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The goal of object recognition is to locate and identify instances of an object
within an image. Examples of this task include recognition of faces, logos, scenes
and landmarks. The use of this technology can be advantageous in guiding a blind
user to recognize objects in real time and augmenting the ability of search engines
to permit searches based on image content.

Traditional approaches to object recognition use appearance features – e.g.,
color, edge responses, texture and shape cues – as the only source of information
for recognizing objects in images. These features are often unable to fully capture
variability in object classes, since objects may vary in scale, position, and viewpoint
when presented in real world scenes. Moreover, they may introduce noisy signals

xix



when objects are occluded and surrounded by other objects in the scene, and obscured
by poor image quality.

As appearance features are insufficient to accurately discriminate objects in
images, an object’s identity can be disambiguated by modeling features obtained
from other object properties, such as the surroundings and the composition of ob-
jects in real world scenes. Context, obtained from the object’s nearby image data,
image annotations and the presence and location of other objects, can help to disam-
biguate appearance inputs in recognition tasks. Recent context-based models have
successfully improved recognition performance, however there exist several unan-
swered questions with respect to modeling contextual interactions at different levels
of detail, integrating multiple contextual cues efficiently into a unified model and
understanding the explicit contributions of contextual relationships.

Motivated by these issues, this dissertation proposes novel approaches for in-
vestigating new types of contextual features and integrating this knowledge into ap-
pearance based object recognition models. We analyze the contributions and trade-
offs of integrating context and investigate contextual interactions between pixels,
regions and objects in the scene. Furthermore, we study context as (i) part of recog-
nizing objects in images and (ii) as an advocate for label agreement to disambiguate
object identity in recognition systems. Finally, we harness these discoveries to ad-
dress other challenges in object recognition, such as discovering object categories in
weakly labeled data.
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Chapter 1

Introduction

Object recognition is one of the most interesting faculties that humans develop
early in their lives. The human brain is able to identify and categorize large number of
objects from a single glance with little effort, despite of their appearance variation.
At the human eye object’s identity can vary due to illumination, pose, texture,
deformation and occlusion, however the brain is still able to tell the specific identity
of the object being observed. Moreover, it is able to generalize from observing a set
of objects to recognizing objects that have never been seen before.

Inspired by the cognitive capabilities of human beings to recognize objects,
computer vision scientists have studied and developed for many decades object recog-
nition systems, in order to simulate these abilities in computers. These studies also
contributed to the development of related applications, such as content-based image
retrieval and image indexing, in order to search and organize visual information.

Traditional approaches to object recognition use appearance features as the
main source of information for recognizing objects in real world images. Appearance
features, such as color, edge responses, texture and shape cues, help to capture
variability in object classes up to a certain extent. New approaches are considering
context information, based on the surroundings, interaction among objects in the
scene or global scene statistics, in order to improve and disambiguate appearance
inputs in recognition tasks.

The subject of this dissertation is the development of context-based methods
that model and integrate contextual features to improve performance of appearance
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based object recognition models. In particular, we investigate several image-based
contextual cues, develop and characterize different contextual interactions and study
the contributions and trade-offs of integrating context. Furthermore, we address new
arising challenges in object recognition, such as training and discovering objects with
weakly labeled data.

1.1 Localizing Objects in Images

In computer vision the task of object recognition consists on locating and
identifying instances of an object within an image. It is an important task for the
automatic understanding of images as well, e.g. to separate an object from the
background, or to analyze spatial relations of different objects in an image to each
other.

Detecting, or locating, an object instance is performed by indicating the scale
and location of the object in the image, with a bounding box or contour around it (as
shown in Figure 1.1). Identifying an object consists of classifying this instance with
its corresponding object class. This task is specially challenging when images corre-
spond to real world scenes as objects may vary in scale, position, and viewpoint, and
may be surrounded by background clutter, occluded by other objects, and obscured
by poor image quality.

PERSON

DOG

PERSON

DOG

IMAGE BOUNDING BOX CONTOURS

Figure 1.1: Examples of recognizing object classes using bounding boxes and con-
tours respectively.

To model these sources of variability, generative and discriminative machine
learning algorithms have been developed to recognize generic objects in images.
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These algorithms often consider to describe image information using either appearance-
based features, or supplement appearance information with context-based features
when learning object models.

1.1.1 Recognition Using Appearance Features

Appearance is a property of an object, located on a single point or small region
of the object’s image information. It is a single piece of information describing, ei-
ther locally or globally, a distinctive property of the object’s projection to the camera
(image of the object). Appearance information is based on visual cues of the object,
such as color, edge responses, texture, and is captured by feature descriptors. These
descriptors can express variability in object classes in a limited way as they are sen-
sitive to clutter, occlusion and lighting changes. Specifically color or grayscale-based
appearance description can be sensitive to illumination and intra-class appearance
variation.

1.1.2 Context Based Object Recognition

In the real world, there exists common relationships between the scene and the
objects that can be found within it. These relationships characterize the organization
of objects into real-world scenes, which we can described as contextual information.
The “context” of an object can be defined in terms of other formerly recognized
objects within the scene or the entire scene information holistically. Context can help
to successfully disambiguate appearance inputs in recognition tasks by providing the
algorithm more information about the potential presence of objects in the scene.

Information about typical configurations of objects in a scene has been stud-
ied in psychology and computer vision for years, in order to understand its effects
in visual search, localization and recognition performance [1, 4, 5, 48, 60]. Bieder-
man et al. [5] proposed five different classes of relations between an object and its
surroundings, interposition, support, probability, position and familiar size. These
classes characterize the organization of objects in real-world scenes. Classes corre-
sponding to interposition and support can be coded by reference to physical space.
Probability, position and size are defined as semantic relations because they require
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access to the referential meaning of the object. Semantic relations include informa-
tion about detailed interactions among objects in the scene and they are often used
as contextual features.

Several different models [9, 19, 32, 65, 82] in the computer vision community
have exploited these semantic relations in order to improve recognition. Semantic re-
lations, also known as context features, can reduce processing time and disambiguate
low quality inputs in object recognition tasks. As an example of this idea, consider
the flow chart in Fig. 1.2. An input image containing an aeroplane, trees, sky and
grass (top left) is first processed through a segmentation-based object recognition en-
gine. The recognizer outputs an ordered shortlist of possible object labels; only the
best match is shown for each segment. Without appealing to context, several mis-
takes are evident. Semantic context (probability) in the form of object co-occurrence
allows one to correct the label of the aeroplane, but leaves the labels of the sky,
grass and plant incorrect. Spatial context (position) asserts that sky is more likely
to appear above grass than vice versa, correcting the labels of the segments. Finally,
scale context (size) corrects the segment labeled as “plant” assigning the label of
tree, since plants are relatively smaller than trees and the rest of the objects in the
scene.

Figure 1.2: Illustration of an idealized object recognition system incorporating
Biederman’s classes: probability, position and (familiar) size. First, the input image
is segmented, and each segment is labeled by the recognizer. Next, the different
contextual classes are enforced to refine the labeling of the objects leading to the
correct recognition of each object in the scene.
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1.2 Challenges

In this dissertation we address contextual object recognition by considering
other formerly recognized objects within the scene. Therefore, parsing the image
or grouping components is required in advance in order to represent the spatial
configuration of the scene. By following this direction, several challenges need to
be addressed in order to learn context and achieve satisfactory object recognition
accuracy:

• Learning context from different sources: Very little has been done for
using external sources in cases where training data is weakly labeled. In most
of the cases, contextual relations are computed from training data, which can
sometimes fail to express general cases.

• Learning contextual interactions: How to learn interactions that can sig-
nificantly benefit the recognition model?. Adding extra information to the
recognition model could potentially hinder instead of improve the recognition
accuracy. Local interactions are easily accessible from training data without
expensive computations, however combining local context features with local
appearance features increases complexity and introduces expensive computa-
tions.

• Complexity of context analysis: When integrating context within recog-
nition, the complexity of the model is at par with the problem of individual
object recognition.

• Integrating context: A clear disadvantage of combining different interaction
levels is that expensive and complex computations are needed in order to merge
the different types of information.

• Scalability: Contextual models have a great difficulty in scaling to large
datasets, and the predictions from each classifier must be combined to yield a
single prediction.

All these challenges will be addressed in this dissertation as part of the con-
tributions of this work to the computer vision community.
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1.3 Contributions

My contributions in this dissertation are as follows:

1. I investigate how to successfully learn contextual features from two sources of
semantic context information: the co-occurrence of object labels in the training
set and generic context information retrieved from Google Sets.

2. I examine and learn spatial contextual features from strongly labeled data, in
order to discover common spatial relationships of objects in natural scenes.

3. I address semantic and spatial context by formulating new methods to incor-
porate them together as a post-processing step of a recognition framework.

4. I propose new approaches for learning local contextual interactions, and in-
troduce a novel framework that efficiently and effectively combines them by
optimally integrating multiple feature descriptors into a single, unified similar-
ity space.

5. I examine the relative contribution of contextual local interactions for single
and multi-class object localization over different data sets and object classes.

6. I investigate two different approaches for integrating context: (i) as part of
recognizing objects in images and (ii) as an advocate for label agreement to
disambiguate object identity. I demonstrate that including context using both
approaches we can obtain the best gain in recognition accuracy.

7. I address the problem of learning object models when there is a lack of available
strongly labeled data, by introducing a novel model for weakly labeled object
discovery.

The rest of this dissertation is organized into six chapters. Chapter 1 in-
troduces the problem of object recognition using context. Chapter 2 considers the
problem of learning context from different sources. Chapter 3 introduces a new ap-
proach to learn local contextual interactions into a unified object recognition frame-
work. Chapter 4 discusses how to integrate contextual features in object recognition
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models. Chapter 5 examines other challenges in object recognition by introducing a
new model, extended from a context-based model, that address learning with weakly
labeled data. Finally, Chapter 6 presents conclusions about this dissertation.



Chapter 2

Contextual Sources

2.1 Types of Context

In the area of computer vision many approaches for object recognition have
exploited Biederman’s semantic relations [5] to achieve robust object recognition in
real world scenes. These contextual features can be grouped into three categories:
semantic context (probability), spatial context (position) and scale context (size).
Contextual knowledge can be any information that is not directly produced by the
appearance of an object. It can be obtained from the nearby image data, image
tags or annotations and the presence and location of other objects. Next, we address
semantic and spatial context by formulating new methods to learn and describe these
cues, and by incorporating them with appearance into a unified frameworks.

2.1.1 Semantic Context

Our experience with the visual world dictates our predictions about what
other objects to expect in a scene. In real world images a scene is constituted by
objects in a determined configuration. Semantic context corresponds to the likelihood
of an object to be found in some scenes but not others. Hence, we can define semantic
context of an object in terms of its co-occurrence with other objects and in terms
of its occurrence in scenes. Early studies in psychology and cognition show that
semantic context aids visual recognition in human perception. Palmer [60] examined

8
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the influence of prior presentation of visual scenes on the identification of briefly
presented drawings of real-world objects. He found that the observers accuracy at
an object-recognition task was facilitated if the target (e.g. a loaf of bread) was
presented after an appropriate scene (e.g. a kitchen counter) and impaired if the
scene-object pairing was inappropriate (e.g. a kitchen counter and bass drum).

Early computer vision systems adopted these findings and defined semantic
context as pre-defined rules [20,31,80] in order to facilitate recognition of objects in
real world images. Hanson and Riseman [31] proposed the popular VISIONS schema
system where semantic context is defined by hand coded rules. The system’s initial
expectation of the world is represented by different hypotheses (rule-based strategies)
that predict the existence of other objects in the scene. Hypotheses are generated
by a collection of experts specialized for recognizing different types of objects.

Following these ideas, we aim to learn semantic context from a collection of
strongly labeled images from MSRC and PASCAL 2006 databases. In particular,
these datasets provide us a collection of multiply labeled images I1, . . . , In, each
containing at least two objects belonging to different categories, ci, cj ∈ C s.t. i 6= j;
an object i is labeled by a bounding box or pixel mask βi. We indicate the presence
or absence of label i with an indicator function li. Figure 2.1 shows the co-ocurrence
matrices for each dataset.

In practice, most image databases – and images in general – do not have
a training set with an equal semantic context prior and/or strongly labeled data.
Thus, we would like to be able to construct a semantic context function φ(·) from
a common knowledge base, obtained from the Internet. In particular, we wish to
generate contextual constraints among object categories using Google Sets1 (GS).

Google Sets generates a list of possibly related items, or objects, from a few
examples. It has been used in linguistics, cell biology and database analysis to en-
force contextual constraints [27,62,71]. In order to obtain this information for object
recognition we queried Google Sets using the labeled training data available in the
MSRC and PASCAL 2006 databases. We generated a query using every category
label (one example) and then matched the results against all the categories present in
these datasets. This task was performed for each database using the small set, GSs,

1http://labs.google.com/sets
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(a) (b)

Figure 2.1: Context matrices for (a) MSRC dataset and (b) PASCAL 2006. Label
co-occurrence matrices from the ground truth training set.

of results and the large set GSl, which contains more than 15 results. Figure 2.1(left
column) show binary contexts from GSs, for MSRC and PASCAL 2006 respectively.
Intuitively, we expected GSS ⊂ GSl, however, GSs \GSl 6= ∅ as shown in Figure 2.1
(middle column). The larger set implies broader relations, thus changing the context
of the set to be too general. In this work we retrieve objects labels’ semantic context
from GSs.

In this case, φ(i, j) = γ if GSs marks them as related, or 0 otherwise. We
set γ = 1 for our experiments, though γ could be chosen using cross-validation on
training data if available.

Besides Google Sets, we considered other sources of contextual information
such as WordNet [16] and Word Association2. In the task of object recognition we
found that these databases did not offer sufficient semantic context information for
the visual object categories, either due to the limited recall (in Word Association)
or irrelevant interconnections (in Wordnet).

2http://www.wordassociation.org



11

(a) (b) (c) (d)

Figure 2.2: Context matrices for MSRC and PASCAL 2006 datasets. Google
Small Set: Binary context matrix from GSs. Blue pixels indicate a contextual
relationship between categories. Google Large and Small Set: Differences be-
tween small and large Google Sets context matrices. ‘-’ signs correspond to relations
present GSs but not in GSl; ‘+’ correspond to relations present GSl but not in GSs.
MSRC (a) Google Small Set co-ocurrences and (b) Google Large and Small Set co-
ocurrences. PASCAL 2006 (c) Google Small Set co-ocurrences and (d) Google Large
and Small Set co-ocurrences.

2.1.2 Spatial Context

Biederman’s position class, also known as spatial context, can be defined by
the likelihood of finding an object in some position and not others with respect to
other objects in the scene. Bar et al. [1] examined the consequences of pairwise
spatial relations on human performance in recognition tasks, between objects that
typically co-occur in the same scene. Their results suggested that (i) the presence
of objects that have an unique interpretation improve the recognition of ambiguous
objects in the scene, and (ii) proper spatial relations among objects decreases error
rates in the recognition of individual objects. These observations refer to the use of
(i) semantic context and (ii) spatial context to identify ambiguous objects in a scene.
Spatial context encodes implicitly the co-occurrence of other objects in the scene and
offers more specific information about the configuration in which those objects are
usually found. Therefore, most of the systems that use spatial information also use
semantic context in some way.

The early work of Fischler [20] in scene understanding proposed a bottom-
up scheme to recognize various objects and the scene. Recognition was done by
segmenting the image into regions, labeling each segment as an object and refining
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object labels using spatial context as relative locations. Refining objects can be
described by breaking down the object into a number of more “primitive parts" and
by specifying an allowable range of spatial relations which these “primitive parts"
must satisfy for the object to be present. Spatial context was stored in the form of
rules and graph-like structures making the resulting system constrained to a specific
domain.

In the last decade many approaches have considered using spatial context
to improve recognition accuracy. Spatial context is incorporated from inter-pixel
statistics [19, 32, 38, 56, 68, 75, 82, 89, 93] and from pairwise relations between regions
in images [9,41,48,76]. The work of Singhal et al. [76] combines probabilistic spatial
context models and material detectors for scene understanding. These models are
based on pre-defined pixel level relationships between image regions, where spatial
context information is represented as a binary feature of each specified relationship.
Kumar and Hebert [41] model interactions among pixels, regions and objects using a
hierarchical CRF. In their approach, the computed regions and objects are a result
of the CRF itself. Although it is possible to capture a variety of different low level
pixel groupings in the first level of their hierarchy, the authors only consider a single
equilibrium configuration and propagate it (along with its uncertainty) to the level
of regions and objects.

In contrast, our approach employs a decoupled segmentation stage that ex-
tracts a shortlist of stable (and possibly overlapping) segments [63] as input to a
subsequent context based reasoning stage. As a result, the latter stage – also CRF-
based – has at its disposal a variety of shortlists of possible objects and labels over
which to perform inference based on co-occurrence and spatial relationships. These
relationships, which in our case are unknown a priori, characterize the nature of
object interaction in real world images and reveal important information to disam-
biguate object identity.

Our sources of information for learning spatial configurations on pairs of ob-
jects are the MSRC and PASCAL 2007 training databases. We define the following
simple pairwise feature to capture a specific object configuration as a three dimen-
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(a) (b)

Figure 2.3: Four different groups represent four different spatial relationships:
above, below, inside and around. The axes Oij, Oji and µij are defined in Equa-
tion 2.2. (a) For MSRC we observe many more pairwise relationships that belong to
vertical arrangements. (b) For PASCAL 2007 we observe comparatively more pair-
wise relationships that belong to overlapping arrangements. Please view in color.

sional spatial context descriptor:

Fij = (µij, Oij, Oji)> ∀i, j ∈ C, i 6= j, (2.1)

Oij = βi /βj
βi

and µij = µyi − µyj (2.2)

where µij is the difference between the y component of the centroids (in
normalized coordinates) of the objects labeled ci and cj, and Oij is the overlap
percentage of the object with label cj with respect to the object with label ci. We
omit the x component of the centroid since relative horizontal position does not carry
any discriminative information for the objects in PASCAL 2007 or MSRC.

In order to capture the prevalent spatial arrangements among objects in the
databases, we vector quantize the feature space into 4 groups. Choosing a small
number of groups translates into simpler relations that can explain interactions that
are well represented across many object pairs and scenes. We used the ground
truth segmented regions and bounding box labels from MSRC and PASCAL 2007,
respectively, to compute the spatial context descriptors. A closer look at the resultant
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clusters, shown in Figure 2.3, suggests the pairwise relationships above, below, inside
and around, illustrated for an example image in Figure 2.4 containing grass, water
and cow. Learning the relationships between pairs of objects, rather than defining
them a priori, yields a more generic and robust description of spatial interactions
among objects.

The distributions we observe in Figure 2.3 have comparable overall shapes,
and the clusters representing the spatial relations are found in similar locations in
the feature space. In the case of MSRC, the above and below relationships are pre-
dominant, as many objects remain in vertically consistent locations relative to other
objects (e.g., sky, water, grass). In contrast, PASCAL 2007’s biggest clusters corre-
spond to the spatial relationships inside and around, since most of these objects are
found interposed with respect to one another. Also, as PASCAL 2007 object labels
are specified by bounding boxes, rather than pixel-resolution ground truth masks,
this results in larger average overlap values.

Figure 2.4: Illustration of four basic spatial relationships that exist among objects
within an MSRC image. Labels in red indicate the object that possesses the relation-
ship with respect to the object with the white label, e.g, the grass, in red, is below
water, in white. Please view in color.

2.2 Contextual Object Recognition Model

In this section we present the details of our proposed model. At a high level,
we begin by computing multiple stable segmentations [63] for the input image, re-
sulting in a large collection of segments. Each segment is considered as an individual
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image and is used as input to a BoF model for recognition. Each segment is as-
signed a list of candidate labels, ordered by confidence. The segments are modeled
as nodes of a CRF, where location and object co-occurrence constraints are imposed.
Finally, based on local appearance, contextual agreement and spatial arrangements,
each segment receives a category label. A flow diagram of this model is shown in
Figure 2.5, and the details are provided next.

Figure 2.5: Object recognition using semantic and spatial context. Semantic and
spatial information are unified in the same level in a conditional random field in
order to constrain the location and co-ocurrence of objects in the image scene.

2.2.1 Appearance

BoF is a widely used discriminative model for recognition [17,58]. Empirically,
it has been shown to be rather powerful, however, it is highly sensitive to clutter, be-
cause no distinction between object and background is made. In the raw formulation
of BoF, there is no regard for spatial arrangement among pixels, patches, or features.
A number of methods have been proposed to incorporate spatial information into
BoF [45,50,64,65]. In this work we adopt the approach of [64], which demonstrates
an improvement in recognition accuracy using multiple stable segmentations [63].

We integrate segmentation into the BoF framework as follows. Each segment
is regarded as a individual image by masking and zero padding the original image.
As in regular BoF, the signature of the segment is computed, but features that fall
entirely outside of segment boundary are discarded. The image is represented by the
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ensemble of the signatures of its segments. This simple idea has a number of effects:
(i) by clustering features in segments, we incorporate coarse spatial information; (ii)
the masking step generally enhances the contrast of the segment boundaries, thereby
making features along the boundaries more shape-informative; (iii) computing sig-
natures on segments improves the signal-to-noise ratio. More details of combining
stable segmentations with BoF can be found in [65].

2.2.2 Location and Co-Ocurrences

To incorporate spatial and semantic context into the recognition system, we
use a CRF to learn the conditional distribution over the class labeling given an image
segmentation. Previous works in object recognition, classification and labeling have
benefited from CRFs [32, 41, 56, 75]. Our CRF formulation uses a fully connected
graph between segment labels instead of a sparse one, which yields a much simpler
training problem, since the random field is defined over a relatively small number of
segments rather than a huge number of raw pixels or small patches.

Context Model. Given an image I, its corresponding segments S1, . . . , Sk, and
probabilistic per-segment labels p(ci|Si) (as in [65]), we wish to find segment labels
c1, . . . , ck ∈ C such that all agree with the segments’ content and are in contextual
agreement with one other.

We model this interaction as a probability distribution:

p(c1 . . . ck|S1 . . . Sk) = B(c1 . . . ck)
∏k
i=1 p(ci|Si)

Z(φ0, . . . φr, S1 . . . Sk)
,

with B(c1 . . . ck) = exp
( k∑

i,j=1

q∑
r=0

αrφr(ci, cj)
)
,

where Z(·) is the partition function, αr a parameter estimated from training data
and q is the number of pairwise spatial relations. We explicitly separate the marginal
terms p(c|S), which are provided by the recognition system, from the interaction po-
tentials φr(·). To incorporate both semantic and spatial context information into the
CRF framework, we construct context matrices, described next.
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Location. Spatial context is captured by frequency matrices for each of the four
pairwise relationships (above, below, inside and around). The matrices contain the
occurrence among objects labels in the four different configurations, as they appear
in the training data. An entry (i, j) in matrix φr(ci, cj), with r = 1, . . . , 4, counts
the number of times an object with label i appears with an object label j for a given
relationship r.

Figure 2.6: Frequency matrix for spatial relationships above, below, inside and
around for MSRC database. Each entry (i, j) in a matrix counts the number times an
object with label i appears in a training image with an object with label j according
to a given pairwise relationship.
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Figure 2.7: Frequency matrix for spatial relationships above, below, inside and
around for PASCAL 2007 database. Each entry (i, j) in a matrix counts the times
an object with label i appears in a training image with an object with label j given
their pairwise relationship.

Figures 2.6 and 2.7 illustrate the counts over the four different relationships
for MSRC and PASCAL 2007. It is worth noting that MSRC matrices exhibit more
uniform interactions between objects, while matrices of PASCAL 2007 single out
categories of very high activity (e.g., person).

Co-occurrence Counts. While the occurrence of category labels are captured by
the spatial context matrices above, the appearance frequency – a parameter required
for the CRF – is not captured explicitly, since these matrices are hollow. Using the
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existing spatial context matrices, object appearance frequency can be computed as
row sums of all for matrices. Finally, the sum of all four matrices, including the
row sums, will result in a marginal (i.e., without regard for location) co-occurrence
matrix, equivalent to those presented in Section 2.1.1. An entry (i, j) in the semantic
context matrix counts the number of times an object with label i appears in a training
image with an object with label j. The diagonal entries correspond to the frequency
of the object in the training set:

φ0(ci, cj) = φ′(ci, cj) +
|C|∑
k=1

φ′(ci, ck)

where φ′(·) = ∑q
r=1 φr(ci, cj). Therefore the probability of some labeling is given by

the model
p(l1 . . . l|C|) = 1

Z(φ) exp
( ∑
i,j∈C

q∑
r=0

lilj · αr · φr(ci, cj)
)
,

with li indicating the presence or absence of label i. We wish to find a φ(·) that
maximizes the log likelihood of the observed label co-occurrences. Since we must
evaluate the partition function, maximizing the co-occurrence likelihood directly is
intractable. Therefore we approximate the partition function using Monte Carlo in-
tegration [66]. Importance sampling is used where the proposal distribution assumes
that the label probabilities are independent with probability equal to their observed
frequency. Every time the partition function is estimated, 40, 000 points are sampled
from the proposal distribution. The likelihood of these images turns out to be a
function only of the number of images, n, and the co-occurrence matrices φr(ci, cj) .

We use simple gradient descent to find a φ(·) that approximately optimizes the
data likelihood. Due to noise in estimating Z, it is hard to check for convergence;
instead training is terminated when 10 iterations of gradient descent do not yield
average improved likelihood over the previous 10.

2.3 Experiments

To evaluate recognition accuracy of the proposed model and the relative im-
portance of semantic and spatial context in this task, we consider MSRC, PASCAL
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Figure 2.8: Confusion matrices of average recognition accuracy for MSRC and
PASCAL 2006 datasets. First row: MSRC dataset; second row: PASCAL 2006
dataset. (a) Recognition with no contextual constraints. (b) Recognition with Google
Sets context constraints. (c) Recognition with Ground Truth context constraints
learning from training data.

2006 and PASCAL 2007 datasets.

2.3.1 Semantic Context

As mentioned earlier, we are interested in a relative performance change in
object recognition accuracy, i.e., with and without post-processing with semantic
context.

Table 2.1: Average recognition accuracy.
No Context Google Sets Using Training

MSRC 45.0% 58.1% 68.4%
PASCAL 2006 61.8% 63.4% 74.2%

In Figures 2.9 and 2.10 are examples where context improved object recog-
nition. In examples 1 and 3, semantic context constraints help correct an entirely
wrong appearance based labeling: bicycle – boat, and boat – cow. In examples,
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Figure 2.9: Examples of MSRC test images, where contextual constraints have
improved the recognition accuracy. The consensus segmentation is shown to match
the style of the ground truth. (a) Original Segmented Image. (b) Recognition without
contextual constraints. (c) Recognition with co-occurrence contextual constraints
derived from the training data. (d) Ground Truth.

2,4,5 and 6, mislabeled objects are visually similar to the ones they are confused
with: boat – building, horse – dog, and dog – cow. Thus, it seems that contextual
information may not only help disambiguate between visually similar objects, but
also correct for erroneous appearance representation.

In Table 2.3.1 we summarize the performance of average recognition accuracy
for both the MSRC and PASCAL 2006 datasets. These results are competitive
with the current state-of-the-art approaches [75, 94]. The confusion matrices, which
describe the results in more details, are shown in Figure 2.8. For both datasets the
recognition results improved considerably with inclusion of context. For the MSRC
dataset, the average recognition accuracy increased by more than 10% using the
semantic context provided by Google Sets, and by over 20% using the ground truth
training context. In the case of PASCAL 2006, the average recognition accuracy
improved by about 2% using Google Sets, and by over 10% using the ground truth.



22

DOG

PERSON

HORSE

PERSON

HORSE

PERSON

CAR

PERSON

CAR

MOTORBIKE CAR

PERSON

MOTORBIKE

MOTORBIKE

PERSON

MOTORBIKE

MOTORBIKE CAR

PERSON

COW

PERSON

DOG

PERSON

DOG

(a) (b) (c) (d)

Figure 2.10: Examples of PASCAL 2006 (last 3) test images, where contextual
constraints have improved the recognition accuracy. Individual segments of highest
recognition accuracy are shown since only few segments have high enough confidence
of being a particular category. Many object categories that are found in the im-
ages (i.e. sky, grass, building) are not part of the training set in PASCAL 2006,
thus labeling of those segments becomes random. (a) Original Segmented Image.
(b) Recognition without contextual constraints. (c) Recognition with co-occurrence
contextual constraints derived from the training data. (d) Ground Truth.

TREE

TREE

TREESKY

BUILDING

GRASS

TREE

TREE

TREESKY

AEROPLANE

GRASS GRASS

TREE SKY

TREE

TREE

BUILDING

ROAD
GRASS

CAR

TREE

SKY

ROAD
ROAD

CAR

TREE

SKY SKY

TREE

ROAD
GRASS

CAR

(a) (b) (c) (d)

Figure 2.11: Examples of MSRC test images, where contextual constraints have
reduced the recognition accuracy. (a) Original Segmented Image. (b) Recognition
without contextual constraints. (c) Recognition with co-occurrence contextual con-
strains derived from training data. (d) Ground Truth Recognition.
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Table 2.2: Comparison of recognition accuracy between the models for MSRC and
PASCAL 2007 categories. Results in bold explain an increase in performance by
our model. A decrease in performance is shown in italics.
Categories Semantic Sem. + Spat.

MSRC Context Context

building 0.85 0.91
grass 0.94 0.95
tree 0.78 0.80
cow 0.36 0.41

sheep 0.55 0.55
sky 0.89 0.97

aeroplane 0.73 0.73
water 0.95 0.95
face 0.80 0.81
car 0.57 0.57
bike 0.59 0.60

flower 0.65 0.65
sign 0.54 0.54
bird 0.54 0.52
book 0.56 0.56
chair 0.42 0.42
road 0.94 0.96
cat 0.42 0.42
dog 0.46 0.46

body 0.75 0.77
boat 0.76 0.81

Categories Semantic Sem. + Spat.
PASCAL Context Context

2007
aeroplane 0.63 0.63

bicycle 0.22 0.22
bird 0.18 0.14
boat 0.28 0.42

bottle 0.43 0.43
bus 0.46 0.50
car 0.62 0.62
cat 0.32 0.32

chair 0.37 0.37
cow 0.19 0.19

diningtable 0.30 0.30
dog 0.32 0.29

horse 0.12 0.15
motorbike 0.31 0.31

person 0.43 0.43
pottedplant 0.33 0.33

sheep 0.41 0.41
sofa 0.37 0.37
train 0.29 0.29

tvmonitor 0.62 0.62

2.3.2 Spatial Context

Table 2.2 summarizes the performance of average recognition per category.
These results outperform current state-of-the-art approaches [15,75] and the average
recognition per database is 68.38% for MSRC and 36.7% for PASCAL 2007. What
is of more interest to us, however, is the per category accuracy as a function of the
type of context used. Specifically, we notice that around half of the 21 categories
in MSRC benefit from using spatial context: an increase from 1%-8% in recognition
accuracy. For the rest of the categories, in turn, spatial context did not harm the
performance, except for a small decrease in accuracy on category bird.

In the PASCAL 2007 database, the availability of spatial context data is less
uniform across categories. An improvement is seen in only three categories, though
in one case (for category boat) this increase was rather high (14%). As with MSRC,
the other categories are largely unaffected by spatial context, and only one category
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(bird) suffers from reduced accuracy.

Figure 2.12: Difference in performance between semantic and semantic+spatial
framework for MSRC and PASCAL 2007 databases.

Figure 2.12 summarizes the relative improvement of recognition accuracy with
the inclusion of spatial context into the recognition model. Very few categories’
accuracies are worsened by spatial context; most are either unchanged or improved.
Some examples of affected categories are shown in Figures 2.13 and 2.14.

Clearly, context constraints can also lower or leave the recognition accuracy
unchanged. As shown in Figure 2.11, the initially correct labels, “building” in the
first image, and “grass” in the second, were re-labeled incorrectly in favor of semantic
context relations learned from the co-occurrences in the training data. Most of such
mistakes are due to the initial probability distribution over labels, p(c|Sq); the feature
description is not very rich as the SIFT descriptor used in this work is color-blind
and segment shapes are only captured implicitly. In combining our approach with a
method of strong feature description, e.g., [75], many of currently encountered errors
will likely be eliminated.

2.3.3 Run Time and Implementation Details.

Stability based image segmentation was implemented by using normalized
cuts [11, 73], using brightness and texture cues. We considered 9 segmentations
per test image, where the number of segments per segmentation ranges from k =
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Figure 2.13: Example results from the MSRC database. Spatial constraints have
improved (first four rows) and worsened (last row) the recognition accuracy. Full
segmentations of highest average recognition accuracy are shown. (a) Original image.
(b) Recognition with co-occurrence contextual constraints [65]. (c) Recognition with
spatial and co-occurrence contextual constraints. (d) Ground Truth.

2, . . . , 10. The computation time for each segmentation is between 10-20 seconds
per image. As the individual segmentations are independent of one another, we
computed them all in parallel on a cluster. As a result, a computation of all stable
segmentations per image requires about 10 minutes.

15 and 30 training images were used for the MSRC and both PASCAL
databases respectively. 5000 random patches at multiple scales (from 12 pixels up
to the image size) are extracted from each image. The feature appearance is rep-
resented by SIFT descriptors [49] and the visual words are obtained by quantizing
the feature space using hierarchical K-means with K = 10 at three levels [57]. The
image signature is a histogram of such hierarchical visual words, L1 normalized and
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Figure 2.14: Example results from the PASCAL 2007 database. Spatial constraints
have improved (first four rows) and worsened (last row) the recognition accuracy.
Individual segments of highest recognition accuracy are shown. (a) Original image.
(b) Recognition with co-occurrence contextual constraints [65]. (c) Recognition with
spatial and co-occurrence contextual constraints. (d) Ground Truth.

TFxIDF re-weighed [57]. The computation of SIFT and the relevant signature, im-
plemented in C, takes on average 1.5 seconds per segment. Training and constructing
the vocabulary tree requires less than 40 minutes for 20 categories with 30 training
images in each category, in the case of PASCAL. Classification of test images is done
in just a few seconds. Training the CRF takes 3 minutes for 315 training images for
MSRC and 5 minutes for 600 images in PASCAL 2007 training dataset. Enforcing
semantic and spatial constraints on a given segmentation takes between 4-7 seconds,
depending on the number of segments. All the above operations were performed on
a Pentium 3.2 GHz.



27

2.4 Discussion

We have presented the study of three different sources of semantic context
information: the co-occurrence of object labels in the training set, the generic con-
text information retrieved from Google Sets, and one source of spatial context: the
relative configuration of objects in a scene captured by a novel descriptor. Our work
shows that semantic and spatial context can compensate for ambiguity in objects’
visual appearance by maximizing object label agreement according to the contextual
relevance.

We evaluated the performance of our approach on three challenging datasets:
MSRC, PASCAL 2006 and PASCAL 2007. For all of them, the recognition re-
sults improved considerably with the inclusion of context. For both datasets, the
improvements in recognition using ground truth semantic context constraints were
much higher than those of Google Sets due to the sparsity in the contextual rela-
tions provided by Google Sets. However, when considering datasets with many more
categories, we believe that context relations provided by Google Sets will be much
denser and the need for strongly labeled training data will be reduced.

Clearly, spatial information, that captures the relative object location in an
image, is a strong visual cue as it improves recognition performace. However, unlike
simple co-occurrence relationships, which can be learned from auxiliary sources such
as Google Sets, spatial context must be learned directly from the training data. As
our experiments have shown, spatial context learned from both MSRC and PASCAL
2007 datasets is highly non-uniform. In particular, spatial interactions among differ-
ent categories are rather sparse, and many valid objects that appear in the scenes are
simply considered clutter, and thereby cannot contribute contextual value. With the
continued introduction of publicly available datasets possessing increasingly detailed
annotations over larger numbers of categories, our proposed system is designed to
scale favorably: stronger semantic and spatial context will provide more avenues for
improving recognition accuracy.

Portions of this chapter are based on the papers “Objects in Context” by
A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora and S. Belongie [65] and
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“Object Categorization using Co-Occurrence, Location and Appearance” by C. Gal-
leguillos, A. Rabinovich and S. Belongie [25]. In [65] I developed the contextual
features and obtained data from Google Sets in order to obtain the co-occurrence
matrices. In [25] I was responsible for the development of a new spatial context
descriptor and the spatial co-ocurrence matrices. I was also responsible for the liter-
ature survey, experiment design and the implementation of the appearance system. I
also contributed with the execution and analysis of the experiments, and the writing
of the paper.



Chapter 3

Contextual Interactions

As seen in previous chapter, object recognition models can exploit context
information from different types of sources. At a local image level, we can find other
sources of information that express different contextual interactions. These relations
can be grouped in three different types: pixel, region and object interactions.

In this chapter, we present a novel framework for object localization that
efficiently and effectively combines different levels of interaction. We develop a mul-
tiple kernel learning algorithm to integrate appearance features with pixel and region
interaction data, resulting in a unified similarity metric which is optimized for near-
est neighbor classification. Object level interactions are modeled by a conditional
random field (CRF) to produce the final label prediction. Moreover, we study the
relative contribution of contextual local interactions for object localization over dif-
ferent data sets and object classes.

3.1 Related Work

Recent work in computer vision has shown that contextual information can
improve recognition of objects in real world images as it captures knowledge about
the identity, location and scale of objects. Various types of contextual cues have
been exploited to benefit object recognition tasks, including semantic [14, 25, 65],
spatial [13, 25,29,33,43,47,61,68,74,89], scale [29, 56,61,82], geographic [14].
All of these models incorporate contextual information at either a global or a local

29
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Figure 3.1: Examples of local contextual interactions. (a) Pixel interactions capture
information such as grass and tree pixels around the cow’s boundary. (b) Region
interactions are represented by relations between the face and the upper region of
the body. (c) Object relationships capture interactions between the objects person
and horse.

image level.
Global context considers image statistics from the image as a whole scene [14,

82, 89]. Local context considers information from neighboring areas of the object,
such as pixel, region, and object interactions [13, 25, 29, 56, 61, 68, 74]. Although
most of these models have achieved good results and some successfully combined
many different sources of context at a single level, they do not combine sources from
different contextual local levels or make their contributions explicit.

Previous work on image and scene classification shows that by providing a
more complete representation of the scene, combining multiple contextual interac-
tion levels can improve image classification accuracy [32, 41]. Although the explicit
contributions of each level are not studied in these models, their results demonstrate
the benefits of unifying contextual interactions and appearance information. How-
ever, combining these different interaction levels is a complex task, and obtaining
and merging the different sources of information can be computationally expensive.

Multiple kernel learning [44] has been used in image classification [39,86] and
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object recognition tasks to optimally combine different types of appearance features
[88] and pixel interactions [43]. These models learn convex combinations of the given
base kernels, which are then used to produce classifiers, in either a hierarchical or
one-versus-all framework. Although using a different similarity metric for each class
has been shown to perform extremely well on these tasks [26,86,88], it poses a great
difficulty in scaling to large datasets, and the predictions from each classifier must be
combined to yield a single prediction. However, learning a single metric enables the
use of nearest neighbor classification, which naturally supports multi-class problems.

3.2 Local Interactions

Local context information is derived from the area that surrounds the object
to detect (other objects, pixels or patches). Its role has been studied in psychology
for the task of object [60] and face detection [77]. These studies indicated that lo-
cal context improves recognition over the capabilities of object-centered recognition
frameworks since it captures different range of interactions between objects. Its ad-
vantage over global context is based on the fact that for global context scene must
be taken as one complete unit and spatially localized processing can not take place.
The fact that local context representation is still object-centered, as it requires ob-
ject recognition as a first step, is one of the key differences with global context. In
this section, we describe the features we use to characterize each level of contextual
interaction.

3.2.1 Pixel-Level Interactions

By capturing low-level feature interactions between an object and surrounding
pixels, pixel-level interactions implicitly incorporate background contextual informa-
tion, as well as information about object boundaries. To model pixel-level interac-
tions, we propose a new type of contextual source, which we call boundary support.
Boundary support computes the surrounding statistics of an object within an image
by considering individual pixel values of a surrounding region of the object. This is
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Figure 3.2: Local contextual interactions in our model. Pixel interactions are
captured by the surrounding area of the bird. Region interactions are captured
by expanding the window to include surrounding objects, such as water and road.
Object interactions are captured by the co-occurrence of other objects in the scene.

shown in Figure 3.2.
In our model, boundary support is encoded by computing a histogram over

the L*A*B* color values in the region immediately surrounding an object’s boundary.
We compute the χ2-distance between boundary support histograms H:

χ2(H,H ′) =
∑
i

(Hi −H
′
i)2

Hi +H
′
i

, (3.1)

and define the pixel interaction kernel as

hPI(si, sj;σ) = exp
(
−σχ2(Hi, Hj)

)
, (3.2)

where σ > 0 is a bandwidth parameter.

3.2.2 Region-Level Interactions

Region-level interactions have been extensively investigated in the area of
context based object recognition. By using large windows around an object, known
as contextual neighborhoods [19], regions encode probable geometrical configurations,
and capture information from neighboring (parts of) objects (as shown in Figure 3.2).
Our contextual neighborhood is computed by dilating the bounding box around the
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object using a disk of diameter d:

d = max
(√

Iw
Bw

,

√
Ih
Bh

)
, (3.3)

where Iw, Ih, Bw, and Bh are the widths and heights of the image and bounding box
respectively. We model region interactions by computing the gist [82] of a contextual
neighborhood, Gi. Hence, our region interactions are represented by the χ2-kernel:

hRI(si, sj;σ) = exp
(
−σχ2(Gi, Gj)

)
. (3.4)

3.2.3 Object-Level Interactions

To train the object interaction CRF, we derive semantic context from the
co-occurrence of objects within each training image by constructing a co-ocurrence
matrix A. An entry A(i, j) counts the times an object with label ci appears in a
training image that contains an object with label cj. Diagonal entries correspond
to the frequency of the object in the training set. Next, the between-class potential
ψ(ci, cj) is learned by approximately optimizing the data likelihood, using gradient
descent, as it is explained in Section 3.3.5.

3.3 Multi-Class Multi-Kernel Approach

In our model, each training image I is partitioned into segments si by using
ground truth information. Each segment si corresponds to exactly one object of class
ci ∈ C, where C is the set of all object labels. These segments are collected for all
training images into the training set S.

For each segment si ∈ S, we extract several types of features, e.g., texture
or color. Due to the specific nature of the features used here, including appearance
features and context features from pixel interactions and region interactions, we do
not expect linear models to adequately capture the important relationships between
data points. We therefore represent each segment with a set of feature maps {φz(si)},
where the pth feature space is characterized by a kernel function hz and kernel matrix
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Kz, specifying the inner product — or, more intuitively, the similarity — between
each pair of data points si and sj:

hz(si, sj) = 〈φz(si), φz(sj)〉 , Kz
ij = hz(si, sj). (3.5)

As in support vector machines [70], the kernel formulation allows us to capture non-
linear relations specific to each view of the data. However, each kernel matrix encodes
a different feature space, and it is not immediately obvious how to optimally combine
them to form a single space. In this section, we develop an algorithm to learn a unified
similarity metric over the data, and a corresponding embedding function g : S → Rd.
This embedding function is used to map the training set S into the learned space,
where it is then used to predict labels for unseen data with a k-nearest neighbor
(kNN) classifier.

Because at test time, ground-truth segmentations are not available, the test
image must be segmented automatically. To provide more representative examples
for nearest neighbor prediction, we augment the training set S, of ground-truth seg-
ments, with automatically obtained segments SA. These additional segments, SA,
are obtained by running the segmentation algorithm [63] on the training images.
This algorithm runs multiple times on each image, where each run provides a differ-
ent number of image segments. Only those segments that are completely contained
within or overlap more than 50% with the ground-truth object annotations are con-
sidered. These extra segments are then mapped into the learned space by applying
g(·), and are also used to make label predictions on unseen data.

To counteract erroneous over-segmentation of objects in test images, we train
an SVM classifier over pairs of the extra examples SA to predict whether two segments
belong to the same object. This is then used to spatially smooth the label predictions
in test images.

To incorporate context from object interactions within an image, we train a
conditional random field (CRF) by using co-occurrence of objects within training
images.

At test time, object recognition for test images proceeds in six steps, depicted
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Figure 3.3: Our object recognition framework. (1) A test image is partitioned
into segments s′, and (2) several different features φ1, φ2, . . . (blue) are extracted
for each segment. (3) Segments are mapped into a unified space by the optimized
embedding g(·), and a soft label prediction P̂ (C|s′) (red) is computed using kNN.
(4) Label predictions are spatially smoothed using a pairwise SVM, resulting in a
new soft prediction P (C|s′). (5) A CRF estimates the final label for each segment
s’ in the test image, and (6) segments are combined into an object c′ if they overlap
and receive the same final label.

in Figure 3.3. Specifically:

1. A test image I is partitioned into stable segments S ′.

2. For each s′ ∈ S ′, we apply the learned embedding function s′ 7→ g(s′). (Sec-
tion 3.3.2.)

3. The k-nearest neighbors N ⊂ S∪SA of g(s′) are used to estimate a distribution
over labels for the test segment P̂ (C|s′).

4. Using the pairwise SVM, the label distribution of s′ may be spatially smoothed
by incorporating information from other segments in the test image, resulting
in a new label distribution P (C|s′).

5. The conditional random field (CRF) uses object co-occurrence over the entire
image to predict the final labeling of each segment s′ ∈ S ′ in the test image I.

6. Finally, to produce object localizations from segment-level predictions, we con-
sider segments to belong to the same object if they overlap at least 90% and
receive the same final label prediction.

Table 3.1 gives a brief summary of the notation used in this chapter.
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Table 3.1: Notation used in this chapter.
Symbol Definition
I Image
S = {s1, s2, . . . } Training segments (ground truth segmentation)
SA Additional segments for kNN (automatic segmentation)
S ′ = {s′, . . . } Segments of a test image (automatic segmentation)
C Set of class (object) labels
g(·) Learned embedding function
φz(·) Feature map for the zth kernel
W � 0 Positive semi-definite matrix
‖x− y‖W Mahalanobis distance defined by W
Ni Nearest neighbors of si (in feature space)

3.3.1 Large Margin Nearest Neighbor Using Kernels

Our classification algorithm is based on k-nearest neighbor prediction, which
naturally handles the multi-class setting. Because raw features (in the original fea-
ture space) may not adequately predict labels, we apply the Large Margin Nearest
Neighbor (LMNN) algorithm to optimally transform the features for nearest neighbor
prediction [92].

LMNN

At a high level, LMNN simply learns a linear projection matrix L to transform
the data such that the resulting representation is optimized for nearest-neighbor
accuracy. If we imagine segments si, sj, and s` as being represented by vectors in
RD, then the goal is to learn a matrix L ∈ Rd×D such that

‖Lsi − Lsj‖ ≤ ‖Lsi − Ls`‖

⇔ ‖Lsi − Ls`‖ − ‖Lsi − Lsj‖ ≥ 0, (3.6)

when si and sj belong to the same class, and s` belongs to a different class. Com-
putationally, it is more convenient to operate on squared Euclidean distances, which
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can be expressed as follows:

‖L(si − sj)‖2 = (si − sj)TLTL(si − sj).

Note that distance calculations involve quadratic functions of the optimization vari-
ables (L), and distance constraints described by Equation 3.6 require differences of
quadratic terms. Therefore, formulating the optimization problem directly in terms
of L would lead to a non-convex problem with many local optima [7].

However, solving for the positive semi-definite (PSD) matrix W .= LTL gives
rise to distance constraints that are linear and thus convex in the optimization vari-
ables (W ). Neighbors are then selected by using the learned Mahalanobis distance
metric W :

d(si, sj) = ‖si − sj‖2
W = (si − sj)T W (si − sj) . (3.7)

. Formulating the problem in terms of W introduces the constraint W � 0, leading
to a semi-definite programming problem [7], which is shown in Algorithm 1 [92]. In
Algorithm 1, N+

i and N−i contain the neighbors of segment si in the original feature
space with similar or dissimilar labels respectively. For each si, rather than simply
forcing neighboring segments s` with dissimilar labels to be further away than those
with similar labels (sj), as expressed by Equation 3.6, the constraints in Algorithm 1
enforce unit margins between the distances to ensure stability of the learned metric.
As in support vector machines, slack variables ξij` allow constraint violations with a
hinge-loss penalty.

Algorithm 1 Large Margin Nearest Neighbor (LMNN) [92].

min
W,ξ

∑
i

∑
j∈N+

i

‖si − sj‖2
W + β

∑
ij`

ξij`

∀i, ∀j ∈ N+
i , ∀` ∈ N−i :

‖si − s`‖2
W − ‖si − sj‖2

W ≥ 1− ξij`
W � 0, ξij` ≥ 0
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The first term in the objective function minimizes the distance from each si
to its similarly labeled neighbors sj. The second term, weighted by a slack trade-off
parameter, β ≥ 0, penalizes violations of the margin constraints. W is a PSD matrix
which characterizes the optimal feature transformation.

Once W has been learned, a linear projection matrix L can be recovered by
spectral decomposition, so that W = LTL:

W = V TΛV = V TΛ 1
2 Λ 1

2V ⇒ L
.= Λ 1

2V. (3.8)

Here, V contains the eigenvectors of W , and Λ is a diagonal matrix containing the
eigenvalues.

Kernel LMNN

Algorithm 1 assumes that each segment is represented by a vector in RD,
and is limited to linear transformations of these vector representations. To learn
non-linear transformations, the algorithm can be kernelized [70,84] as follows.

First, a feature map φ, possibly non-linear, is applied to a segment si. This can
be viewed as projecting the segment into a (high- or potentially infinite-dimensional)
feature space. Then, as in Algorithm 1, we learn an optimal linear projection L

from that feature space to a low-dimensional Euclidean space in which distances are
optimized for nearest neighbor prediction:

‖Lφ(si)− Lφ(sj)‖2 + 1 ≤ ‖Lφ(si)− Lφ(s`)‖2. (3.9)

This projection L, combined with the mapping φ, allows to learn non-linear transfor-
mations of the segment representation si. Formulating an optimization problem in
terms of L in the high-dimensional space could lead to over-fitting. If we introduce a
regularization term ‖L‖2

F = tr(LT
L) in the objective function to limit the complexity

of the learned L, we may then apply the representer theorem [37,69]. It follows that,
at the optimum, L takes the form

L = L̂ΦT
, (3.10)
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where Φ is a matrix where the ith column is φ(si).
Intuitively, this expresses that the rows of any optimal L must lie in the span

of the training data in the feature space.
This fact can be exploited to re-write distance calculations in terms of L̂ and

K = ΦTΦ, the kernel matrix corresponding to the feature map φ:

d(si, sj) = ‖L(φ(si)− φ(sj))‖2

= (φ(si)− φ(sj))
T
L

T
L(φ(si)− φ(sj))

= (φ(si)− φ(sj))
T(L̂ΦT)T(L̂ΦT)(φ(si)− φ(sj))

= (φ(si)− φ(sj))
TΦL̂T

L̂ΦT(φ(si)− φ(sj))

= (Ki −Kj)
T
L̂

T
L̂(Ki −Kj), (3.11)

where Ki = ΦTφ(si) is si’s column in K. Similarly, we can re-write the
regularization term:

tr
(
L

T
L
)

= tr
((
L̂ΦT)T (

L̂ΦT))
= tr

(
ΦL̂T

L̂ΦT)
= tr

(
L̂

T
L̂ΦTΦ

)
= tr

(
L̂

T
L̂K

)
, (3.12)

which allows to formulate the problem entirely in terms of L̂ and K without explicit
reference to the feature map φ. Defining Ŵ = L̂

T
L̂ � 0, we can substitute Ŵ into

Equations 3.11 and 3.12, and solve the kernelized LMNN problem in terms of Ŵ .
The kernelized LMNN algorithm (KLMNN) is listed as Algorithm 2.

In summary, compared to Algorithm 1, we represent each segment si by its
corresponding column in the kernel matrix (si 7→Ki) — essentially using similarity
to the training set as features — and introduce a regularization term γ · tr(WK),
balanced by the parameter γ > 0 to the objective function. The embedding function
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Algorithm 2 Kernelized LMNN (KLMNN)

min
W,ξ

∑
i

∑
j∈N+

i

‖Ki −Kj‖2
W + β

∑
ij`

ξij` + γ · tr(WK)

∀i, ∀j ∈ N+
i ,

∀` ∈ N−i : ‖Ki −K`‖2
W − ‖Ki −Kj‖2

W ≥ 1− ξij`
ξij` ≥ 0, W � 0

then takes the form

g(si) .= LKi, (3.13)

where L is recovered from W by spectral decomposition (Equation 3.8).
This embedding function generalizes to an unseen segment s′ by first applying

the kernel function
h(s′, si) = 〈φ(s′), φ(si)〉

at s′ and each si in the training set, and then applying the linear transformation L
to the vector (h(s′, si))ni=1, where (·)ni=1 denotes vertical concatenation.

3.3.2 Multiple Kernel LMNN

To effectively integrate different types of feature descriptions — e.g., appear-
ance features and context from pixel and local interactions — we extend the LMNN
algorithm to a novel algorithm that supports multiple kernels (K1, K2, . . . , Km with
feature maps φ1, φ2, . . . , φm).

Previous work approaches multiple kernel learning by finding a weighted com-
bination of kernels K∗ = ∑

z azK
z, where az ≥ 0 is the learned weight for Kz [44].

While this approach has worked for support vector machines, adapting it directly to
work with (K)LMNN, i.e., calculating distances by

(
m∑
z=1

azK
z
i − azKz

j

)T

W

(
m∑
z=1

azK
z
i − azKz

j

)
(3.14)

would lead to a non-convex optimization problem with many local optima.
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Instead, we take a different approach, and following [54], we learn a set of
linear projections L1, L2, . . . , Lm, each corresponding to a kernel’s feature space. In
this view, the linear projection Lz is tuned specifically to the geometry of the space
defined by the feature map φz. By representing the embedding of a point as the
concatenation of projections from each feature space, we obtain the multiple-kernel
embedding function

g(si) = (Lzφz(si))mz=1 . (3.15)

By linearity, the inner product between the embeddings of two points si, sj can be
expressed as

〈g(si), g(sj)〉 =
m∑
z=1
〈Lzφz(si), Lzφz(sj)〉 =

m∑
z=1

φz(si)TLzTLzφz(sj). (3.16)

Accordingly, distances between embedded points take the form

d(si, sj) = ‖g(si)− g(sj)‖2 =
m∑
z=1

(φz(si)− φz(sj))T LzTLz (φz(si)− φz(sj)) . (3.17)

Following the argument of the previous section, we introduce a regularization
term for each kernel: tr(LzTLz). Now, by independently applying the representer
theorem to each Lz, it follows that the optimum lies in the span of the training data
(within the zth feature space):

Lz = L̂zΦzT. (3.18)

Finally, by plugging Equation 3.18 into Equation 3.17 and following the logic of
Equation 3.11, it follows that distances between embedded points can be decomposed
to the sum:

d(si, sj) =
m∑
z=1

(Kz
i −Kz

j )TL̂z
T
L̂z(Kz

i −Kz
j ). (3.19)

Similarly, regularization terms can be collected and expressed as ∑m
z=1 tr(L̂zT

L̂zKz)
(see Equation 3.12). As in KLMNN (Algorithm 2), the projection matrices appear
only in the form of inner products L̂zT

L̂z, so we can equivalently express the con-
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straints in terms of W z = L̂z
T
L̂z:

d(si, sj) =
m∑
z=1

(Kz
i −Kz

j )TW z(Kz
i −Kz

j ) =
m∑
z=1
‖Kz

i −Kz
j ‖2

W z , (3.20)

and, similarly, the regularization term as ∑m
z=1 tr(W zKz). This allows to carry out

the optimization in terms of the kernel-specific metrics W z.
We refer to the algorithm that emerges from this formulation as Multiple

Kernel LMNN (MKLMNN), and the optimization is listed as Algorithm 3. Like
Algorithm 2, the optimization problem is still a semi-definite program (and hence
convex), but now there are m PSD matrices to learn. The optimization is solved by
gradient descent on W z, where each W z is projected onto the set of PSD matrices
after each gradient step (see Appendix A.1).

Algorithm 3 Multiple Kernel LMNN (MKLMNN)

min
W z ,ξ

∑
i

∑
j∈N+

i

d(si, sj) + β
∑
ij`

ξij` + γ
m∑
z=1

tr(W zKz)

∀i, ∀j ∈ N+
i ,

∀` ∈ N−i : d(si, s`)− d(si, sj) ≥ 1− ξij`

d(si, sj) .=
m∑
z=1
‖Kz

i −Kz
j ‖2

W z

ξij` ≥ 0, ∀z = 1 . . .m : W z � 0

Figure 3.4 illustrates the differences between LMNN, the kernelized LMNN
(KLMMN) and our framework for multiple kernel learning (MKLMNN). The for-
mulation of multiple kernel learning via concatenated projections of feature spaces
results in a more flexible model than previous methods, and allows the algorithm
to automatically adapt to the case where the discriminative power of a kernel varies
over the data set.

Although the optimization problem is convex and can be solved in polynomial
time, maintaining the constraints W z � 0 requires a spectral decomposition and
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Figure 3.4: Diagrams depicting the differences between LMNN, the kernelized
LMNN (KLMMN) and our framework for multiple kernels (MKLMNN).

projection onto the cone of positive semi-definite matrices after each gradient step.
To simplify the process, we add a constraint which restricts W z to be diagonal.
This added constraint reduces the semi-definite program (Algorithm 3) to a (more
efficient) linear program, and the diagonals of W z can be interpreted as weightings
of S in each feature space. Moreover, diagonally constraining W z can be interpreted
as a sparse approximation to the full set of PSD matrices, and is equivalent to
optimizing over the set

{
n∑
i=1

W z
iiφ

z(si)φz(si)T | W z
ii ≥ 0

}
.

In this view, each dimension of the learned embedding g(·) is computed by a single
kernel evaluation and scaling by the corresponding learned weight. For diagonal
matrices, enforcing positive semi-definiteness can be accomplished by thresholding:
W z
ii 7→ max(0,W z

ii). This operation is much more computationally efficient than the
PSD projection for full W z matrices, and the diagonal formulation still yields good
results in practice. As is usually the case for kernel-based learning algorithms, the
complexity of Algorithm 3 (i.e., the dimensionality of W z) scales with the number
of training points. To cope with high-dimensionality, one route is to compress each
kernel matrix K, either by row-sampling or principal components analysis. Our
formulation remains convex under both of these modifications, which are equivalent
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to learning a projection LV K (as opposed to LK in Eq. 3.13), where V is a d-by-n
sampling or PCA matrix. This would effectively reduce the number of parameters
to learn and the dimensionality of the learned space, leading to a more efficient
optimization.

3.3.3 Soft label prediction

After mapping a test segment s′ into the learned space, a probability distri-
bution over the labels is computed by using its k nearest neighbors N ⊆ S ∪ SA,
weighted according to distance from g(s′):

P̂ (C = c|s′) =

∑
j∈N ,cj=c

exp (−d(s′, sj))∑
c′

∑
j∈N,cj=c′

exp (−d(s′, sj))
, (3.21)

where cj is the label of segment sj.

3.3.4 Spatial Smoothing by Segment Merging

Due to the automatic segmentation, objects may be represented by multiple
segments at test time, where each segment might contain only partial information
from the object, resulting in less reliable label information P̂ (C|s′). To counteract
this effect, we smooth a segment’s label distribution P̂ (C|s′) by incorporating infor-
mation from segments which are likely to come from the same object, resulting in an
updated label distribution P (C|s′).

Using the extra segments SA automatically extracted from the training im-
ages, we train an SVM classifier on pairs of segments to predict whether two segments
belong to the same object. Based on the ground truth object annotations for the
training set, we know when to label a pair of training segments as coming from the
same object. A training set is constructed as follows. Going through all training
images, all segment pairs that come from the same (ground truth) object are col-
lected in a set of positive training examples. An equal number of negative training
examples is obtained by randomly selecting pairs of segments coming from a different
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object, in each of the training images. Based on this training data set of segment
pairs, taken from all training images, one SVM is trained.

The SVM is trained on features extracted from pairs of segments, i.e., given
two segments si and sj we compute:

Feature Description
φPIi , φPIj Pixel interaction features for segments i and j,
φRIi , φRIj Region interaction features for segments i and j,
Oij, Oji Fraction of segment i that overlaps with j and vice versa,

where 0 ≤ O ≤ 1,
µi, µj Normalized centroid coordinates for segments i and j,
qi, qj Total number of segments generated in the segmentation from which i,

respectively j was obtained, 2 ≤ q ≤ 10 (the segmentation algorithm
[63]that generates SA partitions each image multiple times, resulting
in segmentations with q = 2, 3, . . . , 10 segments),

||µi − µj||2 Distance between centroids µi and µj.

Note that soft label predictions are not included as features, so the SVM provides
an independent assessment to smooth the label distributions.

At test time, we construct an undirected graph where each vertex is a segment
s′ of the test image, and edges are added between pairs that the classifier predicts
to come from the same object. For each connected component of the graph, we
merge the segments corresponding to its vertices, resulting in a new object segment
so. We then extract features for the merged object segment so, apply the embedding
function g(so), and obtain a label distribution P̂ (C|so) by Equation 4.3.

The smoothed label distribution for a segment s′ is then obtained as the geo-
metric mean of the segment’s distribution and its corresponding object’s distribution:

P (C = c|s′) =

√
P̂ (C = c|s′) · P̂ (C = c|so)∑

c′

√
P̂ (C = c′|s′) · P̂ (C = c′|so)

. (3.22)

Note that distributions remain unchanged for any segments s′ which are not
merged (i.e., when so = s′).
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3.3.5 Contextual Conditional Random Field

Unlike pixel and region interactions, which can be described by lower-level
features, object interactions require a high-level description of the segment, e.g.,
its label, or a distribution over possible labels. Because this information is not
available until after soft label predictions are known, object interactions cannot be
encoded in a base kernel. Therefore, information derived from high-level object in-
teractions is incorporated by introducing a conditional random field (CRF) after the
soft label predictions P (C|s′) have been computed. CRFs are better suited for in-
corporating contextual cues than other types of graphical models [22]. First, object
co-occurrences encode undirected information. This suggests undirected graphical
models, like CRFs or Markov random fields (MRFs). Second, by modeling the con-
ditional distribution, CRFs can directly incorporate contextual relationships, as soft
constraints between random variables (as opposed to MRFs, which model the joint
distribution). This approach has been previously demonstrated to be effective for
object recognition [25,65].

Given soft label predictions for all segments {si}|I|i=1 in an image I, the CRF
models the distribution of final label assignments ~c = (c1 . . . c|I|) for all segments as
follows:

P
(
~C = ~c | I

)
= 1
Z

Ψ(~c) ·
|I|∏
i=1

P (Ci = ci|si), (3.23)

where ~C = (C1 . . . C|I|), Z is the partition function and Ψ is given by

Ψ (~c) = exp
∑
i∈I

∑
j∈I

ψ(ci, cj)
 . (3.24)

The potential function ψ captures long-distance dependencies between objects in im-
ages, and is learned from object co-occurrences in training images through maximum
likelihood estimation. As it is intractable to maximize the co-occurrence likelihood
directly, we approximate the partition function using Monte Carlo integration [66],
and apply gradient descent to find ψ(·) that approximately optimizes the data like-
lihood.

After obtaining soft label predictions for all segments in a test image, the
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final label vector is determined by maximizing Equation 3.23 over all possible label
assignments. The maximization can be carried out efficiently by using importance
sampling, where each segment is a node in the CRF.

3.4 Experiments

To evaluate the recognition accuracy of the proposed system and study the
relative importance of each contextual interaction level, we perform experiments on
the Graz-02 [51], MSRC [75] and PASCAL 2007 [15] databases. Four different ap-
pearance features were computed: SIFT [49], Self-similarity (SSIM) [72], L*A*B*
histogram and Pyramid of Histogram of Oriented Gradients (PHOG) [6]. SIFT de-
scriptors were computed at random locations and quantized in a vocabulary of 5000
words. SSIM descriptors were computed at the same locations as SIFT, and also
quantized in a vocabulary of 5000 words. PHOG descriptors were computed as in
Bosch et al. [6], but we consider only a 360o orientation (608-dimensional descrip-
tor). L*A*B* histograms were computed and concatenated into a 48-dimensional
histogram. Finally, each type of feature is represented by a separate χ2-kernel.

As explained in Section 3.2, region- and pixel-interaction kernels are com-
puted using GIST (1008-dimensional descriptor) and L*A*B* color (48-dimensional
histogram) features, respectively. Boundary support is computed between 0 and 20
pixels away from a segment’s boundary.

3.4.1 Analyzing MKLMNN for Single-Object Localization

In order to analyze the contribution of the MKLMNN component of our
framework, we perform experiments on Graz-02, a single-object detection database.
Graz-02 presents one of 3 object classes — bikes, cars and people — in each image
(usually with only one object instance per image), extreme variability in pose, scale
and lighting. Following the experimental setup of [51], the ground truth object seg-
ments of the first 150 odd-numbered images of each class are used for training. The
first 150 even-numbered images of each class are added to the test set. Since, at
test time, some segments will represent background and no object, the discrimina-
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tive power of MKLMNN is ensured by augmenting the training set with the class
background. More specifically, 150 background segments are obtained from a random
sample of the training images, confined to regions where no object is present.

As there is only one class present in each image, there are no object co-
ocurrences from which to learn object interactions, and we therefore omit the CRF
step in this experiment. For similar reasons, no SVM smoothing is being performed,
making the MKLMNN algorithm the focus of this evaluation. Test set performance
is measured by segment classification and single-object recognition accuracy.

Segment Classification After labeling each segment s′ in a test image with the
most probable class label from P̂ (C|s′), the classification accuracy is evaluated by
considering s′ as correctly classified if it overlaps more than 90% with the ground
truth object while predicting the correct label.

Table 3.4.1(a) reports classification results achieved for each object class by
combining appearance, pixel and region interactions. For comparison purposes, we
also list accuracy achieved by an unweighted kernel combination. We define the
average kernel function h as the unweighted sum of all base kernel functions, from
which we construct the average kernel matrix :

h(si, sj) =
m∑
z=1

hz(si, sj) = Kij =
m∑
z=1

Kz
ij. (3.25)

Results show that for each object class, MKLMNN achieves significantly higher ac-
curacy than the unweighted average kernel. While classification accuracy is high for
all object classes, we observe slightly lower performance for the object class people.
This class presents greater variability in scale than other classes, resulting in more
erroneous over-segmentations at test time. For example, heads tend to be segmented
as part of the background.

Table 3.4.1(b) shows the mean classification accuracy achieved by MKLMNN
with different combinations of base kernels. Results show that combining appear-
ance with only one level of context (App+PI or App+RI) outperforms using con-
text (PI+RI) or appearance alone (App). Furthermore, combining appearance fea-
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Table 3.2: Segment Classification Results for Graz-02. Appearance (App), pixel
(PI) and region (RI) interactions are combined for segment classification. (a) Classi-
fication accuracy per class for the unweighted sum of kernels (average kernel) versus
learning the optimal embedding by combining all kernels (App+PI+RI). (b) Average
classification accuracy for different kernel combinations with MKLMNN.

Classification Average MKLMNN
Accuracy Kernel
Bikes 0.52 0.98
Cars 0.74 0.99
People 0.73 0.96
Mean 0.66 0.98

Mean Classification MKLMNN
Accuracy
PI+RI 0.76
App 0.92
App+PI 0.93
App+RI 0.96
App+PI+RI 0.98

(a) (b)

tures with both types of local contextual features results in the best performance
(App+PI+RI).

Figure 3.5 visualizes the learned space when optimally combining appearance,
pixel and region interactions. Note that images are surrounded by neighbors that
depict the same object from a similar viewpoint.

Figure 3.5: 2-D projection of the optimal embedding for the Graz-02 training set.
We excluded background segments and subsample segments from object categories
in order to have a better view of them.
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Learning diagonally constrained rather than full W z, as described in Sec-
tion 3.3.2, affects the embedding and thus the classification accuracy. To quantify
the effect on accuracy of this simplifying assumption, we perform a small experiment
to compare full and diagonally constrained W z when learned with the appearance
kernels (SIFT, SSIM and PHOG). Classification accuracy is shown in Table 3.3.

Table 3.3: Comparison in classification accuracy for learning full and diagonal W z.
Kernels Classification Accuracy Classification Accuracy

Full W z Diagonal W z

PHOG 0.673 0.641
SIFT+SSIM+PHOG 0.853 0.840

When constrainingW z to be a diagonal matrix, the optimization problem be-
comes linear, and we therefore gain substantial efficiency in computation and obtain
a sparse solution. However, we also lose a small percentage of classification accu-
racy when comparing with the results obtained with the full matrix. In this work,
we choose to trade accuracy for efficiency, so we constrain W z to be diagonal in all
subsequent experiments.

Object Detection Localization accuracy is obtained by first merging segments in
test images that overlap by at least 90% and receive the same final label predic-
tion, and then following the well-known evaluation procedure of [15] on the merged
segments. This procedure accounts for label accuracy and overlap with the ground
truth object for the (merged) segments in test images. Table 3.4(a) shows recognition
accuracy results for each object class. Combining all local contextual interactions
with appearance features results in the best recognition accuracy. Although recog-
nition and classification accuracy cannot be compared directly, the relatively lower
recognition accuracy can be understood as follows: even though some segments are
correctly classified, the resulting (merged) segment fails to overlap significantly with
the ground truth bounding box.

For all combinations of features, we achieve better recognition accuracy for
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Table 3.4: Localization Results for Graz-02. (a) Appearance (App), pixel (PI) and
region (RI) interactions are combined for object recognition. (b) Localization accu-
racy improves significantly when learning the optimal embedding with MKLMNN.
The best accuracy using only one kernel is obtained using region interactions (GIST)
for Graz-02.

(a)

Localization
Accuracy Bikes Cars People Mean
PI+RI 0.56 0.78 0.42 0.59
App 0.72 0.81 0.50 0.68
App+PI 0.73 0.81 0.51 0.68
App+RI 0.72 0.82 0.54 0.69
App+PI+RI 0.74 0.82 0.56 0.71

(b)

Localization
Accuracy Bikes Cars People Mean
MKLMNN (App+PI+RI) 0.74 0.82 0.56 0.71
KLMNN on average kernel 0.71 0.78 0.53 0.67
Average kernel (native) 0.57 0.63 0.46 0.56
Best kernel (RI) 0.65 0.82 0.40 0.58

the classes bikes and cars than for the class people, for reasons discussed earlier. Due
to the presence of cluttered backgrounds, boundary support conveys little useful
information in this database, as can be seen by comparing the results for App and
App+PI. The MKLMNN optimization detects this phenomenon at training time,
and correctly down-weights pixel interactions where they are non-informative. Figure
3.10 shows examples of the recognition of objects in test images.

Since the Graz-02 data set has traditionally been used for other computer
vision tasks, no other object recognition results are currently available. Comparisons
of our system to state-of-the-art algorithms will be provided for the multi-object
recognition task in Section 3.4.2.

Feature Combination To gain a better understanding of how the MKLMNN algo-
rithm contributes to recognition performance, we repeat the recognition experiment
with different methods of kernel combination.

Table 3.4(b) compares the recognition accuracy obtained by MKLMNN to
that obtained by using the average kernel, as well as the space obtained by opti-
mizing the average kernel with KLMNN (Algorithm 2), and the single best kernel
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(in this case, RI). MKLMNN achieves significant improvements in accuracy over the
unweighted kernel combination, which performs worse than using the single best
kernel.

We analyze the relative importance of each kernel in forming the optimal
embedding by examining the learned weights W z

ii. We observe that the solution is
sparse, since some examples are more discriminative than others for nearest neigh-
bor classification. Figure 3.6(a) illustrates the sparsity of the solution, and shows the
kernel weights for each point in the training set. Previous MKL methods generally
learn a set of kernel weights that are applied uniformly across all points. MKLMNN,
on the other hand, learns weights that vary across points, so that a kernel may be
used only where it is informative; this is demonstrated by the fact that different
training points receive weight in the different kernel spaces. Figure 3.6(b) shows the
learned weights grouped by class. Segments corresponding to background examples
receive greater weights for the appearance features SIFT and SSIM than segments
corresponding to actual objects. This can be explained by the great dissimilarity
between examples in the background class.

SIFT
RI
SSIM
COLOR
PI
PHOG

50

0

100

150

Background Bikes Cars People

(a) (b)

Figure 3.6: Learned kernel weights for Graz-02. (a) Kernel weights for each point
in the training set, per kernel. (b) Kernel weights grouped by class.

Inspecting the kernel weights for each of the object classes in more detail, we
observe that appearance kernels are generally important, while region interactions
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mostly matter to discriminate the object classes cars and people, capturing typical
geometric configurations between the background and these objects. Pixel interac-
tions and color kernels receive low weights across all object classes. The latter can be
explained by the high variability in color appearance for the objects in this database,
while the former is due to the high levels of clutter, which generally results in a
non-uniform background making boundary support relatively uninformative.

Implementation Details For Graz-02, we use the data split of [51] for training
and testing. We compute multiple stable segmentations, consisting of respectively
2, 3, ..., 9 and 10 segments per image. Together, this results in 54 segments per image.
MKLMNN is trained using the 250-nearest neighbors, and the parameters β and γ
are found using cross-validation. For χ2-kernels, the bandwidth is fixed a priori at
σ = 3. For the experiments comparing diagonally constrained and full W z, the same
values of the hyperparameters are used.

3.4.2 Multi-Object Localization

To evaluate our framework for multi-object recognition, we use the MSRC [75]
and PASCAL 2007 [15] databases. These databases present 21 and 20 different object
classes, respectively, with images that contain several object instances from multiple
classes, as well as occlusions, extreme variability in pose, scale and lighting.

Object Detection Localization accuracy is computed, again, by following the eval-
uation procedure of [15]. Table 3.5 (top) shows the mean accuracy results for MSRC
with different combinations of appearance (App) and contextual interactions — pixel
(PI), region (RI) and object (OI) interactions. We observe that using only appearance
information (App) results in a mean recognition accuracy of 50%, while including
local contextual interactions (App + PI + RI + OI) improves accuracy to 70%.
Combining all local context features (PI + RI + OI) performs similarly to using ap-
pearance only, suggesting that object classes could potentially be learned from cues
that don’t include appearance information [40]. If only pixel or region interactions
are combined with appearance features (App+PI or App+RI), accuracy already im-
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proves over using appearance alone, where adding RI realizes a larger improvement
than adding PI.

Note that the object interaction model depends directly upon the estimated
labels P (C|s′), so a more accurate estimate of P (C|s′) allows the CRF to contribute
better to the final recognition accuracy. The segment-merging SVM predicts same-
object segment pairs correctly 81% of the time, and contributes constructively to the
recognition accuracy without making a significant difference: omitting this step only
reduces recognition accuracy by approximately 1%.

Table 3.5: Mean recognition accuracy for the MSRC and PASCAL 2007 data sets.
Appearance (App), pixel (PI), region (RI) and object interactions (OI) are combined
for object recognition.

M
SR

C Features Mean Localization Features Mean Localization
Accuracy Accuracy

PI+RI 0.42 App+ RI 0.61
PI+RI+OI 0.49 App+ OI 0.52
App 0.50 App+ PI + RI 0.66
App+ PI 0.54 App + PI + RI + OI 0.70

PA
SC

A
L

20
07

Features Mean Localization Features Mean Localization
Accuracy Accuracy

PI+RI 0.23 App+ RI 0.29
PI+RI+OI 0.24 App+ OI 0.27
App 0.26 App+ PI + RI 0.37
App+ PI 0.33 App + PI + RI + OI 0.39

We repeat the experiment on PASCAL 2007, and, again, evaluate the recogni-
tion accuracy and the contribution of the different contextual interactions. Table 3.5
(bottom) shows the results for combining appearance with different levels of local
context. As for MSRC, combining appearance with all contextual interactions (App
+ PI + RI +OI) improves the mean accuracy dramatically: in this case, from 26%
(for appearance only) to 39%. Pixel interactions account for the largest individual
gain, improving accuracy from 26% (App) to 33% (App + PI). For PASCAL 2007,
we observe that the segment merging step correctly predicts same-object segment
pairs 85% of the time, and contributes constructively without making a significant
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difference. As in the MSRC experiment, omitting the segment merging step reduces
recognition accuracy by approximately 1%.

Comparing both data sets, we notice that the different contextual interaction
levels contribute differently to recognition in the different data sets. For example,
for PASCAL 2007, adding object interactions (App + PI + RI + OI vs. App +
PI + RI) improves recognition accuracy by only 2%, compared to the 4% improve-
ment for MSRC. This is not surprising, since MSRC presents more co-occurrences
of object classes per image than PASCAL 2007, which provides more information
to the object interaction model. Region interactions also contribute more in MSRC
where the background tends to exhibit more structure, due to the presence of spe-
cific background classes in the scene, i.e., sky, grass, water, road, building. Figure 3.7
illustrates these differences.

(a) (b)

Figure 3.7: (a) Examples from MSRC (left column) and (b) examples from PAS-
CAL 2007 (right column). The background in most MSRC images is segmented and
labeled with one or more specific object classes, like, e.g., sky, road, building. In PAS-
CAL 2007 images, the background lacks such structure, and is generally unlabeled.
Background structure allows region interactions to incorporate more consistent in-
formation from neighboring (parts of) objects in MSRC, compared to PASCAL 2007.
Moreover, this increases the number of object classes which co-occur in an MSRC
image, enabling object interactions to make a greater contribution to recognition
than in PASCAL 2007.

Feature Combination Table 3.4.2 shows that for both MSRC and PASCAL 2007,
learning the optimal embedding with MKLMNN again results in substantial im-
provements over the average kernel (native or optimized), and the single best kernel.
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For MSRC, we achieve 66% recognition accuracy with MKLMNN, compared to 54%
when optimizing the average kernel with KLMNN. Similarly, in PASCAL 2007 we
observe 37% with MKLMNN, compared to 25% for the average kernel.

Table 3.6: Both for MSRC and PASCAL 2007, recognition accuracy improves sig-
nificantly after learning the optimal embedding. The best accuracy using only one
kernel is obtained using SIFT for MSRC and RI (GIST) for PASCAL 2007.

Mean Localization Accuracy MSRC PASCAL 2007
MKLMNN (App+PI+RI) 0.66 0.37
KLMNN on average kernel 0.54 0.25
Average kernel (native) 0.51 0.25
Best kernel (SIFT/RI) 0.36 0.20

To analyze the relative importance of each kernel in forming the optimal em-
bedding, we examine the learned W z matrices. As with the Graz-02 data set, the
solution is sparse, which, again, can be explained by some examples being more dis-
criminative than others for kNN classification. Figures 3.8(a) and 3.9(a) depict the
sum of the weights assigned to each kernel for MSRC, respectively PASCAL 2007.
We observe that SIFT and PHOG are the most important kernels for both data
sets, and that color-based kernels receive relatively more weight in MSRC than in
PASCAL 2007. The latter is explained by the presence of background classes in
MSRC such as water, sky, grass and tree which tend to be more homogeneous in
color and, therefore, can be more efficiently described using a color kernel. PASCAL
2007, on the other hand, lacks these homogeneous background classes, and, instead,
contains more “man-made objects” where color features exhibit higher variance and
less discriminatory power.

Figures 3.8(b) and 3.9(b) illustrate the learned weights for each kernel,
grouped by class. This demonstrates the flexibility of our multiple kernel formu-
lation. Kernel weights automatically adapt to the regions in which they are most
discriminative, as evidenced by the non-uniformity of each kernel’s weight distri-
bution. Contrast this with the more standard kernel combination approach, which
would assign a single weight to each kernel for the entire data set, potentially losing
locality effects which are crucial for nearest neighbor performance.
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Figure 3.8: Learned kernel weights for MSRC. Context Gist (CGIST) corresponds
to region interactions (RI) and context color (CCOLOR) corresponds to pixel inter-
actions (PI). (a) For kernel Kz, its total weight is tr(W z). (b) Weights grouped by
class.

This allows us to examine which features are active for each class. For ex-
ample, as shown in Figure 3.8(b) for MSRC, color kernels are selected for points in
the classes building, cat, face, grass, road, sky and tree. With respect to contextual
kernels, body, face and water give importance to pixel interactions, but not region
interactions. In the particular case of the class face, this effect is explained by the
fact that faces are often surrounded by (dark) hair.

Similarly, in PASCAL 2007, classes such as boat, bottle, chair and motorbike
get weights for pixel interactions and not for region interactions (see Figure 3.9(b)).
This is easily explained for boats, which are surrounded by water, for which color
is highly informative. Region interactions get some weight for the classes bike, bus,
sheep and train, as objects in these classes are often found in the proximity of other
specific objects. For example, bike objects are often overlapped by person objects.

Figure 3.11 shows examples of recognition where the different context levels
help to improve this task.

Comparison to Other Models To compare our model to the current state-of-
the-art, we compute the detection accuracy per class. Table 3.7 shows the per-
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Figure 3.9: Learned kernel weights for PASCAL. Context Gist (CGIST) corre-
sponds to region interactions (RI) and context color (CCOLOR) corresponds to pixel
interactions (PI). (a) For kernel Kz, its total weight is tr(W z). (b) Weights grouped
by class.

class accuracy for some of our models, corresponding to different combinations of
kernels, and the contextual model from [25], which is the current state-of-the-art for
object recognition on MSRC. The MSRC data set has been studied as well for object
segmentation, e.g., by models such as [42, 74]. Since this is an essentially different
task, with different evaluation metrics, no comparison is made to these segmentation
approaches.

We outperform [25] for half of the classes, and obtain higher average accuracy
overall, demonstrating the benefit of combining different contextual interaction levels.

For the PASCAL 2007 data set, we compare our model (All) to the current
state-of-the-art algorithm for object recognition on this data set [25], as well as
the best performing system in the PASCAL 2009 challenge object detection [88]
(for which the test set is not publicly available yet), and one other context-based
approach [43]. Table 3.8 shows the per-class recognition accuracy, where the bottom
line provides the best recognition result obtained for each object class in the PASCAL
2007 challenge [15]. We notice that our model performs best in the largest number
of classes (tied with [25]), and we achieve a higher mean recognition accuracy.

Our multiple kernel framework for learning a single metric over all classes out-
performs models which learn class-specific kernel combinations [43,88]. This owes to
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Table 3.7: First three rows: recognition accuracy for our system using appearance
alone (A), using appearance together with pixel and region interactions (A+C), and
using appearance with all contextual levels, i.e., pixel, region and object interactions
(All). The last row provides the per-class recognition accuracy obtained by the
contextual model in [25], the current state-of-the-art for object recognition on MSRC.
Results in bold indicate the best performance per class. Our system achieves the best
average accuracy.
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A 0.13 0.40 0.33 0.93 0.62 0.55 0.63 0.53 0.91 0.54 0.50
A+C 0.27 0.60 0.72 0.94 0.71 0.95 0.70 0.47 0.70 0.50 0.66
All 0.43 0.72 0.72 0.96 0.76 0.90 0.92 0.50 0.76 0.61 0.70
[25] 0.46 0.81 0.65 0.95 0.96 0.55 0.54 0.970.80 0.95 0.68

the fact that our embedding algorithm is geared directly toward multi-class predic-
tion, and information can be shared between all classes by the joint optimization.
Moreover, models in [43,88] report only modest gains over the unweighted average of
base kernels, while our model achieves significant improvement over both the aver-
age and best kernels. This suggests that convex combinations of kernels may be too
restrictive, while our approach of concatenated linear projections provides a greater
degree of flexibility to the model.

3.5 Implementation Details

We use the previous data splits in order to be consistent with the evaluations.
For PASCAL 2007, we follow [15] and train models based on 30 images per object
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Table 3.8: Comparison of recognition accuracy for different systems on the PAS-
CAL 2007 object classes. Results in bold indicate the best performance per class.
The bottom line provides the best recognition result obtained for each class in the
PASCAL 2007 challenge [15]. Our system (All) achieves the best average accuracy.

pl
an

e

bi
k e

bi
rd

bo
at

bo
tt
le

bu
s

ca
r

ca
t

c h
ai
r

co
w

All 0.33 0.24 0.47 0.69 0.22 0.37 0.71 0.33 0.07 0.15
[88] 0.38 0.48 0.15 0.15 0.22 0.51 0.51 0.30 0.17 0.33
[25] 0.63 0.22 0.14 0.42 0.43 0.50 0.62 0.32 0.37 0.19
[43] 0.11 0.12 0.09 0.06 0.00 0.25 0.14 0.36 0.09 0.14
[15] 0.26 0.41 0.10 0.09 0.21 0.39 0.43 0.24 0.13 0.14

dt
ab

le

do
g

ho
rs
e

m
bi
ke

p e
rs
on

pp
la
nt

sh
ee
p

so
fa

tr
ai
n

tv m
ea
n

All 0.74 0.21 0.26 0.55 0.33 0.29 0.38 0.23 0.51 0.57 0.39
[88] 0.23 0.22 0.51 0.46 0.23 0.12 0.24 0.29 0.45 0.49 0.32
[25] 0.30 0.29 0.15 0.31 0.43 0.33 0.410.37 0.29 0.62 0.37
[43] 0.24 0.32 0.27 0.34 0.03 0.02 0.09 0.30 0.30 0.08 0.17
[15] 0.10 0.16 0.34 0.38 0.22 0.12 0.18 0.15 0.33 0.29 -

class. Multiple stable segmentations [63] are computed — 9 different segmentations
for each image — each of which contains between 2 and 10 segments. This results
in 54 segments per image. The computation time for one segmentation is between
60 and 90 seconds, resulting in an average of 10 minutes of computation time to
obtain all stable segmentations for one image. As the individual segmentations are
independent of one another, they could also be computed in parallel, to improve
computational efficiency.

For the spatial smoothing step, one SVM is trained for each data set, using
the SVMlight implementation [34] with RBF kernels for the classification task. For
the MSRC data set, 994 positive and an equal number of negative pairwise examples
are used for training. For PASCAL 2007, 350 positive and 350 negative examples are
used. Each training example is described by a 2120-dimensional vector, as explained
in Section 3.3.4. Hyperparameters for each SVM are determined by 3-fold cross-
validation on the training data set. We train MKLMNN with 15 nearest neighbors.
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For MSRC, the parameters β and γ are obtained with 2-fold cross-validation on the
training set. The results are stable for a variety of choices of k between 5 and 15; we
select k = 10.

For PASCAL 2007, the best β, γ and k are selected on the PASCAL 2007
validation set and then applied for testing on the test set. The parameter σ for the χ2-
kernels is set to 3. The complexity of MKLMNN scales with the number of training
points and the number of neighbors to consider in the constraints. On an Intel 2.53
GHz Core Duo with 4GB RAM, training time is 35 minutes with ∼ 900 training
points (comparable to the number of training segments for MSRC, and for PASCAL
2007), 15 nearest neighbors, and a diagonal constraint on W . Predicting the soft
labeling for all segments in a test image takes under a second (after segmentations
have been computed).

For the CRF, hyperparameters are determined by 2-fold cross-validation on
the training set. Training the CRF takes 3 minutes for MSRC (315 training images)
and 5 minutes for PASCAL 2007 (600 training images). At test time, running the
CRF to obtain the final labeling takes between 2 and 3 seconds, depending on the
number of segments.

3.6 Discussion

In this chapter, we have introduced a novel framework that efficiently and
effectively learns and combines different levels of local context interactions, by opti-
mally integrating multiple feature descriptors into a single, unified similarity space.
Our multiple kernel learning algorithm integrates appearance features with pixel and
region interaction data, resulting in a unified similarity metric which is optimized
for nearest neighbor classification. Object level interactions are modeled by a con-
ditional random field (CRF) to produce the final label prediction. We examined the
contribution of each contextual interaction and by combining these levels we obtain
significant improvement over current state-of-the-art contextual frameworks. We be-
lieve that by adding another object interaction type, such as spatial context [25],
recognition accuracy could be improved further.
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Portions of this chapter are based on the paper “Contextual Object Local-
ization with Multiple Kernel Nearest Neighbor” by B. McFee, C. Galleguillos and
G. Lanckriet [52]. I was responsible for the design of the contextual interactions,
spatial smoothing, contextual CRF and the object recognition framework. I was
also responsible for the literature survey, experiment design for object classification
and recognition, and the execution of the experiments. I also contributed with the
analysis of the experiments and the writing of the paper.
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(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 3.10: Examples of images from the Graz-02 database. Images (first row),
ground truth labels (second row) and detections (third row) are shown. For images
showing ground truth labels (second row), red areas correspond to visible parts
of the object and green indicates occluded parts. For detection results, green areas
correspond to correct detections by our framework and red areas corresponds to false
detections. (a) Examples of recognition results for the category bikes. (b) Examples
of recognition results for the category car. (c) Examples of recognition results for
the category people. (d) Examples of false recognitions for the classes bikes (top) and
people (bottom).
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(a) (b) (c) (d)

Figure 3.11: Examples of images from the MSRC database. Each labeled colored
region corresponds to an object recognition result performed by our framework. (a)
Localization example where pixel interactions improve recognition using appearance.
(b) Localization example where region interactions improve recognition. (c) Localiza-
tion example where pixel and region interactions together improve recognition. (d)
Localization example where object interactions improve recognition over different
feature combinations.



Chapter 4

Integrating Context

When integrating contextual information into an object recognition frame-
work, we need to consider how the complexity of the model will be affected with
when combining object’s appearance features together with their scene context. In
order to address this issue, machine learning techniques are borrowed as they pro-
vide efficient and powerful probabilistic algorithms. The choice of these models is
based on the flexibility and efficiency of combining context features at a given stage
in the recognition task. Here, we present two different approaches for integrating
context: (i) as part of recognizing objects in images and (ii) as an advocate for label
agreement to disambiguate object identity.

4.1 Recognizing Objects Using Context

Several methods [19,38,56,68,76,82,93] have chosen to integrate context with
appearance features as part of recognizing objects in images. Some discriminative
classifiers have been used for this purpose, such boosting [19,93] and logistic regres-
sion [56] in the attempt to maximize the quality of the output on the training set.
Generative classifiers have also been used to combine these features, such as Naive
Bayes classifier [38]. Discriminative learning often yields higher accuracy than model-
ing the conditional density functions. However, handling missing data is often easier
with conditional density models. Several frameworks have exploited directed graph-
ical models [68, 76, 82] to incorporate contextual features in their appearance-based
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detectors. Directed graphical models are global probability distributions defined on
directed graphs using local transition probabilities. They are useful for expressing
causal relationships between random variables since they assume that the observed
image has been produced by a causal latent process.

Multiple kernel learning [44] has been used in object localization to optimally
combine different types of appearance features [88]. This model learn convex combi-
nations of the given base kernels, which are then used to produce classifiers, in either a
hierarchical or one-versus-all framework. Although using a different similarity metric
for each class has been shown to perform extremely well on these tasks [26, 86, 88],
learning a single metric could enable the use of nearest neighbor classification to
naturally support multi-class problems.

Therefore, in order to study the contribution of recognizing objects using con-
text, we introduce a discriminative learning model based on multiple kernel learning
optimized for nearest neighbor classification. Our model partitions each training im-
age I is into segments si by using ground truth information (as shown in Figure 4.1).
Each segment si corresponds to exactly one object of class ci ∈ C, where C is the
set of all object labels. These segments are collected into the training set S.

For each segment si∈S, we extract several types of features, based on differ-
ent appearance and contextual sources, which are characterized by a inner product
matrix:

hp(si, sj) = 〈φp(si), φp(sj)〉 , Kp
ij = hp(si, sj). (4.1)

From this collection of kernels, a unified similarity metric (as presented in
Chapter 3) is learned together with a corresponding embedding function by using
MKLMNN. This embedding function is used to map the training set S into the
learned space, where it is then used to predict labels for unseen data with a nearest-
neighbor classifier.

This multiple kernel formulation can be viewed as representing each segment
by concatenating its columns from all kernel matrices, and learning a block-diagonal
matrix where each block is a projection restricted to a particular kernel’s feature



67

S1

S2

S3

Sk

Categorization

{L1..Ln}
1

Original
Image

Pre-processing
(segmentation)

Post-processing
(context)

O1

Om

{L1..Ln}
2

{L1..Ln}
3

{L1..Ln}
k

Categorization

(appearance
+

context)

S1

S2

S3

Sk

Categorization

{L1..Ln}
1

Original
Image

Pre-processing
(segmentation)

Post-processing
(context)

O1

Om

{L1..Ln}
2

{L1..Ln}
3

{L1..Ln}
k

Figure 4.1: Recognition using context. s1 . . . sk is the set of k segments for an image
drawn from multiple stable segmentations;O1 . . . Om is a set of m objects categories
in the original image.

space. The multiple-kernel embedding function then takes the form

g(si) = (LpKp
i )mp=1 . (4.2)

where L is a linear projection matrix recovered from the embedding function
W , where W = LTL (see Chapter 3, Section 3.3 for details). As in the single-kernel
case, this embedding function also extends to unseen data by repeating the procedure
for each kernel and concatenating the results accordingly.

The probability distribution over the labels for the segment s′ is computed
by using its k nearest neighbors N ⊆ S ∪ SA, weighted according to distance from
g(s′):

P̂ (C = c|s′) ∝
∑

j∈N ,cj=c
exp (−d(s′, sj)) , (4.3)

where cj is the label of of segment sj. The final labeling is for each segment is
computed

Os′ = arg max
c

(P̂ (C = c|s′)) (4.4)

Given the labels of each segment, Os′ , we check for overlapping segments
within the segments that have the same label and we return the first k unique segment
boundaries. We remove all overlapping segments (overlap > 90%) and rank the
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remaining ones with respect to their label confidence P̂ (C = c|s′). The first k
segment boundaries and category labels are returned.

4.2 Disambiguating Object Identity with

Context

The main motivation of this approach is to combine the outputs of local
appearance detectors with contextual features obtained from either local or global
statistics. A majority of object recognition models uses context as an advocate for
label agreement to disambiguate object appearance [9, 32, 41, 65, 75, 83, 89]. These
models, based on undirected graphical models, express soft constraints between ran-
dom variables. Undirected graphical models are global probability distributions de-
fined on undirected graphs using local clique potentials. They are better suited to
handle interactions over image partitions since usually there exists no natural causal
relationships among image components.

MRFs are typically formulated in a probabilistic generative framework mod-
eling the joint probability of the image and its corresponding labels. Due to the
complexity of inference and parameter estimation in MRFs, only local relationships
between neighboring nodes are incorporated into the model. Also, MRFs do not
allow the use of global observations to model interactions between labels. Condi-
tional Random Fields (CRFs) provide a principled approach to incorporate these
data-dependent interactions [32,41,65,75,83,89]. Instead of modeling the full joint
distribution over the labels with an MRF, CRFs model directly the conditional dis-
tribution which requires fewer labeled images and the resources are directly relevant
to the task of inferring labels.

Therefore, CRF-based models have become popular owing to their ability to
directly predict the segmentation/labeling given the observed image, and the ease
with which arbitrary functions of the observed features can be incorporated into the
training process. CRF models can be applied either at the pixel-level [32, 41, 75] or
at the coarser level [23,25,65,89].

In this work we use the bag of features (BoF) object recognition framework [17,
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58] due to its popularity and simplicity. This method consists of four steps: (i)
images are decomposed into a collection of “features” (image patches); (ii) features
are mapped to a finite vocabulary of “visual words” based on their appearance; (iii)
a statistic, or signature, of such visual words is computed; (iv) the signatures are fed
into a classifier for labeling. All four steps can be implemented in a variety of ways.
Here we adopt the implementation and default parameter settings provided by [87].

Segmentation is integrated into BoF as follows. Each segment is regarded
as a stand-alone image by masking and zero padding the original image. Then the
signature of the segment is computed as in regular BoF, but any features that fall
entirely outside its boundary are discarded. Eventually, the image is represented by
the ensemble of the signatures of its segments.
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Figure 4.2: Using context to improve recognition. S1 . . . Sk is the set of k segments
for an image drawn from multiple stable segmentations; L1 . . . Ln is a ranked list of
n labels for each segment; O1 . . . Om is a set of m objects categories in the original
image.

To incorporate semantic context into the object recognition, we use a condi-
tional random field (CRF) framework to promote agreement between the segment
labels (as shown in Figure 4.2). The proposed CRF uses a fully connected graph
between segment labels instead of a sparse one. Instead of integrating the context
model with the recognition model, we train the CRF on simpler problems defined on
a relatively small number of segments.

Given an image I and its segments s1, . . . , sk, we wish to find segment labels
c1, . . . , ck such that they agree with the segment contents and are in contextual
agreement with each other. We assume the labels come from a finite set C.
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We learn φ by using the semantic context co-occurrences (as in Chapter 2),
and computing the probability of some labeling is given by the model

p(l1 . . . l|C|) = 1
Z(φ) exp

(∑
i∈C

lilj · φ(ci, cj)
)
, (4.5)

We model the contextual interaction as a probability distribution:

p(c1 . . . ck|s1 . . . sk) = B(c1 . . . ck)
∏k
i=1 A(i)

Z(φ, s1 . . . sk)
, (4.6)

A(i) = p(ci|si), B(c1 . . . ck) = exp
( k∑

i,j=1
φ(ci, cj)

)
, (4.7)

where Z(·) is the partition function. We explicitly separate the marginal
terms p(c|S), which are provided by the recognition system, from the interaction
potentials φ(·).

4.3 Experiments

To evaluate recognition accuracy of the proposed models we consider MSRC
and PASCAL 2007 as datasets. We are interested in the relative performance change
in object recognition accuracy, i.e., with context as part of the recognition task and
as post-processing stepwith semantic context. In Tables 4.1 and 4.2 we summa-
rize the performance of average recognition accuracy for MSRC and PASCAL 2007
respectively.

The average recognition accuracy for MKLMNN model in MSRC was in-
creased by 16% when using context at the recognition stage and reaches an improve-
ment of 20% when adding semantic context as post-processing step in the framework.
For the BoF model, we observe an increase of more than 23% on the average recogni-
tion accuracy when incorporating context using the CRF. Including context at both
stages in the recognition framework gives the best average recognition accuracy for
the MKLMNN model, however only 4% is improved when included context after
using context at the recognition level. When using the semantic context alone in
MKLMNN, we obtain only an increase of 2%. This indicates that the performance



71

Table 4.1: Average recognition accuracy for BoF and MKLMNN when integrating
context at different stages of the recognition framework for MSRC database.

Appearance + Contextual +CRF
Only Kernels Context

MKLMNN 0.50 0.66 0.70
(with recognition)

MKLMNN 0.50 - 0.52
(as post-processing)

[65] 0.45 - 0.68
(as post-processing)

Table 4.2: Average recognition accuracy for BoF and MKLMNN when integrating
context at different stages of the recognition framework for PASCAL 2007.

Appearance + Contextual +CRF
Only Kernels Context

MKLMNN 0.26 0.37 0.39
(with recognition)

MKLMNN 0.26 - 0.27
(as post-processing)

of the contextual CRF depends directly upon the estimated labels P (C|s′), which
for the case of the MKLMNN appearance model are less accurate than in the case
of the BoF model.

In the case of PASCAL 2007 (Table 4.2) we observe a similar behavior to
MSRC with respect to accuracy improvement when including context at different
stages of the framework. Only 1% improvement is obtained when using context as
post-processing and more than 10% when included as part of the recognition model.
The highest improvement is found when including context at both stages.

4.4 Discussion

Using context in both stages of the recognition pipeline, gives the best im-
provement over using only appearance information in both models. For both data
sets, MSRC and PASCAL 2007 we observe that the bigger increase in performance is
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due to including context together with appearance features in the recognition model,
and that the performance of the contextual CRF depends directly upon the esti-
mated labels. With respect to efficiency, in the case of integrating context at the
recognition level in MKLMNN we face an optimization problem that is convex and
can be solved in polynomial time when restricting W p to be diagonal. The PSD
projection can then be approximated by thresholding, saving computation time, and
still yielding good results in practice.

With respect to using context in a post-processing step, one of the advantages
of using CRFs in general is that the conditional probability model can depend on
arbitrary non-independent characteristics of the observation. The down side of using
CRFs is that inferring labels from the exact posterior distribution for complex graphs
is intractable and its performance directly depends on the estimated label distribution
of the appearance model.

We believe that contextual information can benefit recognition tasks at both
stages of the recognition pipeline and help to successfully disambiguate objects iden-
tity. However if the target object is the only labeled object in the database there are
no sources of contextual information we can exploit. This fact points out the need
for external sources of context (as in [65]) that can provide this information when
training data is weakly or not labeled.

Portions of this chapter are based on the papers “Objects in Context” by
A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora and S. Belongie [65] and
“Multi-Class Object Localization by Combining Local Contextual Interactions” by
C. Galleguillos, B. McFee, S. Belongie and G. Lanckriet [23]. In [65] I developed
the contextual features from the training data and obtained data from Google Sets
in order to obtain the co-occurrence matrices. In [23] I was responsible for the
design of the contextual interactions, spatial smoothing and the object recognition
framework. I was also responsible for the literature survey, experiment design for
object recognition, and the execution of the experiments. I also contributed with the
analysis of the experiments and the writing of the paper.



Chapter 5

Other Challenges in Object
Recognition

The design of accurate models for large collections of object categories has
become a central goal of object recognition research. In recent years, the predomi-
nant approach to tackling this problem has been to collect labeled examples of each
category, which are then provided as input to a machine learning algorithm. Typi-
cal annotations in these “fully” labeled data sets provide masks or bounding boxes
that specify the locations, scales, and orientations of objects in each training image.
Though extremely valuable, this information is prone to error and is expensive to
obtain. Without this information, however, traditional approaches to object cate-
gorization tend to learn spurious models of background artifacts, leading to lower
accuracy during testing. Moreover, by learning and using contextual cues in this
setting we could possible hinder recognition accuracy.

When only a relatively small number of categories are to be learned, this gen-
eral approach performs quite well. However, as the number of categories increases,
the acquisition of a sufficiently large and accurate set of training examples becomes
an expensive and time-consuming chore. As a result, much research has been de-
voted to designing efficient schemes for collecting training data for supervised object
recognition [8, 10, 90].

Some approaches for object categorization have successfully learned object
models from weakly labeled data [18, 21, 59, 67, 78, 81]. Weakly labeled training
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examples indicate which objects of interest are present in training images without
specifying the pixels that are associated with them. From weakly labeled examples,
the existing methods use standard techniques in statistical learning to model the
“essence” of each category. Popular approaches include part-based models [2,12,18],
region based methods [59,81] and latent models such as pLSA and LDA, with bag of
visual words [67,78,91]. While they excel at exploiting correlations between different
image patches, they suffer from computationally expensive inference and background
noise that is learned as part of the category model.

By contrast, unsupervised approaches require no labeled training data, and
merely seek to discover latent structure in the data, eg, clusters [30, 67, 78, 81] or
taxonomies [3, 79]. The goal in this setting is to uncover groupings of images (or
image segments) that share visual patterns, with the hope that the majority of the
images within a group come from the same (unfamiliar) object category.

Given the importance of learning accurate object models from weakly label
data in order to later exploit contextual cues, this chapter proposes a novel model for
object category discovery that uses metric learning to improve the quality of region
similarity. Our framework uses an initial set of known object categories to learn
an optimal similarity space over image regions. In the optimized space, a nearest-
neighbor classifier is used to determine if a new image region is a known object class
or an unknown object. Then, regions predicted to be unknown objects are collected
and clustered in order to find new object categories. While our eventual goal is a
full category discovery system for object recognition, we focus in this work on the
optimization and evaluation of the similarity space for clustering unlabeled data.

5.1 Discovering Object Categories

In our framework, we assume that a set of training images has been par-
tially annotated with a set of known, familiar categories, so that all image regions
corresponding to familiar categories have been labeled (Figure 5.1). All remaining,
unlabeled image regions are assumed to belong to unfamiliar categories.
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Figure 5.1: A set of images is partially labeled with familiar categories (e.g., car),
while unfamiliar objects are left unlabeled. Both labeled and unlabeled regions are
used to learn an optimized similarity space, which facilitates discovery of unfamiliar
categories in test data.

Because we do not know to which unfamiliar category an unlabeled train-
ing image region may belong, we cannot directly optimize a similarity function for
unfamiliar categories. Instead, we train a similarity metric to discriminate between
familiar categories by k-nearest-neighbor prediction. Our decision to optimize for
nearest neighbor accuracy is motivated by two ideas: first, improving nearest neigh-
bor classification provides a direct way to determine if a test segment belongs to
a familiar or unfamiliar category, and second, a metric optimized to discriminate
familiar categories should generalize to discriminate unfamiliar categories.

Moreover, because our framework is built upon nearest-neighbor classifica-
tion, it is inherently multi-class, and automatically extends to novel classes. It can
therefore be easily integrated in a continuous learning system with no need retrain
each time a new category is discovered.1 We see this as a key advantage over pre-
vious methods, where the detection of unfamiliar categories derives from the output
of binary classifiers trained on familiar categories [46].

Our main technical contribution is a multiple-kernel extension to the metric
learning to rank algorithm, which will allow us to learn an optimized similarity space
from multiple, heterogeneous input features. Our experimental results demonstrate

1Although one may expect to improve accuracy by re-training after the discovery of a new
category, in our framework, this step is purely optional.
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that learning similarity from labeled data can provide significant improvements over
purely unsupervised methods. Finally, we show that including unfamiliar data during
training improves the quality of the learned similarity space.

5.1.1 Optimizing Object Similarity

Before describing our framework in more detail, we will first introduce nota-
tion and formalize the problem.

Using ground truth label information (e.g., masks or bounding boxes), each
training image I is partitioned into segments xi. Each segment xi belongs to exactly
one object of class `i ∈ L, where L is the set of familiar object labels. The set Xm

contains all training segments xi derived from ground truth annotations across all
images.

Additionally, we partition each training image I into overlapping regions by
running a segmentation algorithm multiple times. Only those segments that overlap
more than 50% with a ground truth mask corresponding to a familiar label in L
are collected into the set Xf. The rest of the segments, which lack (familiar) ground
truth labels, are collected in the set Xu. Throughout, we will refer to segments
corresponding to familiar classes (i.e., Xm and Xf) as familiar segments, and segments
corresponding to unfamiliar labels (Xu) as unfamiliar segments.2

All segments derived from training images are collected to form the training
set X = Xm ∪Xf ∪Xu. Although including Xf and Xu introduces some noise into the
system, we demonstrate experimentally in Section 5.2.1 that doing so during training
improves the quality of the final similarity metric.

For each segment xi ∈ X , we compute several types of features φt(xi), where
each feature type φt corresponds to a space characterized by a kernel function

kt(xi, xj) = 〈φt(xi), φt(xj)〉 .

From a collection of m feature spaces over n training points, we will learn a unified
similarity metric which is optimized for nearest neighbor classification.

2Familiarity refers to a segment’s true label, which may or may not be available: an unlabeled
or test segment may be familiar or unfamiliar.
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Figure 5.2: Discovering object classes: Each test image is partitioned into multiple
segments, each of which are mapped into multiple kernel induced feature spaces, and
then projected into the optimized similarity space learned by MKMLR (Algorithm 5).
Each segment is classified as belonging to a familiar or unfamiliar class by k-nearest-
neighbor. Unfamiliar segments are then clustered in the optimized space, enabling
the discovery of new categories.

At test time, object class discovery proceeds as follows (illustrated in Fig-
ure 5.2). A collection of test images I ′ are segmented multiple times to form the
test set X ′. For each x′ ∈ X ′, we use the optimized metric to locate its k-nearest
neighbors from the training set, and a label for x′ is predicted by the majority vote
of its neighbors. Unlabeled training segments vote for a synthetic label `0, taken to
mean unfamiliar.

After classifying each x′ ∈ X ′, all segments with predicted label `0 are used as
input to a clustering algorithm. We use spectral clustering [55] with affinities defined
by a radial basis function (RBF) kernel on the learned distances:

Aij = exp
(
−
d(x′i, x′j)

2σ2

)
,

where d(x′i, x′j) is the distance between two test segments x′i and x′j in the optimized
space, and σ is a bandwidth parameter.

Since our objective here is to produce a more accurate similarity space for
discovery, we perform our evaluation with respect to the clustering of (predicted)
unfamiliar test segments. In practice, one would follow this step by annotating the
cluster with a (likely new) category label, but this step is beyond the scope of this
work.



78

Optimizing the Space

The first step of our framework consists of learning an optimized similarity
function over image regions. Note that we cannot know a priori which features will
be discriminative for unfamiliar categories. We therefore opt to include many differ-
ent descriptors, capturing texture, color, scene-level context, etc. (See Section 5.2.)
In order to effectively integrate heterogeneous features, we turn to multiple kernel
learning (MKL) [44]. While MKL algorithms have been widely applied in computer
vision applications [86,88], most research has focused on binary classifiers (i.e., sup-
port vector machines), with relatively little attention given to the optimization of
nearest neighbor classifiers.

Recently, multiple kernel large margin nearest neighbor (MKLMNN) has been
proposed as a method for integrating heterogeneous data in a nearest-neighbor set-
ting [23]. Like the original LMNN algorithm [92], MKLMNN attempts to find a
linear projection of data such that each point’s target neighbors (i.e., those with
similar labels) are drawn closer than dissimilar neighbors by a large margin. While
this notion of distance margins is closely related to nearest neighbor prediction, it
does not optimize for the actual nearest neighbor accuracy.

Instead, we will derive a multiple kernel extension of the metric learning to
rank algorithm (MLR) [53], which optimizes nearest neighbor retrieval more directly
by examining the ordering of points generated by the learned metric. Before deriving
the multiple kernel extension, we first briefly review the MLR algorithm for the linear
case.

Metric Learning to Rank

Metric learning to rank (MLR, Algorithm 4) [53] is a metric learning extension
of the Structural SVM algorithm for optimizing ranking losses [35, 85]. Whereas
SVMstruct learns a vector w ∈ Rd, MLR learns a positive semi-definite matrix W

(denoted W � 0) which defines a distance

dW (i, j) = ‖i− j‖2
W = (i− j)TW (i− j).
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Algorithm 4 Metric Learning to Rank [53]
Input: data X = {x1, x2, . . . , xn} ⊂ Rd,

true rankings y∗1, y∗2, . . . y∗n,
slack trade-off C ≥ 0

Output: d× d matrix W � 0
min
W�0, ξ

tr(W ) + C

n

∑
x∈X

ξx

s. t. ∀x ∈ X , ∀y ∈ Y :
〈W,ψ(x, y∗x)〉 ≥ 〈W,ψ(x, y)〉+ ∆(y∗x, y)− ξx

MLR optimizes W by evaluating the quality of rankings generated by ordering the
training data by increasing distance from a query point. Ranking quality may be
evaluated and optimized according to any of several metrics, including precision-at-k,
area under the ROC curve, mean average precision (MAP), etc. Note that k-nearest
neighbor accuracy can also be interpreted as a performance measure over rankings
induced by distance.

Although ranking losses are discontinuous and non-differentiable functions
over permutations, SVMstruct and MLR resolve this issue by encoding constraints
for each training point as listed in Algorithm 4. Here, X is the training set of n
points, Y is the set of all possible rankings (i.e., permutations of X ), y∗x is the true
or best ranking3 for x ∈ X , ∆(y∗x, y) is the loss incurred for predicting y instead of y∗

(e.g., decrease in precision-at-k), and ξx is a slack variable. 〈W,ψ(x, y)〉 is the score
function which evaluates how well the model W agrees with the input-output pair
(x, y), encoded by the feature map ψ.

To encode input-output pairs, MLR uses a variant of the partial order fea-
ture [35] adapted for distance ranking:

ψ(x, y) =
∑

i∈X+
x , j∈X−x

yij
D(x, i)−D(x, j)
|X+

x | · |X−x |
(5.1)

D(x, i) = −(x− i)(x− i)T.

Here, X+
x and X−x ⊆ X denote the sets of positive and negative results with respect

3In this setting, a true ranking is any ranking which places all relevant results before all irrelevant
results.
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to example x (i.e., points of the same class or different class), and

yij =


+1 if i preceeds j in y

−1 if j preceeds i in y
.

With this choice of ψ, the rule to predict y for a test point x is to simply sort
i ∈ X in descending order of

〈W,D(x, i)〉 = −〈W, (x− i)(x− i)T〉 = −‖x− i‖2
W . (5.2)

Equivalently, sorting by increasing distance ‖x− i‖W yields the ranking needed for
nearest neighbor retrieval.

Although Algorithm 4 lists exponentially many constraints, cutting-plane
techniques can be applied to quickly find an approximate solution [36].

5.1.2 Multiple Kernel Metric Learning

The MLR algorithm, as described in the previous section, produces a linear
transformation of vectors in Rd. In this section, we first extend the algorithm to
support non-linear transformations via kernel functions, and then to jointly learn
transformations of multiple kernel spaces.

Kernel MLR

Typically, non-linear variants of structural SVM algorithms are derived by
observing that the SVMstruct dual program can be expressed in terms of the inner
products (or kernel function) between feature maps: 〈ψ(x1, y1), ψ(x2, y2)〉. (See,
e.g., Tsochantaridis, et al. [85].) However, to preserve the semantics of distance
ranking (Equation 5.2), it would be more natural to apply non-linear transformations
directly to x while preserving linearity in the structure ψ(x, y). We therefore take
an alternative approach in deriving kernel MLR, which is more in line with previous
work in non-linear metric learning [23,28].

We first note that by combining Equations 5.1 and 5.2 and exploiting linearity
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of ψ, the score function can be expressed in terms of learned distances:

S(W,x, y) = 〈W,ψ(x, y)〉

=
∑

i∈X+
x ,j∈X−x

yij
‖x− j‖2

W − ‖x− i‖2
W

|X+
x | · |X−x |

. (5.3)

Let φ : X → H denote a feature map from X to a reproducing kernel Hilbert
space (RKHS) H. Inner products in H are computed by a kernel function

k(x1, x2) = 〈φ(x1), φ(x2)〉H .

Let L : H → Rn be a linear operator on H which will define our learned metric, and
let ‖L‖HS denote the Hilbert-Schmidt operator norm4 of L.

Next, we define a score function in terms of L, which, as in Equation 5.3,
compares learned distances:

SH(L, x, y) =
∑

i∈X+
x , j∈X−x

yij
dL(x, j)− dL(x, i)
|X+

x | · |X−x |
. (5.4)

dL(x, i) = ‖L(φ(x))− L(φ(i))‖2

We may now formulate an optimization program similar to Algorithm 4 in terms of
L:

L∗ = arg min
L,ξ

‖L‖2
HS + C

n

∑
x∈X

ξx s. t. (5.5)

∀x, y : SH(L, x, y∗x) ≥ SH(L, x, y) + ∆(y∗x, y)− ξx.

The choice of ‖L‖2
HS as a regularizer on L allows us to invoke the generalized

representer theorem [69]. It follows that an optimum L∗ of Equation 5.5 admits a
representation of the form

L∗ = MΦT,

4The Hilbert-Schmidt norm is a natural generalization of the Frobenius norm. For our purposes,
this can be understood as treating L as a collection of n elements vi ∈ H (one per output dimension
of L), and summing over the squared-norms ‖L‖HS =

√∑
i〈vi, vi〉H.
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where M ∈ Rn×n, and Φ ∈ Hn contains the training set in feature space: Φx = φ(x).
By defining W = MTM and K = ΦTΦ, we observe two facts:

‖L∗(φ(x)− φ(i))‖2 = ‖MΦTφ(x)−MΦTφ(i)‖2

= ‖Kx −Ki‖2
MTM

= ‖Kx −Ki‖2
W , (5.6)

and ‖L∗‖2
HS = tr

(
ΦMTMΦT

)
= tr (WK) , (5.7)

where for any z, Kz = ΦTφ(z) = [k(x, z)]x∈X is a column vector of the kernel function
evaluated at a point z and all training points x.

Note that the constraints in Equation 5.5 render the program non-convex
in L, which may itself be infinite-dimensional and therefore impossible to optimize
directly. However, by substituting Equation 5.6 into Equation 5.4, we recover a score
function of the same form as Equation 5.3, except with x, i and j replaced by their
corresponding kernel vectors Kx, Ki and Kj. We may then define the kernelized
metric partial order feature:

ψK(x, y) =
∑

i∈X+
x , j∈X−x

yij
DK(x, i)−DK(x, j)
|X+

x | · |X−x |
(5.8)

DK(x, i) = −(Kx −Ki)(Kx −Ki)T.

Thus, at the optimum L∗, the score function can be represented equivalently as

SH(L∗, x, y) = 〈W,ψK(x, y)〉. (5.9)

Taken together, Equations 5.7 and 5.9 allow us to re-formulate Equation 5.5 in terms
ofW and K, and obtain a convex optimization similar to Algorithm 4. The resulting
program may be seen as a special case of Algorithm 5.
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Multiple Kernel MLR

To extend the above derivation to the multiple kernel setting, we first de-
fine how the kernels will be combined. Let H1,H2, . . . ,Hm each denote an RKHS,
each equipped with corresponding kernel functions k1, k2, . . . , km and feature maps
φ1, φ2, . . . , φm. From each space Ht, we will learn a corresponding linear projection
Lt. Each Lt will project to a subspace of the output space, so that each point x is
embedded according to

x 7→ {φt(x)}mt=1 7→ [Lt(φt(x))]mt=1 ∈ Rnm,

where [·]mt=1 denotes the concatenation of projections Lt(φt(x)). The (squared) Eu-
clidean distance between the projections of two points x and j is

dM(x, j) =
m∑
t=1
‖Lt(φt(x))− Lt(φt(j))‖2. (5.10)

If we substitute Equation 5.10 in place of dL in Equation 5.4, we can define a
multiple-kernel score function SMKL. By linearity, this can be decomposed into the
sum of single-kernel score functions:

SMKL ({Lt}, x, y) =
∑

i∈X+
x , j∈X−x

yij
dM(x, j)− dM(x, i)
|X+

x | · |X−x |

=
m∑
t=1

SHt(Lt, x, y). (5.11)

Again, we formulate an optimization problem as in Equation 5.5 by regularizing each
Lt independently:

min
{Lt},ξ

m∑
t=1
‖Lt‖2

HS + C

n

∑
x∈X

ξx s. t. (5.12)

∀x, y : SMKL({Lt} , x, y∗x) ≥ SMKL({Lt} , x, y)

+ ∆(y∗x, y)− ξx.

The representer theorem may now be applied independently to each Lt, yield-
ing L∗t = MtΦT

t . We define positive semi-definite matrices W t = MT
t Mt specific to
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Algorithm 5 Multiple Kernel Metric Learning to Rank (MKMLR)
Input: Training kernel matrices K1, K2, . . . , Km,

true rankings y∗1, y∗2, . . . y∗n,
slack trade-off C ≥ 0

Output: n× n matrices W 1,W 2, . . . ,Wm � 0
min

W t�0, ξ

m∑
t=1

tr(W tKt) + C

n

∑
x∈X

ξx

s. t. ∀x ∈ X , ∀y ∈ Y :
m∑
t=1
〈W t, ψKt (x, y∗x)〉 ≥

m∑
t=1
〈W t, ψKt (x, y)〉

+ ∆(y∗x, y)− ξx

each kernel Kt = ΦT
t Φt. Similarly, for kernel Kt, let ψKt be as in Equation 5.8.

Equations 5.9 and 5.11 show that, at the optimum, SMKL decomposes linearly into
kernel-specific inner products:

SMKL ({L∗t}, x, y) =
m∑
t=1
〈W t, ψKt (x, y)〉. (5.13)

We thus arrive at the Multiple Kernel MLR program (MKMLR) listed as Algo-
rithm 5. Algorithm 5 is a linear program over positive semi-definite matricesW t and
slack variables ξ, and is therefore convex.

We also note that like the original score function (Equation 5.3), SMKL is
linear in each yij, so the dependency on y when moving from MLR to MKMLR is
essentially unchanged. This implies that the same cutting plane techniques used by
MLR — i.e., finding the most-violated constraints — may be directly applied in
MKMLR without modification.

5.2 Experiments

In this section we evaluate our optimized similarity by: (i) the accuracy of
segment classification for familiar and unfamiliar classes, (ii) how well the similari-
ties between intra- and inter-class instances are learned, and (iii) the purity of the
clustering performed in the optimized space.

To evaluate the classification and clustering accuracy of the proposed system,



85

Table 5.1: Partitions for familiar and unfamiliar classes for (a) MSRC and (b)
PASCAL 2007.

Set Unfamiliar Familiar
1 1, 2, 7, 11, 20 3–6, 8–10, 12–19, 21

(a) 2 1–4, 10, 16, 17, 19–21 5–9, 11–15, 18
3 1–7, 9–11, 13, 16–19 8, 12, 14, 15, 20, 21
1 1, 3, 10, 14, 20 2, 4–9, 11–13, 15–19

(b) 2 1, 4–6, 9, 11, 14, 15, 17–19 2, 3, 7, 8, 10, 12, 13, 16, 20
3 4–14, 16, 18–20 1–3, 15, 17

we use the MSRC and PASCAL 2007 [15] databases. Our selection of these datasets
was motivated by three factors:

(a) Both datasets contain at least 20 categories, multiple objects per image, and
present challenges such as high intra-class, scale and viewpoint variability.

(b) MSRC provides pixel-level ground truth labels for all the objects in the scene,
offering more detailed information with which we can evaluate our framework.

(c) PASCAL 2007 presents ground truth bounding boxes for a few objects in each
image, making the problem more difficult in cases where segments with different
labels fall inside of the bounding boxes. However, this makes the evaluation more
realistic, as bounding boxes are a popular way of labeling objects for recognition
tasks.

For experiments with MSRC, we use the same train and test split as Lee
and Grauman [46] (hereafter referred to as LG10), and the object detection split
of PASCAL 2007 [15]. We adopt three different partitionings of each dataset into
unfamiliar/familiar classes from LG10 for comparison purposes.

The different class partitions are shown in Table 5.1 and statistics of each
partition are reported in Table 5.2.

Note that the number of examples in PASCAL 2007 is smaller than in MSRC.
This is because PASCAL 2007 images may contain unlabeled regions, and few ob-
jects are labeled in each scene. Training segmentations were sub-sampled in order to
preserve balance within the training set with respect to the bounding box regions.
We retain only the largest two segments per object in each image.
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Table 5.2: The number of known categories (L) and training and test segments in
each partition of the datasets.

MSRC PASCAL 2007
Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

|L| 16 11 6 15 10 5
|Xm| 640 548 322 458 278 174
|Xf| 870 583 318 535 321 183
|Xu| 261 435 813 180 394 532
|X ′f | 4124 3160 2375 583 330 206
|X ′u| 1975 2939 3724 200 453 577

Features Six different appearance and contextual features were computed: SIFT,
Self-similarity (SSIM), LAB color histogram, PHOG, GIST contextual neighbor-
hoods and LAB color histogram for Boundary Support. For each feature type, we
apply an RBF kernel over χ2-distances, with parameters set to match those reported
in [23].

5.2.1 Classification accuracy

In order to evaluate the quality of our similarity space, we perform two differ-
ent classification experiments: one to measure the benefits of training with unlabeled
data when predicting familiar classes, and another to assess the accuracy of predict-
ing if a test segment is familiar or not, and if so, its correct label.

The benefits of unlabeled data

Unlabeled data could potentially introduce noise to the metric learning step.
Therefore, to objectively evaluate the contributions of labeled and unlabeled data
during training, we evaluate classification accuracy by training metrics on three
subsets of the training data: familiar regions (Xm), familiar regions and segments
(Xm∪Xf), and all training segments (Xm∪Xf∪Xu). Due to its dense region labeling,
we focus on the MSRC dataset for this experiment. We restrict the test set to only
familiar classes, and repeat the experiment for each partition of classes.

We also vary which subset of training data is used to form nearest-neighbor
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Table 5.3: Classification accuracy achieved for various training subsets, and retrieval
sets Xm or Xm ∪ Xf.

Xm Xm ∪ Xf
Training subset Set 1 Set 2 Set 3 Set 1 Set 2 Set 3
Xm 0.57 0.49 0.14 0.65 0.64 0.14
Xm ∪ Xf 0.64 0.48 0.72 0.68 0.63 0.80
Xm ∪ Xf ∪ Xu 0.65 0.56 0.72 0.68 0.66 0.80

predictions — the retrieval set — at test time: either just Xm, or Xm ∪ Xf. This
allows us to evaluate the impact on accuracy due to auto-segmentation of training
images.

Table 5.3 illustrates that including both Xf and Xu during training provides
significant improvements in test-set accuracy. Similarly, including Xf in the retrieval
set at prediction time also provides significant boosts in performance. This is likely
due to the fact that test images are automatically segmented, and Xf provides ex-
amples closer in distribution to the test set.

Classification of unfamiliar segments
We evaluate our learned similarity space by computing classification accuracy over
the full test set (X ′f ∪X ′u). For each partition (Set 1,2,3) of MSRC and PASCAL 2007,
we train a metric with MKMLR on the entire training set. For comparison purposes,
we repeat the experiment on metrics learned by MKLMNN, as well as the “native”
feature spaces formed by taking the unweighted combination of base kernels. At test
time, a segment is predicted to belong either to one of the familiar classes L, or the
unfamiliar class `0. The overall accuracy is reported in Table 5.4.

When there are fewer familiar classes from which to choose, the problem
becomes easier because more test segments must belong to the unfamiliar class.
This trend is demonstrated by the increasing accuracy of each algorithm from Set 1
(5 unfamiliar classes) to Set 2 (10 unfamiliar) and Set 3 (15 unfamiliar).

In MSRC, where image regions are densely labeled, we observe that MKMLR
consistently outperforms MKLMNN and the native space, although the gap in per-
formance is largest when more supervision is provided. On PASCAL 2007, however,
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Table 5.4: Nearest-neighbor classification accuracy of MKMLR, MKLMNN, and
the native feature space.

Algorithm Set 1 Set 2 Set 3
Native 0.51 0.59 0.71

MSRC MKLMNN 0.61 0.57 0.69
MKMLR 0.62 0.61 0.72
Native 0.31 0.58 0.74

PASCAL07 MKLMNN 0.32 0.51 0.67
MKMLR 0.33 0.54 0.70

we observe that the unweighted kernel combination achieves the highest accuracy
for Sets 2 and 3, i.e., the sets with the least supervision. This may be attributed to
MKLMNN and MKMLR over-fitting the training set, which is considerably smaller
than that of MSRC (see Table 5.2).

5.2.2 Intra-class versus Inter-class affinities

Our second evaluation replicates an experiment on MSRC Set 1 in LG10
(Table 1, [46]). A distance matrix is computed for all pairs of test segments predicted
to be unfamiliar by the segment classification step. Then, using the ground-truth
labels, the average precision is computed for each test segment. Finally, the MAP
score is computed for all unfamiliar classes.

Relying on the segment classification step to determine which points are fa-
miliar and unfamiliar may introduce bias to the evaluation. We therefore repeat
the above experiment using ground-truth familiar and unfamiliar labels. Table 5.5
shows the MAP results for both experiments. For completeness, we again compare
the performance of MKMLR to MKLMNN [23]. 5

We observe in the unbiased evaluation (Table 5.5b) that MKMLR outperforms
the other methods under consideration for all categories.

5In Table 5.5, MKLMNN has no MAP score for class tree because there was only one test
segment of that class predicted as unfamiliar.
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Table 5.5: Comparison of MAP scores for Set 1 in MSRC. (a) MAP for segments
predicted to be unfamiliar. (b) MAP on true unfamiliar segments.

Airplane Bicycle Building Cow Tree
(a) [46] 0.36 0.21 0.32 0.41 0.36

[23] 0.75 0.51 0.38 0.71 -
Ours 0.84 0.58 0.38 0.41 0.70

(b) [23] 0.68 0.50 0.44 0.59 0.59
Ours 0.81 0.55 0.45 0.71 0.66

5.2.3 Cluster purity

Our final evaluation concerns the purity of clusters discovered in the test data.
We compare the native (unweighted) kernel combination, MKLMNN, and MKMLR
on each partition of MSRC and PASCAL 2007. For each set, we replicate the exper-
iment of LG10 (Figure 5, [46]), and using the ground-truth labels, perform spectral
clustering in the optimized space on the test segments belonging to unfamiliar classes.
We vary the number of clusters c ∈ [2, 35], and for each c, compute the average purity
of the clustering, where a cluster B’s purity is defined as

purity(B) = max
`∈L
|{x′ ∈ B ∧ `(x′) = `}| /|B|.

For each value of c, we generate 10 different clusterings, and report the average
purity. The resulting mean purity curves are reported in Figure 5.3.

We observe that in all cases, the mean purity achieved by MKMLR is consis-
tently above that of the native space (almost always significantly so), and is often
significantly above that achieved by MKLMNN.

The reduced purity scores for PASCAL 2007 (relative to MSRC) can be at-
tributed to two facts. First, the sparsity of ground truth labels in PASCAL 2007
indicates that the evaluation here is somewhat less thorough than for MSRC. Sec-
ond, as described in Section 5.2.1 , the reduced size of the training set leads to some
overfitting by both MKLMNN and MKMLR. However, while in Section 5.2.1 we
observed a decrease in classification accuracy (compared to the native space), here
we observe an increase in cluster purity. This indicates that MKMLR is learning
some useful information which is not directly reflected in classification accuracy.



90

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Purity  Set 1 Pascal

number of clusters

p
u
ri
ty

 

 

mklmnn

no learning

mkmlr

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Purity  Set 3 Pascal

number of clusters

p
u
ri
ty

 

 

mklmnn

no learning

mkmlr

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Purity  Set 5 Pascal

number of clusters

p
u

ri
ty

 

 

mklmnn

no learning

mkmlr

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Purity  Set 5 MSRC

number of clusters

p
u

ri
ty

 

 

mklmnn

no learning

mkmlr

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Purity Set 3 MSRC

number of clusters

p
u

ri
ty

 

 

mklmnn

no learning

mkmlr

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Purity Set 1 MSRC

number of clusters

p
u

ri
ty

 

 

mklmnn

no learning

mkmlr

Set 1 MSRC : 5 unknowns/ 16 knowns 

P
u

r
it

y

number of clusters

Set 2 MSRC : 10 unknowns/ 11 knowns 

number of clusters

P
u

r
it

y

Set 3 MSRC : 15 unknowns/ 6 knowns 

number of clusters

P
u

r
it

y

Set 1 PASCAL : 5 unknowns/ 15 knowns Set 2 PASCAL : 10 unknowns/ 10 knowns Set 3 PASCAL : 15 unknowns/ 5 knowns 

number of clustersnumber of clustersnumber of clusters

P
u

r
it

y

P
u

r
it

y

P
u

r
it

y

MKMLR

Native   

MKLMNN

MKMLR

Native   

MKLMNN

MKMLR

Native 

MKLMNN

MKMLR

Native   

MKLMNN

MKMLR

Native   

MKLMNN

MKMLR

Native   

MKLMNN

Figure 5.3: Mean cluster purity curves. Top plots correspond to different sets in
MSRC, and bottom plots correspond to PASCAL 2007. Error bars correspond to
one standard deviation. Dashed lines correspond to bounds on purity scores reported
by LG10 (Figure 5e, [46]).

5.3 Implementation Details

Our implementation of Algorithm 5 is based upon the code provided by the
authors of [53]. The implementation uses the 1-slack margin-rescaling cutting plane
algorithm [36] to solve for all W t within a prescribed tolerance ε = 0.01. We further
constrain eachW t to be a diagonal matrix. This simplifies the semi-definite program
to a linear program. For m kernels and n training points, this also reduces the
number of parameters needed to learn from m

(
n
2

)
(m symmetric n-by-n matrices) to

mn.
In all experiments with MKMLR, we choose the ranking loss ∆ as the nor-

malized discounted cumulative gain (NDCG) truncated at 10. Slack parameters C
and kernel bandwidth σ for spectral clustering were found by cross-validation on
the training set. For testing, we fix k = 17 as the number of nearest neighbors for
classification across all experiments. Multiple stable segmentations were computed
— 9 different segmentations for each image — each of which contains between 2 and
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10 segments, resulting in 54 segments per image [65,73].

5.4 Discussion

In this chapter we have introduced a novel models that address the problem
discovering objects in images when training with weakly labeled data. Our work in-
troduces a novel framework for improving object class discovery, which by optimizing
similarity by learning from a set of familiar category labels, it is able to more ac-
curately cluster unlabeled test data. We show that including unlabeled data during
training can significantly improve the quality of the learned space. In future work,
we intend to integrate this system with an active learning framework, to continuously
explore large sets of object categories.

Portions of this chapter are based on the paper “From Region Similarity to
Category Discovery” by C. Galleguillos, B. McFee, S. Belongie and G. Lanckriet [24].
I was responsible for the design of the object discovery framework, literature survey,
experiment design, and the execution of the experiments. I also contributed with
the analysis of the experiments and the writing of the paper.



Chapter 6

Conclusion

The importance of context in object recognition has been discussed for many
years. Scientists from different disciplines, such as cognitive sciences and psychol-
ogy, have considered context information as a path to efficient understanding of the
natural visual world. In computer vision, several object recognition models have
addressed this point, confirming that contextual information can help to successfully
improve and disambiguate appearance inputs in recognition tasks.

In this dissertation, I explored different types of contextual features, intro-
duced new approaches for describing context at the most common levels of extraction
and investigated different types of interactions. I have also proposed novel machine
learning algorithms in order to more efficiently integrate context information into
object recognition frameworks.

With respect to extracting context from different sources, we were able to
successfully learn semantic and spatial context from image labels by introducing a
novel contextual object recognition model, based on co-occurrence, location and ap-
pearance. This model maximizes object label agreement according to the contextual
relevance to compensate for the ambiguity in objects’ visual appearance. With the
continued introduction of publicly available datasets possessing detailed annotations
over larger numbers of categories, the proposed system is designed to scale favor-
ably: stronger semantic and spatial context will provide more avenues for improving
recognition accuracy.

In regard to the issue of modeling contextual interactions, this work has shown
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it is possible to learn interactions that capture different relationships within the
scene: objects interactions can better capture interactions from objects that can be
fairly apart in the scene from each other; pixel interactions, in the other hand, can
capture more detailed interactions between objects that are closely to each other
(e.g. boundaries between objects).

Concerning the integration of these contextual features, I have presented a
multiple kernel learning algorithm that efficiently integrates appearance features with
pixel and region interaction data. Our model, MKLMNN, combines features in a
unified similarity metric optimized for nearest neighbor classification. Object level
interactions are modeled by a conditional random field (CRF) to produce the final
label prediction. Contributions of each contextual interaction are investigated in
this work, and a significant improvement over current state-of-the-art contextual
frameworks is obtained by combining these levels.

I believe that contextual information can benefit recognition tasks when con-
text is considered as part of recognizing certain objects in images, and as an advocate
for label agreement to disambiguate object identity. Using context at both stages of
the recognition pipeline gives a significant improvement over using only appearance
information. However, if the target object is the only labeled object in the database,
there are no sources of contextual information we can exploit. This fact points out
the need for external sources of context that can provide this information when it
cannot be extracted from training data, and for new models that can extract context
from weakly labeled images.

Finally, regarding the availability of strongly labeled data for object recogni-
tion models, I have proposed a novel model that tackles the problem of discovering
object categories from weakly labeled data. By extending our work in context-based
object recognition, a novel framework for improving object class discovery is intro-
duced. The model learns an optimal object similarity space from limited information,
that includes only the location and presence of certain objects in the image. As a
result of optimizing region similarity by learning from a set of known category labels,
we are able to more accurately cluster unlabeled test data and therefore discover new
object categories.



Appendix A

A.1 Gradient descent derivation

To solve the optimization problem listed as Algorithm 3, we implemented
a gradient descent solver. We show here the derivation of the gradient. We first
eliminate the slack variables by moving margin constraints into the objective:

min
W z�0

f1 + β · f2 + γ · f3

where f1 =
∑
i

∑
i∈N+

i

d(si, sj),

f2 =
∑
ij`

η (1 + d(si, sj)− d(si, s`)) ,

f3 =
m∑
z=1

tr(W zKz),

and

η(x) =


0 x < 0

x otherwise

is the hinge-loss function. We can now derive the gradient of the objective
with respect to W z in three pieces, corresponding to the three terms f1, f2, f3.

By the cyclic property of the trace, a distance ‖Kz
i −Kz

j ‖2
W z can be expressed

as a matrix inner product:

‖Kz
i −Kz

j ‖2W z = (Kz
i −Kz

j )TW z(Kz
i −Kz

j ) = tr(W z(Kz
i −Kz

j )(Kz
i −Kz

j )T).
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It follows that the gradient for the first term is

∂f1
∂W z

=
∑
i

∑
j∈N+

i

(Kz
i −Kz

j )(Kz
i −Kz

j )T.

Although η is non-differentiable at 0, we can write down a sub-gradient for f2 as
follows:

∂f2
∂W z

=
∑

[d(si, s`)− d(si, sj) < 1]
(
(Kz

i −Kz
j )(Kz

i −Kz
j )T − (Kz

i −Kz
` )(Kz

i −Kz
` )T

)
,

where [x] is the indicator function of the event x.
Finally, the gradient for the regularization term is simply

∂f3
∂W z

= Kz.

By linearity, the (sub-)gradient of the objective function is the sum of these three
(sub-)gradients. After each gradient step, the updated W z matrix is projected back
onto the PSD cone by calculating its spectral decomposition, W z = V ΛV T, and
thresholding the eigenvalues: W z 7→ V (max(Λ, 0))V T. When each W z is restricted
to be diagonal, the decomposition step is unnecessary since the diagonal elements
contain the eigenvalues; diagonal PSD projection can thus be accomplished byW z 7→
max(W z, 0).
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