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Abstract

Recent results announced as measurements of the muon’s anomalous magnetic moment are in fact measurements of
the muon’s anomalous spin precession frequency. This precession frequency receives contributions from both the muon’s
anomalous magnetic and electric dipole moments. We note that all existing data cannot resolve this ambiguity, and the current
deviation from standard model predictions may equally well be interpreted as evidence for new physics in the muon’s anomalous
magnetic moment, new physics in the muon’s electric dipole moment, or both.
 2003 Elsevier Science B.V.

PACS: 13.40.Em; 14.60.Ef

Recently the Muon(g − 2) Collaboration an-
nounced a new measurement of the muon’s anomalous
magnetic moment [1]. More precisely, however, what
has been measured is the muon’s anomalous spin pre-
cession frequency. This receives contributions from
both the muon’s anomalous magnetic and electric di-
pole moments, and we point out that the reported data
and all existing constraints cannot distinguish between
the two.

E-mail address: jlf@uci.edu (J.L. Feng).
1 Incumbent of a Technion Management Career Development

Chair.

The recent result is the latesttour de force from
the Muon (g − 2) experiment [2]. This experiment
measures the anomalous spin precession frequency
of muons circulating in a perpendicular and uniform
magnetic field. For fermions with gyromagnetic ratio
g = 2, the cyclotron and spin precession frequencies
are identical. Measurements of the anomalous spin
precession frequency have therefore been reported
as measurements of the anomalous magnetic dipole
moment (MDM)aµ = (gµ − 2)/2.

The spin precession frequency is also sensitive to
the muon’s electric dipole moment (EDM), however
[3,4]. For a muon traveling with velocityβ perpendic-
ular to both a magnetic fieldB and an electric fieldE,
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the anomalous spin precession vector is

ωa = −aµ
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where mµ and dµ are the muon’s mass and EDM.
In recent experiments, theβ × E term of Eq. (1) is
removed by running at the ‘magic’γ ≈ 29.3, and the
last term is negligible. For highly relativistic muons
with |β| ≈ 1, then, the anomalous spin precession
frequency is
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and it constrains only acombination of dµ andaµ.
In Fig. 1 we show regions of the(dµ, aµ) plane that

are consistent with the new|ωa | measurement. Also
shown are the latest standard model (SM) predictions
[5–7]. Assuming a negligibledµ, the measurement
shows tentative evidence for new physics inaµ with
uncertain significance, given the spread in theoretical
predictions. However, the|ωa | result could just as well
be taken as evidence for new physics indµ. The best
direct bound ondµ [3] is also shown. Clearly it does
not resolve this ambiguity; if anything, it favors the
EDM interpretation. In fact, even taking the lowest
SM prediction foraµ, a striking and unambiguous
conclusion is that, barring a fine-tuned cancelation,
the Muon(g − 2) experiment has now set the most
stringent upper bound on the muon’selectric dipole
moment with|dµ| < 3.2× 10−19 e cm.

The MDM/EDM ambiguity may be resolved by ap-
pealing to theoretical prejudice thatdµ is small. In
supersymmetry, for example, the maximal value of
aµ is amax

µ ∼ 10−7, assuming only flavor conserva-
tion [8]. By a phase rotation of the relevant opera-
tor, this implies a maximal EDM of roughlydmax

µ ∼
(eh̄/2mµc)amax

µ ∼ 10−20 e cm. This conclusion is far
from universal, however. For example, large muon
EDMs are possible in models where EDMs scale ap-
proximately asdf ∝ m3

f [9]. Given our current pro-
found ignorance of the origins of electroweak sym-
metry breaking, flavor, and CP violation, no definitive
statement can be made.

The effects ofdµ and aµ are, of course, distin-
guishable [3]:aµ causes precession around the mag-

Fig. 1. Regions of the(dµ,aµ) plane consistent with the measured
|ωa | at 1σ (dark) and 2σ (light). The most recent SMaµ predictions
[5–7] are also shown, with horizontal offsets to the SM prediction
of dµ ≈ 0 inserted for clarity. The vertical lines are the central value
and±1σ direct bounds ondµ [3].

netic field’s axis, butdµ leads to oscillation of the
muon’s spin above and below the plane of motion.
A search for up-down asymmetry in the current data
is in progress [10]. A dedicated EDM experiment [11]
would provide a conclusive resolution by either mea-
suring a non-vanishingdµ or constraining the contri-
bution ofdµ to |ωa | to be insignificant.

For now, however, the reported data is not a model-
independent measurement of the muon’s anomalous
magnetic moment. If measurements of precession
frequency are interpreted as measurements ofaµ, the
assumption of a negligible muon EDM is best made
explicit. Alternatively, the experimental status may
be summarized without theoretical assumptions as in
Fig. 1.
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