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Abstract:

Agricultural peatlands are estimated to emit approximately one third of global greenhouse gas 

emissions from croplands, but the temporal dynamics and controls of these emissions are poorly 

understood, particularly for nitrous oxide (N2O). We used cavity ringdown spectroscopy and 

automated chambers in a drained agricultural peatland to measure over 70,000 individual N2O, 

methane (CH4), and carbon dioxide (CO2) fluxes over 3 years.  Our results showed that N2O fluxes 

were high, contributing 26% (annual range: 16-35%) of annual CO2e emissions. Total N2O fluxes A
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averaged 26 ± 0.5 kg N2O-N ha-1 y-1 and exhibited significant inter- and intra-annual variability with a 

maximum annual flux of 42 ± 1.8 kg N2O-N ha-1 y-1. Hot moments of N2O and CH4 emissions 

represented 1.1 ± 0.2 and 1.3 ± 0.2% of measurements, respectively, but contributed to 45 ± 1% of 

mean annual N2O fluxes and to 140 ± 9% of mean annual CH4 fluxes.  Soil moisture, soil 

temperature, and bulk soil oxygen (O2) concentrations were strongly correlated with soil N2O and 

CH4 emissions; soil nitrate (NO3
-) concentrations were also significantly correlated with soil N2O 

emissions.  These results suggest that IPCC benchmarks underestimate N2O emissions from these 

high emitting agricultural peatlands by up to 70%. Scaling to regional agricultural peatlands with 

similar management suggests these ecosystems could emit up to 1.86 Tg CO2e y-1 (range: 1.58-2.21 

Tg CO2e y-1). Data suggest that these agricultural peatlands are large sources of greenhouse gases, and 

that short-term hot moments of N2O and CH4 are a significant fraction of total greenhouse budgets.

1 | INTRODUCTION

Drained peatlands occupy only 1% of agricultural land but are estimated to emit 32% of global 

cropland carbon dioxide (CO2)-equivalent (CO2e) emissions (Carlson et al., 2017; Leifeld & 

Menichetti, 2018). As peatland soils are drained and exposed to the atmosphere, high rates of aerobic 

decomposition lead to substantial CO2 respiration rates relative to other ecosystems (Hemes et al., 

2019; Tiemeyer et al., 2016; Veber et al., 2017). High rates of peat decomposition along with 

emissions of other important greenhouse gases (GHG) like methane (CH4) and nitrous oxide (N2O) 

can result in large net GHG emissions from these agricultural ecosystems (Oertel, Matschullat, Zurba, 

Zimmermann, & Erasmi, 2016; Pärn et al., 2018; Petrescu et al., 2015).

Nitrogen fertilization and flood irrigation are common in peatland agriculture (Kirk, Van 

Kessel, Horwath, & Linquist, 2015; Pellerin, Anderson, & Bergamaschi, 2014; Verhoeven & Setter, 

2010), potentially creating optimal conditions for high denitrification rates and N2O production. 

Drained peatlands have been shown to be significant N2O sources; the IPCC mean estimate for 

drained agricultural peatlands is 8 kg N2O-N ha-1 y-1 (uncertainty range: 2-24 kg N2O-N ha-1 y-1, A
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IPCC, 2019). However, few studies have made continuous multi-year measurements of N2O 

emissions, and N2O fluxes are often absent from long-term agricultural peatland GHG budgets (Bonn 

et al., 2014; Frolking et al., 2011; Günther et al., 2020; Hemes et al., 2019; Knox et al., 2015). This is 

partially driven by the technological challenges of conducting continuous, long-term N2O flux 

measurements under field conditions (Baldocchi, 2014; Levy et al., 2017; Rochette & Eriksen-Hamel, 

2008). 

Most N2O flux measurements are conducted intermittently with sampling frequency often 

ranging from once per day to once per month using traditional manual static chambers (Grace et al., 

2020). This is particularly true in agricultural peatlands (H. Liu, Zak, Rezanezhad, & Lennartz, 2019; 

Pärn et al., 2018; Tiemeyer et al., 2016). However, CH4 and N2O are often characterized by hot spots 

and hot moments of GHG emissions (Krichels & Yang, 2019; Molodovskaya et al., 2012; Savage, 

Phillips, & Davidson, 2014), which are difficult to characterize using infrequent manual sampling 

approaches (Bernhardt et al., 2017; McClain et al., 2003; Sihi, Davidson, Savage, & Liang, 2020). 

The dynamics of soil oxygen (O2), temperature, moisture, and nitrate (NO3) concentrations are likely 

to contribute to hot moments of soil N2O flux (Butterbach-Bahl, Baggs, Dannenmann, Kiese, & 

Zechmeister-Boltenstern, 2013), although the spatial and temporal dynamics of these events are also 

difficult to predict without high frequency measurement. 

Potential hot moments of soil CH4 fluxes are similarly difficult to capture utilizing manual 

chamber methods, although CH4 fluxes from drained agricultural peatlands are assumed to be minimal 

(Günther et al., 2020; Maljanen et al., 2010; Oktarita, Hergoualc’H, Anwar, & Verchot, 2017). 

However, management practices such as irrigation can create periods of anaerobic conditions ideal for 

CH4 production (Hemes et al., 2019; Teh et al., 2011). Continuous eddy covariance measurements of 

CH4 fluxes at the ecosystem-scale have highlighted the influence of soil temperature, water table 

fluctuations, and plant activity on the exchange of CH4 across the land-atmosphere interface in 

restored wetlands (Chamberlain et al., 2019; Oikawa et al., 2017; Sturtevant et al., 2016). In contrast, 

the spatiotemporal controls on the magnitude and frequency of CH4 fluxes in irrigated agricultural 

soils are less well constrained. 

The recent development of cavity ringdown spectroscopy and automated chamber 

measurements has greatly increased the ability to conduct continuous GHG flux measurements. A
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Continuous measurements can increase the chances of capturing hot moments of net GHG fluxes and 

determining their role in annual GHG budgets. In combination with continuous soil sensor data, 

spatiotemporally intensive measurements can also be utilized to explore potential drivers of hot 

moments of soil CH4 and N2O emissions (Bernhardt et al., 2017; Groffman et al., 2009; Sihi et al., 

2020). We used cavity ringdown spectroscopy and automated chambers to make over 70,000 soil 

CO2, CH4, and N2O flux measurements over three years from a drained agricultural maize peatland in 

California, USA. Flux measurements were coupled with continuous soil O2, temperature, and 

moisture sensors and a year-long soil N sampling campaign to better constrain the drivers and 

controls on hot moments of soil CH4 and N2O emissions. We utilized multiple statistical approaches, 

including wavelet coherence analysis and a modified jackknifing technique to further explore the 

drivers and controls on hot moments of soil CH4 and N2O effluxes. We tested the hypothesis that 

fertilizer application would drive hot moments of N2O emission through increased substrate 

availability. We also hypothesized that elevated soil temperatures and soil moisture would stimulate 

O2 depletion during the growing season, leading to increased N2O and CH4 production within the soil 

profile and associated hot moments of GHG emissions.

2 | METHODS

2.1 | Site Information 

The study was conducted in the Sacramento-San Joaquin Delta region of California (38.11ºN, 

121.5ºW). The field site was farmed continuously for over 10 years for conventional field corn (Zea 

mays). The site was periodically irrigated via spud ditches during the growing season and periodically 

flooded up to 30 cm above the soil surface in the winter to limit weed growth and provide habitat for 

migrating waterfowl (Pellerin et al. 2014). Fertilizer application rates were 118 kg N ha-1 y-1 (Farmer 

data). The climate is Mediterranean with hot dry summers and cool wet winters. The region’s 

historical mean annual temperature was 15.1 ± 6.3 °C and mean annual rainfall averaged 326 ± 4 mm 

(Hatala et al., 2012). This was also an Ameriflux site (Ameriflux ID: US-Bi2) with continuous eddy 

covariance measurements of CO2, CH4, and water vapor since mid-2017.

Soils are typical of the region and are classified within the Rindge series as Histosols (Soil 

Survey Staff, 2020). This soil type is frequently drained for agriculture due to its high agricultural A
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productivity (Leinfelder-Miles, 2019). Rindge soils belong to the Euic, thermic Typic Haplosaprists 

taxonomic class and are characterized by deep, poorly drained marsh soils formed from decomposed 

plant organic matter (Soil Survey Staff, 2020). Total soil C values (mean ± standard error) at this site 

were 15.2 ± 0.4% at 0-15 cm, 15.9 ± 0.7% at 15-30 cm, and 19.5 ± 0.6% at 30-60 cm depth (Anthony 

& Silver, 2020). Total soil N values were 1.0 ± 0.02% at 0-15 cm, 1.1 ± 0.04% at 15-30 cm, and 1.2 ± 

0.03% at 30-60 cm depth (Anthony & Silver, 2020). 

 

2.2 | Automated chamber flux measurements

Surface soil fluxes of N2O, CH4, and CO2 were measured continuously from June 30, 2017 

through June 30, 2020 using an automatic chamber system. This system consisted of nine opaque 

automated gas flux chambers (eosAC, Eosense, Nova Scotia, Canada) connected to a multiplexer 

(eosMX, Eosense, Nova Scotia, Canada). The multiplexer allowed for dynamically signaled chamber 

deployment and routed gases to a cavity ring-down spectrometer (Picarro G2508, Santa Clara, CA, 

USA). Chambers were measured sequentially over a 10-min sampling period with a 1.5-min flushing 

period before and after each measurement. 

Chambers were deployed in 10 x 10 m grid, with each chamber 5 m apart. Due to periodic 

flooding events, two sets of extended soil collars were utilized to maintain measurement collection 

and ensure chambers were not inundated. Chambers were randomly assigned to distinct physical 

features, beds (n = 4) or furrows (n = 5) during growing seasons and corn stover (n = 4) or bare soil (n 

= 5) during fallow periods. Throughout most of the year, 15 cm collars were installed with each 

chamber, offsetting the original chamber height by approximately 10 cm. Due to winter flooding 

events that raise the water table up to 30 cm above the soil surface, additional 35 cm collars were 

deployed approximately between November and February. Individual chamber volumes were 

measured and used to adjust flux calculations (see below). Chambers remained installed in their 

original positions throughout the field campaigns except during field management activities (plowing, 

seeding, harvest), which typically lasted less than one week. Two additional periods of chamber 

removal occurred after delays in initiating corn harvest in site year 1 (18 days) and site year 3 (20 

days). 
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To determine chamber volume, collar heights were measured approximately weekly and 

values were interpolated over time to account for differences in soil and water table height. Chamber 

volumes were used to calculate the minimum detectable flux (Courtois et al., 2018) with detection 

limits of 0.002 nmol N2O m−2 s−1,  0.06 nmol CO2 m−2 s−1, and 0.002 nmol CH4 m−2 s−1 for 15 cm 

collars utilized during non-flooded conditions, and 0.004 nmol N2O m−2 s−1, 0.12 nmol CO2 m−2 s−1, 

and 0.004 nmol CH4 m−2 s−1 for 35 cm collars utilized during flooded conditions. The minimum 

detectable fluxes reported here are conservative estimates, as the actual chamber volume was always 

smaller than the maximum theoretical volume used in detection limit calculations.

Flux calculations and fitting were first performed using Eosense eosAnalyze-AC v. 3.7.7 

software, then data quality assessment and control were subsequently performed in R (RStudio, 

v.1.1.4633, O’Connell, Ruan, & Silver, 2018). Fluxes were removed from the final dataset if they 

were associated with negative gas concentrations or erroneous spectrometer cavity temperature and 

pressure readings outside the calibrated operating range, corresponding to instrument malfunction. 

Fluxes were also removed if the chamber deployment period was less than 9 min or greater than 11 

min, indicative of chamber malfunction. This data filtering removed 2.4% of flux measurement 

periods, generating a final dataset of 71,262, 70,337, and 70,554 individual flux measurements of 

CO2, N2O, and CH4, respectively. To calculate the impact of soil GHG fluxes on site-level global 

warming potential (GWP) we utilized net ecosystem exchange (NEE) eddy covariance values at the 

same site (Camilo, Szutu, Baldocchi, & Hemes, 2016; Hemes et al., 2019). To convert flux 

measurements to CO2e, we used the IPCC AR5 100-year GWP values of 28 CO2e for CH4 and 298 

CO2e for N2O (Myhre et al., 2013). Yield-based emission estimates were from derived flux 

measurements and harvest yield data records that were converted to g dry yield ha-1, assuming corn 

was harvested at 65% moisture (Hemes et al., 2019).

2.3 | Quantifying hot moments of CO2, N2O, and CH4  

Following data filtering, the importance of very high flux events was determined to identify 

hot moments and their impact on yearly flux values. We defined hot moments as measurements with 

values greater than four standard deviations from the mean, as statistically 99.9% of the population 

should fall within four standard deviations of the mean. Yearly mean flux values were then calculated A
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for only hot moments, the entire flux dataset, and the flux dataset with not moments removed to 

determine the impact of very high flux events on annual GHG emissions.  The term “outlier” is often 

used to connote values requiring removal or transformation within a dataset to maintain statistical 

power and limit overinflated estimates from high leverage observations (Lintott & Mathews, 2018). 

However, systematic elimination or data transformation ignore or underweight important processes 

such as hot moments of GHG flux (Benhadi-Marín, 2018; Wiggins, 2000). Given our large and 

continuous dataset, we could also compare mean fluxes with and without hot moments (Benhadi-

Marín, 2018) to better quantify the importance of hot moments. We further explored the importance 

of capturing hot moments by also recalculating mean N2O and CH4 flux after excluding fluxes greater 

than one, two, and three standard deviations from the mean.

A modified statistical jackknifing technique was used to explore the response of mean N2O 

and CH4 flux estimates to changes in sampling interval by repeatedly sampling the dataset at 1-, 2-, 7-

, 14-, and 28-day intervals (Barton et al., 2015). As our flux measurements exhibited a standard 

normal distribution, the importance of sampling frequency was further explored by calculating the 

minimum number of random flux measurements (n) needed to accurately recalculate the observed 

mean N2O and CH4 flux values with a 95% confidence interval using equation 1:

(1)𝑛 ≥  ( 𝑧 ∗ 𝜎
𝑀𝑂𝐸)2

 Where n is minimum sample size, z* is z-score, σ is the standard deviation of the dataset, and MOE 

is a chosen margin of error (MOE). Using a 95% confidence interval (z score = 1.96), we calculated 

the minimum number of samples needed for a margin of error of 10%, 25%, and 50% for both annual 

and total (three year) mean flux values of N2O and CH4. Minimum sample size calculations were 

performed in R with the package samplingbook 1.2.4 (Manitz et al. 2020). 

2.4 | Weekly soil measurements

A total of 53 weekly sets of soil samples (n = 10 per week) were collected from the 0-15 cm 

depth from April 2018 to May 2019.  Soil samples were analyzed for gravimetric soil moisture by 

drying 10 g of field-fresh soil to a constant weight at 105 °C, and for soil pH in a slurry of 10 g of 

field-fresh soil in 10 mL of distilled deionized water (McLean, 1982). Nitrate (NO3
-) plus nitrite A
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(NO2
-) and ammonium (NH4

+) were measured after extraction of 15 g of field-fresh soil in 75 mL of 

2M potassium chloride (KCl) solution (Hart, Stark, Davidson, & Firestone, 1994). Soil KCl extracts 

were analyzed colorimetrically using an AQ300 analyzer (Seal Instruments, Mequon, WI).

2.5 | Soil sensor measurements

Two sets of soil sensors were installed from September 2018-July 2020 at depths of 10 cm, 30 

cm, and 50 cm. Combination SO-110 Oxygen (O2) and thermistor temperature sensors (Apogee 

Instruments, Logan, UT) and CS616 moisture sensors (Campbell Scientific, Logan, UT) were 

connected to CR1000 dataloggers (Campbell Scientific, Logan, UT) that stored data at 15 min 

intervals. A period of sensor removal occurred in May and June 2019 as multiple agricultural events, 

including tillage, planting, and discing prevented continuous installation. Sensors were also removed 

for 3 weeks in September-October 2019 for crop harvest and discing and for 2 weeks the following 

spring before planting, April to May 2020. Erroneous data corresponding to sensor malfunction were 

removed from the dataset, which include 0.6% (n = 295) of soil moisture measurements and 0.05% (n 

= 24) of soil O2 and temperature measurements. Power loss also contributed to data loss, with a total 

of 58 days of missing data from agricultural activity or power loss during the sensor measurement 

period (n = 665 days). 

2.6 | Weekly soil gas samples 

To explore the potential distribution of GHG production across the soil profile, two replicate 

soil gas samples (n = 2 per depth per week) for CO2, CH4, and N2O were also taken in parallel with 

the soil sensors above at 10 cm, 30 cm, and 50 cm depths weekly during unflooded periods from 

September 2018 through November 2018, and April through December 2019. Instrument grade 

stainless steel 1/8” tubing (Restek, Bellefonte, PA) was installed in parallel to the soil sensors above, 

with approximately 15 cm of tubing installed with multiple sampling holes parallel to the soil surface. 

Sampling septa (Restek, Bellefonte, PA) were installed in 1/8” Swagelok unions (Swagelok Solon, 

OH) permanently connected to the stainless-steel tubing. Septa were changed monthly. Two gas 

samples were collected with 30 ml BD syringes, discarding the first sample to clear the dead volume 

in the sampling line. Sampling lines were removed from the field in May and June 2019 for tillage, A
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planting, and discing. The 30 ml gas samples were stored in over-pressurized 20 mL glass vials with 

thick septa (Geomicrobial Technologies, Oechelata, OK) until manual sample injection analysis on a 

Shimadzu GC-34 (Shimadzu Corp., Tokyo, Japan). 

2.7 | Statistical Analyses

Differences in soil gas concentrations, O2, moisture, mineral N, and pH across time periods 

were tested with one-way analysis of variance (ANOVA). Growing season time periods were 

classified as planting date to harvest date, preceded and followed by fallow periods. Unflooded 

periods were defined as soil moisture less than 50% at 10 cm depth. For CH4 fluxes, anaerobic 

periods were defined as any period of time where daily 10 cm O2 concentrations were equal to 0. 

Linear regressions were used to explore relationships between soil atmosphere GHG concentrations 

and net soil GHG fluxes (Figures S2-S4). 

2.8 | Wavelet coherence analysis 

Wavelet coherence analysis was used to identify interactions between GHG fluxes and the soil 

variables measured (P. C. Liu, 1994; Wood, Detto, & Silver, 2013). Wavelet-coherence analysis 

measures the cross-correlation between two time series and allowed us to explore relationships 

between GHG fluxes and potential controls at daily, monthly, and annual timescales. Wavelet 

coherence is derived from two time series as a function of decomposed frequency (Wave.xy) and the 

wavelet power spectrum (Power.x, Power.y) of each individual time series (Rösch & Schmidbauer, 

2018):

 (2)𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 =  
|𝑊𝑎𝑣𝑒.𝑥𝑦|2

𝑃𝑜𝑤𝑒𝑟.𝑥 · 𝑃𝑜𝑤𝑒𝑟.𝑦

A more detailed description of the approach and calculations can be found in Rösch & Schmidbauer 

(2018) and Wood et al., (2013). Missing data were replaced with zeroes to compute an unbiased 

estimator of the wavelet variance for gappy time series (Mondal & Percival, 2010; Wood et al., 2013). 

Statistical significance (p-value) was computed using 1000 Monte Carlo simulations.  All wavelet 

decomposition and coherence calculations were conducted using the WaveletComp 1.1 package 

(Rösch & Schmidbauer, 2018) in R (RStudio, v.1.1.4633). 
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2.9 | Upscaling calculations

We conducted a hypothetical upscaling exercise to estimate the potential impact of agricultural 

maize peatland emissions in the region. We multiplied our annual GWP values with areal values of 

40,000 ha for agricultural maize with similar management practices on peatland soils in the Rindge 

soil series within the Sacramento-San Joaquin Delta, California, USA (Deverel, Ingrum, & Leighton, 

2016; Soil Survey Staff, 2020). Similar management throughout the region includes conventional 

maize agricultural practices and winter flooding of fallow maize fields to limit weed growth and 

provide habitat for migrating waterfowl (Central Valley Joint Venture, 2006; Pellerin et al., 2014). 

3 | RESULTS

3.1 | Soil CO2, CH4 and N2O emissions

Annual soil GHG emissions averaged 9.20 ± 0.04 CO2 kg m-2 y-1, 4.08 ± 0.10 g N2O m-2 y-1 

and of 681 ± 157 CH4 mg m-2 y-1 (Table 1, Table S1) representing mean annual area- and yield-scaled 

emissions GWP emissions of 46.7 Mg CO2e ha-1 y-1 (range: 39.1-55.5 Mg CO2e ha-1 y-1) and 2.88 kg 

CO2e kg dry yield-1 y-1 (range: 2.41-3.42 kg CO2e kg dry yield-1 y-1), respectively. For N2O, annual 

fluxes amount to up to 41.5 ± 1.8 kg N2O-N ha-1 y-1 and a mean flux over the three years of 26.0 ± 0.5 

kg N2O-N ha-1 y-1 or 26% of the GWP (Table 1). We found high intra- and interannual variability in 

CH4 fluxes ranging from annual net consumption rates of -111.0 ± 5.0 mg CH4 m-2 y-1 to net 

emissions of 2220.1 ± 519.7 mg CH4 m-2 y-1 (Table 1). This corresponded to a maximum annual 

emission rate of 6.1 ± 1.4 kg CH4-C ha-1 y-1, or 2% of the annual GWP for this ecosystem. Soil 

respiration was less variable, with annual values ranging from 6.61 ± 0.07 kg CO2 m-2 y-1 to 10.72 ± 

0.09 kg CO2 m-2 y-1 (Figure 1a, Table S1). 

3.2 | Quantifying hot moments of soil CO2, CH4 and N2O emissions

We defined hot moments conservatively as individual flux measurements that were more than 

four standard deviations from the yearly mean (Table 1). Hot moment fluxes of N2O represented only 

0.64% to 1.50% of annual measurements but increased the mean flux rate by 38.5% to 76.3% (Table 

1). For CH4, hot moment fluxes were only 0.06% to 0.8% of yearly measurements but increased A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

yearly mean fluxes by 132.1% to 486.4% in site years two and three. In site year one, hot moments of 

CH4 consumption increased the net CH4 sink by 249.2%. The substantial hot moment driven changes 

in CH4 fluxes were largely due to the majority of CH4 flux measurements recorded at or near zero 

(Figure 1b). Hot moments of CO2 emissions had a significantly lower overall impact on mean CO2 

fluxes, representing only 0.5% of all fluxes (annual range 0.3-0.6%). This increased overall mean 

fluxes by 5% and annual mean CO2 fluxes by 2.6 to 9.2% (Table S1). 

3.3 | Drivers of N2O fluxes

The onset of winter flooding increased soil N2O emissions exponentially, with daily average 

fluxes of up to 395.6 ± 87.6 mg N2O m-2 d-1 (p < 0.001). Irrigation and fertilizer application during the 

growing season also significantly increased N2O fluxes (Figure 2a, p < 0.001). We used arrays of soil 

moisture, temperature, and O2 sensors and weekly soil gas and mineral nitrogen (N) measurements in 

combination with continuous surface flux measurements to explore potential controls on GHG fluxes. 

Daily mean N2O fluxes increased up to two orders of magnitude shortly after the onset of winter 

flooding concurrent with a rise in soil moisture and a corresponding reduction in soil O2 

concentrations across soil depths (Figure 2d, p < 0.001). Continued inundation led to a decline in soil 

NO3
-concentrations (Figure 2b, p < 0.001) and a subsequent drop in N2O fluxes (Figure 2a, p < 

0.001). Soil gas concentrations were taken at 10 cm, 30 cm, and 50 cm depths during non-flooded 

periods from September 2018-December 2019. We found that daily mean N2O fluxes were 

significantly correlated with soil N2O concentrations across all depths (R2 = 0.45-0.60, Figure S1), 

and likely contributed to net fluxes across the soil-atmosphere interface.  

Wavelet coherence analysis suggested temporal patterns in soil moisture, soil temperature, and 

bulk soil O2 concentrations across all depths were significantly related to patterns in net N2O fluxes 

on a daily timescale (Figure S5, p < 0.05).  Net N2O fluxes showed significant coherence with soil O2 

concentrations across depths at the seasonal timescale of approximately 100 days, and soil moisture at 

the yearly scale of approximately 300 days (Figure S5, p < 0.05).  

3.4 | Drivers of CH4 and CO2 fluxes
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Significant CH4 fluxes were only observed 60 days into an extended period of anoxic 

conditions lasting a total of 124 days. This period of anoxic conditions was associated with complete 

soil saturation following winter flooding (Figure 3c) and corresponded to decreased soil O2 

concentrations across depths (Figure 3d). Short periods of elevated NH4
+ concentrations observed 

during flooding were also associated with decreases in CH4 production (Figure 3a and 3b). Shorter 

periods of sustained anoxic conditions in 2019-2020 (50 total days) did not produce hot moments of 

CH4 fluxes. Wavelet coherence analysis of CH4 fluxes suggested that soil moisture, soil temperature, 

and bulk soil O2 concentrations drove patterns in net CH4 fluxes at a daily time scale (Figure S5, p < 

0.05). Only soil O2 concentrations across soil depths had significant coherence with CH4 fluxes on a 

weekly timescale (Figure S5, p < 0.05), with no significant coherence at longer timescales. 

Seasonality explained the high intra-annual variation observed in CO2 fluxes. Higher soil 

respiration rates (mean 50.5 ± 1.5 g CO2 m-2 d-1) occurred during the growing season and following 

harvest (July-September). Fluxes were significantly lower (6.8 ± 0.1 g CO2 m-2 d-1) when soils were 

saturated (December-March). There was significant coherence with moisture, temperature, and O2 

concentrations across depths at the daily scale (Figure S6, p < 0.05). At weekly and seasonal scales, 

temperature and O2 concentrations displayed significant (p < 0.05) coherence with soil CO2 fluxes. 

We compared chamber fluxes with ecosystem respiration (Reco) measurements conducted via eddy 

covariance in parallel at this field site (Camilo et al., 2016; Hemes et al., 2019). Similar values were 

observed for soil CO2 chamber fluxes (9.20 ± 0.04 kg CO2 m-2 y-1) and Reco eddy-covariance 

measurements (9.70 ± 0.01 kg CO2 m-2 y-1) across the study period (Figure S6). Soil CH4 chamber 

fluxes (1.2 ± 0.01 g CH4 m-2 y-1) were lower than the eddy-covariance CH4 fluxes (2.2 ± 0.01 g CH4 

m-2 y-1), although eddy covariance also captured similar hot moments of CH4 emission (Figure S7).

3.5 | Sampling frequency effects on N2O and CH4 flux estimates

Decreasing the measurement sampling interval led to significant under- or overestimates of 

total N2O and CH4 flux. Simulating a 28-day (once monthly) sampling interval underestimated total 

N2O flux by a median of -13.0% (Range of 28-day N2O subsets: -75.1% to +129.2%, Table S2) and 

CH4 flux by a median of -17.4% (Range of 28-day CH4 subsets: -88.6 to + 656%, Table S3). A 

weekly sampling interval underestimated the total N2O flux by a median of -2.3% (Range of weekly A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

subsets: -18.3% to +18.8%, Table S2) and total CH4 flux by a median of +14.1% (Range of 7-day 

CH4 subsets: -40.3% to 149% Table S3). A sampling interval of every other day under- or 

overestimated total N2O fluxes by ±2.4% but overestimated CH4 fluxes by +32.9% to +64.4% (Table 

S2 and 3). 

We further explored the importance of missing potential hot moment fluxes by calculating the 

change in mean N2O and CH4 fluxes after removing observations greater than one, two, or three 

standard deviations from the overall mean flux. Removing all observations more than one standard 

deviation of the mean underestimated annual N2O fluxes by 56.6%, while removing observations 

greater than two and three standard deviations underestimated N2O fluxes by 42.7% and 34.5%, 

respectively. Missing N2O fluxes greater than three standard deviations corresponded to an 

underestimation of annual N2O emissions up to 14.3 ± 0.6 kg N-N2O ha-1 yr-1. For CH4, removing 

observations greater than one standard deviation underestimated annual CH4 fluxes by 79%, while 

removing observations greater than two and three standard deviations underestimated CH4 fluxes by 

69% and 63%, respectively.  

Finally, we calculated the minimum number of randomized flux measurements needed to 

calculate annual and total (3-year) flux values for N2O and CH4 with a 95% confidence interval and 

margins of error of 10%, 25%, and 50% when the occurrence of hot moments are unknown (Table 

S4). For N2O, an average of 8,342 (range: 2,700-8,342) individual flux measurements were needed to 

accurately calculate the annual mean flux within a 10% margin of error. This represents up to 35% 

(range: 11-35%) of the dataset. Increasing the margin of error to 25% and 50% reduced the number of 

measurements needed, with a range of 475 to 1,904 and 121 to 507 individual randomized 

measurements per year, respectively. When analyzing the total N2O dataset, the minimum number of 

flux measurements needed was 6,401 with a 10% of margin error, decreasing to 1,108 and 281 for 

margins of error of 25% and 50%, respectively.

The minimum sample size needed for calculating annual and total mean CH4 fluxes were 

greater than N2O (Table S4). For annual CH4 fluxes, the minimum sample size needed to recalculate 

the mean flux within a 10% margin of error was at least 17,133 (range: 17,133-22,525). Increasing the 

margin of error to 25% and 50% reduced the minimum annual sample sizes needed to at least 7,562 

(range: 7,562-18,284) and 2,525 (range: 2,525-10,770), respectively. The minimum number of flux A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

measurements needed for the total CH4 dataset was also higher than N2O with 68,137, 54,419, and 

31,656 for margins of error of 10%, 25%, and 50%, respectively. 

3.6 | Upscaling greenhouse gas emissions

We conducted an upscaling exercise to provide a first approximation of the potential impact of 

peatland maize agriculture on regional GHG emissions. Using the three years of field data, we 

upscaled these flux measurements using the total regional land area with similar soil series and 

management practices. We calculated a mean annual GWP of 1.86 Tg CO2e y-1 (range: 1.58-2.21 Tg 

CO2e y-1) for agricultural peatlands in the region, with N2O emissions representing 0.48 Tg CO2e y-1 

(range: 0.28-0.77 Tg CO2e y-1). Assuming the field estimates measured here are representative of 

local management practices, N2O fluxes alone could represent 26% (annual range: 18-33%) of 

agricultural maize peatland CO2e emissions in this region, a significantly higher percentage than 

previous estimates (Deverel, Jacobs, Lucero, Dore, & Kelsey, 2017; Hemes et al., 2019). Soil types 

with similar organic matter content represent over 40,000 ha of agricultural peatlands in the 

Sacramento-San Joaquin Delta region (Deverel et al., 2016; Soil Survey Staff, 2020) and these soils 

are dominated by maize production. They are often flooded in the winter for waterfowl habitat (Delta 

Protection Commission, 2012; Pellerin et al., 2014). 

4 | DISCUSSION

4.1 | Annual fluxes and hot moments of N2O emissions

The agricultural peatland soils in this study were extreme N2O emitters, with mean rates that 

were 4-27 times greater than other non-peat cropland N2O emissions (Ferrari Machado et al., 2020; 

IPCC, 2013; Jin et al., 2014; Johnson, Weyers, Archer, & Barbour, 2012). It is notable that these 

values for both peatland and non-peatland ecosystems were largely derived from non-continuous data 

that may not capture all N2O emission hot moments. The three year average N2O emissions were 

greater than the highest IPCC estimates for temperate organic cropland soils, and the peak annual N2O 

emissions from this study were five times greater than the average values of 8 kg N2O-N ha-1 y-1 

(uncertainty range: 2-24 kg N2O-N ha-1 y-1, IPCC, 2019). Estimated mean annual N2O emissions of A
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16.8 ± 14.8 kg N2O-N ha-1 y-1  have been reported for other drained peatlands with data derived from 

bulk densities (H. Liu, Wrage-Mönnig, & Lennartz, 2020). Average N2O emissions observed in this 

study were similar to or higher than studies of N2O emissions from agricultural peatlands in the 

Sacramento-Delta, which ranged from 6.6 ± 3.8 using model estimates (Deverel et al., 2017) to 24 ± 

13 kg N2O-N ha-1 y-1 using shorter-term periodic manual static chamber measurements (Teh et al., 

2011). 

Surprisingly winter flooding, not fertilization, was the dominant driver of N2O emissions. 

Peak N2O emissions were observed shortly following winter flooding. The high NO3
- measured 

shortly after flooding likely accumulated under oxic, well-drained soil conditions as a result of N 

mineralization following crop harvest (Kirk et al., 2015), and may have been supplemented by iron 

coupled anaerobic ammonium oxidation in these iron and C-rich soils (Anthony & Silver, 2020; 

Golovchenko, Tikhonova, & Zvyagintsev, 2007; Martikainen, Nykänen, Crill, & Silvola, 1993; Yang 

& Liptzin, 2015; Yang, Weber, & Silver, 2012). Urea-ammonium-nitrate (UAN) fertilizer was 

applied once per year during planting. This inorganic N fertilizer application also contributed to a 

short-term increase in N2O emissions, although this was not the dominant source of annual N2O 

emissions. 

Denitrification was likely the main pathway of N2O during hot moments of N2O flux given 

elevated NO3
- concentrations observed immediately prior to peak emissions, as well as the observed 

increases in soil moisture and decreases in soil O2 and NO3
- concentrations during the N2O hot 

moments. The NO3
- was likely consumed during denitrification, with significant amounts of N2O 

released as a byproduct of incomplete denitrification in these N-rich soils (Firestone & Davidson, 

1989). The strong correlations observed between daily mean N2O fluxes and soil atmosphere N2O 

concentrations also suggest that significant N2O production was occurring at depth and thus 

production throughout the profile likely contributed to the large fluxes observed.

4.2 | Fluxes of CH4 and CO2 

Prolonged anaerobic conditions coupled with soil temperatures greater than 10º C appeared to 

drive hot moments of CH4 fluxes in these systems. Short periods of elevated NH4
+ concentrations 

during flooded periods could have limited methanogenesis (Chen, Cheng, & Creamer, 2008) or A
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temporarily shifted the methanogenic pathway (Fotidis, Karakashev, Kotsopoulos, Martzopoulos, & 

Angelidaki, 2013) and likely contributed to the considerable variability observed. Expectedly, patterns 

in soil CO2 fluxes were related to temperature and O2 concentrations at weekly and seasonal scales. 

Soil temperature and O2 availability are important controls on aerobic soil respiration (Kasimir-

Klemedtsson et al., 1997), particularly in ecosystems such as drained agricultural peatlands where 

substrate availability is not likely to be limiting to heterotrophs and nutrient availability to autotrophs 

is high.  

 

4.3 | The role of hot moments in N2O and CH4 fluxes

The large continuous data set allowed us to explore the importance of hot moments of N2O 

and CH4 emission in total ecosystem GHG budgets.  While hot moments represented only 0.63-1.50% 

and 0.06-0.76% of annual N2O and CH4 flux measurements, respectively, they contributed up to 76% 

of total N2O emissions and 486% of total CH4 emissions. This corresponded to N2O hot moment 

emissions alone contributing up to 18% of the annual GWP of these agricultural peatlands. This 

highlights that missing hot moments may lead to significant underestimates of total ecosystem GHG 

budgets. 

We also explored the effects of sampling interval on N2O and CH4 flux quantification. Our 

results further highlighted the necessity of continuous measurements to accurately estimate total 

ecosystem N2O and CH4 fluxes. Even weekly sampling intervals may underestimate annual N2O 

fluxes by up to 20%, a significant fraction of total GWP, even from these high emitting agricultural 

peatlands. While continuous automated chamber or eddy covariance measurements are ideal to 

capture hot moments of emissions, long-term continuous measurements are still cost prohibitive in 

many locations and ecosystems. If hot moments are predictable and well defined, daily flux 

measurements are likely effective in appropriately quantifying hot moments of N2O emissions (Ferrari 

Machado, Wagner-Riddle, MacTavish, Voroney, & Bruulsema, 2019; Reeves, Wang, Salter, & 

Halpin, 2016). However if the timing and controls on hot moments are unknown or sporadic, less 

frequent sampling may significantly underestimate N2O emissions (Grace et al., 2020). Our results 

suggest that roughly 8,000 randomized individual chamber flux measurements would be needed to 

accurately estimate annual N2O budgets from these agricultural peatlands with a 95% confidence A
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interval and 10% margin of error, assuming the drivers of hot moments were not well understood. 

Approximately 500 individual measurements would yield a 50% margin of error. Given the more 

sporadic nature of CH4 hot moments, our results suggest that it is even more difficult to accurately 

estimate CH4 fluxes with periodic sampling in these ecosystems. Analyses found that at least 17,000 

and 2,500 individual flux measurements would be needed to estimate annual CH4 budgets within a 

10% and 50% margin of error, respectively. 

4.4 | GHG budgets and upscaling 

The agricultural maize peatland soil studied here was a much larger source of soil GHG 

emissions than other maize agroecosystems. While agricultural peat soils are highly productive, 

average annual GHG emissions were 3.6-33.3 times greater on an area-scaled basis and 3-15.6 times 

greater on yield-scaled basis relative to other agricultural maize emissions estimates (Table S5, Chai 

et al., 2019; Jin et al., 2014; Johnson, Weyers, Archer, & Barbour, 2012; Linquist et al., 2012). 

We conducted an upscaling exercise as a first approximation of the potential impacts of maize 

peatland fluxes on regional GHG budgets. Our estimates suggested that maize agriculture on similar 

peat soils in the region could emit an average of 1.86 Tg CO2e y-1.  Nitrous oxide emissions alone 

accounted for approximately 26% of the total. This value is significantly higher than previous 

estimates for the region (Deverel et al., 2017; Hemes et al., 2019) and highlights the importance of 

including high frequency N2O measurements to capture hot moments in N2O fluxes, the 

disproportionate impact N2O emissions have on agricultural peatland GHG budgets, and that these 

agricultural peatlands are significant N2O sources. We also found that irrigation timing and duration, 

not fertilization, was the predominant driver of N2O and CH4 emissions and a significant source of the 

total GHG budget.  Determining management strategies that reduce soil N2O and CH4 emissions, 

particularly changes in flood irrigation timing and duration, could have a disproportionate impact on 

reducing total agricultural peatland GHG emissions (Hemes et al., 2019; Knox et al., 2015; McNicol 

et al., 2017; Windham-Myers et al., 2018).

5 | CONCLUSION
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This study presents one of the largest, longest, and most comprehensive soil flux datasets from 

agricultural peatlands to date. Our results provide evidence that these systems are a significant 

contributor to agricultural GHG emissions. The continuous dataset allowed us to explore the 

importance of hot moments of soil CH4 and N2O emissions driven by land management changes in 

soil moisture, soil O2, and soil N availability. We found that irrigation timing and duration, not 

fertilization, was the predominant control on soil N2O and CH4 emissions from these agricultural 

peatlands. We also found that N2O and CH4 alone contributed up to 37% of the annual GWP of this 

system. This suggests that land management strategies that limit flooding frequency and duration may 

significantly reduce total agricultural peatland GHG emissions. We further demonstrate that 

continuous automated chamber measurements of soil GHG emissions capture hot moments of N2O 

and CH4 production and intensive sampling, particularly during hot moments of emission, are needed 

to accurately quantify GHG budgets. This is particularly important in high emitting ecosystems such 

as agricultural peatlands to ensure effective and targeted land management strategies that maximally 

limit net ecosystem GHG emissions. 
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9 | Tables

Table 1. Mean (± standard error) annual N2O and CH4 fluxes by site year (July 1 to June 30), number 

of measurements, number of outlier measurements, outlier mean (± standard error) N2O and CH4 

fluxes, mean fluxes (± standard error) without outliers included, % of the outlier contribution to total 

mean flux, and N2O and CH4 % of ecosystem GWP. Outliers were calculated separately for each year 

and in aggregate for the total dataset (All years). 

Site 

Year

Mean 

(g N2O m-2 y-1)

Flux 

(n)

Hot 

moment 

flux

(n)

Hot moment

mean 

(mg N2O m-2 d-1)

Mean no hot 

moments 

(g N2O m-2 y-1)

Hot 

moment 

% change 

in mean 

flux

N2O % 

GWP 

(g CO2e m-2 y-1)

1 

(2017-

2018)

3.52 ± 0.11 22,247 294 321.9 ± 8.0 2.00 ± 0.06 +76.3% 26.3%

2 

(2018-
6.52 ± 0.25 23,196 147 896.4 ± 65.5 4.44 ± 0.10 +46.0% 35.0%
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2019)

3 

(2019-

2020)

2.35 ± 0.04 24,934 374 123.8 ± 2.0 1.69 ± 0.01 +38.5% 15.5%

All 

years

4.08 ± 0.10
70,377 468 535.5 ± 23.9 2.80 ± 0.04 +45.6% 26.0%

Site 

Year

Mean

(mg CH4 m-2 y-1)

Flux 

(n)

Hot 

moment

 flux

(n)

Hot moment

mean

(mg CH4 m-2 d-1)

Mean

no hot moments

(mg CH4 m-2 y-1)

Hot 

moment

% change 

in mean 

flux

CH4 %

GWP

(g CO2e m-2 y-1)

1 

(2017-

2018)

-111.0 ± 5.0 22,255 110 -44.4 ± 4.1 -31.8 ± 0.01 -249.2% -0.13%

2 

(2018-

2019)

2220.1 ± 519.7 23,358 13 6235.2 ± 1953.3 958.7 ± 0.18 +132.1% 1.9%

3 

(2019-

2020)

171.6 ± 25.2 24,941 189 78.9 ± 5.7 -44.40 ± 0.02 +486.4% 0.18%

All 

years
761.4 ± 171.6 70,554 26 3293.8 ± 814.6 319 ± 0.08 +139.7% 0.7%

10 | Figure Captions

Figure 1.  Daily mean greenhouse gas fluxes (± standard error) for (a) CO2 (g CO2 m-2 d-1), (b) CH4 

(mg CH4 m-2 d-1), and (c) N2O (mg N2O m-2 d-1). Black circles are daily mean flux measurements 

(mean n = 81 fluxes per day).

Figure 2. Daily mean (± standard error) (a) N2O fluxes, (b) soil NO3
- concentrations, (c) daily mean 

soil moisture, and (d) daily mean soil O2 concentrations over the measurement period. Soil NO3
- A
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measurements (0-10 cm depth) were conducted weekly from May 2018-May 2019. For (c) soil O2 

concentrations and (d) soil moisture, daily average values by soil depth are labeled as squares (10 cm), 

open circles (30 cm), and triangles (50 cm). Flooding and fertilization events are labeled with dashed 

and dotted lines, respectively. Gaps represent missing data (see Methods). 

Figure 3. Daily mean (± standard error) values of (a) CH4 fluxes, (b) soil NH4
+, (c) soil moisture, and 

(d) soil O2 over the measurement period across 10 cm (squares), 30 cm (open circles), and 50 cm 

(triangles) depths. Soil NH4
+ measurements were conducted weekly at 0-10 cm depth from May 2018 

to May 2019. Flooding and fertilization events are labeled with dashed and dotted lines, respectively. 

Gaps between data points in (a), (c), and (d) correspond to missing data (see Methods). 
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