
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Cost of Adaptation in Power Control of Communication Systems

Permalink
https://escholarship.org/uc/item/6971v077

Author
Ha, Minh Hong

Publication Date
2015
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6971v077
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Cost of Adaptation in Power Control of Communication Systems

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Engineering Sciences (Mechanical Engineering)

by

Minh Hong Ha

Committee in charge:

Professor Robert R. Bitmead, Chair
Professor Massimo Franceschetti
Professor William M. McEneaney
Professor Mauricio de Oliveira
Professor Bhaskar D. Rao

2015



Copyright

Minh Hong Ha, 2015

All rights reserved.



The dissertation of Minh Hong Ha is approved, and it is

acceptable in quality and form for publication on microfilm

and electronically:

Chair

University of California, San Diego

2015

iii



DEDICATION

To God, my Lord, for His unfailing love and knowledge granted to me.

To my mom, dad and brother, for their unparalleled love and support.

iv



EPIGRAPH

Trust in the Lord with all thine heart; and lean not unto thine own understanding.

In all thy ways acknowledge Him, and He shall direct thy paths.

—Proverbs 3:5-6

v



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Adaptive control and power control . . . . . . . . . . . . . 1
1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Energy cost of adaptation in power control . . . . . 7
1.4.2 Power control as a dual adaptive control problem . . 9

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 2 Cost of Adaptation in Power Control of Communication Systems . 13
2.1 Introduction and literature review . . . . . . . . . . . . . . . 13
2.2 Some definitions . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 SNR estimation in communication systems . . . . . . . . . 20

2.3.1 System model . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Channel estimation by least squares . . . . . . . . . 24
2.3.3 SNR estimation . . . . . . . . . . . . . . . . . . . . 27

2.4 Examination of the SNR estimate . . . . . . . . . . . . . . 33
2.5 Results in the real-channel case . . . . . . . . . . . . . . . . 36
2.6 Link quality and formulation of energy cost . . . . . . . . . 39
2.7 Examination of the total energy cost . . . . . . . . . . . . . 46
2.8 Total energy cost with MS mobility . . . . . . . . . . . . . 49
2.9 Blind adaptation via hypothesis testing . . . . . . . . . . . . 56

vi



2.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Chapter 3 Optimal Mobile Wireless Power Control as a Dual Adaptive Control
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . 65
3.3 Solution to optimal dual adaptive control . . . . . . . . . . . 71

3.3.1 Problem formulation and information state . . . . . 72
3.3.2 Information state update . . . . . . . . . . . . . . . 74
3.3.3 Dynamic programming and control policy . . . . . . 75

Chapter 4 ODAC Solutions to the Power Control Problem . . . . . . . . . . 77
4.1 Description of the problem . . . . . . . . . . . . . . . . . . 77
4.2 Implementation of the SDP algorithm . . . . . . . . . . . . 83

4.2.1 Information state and its update . . . . . . . . . . . 83
4.2.2 Duality of the power control problem . . . . . . . . 85
4.2.3 Dynamic programming and control policy . . . . . . 87

4.3 Heuristics and alternative control laws . . . . . . . . . . . . 92
4.3.1 Heuristics . . . . . . . . . . . . . . . . . . . . . . . 92
4.3.2 Alternative control laws . . . . . . . . . . . . . . . 93

4.4 Computational results . . . . . . . . . . . . . . . . . . . . . 94
4.4.1 Performance and computation time . . . . . . . . . 95
4.4.2 Examination of control laws . . . . . . . . . . . . . 97

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Chapter 5 Conclusion & Future Direction . . . . . . . . . . . . . . . . . . . 105
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2 Future direction . . . . . . . . . . . . . . . . . . . . . . . . 108

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

vii



LIST OF FIGURES

Figure 2.1: Communication system structure . . . . . . . . . . . . . . . . . . . 21
Figure 2.2: An example of pdf of the SNR estimate, as F distribution . . . . . 34
Figure 2.3: Pdf of SNR estimate in both complex-channel and real-channel cases 38
Figure 2.4: 90% confidence interval curves for SNR estimate as F-distribution . 39
Figure 2.5: Total energy cost: Simulation 1. . . . . . . . . . . . . . . . . . . . 47
Figure 2.6: Total energy cost: Simulation 2. . . . . . . . . . . . . . . . . . . . 48
Figure 2.7: Total energy cost: Simulation 3. . . . . . . . . . . . . . . . . . . . 49
Figure 2.8: Total energy cost with MS mobility . . . . . . . . . . . . . . . . . 56
Figure 2.9: Number of errors to reject the null hypothesis with 95% confidence 58
Figure 2.10: Power-of-test values for the first hypothesis test . . . . . . . . . . . 59
Figure 2.11: Power-of-test values for the second hypothesis test . . . . . . . . . 60

Figure 4.1: Power control problem from the perspective of dual adaptive control 79
Figure 4.2: Energy cost as a quadratic function . . . . . . . . . . . . . . . . . 86
Figure 4.3: Histograms of control values. Real fade is equal to −3dB . . . . . . 98
Figure 4.4: Histograms of control values. Real fade is equal to −17dB . . . . . 99
Figure 4.5: Histograms of control values. Real fade is equal to −7dB . . . . . . 100
Figure 4.6: Histograms of control values. Real fade is equal to 0dB . . . . . . . 101
Figure 4.7: Evolution of the information state averaged over 10 realizations of

the noise for each adaptive control scheme vs. sample time. Upper
plot: real fade is f [3]. Lower plot: real fade is f [4]. . . . . . . . . 103

Figure 4.8: Evolution of the information state averaged over 10 realizations of
the noise for each adaptive control scheme vs. sample time. Upper
plot: real fade is f [1]. Lower plot: real fade is f [2]. . . . . . . . . 104

Figure 5.1: More complete power control problem in communications . . . . . 108
Figure 5.2: Full-scale power control in mobile wireless communications in the

framework of stochastic cooperative game theory . . . . . . . . . . 111

viii



LIST OF TABLES

Table 2.1: Summary of simulation results . . . . . . . . . . . . . . . . . . . . 50

Table 4.1: Average empirical performance of the control policies . . . . . . . . 96
Table 4.2: Computation time of the control laws . . . . . . . . . . . . . . . . . 96

ix



LIST OF ACRONYMS

AWGN: Additive white gaussian noise.

BER: Bit-error-rate.

BPSK: Binary phase shift keying.

BS: Base station.

CDMA: Code-division multiple access.

CE: Certainty equivalence.

DAC: Dual adaptive control.

GSM: Global system for mobile communications.

LS: Least squares.

ML: Maximum likelihood.

MMSE: Minimum mean-square error.

MS: Mobile station.

ODAC: Optimal dual adaptive control.

OFDM: Orthogonal frequency-division multiplexing.

QAM: Quadrature amplitude modulation.

QPSK: Quadrature phase shift keying.

SDAC: Suboptimal dual adaptive control.

SDP: Stochastic dynamic programming.

SER: Symbol-error rate.

SNR: Signal-to-noise ratio

x



ACKNOWLEDGEMENTS

Thanks must first be directed to God, my Lord, for Your unfailing love even in

the darkest hours of my life, and for Your infinite wisdom, a tiny portion of which has

been granted to me to make this work possible and to help me become a much better

person than I was before I knew You. Thank You, Lord, for saving my soul!

For mortals, my most sincere thanks must be given to Professor Robert Bitmead

at MAE Department, my first ever mentor and chair of my doctoral committee. Bob, you

have set a great example of how a mentor should be and you will remain among the best I

have and will have ever worked with. Your knowledge, patience, support and dedication

have been invaluable over the past five years of my doctoral study. This work could

never have been possible without the uncountable hours you have spent on meeting with,

teaching and advising me, both as an academic advisor and as a friend. You have also

taught me a great deal on the philosophy of being an engineer. I really wish I could work

longer with you because I know there are still many things, engineering or otherwise, that

I could learn from you. I truly appreciate your unparalleled efforts to keep me funded

even in the most difficult time, your patience with such an average student as myself and

your help with preparing me and influence in looking for my first job in the industry.

I would also like to thank the personnel at the University of California, San Diego

for the help over the past five years. Thanks are also given to Professor James Friend,

a new faculty member of MAE Department, who helped get me to where I am now

by believing I could walk on waters. I would also like to acknowledge the world-class

faculty of my doctoral committee members: Professor William McEneaney, Professor

Mauricio de Oliveira, Professor Bhaskar Rao, and Professor Massimo Franceschetti.

Thanks must also be given to my family for their unconditional love and supports.

I could never have gone this far without you, Mom. You have been taking care of me in

almost everything, from the encouragement you have given me to even the visa paperwork

xi



when I first set out to go to Australia for college. Thanks to Dad, for your enormous

effort and strange way to teach me to become a better person. Thanks to Tú, my Brother,
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ABSTRACT OF THE DISSERTATION

Cost of Adaptation in Power Control of Communication Systems

by

Minh Hong Ha

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2015

Professor Robert R. Bitmead, Chair

Power control has become an important aspect of any communication system

such as cellular networks, wireless LANs and DSL modems. Power control offers many

benefits: optimizing the SNR in the link, conserving the battery life and minimizing the

interference between the transmitter terminals. Power control is recognized as adaptive

control. Here, we consider solely the optimization of the battery life and assessing

the total energy cost in power control. The power control problem is formulated in a

communication link with a static complex gain and a single transmitter, corrupted by

complex normal noise. The channel estimate is computed by least squares using pilot

tones. Then the signal power and noise power estimates are calculated, and ultimately the

xiv



SNR estimate and its statistical properties. Based on this SNR estimate, an appropriate

power level can be chosen for data transmission. The total energy cost of the power

control process is formulated with aid of the statistics of SNR estimate. The cost is found

to exhibit a pathological behavior, where a transmitter should send an infinite number of

pilot tones at zero transmitted power to minimize the non-zero total energy cost of power

control. When the transmitter is moving, however, this pathological behavior disappears.

Next we look at the power control problem from the perspective of ODAC. The

dual feature of the problem is that to probe the link effectively, the transmitter must use a

large power level, but this affects the control process negatively as it increases the overall

energy cost. A balance between the two aspects must be obtained. Assuming some a

priori information about the fade is known, we use SDP, with aid of the information

state that describes the evolution of the fade’s statistics as measurements are obtained

and controls applied, thus acquiring ODAC solutions to the power control problem. The

solutions are found to depend greatly on what we know beforehand about the channel, a

feature that is not present in current power control algorithms. We also develop heuristics

that help reduce the computational demand due to SDP algorithm.

xv



Chapter 1

Introduction

1.1 Adaptive control and power control

In everyday language, “to adapt” is to change a behavior to conform to new

circumstances. An adaptive system is one that can modify its behavior in response to

changes in the dynamics of the process and the character of the disturbances. Therefore,

adaptive control is a variation of feedback since the latter also attempts to reduce the

effects of disturbances and uncertainties [1]. However there appears to be a consensus

that a constant-gain feedback system is not an adaptive system. Over the year, despite

many attempts to define adaptive control formally, an exclusive definition of adaptive

control still does not exist. Even expert committees failed to settle on an unanimous

definition. For the purposes of this work, an adaptive controller is defined as a controller

with adjustable parameters and a mechanism for adjusting the parameters. Because of the

adjustment mechanism, an adaptive controller exhibits nonlinear behaviors, that are hard

to analyze in general. The adjustment mechanism can be achieved in several ways, such

as gain scheduling, auto-tuning, self-tuning control and dual control. A control engineer

should have sufficient knowledge about adaptive systems because they possess useful

1
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properties that can be used to design control systems with improved performance and

functionality. It has also been found that adaptive techniques can also be used to provide

automatic tuning of controllers.

Generally speaking, adaptive systems are dynamic systems which involve an

explicit learning or adjustment component in which a number of parameters are adapted

based on input-output data. The dynamics of adaptation or learning have been studied by

many researchers in dynamic systems theory and in static machine learning contexts and

focus on the evaluation of a learning rate characterizing the convergence properties of the

parameter estimates as the number of training data increase, and the dependence of this

rate on the complexity of the parametrized class of functions, the desired probabilistic

accuracy of the estimate, the data quality, and the properties of the underlying target

system dynamics. Within adaptive systems, adaptive control is perhaps the most difficult

to characterize because of its extraordinarily nonlinear behavior and the potential loss of

stability due to adaptation.

Power control in mobile communication systems fits well under the framework

of adaptive control, where a transmitted power for the transmitter is to be selected with

aid of channel estimation. Power control algorithms are used in contexts such as cellular

networks, wireless local area networks and digital subscriber line modems. The benefits

of adaptation in power control are many: optimizing the SNR in the communication

link, increasing spectral efficiency, protecting against fading, conserving the transmitter’s

battery life and reducing the interference between neighboring transmitters, increasing

the link data rate and network capacity, and maximizing geographic coverage and range.

Here, the fading in the communication link can be viewed as the variability of the process

due to the mobility of the MS. The adjustable parameter is the transmitted power level

of the transmitter, and the adjustment mechanism is the power control algorithm. In

this thesis, we focus solely on the energy question and explore the determination of the
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correct transmission power at, say, the MS transmitter using feedback information from

its serving BS receiver. The central question is the estimation of the appropriate operating

SNR at the receiver and then the subsequent selection of the appropriate transmission

power to maintain the BER at the receiver at a sufficiently low level (e.g. 10−2 [2]) so as

to permit error detection and correction codes to recover the message reliably.

The process of adaptation in power control, however, comes at a cost. Usually,

the adaptation in power control of communication system depends mostly on the pilot, or

training, sequences. Pilot sequences are deterministic signals that are known to both the

transmitter and the receiver. For example, in mobile wireless communications, a pilot

sequence can be a BPSK signal stream that is known to both the MS and the BS. In fax

machines, a pilot sequence is a sequence of tones that is also known to both the transmitter

and the receiver machines; this is the source of the familiar signature tones that are heard

in every fax machine upon startup. The purpose of the pilot sequence, in general, is

to estimate the communication channel quality (in the case of the fax machine), or to

mitigate the effects of interference between transmitting terminals, or both (in the case

of mobile phones). Channel estimation allows the transmitters to choose an appropriate

transmitted power level to acquired the aforementioned benefits. Intuitively, the cost

of this adaptation process can be seen as the energy spent on the information-free pilot

sequences to probe the communication links, the time it takes for the links to be estimated,

and the reduction in the channel capacity, as the pilot sequences are often embedded into

the data stream in the mid-amble or pre-amble section. A good power control algorithm

must strike a balance between the said benefits and drawbacks based on the performance

criteria that are most important to the designer and end-users.
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1.2 Literature review

Research on adaptive control can be traced back to the early 1950s. It was

motivated by design of autopilots for high performance aircraft that operate over a wide

range of velocities and altitudes [3]. It was found that while an ordinary constant-gain

linear feedback controller may perform well, difficulties may arise when operating

conditions change. This necessitated a more complicated control algorithm, which is

found to be adaptive in nature. At the time, interest in the area was diminished due to lack

of insights and a disaster in a flight test [4]. The effort was re-kindled in the 1970s, when

the progress in research on control theory from previous decades helped improve the

knowledge about adaptive control. This was further expedited by the rapid development

of microelectronics that allowed the implementation of adaptive control policies in simple

and cheap ways. Nowadays, as adaptive control gains more attention because of its many

significances and benefits and advantages, a significantly large portion of the literature

is dedicated to adaptive control. There are so many works on adaptive control that the

review of them all would not fit into this thesis. For surveys, the readers are referred to

[5, 3, 6, 7, 8, 9, 10].

As an adaptive system that changes its behavior according to the current condition

of the communication link, power control in communication systems has become signif-

icant because of the benefits stated previously. There are many algorithms to perform

power control process, which depends on the purposes and performance criteria of the

network in consideration. For example, in GSM-1900, also known as PCS-1900, the

MS is instructed to change the transmitted power level in steps of 2dBm [11, 12] to

maintain a certain criterion regarding the SNR in the communication link while reducing

the interference between the MS terminals to ensure quality of service.

More examples in power control research can be found in [13], where the au-
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thors investigate the power control problem in a single-cell CDMA wireless data system

with many users in a viewpoint of game theory and Pareto efficiency, where each user

minimizes its own utility. In [14, 15], an approach to power control in wireless systems

is proposed based on an economic model, where the service preference for each ter-

minal is presented by a utility function–the level of satisfaction a user gets from using

the system resources. In [16], the power control-based multiple access algorithm for

contention-based wireless ad hoc networks is analyzed via investigating the similarities

and differences between problems previously solved for cellular networks. In [17], the

problem of cross-layer design of joint multi-user detection and power control is tack-

led in the setting of non-cooperative game theory to optimize the energy efficiency for

CDMA system. Numerous other papers are also dedicated to the subject because of its

importance. A good survey of power control algorithms in wireless communication can

be found in [18, 19].

The cost of adaptation in power control, however, has not been fully investigated

nor appreciated. There are a few texts that have a remotely similar theme in a multiuser

context, such as [20] where the authors present an approach to estimating SNR using

a pilot sequence. They however go no further in applying the algorithm to an adaptive

power control context, or quantifying the cost associated with the channel estimation

scheme. Goldsmith [21] includes solutions to variable modulation and coding problems

and power control based on SNR (or signal-to-interference-noise ratio in the case of

multiuser networks) but does not formalize the uninformative energy required to carry

out the algorithms. Various studies [22, 23, 24] also deal with many types of adaptation

problems such as rate, modulation, power and coding adaptations but none has taken

into account the tradeoffs in terms of energy. Chi et. al. [25] also aim to design an

optimal training sequence in OFDM system with minimum mean square error criterion

and examine the tradeoffs that are inherited in OFDM such as peak-to-average power
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ratio and phase noise. However the paper considers a fixed amount of transmitted energy

and is not concerned with finding the optimal amount.

1.3 Structure

The structure of the thesis is as follows. In Chapter 2, the investigation of the

cost of adaptation in power control of communication systems with static channels is

presented. This includes the formulation of channel estimation using LS and the resulting

link SNR estimate, followed by the formulation and investigation of the total energy cost

of power control, which is an adaptation process. Next, the case where then transmitter is

moving, making changes in the channel, is analyzed. In the end of Chapter 2, a blind

adaptation technique based on hypothesis testing is also proposed to compare to the

current data-aided techniques using pilot sequences.

In Chapter 3, we reformulate the power control problem from the perspective of

dual adaptive control. In order the solve the problem from the viewpoint of dual adaptive

control, in this chapter, we present the preliminaries regarding the SDP algorithm that

includes Bellman’s equation. The optimal control policy is then formulated based on the

SDP algorithm.

In Chapter 4, the power control problem in communication networks from the

perspective of dual adaptive control is formally formulated, with reduced complexity

where the MS and BS can share their information about the system. Then, application

of the SDP algorithm to obtain the solutions to the problem is presented. Next, some

heuristics are recognized and consequent control laws proposed. In the end of the chapter,

a simulation is investigated which includes the implication of the solutions of the system’s

performance as well as the computational burden that the problem bears.

In Chapter 5, we conclude our results in the thesis and formulate the more
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complete optimal power control problem where we remove the assumption that the trans-

mitter and receiver can share their information. Next, we highlight some interesting areas

that possess connection to the problems we have considered, that can offer alternative

solutions to our problems.

1.4 Summary

This section summarizes the results found during our investigation of the problem

of identifying the cost of the adaptation process in power control of communication

networks.

1.4.1 Energy cost of adaptation in power control

The first problem we shall analyze is regarding the energy spent on power control

of communication systems. For simplicity and investigation purposes, we only consider

the context of a single-user in a static channel setting (e.g block fading), where the

signal is corrupted by circularly symmetric complex AWGN. For channel estimation

purposes, first we assume the use of pilot tones. Based on a number of pilot tones, we

use the LS estimation technique to examine the condition of the communication link

between the transmitter and the receiver stations. Then, based on the channel estimate,

the noise and signal power estimates can be found, followed by the estimate of the SNR

of the link and its probabilistic properties. The SNR estimate computed by our proposed

technique is found to be distributed as an F distribution, familiar from the analysis of

variance, with parameters as functions established through the available information

of the communication link. Following the statistics of the SNR estimate, an optimal

transmitted power level for the data stream can be chosen to meet a criterion regarding a

certain reference value of the BER in the link. This is to ensure the quality of service.
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Regarding the SNR estimate, we find that to minimize its variance, the optimal

strategy is to let the transmitted power for pilot tones go to zero, and then to use an

infinite number of pilot tones to estimate the channel.

The total energy cost of the adaptation process of the power control algorithm

described above is then formulated. This includes the energy spent on the pilot tones as

well as on the data symbols. However, when the transmitted power for the data stream

is selected wrongly, either the energy spent has an overhead as wasted energy due to

higher-than-necessary power, or, in the case of insufficient power, the energy has to take

into account the retransmission of the data symbols as a result. These energy terms can

all be computed as functions of the SNR estimate.

It is found that in the case under consideration, where the link is static and

characterized by a single complex channel gain, the total energy cost of adaptation

exhibits a pathological behavior. The pathological behavior is that in order to minimize

the total energy cost, the transmitter should use an infinitely large number of pilot tones

at zero power to work out the link conditions, just like the optimal strategy to minimize

the variance of the SNR estimate, because the total energy cost is actually a function of

the SNR estimate. The result implies a conundrum in the methodology to minimize the

cost of adaptation in static channels. When the channel does not change, one can spend

an infinite amount of time to investigate the link condition at minimal energy cost.

However, when the MS transmitter is assumed to have a velocity, the total energy

cost is modified to take into account the change in the channel condition due to the MS

mobility. The above pathological behavior of the total energy cost disappears when the

MS mobility is introduced. In this case, there exists an optimal pilot length K and pilot

transmitted power P0 that results in the smallest minimum of the total energy cost across

the range of the pilot transmitted power.

We also propose a non-data-aided, known as blind adaptation, technique to apply
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to the power control problem. It is, however, found that in the setting of mobile wireless

communication, the blind adaptation algorithm takes too long to compute the BER of the

link, making it unimplementable.

1.4.2 Power control as a dual adaptive control problem

In the next part of the thesis, we look at the power control problem from the

viewpoint of DAC, which is a subclass of adaptive control. Here, the data-aided technique

using pilot tones is employed once more in a AWGN channel with a constant gain (fading

coefficient). Further, we assume that the transmitter and the receiver can share their

knowledge. This greatly simplifies the problem, even though finding the solution is

still tedious labor. The optimal stochastic power control algorithm in fact exhibits the

behavior of a dual adaptive control system. First, in order to probe the communication

link as precisely as possible, the transmitter has to inject a large power level into the pilot

tones. However, in so doing, the energy cost increases, which is undesirable. A good

power control algorithm must strike a balance between probing the link and minimizing

the total energy spent, or regulating the system. This is the essence of DAC. The balance

can be accomplished by applying the SDP algorithm that is notoriously demanding in

computational power due to its curse of dimensionality in solving the Bellman equation.

This is demonstrated in our simulation example where, with a time horizon of 4 and 4

state values, it takes almost an hour to complete a simulation session in matlab.

The solution to the power control problem as an ODAC problem is found to

depend greatly on what is known about the channel’s statistics before carrying out the

SDP algorithm, that is, the a priori information about the fading of the channel. The

probability distribution of the fade changes when a measurement and a control have

been produced, and is known as the information state of the system. We develop the

formulation to update the information state using the data accumulated over time when
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controls are applied and measurements received. Hence, a significant distinction between

non-dual control and dual control is the dependence of the future information about the

communication link upon the control signal applied. This further enhances the estimate

of various parameters of the channel, which consequently improves the regulation process

and performance of the system.

In the work, we investigate both the control (the selected transmitted power level)

and the evolution of the information state, both of which depend greatly on the controls

applied and measurements acquired over time. This complicated relation is embedded

in the recursive equations of the SDP algorithm. Based on these findings, we establish

some heuristics about the power control process and compare the ODAC solution to the

certainty equivalence principle and other control laws based on these heuristics. The

comparison is made with regard to the cost function in terms of energy, conditioned on

the measurements and controls over time as well as the noise in the channel.

The implication of our results is that the power control problem is in fact a DAC

problem. When treated so and solved accordingly, the transmitted power level can be

selected accurately to overcome the fading in the environment without resulting in too

much energy spent. On the side line, the information about the communication link is

continuously acquired over time which contributes greatly to subsequent transmission of

data. This is a great improvement when compared to current power control algorithms in

the industry which do not take into account the effect of the control on the evolution of

the information about the channel.

1.5 Contributions

The first part of the thesis, which is Chapter 2, has the following contributions.

• We propose a SNR estimation technique in in communication networks with
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complex channels. This can be view as an extension from [26] who investigated

the case of real channel. Our extension makes the technique appropriate for modern

systems, such as OFDM.

• We pose, analyze and optimize the total energy cost of the power control algorithm,

including the energy cost of adaptation.

• We expose a conundrum in SNR estimation where the channel is static, in which to

optimize the total transmitter energy, the MS should use an infinite number of pilot

tones at zero transmitted power. The total energy cost of power control exhibits the

same behavior because it is based upon the statistics of the SNR estimate.

• We introduce MS mobility, making the channel vary as the MS moves. The total

energy cost is modified to take into account the change in the channel condition

due to the MS mobility. The above pathological behavior of the total energy cost

disappears when the MS mobility is introduced. In this case, there exists an optimal

pilot length K and pilot transmitted power P0 that results in the smallest minimum

of the total energy cost across the range of the pilot transmitted power.

The rest of the thesis has the following contributions.

• We recognize that the power control problem in communication networks is a

stochastic optimal control problem. We further expose its dual character and

classify it as a DAC problem.

• The ODAC problem we set up and solve is associated with a practical (power

control) problem and is among the first thorough analysis and computation of an

ODAC problem, as opposed to adaptive control with dual aspects.

• We determine the effect of the control signal on the distribution of the varying
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parameter (fading), known as the information state of the system. The update of

the information state once the controls have been applied is also computed.

• We draw heuristics upon our findings: the first optimal control at time 0 can be

calculated offline and the power control algorithm following CE principle, and

the propagation of the a priori knowledge about the channel through time can be

determined.

• We expose and quantize the computational intractability of the problem caused by

Bellman equation in the SDP algorithm.

• We make comparison between various control policies and highlight what optimal-

ity offers and at what cost.

• We expand the problem further, considering the case where the MS and BS are no

longer able to share their information. We explore the possible alternative solutions

to the problem offered by other fields.



Chapter 2

Cost of Adaptation in Power Control of

Communication Systems

In this chapter, we shall consider the cost of adaptation in power control of

communication systems. First, using pilot tones, we look at the problem of estimating

the channel in a communication system, which can be real (e.g. real channel with BPSK

signal), or complex (e.g. in the case of OFDM system). The channel estimation allows

both signal and noise power estimates to be computed. The SNR estimate can then be

calculated, and an appropriate transmitted power level chosen to transmit the data stream

at a desirable level of BER. Finally, the total energy cost of the whole power control

process will be formulated and its behavior analyzed.

2.1 Introduction and literature review

In communication networks, power control is an adaptive system that adapts to

the changes in channel condition. The power control algorithm operates billions and

billions of time everyday without human intervention. Power control in mobile wireless

13
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systems is associated with the management of energy consumption in the transmitting

devices and also with the interference between devices. Its many other benefits are also

outlined in Chapter 1. Here we focus solely on the energy question (e.g. preserve the

battery life of the transmitter) and explore the determination of the correct transmission

power at, say, the MS using feedback information from its serving BS. The central

question is the estimation of the operating SNR at the receiver and then the subsequent

selection of the appropriate transmission power to maintain the BER at the receiver at a

sufficiently low level (e.g. 10−2 [2]) so as to permit error detection and correction codes

to recover the message reliably.

Power control requires the knowledge of the communication channel which can

be obtained by channel estimation techniques. A standard way to estimate the channel is

to use a pilot, or training, sequence that is known to both the MS and BS. To aid the pilot-

based channel estimation, much of the literature has been dedicated to optimal design

and placement of the pilot symbols within the data block, which have a significant effect

on the overall performance of the system [27, 28, 29]. For example, in [30], the problem

of optimal design and placement of the pilot tones for channel estimation is considered,

where the Cramer-Rao Bound of mean square error of the channel estimator is minimized

for both single-input single-output and multiple-input multiple-output systems. In [29]

and [31], the authors consider the optimization of pilot tone selection that minimizes

the mean square error of the MMSE estimator for OFDM. In [32], the author analyzes

the optimal performance of two pilot-assisted schemes in various aspects of CDMA.

In [33], the authors looks into the optimization of the pilot tone design and placement

in multiple-input multiple-output OFDM systems, where LS estimator is used and the

pilot tone design and placement is optimized with respect to the estimator’s mean square

error, with an additional analysis of LS estimator over multiple OFDM symbols and of a

recursive LS algorithm to enhance the channel estimation performance.
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A large portion of the research work has been on channel estimation and the

design of the pilot sequence used in channel estimation of OFDM specifically. With pilot

tones, channel estimation can be performed by either inserting the pilot tones into all

of the subcarriers of OFDM symbols with a specific period, known as block-type pilot,

or inserting them into each OFDM symbol, known as comb-type pilot [34]. Generally,

block-type pilot is applicable under the assumption of slow fading channel, meaning

that the channel transfer function is not changing very rapidly. There are two widely

employed estimator for the block-type pilot, namely LS and MMSE. With MMSE,

channel estimation is based on cascading two one-dimensional finite impulse response

interpolation filters whose coefficients are based on MMSE criterion [35]. LS and MMSE

are described in detail in [36] where the latter is shown to be better in terms of SNR

performance for the same mean square error of the channel estimation. When the channel

changes even in one OFDM block, the comb-type pilot is introduced. This kind of

pilot estimates the channel at pilot frequencies and interpolates the channel. The former

can be based on LS, MMSE or least mean square. The latter can make use of many

interpolation techniques such as linear interpolation, second order interpolation and

low-pass interpolation. There are many papers devoted to channel estimation techniques

used in OFDM. In [37], the full review of well-known channel estimation techniques

used in both block-type pilot and comb-type pilot is presented, with various modulation

schemes such as QPSK, 16QAM, BPSK and differentially encoded QPSK. A study

of iterative channel estimators for mobile OFDM systems is presented in [38]. Also

in [39], a thorough comparison of various pilot-aided channel estimation methods is

made. Here the ML estimator is found to be simpler to implement than the MMSE

estimator, because it does not require knowledge of channel statistics and SNR. But

MMSE performs better when prior information about the channel is available. In [40], a

low-rank approximation of the linear MMSE estimator for block-type pilot is considered,
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by utilizing the frequency correlation of the channel to eliminate the major drawback

of MMSE which is computational complexity. In [41], the complexity of the MMSE

estimator in comb-type pilot is also reduced by deriving an optimal low-rank estimator

with singular-value decomposition. The authors also show that the 2nd order interpolation

performs better than the linear interpolation. In [42], time-domain is shown to give lower

BER compared to linear interpolation. In [43], the authors use piecewise constant and

piecewise linear interpolations between pilots, that are easy to implement but need large

number of pilots, thus affecting channel capacity. The MMSE estimator is also studied

in [44] that exploits channel correlations in time and frequency domains, that require

knowledge of channel statistics and SNR. In [45], channel estimation is performed

by 2D interpolation between pilots, which is robust to Doppler shifts even though the

performance is reduced with lower Doppler frequencies. The ML estimator is also

investigated in [31]; it does not need any information on the channel statistics or the

operating SNR. In [46], the authors propose another channel estimation technique with

iterative filtering and decoding in a flat fading environment for a single-carrier BPSK

modulation scheme. The idea is to feed the information from the output back to the

estimation stage that improves the performance by collecting information from both

pilots and coded bits.

Much effort is also devoted to SNR estimation in communication networks, as

this is very important to improve system performance, such as adaptive coding and

modulation [47], soft decoding procedures [48] and channel assignment [49]. One of

the first to examine channel estimation is [50] in the context of real-channel with BPSK

pilot signal, using the ML estimator, later perfected by [26]. The formulation of the split-

symbols moments estimator algorithm proposed by Simon and Mileant [51] assumes

BPSK modulation in a wide-band AWGN channel. The application of second- and

fourth-order moments to the separate estimation of carrier strength and noise strength
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in real AWGN channels to estimate channel SNR appears in [52, 53, 54]. An excellent

overview of SNR estimation techniques can be found in [55]. In [56], under the context

of multi-input multi-output OFDM, Boumard estimates the signal power by the channel

coefficients available in the channel estimation, where the coefficients of the adjacent

subcarriers are assumed to be the same. The assumption however is invalid in highly

frequency selective multi-path channels, leading to the degradation of the performance.

In [57], the authors use a subspace-based method to estimate the SNR using the estimated

coefficients of the pilot subcarriers in the OFDM packet. The method possesses high

complexity and the overall performance relies greatly on the number of pilot tones. In

[57], the properties of the correlation of pilot data in time-domain is utilized to estimate

the average SNR. This method also depends much on the number of pilots. In [58], using

pilot tones in frequency selective channels, a SNR estimation technique is proposed,

where, to be able to estimate the noise variance, it is required that the preamble contains

two or more symbols with the same structure or one symbol with many identical parts.

In [59], the authors develop a SNR estimation technique that estimate the colored noise

variance instead of the usual assumption of white noise. In [60], another pilot-based SNR

estimation technique is proposed based on periodically used subcarriers and the time

domain periodic preamble structure for time and frequency synchronization. Some other

authors have proposed non-pilot-aided SNR estimation schemes [61], but they have not

become popular and are out of the scope of this thesis.

The cost of adaptation in power control of communication systems, however,

has not been fully investigated nor appreciated. In general, with papers concerned with

estimating the channel or SNR using pilot sequences, they however go no further in

applying the algorithm to an adaptive power control context, or quantifying the cost

associated with the channel estimation scheme. Goldsmith [21] includes solutions to

variable modulation and coding problems and power control based on SNR (or signal-
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to-interefence-noise ratio in the case of multiuser networks) but does not formalize the

uninformative energy required to carry out the algorithms. Various studies [22, 23, 24]

also deal with various types of adaptation problems such as rate, modulation, power

and coding adaptations but none has taken into account the tradeoffs in terms of energy.

Chi et. al. [25] also aims to design an optimal training sequence in OFDM system

with minimum mean square error criterion and examines the tradeoffs that are inherited

in OFDM such as peak-to-average power ratio and phase noise. However the paper

considers a fixed amount of transmitted energy and is not concerned with finding the

optimal amount.

Therefore, here in the thesis, we set out to formally state the power control

problem and the algorithm we use in the adaptive scheme of power control. Then we

shall formulate the total cost associated with the adaptation process in terms of the energy

spent from the perspective of the MS transmitter. The aim is to improve the battery life

of the MS terminals in communication networks.

2.2 Some definitions

To aid the readability of the thesis, we define the relevant concepts that will be

used throughout the chapter.

Definition 1 (Complex normal distribution [62]) A complex random variable in Cn,

Z = X + jY , where X ,Y ∈Rn is distributed as complex normal distribution if its real and

imaginary parts, X and Y respectively, are jointly normal. The complex normal random

variable, Z, is characterized by three parameters: location parameter, µ, covariance
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matrix, Γ, and relation matrix, C, defined as follows.

µ = E[Z],

Γ = E[(Z−µ)(Z̄− µ̄)T ],

C = E[(Z−µ)(Z−µ)T ].

The standard complex normal random variable is the univariate distribution with

µ = 0, Γ = In, and C = 0.

The noise we shall consider in our setup will belong to a subclass of complex

normal distribution, called the circularly symmetric complex normal. Its definition is as

follows.

Definition 2 (Circularly symmetric complex normal distribution [62]) The circularly

symmetric complex normal distribution is a complex normal distribution with zero mean

and zero relation matrix, that is µ= 0 and C = 0. This distribution is denoted as CN (0,Γ)

where Γ is the covariance matrix.

Definition 3 (Central chi-square random variable [63]) Let Xi∼N(0,σ2
i ) for i= 1, . . . ,k

and σ2
i 6= 0 for all i. Then the random variable

k

∑
i=1

(
X2

i

σ2
i

)

is a central chi-square random variable with k degrees of freedom, denoted as χ2
k .

Definition 4 (Non-central chi-square random variable [63]) Let Xi∼N(µi,σ
2
i ) for i=

1, . . . ,k and µi 6= 0,σ2
i 6= 0 for all i. Then the random variable

k

∑
i=1

(
X2

i

σ2
i

)
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is a non-central chi-square random variable with k degrees of freedom and the non-

centrality parameter

λ =
k

∑
i=1

(
µ2

i

σ2
i

)
.

The non-central chi-square random variable is denoted as χ2
k(λ).

Definition 5 (F distribution [63]) Let X be a non-central chi-square random variable

with ν1 degrees of freedom and non-centrality parameter λ, and Y be a central chi-square

random variable with ν2 degrees of freedom that is statistically independent of X. The

the following quantity

X/ν1

Y/ν2

is distributed as non-central F distribution with ν1 and ν2 degrees of freedom and

non-centrality parameter λ, denoted as F (ν1,ν2;λ).

2.3 SNR estimation in communication systems

In this section we shall develop an SNR estimator. First, the channel estimate

will be obtained by means of LS estimation. This allows both the signal and noise power

estimates to be computed. Then, the SNR estimate can be calculated with a full descrip-

tion of its statistical properties. The purpose is to use the statistics of this SNR estimation

to select the transmitted power level for the MS to overcome the fading environment.

The total energy cost association with power control of the system, including the cost of

adaptation, will be ultimately calculated and analyzed.
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2.3.1 System model

Consider a scalar, baseband communication channel with the uplink from the MS

to the BS in Figure 2.1. We impose the following assumptions.

Figure 2.1: Communication system structure using pilot tones to estimate the link SNR

Assumption 1

(1.A) The system is to follow a reference SNR, γ∗ for data transmission, which is modu-

lated as M-PSK signal.

(1.B) The MS first transmits K pilot tones, also modulated as M-PSK and known to the

BS, to aid channel estimation. The normalized constellation points of the M-PSK

signal can be described as

Ck = e jθm = cosθm + j sinθm =CIk + jCQk ,k = 0, . . . ,K−1

where θm is one of the M phases of the M-PSK signal constellation, and CIk =

cosθm and CQk = sinθm are the in-phase and quadrature components of the signal,

respectively.

(1.C) The pilot training signal power is P0. The kth transmitted pilot symbol therefore

takes the form

Xk =
√

P0Ck.
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(1.D) Assume block fading in the channel. During the transmission, the channel is

described by a single complex coefficient H = HI + jHQ, where HI and HQ are the

in-phase and quadrature components of the channel, respectively.

(1.E) The signal is corrupted by scalar standard circularly symmetric complex (see

Definition 2) AWGN, denoted by Wk and distributed as

Wk =WIk + jWQk ∼ CN (0,1).

where WIk and WQk are independent AWGN noise samples, and CN means complex

normal. This means that the in-phase and quadrature components,WIk and WQk , are

independent, both normal with zero mean and variance 1/2. This can be written as

WIk

WQk

∼N


0

0

 ,
1

2 0

0 1
2


 . (2.1)

Note that since the noise has been normalized, to take into account the noise power

in the received signal, we shall use the noise power scaling factor N.

(1.F) The circularly symmetric complex AWGN noise is independent of the transmitted

signal symbols.

(1.G) Based on the K pilot symbols, the BS will estimate the SNR as γ̂K and transmit the

information back to the MS. Then, the MS will select an appropriate transmitted

power level to send the actual message data to the BS.

(1.H) The complex received signal is

Yk = HXk +Wk = H
√

P0Ck +
√

NWk, (2.2)
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where N is the noise power scaling factor.

(1.I) The M-PSK signal strength is given by

√
S = |H|

√
P0 = |HI + jHQ|

√
P0. (2.3)

Note that from (2.3), the signal power can be seen as the quantity S = |H|2P0 that

includes the description of the complex channel gain H and the pilot power P0.

(1.J) The SNR of the link is defined as

γ =
S
N
. (2.4)

We pose the following problem.

Cost of adaptation in power control:

• Given the K pilot tones transmitted at power P0, the channel estimate based on LS

estimation will be computed. This allows the signal and noise power estimates,

and ultimately, the SNR estimate to be calculated.

• After the K pilot tones, the BS receiver will know the SNR estimate of the channel

and will inform the MS transmitter to transmit the next M data symbols at the

appropriate power level P∗ that results in a usable symbol error rate of 10−3 [64].

For simplicity, assume the transmitted power is allowed to vary in 2dB step sizes.

• If the SNR estimate is lower than the true SNR by 2dB, retransmission is necessary

for the data symbols that have been already transmitted at that too low an SNR.

For the retransmission to complete, the SNR has to be estimated again. In other

words, if this is the case, the whole process needs to restart from the beginning.
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• Our aim is to compute the total energy cost from the perspective of the transmitter

including the above adaptation process. We shall then analyze this total energy

cost.

2.3.2 Channel estimation by least squares

In order to estimate the link SNR, first we shall derive the channel estimate by

LS estimation technique. The LS estimation has been presented in many papers such as

[36]. Its main advantage is low complexity that makes it easy to implement. We shall

approach channel estimation by considering LS estimation for both the in-phase and

quadrature components of the complex channel gain, HI and HQ, by using the assumption

that the noise is circularly symmetric complex AWGN, hereafter referred simply as

complex normal. A precise description of the complex normal noise Wk can be found in

Assumption 1.

Consider the following form, given in (2.2), of the complex received signal

Yk = H
√

P0Ck +
√

NWk

=
√

P0(HI + jHQ)(CIk + jCQk)+
√

N(WIk + jWQk)

= (
√

P0HICIk−
√

P0HQCQk +
√

NWIk)

+ j(
√

P0HICQk +
√

P0HQCIk +
√

NWQk)

The in-phase and quadrature components of the measurement Yk can therefore be written

in the following matrix form

YIk

YQk

=

√P0CIk −
√

P0CQk

√
P0CQk

√
P0CIk


HI

HQ

+
√NWIk

√
NWQk

 . (2.5)
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Multiplying both sides of (2.5) by

 √P0CIk

√
P0CQk

−
√

P0CQk

√
P0CIk

 ,
we have the following

 √P0CIk

√
P0CQk

−
√

P0CQk

√
P0CIk


YIk

YQk

=

P0 0

0 P0


HI

HQ

+
 √P0CIk

√
P0CQk

−
√

P0CQk

√
P0CIk


√NWIk

√
NWQk

 . (2.6)

Now the in-phase and quadrature components of the channel H can be estimated

from (2.6) by the LS estimator as follows

 ĤI

ĤQ

=

K−1

∑
k=0

P0 0

0 P0



−1K−1

∑
k=0

 √P0CIk

√
P0CQk

−
√

P0CQk

√
P0CIk


YIk

YQk




=

KP0 0

0 KP0


−1K−1

∑
k=0

 √P0CIk

√
P0CQk

−
√

P0CQk

√
P0CIk


YIk

YQk


 .

Substituting equation (2.5) into the above equation yields the following

 ĤI

ĤQ

=

KP0 0

0 KP0


−1

K−1

∑
k=0


P0 0

0 P0


HI

HQ

+√PN

 WIkCIk +WQkCQk

−WIkCQk +WQkCIk




=

HI

HQ

+ √
N

K
√

P0

K−1

∑
k=0

 WIkCIk +WQkCQk

−WIkCQk +WQkCIk

 (2.7)

From (2.7), because WIk and WQk are both gaussian and CIk and CQk are both
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deterministic, the LS estimates ĤI and ĤQ are also both gaussian. Their mean values can

be calculated easily as

E


 ĤI

ĤQ


=

HI

HQ

 .
To find out their variances, consider first

Var

(
K−1

∑
k=0

(WIkCIk +WQkCQk)

)
=

E

[
K−1

∑
k=0

(WIkCIk +WQkCQk)

]2


=
1
2

K−1

∑
k=0

(
C2

Ik
+C2

Qk

)
=

K
2
,

using the independence of WIk and WQk .

Similarly,

Var

(
K−1

∑
k=0

(−WIkCQk +WQkCIk)

)
=

K
2
.

Hence, the variance of both ĤI and ĤQ is

Var ĤI = Var ĤQ =

( √
N

K
√

P0

)2
K
2
=

N
2KP0

.

Furthermore, ĤI and ĤQ are independent because

E

[
K−1

∑
k=0

(WIkCIk +WQkCQk)(−WIkCQk +WQkCIk)

]
= 0.
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Therefore, the distributions of ĤI and ĤQ are

 ĤI

ĤQ

∼N


HI

HQ

 ,
 N

2KP0
0

0 N
2KP0


 (2.8)

2.3.3 SNR estimation

Now we shall rely on the channel estimate from Section 2.3.2 to compute the

SNR estimate for the communication link. With respect to the channel estimate, |Ĥ|, the

signal power estimate can be calculated as

Ŝ = P0|Ĥ|2 = P0(Ĥ2
I + Ĥ2

Q). (2.9)

We state the following theorem regarding the pdf of Ŝ.

Theorem 1 The signal power estimate, Ŝ = P0(Ĥ2
I + Ĥ2

Q), has pdf described as

2K
N

Ŝ∼ χ
2
2(λ), (2.10)

that is, a non-central chi-square distribution with 2 degrees of freedom and the non-

centrality parameter given by

λ = |H|2 2KP0

N
. (2.11)

Proof: Rewrite equation (2.9) as

Ŝ
P0

N
2KP0

=
Ĥ2

I
N

2KP0

+
Ĥ2

Q
N

2KP0

,
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so that

2K
N

Ŝ =
Ĥ2

I
N

2KP0

+
Ĥ2

Q
N

2KP0

. (2.12)

Because ĤI and ĤQ are distributed as described in (2.8), we can conclude the

following [63] about the distribution of Ĥ2
I and Ĥ2

Q

Ĥ2
I

N
2KP0

∼ χ
2
1(H

2
I

2KP0

N
)

Ĥ2
Q

N
2KP0

∼ χ
2
1(H

2
Q

2KP0

N
),

that is, the non-central chi-square distributions with one degree of freedom and non-

centrality parameters H2
I

2KP0
N and H2

Q
2KP0

N respectively. Therefore, from (2.12) we have

the following (see Definition 4) [65].

2K
N

Ŝ∼ χ
2
2(λ), (2.13)

that is, the non-central chi-square distribution with 2 degrees of freedom and the non-

centrality λ which can be calculated as (see Definition 4)

λ = H2
I

2KP0

N
+H2

Q
2KP0

N
= |H|2 2KP0

N
.

�

According to Theorem 1, if the noise power N is known, the variance of Ŝ can be

calculated. The variance of χ2
2(λ) is given by [63]

2(2+2λ) = 2(2+2|H|2 2KP0

N
),
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and because 2K
N Ŝ∼ χ2

2(λ),

Var(
2K
N

Ŝ) = 2(2+2|H|2 2KP0

N
),

Var(Ŝ) =
N2

K2 (1+ |H|
2 2KP0

N
).

We make the following remark about the above equation.

Remark 1 If N is constant, for fixed K, the variance of Ŝ decreases with P0. Whereas,

for fixed P0, the variance of Ŝ decreases when K increases.

Remark 1 is interesting because it is saying that in an environment where the noise

does not change, while increasing the number of pilot tones helps refine the estimate of

the signal power, which is intuitive, increasing the pilot transmitted power has a negative

effect on the signal power estimate.

The noise power estimate can be found by first finding the second moment of the

received signal (2.2)

M2
Y =

1
K

K−1

∑
k=0
|Yk|2,

and then the noise power estimate is given by

N̂ = M2
Y− Ŝ =

1
K

K−1

∑
k=0
|Yk|2− Ŝ. (2.14)

We state the following theorem regarding the pdf of N̂.

Theorem 2 The noise power estimate, N̂ (2.14), has pdf described as

2K
N

N̂ ∼ χ
2
2K−2, (2.15)

that is, a central chi-square distribution with (2K−2) degrees of freedom.
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Proof: From (2.5), we have the following regarding the distribution of the in-

phase and quadrature components of Yk, that are independent,

YIk

YQk

∼N


√P0CIk −

√
P0CQk

√
P0CQk

√
P0CIk


HI

HQ

 ,
N/2 0

0 N/2




Further, for each k, the YIk and YQk sequences are white and YIk is independent of

YQk . Therefore,

2
N

K−1

∑
k=0
|Yk|2 =

K−1

∑
k=0

(
Y 2

Ik

N/2
+

Y 2
Qk

N/2

)
∼ χ

2
2K(λ̄),

that is, a non-central chi-square distributed quantity with 2K degrees of freedom and the

non-centrality parameter λ̄ which can be calculated as

λ̄ =
K−1

∑
k=0

(
√

P0CIkHI−
√

P0CQkHQ)
2

N/2
+

(
√

P0CQkHI +
√

P0CIkHQ)
2

N/2

=
2P0

N
(H2

I +H2
Q)

K−1

∑
k=0

(C2
Ik
+C2

Qk
)

= |H|2 2KP0

N
,

and so, λ̄ = λ from (2.11). Therefore,

2
N

K−1

∑
k=0
|Yk|2 ∼ χ

2
2K(λ). (2.16)

Now, multiply both sides of (2.14) by

2K
N
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and we have the following

2K
N

N̂ =
2
N

K−1

∑
k=0
|Yk|2−

2K
N

Ŝ (2.17)

The first term on the right hand side of (2.17) is distributed as χ2
2K(λ) as pointed out

in (2.16). Furthermore, the second term on the right hand side of (2.17) is distributed

as χ2
2(λ) as concluded in Theorem 1. Therefore, by the decomposition of chi-square

random variables, which is the direct result of Cochran’s Theorem [66, 67], we have the

following conclusion regarding the distribution of N̂.

2K
N

N̂ ∼ χ
2
2K−2,

that is, a central chi-square distribution with (2K−2) degrees of freedom. �

According to Theorem 2, the variance of N̂ is given by

Var(N̂) = N2 K−1
K2 .

We make the following remark about the above equation.

Remark 2 The variance of the noise estimate does not depend on the pilot transmitted

power P0, and it decreases as K increases.

Now that we have the noise and signal power estimates, the SNR estimate, γ̂K ,

can be calculated via

γ̂K =
Ŝ
N̂
. (2.18)

We state the following theorem regarding the pdf of γ̂K .
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Theorem 3 The SNR estimate based on K pilot tones, γ̂K , has pdf given by

(K−1)γ̂K ∼ F (2,2K−2;λ), (2.19)

that is an F distribution with 2 and (2K−2) degrees of freedom and the non-centrality

parameter

λ = |H|2 2KP0

N
.

Proof: With ĤI and ĤQ estimated using LS and our formulation of Ŝ and N̂ from

(2.9) and (2.14) respectively, according to [65], Ŝ and N̂ are independent. Hence, based

on Theorems 1 and 2, the following conclusion can be drawn according to Definition 5.

(
Ŝ2K

N

)
/2(

N̂ 2K
N

)
/(2K−2)

∼ F (2,2K−2;λ), (2.20)

where F (2,2K−2;λ) is used to denote a F distribution with 2 degrees of freedom on the

numerator and (2K−2) degrees of freedom on the denominator, and the non-centrality

parameter λ (2.11).

Since the SNR estimate based on K transmitted pilot tones can be expressed as

(2.18), we rewrite (2.20) as

(K−1)
Ŝ
N̂
∼ F (2,2K−2;λ).

Therefore,

(K−1)γ̂K ∼ F (2,2K−2;λ),

that is an F distribution with 2 and (2K−2) degrees of freedom and the non-centrality

parameter λ (2.11). �
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To get the distribution of γ̂K , the pdf transformation [68] yields

p(γ̂K) = (K−1)p( f )

where p is used to denoted probability density functions and f is the random variable

distributed as F (2,2K−2;λ). Note that p(γ̂K) is a function of γ̂K while p( f ) is a function

of f and that γ̂K is related to f via

∂γ̂K =
∂ f

K−1
.

Figure 2.2 is the plot of an example density of the SNR estimate, γ̂K , following

(2.19). Notice that with increasing number of pilot tones K, the mean value comes closer

to the actual link SNR. Here, it is useful to note that for a sufficiently large number of

pilot tones, the density of γ̂K is concentrated mostly ±2dB around the actual link SNR.

We shall make use of this observation later on when it comes to assessing the link quality

of the system in subsequent sections.

2.4 Examination of the SNR estimate

To examine the statistics of the SNR estimate in Theorem 3, we first look at

the distribution F (2,2K− 2;λ). For convenience, let f denote the random variable

distributed as F (2,2K−2;λ). The mean value of this random variable is given by [63]

E[ f ] =
ν2(ν1 +λ)

ν1(ν2−2)
for ν2 > 2,

where ν1 is the first number of degrees of freedom of f , i.e. ν1 = 2, and ν2 the second

number of degrees of freedom of f , i.e. ν2 = 2K− 2. We assume that the condition
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Figure 2.2: An example of pdf of the SNR estimate, γ̂K , as F distribution (2.19). In
the plot, K is the number of pilot tones.

ν2 > 2 is satisfied, that is K > 2, meaning we have more than 2 pilot symbols. This is a

reasonable assumption. Since, from Theorem 3,

E[γ̂K] =
1

K−1
E[ f ],

the mean value of γ̂K is then calculated as

E[γ̂K] =
2+λ

2K−4
=

1+ |H|2 KP0
N

K−2
for K > 2. (2.21)

Regarding the variance of the SNR estimate, we propose the following Lemma.

Lemma 1 For a fixed value of H and N, to minimize the variance of the SNR estimate,

γ̂K , the strategy is P0 ↓ 0 and K→ ∞.
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Proof: The variance of the random variable f ∼ F (2,2K−2;λ) is given by [63]

Var( f ) = 2
(ν1 +λ)2 +(ν1 +2λ)(ν2−2)

(ν2−2)2(ν2−4)

(
ν2

ν1

)2

for ν2 > 4.

Again, we assume ν2 > 4, that is K > 6.

Since, from Theorem 3,

Var(γ̂K) =
1

(K−1)2 Var( f ),

the variance of γ̂K is then calculated as

Var(γ̂K) =
λ2 +4(K−1)λ+4(K−1)
4(K−2)2(K−1)2(K−3)

for K > 3.

Substituting λ = |H|2 2KP0
N , we have

Var(γ̂K) =

|H|4
(

2KP0

N

)2

+4(K−1)|H|2 2KP0

N
+4(K−1)

4(K−2)2(K−1)2(K−3)
for K > 3. (2.22)

With H and N fixed, for a fixed value of P0, the denominator of γ̂K (2.22) is

a function of K5 while the numerator is a function of K2. Therefore, for K → ∞,

Var(γ̂K)→ 0.

On the other hand, with H and N fixed, for a fixed value of K, the SNR estimate

γ̂K (2.22) apparently increases with increasing P0.

Therefore, the optimal strategy to minimize γ̂K is P0 ↓ 0 and K→ ∞. �

Notice that Lemma 1 is not a surprise when considering Remarks 1 and 2 alto-

gether. Lemma 1 poses a conundrum in the problem of minimizing the total energy cost

of power control of communication systems. The conundrum is that to minimize the total

energy cost, one should use an infinite number of pilot tones transmitted at zero power.
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2.5 Results in the real-channel case

In the real-channel case with real AWGN noise, real channel coefficient and real

signal (e.g. BPSK signal), the result is a special case of what we have derived so far. The

formulae can easily be found by replacing complex parameters with real ones. Since the

derivation is straightforward in the real-channel given the results in the complex-channel

case, we only summarize the results in the real-channel case in a theorem without proof.

Theorem 4 Consider the power control problem formulated in Section 2.3.1, but with

a real channel gain h, real standard AWGN, wk ∼ N(0,1), and real BPSK signal ck ∈

{−1,1}. The received signal is therefore real, denoted by

yk = h
√

P0ck +
√

Nwk.

We have the following results.

The LS channel estimate based on K pilot symbols is given by

ĥ = h+

√
N

K
√

P0

K−1

∑
k=0

ckwk,

which is distributed as ĥ∼ N
(

h, N
KP0

)
. The signal power estimate in the real-channel

case, Ŝr = ĥ2P0, has a distribution given by

K
N

Ŝr =
ĥ2

N
KP0

∼ χ
2
1(λr),

where λr is the non-centrality parameter for the real-channel case which is calculated as

λr = h2 KP0

N
.
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The noise power estimate is given by

N̂r =
1
K

K−1

∑
k=0

y2
k− Ŝr,

that has a distribution given by

K
N

N̂r =
1
N

K−1

∑
k=0

y2
k−

K
N

Ŝr ∼ χ
2
K−1

Therefore, the SNR estimate, γ̂K,r =
Ŝr
N̂r
, has the following distribution

(K−1)γ̂K,r ∼ F (1,K−1;λr),

with variance given by

Var(γ̂K,r) =
1

(K−3)2(K−5)

[
(
h2

N
KP0)

2 +2(K−2)
h2

N
KP0 +(K−2)

]
for K > 5.

Figure 2.3 is the plot of the pdf of the SNR estimate in both complex-channel and

real-channel cases, as computed in Theorems 3 and 4 respectively, for a fixed P0, H, and

N that are the same for each case, and K = 50 pilot symbols for the real-channel case

and K = 25 for the complex-case. From the graph, it can be seen that the two pdfs are

almost the same as each other. This is because, while the number of pilot tones in the

complex-channel case is only a half of that in the real-channel case, the former has two

components, namely in-phase and quadrature, that are used at the same time to estimate

the channel. This implies that in the complex channels, the same estimation quality as

in the real channels can be achieved with only half the pilot length compared to real

channels.
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Figure 2.3: Pdf of the SNR estimate in the complex-channel case, γ̂K , and in the real-
channel case, γ̂K,r, as computed in Theorems 3 and 4 respectively. In the plot, P0, N and
H are fixed and the same for both cases, and K = 25 for the complex-channel case and
K = 50 for the real-channel case.

The results from Theorem 4 are similar to what has been found by the authors

in [26], using the ML estimator. As can be seen from the variance of the SNR estimate

in Theorem 4, the optimal strategy to minimize it is similar to the complex case that is

stated in Lemma 1, which is to let P0 ↓ 0 and K→ ∞.

Evidence of this result is present but unremarked in [26]. Figure 5 from [26],

associated with the SNR estimation with unknown noise power, is reproduced here as

Figure 2.4 with annotation of 2 circles and 2 squares. The notation of [26] has ρ ≡ γ,

2BT ≡ K, and ρ̂≡ γ̂K . The curves in this figure represent the 90% confidence intervals

for γ̂K versus true SNR, γ, for different values of K. Thus the two pairs of indicated

points have the same value of KP0. It is evident, even on the logarithmic scale of this

figure, that the circled points with the larger value of K have the better confidence values.
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This illustrates the result in Lemma 1.

Figure 2.4: 90% confidence interval curves for SNR estimate as F-distribution (repro-
duced from [26] with annotation of 2 circles and squares). Here ρ ≡ γ, ρ̂ ≡ γ̂K and
2BT ≡ K. The circled and squared points all have the same value KP0. The circled
points, with higher K, yield tighter confidence intervals than do the squared points, even
on this logarithmic scale.

2.6 Link quality and formulation of energy cost

In Section 2.3.1, we have stated that the purpose of the power control algorithm

is to follow a reference SER value of Ps = 10−3. To formulate the energy cost precisely,

we assume the signal is modulated as QPSK and Gray coding in the system. The

approximated relation between SER, Ps, and SNR per symbol, γ, for QPSK signal can be
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expressed as follows [21].

Ps = 2Q(
√

γ),

where Q signifies the Q function.

And so, to track a reference SER value of 10−3 is equivalent to tracking a

reference SNR-per-symbol value of

γ
∗ =

[
Q−1

(
10−3

2

)]
= 10.8. (2.23)

Converted to dB scale, this value is

γ
∗ = 10.3dB.

Our criterion for the link quality is to choose a transmitted power level that results

in a value of SNR that is at most 2dB less than the reference SNR, γ∗ (2.23). That is,

during the transmission of M OFDM data symbols, the actual link SNR, γ, must satisfy

γ≥ γ
∗−2dB, (2.24)

at all times. If the criterion (2.24) is not met, the retransmission of the first part of data

symbols that has been sent with the unsatisfactory SNR is necessary to maintain the

quality of the communication link. However, in order to retransmit, the SNR has to be

estimated and the transmitted power for the data symbols computed again. In other words,

the whole power control process needs to restart from the beginning. We assume that the

decoding process and error detection schemes detect that the SER is too high after L < M

data symbols have been sent, after which the power control algorithm restarts from the
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beginning with estimating the SNR by K pilot tones. Assume further that L is known to

both the MS transmitter and BS receiver.

When the power is chosen that results in an actual link SNR more than γ∗, the

energy overhead however will be wasted. We shall consider this overhead to be the case

when the actual SNR is 2dB more than γ∗. This, in addition to criterion (2.24), means

that after the pilot phase where the SNR is estimated, the chosen transmitted power for

the data symbols is considered correct when the actual SNR, γ, is within 2dB of the

reference γ∗.

By certainty equivalent principle, we shall assume that the MS transmitter, in

determining its transmitted power for message data symbols, considers the SNR estimate

γ̂K the actual link SNR. Based on this assumption, we shall define a cost in terms of the

energy spent to adapt to the link quality criterion we have built up so far. This energy

cost includes the following.

• The energy spent of the K pilot symbols used to estimate the link SNR.

• The energy of the M data symbols transmitted successfully at an SNR within 2dB

of γ∗ that can be achieved by following the SNR estimate, γ̂K , and choosing the

appropriate power level. Because the chosen transmitted power of data symbols is

based on the SNR estimate, this is the case when the SNR estimate, γ̂K , is within

2dB of the real SNR value. Recall that the transmitted power is allowed to vary in

2dBm step sizes.

• The wasted energy overhead if the transmitted power of data symbols results in

an actual link SNR of 2dB more than γ∗. This is the case when the SNR estimate

is 2dB below the real SNR value, that leads the MS transmitter to make a wrong

decision and choose a transmitted power level that is higher than necessary.

• The energy associated with the retransmission when, after the estimation phase,
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the transmitter power is 2dBm lower than the desired value and criterion (2.24) is

not met. This is the case when the SNR estimate is wrong by 2dB above the real

SNR value. As mentioned earlier, after L < M data symbols have been sent, both

the MS and BS will know whether or not retransmission is necessary.

The probabilities of the MS transmitter choosing the appropriate power level,

or the incorrect power level that results in a value of link SNR 2dB less or more than

the reference SNR, γ∗, can be computed by following the statistical properties of γ̂K as

described in (2.19).

Next, we need to define the some probabilities regarding the quality of the power

control algorithm.

Definition 6 Define the following probabilities to characterize the power control quality

in the communication link.

εK the probability of γ̂K being 2dB less than the true SNR, γ. This means that εK is the

probability of the MS transmitter, after the pilot phase, choosing higher power

than necessary, that results in wasted energy overhead. This probability can be

computed as

εK = P(γ̂K ≤ γ/1.26) = P
(
(K−1)γ̂K ≤ (K−1)γ/1.26

)
, (2.25)

where 2dB has been converted into a factor of 1.26 in linear scale, and the factor

(K − 1) added to the calculation of the probabilities to be able to utilize the

distribution (2.19).

δK the probability of γ̂K being 2dB more than the true SNR, γ. This means that δK is the

probability of the MS transmitter, after the pilot phase, choosing insufficient power.

This results in restarting the power control process after L < M data symbols have
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been sent. This probability can be computed as

δK = P(γ̂K ≥ 1.26γ) = P
(
(K−1)γ̂K ≥ (K−1)1.26γ

)
. (2.26)

1− εK − δK the probability of of the transmitter, after the pilot phase, choosing just

enough transmitted power to complete the transmission of the M data symbols.

This is the probability that γ̂K is within 2dB of the actual SNR, γ.

The total energy cost of the power control process in the communication network

can be formulated as follows.

JK = Jp
K + Jd

K + Jhigh
K + Jlow

K , (2.27)

where Jp
K is the energy spent on K pilot tones, Jd

K the energy spent on M message

data tones, Jhigh
K and Jlow

K the energy spent when the chosen transmitted power after

the adaptation phase is higher or lower than the optimal amount, respectively. The

calculations for the components of the total cost JK (2.27) are as follows.

Energy cost of pilot symbols: Since the pilot tones are transmitted at power P0, the

energy of the MS transmitter spent on K pilot tones is

Jp
K = KP0.

Energy cost of data symbols: As mentioned before, when the SNR estimate is in the

interval [γ−2dB;γ+2dB], or [γ/1.26;γ×1.26] in linear scale, where γ is the actual

link SNR, the estimate is considered correct to enable the MS transmitter to choose

just enough power to maintain the link quality. This happens with probability

PrK as defined in Definition 6. When this is the case, the M data symbols will be
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transmitted without wasted energy or retransmission. The associated energy cost is

given by

Jd
K = MP∗PrK,

where P∗ is the optimal transmitted power for data symbols.

Energy cost when power is too high: Transmitted power that is too high leads to a

higher achieved value of SNR than is needed. The transmission is still successful

but at a wasted energy cost overhead. For simplicity, we assume that if the

transmitted power is chosen too high, it is chosen as (P∗+2)dBm, or 1.26P∗ in

linear scale. This happens with probability εK as explained in Definition 6, where

γ̂K ≤ γ/1.26. Note that we do not consider the unlikely case where the chosen

power is more than 2dBm wrong. This is based on the assumption that we only

allow the transmitted power to vary in 2dBm step sizes, and on the density of

the SNR estimate (2.19) in Figure 2.2, where most of the density is concentrated

around ±2dB of the mean value for a sufficiently large number of pilot tones. The

energy associated with this case is given by

Jhigh
K = εKM(1.26P∗).

Energy cost when BER is too low: In the case of the MS transmitter choosing too low

a power to transmit the data symbols, after L < M data symbols have been trans-

mitted, both the MS transmitter and BS receiver acknowledge that retransmission

is necessary. Thus the power control algorithm needs to restart from the beginning

with SNR estimation. This happens with probability δK . Similar to the preceding

case, we consider only the most likely case that if the power is chosen too low, it is
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chosen as (P∗−2)dBm, or P∗/1.26 in linear scale.

First, realize that if the transmission of L data symbols is unsuccessful, the energy

spent on them goes to waste. This energy is simply LP∗/1.26. After this the SNR

estimation has to be carried out again and the power control process restarted.

Therefore, the energy cost associated with this case is

Jlow
K =δK

{
LP∗/1.26+ Jp

K + Jd
K + Jhigh

K +

δK
[
LP∗/1.26+ Jp

K + Jd
K + Jhigh

K + . . .
]}
,

where the infinite series signifies the restart of the whole power control process.

Expanding the above equation yields

Jlow
K = δK(LP∗/1.26+ Jp

K + Jd
K + Jhigh

K )(1+δK +δ
2
K + . . .)

= δK(LP∗/1.26+ Jp
K + Jd

K + Jhigh
K )

∞

∑
n=0

(δK)
n,

where the geometric series ∑
∞
n=0(δK)

n converges with the assumption that δK < 1,

meaning choosing a transmitted power 2dBm below the desired value cannot

happen with probability 1. Completing the geometric series yields

Jlow
K = (LP∗/1.26+ Jp

K + Jd
K + Jhigh

K )
δK

1−δK

Total energy cost: Now the total energy cost JK (2.27) can be computed as

JK = Jp
K + Jd

K + Jhigh
K + Jlow

K

= (Jp
K + Jd

K + Jhigh
K )+(LP∗/1.26+ Jp

K + Jd
K + Jhigh

K )
δK

1−δK
. (2.28)
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2.7 Examination of the total energy cost

In the formulation for the total energy cost of adaptation (2.28), the cost compo-

nents are all functions of the SNR estimate, γ̂K , whose statistical properties are described

by (2.19), (2.21), (2.22). Since γ̂K exhibits a pathological behavior as stated in Lemma 1,

one might expect this behavior to manifest when examining the total energy cost (2.28).

This means that the least total energy cost occurs when P0 ↓ 0 and K→ ∞, that is the

same as the strategy for minimizing the variance of γ̂K (2.22) as described in Lemma 1.

We make this observation a remark.

Remark 3 The strategy to minimize the total energy cost, including the cost of adaptation,

of the power control process is P0 ↓ 0 and K→ ∞.

We shall demonstrate Remark 3 by simulations through matlab. The following

parameters are used throughout the simulations.

Complex Channel Gain: H = 0.7+ j0.4.

Noise Power: N = 0.001W , or 0dBm.

Reference BER: 10−3 that results in a reference SNR of γ∗ = 10.3dB for QPSK signal.

Number of Data Symbols: M = 1024.

Number of Data Symbols Transmitted Before Retransmission: L = 24.

Pilot Transmitted Power, P0: This will vary to demonstrate Remark 3.

Number of Pilot Symbols, K: This will vary to demonstrate Remark 3.

First in Figure 2.5, the transmitted power for the pilot symbols takes the value in

the set {6,8,10,12}dBm. In this figure, we have the plot of the cost (2.28) as a function

of the number of pilot symbols for different values of pilot transmitted power.
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Note that because we have not specified a bit rate, the energy cost Jk (2.28)

plotted in Figure 2.5 is in a nominal scale. The minima of the cost arrive in the reverse

order of pilot power levels P0, with the smallest minimum belonging to the smallest

pilot transmitted power of 6dBm. For each curve, the informative message energy cost

MP∗ = 17.06J dominates the energy cost of pilot symbols. The optimal pilot-to-total-

energy ratio, that is the ratio of the optimal pilot energy to the total energy cost, is at

6dBm and equals to

K∗P0

J∗K
=

95×0.004
17.6502

= 2.14%,

where K∗ is the number of pilot tones at which the cost is minimal, P0 = 6dBm= 0.004W ,

and J∗K is the minimal cost.
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Figure 2.5: The total message energy: Simulation 1. The minimal energy values
decrease with diminishing P0
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Next, in Figure 2.6 and Figure 2.7, the pilot power is reduced further and, again,

the total energy cost Jk (2.28) is plotted against the pilot length K. Similar to the results

in Figure 2.5, the minima of the cost arrive in the reverse order of pilot power levels P0,

with the smallest minimum occurring at the smallest pilot transmitted power.
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Figure 2.6: The total message energy: Simulation 2. The minimal energy values
decrease with diminishing P0

We summarize the simulation results from Figures 2.5, 2.6 and 2.7 in Table 2.1.

The simulations demonstrate the result of Lemma 1, where we have found the optimal

strategy to minimize the total energy cost of adaptation in power control is P0 ↓ 0 and

K→ ∞. In Table 2.1, K∗ is the optimal number of pilot tones at which the total energy

cost is minimal for its respective P0, and the corresponding minimal cost is J∗K . The

optimal pilot-to-total-energy ratio is denoted as R∗. This ratio can be computed by

R∗ =
K∗P0

J∗K
.
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Figure 2.7: The total message energy: Simulation 3. The minimal energy values
decrease with diminishing P0

Note that in the real-channel case, whose results are summarized in Theorem 4,

the cost JK exhibits the same behavior as in the complex-channel case stated in Remark 3.

That is, to minimize the total energy cost spent on power control, one should use zero

power to transmit an infinite number of pilot tones.

2.8 Total energy cost with MS mobility

In the previous sections, we have assumed that the channel is static. Now we

quantify the case where the MS is moving with a certain velocity. The Rayleigh fading

channel model includes a mobility description, whereby the channel response, now a

complex random variable with the independent in-phase and quadrature components both

being gaussian with zero mean and variance σ2, possesses a normalized autocorrelation
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Table 2.1: Summary of simulation results.

P0 -8 -6 -4 -2 0
K∗ 1640 1060 680 440 290
J∗K 17.43 17.44 17.45 17.46 17.48

R∗(%) 1.49 1.53 1.55 1.59 1.66

P0 2 4 6 8 10 12
K∗ 200 130 95 70 50 35
J∗K 17.52 17.57 17.65 17.76 17.92 18.14

R∗(%) 1.81 1.86 2.14 2.49 2.79 3.06

function. This function describes how the values of the channel gain H before and after

the MS has moved a certain distance during a time interval τ are spatially correlated

to each other. It is a function of the constant speed of the MS expressed as a so-called

Doppler frequency shift, fd [69]

RHH(τ) = σ
2
|H|J0(2π fdτ), (2.29)

where σ2
|H| is the variance of |H| and J0(·) is the zeroth-order Bessel function of the first

kind. The absolute value of the channel gain, |H|, is Rayleigh distributed and has a pdf

described as [70]

p|H|(x) =
x

σ2 e−x2/2σ2
,

where, again, σ2 is the variance of both the in-phase and quadrature components of H.

We have the following properties of |H| [71]:

E[|H|] = σ

√
π

2
≈ 1.253σ, σ

2
|H| =

4−π

2
σ

2 ≈ 0.43σ
2, (2.30)
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where, again, σ2
|H| is the variance of |H| that is different from the variance of its in-phase

and quadrature components, σ2. From (2.30), E[|H|2] = 2σ2.

To accommodate the change of the channel due to mobility of the MS, we propose

a modified total energy cost function based on the original total energy cost function JK

(2.28), computed as follows.

Jmod
K = (1+PM)JK, (2.31)

where PM is the probability that, after a pilot sequence of length K has been used and an

informative data sequence of length M transmitted, the channel gain has changed more

than 2dB as a result of the MS mobility, making the SNR estimate no longer usable.

The following theorem states the upper bound on this new, modified total energy cost

function.

Theorem 5 The modified total energy cost function (2.31) accounting for the mobility of

the MS is bounded by

Jmod
K ≤ [10.75−9.75J0(2π fmτ)]JK,

where τ = K +M, fm = fdT is the maximum Doppler shift normalized by sampling time

T , and JK is the total energy cost in the case of immobile MS transmitter (2.28).

Proof: Since the adaptive power control algorithm we are employing adjusts

the transmitted power by steps of 2dBm, retraining will be required if, because of a

change in the SNR after a time interval corresponding to τ = K+M symbols, the optimal

transmitted power level deviates by 2dBm from the previous optimal transmitted power

level. Let the superscripts (0) and (τ) signify the beginning and the end of the transmission

of (K +M) symbols, respectively. The probability that training is required again after
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(K +M) symbols due to mobility is given by

PM = Pr(|P∗(τ)−P∗(0)| ≥ 2dBm).

where P∗ denotes the optimal transmitted power level and Pr probability.

To find PM, notice that P∗ = Nγ∗

|H|2 , where γ∗ is the constant optimal value of SNR.

Here, to assess the effect of mobility, we keep the noise power, N, constant. Thus,

PM = Pr

(∣∣∣∣∣10log
|H(τ)|2γ∗

N
−10log

|H(0)|2γ∗

N

∣∣∣∣∣≥ 2dBm

)

= Pr

(∣∣∣∣∣log
|H(τ)|
|H(0)|

∣∣∣∣∣≥ 0.1dBm

)

= Pr

(
|H(τ)|
|H(0)|

≥ 100.1

)
+Pr

(
|H(τ)|
|H(0)|

≤ 10−0.1

)

= Pr
(
|H(τ)|− |H(0)| ≥ 0.26|H(0)|

)
+Pr

(
|H(τ)|− |H(0)| ≤ −0.21|H(0)|

)
.

Additionally, notice the following:

Pr
(
|H(τ)|− |H(0)| ≥ 0.26|H(0)|

)
≤ Pr

(
|H(τ)|− |H(0)| ≥ 0.21|H(0)|

)
,

and

Pr
(
|H(τ)|− |H(0)| ≤ −0.21|H(0)|

)
≥ Pr

(
|H(τ)|− |H(0)| ≤ −0.26|H(0)|

)
.

Hence the bounds on PM are

Pr
(∣∣∣|H(τ)|− |H(0)|

∣∣∣≥ 0.26|H(0)|
)
≤ PM ≤ Pr

(∣∣∣|H(τ)|− |H(0)|
∣∣∣≥ 0.21|H(0)|

)
.

(2.32)
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Now define a new random variable ∆ = |H(τ)|− |H(0)|. Since H is composed

of the in-phase and quadrature components that are both gaussian with zero mean and

variance σ2, according to (2.30), it follows that E[∆] = 0 which makes Var(∆) = E[∆2].

Now for any real number ε > 0, Chebyshev’s Inequality states that [63]

Pr (|∆−E[∆]| ≥ ε)≤ Var(∆)
ε2 ,

so that

Pr
(∣∣∣|H(τ)|− |H(0)|

∣∣∣≥ ε

)
≤

E
[∣∣∣|H(τ)|− |H(0)|

∣∣∣2]
ε2

Note also

E
[∣∣∣|H(τ)|− |H(0)|

∣∣∣2]= E
[(
|H(τ)|− |H(0)|

)2
]

= 2E[|H|2]−2E[|H(0)||H(τ)|]

= 4σ
2−2E[|H(0)||H(τ)|],

that leads to

Pr
(∣∣∣|H(τ)|− |H(0)|

∣∣∣≥ ε

)
≤ 4σ2−2E[|H(0)||H(τ)|]

ε2 . (2.33)

Now the autocorrelation function of |H| as stated earlier (2.29) is

RHH(τ) = E
[(
|H(0)|−E[|H|]

)(
|H(τ)|−E[|H|]

)]
= σ

2
|H|J0(2π fmτ),
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which is equivalent to

E
[
|H(0)||H(τ)|− (E[|H|])2

]
= σ

2
|H|J0(2π fmτ),

and so,

E
[
|H(0)||H(τ)|

]
= σ

2
|H|J0(2π fmτ)+(E[|H|])2

= 0.43σ
2J0(2π fmτ)+1.57σ

2.

Combining the above with (2.33) yields

Pr
(∣∣∣|H(τ)|− |H(0)|

∣∣∣≥ ε

)
≤ 4σ2−2σ2[0.43J0(2π fmτ)+1.57]

ε2 . (2.34)

In addition to (2.32) and (2.34), let ε = 0.21|H(0)|> 0. Then we have the follow-

ing bound on PM

PM ≤
4σ2−2σ2[0.43J0(2π fmτ)+1.57]

0.212|H(0)|2
.

Averaging the above over the channel gain H we have

PM ≤
4σ2−2σ2[0.43J0(2π fmτ)+1.57]

0.0441×2σ2 ,

or

PM ≤ 9.75[1− J0(2π fmτ)].

Substituting the above equation into the modified total energy cost function (2.31)
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yields the following bound for the modified total energy cost function

Jmod
K ≤ [10.75−9.75J0(2π fmτ)]JK.

�

Since we are concerned with the minimum of the total energy cost, we take

Jmod
K = [10.75−9.75J0(2π fmτ)]JK. (2.35)

Note that in the case of stationary MS, we have no Doppler shift, i.e. fd = 0

and J0(2π fmτ) = 1. The modified total energy cost Jmod
K then becomes the original total

energy cost JK .

We now can plot the modified total energy cost to see the effect of mobility. In

addition to the parameters used in Section 2.7, the following parameters are employed.

Communication network: We take as GSM 1900GHz, also known as PCS-1900.

MS velocity: Take a MS transmitter moving at a speed of v = 40km/h, which corre-

sponds to a maximum Doppler frequency shift of

fd =
v fGSM

c
= 70.37Hz,

where fGSM = 1900GHz is the frequency of PCS-1900 and c is the speed of light.

Sampling time: T = 1/22800s, where 22800bps is the full-rate speech traffic channel

(TCH/FS) bit rate in GSM [72]. This results in a maximum normalized Doppler

shift of fm = fdT = 0.003.

In Figure 2.8, unlike the stationary MS case summarized in Table 2.1, notice that

there is now an optimal pilot transmitted power, 10dBm to be exact, and a corresponding
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Figure 2.8: Modified total energy cost of power control with MS mobility illustrating
the absence of pathological behavior noted in Remark 3; a minimal energy exists over
K and P0.

optimal pilot length of K = 12 pilot symbols that result in an optimal total energy cost, i.e.

energy cost that has the smallest minimum value, across the range of transmitted power

levels considered. Clearly, the introduction of MS mobility into the total energy cost

resolves its pathological behavior stated in Remark 3 where the MS is assumed stationary.

When comparing Figure 2.8 to Table 2.1, the energy cost in the moving-transmitter case

is much bigger than that in the stationary-transmitter case. This is due to the effect of

mobility.

2.9 Blind adaptation via hypothesis testing

We now consider avoiding the use of the information-free pilot sequence alto-

gether, thus effectively sidestepping the pathological behavior of the cost function as
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noted in the previous sections. We shall employ statistical hypothesis testing to detect

whether the current SER in the link is lower or higher than a certain usable threshold (for

example, 10−3.)

Assume that m message symbols are sent over the link and the number of errors,

b, is reported. Random variable b is binomial distributed with parameters (m, p) where

m is the sample size and p is the actual SER. The test statistic is the quantity b/m, i.e.

the m-sample SER estimate.

The first hypothesis test is to detect whether the SER is higher than 10−3 and thus

to determine whether or not the transmitted power should be increased.


Null hypothesis H01 : SER = p0 = 10−3

Alternative hypothesis H11 : SER = p1 = 10−2
(2.36)

The second hypothesis test involves determining whether the SER is lower than

10−3 and thus whether or not the transmitted power should be decreased.


Null hypothesis H02 : SER = p0 = 10−3

Alternative hypothesis H12 : SER = p2 = 10−4
(2.37)

Following convention, denote by α the probability of Type-I error, rejection of the

null hypothesis when it is true; we use a common value of 5% here. Figure 2.9 depicts

these 95% confidence values for the two hypothesis tests. In the figure, if b exceeds the

“x” values for m samples, we reject the null hypothesis and declare the SER too high.

Likewise, if b falls below the “o” values for a given m, we declare the SER too low.

To moderate this decision, the power, 1−β, of these tests is evaluated by comput-

ing the corresponding probability, β, of a Type-II error, i.e. accepting the null hypothesis

when it is false. Figures 2.10 and 2.11 display the power of each test as a function of
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Figure 2.9: Number of errors b in m samples to reject the null hypothesis with 95%
confidence, above the “x” values (SER too high) or below “o” values (SER too low).

sample size, m. Traditionally a power value of 80% is chosen [73]. Figures 2.9 (“x”

values) and 2.10 show that for the decision to be made that the SER is too high with

confidence 95% and power 80% one would require seeing more than one error in a

sample of 350 bits, or, more than two errors in 360 to 810 samples. Similarly, Figures 2.9

(“o” values) and 2.11 indicate that we would need to see less than one error in 3000

samples to decide confidently that the SER was too low.

From the perspective of mobile Rayleigh fading channels, it is apparent that these

sample lengths, 350 and 3000, are too large to accommodate reasonable mobilities. That

is, pilot tones are necessary with realistic mobilities.
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Figure 2.10: Power-of-test values for the first hypothesis test: SER too high.

2.10 Conclusion

In this chapter, an SNR estimation technique for complex channels has been

proposed in communication networks with the use of pilot symbols. This is based on the

LS estimate of the channel gain by the pilot symbols, followed by estimates of the signal

power and noise power, and ultimately of the link SNR. Based on the SNR estimate,

the MS transmitter completes the power control algorithm by choosing an appropriate

transmitted power level to meet a certain BER requirement of the communication link.

Our results here are applicable to OFDM systems because of their structure in the

frequency domain. The results in the real-channel case are also found.

The SNR estimate is analyzed and found to exhibit a conundrum in which, to

minimize the variance of the SNR estimate, the MS transmitter should employ an infinite

number of pilot tones at zero transmitted power. The SNR estimate in the real-channel

case also exhibits the same behavior as its complex-channel counterpart.



60

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of samples, m

Po
w

er
 o

f t
he

 te
st

Figure 2.11: Power-of-test values for the second hypothesis test: SER too low.

Next, the total energy cost of power control, including the energy cost of adap-

tation, is formulated based on the statistics of the SNR estimate. The total energy cost

takes into account the case when the SNR estimate is wrong by 2dB, both lower and

higher, compared to the actual SNR, that results in either too high or too low transmitted

power for the actual message data symbols. When the transmitted power is higher than

necessary, the MS wastes energy. When the transmitted power is lower than necessary, a

retransmission of data is required to satisfy the quality of the link. The retransmission

includes the restart of the power control algorithm. As a function of the SNR estimate,

the total energy cost also exhibits the same behavior as the SNR estimate, in which, to

minimize the total energy cost, the MS should send an infinite number of pilot tones at

zero transmitted power, as noted in Remark 3.

When the MS transmitter is assumed to have a velocity, the total energy cost

is modified to take into account the change in the channel condition due to the MS

mobility. The above pathological behavior of the total energy cost disappears when the
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MS mobility is introduced. In this case, there exists an optimal pilot length K and pilot

transmitted power P0 that results in the smallest minimum of the total energy cost across

the range of the pilot transmitted power.

Finally, we propose a non-data-aided, known as blind adaptation, technique to

apply to the power control problem. It is, however, found that in the setting of mobile

wireless communication, the blind adaptation algorithm takes too long to compute the

BER of the link, making it unimplementable.

Chapter 2, in full, is currently being prepared for submission for publication of

the material, by M. H. Ha and R. R. Bitmead. The dissertation author was the primary

investigator and author of this material.



Chapter 3

Optimal Mobile Wireless Power

Control as a Dual Adaptive Control

Problem

In this chapter, the power control problem in mobile wireless communications

will be considered at a fundamental level where it is recognized to exhibit features that

exist in optimal dual adaptive control. The problem of ODAC is first formulated by

Fel’dbaum in his seminar work in the 1960’s [74, 75, 76] and remains unsolved due to

the curse of dimensionality of the Bellman’s equation present in the SDP algorithm that

is employed to solve the problem. Here our aim is to solve the power control problem

formulated as a ODAC problem in a finite horizon and finite state space setting.

3.1 Introduction

Consider the power control problem in mobile wireless communication networks,

where an appropriate power level must be chosen, based on the condition of the link,

62



63

to transmit information between the MS transmitter and the BS receiver. From the

perspective of this chapter, we are only concerned with the battery life problem. The

current power control routine is carried out billions of billions of times everyday without

human monitoring. It is costly in energy; MS spends approximately 19% of the total

transmitted power in the form of training sequences, known to both MS and BS, to study

the communication link. The benefits of improving the power control algorithm are

therefore clear. In this thesis, we set out to find a better power control routine.

This process is an adaptive control problem where MS adapts to the channel by

means of studying it and selecting an appropriate transmitted power level. The transmit-

ted power from MS should just be enough, but no more than, to overcome the fading

and noise in the air interface to achieve a pre-specified target BER. Too high transmitted

power levels results in wasted energy and consequently, reduced battery life, while too

low a transmitted power level causes excessive errors necessitating retransmission, which

conclusively is a waste of energy. However, to determine the necessary transmission

power itself consumes energy. Since communications channels are subject to random

noise and the attenuation is described by a probability distribution, the energy consump-

tion is expressed in terms of expected values. We shall see that the energy-optimal power

assignment depends on the initial probability distribution of the channel attenuation.

In mobile communications, the channels and their attenuation change with posi-

tion and orientation, leading to a requirement of frequent updating of the transmission

power to accommodate these variations. In practice, this is accomplished using channel

impulse response estimation in every transmitted packet, through the inclusion of a

known information-free pseudo-random mid-amble training sequence in every packet.

This sequence is then used at the receiver to determine an estimate of the channel impulse

response (usually a 6-tap finite impulse response model) and corresponding channel fade

value. On the basis of this fade estimate, the receiver communicates to the transmitter
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and instructs it to increase or decrease its transmission power by, for example, a quan-

tum of 2dBm in GSM 1900GHz, also known as PCS-1900, network [11]. This is an

adaptive control system aimed at minimizing the power consumption of communication

and adjusting to the current channel fade. Within the context of adaptive control, this

application is of interest because of its ubiquity and routine performance without human

monitoring or intervention. However, we suspect it might be far from optimal.

Our aim in this thesis is explore the nature of the power control problem from

an adaptive control perspective with a focus on the aspects of ODAC first introduced

by Fel’dbaum [74, 75]. For a detailed comparison of dual adaptive control to non-

dual adaptive control, see [77, 76]. The dual adaptive control problem considered here

combines the following features:

(i) The control problem is specified as an optimal feedback control problem over a finite

horizon.

(ii) There is an uncertain parameter which must be estimated to achieve performance.

(iii) The control input serves two competing purposes: probing the system to improve

estimation of the critical parameter and regulating the system to achieve perfor-

mance.

The nature of the dual adaptive control solution is that it depends critically on the initial

probability distribution function of the parameter to be estimated. Indeed, dual adaptive

solutions can bifurcate between vigorous probing and quiescence depending on this

distribution. The other central feature of dual adaptive control is that its solution is

computationally intractable because of the need to incorporate the future effects of the

control signal on the resolution of the parameter estimate and its subsequent effect on

achievable control performance. We shall rely on the (slightly) more recent formulation
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of dual adaptive control due to [78] which includes the concept of information state, or

hyperstate, and its evolution.

We proceed by firstly considering an archetypal dual adaptive control problem in

which the transmitter and receiver share the channel fade estimate. This helps to fix ideas

about the nature of power control in a simplified framework and to develop an approach

to the use of the information state which is denumerable. For this case, we can compute

the explicit dual adaptive control solution using a sufficiently muscular computer. This

illustrates the dual adaptive nature of the problem and demonstrates the dependence of

the solution on the information state. The heuristics obtained from simulation results will

be presented that greatly benefit the mobile wireless power control problem. We then

move to the more realistic situation where BS and MS may only communicate through a

low-capacity side-channel and demonstrate how the dual adaptive formulation still holds

but now acquires a level of difficulty beyond computationally intractable.

3.2 Literature review

Adaptive control problem is not a well defined one in control theory. Intuitively,

an adaptive controller can modify its behavior to response to changes in the dynamics

of the systems and the disturbances. This is often confused with feedback control that

performs the same job. A long discussion at an symposium in 1961 ended with the

following definition: “An adaptive system is any physical system that has been designed

with an adaptive viewpoint” [79]. In their book [79], Astrom and Wittenmark suggest that

“an adaptive controller is a controller with adjustable parameters and a mechanism for

adjusting the parameters”, and that because of the adjustment mechanism, the controller

is nonlinear. Following their suggestion, we treat adaptive control as a arbitrary subset

of optimal stochastic control. It is well established that an optimal stochastic control
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problem can be solved by SDP developed by Bellman [80]. It is followed that an adaptive

control problem can also be solved using SDP.

As a class of adaptive control, the problem of DAC was first formulated by

Fel’dbaum in his seminal work [74, 75, 76]. He established that in order to control a

system with unknown parameters, it is necessary for the controller to have two purposes,

namely identification and regulation. The controller, on the one hand, must provide the

system with adequate amount of control in a timely manner. On the other hand, it also

has to continually probe the system to get better estimates of the unknown parameters,

effectively controlling the system all the more better in future steps. Such a controller is

called a dual controller. The two purposes, however, are in conflict in the sense that by

injecting disturbances to better estimate the unknown parameters, the regulation process

has to suffer. The idea of DAC deals with this compromise in an optimal way, where

the controller is neither too ”cautious” (i.e. waiting for an unnecessarily long time to

gather information thus not being able to direct the system in time) nor too ”hurried”

(i.e. performing unjustified control actions which will not be substantiated properly by

the gathered information. The information obtained as the result of studying the system

is contained in the conditional probability distributions of its characteristics. Unlike

certainty equivalence principle, in DAC the learning process is active and the parameter

uncertainty is taken into account. This characterizes DAC as closed-loop control [81]

[82], to be distinguished from feedback control where parameter uncertainty is taken

into account but the knowledge of future measurements via statistical description is

completely ignored. A DAC problem, as a class of the general optimal stochastic control

problem, can be solved by the Bellman equation and dynamic programming, but even

very simple problems require enormous computation power due to the rapid growth of the

dimensionality (the curse of dimensionality) of the conditional probabilities. The optimal

DAC (ODAC) problem is therefore deemed unsolvable, although recent improvements in
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computational power of modern computers allow some very simple problems with finite

horizon to be solved numerically. Well known solved examples of ODAC are reviewed

below.

One of the first ODAC problems is formulated in [82]. The system is described as

a partially observable Markov process with finite state space and finite horizon. The model

is then converted to a complete state information problem in addition to the problem of

calculating the conditional probability distributions of the states of the associated Markov

process from the measurements. The ability to solve the first part of the problem off-

line means a significant reduction of the real-time computational effort. The functional

Bellman loss function is found to be bounded lower by the minimal cost of the case of

perfect measurements and upper by the minimal cost of the case of no measurements at

all.

A similar ODAC problem where the system is described as a four-state Markov

chain with finite horizon is posed in [83]. The paper considers 2 problems: open-loop

and closed-loop. The simple setup allows the Bellman equation to be solved analytically

and comparison to be made for various controllers including suboptimal controllers and

the optimal dual controller in terms of loss functions, with differing time horizons. It

is found that the open-loop regulators give the biggest loss. The open-loop control and

one-step regulator (cautious control, as pointed out in [77]) do not use identification,

thus called passively adaptive. The rest of the strategies, the two-step and approximate

multistep controllers and the optimal dual controller use identification and give less loss

than the other regulators. These are called actively adaptive, another term coined to

describe a DAC problem. For the particular problem considered in the paper, it seems

that a good way to derive a suboptimal controller is to include some approximation of

the future loss when taking expectation and minimizing the loss function.

In [84], Astrom & Helmersson take on a similar problem to that of Bohlin [85]
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and numerically solve a ODAC problem of an integrator with a constant unknown gain.

It is shown that for a time horizon greater than 1, the optimization can no longer be done

analytically but a longer time horizon improves the estimates. The optimal control can

be discontinuous when a probing signal is introduced to improve the estimates. The

DAC controller is then compared to the CE and cautious controllers. It is found for poor

estimation and large control errors, the dual control gives larger control actions than the

other laws. A note to the cautious control is that “The cautious control is too cautious

which results in long learning periods when gain estimate is close to zero because of

turn-off”.

An example that is closest to our specific problem can be found in [86]. In this

simple example, the parameter takes on only two possible values that allows the resulted

Bellman equation to be solved numerically. The control law is then found for different

time horizons, T. When the time horizon is T = 1, the controller is cautious. When T ≥ 3,

the exact closed form for the Bellman equation cannot be obtained and has to be solved

numerically by interpolation. When T ≥ 4, the control law for the problem converges and

there is hardly a difference between the control laws from that point onwards. It is also

found that probing, arising as the controller tries to compromise between identification

and regulation, increases as the system becomes more unstable.

It is worth being mentioned that all the ODAC problems above are formulated at

a fundamental and academic level and has no real-life applications. Due to the computa-

tional complexity and the lack of a closed-form solution, the literature is motivated to

develop methods of suboptimal solutions while trying to retain the dual feature. Most

of other works on DAC are therefore suboptimal (SDAC). For a thorough survey on

history of DAC and methods of suboptimal DAC, the reader is referred to [87] and [77].

According to [77], if the loss function is minimized only one-step ahead, the controller is

called a cautious controller. The author presents ways to derive suboptimal controllers,
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such as adding perturbation signals to the one-step ahead (cautious) controller, con-

straining the variance of the parameter estimates and using finite parameter sets. The

author recommends dual control when the time horizon is short and initial estimates

are poor, or when the process is changing rapidly. In [88] adds to the loss function new

information, an innovations sequence, about the unknown system parameters contained

in the outputs. In [89], active suboptimal dual adaptive control is developed where the

suboptimal controller takes into account the future changes of unknown system parame-

ters by including the conditional variance of the estimate in the loss function. In [90], the

authors analyze approximations to DAC, where two step time horizon and reformulation

of the loss function are considered, and various suboptimal controllers compared. In

[91], for a nonlinear stochastic system, approximation is introduced to the cost function

while preserving its closed-loop feature. The authors call this actively adaptive, their

term for DAC. The control tries to track a specific target of the state. It is found that

the dual controller spends a significant amount of energy at initial time to actively learn

the system, resulting in a substantially smaller terminal miss distance to the reference

point compared to the CE that only has “accidental” learning due to the noise acting as

perturbation to the system. However the computational burden is still there as it is to be

carried out on-line.

An approximation to the ODAC problem is posed in [81] by using a wide-sense

information state (or hyper-state) and linearization of the cost function. Here the dual

aspect is realized in stochastic nonlinear systems where the uncertainty consists of the

inaccuracy of state estimation. Weighting of the future parameter covariance is introduced

to the cost function to signify the “value of future information”. The CE controller is

found to be optimal solution of the linear quadratic gaussian control problem. The

result of simulation study provides some practical applications of dual control in soft

landing, interception and stochastic resource allocation. Pre-posterior analysis is when a
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non-anticipative controller uses the probabilistic description of the future observations,

before they are actually taken, to benefit the control performance. This is closed-loop as

opposed to feedback control. The latter utilizes the past measurements but does not use

the probabilistic description of the future measurements to anticipate them.

Astrom & Wittenmark [92] analyze the problems of identification and control,

both separately and combined altogether, in a simple regression model. When identifica-

tion and control are separate, the data obtained from observations during control phase

cannot be used to improve the estimates. A sufficient statistic for the conditional distribu-

tions is derived. It is found the complexity of the problem remains unchanged whether

the parameters are assumed constants or stochastic processes. The control policies of the

one-stage and N-stage control problems that take different forms of the cost function are

found to be very different. For the former, the control signal in the combined problem

exhibits a “falling asleep” effect where it is close to zero over long periods.

Next, we shall look at some real life industrial applications of suboptimal DAC.

Note that as far as we know, there is no application that employs the optimal solution of

the DAC problem

Considered the first real life industrial application of DAC, [93] deals with the

nonlinear system of a thermomechanical pulping refiner motor and draws heuristics. A

suboptimal controller is derived by a constrained certainty equivalent approach coupled

with an extended output horizon and a modification (adding future uncertainty of the

unknown parameter) to the cost function to get probing effects. This suboptimal DAC

algorithm is originally derived in [89]. A sign change of the gain however can cause

discontinuity in the control signal that leads to failure.

Another application of DAC on paper coating industry is developed in [94]. The

controller is an active suboptimal dual controller that minimizes a nonlinear performance

index that reflects the nonlinearity of the paper coating process and Kalman filter is used
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to track gain variations. The controller is derived by including the future covariance of

the parameters in the loss function as a suboptimal way to introduce probing effect to the

controller. The controller has some constraints which, if violated, make the minimization

of the cost function become a quadratic programming problem that can also be solved.

Dual control of nonholonomic mobile robots is analyzed in [95]. The loss function

is explicit, suboptimal, innovation-based following the method of [88]. Using Monte

Carlo simulation and hypothesis test, DAC is proved to exhibit improvements over

non-adaptive and non-dual adaptive control methods.

Some other industrial applications include the dual control solution to a lab-scale

vertical take-off aircraft [96], a solar collector field [97] and a Hammerstein neural system

[98].

Our approach is similar to the representation of the ODAC problem in [78]. We

choose to study an existing practical ODAC problem, the mobile wireless power control

problem, which is actually an optimal stochastic control problem with an unknown

parameter, namely the channel fading coefficient, in order to look for heuristics and to

compare the optimality of ODAC to the CE approach. As far as we know, this is the first

time ODAC is used on a real-life industrial application. Here, unlike previous real-life

examples, we look for an approximation of ODAC solution and not an approximation of

the optimization problem, that is SDAC.

3.3 Solution to optimal dual adaptive control

The SDP algorithm and Bellman’s equation have been well known to offer the

solution to the DAC problem. In his 1965 book [76], Fel’dbaum employed the SDP

algorithm to pose and analyze, but not fully solve, some very simple examples categorized

as ODAC. However he was not able to obtain the solutions to the problems, deliberately



72

selected to be of minimal complexity. Even though he employed an approximation to deal

with integration, he was unable to yield computational answers, because of the limited

availability of computing power at the time. Essentially the formulation of Fel’dbaum

was translated and updated by Kumar and Varaiya [78, 99] with the adoption of the

information state, also known as the hyperstate, to be discussed shortly. Here we shall

follow them closely, with clarification to the original source, to develop the general

solution to ODAC using SDP.

3.3.1 Problem formulation and information state

The dynamics of the problem take the form

xk+1 = fk(xk,uk,vk),

yk = hk(xk,wk), k = 0,1 . . .
(3.1)

where wk and vk are process noises. The state is not observable because of the mea-

surement noise wk. For each k, the control value uk is selected from a pre-specified

control set U ⊂ Rm. A feasible control law is any sequence g = {g0,g1, . . .} such that

uk = gk(Y k) ∈ U, where Y k = {y0,y1 . . . ,yk}. Denote by G the set of all feasible control

laws. We are to find the best control law in G that minimizes the following performance

index

Jg = Eg
[N−1

∑
k=0

ck(xk,uk)+ cN(πN)

]
, (3.2)

where ck are the cost functions whose formulation depends upon the purposes of the

control process. The cost functions ck are defined for k = 0, . . . ,N−1, where N is the

finite time horizon, and cN being the terminal cost.

Consider a finite state space of dimension I, that is xk ∈ {1,2, . . . , I}. The system
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is described by the state transition matrix

P(u) = {Pi j(u),1≤ i, j ≤ I}

= P(xk+1 = j|xk = i,uk = u),

where capital P signifies probabilities, and the output transition probability density

p(yk|i) = p(yk|xk = i) (3.3)

where the lower case p denotes probability density functions (pdf).

Because the state is not measured, we need a new quantity, a sufficient statistic,

that allows the state estimate to be computable based only upon the available information

Zk = (Y k,Uk−1) = (u0,y1,u1,y2, . . . ,uk−1,yk), (3.4)

where Uk−1 = {u0,u1, . . . ,uk−1}. As the next control and measurement are obtained, the

information state can also be updated based on its previous value and the new information.

The definition of the information state can be expressed as follows.

Definition 7 (Information State: Kumar & Varaiya [78] Definition (4.2)) The quan-

tity πk is an information state for the stochastic system (3.1) if

• πk is a function of Zk (3.4), and

• πk+1 can be determined from πk, yk+1 and uk.

For our purposes, the information state is formulated as the conditional probability vector

of the state xk given the available history (3.4)

πk(Zk) = [P(xk = 1|Zk), . . . ,P(xk = I|Zk)]. (3.5)
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An important note is that the information state does not depend on the policy g as proved

in [78], and it can be finite-dimensional when the state xk takes its values in a finite set.

3.3.2 Information state update

With new information obtained to add to the history Zk (3.4), the information

state can be updated to take into account the effect of the controls on the evolution of

the state’s statistics. This is a crucial feature that sets DAC apart from non-dual adaptive

control.

Define, for each measurement yk, the I× I diagonal matrix

D(yk) = diag[p(yk|xk = i), i = 1, . . . , I]. (3.6)

Then the information state πk+1(Zk+1) update equation based on the current measurement,

yk+1, the current control, uk, and the previous information state, πk(Zk), can be obtained

by Bayes’ rule as [78, 100]

πk+1(Zk+1) =
πk(Zk)P(uk)D(yk+1)

πk(Zk)P(uk)D(yk+1)1
(3.7)

:= Tk(πk(Zk),yk+1,uk),

where 1 is the unit column vector of length I. Note that the denominator of the above

equation is just a normalization factor to ensure that we have a probability.

The information state update equation (3.7) shows the duality of the control

problem. Here the effect of the control is to alter the evolution of the information state in

two ways:

• the control can alter the future values of the actual state xk, and

• the control can alter future values of the history Zk and hence the knowledge that
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one has of xk through the information state.

The first feature can be viewed as regulating the system, while the second feature actively

learning the system. The two aspects are in conflict, where the policy in attempts to

minimize the cost function favors smaller controls, but to effectively learn the system to

regulate it successfully, bigger controls are required. An optimal control policy represents

a compromise between the two purposes. This dual feature is unique to the case of

partial state information and not present in the case of complete state information. Partial

information about the system will be contained in the information state (3.5) as a measure

of the study of the system that characterizes its properties more and more precisely.

Indeed a distinctive feature of DAC is the dependence of the rate of studying the system

of the control policy [76].

3.3.3 Dynamic programming and control policy

Kumar and Varaiya [78] established that the optimal control that minimizes the

performance index (3.2) is a separated policy, defined as follows.

Definition 8 (Separated Policy: Kumar & Varaiya [78]) A policy g = {g0, . . . ,gN} is

said to be separated if gk depends on the measurements Y k only through the information

state, that is uk = gk(πk( . |Zk)).

The above definition signifies that in implementing a separated control law, the

information state is first computed and then the controls chosen. The task of estimation

and control are then separated. In the subsequent theorem of the SDP algorithm, an

optimal control law for the problem shall be shown to be separated.

Let Π be the set of all probability row vectors π = {π[1], . . . ,π[I]}, where π[i]≥ 0

and ∑i π[i] = 1. The problem formulated above can be solved by the following theorem

that states the SDP algorithm using Bellman’s equation.



76

Theorem 6 (Kumar & Varaiya [78] Theorem (7.1)) Define recursively the value func-

tions Vk(π), 0≤ k ≤ N with the information state πk ∈Π,

VN(πN) := EN{cN(xN)|πN = π} (3.8)

Vk(πk) := min
u∈U

Ek{ck(xk,u)

+Vk+1(Tk(π,yk+1,u))|πk = π}, (3.9)

where Ek signifies the expectation over the future information from time k onwards.

• Let g ∈ G. Then

Vk(πk(Zg,k))≤ Jg
k := Ek

[N−1

∑
l=k

cl(x
g
l ,u

g
l )+ cN(x

g
N)|Z

g,k
]
,

the cost-to-go at time l = k.

• Let g be a separated control policy such that for all π ∈ Π, gk(π) achieves the

minimum in (3.9). Then g is optimal in that it minimizes the performance index

(3.2), and Vk(πk(Zg,k)) = Jg
k with probability 1.

The SDP algorithm in general requires heavy computational power reflecting the

curse of dimensionality of the Bellman’s equation (3.9). The larger the number of steps

(i.e. time horizon) used in the SDP algorithm, the more demanding the computational

power. When the effect of control on the future information state is included, via the Tk

transformation (3.7), this complexity issue is exacerbated.



Chapter 4

ODAC Solutions to the Power Control

Problem

In this chapter, the theory from Chapter 3 will be implemented to solve the

problem of mobile wireless power control in a reduced complexity setting.

4.1 Description of the problem

The power control problem in mobile wireless communications is reformulated

according to Fel’dbaum’s perspective [76] of the ODAC problem, depicted in the block

diagram of Figure 4.1. In Fel’dbaum’s framework, the BS and MS together act as the

controller. In turn, the controlled object is the air interface that exhibits fading,whose a

priori statistics are known.

The MS transmits a sequence of BPSK signal with power u2
k−1 through the

communication channel, which is characterized by a single constant fading coefficient f ,

that is fk = f for all k. The known a priori statistics of f is denoted as π0. The output of

the channel is the state xk that is corrupted by the measurement AWGN noise wk before

77
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it reaches the BS which receives the signal as the measurement yk. The reference SNR,

denoted by γ∗ is made known to the BS.

It is made clear at this point that we shall consider the problem with a reduced

degree of complexity. In this setup, the communication link between the BS and MS

is assumed to be perfect–the MS knows the measurements at the BS. This is indeed

unrealistic but the assumption serves the purpose of examining the problem and its

solutions from the perspective of the ODAC problem and helps draw heuristics from

the solutions. As we shall see, the problem is of great difficulty even with the reduced

complexity. In the end of the thesis, we shall consider the complete problem where the

above assumption is eliminated.

The control, namely the MS transmitted power, bears a dual character: probing

the channel to estimate the air interface, characterized by the fading coefficient, and

applying the appropriate power level at which the MS should transmit the signal for

reliable communications while optimizing energy. As we shall see, the control policy

will be different depending on the a priori probability distribution of the fade, which is

assumed known in advance. From this perspective and in relation to the block diagram

in Figure 4.1, the problem now fits well into the description of a dual adaptive control

problem which was explicated by Fel’dbaum in the 1960’s [76]. Such problems have

been proven notoriously difficult to solve and certainly no closed-form solution exists.

However, we shall see that in this finite-state and finite-horizon setting, a solution can

be computed, albeit with significant computational effort. Current commercial practice

in mobile wireless power control, for example in GSM, continuously uses fixed-power

training sequences to estimate the channel SNR and does not permit the adjustment

of transmission power by more than 2 dB per trial. Such algorithm does not take into

account the effect of the controls on the study of the fade, resulting in a waste of resources.

Here in this idealized formulation the BS and MS seek to adjust the power in real-time to
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minimize the transmission energy.

One of the new aspects is that unlike the current ab initio approach (i.e. completely

uncertain fade value and training sequence based) in networks such as GSM, we have

mentioned the assumption that the a priori a probability distribution of the fade prior to

carrying out the power control algorithm. This will capture the existing approach as a

special case but also refine it to accommodate improved fade knowledge as reflected in

the distribution of the fade. We study the variation of the transmission power as the fade

estimate is refined.

Figure 4.1: Power control in wireless communications redrawn following the dual
adaptive control schema of Fel’dbaum [76]

In the framework of optimal dual adaptive control, the problem is classified as

optimal stochastic control with an unknown constant parameter, i.e. the fading. The

dynamics of this system are given by

xk = f uk−1, x0 = f ,

= f pk−1ak−1,

yk = xk +wk,

k = 1,2, . . . (4.1)

with the control constraint uk ≥ 0 for all k. Here:

f is the channel fade, which we presume to be constant over one packet transmission

time,
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ak−1 is the BPSK training sequence, ak ∈ {−1,1}, known to both MS an BS.

pk−1 is the amplitude, square root of the power, of the training signal. This is the control

variable known solely to the MS.

uk−1 is the transmitted signal chosen by the MS for the current packet. Since ak−1 is

known to both ends, we identify uk−1 as the effective control variable.

yk is the received signal at the BS, and

wk is additive gaussian white noise of known variance σ2
w.

Through out the rest of the thesis, we use [ . ] for indices, subscript k for the discrete time

index k. We impose the following assumptions.

Assumption 2

(1.A) The channel fade can take one of I < ∞ distinct values, { f [1], f [2], . . . , f [I]}.

(1.B) The target SNR at the BS for message transmission is γ∗ = 6.79dB, which results

in a usable BER of 10−3 for BPSK [101].

(1.C) There are I distinct transmission signals and powers corresponding to each possible

fade value and γ∗.

u∗[i]2 =
σ2

wγ∗

f [i]2
. (4.2)

(1.D) The time horizon for the problem is finite, denoted by N.

Like any stochastic control problems, the problem being considered can be solved

using SDP. This is also the tool Fel’dbaum used to analyze, but not fully solve, his very

simple ODAC problems [76]. However the solution is very complex due to the rapid
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growth in dimensions of the information state, that describes the evolution of the statistics

of the fade as measurements are received and controls applied, as we shall see later.

Here we shall constrain the problem to a finite time horizon N and finite state space

of dimension I. The solutions in fact cannot be found analytically in closed-form but

computationally, thanks to the aid of modern computers.

We seek to minimize the training and message power by posing the following

problem in the category of stochastic optimal control.

Stochastic optimal control problem

With the problem described previously, minimize the performance index (3.2)

Jg = Eg
[N−1

∑
k=0

ck(xk,uk)+ cN(πN)

]
,

over all admissible causal feedback control policies g ∈ G,

uk = g(Zk) ∈ {u∗[1], . . . ,u∗[I]},

with:

– initial probability mass function (pmf) π0 of the fade, f , and posterior pmf of the fade

at time k, πk, k = 1, . . . ,N,

– history Zk defined by (3.4): Zk = (Uk−1,Y k) = (u0,y1,u1,y2, . . . ,uk−1,yk),

– stage cost for k = 0, . . . ,N−1,

ck(xk,uk) = (u∗k
2− σ2

wγ∗

f 2
k

)2, (4.3)
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– terminal cost with i∗N = argmaxi πN ,

cN(πN) =

(
u∗[i∗N ]

2− σ2
wγ∗

f [i∗N ]2

)2

, (4.4)

The expectation in the performance index (3.2) is over the {wk} sequence and π0.

The cost functions are chosen with the purpose of conserving the MS battery in

mind. The terminal cost can be view as the cost resulting from choosing the terminal

control u∗N by certainty equivalent principle, whereby the control is selected as the most

probable value present in the terminal-time information state πN .

The solution to the above optimal control problem via SDP [102, 103] is well

understood in principle but also extraordinarily computationally demanding, as will be

demonstrated shortly. This formulation falls into the class of adaptive control, since the

control depends on the estimation of a poorly known plant parameter.

It is worth remarking that, while Fel’dbaum posed a problem isomorphic to

ours, he was unable to compute the solutions with the tools available in the 1960s. It

is also noteworthy that this formulation has perfect feedback from BS to MS, which

jointly comprise the controller. In the full problem discussed later, one needs to separate

BS and MS, posit a noisy fading channel connected them, and have each solve a joint

optimization problem. This is a degree of difficulty beyond the statement above.

Now that the problem has been properly formulated, we shall find its solutions

using the SDP algorithm described in Chapter 3.
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4.2 Implementation of the SDP algorithm

4.2.1 Information state and its update

Consider the system described by (4.1). Initially, all known information is the a

priori pmf of the fade at time k = 0, π0. This is a distinct between our problem and the

current approach in power control, where it is assumed that the channel is completely

unknown every time the power control algorithm starts. The information state is the

conditional probability vector of the state xk at the MS given the available history (3.4).

As measurements are received and controls applied, this conditional pmf updates to πk

via (3.7). This is the effect of the control on the future information about the system,

a very interesting and useful feature of DAC. Since {u j : j = 1, . . . ,k−1} is known at

the MS, the information state coincides with the conditional mass function of the fade.

Therefore, we define the following as the information state for our problem.

πk(Zk) =

[
P( f = f [1]|Zk) . . . P( f = f [I]|Zk)

]
. (4.5)

By realizing the above fact, the information state can be updated from the a priori

distribution of the fade π0. Consider the information state update equation (3.7). Due

to the AWGN channel with constant fade described by (4.1), the measurements yk are

distributed as N( f uk−1,σ
2
w). And so the conditional probabilities in D(yk) from (3.6) are

given by

p(yk|xk = i) =
1√

2πσw
exp

[
−(yk− f [i]uk−1)

2

2σ2
w

]
. (4.6)

Furthermore, it is crucial to note that, since the fade is assumed to remain constant

throughout the problem, the state transition matrix P(uk) is taken as the identity matrix.

This fact helps greatly with reducing the subsequent calculation. The information state
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update (3.7) now reduces to

πk+1(Zk+1) =
1

πkD(yk+1)1
πkD(yk+1), (4.7)

:= Tk(πk(Zk),yk+1,uk), (4.8)

with the diagonal matrix D(yk+1) containing

D(yk+1)[i] =
1√

2πσw
exp
[
−(yk+1− f [i]uk)

2

σ2
w

]
, (4.9)

and 1 =

[
1 1 . . . 1

]T

. Note that the denominator of (4.7) is just a normalization

factor to ensure getting a probability. This is basically Bayes’ Rule

P( f = f [i]|Zk+1) =
P( f = f [i],yk+1|Zk)

P(yk+1|Zk)
,

=
P(yk+1|Zk, f = f [i])P( f = f [i]|Zk)

P(yk+1|Zk)
.

The transformation Tk in (4.8) will appear in the solution via SDP, as it plays a vital role

in computing the recursive Bellman’s equation.

Since the information state update is based on the future measurements and

controls, it can be traced back to π0. This is expressed as

πk+1(Zk) =
π0 ∏

k+1
l=1 D(yl)

π0 ∏
k+1
l=1 D(yl)1

. (4.10)

Here we can clearly see how the future measurements and controls affect the

evolution of the fade’s statistics. This evolution is a function of π0, and in turns, it affects

the control policy. Therefore, the control policy is expect to depend greatly upon what

we know about the channel beforehand, namely the a priori distribution of the fade. This
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takes advantage of the study of the air interface to optimize the energy spent, formulated

as the cost functions. This is far more advanced than the current approaches to power

control where the study of the channel accumulated over time is ignored.

4.2.2 Duality of the power control problem

As mentioned before, the dual nature of the control signal in adaptive optimal

control is that the control has two tasks: regulating the system behavior to minimize

the cost, and probing or exciting the system to assist the active learning of unknown

system parameters, thereby, in turn, improving control performance. Where the probing

and regulating tasks are antithetical, the duality becomes evident and the nature of the

solution exhibits sensitivity to the initial knowledge of the system – π0 in this case.

Figure 4.2 shows the quadratic cost function (4.3) versus control value u[i], where

these values are separated by 2dBm, as is used in practical mobile wireless systems such

as PCS-1900. The graph is centered on the correct value u∗[i].

The two features are immediately apparent.

(i) The power penalty for incorrect selection of power grows quadratically with

distance from u∗.

(ii) In the practical dBm scale, the penalty for choosing too high a power is significantly

greater than that for choosing dBm-equivalent too low a power.

Thus there is a penalty for incorrect power choice and this penalty is diminished for

cautious lower power selections.

Equation (4.9) describes a random, wk-dependent update of each element of the

information state in response to the received measurement yk. Examining (4.9) further,



86

Transmitted power
0.5u*2 0.63u*2 0.79u*2 u*2 1.26u*2 1.58u*2 2u*2

C
os

t

0
1.1025

1.69

3.4255

6.25

8.41

25

c(u*2-6dBm)

c(u*2-4dBm)

c(u*2-2dBm) c(u*2+2dBm)

c(u*2+4dBm)

c(u*2+6dBm)

Figure 4.2: Quadratic cost (4.3) associated with a fixed value of u∗ = σ2
wγ∗

f 2 and different
values of power separated by 2dBm increments.

we have the following.

Ew [D(yk+1)[i]] =∫
∞

−∞

1√
2πσw

exp
[
− 1

2σ2
w
(wk+1 + f ∗uk− f [i]uk)

2
]

× 1√
2πσw

exp
[
− 1

2σ2
w

w2
k+1

]
dwk+1. (4.11)

Define f̃i
4
= f ∗− f [i] and rewrite the argument of the exponential as follows by completing

the square.

w2
k+1 +(wk+1 + f ?uk− f [i]uk)

2

=

(√
2wk+1 +

1√
2

f̃ [i]uk

)2

+
1
2

f̃ 2[i]u2
k .
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Whence (4.11) becomes

Ew [D(yk+1)[i]]

=
1√

2πσw
exp
(
− 1

4σ2
w

f̃ 2[i]u2
k

)
×

∫
∞

−∞

1√
2πσw

exp

[
− 1

2σ2
w

(√
2wk+1 +

1√
2

f̃ [i]uk

)2
]

dwk+1,

=
1√

2πσw
exp
(
− 1

4σ2
w

f̃ 2[i]u2
k

)
×

∫
∞

−∞

1√
2πσw

exp

[
− 1

2σ2
w

(
z+

1√
2

f̃ [i]uk

)2
]

dz√
2
,

=
1

2
√

πσw
exp
(
− 1

4σ2
w

f̃ 2[i]u2
k

)
.

In other words,

Ew [D(yk+1)[i]] =
1

2
√

πσw
exp
(
− 1

4σ2
w
( f − f [i])2u2

k

)
. (4.12)

Here the expectation is over wk+1. Equation (4.12) illustrates the reliance on large values

of u2
k in achieving rapid refinement of the information state πk+1. This is the dual feature

of ODAC present in the problem: the stage cost is better regulated for small u2
k while the

information state is better resolved for large u2
k . The ODAC solution via SDP algorithm

strikes a balance between the two competing features to enhance the system performance

in terms of energy spent.

4.2.3 Dynamic programming and control policy

The core difficulty in solving (3.9) for Vk and u∗ lies in the application of the

information state update Tk(π,y,u) prospectively forwards across the horizon from time

k to N. Within the expectation Ek{·}, one must account for the effect of choice of
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uk+ j for j = 0, . . . ,N− k on the future values of πk+ j. Not only is Bellman’s curse of

dimensionality evident in the explosion in N of the number of feasible controls to be

considered, but also the corresponding information state updates and expectation values

must be computed. It is the inclusion of these many integrals over the future gaussian

densities which dominates the computational burden.

With the formulation of the terminal stage cost (4.4), the terminal value function

(3.8) is given by

VN(πN) = cN(πN) (4.13)

The subsequent value functions (3.9) can be expressed as

Vk(πk) := min
uk∈U

{
∑

i
ck(i,uk)πk[i]

+
∫

yk+1

Vk+1(Tk(πk,yk+1,uk))p(yk+1|πk,uk)dyk+1

}
. (4.14)

It is noteworthy that with the state being a discrete random variable, the value

functions can also be derived using Fel’dbaum’s formulation [76] with the consideration

of the delay in the system’s plant. Fel’dbaum calls these functions the auxiliary functions

which are then to be treated with the SDP algorithm to find the optimal control policy.

But since Fel’dbaum’s system does not have a delay in the plant, his solution uses Y k in

the value function at time k+1 instead of Y k+1.

The conditional pdf p(yk+1|πk,uk) is a mixture of normal densities, which can be
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written as

p(yk+1|πk,uk) = ∑
j

p(yk+1|xk+1 = j)p(xk+1 = j|πk,uk)

= ∑
j
∑

i
p(yk+1|xk+1 = j)πk[i]Pi j(uk)

As discussed before, the state transition matrix Pi j(uk) is a unit matrix. Thus, the

above becomes

p(yk+1|πk,uk) = ∑
i

p(yk+1| f = f [i])πk[i]. (4.15)

Remark 4 The density (4.15) is identical to the normalization factor that appears in the

information state update (4.7). And so the integral in (4.14) can be reduced to a simpler

form. Equation (4.13) remains unaltered.

To obtain the expression for VN−1(πN−1), we first write the terminal value func-

tion VN as a function of πN−1

VN(TN−1(πN−1,yN ,uN−1)) = cN

(
πN−1D(yN)

πN−1D(yN)1

)
.

For preceding, k < N, value functions, according to the above remark, the cancelation of

the normalization πN−1D(yN)1 and the density mixture p(yN |πN−1,uN−1) occurs when

combined in (4.14). Thus

VN−1(πN−1) = min
uN−1∈U

{
∑

i
cN−1(i,uN−1)πN−1[i]

+
∫

yN

cN

(
πN−1D(yN)

πN−1D(yN)1

)
dyN

}
. (4.16)

Now if we were to solve a one-step SDP algorithm, the solution for the optimal
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control u∗0 could be found quite easily in closed form. The resulting control is termed the

cautious controller [1]. While it still takes into account the parameter uncertainties, the

gain of this controller will decrease if the variance of the parameter increases. As a result,

the estimate of the parameter becomes poorer in the next step, making further increase

in its variance. Following this trend, the magnitude of the control signal becomes very

small. This is called the turn-off phenomenon.

In computing the subsequent value functions, the cancelation of the normalization

and the density mixture always occurs because they both are independent of the control

over which the minimization is conducted. The subsequent value functions can be found

recursively by

VN−k(πN−k) = min
uN−k∈U

{
∑

i
cN−k(i,uN−k)πN−k[i]

+
∫

yN−k+1

min
uN−k+1∈U

{
∑

i
cN−k+1(i,uN−k+1)πN−k[i]D(yN−k+1)[i]

+ · · ·+

{
∑

i
cN−1(i,uN−1)πN−k[i]D(yN−k+1[i]) . . .D(yN−1[i])

+
∫

yN

cN

(
πN−kD(yN−k+1) . . .D(yN)

πN−kD(yN−k+1) . . .D(yN)1

)
dyN

}
dyN−1

}
. . .dyN−k+1

}
(4.17)

The main difficulty in carrying out the SDP algorithm with the above value

functions is the nested minimizations and integrations over the future measurements that

affect the future information state. The dimensionality grows rather very rapidly even

with a short time horizon N. This curse of dimensionality ensures that this computation

explodes in complexity with horizon as we compute the succeeding value functions.

Apparently the worst of them all is the initial value function V0. There are some methods

that trade the curse of dimensionality for the curse of complexity such as [104], but they
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are not helpful here because we are also facing with the integrations over the infinite

values of the set of measurements, that are gaussian. To deal with the integrals, we

shall confine the set of possible measurements to a finite feasible range and use an

approximation method, for example, the trapezoidal rule.

To briefly demonstrated Bellman’s curse of dimensionality with the exponential

increase in the number of controls to be explored as the horizon grows backwards in

time, and how it is exacerbated by the nested computation of successive integral terms,

consider the following overview of the simulation that is to come later. A computational

implementation was developed with:

– four values for fade f with corresponding 4-vector πk,

– four control values {uk[i], i = 1,2,3,4},

– horizons N = 2,3 or 4 steps.

– integrals approximated by the trapezoidal rule with 21 points.

Matlab’s tic and toc functions were used to generate approximate run time estimates

with the following results.

Horizon Computation time (s)
4-step 3300
3-step 42
2-step 1

This example will be revisited in detail in Section 4.4.

We make two observations about the stochastic dynamic programming solution.

Remark 5 The computation of the initial control value, u∗0, is significantly more costly

in calculation time than is the computation of any subsequent control value. Indeed, the

computation time is dominated by the initial control value.
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This is evident since subsequent control calculations involve reduced-horizon

dynamic programs.

Remark 6 The initial control calculation is a deterministic function of the initial infor-

mation state. That is, u∗0(π0).

Based on the above remarks, in the next section we shall explore some heuristics

of the problem and derive some alternative control policies to compare to ODAC.

4.3 Heuristics and alternative control laws

4.3.1 Heuristics

We build on the observations above in Remarks 5 and 6 to support the following

heuristics to simplify the computational burden of the SDP algorithm.

Heuristic 1 Compute the initial optimal control value u∗0(π0) off-line as a precomputed

function of the initial information state vector π0. Then use a look-up table for this value

followed by a reduced-horizon optimal control calculation or another control law.

Heuristic 2 Propagate the information state from the end of tth data packet, πt
N , to the

next packet initiation, π
t+1
0 , to improve control performance and deal with a change in the

communication channel. This can be accomplished by a Markov probability transition

matrix, Pπ

jk = P( ft+1 = f [k]| ft = f [ j]), that is

π
t+1
0 = π

t
NPπ

jk, (4.18)

where Pπ

jk can be found by the knowledge of the channel, e.g. Rayleigh fading channel.
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While we do not simulate this second heuristic as it is out of the scope of this

research, it is important to note two properties connected with the information state

which justify attention to its propagation between packets. Clearly, the refinement of the

information states presents a challenge to the control performance because of duality

of the optimal control. So providing a concentrated information state is beneficial.

Secondly, it is apparent from (4.7) that a zero element anywhere in πk cannot be removed

at subsequent times; likewise for a one element. Accordingly, it is possible that the

information state might become degenerate and this degeneracy needs to be removed

before the next packet via (4.18).

4.3.2 Alternative control laws

Beside our main focus on the ODAC solution, we shall also consider the following

alternative suboptimal control laws.

CE: based on CE principle. Here the information state πk is updated as usual using (4.7)

based on the received signal yk, but uk is chosen to be the maximal a posteriori

probability control.

uCE
k = u∗

(
argmax

i
{πk[i]}

)
, for all k = 0, . . . ,N and i ∈ I. (4.19)

This is a low computational complexity (but familiar) suboptimal adaptive con-

troller.

H: based on Heuristic 1 with optimal u∗0(π0) precomputed followed by CE policy through

the remainder of the horizon. Since the computation of u∗0 takes place off-line

and CE control is low complexity, this controller too is low complexity. But it

differs from CE in possessing an optimal initial step which makes up most of the

computational power and time.
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ODAC-100: based on optimal dual adaptive control with a variation of the cost function

achieved by replacing terminal cost

cN(πN)← 100cN(πN).

This alters the original cost function by emphasizing the refinement of the informa-

tion state by the terminal time. Since, in our scenario, we have a training sequence

with optimally chosen powers but known to both MS and BS, the expectation is that

non-adaptive power control or non-optimal CE adaptive power control algorithm

will proceed after the training signal, where every effort has been made with SDP to

estimate channel as precise as possible. This new cost function attempts to capture

the penalty for poor fade estimates at time N. ODAC-100 will not in general be

optimal for the original ODAC problem since it does not follow the terminal cost

function specified by the optimal policy. Nevertheless because of the additional

penalty, it should exhibit greater probing effects.

4.4 Computational results

Using matlab, we simulate the optimal stochastic control problem with the

following parameters.

Horizon N = 4.

Fade f takes values in the set {−17,−7,−3,0}dB.

Noise sequence {wk : k = 0, . . . ,4} is taken over 10 independent realizations and is the

same for each control law. Performance plots are averaged over the 10 realizations.

Noise power σ2
w =−5dBm.
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Power for signal transmission takes values from a set with each power associated with

the corresponding fade value as in (4.2) with the target SNR γ∗ = 6.79dB.

{u∗
2
[1],u∗

2
[2],u∗

2
3],u∗

2
[4]}= {18.5,8.9,4.5,1.5}dBm.

Initial Information State 4-vector π0 is taken to be

π0 = [0.35,0.15,0.1,0.4]. (4.20)

Integration is conducted in (4.17) using a 21-point trapezoidal rule spanning ±five

standard deviations of the Gaussian density.

Control laws ODAC, CE, H, and ODAC-100 are computed and compared using the

ODAC empirical performance index.

Jg = c4(π4)+
3

∑
k=0

4

∑
i=1

ck(i,uk[i])πk[i], (4.21)

where g is one of the four chosen control laws, with ck from (4.3) and the terminal

cost function cN = c4 from (4.4).

4.4.1 Performance and computation time

The empirical performance index (4.21) associated with the a priori information

(4.20) and each control policy is tabulated in Table 4.1 for each possible value of the true

fade f . Table 4.2 indicates the time taken for a simulation with one realization of the

noise to complete for each control scheme and with differing time horizons.

Observations can be made based on Tables 4.1 and 4.2.

• ODAC outperforms the other control laws according to (3.2), although it does
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Table 4.1: Average empirical performance (×104) of the control policies and differing
real fade values, f [i]. The performance is computed using the ODAC cost (4.21).

Actual fade: f [1] f [2] f [3] f [4]
ODAC 21 25 15 14

ODAC-100 25 35 19 14
CE 36 34 35 32
H 21 26 15 14

Table 4.2: Computation time of the control laws with a single realization of the mea-
surement noise and differing time horizons.

Time horizon ODAC & ODAC-100 CE H
4-step 3300s 7ms 7ms
3-step 42s 0.3ms 0.3ms
2-step 1s 0.2ms 0.2ms

this at very considerable computational and complexity cost. The optimality of

ODAC is in terms of expectations and definitely need not be evident with every

noise realization. Indeed, within the ten realizations there are few where even CE

outperforms ODAC for those specific noise realizations.

• ODAC-100, even though a result of the full stochastic dynamic programming

algorithm, is suboptimal for the ODAC cost. The balance between probing and

regulation leans towards probing when compared to ODAC.

• CE displays its suboptimality, reflecting its lack of probing or, equivalently, undue

focus on regulation.

• As expected from its construction, the performance of policy H falls in between

ODAC and CE, being very close to ODAC. However, its advantage is that its

computational complexity is very close to that of CE, making it much more

applicable and realistic compared to ODAC.
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• Computational time for SDP increases extremely rapidly with increasing SDP time

horizon, indicating the computational burden in solving the Bellman’s equation

(4.17) that is notoriously known for its curse of dimensionality.

• The computational times of ODAC and H and CE are different by a factor of nearly

500,000 in the case of 4-step SDP. This demonstrates the benefit of choosing u∗0

based on π0, an example of which is presented in Section 4.3.

4.4.2 Examination of control laws

Figure 4.3 is a collection of 20 histograms of the optimal control sequences, u∗0

through u∗4, averaged over the 10 different channel noise realizations. The histograms

are indexed by time 0-4 (also indicated by color) and by control law H, CE, ODAC-100,

ODAC. Fade f [3] =−3dB is the actual fade of the channel and from (4.20),

π0 = [0.35,0.15,0.1,0.4].

We offer the following observations regarding Figure 4.3.

• The histograms in Figure 4.3 for time 0 demonstrate Remark 6, that the initial

control u∗0 for ODAC is a function solely of π0 and does not depend on the noise

realization. This also holds for the other three control policies, although each

controller selects its own value of u∗0. This is shown by a single value of the initial

control for each policy occurring for every realization.

• As expected, ODAC-100 is the most reliable in terms of selecting the correct power

level by the terminal time, followed by ODAC. This reflects the choice of the

terminal cost function in ODAC-100 to emphasize probing.
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Figure 4.3: Histograms of control values averaged over 10 realizations of the noise for
each adaptive control scheme vs. time. The real fade is equal to f [3] =−3dB.

• This example has a particularly poorly informed π0 in (4.20). The actual fade value

has a priori probability 0.1. Indeed, π0 is rather uninformative and we see that

ODAC, (and therefore) H and ODAC-100 select larger control values early than

does CE. This is probing to resolve the actual fade. This is costly but to obtain full

benefits of probing a long time horizon must be used [84].

All other histograms corresponding with the rest of the real fade values in the

set of the fade, f , are plotted in Figure 4.4, Figure 4.5 and Figure 4.6 for f [1], f [2] and

f [4], respectively. Notice that f [4] has the largest value of probability as in π0 (4.20).

As a result, the optimal control value u[4] is much easier to be chosen by all the control

policies compared to previous cases. In general, looking at the plots of histograms of the

controls, one can see that the larger value the fade probability is in π0 (4.20), the easier

it is for the control policies to choose the correct transmitted power u∗. Therefore the

difference between ODAC and ODAC-100 and CE and H is less evident than in the case
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where the probability of the real fade is low.
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Figure 4.4: Histograms of control values averaged over 10 realizations of the noise for
each adaptive control scheme vs. time. The real fade is equal to f [1] =−17dB.

Figure 4.7 depicts the evolution of the information states for the above trial, again

averaged over the same 10 realizations of the noise but for two different values of the

real fade: f [3] (upper) and f [4] (lower).

The two collections of histograms in Figure 4.7 illustrate, for each control policy,

the evolution of the information state averaged over 10 different noise sequences, with

differing real fade values. Note that f [3] has low a priori probability in (4.20), while

f [4] has maximal a priori probability. This highlights the control value of the quality of

the initial information state. From a mobile communications perspective, where fade

estimation is part of every transmitted packet, the propagation of πN from one packet to

provide as accurate as possible value of π0 for the next is important. This demonstrates

the substance of Heuristic 2.
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Figure 4.5: Histograms of control values averaged over 10 realizations of the noise for
each adaptive control scheme vs. time. The real fade is equal to f [2] =−7dB.

For the rest of the real fade values, Figure 4.8 shows the plot of the evolution of

the information states averaged over the same 10 realizations of the noise but for two

different values of the real fade: f [1] (upper) and f [2] (lower).

4.5 Conclusion

In this chapter, we realize that the mobile wireless power control problem in

communication system is stochastic optimal control problem. The problem is found to

exhibit features of dual adaptive control: for probing, the MS transmitter tends to use

big control (transmitted power) values to refine the study of the channel to aid the power

control process; on the other hand, for regulation, the MS tends to select small control

values to minimize the cost functions, which take into account the total energy spent on

transmission to make the adaptation possible. The two aspects however are in conflict. A
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Figure 4.6: Histograms of control values averaged over 10 realizations of the noise for
each adaptive control scheme vs. time. The real fade is equal to f [4] = 0dB.

good control policy must strike a balance between the dual characters.

We have considered the problem in a simplified setting, where the MS and BS

can share their information about the system. Further, it is assumed that some a priori

information of the fading is known in advance. Belonging to stochastic optimal control

and dual adaptive control, the problem can be solved by the SDP algorithm, with the

aid of the information state that describes the evolution of the statistics of the fade

from the initial known information about the channel. This evolution is based on the

future controls and measurements. Despite its primitive form, this is among the first

times ODAC has been applied to understand a real-life commercial application of great

significance, while the other applications of DAC have been suboptimal. The dual feature

of the problem manifests on the optimal controller ODAC that strikes a balance between

the two makes for a minimization of the performance index (4.21).

Once the solutions to the power control problem in the framework of ODAC
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are obtained, we draw heuristics based on our findings. From the heuristics, we derive

some other control policies that potentially help reduce the computational complexity of

the ODAC solutions due the notorious curse of dimensionality appearing in Bellman’s

equation. The other control policies considered here do not have the dual feature which

result in higher performance indices, especially in the case of CE that does not offer

probing at all. One can alter the balance of the dual feature by adjusting the penalties

on estimation and regulation, depending on the nature of the problem. The adjustment

will inevitably result in a higher performance index but might be more suitable to the

purposes of the desirable control policy.

The superior performance of ODAC, however, comes at a cost of computational

complexity and time, which grows extremely rapidly with the time horizon in the SDP

algorithm, which we have demonstrated in Table 4.2. This can be greatly alleviated with

the realization that u∗0 is the most expensive and time consuming to compute, but on the

other hand is a deterministic function only of the a priori information, π0. Following

this observation, rules can be devised to select u0 based on π0. This helps reduce the

computational time by an enormous amount, e.g. a factor of 500,000 in our example.

This, in turn, implies a step forward in implementing the power control algorithm we

have proposed to real-life applications in communication systems, even though the

computational time is still far too high to be usable. This fact demonstrates what it takes

to be optimal in power control.

Chapter 4, in full, is currently being prepared for submission for publication of

the material, by M. H. Ha and R. R. Bitmead. The dissertation author was the primary

investigator and author of this material.



103

Time

0
1

2
3

4
π[1]π[2]π[3]π[4]π[1]π[2]

Real Fade = f[3]

π[3]π[4]π[1]π[2]π[3]π[4]π[1]π[2]π[3]π[4]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1
0.9

In
fo

rm
at

io
n 

St
at

e 
Va

lu
e

H
CE

ODAC-100
ODAC

Time

0
1

2
3

4
π[1]π[2]π[3]π[4]π[1]

Real Fade = f[4]

π[2]π[3]π[4]π[1]π[2]π[3]π[4]π[1]π[2]π[3]π[4]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1
0.9

In
fo

rm
at

io
n 

St
at

e 
Va

lu
e

H
CE

ODAC-100
ODAC

Figure 4.7: Evolution of the information state averaged over 10 realizations of the noise
for each adaptive control scheme vs. sample time. Upper plot: real fade is f [3]. Lower
plot: real fade is f [4].
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Figure 4.8: Evolution of the information state averaged over 10 realizations of the noise
for each adaptive control scheme vs. sample time. Upper plot: real fade is f [1]. Lower
plot: real fade is f [2].



Chapter 5

Conclusion & Future Direction

5.1 Conclusion

Throughout Chapter 2, realizing that power control in communication systems is

an adaptive system, we have examined the total energy cost in power control, including

the energy cost of adaptation, spent by the MS transmitter. We have posed a power control

under the setting of a communication system with a complex channel and complex signal,

corrupted by circularly symmetric complex noise. Using a number of pilot tones, the LS

estimate of the channel is computed. Based on the channel estimate, the signal and then

noise powers are calculated, that allows the SNR estimate to be determined. There exists

a conundrum in the algorithm, in which to minimize the variance of the SNR estimate,

the MS transmitter should use an infinite number of pilot symbols transmitted at zero

power. Using the SNR estimate, which is an F distribution, an appropriate transmitted

power level for the actual message data symbols can be chosen to overcome the fading

environment, which concludes the power control algorithm. We have then formulated

the total energy cost of the whole power control process, including the energy cost of

adaptation. Based on the statistics of the SNR estimate, this total energy cost is calculated,

105



106

factoring in 3 cases: the transmitter chooses a satisfactory transmitted power level, a

power level higher than necessary and one that is too low. While the second results in

wasted energy, the last case necessitate a retransmission, which in turn includes also the

re-estimate of SNR, basically a restart of the whole power control process.

The total energy cost of power control is then analyzed via simulations. It was

found to exhibits a pathological behavior, in which to conserve the energy, the transmitter

should use an infinite number of pilot tones at zero transmitted power to obtain the

smallest energy cost possible. This behavior is the same as the optimal strategy to

minimize the variance of the SNR estimate. However, when the MS transmitter is

assumed to have a velocity, the total energy cost is modified to take into account the

change in the channel condition due to the MS mobility. The above pathological behavior

of the total energy cost disappears when the MS mobility is introduced. In this case, there

exists an optimal pilot length K and pilot transmitted power P0 that results in the smallest

minimum of the total energy cost across the range of the pilot transmitted power.

In the end of Chapter 2, we have also propose a non-data-aided, or blind adap-

tation, technique, that is to eliminate the use of pilot sequences, to apply to the power

control problem. It is, however, found that in the setting of mobile wireless communi-

cation, the blind adaptation algorithm takes too long to compute the BER of the link,

making it unimplementable.

In the next chapters, realizing that the mobile wireless power control problem

is at its core a stochastic dual adaptive optimal control problem, we have demonstrated

an application of SDP to a much simplified version of the problem, where it is assumed

that the MS and BS can share their information about the system. This greatly simplifies

the solutions obtained via SDP, with the aid of the information state that describes the

evolution of the statistics of the fade from the initial known information about the channel.

This evolution is based on the future measurements and controls. Despite its primitive
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form, this is among the first times ODAC has been applied to understand a real-life

commercial application of great significance. The dual feature of the problem manifests

on probing, that tends to use big control (transmitted power from the MS) values to refine

the information state, and regulation, that tends to select small control values to minimize

the cost functions, which take into account the total energy spent on transmission to make

the adaptation possible. The optimal controller ODAC that strikes a balance between the

two makes for a minimization of the performance index (4.21).

Once the solutions to the power control problem in the framework of ODAC

are obtained, we draw heuristics based on our findings. From the heuristics, we derive

some other control policies that potentially help reduce the computational complexity of

the ODAC solutions due the notorious curse of dimensionality appearing in Bellman’s

equation. The other control policies considered here do not have the dual feature which

result in higher performance indices, especially in the case of CE that does not offer

probing at all. One can alter the balance of the dual feature by adjusting the penalties

on estimation and regulation, depending on the nature of the problem. The adjustment

will inevitably result in a higher performance index but might be more suitable to the

purposes of the desirable control policy.

The superior performance of ODAC, however, comes at a cost of computational

complexity and time, which grows extremely rapidly with the time horizon in the SDP

algorithm, which we have demonstrated in Table 4.2. This can be greatly alleviated with

the realization that u∗0 is the most expensive and time consuming to compute, but on the

other hand is a deterministic function only of the a priori information, π0. Following

this observation, rules can be devised to select u0 based on π0. This helps reduce the

computational time by an enormous amount, e.g. a factor of 500,000 in our example.

This, in turn, implies a step forward in implementing the power control algorithm we

have proposed to real-life applications in communication systems, even though the
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computational time is still far too high to be usable. This fact demonstrates what it takes

to be optimal in power control.

5.2 Future direction

For future work, we shall go back to the formulation presented in Section 4.1

and consider a more realistic problem. By this, we remove the assumption that the

communication link between the MS and BS is perfect. The two are no longer able

to share their information about the system. The MS and BS can now be seen as two

separate controllers that communicate via some link denoted as tk. This is a much harder

problem since the signaling between MS and BS is difficult to be incorporated to the

ODAC scenario, and requires knowledge in other fields beyond regular adaptive and

stochastic optimal control.

Figure 5.1: The full-scale problem in power control. The MS and BS are no longer able
to share their information. The communication link between the two can be described
by tk, corrupted by AWGN vk.

The full problem described above is demonstrated in Figure 5.1. The control

signals of the MS and BS can be seen as uk−1 and tk, respectively. We now need to

formulate the dynamics of the two separately. Taking into account the noise in-between
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the MS and BS, vk, the dynamics of the MS can be expressed as


xMS

k = tk

yMS
k = tk + vk,

(5.1)

and of the BS 
xBS

k = xk = f uk−1

yBS
k = xk +wk = f uk−1 +wk.

(5.2)

The objective is to minimize a performance index that is in a similar form to

(4.21) but also takes tk into account. While this still falls in the framework of dual

adaptive control, we are not certain if the solutions to this problem can still be obtained

via the SDP algorithm, since the complexity is beyond what we have considered here.

This stochastic optimal control problem greatly resembles Witsenhausen’s coun-

terexample [105] that has remained unsolved since its formulation - some recent articles

related to Witsenhausen’s counterexample are [106, 107, 108, 109]. However, it is even

more complex than Witsenhausen’s counterexample in the sense that the BS does not

have access to perfect observations of the state xk, as it is assumed in Witsenhausen’s

counterexample, and the control signal uk−1 of the MS is costly, more so than that of

the BS in terms of the battery life of the MS. Witsenhausen’s counterexample assumes

the inverse of the latter statement. The derivation of the signaling solution tk makes it

even harder, not to mention the methodology in implementing tk into the framework of

stochastic optimal control.

Suppose that the MS and BS both have their own information state, denoted πMS
k

and πBS
k respectively, with a mutual a priori information π0 which is the given initial

distribution of the fade, f . The information states are updated following (5.1) and (5.2),
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that is, it is updated based on the future measurements and controls of both the MS and

BS. If the optimal controls could be obtained via SDP employed for both the MS and BS,

the implementation of the algorithm for the MS is different from that for the BS. The

two SDP algorithms have to be carried out online and simultaneously, as they greatly

depend upon the solutions of the other. The combined algorithm, beside its anticipated

profound complexity to derive, requires tremendous computational power that is far more

demanding than the example we have presented previously.

Furthermore, we shall face a great difficulty in that the information state of the

MS must include the knowledge about the BS, which contains knowledge about the

MS itself, which in turn includes the knowledge about the BS. This beliefs propagation

grows rather very rapidly. This complexity may render the problem intractable in the

framework of SDP. This could be dealt with using the notion of bounded nationality

[110] in stochastic cooperative game theory.

In [111], the authors considered a multi-agent setup, where the agents neglect the

fact that they are mutually dependent through the environment. However, by interacting

with the environment, they in turn alter the empirical observation of the others. This model

allows each agent to face a Markov decision process instead of a partially observable

Markov decision process, whose implementation is intractable due to beliefs propagation.

Given enough an amount of measurements, each agent then develops its own model based

on empirical observations that changes the environment. Due to the changes, the agents

then compute new models and adjust their actions. This is best demonstrate in Figure 5.2.

It has been shown that a convergence exists for this process, which the authors called

empirical evidence equilibrium. However, due to the assumptions that the agents do not

communicate with each other and that they need a large enough number of empirical

observations, the formulation does not fit into our problem where the MS and BS are

connected via the transmission tk, and implementation time is crucial. Nevertheless, this
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scheme is feasible if one could collect the data and carry out the algorithm offline long

enough for the policies to converge to the empirical evidence equilibrium.

Figure 5.2: Full-scale power control in mobile wireless communications in the frame-
work of [111]. Here zMS

k1 and zBS
k2 represent the vectors containing the last k1 observed

signals of the MS and k2 of the BS, respectively. Based on the depth-k1 and k2
consistency, the MS and BS continuously reformulate their respective models of the
environment and change their actions accordingly. k1 and k2 must be large enough for
the policies to converge.

There have been attempts to deal with similar power control problems using a

different than the traditional 2dBm step size in MS transmitted power. For example, the

MS transmitted power is changed by a power of 2dBm steps based on the number of

consecutive requests from BS to change the transmitted power in one direction [112]. In

[113], the MS changes the transmitted power at a step size formulated as the product

of a basic step sized based on its velocity, and a weighing factor chosen by a seemingly

random rule based on 3 most recent consecutive command bits sent from the BS. In

[114], the authors used a fixed step size based on the difference between the actual link

SNR and the target SNR collected over a certain period of time. The common feature
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of these papers is that there is no solid foundation for choosing the adaptive schemes,

and certainly their control policies are not optimal. Nevertheless, they attempts to solve

problems that are similar to our full-scale problem. However, the anticipation is that their

solutions would be a special case of the solutions to our problem, if it would ever be

obtained.

Much similar to the ODAC problem solved here that has led to heuristics, so

too in the full-scale problem shall we need an heuristic solution. Once this is done,

the adaptation in power control of communication systems will gain a huge advance

compared to what has been being done currently.
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