − u−(x) at some point x ∈ Γ,48

and the term ∂nu ≡ ∇u · n̂ represents a flux at this boundary with unit normal n̂(x). Finally, coefficients49

α±(x), β±(x) and the source term f±(x) vary in space and may be discontinuous across Γ.50

The domain Ω is discretized into a Cartesian mesh of square control volumes (or “cells”) Vp,i, i ∈ Z2,51

that have centroids xp,i and side lengths of scale h, the grid spacing (see Figure 1). We indicate p ∈ {+,−}52

to specify a subdomain of Ωp; p can often be thought of as the phase or material type of a physical quantity.53

We assume that each cell Vp,i may have up to four grid-aligned faces, which we label Ap,i± 1
2ed

, where ed is54

the unit vector in direction d.55

Any cell that is intersected by Γ, the “embedded boundary” (EB), is called a “cut” cell. We make the56

following assumptions to simplify the geometric considerations. First, a cut cell consists of only two control57

volumes V+,i and V−,i divided by a portion of the EB, denoted by AB,i. The unit normal vector n̂ on Γ58

points from Ω+ to Ω−. So, along with Ap,i± 1
2ed

as the grid-aligned faces of each portion of the cut cell, each59

cut cell must have a total of at least 3, and at most 5, faces.60

Because we are using a finite volume formulation, we should define additional geometric quantities that61
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will be useful throughout this paper: a geometric “moment” is an integral of a centered monomial over some62

specified region. We define four moments corresponding to four components of the geometry:63

mq
p,i =

∫
Vp,i

(x− x̄)q dV (4)

mq

p,i± 1
2 ed

=

∫
A

p,i± 1
2
ed

(x− x̄)q dA (5)

mq
B,i =

∫
AB,i

(x− x̄)q dA (6)

mq
B,i,d =

∫
AB,i,d

(x− x̄)q n̂d dA , (7)

where q = [qx qy] is a vector of non-negative integers, and we use the multi-index notation (x− x̄)q =64

(x − x̄)qx(y − ȳ)qy . The multi-indices have sum of at most P , |q| ≤ P , and are ordered lexicographically:65

{00, 10, 20, ...P0, 01, 11, ...0P}. This allows us to refer to v [q] as the qth entry of a vector v. Thus by66

definition, the volume of cell i is |Vp,i| = m00
p,i, and the centroid x̄p,i of Vp,i is

1
|Vp,i|

[
m10

p,i,m
01
p,i

]
. Similarly,67

m00
B,i is the area of the EB, and m00

B,i,x is its x normal component-weighted area, or x direction cross-section.68

For ease of notation, throughout this paper we ignore x̄, although in practice it is the cell-center of each full69

Cartesian cell.70

The interface is represented as the level set of an implicit function, as is common in cut cell literature71

([14], [15]). We generate geometric information by creating successively refined piecewise linear approxima-72

tions to the interface and computing geometric moments over those approximations. The convergence of73

this sequence of moment approximations is accelerated using Richardson extrapolation, and the resulting74

geometric moments are exact to within roundoff errors. The geometry algorithm is described in detail in75

Appendix A. We note that it is not strictly necessary to use an implicit function description of the interface;76

our method only requires that geometric moments can be computed to sufficient accuracy. However, the77

implicit function description has several desirable properties: for any point in the domain we can easily78

determine on which side of the interface that point is on, while points on the interface can be found using79

a root finder, and the approach is compatible with level set methods for moving boundary problems.80

Two types of variables are stored on the mesh: cell-averaged quantities ⟨u⟩p,i = 1
|Vp,i|

∫
Vp,i

u dV , and81

centroid-centered quantities up,i = u(xp,i). The coefficients α and β are given as point values at the centroids82

of cells. The right-hand-side function is provided as cell-averaged values, ⟨f⟩, of sufficient accuracy, and we83

solve for cell-averaged values ⟨u⟩.84

Within this context, our finite volume scheme solves the discrete system:85
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⟨αu⟩p,i − ⟨∇ · β∇u⟩p,i = ⟨f⟩p,i (8)

[u]i = wi (9)

[β∂nu]i = vi . (10)

for ⟨u⟩p,i in each volume Vp,i in the mesh, subject to problem-specific boundary conditions. The system of86

equations we solve will have one degree of freedom in full cells and two degrees of freedom in cut cells. [·]i87

denotes the integral of the jump of a quantity across the EB in cut cell i:88

[u]i =

∫
AB,i

u+ − u−dA . (11)

The objective of the following section is to provide a general truncation error analysis that will allow us89

to discretize (8) – (10) to high order accuracy.90

2.1. Error Analysis91

In the finite volume or finite difference context, a stencil approximates some functional G(u) by a linear92

combination of local information about the function u. This functional is typically point values or integrals93

over some region of derivative of u. The function information, or data, can include boundary conditions,94

jump conditions, point values of the function, or averages of the function over some nearby region. Let d95

denote this vector of local function data, and s be the vector of stencil values corresponding to each of the96

data points in d. The truncation error τ of this stencil is defined as:97

τ = sTd−G(u) . (12)

For the present problem, G will be an integral of u, or some combination of its partial derivatives, over98

a one or two dimensional region. If we can approximate u using a truncated Taylor series, G(u) can be99

approximated with a linear combination of Taylor series coefficients of u up to the desired order of accuracy.100

Throughout this section we drop the subscripts p and i except where necessary for clarity. We can101

express u locally as a Taylor series expansion and remainder term:102

u(x) =
∑

|q|≤P

1

q!
u(q)(x̄)xq +O

(
hP+1

)
, (13)

where, again using multi-index notation, xq = xqxyqy , q! = qx!qy!, and u(q) = ∂qx∂qy

∂xqx∂yqy u. The Taylor103

polynomial is then just104

u(x) =
∑

|q|≤P

cqux
q +O

(
hP+1

)
, where (14)

cqu =
1

q!
u(q)(x̄) .
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Integrating the flux divergence term in (8) over the discrete volume V and applying Gauss’ theorem we105

obtain:106 ∫
V

∇ · β∇u dV =

∑
±, d

(±1)

∫
A± 1

2
ed

β
∂u

∂xd
dA

+

∫
AB

β∇u · n̂ dA . (15)

Expressing β and u as Taylor expansions, for a surface integral over any (EB or grid-aligned) face A we107

have:108 ∫
A

β∇u · n̂ dA =

∫
A

∑
|r|≤P

crβx
r

 ∑
|q|≤P

cqu

[
∂xq

∂x
n̂x +

∂xq

∂y
n̂y

]+O(hP ) dA (16)

=

∫
A

∑
|r|≤P

crβx
r

 ∑
|q|≤P

cqu
[
qxx

q−ex n̂x + qyx
q−ey n̂y

]+O(hP ) dA (17)

=
∑

|q|≤P

 ∑
|r|≤(P−|q|)

crβ

(
qxm

q+r−ex

A,x + qym
q+r−ey

A,y

) cqu +O(hP+1) . (18)

In order to compute ⟨∇ · β∇u⟩, we apply (18) to each surface integral in (15) and divide by the cell volume.109

Since |V | is an O(h2) quantity, the error term for the cell-averaged flux divergence term is O(hP−1).110

111

Similarly, for the linear term in (8), we have:112

⟨αu⟩ = 1

|V |

∫
V

∑
|r|≤P

crαx
r
∑

|q|≤P

cqux
q +O(hP+1)dV (19)

=
1

|V |
∑

|q|≤P

 ∑
|r|≤(P−|q|−2)

crαm
r+q

 cqu +O(hP+1) . (20)

We see that our approximation to the functionals G of interest can be written in the general form:113

G(u) =
∑

|q|≤P

gqcqu +O(hR) = gT cu +O(hR) , (21)

where cu is the vector of approximate Taylor series coefficients for u, and g is the vector of terms that result114

from operating on these coefficients, shown in brackets in (18) and (20). The order R error term for the115

functional approximation may be different than the order P + 1 error term for the Taylor series of u as a116

result of differentiation and integration.117

To calculate the truncation error τ in (12), we must fill in the vector d with function data. Suppose, for118

example, that the function data are cell-averaged values of u. Then we can write:119

⟨u⟩j =
1

|Vj|

∫
Vj

∑
|q|≤P

cqux
q +O

(
hP+1

)
dV (22)

=
∑

|q|≤P

mq
j

|Vj|
cqu +O

(
hP+1

)
= mT

j cu +O
(
hP+1

)
, (23)

6



where mj is the vector of cell-averaged volume moments for any cell j. If we have n such cell-averaged120

values, then we can write:121

d =


mT

j1

mT
j2

...

mT
jn

 cu +O(hP+1) = Mcu +O(hP+1) , (24)

where M is the “moment matrix” whose rows are the vectors mT
ji
. Inserting this into (12) we have:122

τ = sTMcu +O(hP+1)−
(
gT cu +O(hR)

)
. (25)

To ensure that τ is O(hmin(R,P+1)), we must have:123

sTMcu = gT cu . (26)

This must hold for any u with a Taylor series represented by arbitrary cu, so that124

MT s = g . (27)

Note that this linear system is a general form for the method of undetermined coefficients, as explained in125

[16] (Chapter 1.2): stencil weights are chosen so that the sum of Taylor series terms of the stencil exactly126

matches the Taylor series terms of the functional up to some order. In this case, we are working with127

cell averages rather than pointwise evaluations, but the principle is the same. If the neighborhood of local128

function data is chosen such that this linear system is exactly determined or undetermined, the least norm129

solution to this system is given by the pseudoinverse of M:130

s = (MT )†g . (28)

If this system is undetermined, there are infinitely many stencils that will have the same order of truncation131

error. However, there is another profitable way to view this stencil construction process that justifies using132

the least-norm stencil. Suppose we want to interpolate the data stored in the vector d with a degree P133

polynomial. If the matrix M is full rank, we can determine the coefficients of this polynomial by solving, in134

a least-squares sense, the linear system in (24):135

cu = M†d . (29)

Inserting this into (21), we have:136

G(u) = gTM†d+O
(
hmin(R,P+1)

)
. (30)
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Finally, inserting this into the truncation error expression (12):137

sTd = gTM†d =⇒ (31)

s = (MT )†g , (32)

where the implication follows from the fact this must hold for any d.138

Thus we can view our stencils as originating from either the undetermined system MT s = g, in which s139

is chosen to cancel lower order Taylor series terms, or the overdetermined system Mcu = d, in which we fit140

an interpolating polynomial to local data. This error analysis is quite general; we have made no mention of141

the shape of the volumes in the mesh, only that we know their geometric moments to sufficient accuracy.142

The interface jump conditions and boundary conditions are considered to be pieces of function data that can143

be used to build stencils near an interface or boundary. Taking the overdetermined perspective, by doing so144

we will constrain our interpolating polynomials, and therefore the numerical solution, to match boundary145

and jump conditions.146

3. Stencil Construction147

In the previous section we showed that if we approximate the solution u with a polynomial whose148

coefficients are mapped from local function data by M†, then our stencil will take the simple form (28). In149

this section we will describe in detail our method for computing the moment matrix M and the vector g of150

terms that result from operating on the Taylor polynomials approximating u. From (18) and (20), we see151

that to achieve a truncation error of order P − 1 for the two terms in (8), we need to “calculate” Taylor152

coefficients cqϕ for ϕ ∈ {u, β, α} up to order P . In this section we again drop the subscript p except where153

necessary for clarity.154

Both the linear term and the flux divergence term can be expressed as linear combinations of the Taylor155

series terms cqu, as seen in (20) and (18). For the linear term, let gα,i be the vector whose qth entry is156

gα,i [q] =
∑

|r|≤(P−|q|−2)

crαm
r+q
i . (33)

Applying (32), we have that a stencil for the linear term is given by:157

sα,i = (MT
u,i)

†gα,i (34)

where the subscript α, i indicates a stencil for the linear term, ⟨αu⟩, over cell i. For the integral of β∇u · n̂158

over a face A, we let gβ,A be the vector whose qth entry is159

gβ,A [q] =
∑

|r|≤(P−|q|)

crβ

(
qxm

q+r−ex

A,x + qym
q+r−ey

A,y

)
. (35)
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A stencil for the flux surface integral (16) is then given by:160

sβ,A = (MT
u,i)

†gβ,A . (36)

Each entry in gα,i involves the Taylor coefficients of the α field, and likewise each gβ,A entry of involves the161

Taylor coefficients of the β field. We must generate these coefficients for each volume V , which can be done162

with the same moment matrix formulation that we use to compute the Taylor coefficients cu.163

Recall that α is given as point values at the centroids of cells. Let Np,i be some neighborhood of cells164

jk ∈ {j1, . . . , jn} in phase p around volume Vp,i. A cell Vp,j in this neighborhood has centroid xp,j, with165

αp,j = α(xp,j). Our function data will consist of αp,j at each point jk in the neighborhood, which we compile166

into the vector dα,p,i. Let Mα,p,i be the variable coefficient interpolation matrix whose rows consist of167

monomials in the Taylor expansion of α evaluated at xp,j:168

Mα,p,i [k,q] = xq
p,jk

. (37)

Letting cα,p be the vector of Taylor series coefficients, we have169

cα,p = M†
α,p,idα,p,i . (38)

We can do the same for β to calculate cβ,p.170

Therefore we have that:171

gα,i = Gα,iM
†
α,idα,i , (39)

where Gα,i is the matrix whose q, r entry is mr+q
i . Combining this with (34), we can finally write:172

sTα,i = dT
α,i(M

†
α,i)

TGT
α,iM

†
u,i . (40)

This stencil is bilinear in α and u, which is appropriate for the bilinear functional we are trying to173

approximate. We can obtain a similar formulation for the flux stencil sTβ,A for each face A of the cell. Thus174

constructing stencils is just a matter of constructing the moment matrices for u, β and α. We now describe175

how to construct moment matrices at, near, and away from the interface.176

3.1. Moment Matrices177

We partition our cells into three subsets: cut cells ΩC , irregular cells ΩI , and regular cells ΩR. Cut cells178

are intersected by the EB. Irregular cells are not intersected by the EB, but at least one cell in the stencil179

footprint for a regular cell is intersected by the EB. See Figure 2. The method for constructing the moment180

matrices is different for each of these three types of cells.181

9



Figure 2: For the P = 2 scheme, the regular cell footprint is a standard five-point Laplacian, and if any point in the footprint

is a cut cell, it is then “irregular.” Cut cells are shown with dark shading, irregular cells with light shading, and the remaining

white cells are “regular.”

x

(a)

x6 x5y x4y2 x3y3 x2y4 xy5 y6

x5 x4y x3y2 x2y3 xy4 y5

x4 x3y x2y2 xy3 y4

x3 x2y xy2 y3

x2 xy y2

x y

1

(b)

Figure 3: Figure (a) shows increasing footprints for the moment matrix for P = 2, 4, 6 schemes with increasingly lighter shades.

The footprints “support” the corresponding (same shading) even monomial terms in Pascal’s triangle, (b). As explained in

section 3.1.1, odd moments of order P are not needed to achieve order P truncation error. In addition, we require at most

order P − 1 monomial terms for the coefficient β. The cell face Ai−ex is marked with a red x, and the the dashed, dotted, and

solid blue outlines (for P = 2, 4, 6, respectively), show the footprint for the modified moment matrix Mβ,Ai−ex
in (42). The

corresponding dashed, dotted, and solid blue boxed monomials in (b) show the order P − 1 terms that are supported by these

footprints.

10



3.1.1. Regular Cells182

The vast majority of cells will be regular and will all have the same bilinear stencil, meaning we only183

have to solve for this stencil once. Since regular cells are squares, the integral of any monomial error term184

with odd degree over a regular cell is 0. This means that for the the flux divergence term, in regular cells185

we can achieve a truncation error of order P using an order P polynomial. We can achieve an order P cell186

averaged linear term with an order P − 2 polynomial.187

Furthermore, we do not need to calculate all of the Taylor polynomial coefficients up to a given order: if188

P is even, then the highest order Taylor series coefficients that we need are those cq such that |q| = P and189

qx, qy are both even. This follows from the fact that our operator does not involve any mixed derivatives:190

if |q| = P for P even, then if qx is odd, qy must be as well, so taking derivatives in only one of the191

dimensions will leave at least one of these powers odd. Although we will get even cross terms from the192

flux divergence, the even cross terms that arise from combining derivatives of odd order P moments with193

lower order moments are on the order P and are therefore not needed. These cancellations are typical for194

centered finite differences, but here they arrive through symmetries in moments and polynomial coefficients.195

As shown in Figure 3, these coefficients can be supported with a stencil footprint consisting of cells whose196

centroids are a Manhattan distance of P
2 h from the center cell. The columns of the moment matrix Mu,i197

correspond to all monomials with either |q| < P or |q| = P and qx, qy are both even. Each row is simply198

the cell-averaged moments mT
j for each cell j in the stencil, and the resulting matrix is square.199

For the matrices Mα,i and Mβ,i we use the same footprint as Mu,i. Construction of sα,i is then straight-

forward. The flux divergence term is slightly more complicated. For each of the four faces of the cell Ai±ed
,

if we can use the same flux stencil on each cell’s face, then the stencil will guarantee conservation, that is

that its contribution to one cell will be the negative of its contribution to its neighbor sharing the same face.

For example, consider the face Ai−ex
, the left hand vertical face of the cell. For the unit normal, we have

n̂x = −1 and n̂y = 0, so (18) reduces to the simpler form:

∫
Ai−ex

β∇u · n̂ dA =
∑

|q|≤P

 ∑
|r|≤(P−|q|)

crβ

(
−
∫ h

2

−h
2

qx

[
−h
2
, y

]q+r−ex

dy

) cqu + O(hP+1) , (41)

meaning the integral in parentheses is only non-zero if qx > 0 and qy + ry is even. In addition, for accuracy200

requirements we only need moments with |r+ q− 1| < P . This means we do not need to calculate any201

coefficients crβ such that |r| = P ; in other words, an order P − 1 Taylor approximation to β will suffice.202

Formally, we can multiply the matrix Mβ,i on the left and right by matrices that zero out the proper columns203

and rows, giving us the modified moment matrix:204

Mβ,Ai−ex
= PLMβ,iPR , (42)

where PR eliminates all columns corresponding to moments with order greater than P−1, as well as columns205

corresponding to moments of order P − 1 such that qy is odd. PL eliminates rows that are not necessary206
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N−,i

(a)

V+,j

V−,k
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N−,k

(b)

Figure 4: Figure (a) shows neighborhoods N±,i used to construct interpolation matrices for order P = 2, around cut cell i,

which contains two volumes V±,i bordering the interface. Figure (b) shows neighborhoods surrounding full cells j and k that

don’t contain the interface, but are “irregular,” meaning the regular stencil for order P = 2 would be inconsistent (Oth-order).

to support these moments. We can likewise adjust dβ,i and Gβ,i to account for these modifications. The207

contributions from cqu are already symmetric about the face because they all represent centered differences.208

This process results in a flux stencil footprint consisting of all cells whose centroids are a Manhattan distance209

of P−1
2 h from the centroid of the face Ai−ex

(see Figure 3). However, these simplifications to achieve the210

minimal stencil footprint rely on symmetry arguments, so they do not apply generally to irregular and cut211

cells.212

3.1.2. Irregular Cells213

Let cell i be an irregular cell in phase p, meaning its regular cell footprint contains at least one cell214

which is intersected by the EB. This invalidates the truncation error analysis for the regular cell stencil,215

so we adopt a more general method for construction of moment matrices for irregular cells. Let Np,i be a216

neighborhood of cells in phase p around cell i (see Figure 4(b) ). Our data vector du,p,i will consist of cell217

averaged values ⟨u⟩j for each cell j ∈ Np,i. Each row of the corresponding moment matrix Mu,p,i will simply218

be mT
j , the row of cell averaged volume moments for each cell j :219

Mu,p,i[j,q] = mq
p,j , du,p,i[j] = ⟨u⟩j . (43)
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For irregular cells, the moment matrices Mα,p,i and Mβ,p,i are identical, and are given by:220

Mβ,p,i[j,q] = Mα,p,i[j,q] = xq
p,j , (44)

dα,p,i[j] = α(xp,j) , dβ,p,i[j] = β(xp,j) . (45)

The columns of these moment matrices consist of all moments up to order P . We form one of each of the221

matrices Mu,p,i and Mα,p,i per irregular cell and use a different matrix Gβ,p,i±ed
for each face to create a222

stencil sTβ,i for the flux integral along a face, where:223

Gβ,p,i±ed
[q, r] = qxm

q+r−ex

p,i±ed,x
+ qym

q+r−ey

p,i±ed,y
(46)

sTβ,i = dT
β,p,i(M

†
β,p,i)

TGT
β,p,i±ed

Mu,p,i . (47)

For the linear term, our stencil is given by (34).224

3.1.3. Cut Cells225

In cut cells, the moment matrix is additionally used to enforce jump conditions. When interpreted as an226

overdetermined system, our interpolating polynomials are being constrained to satisfy interface matching227

conditions. Alternatively as an underdetermined system, we use jump conditions as data to cancel truncation228

error terms. It is necessary to enforce these jump conditions so that our discrete operator is not degenerate.229

Let Np,i be two neighborhoods of cells in their respective phases around the cut cell i. See Figure 4 (a).230

As with irregular cells, we can form two moment matrices Mu,p,i and data vectors du,p,i of cell averaged231

values. For each cut cell j inN+,i∪N−,i, we want to enforce the two jump conditions (9) and (10). Expressing232

these in terms of moments and Taylor coefficients, we have233 ∫
AB,j

u+ − u− dA =
∑

|q|≤P

(cqu,+ − cqu,−)m
q
B,j +O(hP+2) , (48)

and for the jump in the flux:∫
AB,j

(β+∇u+−β−∇u−)·n̂ dA =
∑

|r|,|q|≤P

(
crβ,+c

q
u,+ − crβ,−c

q
u,−
) [
qxm

q+r−ex

B,j,x + qym
q+r−ey

B,j,y

]
+O(hP+1) .

(49)

These expressions are both linear in the coefficients cqu,p, and they couple both sets of coefficients by inter-234

polating u+ and u− simultaneously. The resulting matrices MJ,+,i and MJ,−,i have rows with the jump235

condition expressions and columns corresponding to cu,+ and cu,−, respectively. The vector dJ,i consists of236

the given jump condition data. Finally we form the moment matrix Mi which is defined as:237

Mi =


Mu,+,i 0

0 Mu,−,i

MJ,+,i MJ,−,i

 , (50)
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and we solve for both sets of coefficients simultaneously:238

cu,+
cu,−

 = M†
i


du,+,i

du,−,i

dJ,i

 =
[
(M†

i )V (M†
i )J

]
du,+,i

du,−,i

dJ,i

 = (M†
i )V

du,+,i

du,−,i

+ (M†
i )JdJ,i . (51)

If values in dJ,i are nonzero, then forming a stencil using these coefficients will result in adding a scalar to239

the right hand side ⟨f⟩p,i. For example, for the linear term we would have:240

sTα,p,i =
[
dT
α,p,i(M

†
α,p,i)

TGT
α,p,i(M

†
i )V

]
+
[
dT
α,p,i(M

†
α,p,i)

TGT
α,p,i(M

†
i )JdJ,i

]
, (52)

where the second term in brackets is a scalar. To form the moment matrices Mα,p,i and Mβ,p,i, we can just241

use the same neighborhoods as the Mu,p,i; we do not need to couple these systems because there are no242

external constraints on the jumps in coefficients.243

3.1.4. Conservation244

For each cut cell and irregular cell, we have shown how to obtain a stencil for
∫
A
β∇u · n̂ dA on each245

face A of any cell. However, in order to have a conservative method, we must have only one flux stencil per246

non-EB face. A simple solution to this problem is to average the flux stencils between pairs of neighboring247

irregular and cut cells. Although this results in larger stencils, it has the advantage of coupling a layer of248

irregular cells to the interface jump conditions. This is because the irregular cell stencils that border cut249

cells will share stencil information with cut cells, which incorporate interface jump conditions. We reiterate250

that this is not a significant issue because the density of the linear system is dominated by the size of the251

regular cell stencil. For regular cells we do not have to average with neighbors because our flux stencils were252

created individually for each face and are symmetric about that face. At a cell face which is shared between253

an irregular and regular cell, we use the regular cell flux stencil.254

3.2. Neighborhood Selection and Weighting255

In general, neighborhoods need to be chosen so that resulting moment matrices are overdetermined. So256

as to not perform some sort of search based on local geometry, we opt to make the neighborhood sufficiently257

large to accommodate a reasonably smooth geometry. For any irregular or cut cell in phase p, we let Np,i be258

those cells in phase p that lie in the the square of cells with side length 2P +1 surrounding cell i. See Figure259

4. As is done in [12] and [17], we employ a weighted least-squares approach to force stencil weights to decay260

with distance faster than the growth of the highest polynomial term. To each piece of data in d we assign261

a weight that is inversely related to its distance from the centroid of volume Vp,i. If δj is this distance, then262

the corresponding row of the moment matrix and d are multiplied by wj, where263

wj =
1

(1 + δj)P+1
, (53)
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where P is the order of the scheme. This forms a diagonal weight matrix W, which gives us the weighted264

least-squares solution:265

cu = (WM)†Wd . (54)

This weighting does not affect the truncation error: with some matrix algebra we can see that this weighted266

least-squares solution is equivalent to a change of basis in the undetermined formulation:267

s = W
(
MTW

)†
g =⇒ (55)

MTWW−1s = g . (56)

Since MT s = g still holds, the truncation error is unaffected by the weighting. This has proved to be an268

effective tool for controlling the spectrum and conditioning of the discrete operator; see [12]. We compute269

the pseudoinverse using the SVD algorithm in LAPACK [18].270

3.3. Solver and Software Implementation271

We assemble the stencils to form the linear system272

Lu = f + r , (57)

where r represents the contribution to the right hand side from the jump conditions. Following [12], we273

precondition this system by left multiplying with the diagonal matrix whose (i, i) entry is |Vi|
h2 ; i.e. we274

multiply each row by the volume fraction of that cell. This simple preconditioner eliminates the volume275

scaling associated with very small volume fractions.276

We solve the linear system using Krylov subspace methods and preconditioners provided by the PETSc277

library [19], [20]. Since the linear system is non-symmetric, we use BiCG-Stab or GMRES. We have ex-278

perimented with the PETSc algebraic multigrid and block Jacobi preconditioners. One of these options is279

typically sufficient, but if they fail, we use the direct solver SuperLU [21]. In future research we will develop280

a geometric multigrid preconditioner similar to that in [8] or [22]. Our method is well-suited for geometric281

multigrid because the Taylor series formulation makes interpolation straightforward. However, we emphasize282

that an efficient solver is not the focus of this particular paper. The algorithm is implemented using the283

Chombo software library [23], which allows for large-scale parallelization of the algorithm. Visualizations284

are created using VisIt [24].285

4. Numerical Tests286

We validate our method with a series of numerical tests. The goals of this section are to:287

1. Validate the truncation error analysis and measure the solution error,288
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2. Demonstrate consistent accuracy for problems with large coefficient and solution jumps, and289

3. Demonstrate convergence on non-trivial interface geometries.290

Although our scheme is designed to be have arbitrary order of accuracy, we have evaluated it for just291

P ∈ {2, 4, 6}. We measure the error ⟨e⟩i as discrete cell averages, and evaluate it using discrete Lp norms:292

∥e∥1 =

∫
Ω

|e|dV =
∑
p,i

∣∣∣⟨e⟩p,i∣∣∣ |Vp,i| (58)

∥e∥∞ = max
p,i

⟨e⟩p,i . (59)

We note that we are primarily interested in the convergence of the error; the actual magnitude of the error is293

dependent on the scaling of the coefficients, solution, and source term, so it can vary dramatically between294

tests.295

4.1. Truncation and Solution Error Validation296

Our physical domain for all tests is Ω = [−1, 1]2, intersected by some interface Γ. Our first interface Γ297

is an ellipse with major axis of length π
4 and minor axis of length π

8 . The superscript + refers to quantities298

enclosed by the interface and the superscript − refers to quantities on the exterior of the interface. We test299

our discretization using the method of manufactured solutions, such that α±, β±, u± are all constructed as300

linear combinations of periodic functions pkx,ky on the square:301

pkx,ky
= cos2 (πkxx) sin

2 (πkyy) , (60)

and let kx, ky ∈ {−2,−1, 1, 2}, creating 20 total basis functions. We randomly generate different sets of302

coefficients ckx,ky
∈ [−1, 1] for each of the six functions α±, β±, u±. An exact f± is formed by applying the303

exact differential operator to u±. The variable coefficient fields are offset by a positive constant so that they304

are nonnegative everywhere. Figure 5(a) shows the solution for one particular example.305

The global truncation error e and solution error t are defined as306

e = ue − u (61)

t = (Lue − r)− Leue , (62)

where ue is the exact solution and Le is the exact operator, so that the solution error satisfies the equation307

Le = t . (63)

Note that (63) implies homogeneous jump conditions on the error; there is no contribution to the right-308

hand-side of this system from jump conditions.309

Our truncation error analysis predicts an order P − 1 truncation error in cut and irregular cells and an310

order P truncation error in regular cells. In Figure 5(b) we see that truncation error (for P = 4) is almost311
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(a)

(b) (c)

Figure 5: Results of the ellipse boundary tests for P = 4, n = 512. Plots of the (a) exact solution, (b) absolute value of

truncation error (log scale), and (c) absolute value of solution error (log scale). Note that the truncation error is concentrated

at the interface, and its influence on the solution error is much smoother after inverting the elliptic operator.
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Figure 6: Truncation error L∞ norm (a), L1 norm (b), and solution error norms (c) and (d), respectively, for the ellipse

geometry. We observe the expected rate of convergence for both quantities in both norms. The truncation error is dominated

by behavior at the interface, which because it is codomension-1 smaller, achieves one order higher in L1 norm (see Figure 5).

With regards to the magnitude of the error, for this problem the L∞ norm of the manufactured solution is O(1), so the errors

plotted in (c) and (d) can be interpreted as relative errors. The L∞ norm of the right-hand-side f is O(103), meaning the

relative truncation error at n = 32 is the same order of magnitude as the solution error at n = 32.
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entirely concentrated in cut and irregular cells. This is reflected in Figure 6(a), as the max norm of the312

truncation error converges at order P − 1, the expected rate for cells at and near the interface. However,313

the number of cut and irregular cells is of order h−1 because it is a codimension one smaller region, while314

the number of regular cells is scales like h−2. Therefore for the L1 norm we have:315

∥t∥1 =
∑

i∈ΩC∪ΩI

∣∣∣⟨t⟩p,i∣∣∣ |Vp,i|+ ∑
i∈ΩR

∣∣∣⟨t⟩p,i∣∣∣ |Vp,i| = ∑
i∈ΩC∪ΩI

O(hP+1) +
∑
i∈ΩR

O(hP+2) (64)

= O(h−1)O(hP+1) +O(h−2)O(hP+2) = O(hP ) . (65)

This is confirmed in 6 (b); we see clean order P convergence for the L1 norm of the truncation error. Given316

that the truncation error at the interface is orders of magnitude greater than truncation error elsewhere,317

the L1 norm of the truncation error is also dominated by behavior at the interface.318

Although we do not have an analytical bound on
∥∥L−1

∥∥, based on the analysis in [7] and the results319

in [12], [8], [14] and others, we expect the solution error to converge at order P in both norms. This320

behavior is shown in Figures 5(b) and (c); the solution error is roughly of the same order of magnitude321

everywhere in the domain. We plan on further analysis to explore the combined effects of the homogeneous322

jump conditions imposed on the error equation and the regularity of the elliptic operator, but the empirical323

results demonstrate the desired convergence rates.324

4.2. Discontinuous Diffusion Coefficient325

Next we test the robustness of our scheme on problems with large jumps in the diffusion coefficient, as326

is in common in the literature (see [8], [14], [11], [5]). We set the linear term coefficient α± = 0, and let the327

diffusion coefficients be constant, varying the ratio β−

β+ from 104 to 10−4. Specifically, we fix β+ = 1 and328

vary β− from 1 to 104, and vice versa. The manufactured solution is the same as in the truncation and329

solution error tests. We are interested in studying the relationship between the solution error and the ratio330

of diffusion coefficients, so we fix the grid spacing at h = 256−1. However, we introduce two geometries that331

expose different error characteristics.332

The first interface geometry is the zero level set of the function333

ψ(x, y) =
1

4
cos(πy) + x+

π

100
, (66)

which is simply a cosine in the xy plane. We impose periodic boundary conditions in the y direction and334

Dirichlet boundary conditions in the x direction. The + region is the to the right of the interface for335

this geometry. We impose Dirichlet boundary conditions by filling layers of ghost cells with exact solution336

values. In this case both phases are tied to boundary conditions, so we do not expect any significant difference337

between large and small value of β−

β+ . For the second test, we use the “annulus” interface geometry given338

in section 3.1 of [14]. This interface shape can be seen in Figures 8(c) and (e). In the former case, the +339
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Figure 7: Solution error for discontinuous diffusion coefficient tests. Figure (a) is for the cosine geometry, whereas (b) is the

annulus geometry (we only plot L1 error because the L∞ norms behave nearly identically).

(interior) phase has a relatively large coefficient ratio (104), while in the latter it is the inverse (10−4). Given340

that in these cases the − phase has domain boundary conditions while the + phase does not, we expect to341

see different error behavior as β−

β+ varies.342

For the cosine geometry, we see that accuracy is mostly unaffected by changes in the diffusion coefficient343

ratio (Figure 7(a)). In Figure 8(a) and (b), the truncation error again is larger at the interface but the344

solution error is smooth, similar to the previous tests. We observed no impact of the conditioning of the345

discretization matrix on the solution accuracy as the ratio of coefficients varies over 8 orders of magnitude.346

For the second test, instead we see that the error is about 4 orders of magnitude higher when we have the347

diffusion coefficient on the interior of the domain is much larger than the diffusion coefficient on the exterior348

of the domain (β−/β+ = 10−4). This result is consistent with results reported in Figure 2 of [8], as well as349

Figure 17b of [11]. Through potential theoretic arguments, we believe this is a result of solution errors in350

the interior region not being “tied down” to any domain boundary condition, as in the cosine test. Because351

of the gradient jump condition (3), any gradient errors in the interior are multiplied by β+/β− = 104 in352

their contribution to the exterior domain gradients at the interface, forcing the interior solution there to353

“drift” in proportion. However, with this scaling the convergence rates are still retained, but with an error354

constant reflecting this ratio in diffusion coefficients.355
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Plots of the absolute value of truncation error (left column) and absolute value of solution error (right column) for

P = 2, n = 512, on a log scale. Figures show: (a) and (b) cosine geometry with β−

β+ = 10−4; (c) and (d) annulus geometry with

β−

β+ = 104; and (e) and (f) annulus geometry with β−

β+ = 10−4. Note that the larger, rough trunction error near the interface

becomes smoother, rapidly decaying error in the solution (except (f), see text for discussion).
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4.3. Discontinuous Solution356

We perform a similar test with a solution that has large jumps at the interface. β± and u± are the357

same as in the solution and truncation error test, and we again set α± = 0. The u± fields are multiplied358

by scaling factors s± to create large jumps in the solution, and we use the same two geometries as the359

discontinuous coefficients test. We observe L1 and L∞ errors that are proportional to the larger of the two360

scaling coefficients (see Figure 9). This scaling does not magnify the error because it appears as a large361

discontinuity in the source term, as well as in the jump conditions, which both contribute only to the right362

hand side of the linear system. This test highlights the importance of the having two separate degrees of363

freedom in each cut cell, from which we are able to accurately reproduce a solution and gradients which364

jump by up to 4 orders of magnitude across the interface.365
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Figure 9: Comparison of solution maximum errors for two geometries (a) cosine, and (b) annulus, and over a range of solution

scaling ratios, fixing grid size at n = 128 cells and varying the order of accuracy P (note that the L1 error is nearly identical).

For this test, we set s− = 1 for ratios less than 1, and s+ = 1 for ratios greater than 1. Thus the solution error scales with the

larger of the two coefficients. Since the unscaled exact solution is O(1), the error relative to the scaled solution is, for example,

O(10−5) for P = 6 for all scaling ratios.

4.4. Imposing Homogeneous Jump Conditions366

Lastly, we test the ability of the method to impose jump conditions as a constraint. We let α±, β± be the367

same as in the truncation and solution error test, and use the manufactured solution u± from that test as the368

source term f±. We impose homogeneous (zero) jump conditions and focus on the annulus geometry. For369

this test we fix P = 4 and test the scheme with a variety of coefficient and source term scalings. The error370

is measured by using the n = 512 numerical solution as the exact solution, with the results in Figure 10.371
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Figure 10: L∞ and L1 norm of errors for Richardson convergence test for a variety of scaling factor ratios in linear term

coefficient, diffusion coefficient, and source term. We fix P = 4 and observe fourth order convergence in the L1 norm and

nearly fourth order convergence in the max norm. For this test, the L∞ norm of the right hand side f is O(1), so the errors for

the coefficient ratio scaling tests (β
−

β+ , α−

α+ ) can be interpreted as relative errors. For the source term scaling tests ( f
−

f+ ), the

magnitude of the relative error is 10−3 times the plotted error.

We observe roughly fourth order convergence for all tests, although there is more variation in convergence372

compared to the manufactured solution tests.373

5. Conclusion374

We have developed a finite volume method for the variable coefficient elliptic interface problem and375

demonstrated up to sixth order accurate on a variety of test problems. In developing this method we gave a376

general truncation error analysis that justifies the use of stencils based on least-squares interpolation. Our377

stencils are derived from cell-centered Taylor polynomials which are implicitly defined in terms of local values378

of the solution and interface jumps or boundary conditions, where appropriate. To enforce conservation,379

we choose a single flux on each face which is an average of the flux calculated in neighboring cells from the380

respective Taylor polynomials. In cells away from the interface, we take advantage of standard finite volume381

symmetries to build stencils with a minimal footprint.382

Future research will involve 1) extending our method to three dimensions, 2) building an efficient geo-383

metric multigrid solver along the lines of [22],1) building an efficient geometric multigrid solver along the384

lines of [22], 2) extending our method to three dimensions and 3) incorporating adaptive mesh refinement385

(AMR). The methodology of this paper is, in general, dimension independent because stencils are expressed386

through multidimensional Taylor expansions and geometric moments. Geometric quantities in three dimen-387
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sions can be calculated using the algorithm in [15]; however, we plan to extend the geometry generation388

method described in Appendix A to three dimensions as well. However, we expect significantly increased389

computational cost: there to be O(n2) cut and irregular cells in three dimensions, and for each of these cells390

we must solve a least-squares system of size O(P 3). Fortunately, the set up stage of the problem (calculat-391

ing geometric moments, solving least-squares problems, compiling stencils) is embarrassingly parallel and392

is well-suited for GPU acceleration. A significant difficulty for extending the method to three dimensions393

will be the efficiency of the solver. One possible research direction could be building a geometric multigrid394

solver. Prior works including [11] and [25] describe various strategies for multigrid smoothing, coarsening,395

and interpolation for the elliptic interface problem in the finite difference and finite volume context. Lastly,396

to apply the method to realistic problems, particularly in three dimensions, we aim to reduce computational397

cost by incorporating AMR. The authors of [26] present a methodology for pairing AMR with PETSC398

algebraic multigrid solvers and [22] provides details on a hybrid geometric-algebraic multigrid solver for a399

high-order EB, adaptive mesh discretization of the Poisson equation. The prior method presented in [12]400

accomplishes these three objectives for Poisson’s equation in more complex geometries, including boundaries401

with kinks, using “smoothed” constructive solid geometry capabilities of the Chombo software library [23].402

This would enable this method to be used in discretizations for large scale science applications.403

Finally, further exploration is also needed of the theory of undetermined stencil systems (using the404

moment matrix transpose, MT ). This paper has shown that building a stencil of a given order and truncation405

error still allows infinitely many valid stencils; this fact could be exploited to promote sparsity or alter the406

conditioning or stability of the operator, and we are drafting a paper with analysis that may provide specific407

algorithmic guidance. This research direction will be particularly useful for extending the present method to408

parabolic problems, where jumps in coefficients at the interface might lead to different numerical boundary409

errors in time.410
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Appendix A. Geometry Generation Algorithm414

We specify the interface as a zero level set of an implicit function ψ(x). Therefore, for sufficiently smooth415

ψ compared to the grid resolution, we assume we can identify cut cells by evaluating ψ at the four corners416

of each cell. If any of these values have different signs, the cell is tagged as a cut cell. If the interface417

intersects one face of the cell multiple times, or there are more than two faces intersected by the interface,418

we consider the geometry to be under-resolved and could refine the mesh or adjust the boundary without419
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inducing significant errors. Given these assumptions, when the interface intersects a cell it creates a region420

which is bounded on one side by the interface and on two or three sides by the edges of a square cell (see421

Figure 1). Volume moments (4) are defined as integrals over this region. Area moments, defined in (6)422

and (7), are integrals over the portion of the EB that intersects the cut cell. We compute these integrals423

by approximating the interface with piecewise line segments, and then apply a formula for the integral of424

monomials along line segments. The vertices of the line segments are roots of ψ, which we find using a425

simple root finder such as the secant method. By refining this interface iteratively into 2n line segments, we426

can calculate a convergent sequence mn of moment approximations that stops when |mn+1 −mn| reaches427

machine precision. The convergence of this sequence is accelerated using Richardson extrapolation, which428

in this case is often referred to as Romberg integration.429

A formula for the integral of xpyq over an arbitrary polygon can be derived from Green’s theorem:430 ∫
P

∂f(x, y)

∂x
dV =

∫
C

f(x, y)n̂xdA =

∫
C

f(x, y)dy , (A.1)

where C is the boundary of the polygon P . Let f = xp+1

p+1 y
q, giving us:431 ∫

P

xpyqdV =

∫
C

xp+1

p+ 1
yqdy . (A.2)

We parameterize each edge segment by:432

x(t) = (xk+1 − xk)t+ xk = ∆xt+ xk (A.3)

y(t) = (yk+1 − yk)t+ yk = ∆yt+ yk , (A.4)

where t goes from 0 to 1 and (xk, yk) are the ordered vertices of the polygon. The formula for the right433

hand side of (A.2) along a single line segment Ck(t) is obtained by a binomial expansion:434 ∫
Ck

xp+1

p+ 1
yqdy =

1

p+ 1

∫ 1

0

(∆xt+ xk)
p+1(∆yt+ yk)

q∆ydt (A.5)

=

p+1∑
i=0

q∑
j=0

(
p+1
i

)(
q
j

)
(p+ 1)(p+ 2 + q − i− j)

(xiky
j
k)(∆x)

p+1−i(∆y)q+1−j . (A.6)

We follow a similar procedure for area integrals:435 ∫
C

xpyq =

∫ 1

0

x(t)py(t)qdC (A.7)

=

p∑
i=0

q∑
j=0

(
p
i

)(
q
j

)
(p+ 1 + q − i− j)

(xiky
j
k)(∆x)

p−i(∆y)q−j∆C , (A.8)

and to calculate area integrals times unit normals we multiply equation (A.8) by nx =
∆y

∆C
or ny =

−∆x

∆C
,436

where ∆C =
√
∆x2 +∆y2. (The tangent vector is rotated 90 degrees clockwise). The integrals of interest437

are obtained by adding the integrals along all line segments of the polygon in the case of volume moments,438

or just along the interface in the case of area moments.439
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