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ABSTRACT OF THE THESIS

Blind Source Separation of Speech Signals: Exploiting Second Order Statistics

by

Vishaal Madanagopal

Master of Science, Graduate Program in Electrical Engineering
University of California, Riverside, March 2018

Dr. Yingbo Hua, Chairperson

Blind source separation is a popular technique which is used in the fields of signal processing,

audio, video and image processing. BSS is used to separate the mixed signals with only

knowing the mixed signals and knowing very little about original signal characteristics. The

separated signals should be very good approximations of the source signals. In particular,

the blind source separation algorithm tries to estimate the Mixing Matrix. In my thesis,

I have studied the blind source separation of signals based on its second order statistics.

The problem of blind source separation is studied considering the following cases: when

the signal is modelled as non-stationary, cyclo-stationary and quasi-stationary. A closed

form solution to the blind source separation of speech signals considering speech to be a

quasi-stationary source is studied and implemented.
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Chapter 1

Introduction

Blind source separation is a unique problem where we know very little about the

source signals or the mixing matrix, but rather we only have the output signal which is

available for further processing and separation. The cocktail party problem is conceptually

similar to what the blind source separation attempts to do. The cocktail party effect is

the phenomenon of the brain’s ability to focus one’s auditory attention on a particular

stimulus while filtering out a range of other stimuli. It is typical to the brain’s function in

Figure 1.1: Blind source separation problem with two sources
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Figure 1.2: Blind source separation problem with N sources

eliminating the external sounds that contribute to unwanted stimuli( which are the sounds

that are not of interest). In this way, the blind source separation also identifies only that

source signal whose characteristics are more dominant at the time period of interest. The

problem can further be refined to a set of sources and microphones separated in space.

Each of these microphone receive the signal from all the sources, but there will be only

one source whose statistic will dominate at the sensor in the time period of interest. Fig

1.1. illustrates the multi-microphone array set up for two sources and two microphones.

Speaker 1 and Speaker 2 speak at the same time instant and their respective signals are

received at each microphone. However, only one of the source characteristic is dominant at

either microphone. This is the simplest possible set up of multi-microphone array system.

However, the system of interest to us is described in Fig.1.2. This system has a total of

M sources and N sensors. Blind source separation is used to identify the dominant source

at the microphone during the time period of interest. There are a variety of approaches

which have been proposed over the years for the blind source separation problem. The

solution reviewed and implemented as a part of my thesis will have a set up similar to the
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one shown in Fig.(1.2). It would have M sources and N sensors. It would focus mainly on

the assumption that the speech signals are quasi-stationary and will exploit the values of

the second order statistics of speech signals. An estimate of the mixing matrix is obtained

which follows from the closed form solution proposed in [9].

Chapter 2 would elaborate the problem statement in detail, listing a few existing modelling

techniques for the speech signal and also giving a much more concrete parallel between the

blind source separation problem and the cocktail party effect. It would also briefly describe

speech acquisition models.

Chapter 3 would focus on the review of previous works that have been done on blind source

separation of speech. This involves a brief description of the previous works in the area

of blind source separation, considering speech to be a non-stationary source [20] (or) a

cyclo-stationary source [2]. However, the solution reviewed as a part of my thesis work will

illustrate the blind source separation problem under the assumption that speech is quasi-

stationary signal.

Chapter 4 reviews a closed form solution to the blind source separation of speech signals,

considering speech to be a quasi-stationary signal [9]. This assumption along withe local

dominance assumption is used to implement a closed form solution to the BSS problem.
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Chapter 2

Blind Source Separation of Speech

Signals

2.1 The cocktail party effect

Human beings, in particular, the human ears have an ability called binaural pro-

cessing (or) binaural hearing[3]. This is the ability of the human ears to focus on one

particular sound source even when it is in an environment where there are a lot of sound

sources. This can be explained considering the environment of the cocktail party problem,

where there are two people talking to each other. There are also many other people who

would have visited that party, however, when the two people are talking to each other, both

of them have the ability to focus only on what the other person has to say. This is known

as the cocktail party effect and the ability of the human being(the human ear’s ability) to

do this is known as binaural processing. We can model this to a system which has the
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following characteristics:

• An acoustic sensor array In the example described above, there are two sensors,

namely the ears of the two people who are in conversation.

• A computational processing system Most auditory models allow for several layers

of signal processing considering how the information has to pass from the ear which

does lower order computations on the signals that it receives to the brain that does

much more complex signal processing with pattern recognition to perceive the speech.

There have been a lot of research going on to try an replicate this ability of the human ear(&

brain) to a wide range of problems. One of the most widely researched areas in this aspect

is its application to multi-microphone array processing, automatic speech recognition and

natural language processing[3]. Potential commerical devices which could benefit from this

include: Amazon Alexa, Siri, Google Personal Assistant and so on. Some other potential

applications include audio teleconferencing systems and automobile speakerphones. Some

of the other applications of blind source separation[7] in the scope of signal processing in

other fields include:

• Machine Monitoring Signal separation can be used to identify potential mechan-

ical failures by isolating the acoustic feature(in this case: the sound emitted by a

mechanical device during damage) from an environment consisting of a mixture of

other sources including other potentially normal working parts.

• Medical diagnosis Many medical devices often are used to read a lot of signals from

the human body(eg.EEG signals, ECG signals). Signal separation can be used to
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separate that signal of importance that can be tied to a particular bodily function

(or) stimuli that may be present. This would probably prevent misdiagnosis due to

influence of noise in the system.

• Musical Performance This is a particular application which can be used typically

in recording musical performances to focus only on particular instrument sounds and

voices in the recordings. This would in particular be used to amplify the sound of a

particular instrument, say maybe a percussion which needs to be a little louder than

usual.

• Bio-informatics Micro-Array data is a rather useful form of encapsulating the in-

formation presented in DNA and protein expression data. Blind source separation in

multi-microphone array representation can potentially be used to separate the Gene

or sequence of importance, to represent rather long sequences, detection of periodicity,

clustering and classification of genes.

• Seismic Monitoring Long term prediction of seismic activity is often something

that can be done in principle of how the tectonic plates of the earth move about.

However, the problem of short term prediction is often not that simple. One of the

things which usually characterizes an earthquake are modelled as a acoustic system

with the signals of interest being acoustic waves and acoustic gravity waves and how

they are propagated through the ionosphere. Blind source separation techniques can

be used to isolate these signals. Thereby, we can predict the earthquake even a few

hours before they occur.

In addition to this, blind source separation can also be used in a gamut of other applications
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such as :

• Source (or) Feature Detection in video

• Fraud detection in banks and so on

The rest of this chapter would focus on establishing a correlation between the blind source

separation problem in speech and the cocktail party problem by defining an outline to the

blind source separation problem and examining its similarities and differences from the

cocktail party problem.

2.2 Blind Source Separation of Speech Signals

2.2.1 Problem structure and analogies to cocktail party effect

The authors in [7] define the problem statement of a standard BSS task and relate

it to the cocktail party problem defined in the previous section. First, we consider the

source signal vector sequence given by s(k) = [s1(k)s2(k)...sm(k)]T where m is the number

of sources and si(k) is the ith source signal, which in the cocktail party problem would

correspond to a sampled version of the signal measured at its source position. These signals,

then pass through a mxn LTI system which has an impulse response Ai. where 0≤i≤ ∞,

which would give us the signal that is being measured.

x(k) = [x1(k)...xn(k)]T =

n∑
i=0

Ais(k − i) (2.1)

The entries of each (nxm) matrix Ai is deteremined by a number of things which include

source locations, the sensor locations and the acoustical properties and so on. We group all of
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Figure 2.1: Block diagram of the convolutive BSS task

these properties and their impacts into a single value represented as en entry of the matrix

Ai. The mixing model is termed convolutive because the model represented in eq.(2.1)

describes a multi-channel discrete time convolutive process. This is shown schematically in

the Figure (2.1).

The term “blind” in the convolutive BSS task refers to the fact that other than gen-

eral linear form of the source signals and the mixing system, we often know very little about

them. Since, even in the absence of the knowledge about the source signals, their exact

temporal(or) statistical properties is available, the blind source separation is a much more

preferred and better alternative to the other traditional array processing methodologies.

Another assumption made which is consistent to the previous works and my implementa-

tion would be that n≥m. i.e. the system is overdetermined. The multi channel- linear

representation of such a system can be given below as follows:

y(k) =
∞∑
t=0

Blx(k − l) (2.2)

The sequence of the matrices describe the separation system and the output vector sequence

y(k) contains the estimate of the individual source signals. Now that we have described the
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model, from the model intuitively used in binaural processing of speech in the human body,

it is also imperative to describe certain differences between the two models(see [7]). They

are as listed below :

• The processing model used in traditional convolutional BSS is in linear form, however,

we do not have any idea of whether the model in binaural processing is linear or not.

• The number of sources m is no greater then the number of sensors n, which may not

always be the case when it comes to binaural processing

• The content of the signals does not play any leverage when it comes to blind source

separation of speech, however, intuitively the content of the speech signal does play a

key factor when it comes to binaural processing of speech bu the human ear.

Considering all of the definitions and assumptions made over the course of this chapter, our

next focus would be to define the goal of the BSS algorithm and assumptions made in this

regard.

2.2.2 Goal of Convolutive BSS

The overall goal of the convolutive BSS as stated by the authors in [7] :

“ Adjust the impulse response of the demixing system such that each output signal yi(k)

contains one filtered version of each source signal sj(k) without replacement and loss of

information”.

Mathematically, this can be represented as

yi(k) =
∞∑
t=0

dijlsj(k − l), 1 ≤ i, j ≤ m (2.3)
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Moving forward, the following assumptions are being made,i.e., the mapping from j− >i is

arbitrary and the signal values,i.e. the entire signal length at a particular instant represented

by the sequence dijl satisfies the following condition represented as

∞∑
l=0

dijle
iωl 6= 0, |ω‖ ≤ π

for each valid pairi,j which would satisfy the above condition, where i=
√
−1. The convo-

lutive BSS task does not make any assumptions about the temporal characteristics of the

source signals, however it does make the following assumption about the source signal as

detailed by the author in [7]:

Main Assumption: Each si(k) is statistically independent of each sj(l), for all i 6=j, all k

and all l.

This assumption also implies that, for any two samples s1 = si(k) and s2 = sj(l) from any

two different source signals within the mixtures, the joint probability density function(p.d.f.)

of s1 and s2 can be factored into the marginal p.d.f.’s as

ps1,s2(s1, s2) = ps1(s1)ps2(s2) (2.4)

When we look at BSS, statistical independence is a necessary condition, although it alone

is not sufficient [7]. Another interesting thing to note is that the statistical independence

of the two source signals is represented by the joint p.d.f’s as the criteria(see[7]). We would

proceed to look at pdfs and other criteria, which may be of use for BSS, in the next chapter.
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2.3 Criteria for Blind Source Separation of Speech

The performance of the blind source separation algorithm to a large extent on

the criteria based on which the signal is split. We already discussed the density based

criteria in the form of pdfs in the previous section. Convolutive BSS criteria can be split

into one of the three groups (see [7]) : i)Density modelling criteria, ii)Contrast functions,

iii)correlation-based criteria.

Density modeling criteria

This criteria leverages a lot on the concepts from information theory. The amount

of shared information between two signals is an important property which can be exploited

for BSS. Intuitively, we can say that separation is possible if and only if there is no shared in-

formation between any two set of signals. The amount of information that is shared between

two sets of signals is essentially characterized by making use of the Kullback Liebler diver-

gence method which is a way of comparing two distributions, a true/actual distribution and

an arbitrary/model distribution(see [7]) . The divergence can be modelled mathematically

as shown below.

d(py||p̂y) =

∫
py(y)log(

py(y)

p̂y(y)
)dy (2.5)

where py(y) and p̂y(y) are the trueactual and the model distributions respectively. We can

write the above equation using expectation formulation E{.} as:

d(py||p̂y) = E{log(
py(y)

p̂y(y)
)} (2.6)
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The choice of p̂y(y) is governed by the assumptions on and a priori knowledge of s(k). If all

the si(k) are identically distributed for all i, then we get an approximation as shown below

p̂y(y) =
m∏
i=1

ps(yi) (2.7)

which can be used to obtain a maximum likelihood(ML) estimate of the demixing matrix

B. The model can further be fine tuned with other considerations to get a better estimate

of the demixing matrix B.

Contrast Functions

A contrast function identifies when one output yi(k) contains elements of only

one source signal sj(k). The main goal in this approach would be to find such a function

that depends only on yi(k) and not on the mixing conditions(see [7]). If we consider the

combined system matrix C as a product of the mixing matrix A and an estimate B such

that C=AB, then we can express the ith extracted output signal in terms of the elements

cij of C as(see[7])

yi(k) =
m∑
j=1

cijsj(k) (2.8)

The contrast function is defined in [7] as follows:”A contrast function is a cost function

Φ[yi(k)] for which a local maximum over all elements of cij ,1 ≤ j ≤ m corresponds to the

separated solution.”

cij =


dl, for a single value of l, 1 ≤ l ≤ m

0, otherwise

(2.9)
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In practice, this cost function is expressed in terms of the elements of the separation

matrix B for which the optimization takes place. In the contrast based BSS, the following

criteria need to be satisfied. That is the contrast function must obey the following 2 rules(see

[7]).

• The contrast function must be simple to evaluate

• The contrast function must identify a separated result for the given source signal

statistics through its maxima.

Like density based BSS, contrast based BSS also rely heavily on the spatial independence

and non-Gaussianity of the source signals to perform separation. Significant knowledge

about the source signal p.d.fs is not required in the case of contrast based criteria(see[7]),

hence it is a better choice than density based criteria.

Correlation-Based Criteria

Both the density based BSS and the contrast based BSS approach employ non-

quadratic criteria.Whenever, non-quadratic criteria is used, we often need to make use

Convergence speed is often an issue in these cases, especially when we are dealing with

audio signals as in the case of speech. In [17], the authors have proposed an approach

for blind source separation where instead of making use of the density based criteria and

the contrast based criteria, they use an approach which employs the correlation of the

measured signal x(k) at different time instants. The assumption here is the source signals

measured are statistically independent and stationary but temporally correlated, such that

13



the correlation matrix

Rxx(k, l) = E{x(k)xT (k − l)} (2.10)

exhibits a unique eigenvalue structure fo at least two different time lags l=l1 and l=l2. Note

that

Rxx(k, l) = AE{x(k)xT (k − l)}AT (2.11)

where the matrix E{x(k)xT (k − l)} is diagonal due to the independence of the

source signals. Define the normalized matrix as follows:

R(l1, l2) = Rxx(k, l1)[Rxx(k, l2)]
−1 = AEs(k)sT (k − l1)AT [AEs(k)sT (k − l2)AT ]−1

(2.12)

This simplifies down to AΛ(l1, l2)(A)−1, where we have defined Λ(l1, l2) = E{s(k)sT (k −

l1)}[E{s(k)sT (k − l2)}]−1. Since

Λ(l1, l2) is diagonal, the above equation can be written in the form of an eigen value

decomposition of R(l1, l2), where the mixing matrix A contains the eigenvectors of this

matrix. Thus, we can determine A from R(l1, l2), using well known eigen value procedures

from which the separation matrix B can be found by simply inverting the mixing matrix

A. Joint Diagonalization is often used in conditions where the matrix inversion is very

challenging. The efficiency of the blind source separation algorithm is also limited by the

following aspects in addition to the ones already mentioned:

• Because the convolutive mixing is a linear process, a multi-channel linear system

is sufficient to perform separation. Choice of filter is of critical importance to the

algorithm’s performance.
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• Of all possible implementations, the FIR implementations represent the ideal candi-

dates due to their simplicity and guaranteed stability. Using block implementations

th complexity can be made as efficient as O(log2L) where L is the system’s filter

length(see[7]).

• Room Reverberation In an ideal environment, there will not be much multipath

due to deflections from obstacles. However, source separation is mostly(practically)

performed in an environment emulating a room. Hence, we need to take into account

the reverberation that takes place which may lead to multi-path propagation. The

system in consideration needs to take this into account(see [7]).

• Stability of the separating system Most convolutive methods use adaptive pro-

cedures for adjusting the system parameters and the system must remain Bounded

Input- Bounded Output stable during adaptation.

• Computational Complexity Room reverberation often adds to the signal being

reflected off multiple paths and therefore leads to dispersive effect of the signal. This

would lead to potential delays in the signal which may in turn result in the system

having an impulse response which would be thousands of taps long to get a good

estimate.

2.4 Signal Models

Now, that we have discussed how to model the signals to extract useful information

from them for comparison, we would go on to define how acoustic problems in nature can be

15



modelled. There are many ways in which the problems in nature can be modelled, however,

the one of importance to us in this case is based on the number of inputs and the number of

outputs that are there in the system, i.e, the number of sources and the number of sensors

in the system. This would lead to the following four types of calculations as mentioned

below(see [12]).They are

• Single-Input Single-Output {SISO} model

• Single-Input Multiple-Output {SIMO} model

• Multiple-Input Single-Output {MISO} model

• Multiple-Input Multiple-Output {MIMO} model

The sections that follow would illustrate the representation of each model as a

system that performs convolution, a block diagram representation of the transfer functions

of the system and the z transform representation of the transfer function.

2.4.1 SISO Model

The output signal in the SISO model is given by

x(k) = h ∗ s(k) + b(k) (2.13)

where h is the impulse response, the symbol represents the linear convolution operator,

s(k) is the source signal vector and b(k) is the additive noise vector. Here, we assume that

the system is linear and shift invariant, which are routinely used for formulating acoustic

signal problems(see [12]). This model can be schematically represented as follows:
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Figure 2.2: Block diagram of a model Single Input Single Output(SISO) system

Figure 2.3: Block diagram of a model Single Input Multiple Output(SIMO) system

In the vector/matrix form, the SISO signal model is written as

x(k) = hT s(k) + b(k) (2.14)

where h=[h0 h1 h2 ... hL−1]
T and s(k)=[s(k) s(k − 1) ... s(k − L + 1)]T where h is the

impulse response, the symbol represents the linear convolution operator, s(k) is the source

signal vector and b(k) is the additive noise vector. Here, we assume that the system is linear

and shift invariant, which are routinely used for formulating acoustic signal problems. This

model can be schematically represented as follows:

17



Figure 2.4: Block diagram of a model Multiple Input Single Output(MISO) system

Figure 2.5: Block diagram of a model Multiple Input Multiple Output(MIMO) system
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In the vector/matrix form, the SISO signal model is written as

x(k) = hT s(k) + b(k) (2.15)

where h=[h0 h1 h2 ... hL−1]
T and s(k)=[s(k) s(k − 1) ... s(k − L + 1)]T . Using the z

transform, the SISO signal model can be described as follows:

X(z) = H(z)S(z) +B(z) (2.16)

where X(z),S(z) and B(z) are the (z)-transforms of x(k),s(k) and b(k) respectively,

and H((z))=
∑L−1

l=0 hlz
−1. A schematic representation of the SISO model is given in Fig.

2.2.

2.4.2 SIMO Model

The diagram of a single input multiple output (SIMO) model is shown in Fig.2.3(see

[12]). There are N output sources which are obtained from the same sound source and the

nth output is expressed as:

xn(k) = hTns(k) + bn(k), n = 1, 2, ......, N (2.17)

where xn(k), hn and bn(k) are defined as in the case of a SIMO model in the previous

subsection and L is the longest channel impulse response in the SIMO system. A more

comprehensive expression of the SIMO model is given as

x(k) = Hs(k) + b(k) (2.18)
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where x(k)=[x1(k)x2(k)......xN (k)]T and H =



h1,0 h1,1 . . . h1,L−1

h2,0 h2,1 . . . h2,L−1

. . . . . .

. . . . . .

. . . . . .

hN,0 hN,1 . . . hN,L−1


NXL

and b(k)=[b1(k) b2(k) ... bN (k)]T . The SIMO model can be expressed in the z-transform as

X(z) = H(z)S(z) + B(z)(k) (2.19)

where X(z)=[X1(z)X2(z)...XN (z)]T ,H(z)=[H1(z)H2(z)...HN (z)]T , andHn(z) =
∑L−1

l=0 hn,lz
−l,

n = 1, 2, ...., N, B(z)=[B1(z)B2(z)...BN (z)]T

2.4.3 MISO Model

The diagram of the Multiple Input Single Output(MISO) model is as shown in the

Fig.2.4(see [12]). In this type, there are m sources whose signals are grouped to one in the

output as :

x(k) =
M∑
m=1

hTmsm(k) + b(k) (2.20)

where h = [hT1 h
T
2 ... h

T
M ]T and hm=[hm,0 hm,1 hm,2 . . . hm,L−1 ]T and s(k) = [sT1 (k) sT2 (k)

... sTM (k)]T and sm(k) = [sm(k) sm(k − 1) . . . sm(k − L + 1)]T . In the z-transform, the

above model would look like

H(z) = [H1(z)H2(z)...HM (z)]T , (2.21)

where each Hm(z) =
∑L−1

l=0 hm,lz
−l, m = 1, 2, ....,M and S(z)[H1(z)H2(z)...HM (z)]T
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Now, that we have described the first three models which are generally used in

acoustic modelling, we go on to the model of importance that is the MIMO model.

2.4.4 MIMO model

A schematic representation of the MIMO model is shown in Fig.2.5. A MIMO

system typically has M inputs and N outputs and is referred to as a MxN system(see[12]).

At time k, the sytem can be represented as

x(k) = Hs(k) + b(k) (2.22)

where x(k)=[x1(k) x2(k) . . . xN (k)]T and H = [H1 H2 . . . HM ], and the value for Hm

can be given as obtained below:

Hm =



h1m,0 h1m,1 . . . h1m,L−1

h2m,0 h2m,1 . . . h2m,L−1

. . . . . .

. . . . . .

. . . . . .

hNm,0 hNm,1 . . . hNm,L−1


NXL

for m=1,2,3,4,......, M and b(k)=[b1(k) b2(k) . . . bN (k)]T where hnm(n = 1, 2, 3, ......N,m =

1, 2, 3, .......,M) is the impulse response of the channel from input m to output n, and s(k)

is defined similarly(see [12]). Transforming into the z- domain we get,

X(z) = H(z)S(z) + B(z)(k) (2.23)
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where H(z) =



h11(z) h12(z) . . . h1M (z)

h21(z) h22(z) . . . h2M (z)

. . . . . .

. . . . . .

. . . . . .

hN1(z) hN2(z) . . . hNM (z)


NXL

and hnm(z) =
∑L−1

l=0 hnm,lz
−l, n=1,2,....,N m=1,2,....,M. Clearly, the MIMO system is the

most general model and we can write all the other models as special case situations of the

MIMO model(see [12]). Hence, we derive the BSS algorithm for the MIMO model and the

same would hold true for the other three models as well.
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Chapter 3

Review of Previous Works

Blind Source Separation of speech has been an area of research for a long period of

time. This has resulted in a variety of research papers which illustrate a number of different

ways to approach the same problem. This chapter is an exploration of some of the various

works done along this line. This chapter would illustrate the previous works by describing

their problem statement and a list of solutions that they provided for the same.

3.1 Blind source separation of non stationary Sources

In [20], the authors have tackled the problem of blind source separation by ex-

ploiting the non-stationarity of the sources. A least squares optimization technique was

proposed to estimate a forward model, to identify the channel components. Similarly, the

authors in [20] have proposed a FIR backward model which would generate the well sepa-

rated model sources. In [20], the authors propose solutions for the estimation of both an

Instantaneous Mixture and a Convolutive Mixture. They first propose a backward model
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for estimation in the instaneous case and then extend it to the convolutive case where it is

solved as independent models for each frequency

3.1.1 Instantaneous Mixtures

Forward Propagation

For instantaneous mixtures, an illustration of the forward model used is as shown

below[20].

x(t) = As(t) + n(t) (3.1)

From this definition for the forward model, we can obtain/postulate the covariance Rx(t)

of the measured signals at time t with the assumption of independent noise [20] as follows

Rx(t) = x(t)xT (t) = As(t)sT (t)AT + n(t)nT (t) (3.2)

From this we can write, the expression for the covariance matrix as being equal to Rx(t) =

AΛs(t)A
T +Λn(t) where the covariance matrices Λs(t) is a diagonal matrix[20]. The authors

also assumed that the noise is uncorrelated at each sensor, i.e. λn(t) is also diagonal. For non

stationary signals, a set of K equations(for 3.2) for different times t1, t2, t3, ......tK and the ds

scaling conditions result in a a total of Kdx(dx+1)/2+ds constraints on dsdx+dsK+dxK

unknown parameters A, λs(t1), .......λs(tK), λn(t1), ........λn(tK).

Assuming all the conditions are linearly independent, there will be sufficient conditions if

Kdx(dx + 1)/2 + ds � dsdx + dsK + dxK (3.3)

When we have the value of dx and ds as eqaul, there is a lack of constraints based upon

which we estimate unless dx � 4. which is outlined in [20].The solutions can be found for
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the square case by considering the non symmetric eigen value problem outlined in [17]. As

in [17], we measure the sample estimates R̂x(t) within some time interval and we use the

inaccuracy of that estimation as measurement error

E(k) ≡ R̂x(k)− λn(k)−Aλs(k)AT (3.4)

The unknown parameters can be estimated by minimizing the total measurement error for

a sufficiently large K

Â, λ̂n, λ̂s = arg min
A,λs,λn,Aii=1

K∑
k=1

||E(k)||2 (3.5)

The matrix norm here now is the sum if the absolute squared error of every coefficient

which essentially represents a Least Squares(LS) estimation Problem. To find the extrema

of the LS cost J =
∑K

k=1 ||E(k)||2 in (3.5), the gradients with respect to the parameters are

calculated as follows

∂J

∂A
= −4

K∑
k=1

E(k)Aλs(k) (3.6)

∂J

∂λs(k)
= −2diag|ATE(k)A| (3.7)

∂J

∂λn(k)
= −2diag|E(k)| (3.8)

We can find the minimum value for A and λs(k) with a gradient descent algorithm on

(3.6) and (3.7). The optimal λn(k) can be computed explicitly for every given A and

λs(k) by setting the gradient in (3.8) to zero which would yield us the expression λ̂n(k) =

diag[R̂x(k)−Aλs(k)AT ]
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Estimation of the source signals

In case of a square and invertible matrix Â, the signal estimates are ŝ = Â−1x,

whereas in the non square case we can compute the LS estimate as

ŝLS(t) = arg min
s(t)

‖x(t)− Âs(t)‖ = (ÂT Â)
−1
ÂTx(t) (3.9)

If the noise is assumed to be Gaussian(not necessarily white or stationary) we can compute

the maximum likelihood estimate as

ŝML(t) = arg max
s(t)

p[x(t)|s(t)lÂ, λ̂n(t)] = [ÂT λ̂n(t)−1Â]
−1
ÂT λ̂n(t)−1x(t) (3.10)

where p() is the Gaussian probability density given by the noise density. The authors

also came up with a Maximum-A-Posteriori(MAP) estimate of the source signals in [20].

Assuming that the model defined in(3.1) is correct, we can say that we find the correct

estimate Â = A. We can represent this as follows:

< ŝLS ŝ
T
LS >≈< ssT > +(ÂT Â)−1ÂTΛnÂ(ÂT Â)−1

The authors in [20] found that the resultant estimates have a degree of correlation in them

which is caused due to the noise component and the signal component on the other hand

remains uncorrelated.

Backward Model

We can also try to directly estimate the source signals by making use of a model

similar to the inverse FIR model estimate as shown in [20] with a model which looks like

the one defined below

ŝ(t) = WAs(t) (3.11)

26



The aim of using the backward model is to find a good approximation of W which would

invert the mixing matrix denoted by ’A’(see[20]). In analogy to the equation (3.2) and (3.4),

we have

< ŝ(t)ŝ(t)T >= W [Rx(t)− λn(t)]W T (3.12)

The aim of the algorithm is to find a W such that < ŝ(t)ŝ(t)T > diagonalizes simultaneously

for K different times.

The Least square estimate is then

Ŵ , λ̂s, λ̂n = arg min
W,λs,λn,Wii

K∑
k=1

||E(k)||2 (3.13)

where E(k) = W (R̂x(k) − λn(k))W T − λs(k) Similar to the forward model, the solutions

can be found using iterative gradient algorithm.

3.1.2 Convolutive Mixture

Model Description

The model for forward propagation in the convolutive case is as follows:

x(t) = A ∗ s(t) + n(t) (3.14)

The authors in [20] address the blind source separation problem by transforming it into the

frequency domain and solve it for every frequency as in [4][8][13][15][18]. However, every

frequency was found to have an arbitrary permutation. Hence, the main goal of Blind

Source Separation [20]in this context is:

• Obtain the equivalent equation to (3.2) in the frequency domain

• Choose arbitrary permutations for all individual problems consistently
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Cross Correlations

The cross correlation can be represented mathematically as

Rx(t, t+ τ) =< x(t)x(t+ τ)T >

. For stationary signals the absolute time does not matter and the cross correlations can

therefore be written as Rx(t, t+ τ) = Rx(τ). The z-transform representaion is obtained and

can be expanded using the definition given in (3.2) as follows:

Rx(z) = A(z)Λs(z)A
H(z) + Λn(z) (3.15)

where

• A(z): The matrix of the z-transforms of the FIR filters A(τ)

• Λs(z) and Λn(z) are the z-transform of the auto-correlations of the source and the

noise. Because of the independence assumption, both Λs(z) and Λn(z) are diagonal.

The authors restrict the total number of sampling points of z by taking T equidistant

samples on the unit circle, so as to exploit the DFT representation of the auto-correlation

function. If the signals are periodic, we can express the circular convolutions as products

as represented in (3.15).We can then write the expression as follows

x(ω, t) ≈ A(ω)s(ω, t) + n(ω, t), forP << T (3.16)

where x(ω, t) represents the DFT of the frame of size T starting at T and correspondingly

for s(ω, t) and A(ω). This is mostly the case for stationary signals. We go for a cross

power spectrum average that diagonalizes for the source signals. This is because for the
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assumptions being made(non-stationarity), the Rx will be time dependent(see [20]). One

such average is

Rx(ω, t) =
1

N

N−1∑
n=0

x(ω, t+ nT )xH(ω, t+ nT ) (3.17)

We can then write for all averages

Rx(ω, t) = A(ω)Λs(ω, t)A
H(ω) + Λn(ω, t) (3.18)

If N is sufficiently large, then we can model Λs(ω, t) and Λn(ω, t) as diagonal due to in-

dependence assumption. In case of the Convolutive mixture, the forward model A does

not always guarantee a stable inverse prediction. Therefore, we use the backward model to

solve the BSS problem.

Backward Model

In the case of the backward model, we use a model which is similar to what we did

for the instantaneous mixture in (3.1.1),i.e., to find model sources with cross power spectra

satisfying

Λs(ω, t) = W(ω)[Rx(ω, t)− Λn(ω, t)]WH(ω) (3.19)

In order to obtain the conditions for BSS, we choose times such that we have non overlap-

ping averaging times for Rx(ω, tk),i.e.,tk=kTN. A multipath model W that satisfies these

equations K times simultaneously can be found again with a LS estimate as given below

E(ω, k) = W(ω)[Rx(ω, k)− Λn(ω, k)]− Λs(ω, k) (3.20)

Ŵ , Λ̂s, Λ̂n = arg min
W,λs,λn,W (τ)=0,τ>Q<<T,Wii(ω)=1

T∑
ω=1

K∑
k=1

||E(ω, k)||2 (3.21)
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Like in the instantaneous mixture model, the authors make use of a gradient descent algo-

rithm to find an estimate. For any real valued function f(z) of a complex valued variable z,

the gradients with respect to the complex valued coefficent W(ω) are obtained by taking

derivatives with respect to the conjugate quantities z∗, ignoring the non conjugate occur-

rences of z., i.e.,

∂f(z)

∂(z)
+ i

∂f(z)

∂=(z)
= 2

∂f(z)

∂z∗
(3.22)

There for the corresponding gradients for the LS cost in(3.21) are as follows:

∂J

∂W∗(ω)
= 2

K∑
k=1

E(ω, k)W(ω)[Rx(ω, k)− Λn(ω, k)] (3.23)

∂J

∂Λ∗s(ω, k)
= −diagE(ω, k) (3.24)

∂J

∂Λ∗n(ω, k)
= −diag[(W )H(ω)E(ω, k)W (ω)] (3.25)

As in the case of the instantaneous mixture, we can find the minimum with respect to

W(ω) and Λn(ω, k) with a constrained gradient descent algorithm using the gradients from

(3.23) and (3.25). Similarly, the optimalΛs(ω, k) for given (W )(ω) and Λn(ω, k) at every

step can be computed explicitly by setting the gradient in (3.24) to zero which yields

Λs(ω, k)=diag[(W )H(ω)E(ω, k), (W )(ω)].

Permutation and Constraints

The arbitrary permutation of the co-ordinates for each frequency ω will lead to the

same error E(ω,k)(see [20]). As a result of this, the total cost will not change if we choose a

different permutation of the solutions for each frequency ω. This should not be the case as

only consistent permutations of the constraints should be able to correctly reconstruct the
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source signals. Arbitrary permutations will not satisfy the conditions on the length of the

filter,i.e.W(τ) = 0 for τ > Q� T as stated in [20]. The constraint of τ >Q will restrict the

solution to be continuous (or) ”smooth” in the frequency domain. This constraint links the

otherwise independent frequencies, and solves the frequency permutation problem. These

are then enforced by properly projecting the unconstrained gradient to the subspace of

permissible solutions[20]. The projection operator that zeros the appropriate delays for

every channel Wij = [Wij(0), ....,Wij(ω), ....,Wij(t)]
T is

P (2) = FZF−1 (3.26)

where the DFT is given by Fij=
1√
T
e−i2πij and Z is diagonal with Zii=1 for i < Q and Zii=0

for i≥ Q[20].

To sum up the contributions of this paper, we solve the problem by obtaining a constrained

LS cost that is optimal to the desired solutions[20].

3.2 Blind Source Separation of Speech using Second Order

Cyclo-stationary Statistics

3.2.1 Problem Statement

In [2], the authors defined the problem statement as follows : “Assume that m

source signals impinge on an array of n sensors where n≥ m. The output of each sensor is

modeled as a weighted sum of the source signals corrupted by additive noise. This can be

expressed as

x(t) = y(t) + w(t) = As(t) + w(t) (3.27)
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where s(t) = [s1(t), ......., sm(t)]T is the mx1 complex source vector and the nx1 complex

noise vector is W(t)=[w1(t),...,wn(t) ]T , A = [aa, ........., am] is the unknown nxm full rank

mixing matrix where T: transpose of the matrix/vector”.

The source signal vector s(t) is modeled as a cyclo-stationary complex stochastic process.

That authors in [2] assume that the component processes mutually independent with zero

mean. This would essentially mean that the following conditions are interpreted to hold

true

< eJβitsi(t+ τ)s∗j (t) >= 0 ifi 6= j (3.28)

< eJβitsi(t+ τ)s∗i (t) >= 0 ifβi 6= βj (3.29)

< eJβitsi(t)s
∗
i (t) >> 0 ∀i (3.30)

Here J=
√
−1 and < . > denotes the time averaging operator(see [2]). Further more each βi

is a non zero cycle frequency of each source i. The cyclic auto-correlation function ρi(τ) is

defined to be as follows

ρi(τ)
def
=< si(t+ τ)s∗i (t)e

Jβit > withρi(0) > 0 (3.31)

Before proceeding with the rest of this section, a few notations which are used are listed

as follows : * denotes the complex conjugate whereas ?: denotes the complex conjugate

transpose of a vector(see [2]). The additive white noise is also modelled as

< eJβitwi(t+ τ)w∗i (t) >= 0 ∀i, τ (3.32)

The output cyclic correlation function R
(βi)
x (τ) is defined to be

R(βi)
x (τ)

def
=< eJβitx(t+ τ)x?(t) > (3.33)
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Under the assumptions mentioned above, the cyclic auto-correlation function takes a form

as shown below

R(βi)
x (τ) =

∑
j|βj=βi

ρj(τ)aja
?
j (3.34)

where the sum is over all sources with frequency βi(see[2]). When βi 6= βj , for i6=j, then

only one source i contributes to R
(βi)
x (τ) which can be written as

R(βi)
x (τ) = ρi(τ)aia

?
i . (3.35)

The authors in [2], give the following definition for the problem of blind source separation

: i.e. To find a mxn separating matrix B=[b1, ..., bn] ,such that ŝ(t) = Bx(t) is an estimate

of the source signal. An assumption made to get a close approximation of the separating

matrix is shown as follows : We assume that the emitter(source) signals have unit-norm

zero-lag cyclic auto-correlation coefficients, i.e.

ρi(0) =< eJβitsi(t)s
∗
i (t) >= 1 (3.36)

The authors in [2] propose to determine B up to a permutation and scaling of its columns,

i.e. B is a separating matrix if B y(t)=PΛs(t) where P is a permutation matrix and Λ is

a unitary diagonal matrix(see[2]). If all sources have distinct cyclic frequencies, then the

mxing matrix is defined as By(t)=Λs(t) for given unitary matrix Λ.

3.2.2 Assumptions and Remarks

• For simplicity we use the definition for cyclo-stationary sources in [11]. However, the

authors in [2] have given a more rigorous definition of a cyclo-stationary sources as

given below
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“A zero-mean cyclo-stationary process s(t) is characterized by the property that its

time varying auto-correlation rs(t, τ) = E(s(t + τ)s ∗ (t)) varies periodically with

respect to time”.

Thus, it accepts a Fourier series representation given by

rs(t, τ) =
∑
β∈C

rβs (τ)e−jβt (3.37)

rβs (τ) = lim
t→∞

1

T

T−1∑
t=0

rs(t, τ)ejβt (3.38)

where the Fourier Coefficients rβs are called the cyclic auto-correlation at cycle fre-

quency β, and

C = {β|0 ≤ β < 2πandrβs (τ) 6= 0} (3.39)

is the cyclic frequency of the set s(t)

• This solution takes into consideration only one cycle frequency for each source signal.

However, in practice, the sources’ energy may be distributed to more than one cycle

frequency[2]. In this case , we can replace R
(βi)
x (τ) by a linear combination of cyclic

correlation matrices that adds coherently the energy of the considered source over its

different cycle frequencies (or) Alternatively, we can use several cycle frequencies for

each source signal.

• The mutual independence of the sources is a fundamental condition for separation of

sources
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3.2.3 Condition for identifiability

This section states some of the essential conditions for blind source separation

via second order cyclo-stationary statistics of the array output as proposed by the group

in [2].The condition for identifiability follows from the two theorems that are given be-

low(see[2]). It is a necessary and sufficient condition for BSS using only the cyclic corre-

lation matrices R
(βi)
X (τ), i=1,.......,m at time lags 0,τ1,τ2,.......,τK . The theorems and the

corresponding identifiablility condition(see[2]) are as follows:

• Theorem 1(ATH1): Assume that the cyclic frequencies of the source signals are

distinct. For any matrix B, define z(t) to be the mx1 vector given by z(t)=Bx(t). In

addition, define its cyclic cross correlation rij(τ)
def
=< zi(t+ τ)z∗j (t)eJβit >. then, B is

a separating matrix if and only if rij(0) = 0 and rii(0) = 1 for all 1 ≤ i 6= j ≤ m(see

[2]).

• Theorem 2(ATH2): Assume that the identifiability condition is satisfied,that is, if

βi = βj , then ρi, and ρj are linearly independent. then B is a separating matrix if

and only if rij(k) = 0 and rii(0) = 1, for all 1 ≤ ij ≤ m. This is just a general case

of the previous theorem(see[2]). Both these can be used to define the identifiability

condition which is given below.

• Identifiability condition : “For any K ≥ 0, blind source separation can be achieved

using the output cyclic auto-correlation matrices {R(βi)
x (τ)|i = 1, 2, 3, .....m; τ1, τ2, ...., τK}

if and only if there exists two distinct source signals si(t) and sj(t) whose cyclic fre-

quencies are the same(βi=βj) and auto-correlation vectors are linearly independent”
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.

The authors in [2] also define conditions for partial identifiability of the source signals in a

manner analogous to the one they followed for complete identifiability. These algorithms are

respectively termed in [2] as ATH3 and ATH4. Theorem 1 and theorem 2 have an iterative

implementation being deived in [2]. Further, an adaptive version of the above algorithms

can also be derived using the approaches from [5], [6] and [22]. To sum up the contributions

of the paper done by the group in [2], it can be cited as follows

• An iterative algorithm(ATH2)(see [2]) was derived to separate the sources even when

they do not have distinct cyclic frequencies.

• If the cyclic frequencies are distinct, then the ATH2 simplifies to ATH1(see [2]).

• A non iterative algorithm (ATH4)(see [2]) was derived by the authors to separate only

those sources of a particular cycle frequency.

• When all the source signals have distinct cycle frequencies ATH4 simplifies to ATH3(see

[2]).
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Chapter 4

Speech as a Quasi-stationary

source

This chapter focuses on the implementation that has been done over the course of

my graduate studies at UCR. The problem formulation for the blind source separation of

speech signals that is used for my implementation follows the Blind source Separation of

quasi stationary sources(BSS-QSS) formulation given in [9], where in the observed signals

are a linear instantaneous mixture of sources. This is represented as follows:

x(t) =
K∑
k=1

aksk(t) = As(t) (4.1)

where x(t) ε RN is the observed signal vector and sk(t) is the kth source signal and s(t)=[s1(t)

s2(t) s3(t) s4(t) ....., sK(t)] ε Rk and ak ε R
N is the system response vector of the kth source,

and the mixing matrix A can be represented as follows A = [a1, a2, ....., aK ] ε RNxK where

N and K are the number of sensors and sources respectively. The algorithm that I have

implemented makes the following assumptions and implements the closed form solution to
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Blind Source Separation problem as derived in [9]. The following are the assumptions made

:

1)The source signals are assumed to be zero mean wide sense quasi stationary sources with

frame length L i.e.

E{sk(t)2} = dk(m); for any (m-1)L+1≤ t ≤ mL, (4.2)

where m is the local time frame index. This means that the source second order statistics

are constant within the time frame defined by m and that it varies from one time frame to

another. If we denote the local covariance of the observed signals in frame m as R(m), then

we can define it as shown in the following expression:

R(m) = E{x(t)x(t)T }; (m− 1)L+ 1 ≤ t ≤ mL. (4.3)

Such local covariances are in fact obtained by local averaging. Applying this, the equation

further becomes(see [9]):

R(m) =
1

L

mL∑
t=(m−1)L+1

x(t)x(t)T ; m = 1, 2, 3, .....,M (4.4)

Now, using the expressions for x(t) obtained from equations (4.1), and the value of their

expectation obtained from (4.2), we would be getting

R(m) =

K∑
k=1

dk[m]aka
T
k ; m = 1, 2, 3, .....,M (4.5)

where M is the total number of available frames.

2)Now that, the characteristics of the source signals have been defined, we next proceed to

define the local dominance assumption which is going to form the crux of the solution that

is being implemented(See [9]).

38



A1) (local dominance assumption) For each source index k, there exists a time frame

indexed by mk such that dk[mk] > 0 and dl[mk] = 0, for all l 6=k.

What this really means is that there exists certain time indices in the speech signal where

only one source dominates. Temporally sparse signals such as speech signals that we have

taken often tend to satisfy this property. Under local dominance[9], the expression of

covariance matrix becomes the following

R[mk] = dk[mk]aka
T
k (4.6)

where k is the source which is locally dominant within the time frame ’m’. We can obtain

the ak’s as principal eigenvalues of R(m). However, in order to do so, we need to know

where the locally dominant points are (see [9] and [10]).

Traditional approach: Clustering Techniques

Other blind source separation techniques would predominantly make use of the

following approach(see [9]):

• Detect Locally dominant points by evaluating the ranks of all R[m]’s

• Extract the principal eigenvector of each detected R(m)

• Apply a K-means clustering algorithm to the obtained principal eigenvectors to con-

struct the mixing Matrix A.

This is the traditional algorithm used in most of the papers. However, the algorithm imple-

mented does not follow this approach, we follow a slightly different approach which is simple

and the arithmetic operations involved can be done using simple 2-norm computations and
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linear projections mostly. This reduces the overall complexity of the algorithm over the

ones which have been previously used.

Closed Form solution

Instead of using the rank as used in a clustering based technique, the authors in

[9] employ another idea where they use the non negativity of the local source covariances

dk(m) together with the assumption of local dominance of a particular source covariance to

come up with an alternate solution to identify the locally dominant points. The algorithm

employed makes use of the successive search strategy and does not require clustering. We

consider the over-determined solution that is N > K.

Again as in the previous technique we need to make a few assumptions with this

one. The assumptions being made are listed below as follows(see [9]):

A1)Local dominance: The local dominance assumption is the same as what was made in

the previous case for the BSS. This means that there would exist some local time frame

where only one source dominates. This assumption applies very well to the speech signals

because speech signal also contains may unvoiced segments between utterances.

A2)The mixing matrix A is orthonormal: That is the matrix A is a collection of k vectors

such that a1, a2, a3, a4, ......, ak has a unit norm 1 , i.e., ‖ai‖=1 and the vectors are mutually

orthogonal with each other.

Given these two assumptions are holding strongly, we can simplify the problem further

as follows. By applying pre-whitening, we can convert the mixing model with a full rank

mixing matrix A into an equivalent model where A is orthonormal.Now, from the local
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covariance model as seen in (4.6), we can apply vectorization to our output model to obtain

y[m] = vec(Rm) =
K∑
k=1

dk(m)vec(aka
T
k ) = Hd[m] (4.7)

where H = [h1, ......., hK ], d[m] = [d1[m], ......., dK [m]]T and hkvec(aka
T
k ) = ak⊗ak

with ⊗ being the Kronecker function. Because we assumed that the original mixing matrix

A is orthonormal, it can be very easily shown that H is also orthonormal. This means that

we have from equation(4.7),

‖y(m)‖2 = ‖d(m)‖2 ≤ ‖d(m)‖1 (4.8)

where ‖.‖2 and ‖.‖1 are the 2 norm and the 1 norm respectively, this equality will be satisfied

only if the 2-norm is less than or equal to the 1-norm and if the vector whose norm is being

taken is a scaled unit vector(See [9]). The reason the 1-norm of the signal coefficient is

being chosen was explained below.

It is important to note that ||s̃i||0 is discontinuous and may be difficult to optimize for any

s̃i. Also, the l0 is highly sensitive to noise, in that even a tiny amount of noise could make

all the samples non zero. Therefore, in most cases as in the case of this two source and

two mixture model, we make use of the l1 norm as a very good substitute for the objective

function we choose to minimize[13][14]. We know that the one norm can also be written as

follows

‖d1(m)‖1 =
K∑
k=1

dk[m] = Tr(R(m)) (4.9)

where Tr is the trace of the covariance matrix R(m). Also, we have the assumption of non

negativity in the space from (m-1)L+1 to mL as dk(m) ≥ 0 where the dk(m) are modeled
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as local source covariances. From (4.8) and (4.9), we can obtain

‖y(m)‖2
Tr(R[m])

≤ 1 (4.10)

which is true when d[m] is a scaled unit vector, i.e., y(m) is locally dominant

taking the form y[m] = dk[m]hk for some k(see [9]). As a result, we can obtain, the locally

dominant time frame for each source k from the following expression as

m̂ ∈ max
m=1, 2, ....., M

‖y(m)‖2
Tr(R(m))

(4.11)

This is iteratively done again and again to provide a search for all hk for all the k

sources(see [9]). This search can be done as follows. Suppose that we have obtained the first

k-1 columns for the matrix H as H1:k-1 = [h1, ....., hk − 1], and the projection vector onto

this can be explained as P⊥X = I −X(XTX)†XT where P⊥X is the orthogonal complement

projector of its argument X. We can find the similar locally dominant points[9] using the

expression shared below

m̂ ∈ max
m=1, 2, 3,...., M

‖P⊥H1:k-1
y(m)‖2

Tr(R(m))
(4.12)

which are the locally dominant points corresponding to their respective vectors[9].

Based on these findings the algorithm 1 was formulated in [9] as follows

Algorithm

1 input:R[1],..........,R[M];

2 y[m]= vec(R[m]), z[m]=Tr(R[m]), m=1,2,3,4,..........., M;

ĥ1 = y[m̂1] where m̂1 ∈ max
m=1,2,3,....., M

‖y[m]‖2/z[m]

3 Obtain â1 as the principal eigen vector of vec-1(ĥ1)

4 for k=2,......., K do
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5 ĥk = y[m̂k] where

m̂k ∈ argmax
m=1,2,3,....., M

‖P⊥
H1:k-1

y(m)‖2
z[m]

6 Obtain âk as the principal eigen vector of vec-1[ĥk]

7 end

output: Â = [â1, ........, âk]

The final output is an estimate of the mixing matrix and the efficiency of the

overall method is calculated using a Mean Square Error(MSE) estimate.

The mean Square error is calculated as follows:

MSE =
1000∑
k=1

||Ak −Hk||22/size(Ak)

where Ak is the original mixing matrix given and H is the prediction of the mixing

matrix. The estimate is run for a total of 1000 times.

The average Mean square error estimate is then calculated and was -41.2036. The

results obtained after the simulation are represented pictorially as shown below.
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Figure 4.1: Mean Square error estimates for 1000 iterations
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Chapter 5

Conclusions

The problem of Blind source separation of speech for a Multi-Microphone Array

system has been discussed and analyzed in detail. The algorithm is being reviewed for the

Multiple-Input Multiple-Output(MIMO) model of acoustic system as it was shown that the

algorithm would hold true for the other models ;namely Single-Input Single-Output(SISO),

Single-Input Multiple-Output(SIMO) and Multiple-Input Single-Output(MISO) models; if

it was shown to be true for the MIMO model. The blind source separation algorithm was

discussed for three different cases:

• The speech signal is considered to be a non-stationary source, with a backward model

being proposed for the instantaneous case and the convolutive case[20].

• The speech signal is considered to be cyclo-stationary and a solution is being derived

for full identifiability and partial identifiability, for case when the source signals all

have the same cyclic frequencies and the case when all the source signals have distinct

cyclic frequencies[2].
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• When the speech signal is considered to be a quasistationary signal, then the local

dominance of a source signal at any given instant can be used to obtain a correlation

metric which can be used to derive a solution for the blind separation[9].

An implementation of the case 3 was done and the output is shown in chapter 4. Although,

the implementation was done for speech signals, there are other applications where the

above algorithm would work well, like the seismic activity recognition by separating the

sounds of interest.
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