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Abstract

The Shapley value is one of the most important normative di-
vision schemes in cooperative game theory, satisfying basic
axioms. However, some allocation according to the Shapley
value may seem unfair to humans. In this paper, we develop
an automatic method that generates intuitive explanations for
a Shapley-based payoff allocation, which utilizes the basic ax-
ioms. Given any coalitional game, our method decomposes
it to sub-games, for which it is easy to generate verbal expla-
nations, and shows that the given game is composed of the
sub-games. Since the payoff allocation for each sub-game is
perceived as fair, the Shapley-based payoff allocation for the
given game should seem fair as well. We run an experiment
with 630 human participants and show that when applying our
method, humans perceive the Shapley-based payoff allocation
as more fair than the Shapley-based payoff allocation without
any explanation or with explanations generated by other meth-
ods.

1 Introduction
An important research question in cooperative game theory
is that of fair division: if agents form a coalition to achieve
a common goal, how should they split the revenue or costs
fairly? Various notions of fairness have been proposed in the
cooperative game theory literature, like the Nash-Harsanyi
bargaining solution (Harsanyi, 1959, 1963) or the nucle-
olus (Schmeidler, 1969), but the Shapley value (Shapley,
1953) has been termed the most important normative divi-
sion scheme in cooperative game theory (Winter, 2002). The
Shapley value is based on the idea that the payoff of the game
should be divided such that each agent’s share is proportional
to its contribution to the payoff. Specifically, the Shapley
value is the average expected marginal contribution of one
agent to all possible subsets of agents. Indeed, the Shapley
value is considered fair since it is the only payoff allocation
that satisfies the following four desirable axioms: efficiency,
symmetry, null player property and additivity (Hart, 1989)
(see Section 3 for formal definitions). We note that there are
several equivalent sets of axioms that characterize the Shap-
ley value (Moulin, 2004).

While the axioms satisfied by the Shapley value seem nec-
essary, humans presented with an allocation according to the
Shapley value may sometimes not observe it as fair (we ex-
perimentally support this claim in Section 7). For example,
consider the following game with three agents: r, l1, and l2,
which is also known as the classical “glove game”. Agents
l1 and l2 have a left-glove and agent r has a right-glove. A

pair of left and right gloves is worth $12, but a single glove
is worth nothing. If all agents collaborate, the Shapley value
allocates $8 to agent r and only $2 to l1 and $2 to l2. While
it seems plausible that agent r should receive a higher payoff,
a right-glove alone is worth nothing and thus, it may seem
unfair that the payoff for this agent is 4-times more than each
of the other agents. However, any other allocation would vio-
late at least one of the axioms. It is thus desirable to increase
human acceptance of the allocation according to the Shapley
value, which can be achieved by providing explanations. In
this paper, we develop an automatic method that generates
intuitive explanations for a Shapley-based payoff allocation.

There are many possible ways for generating explanations
for a Shapley-based payoff allocation. Indeed, Procaccia
claimed that “the central role of axioms should be to help ex-
plain the mechanism’s outcomes to participants” (Procaccia,
2019), and this direction has been successfully applied in the
field of fair division by the Spliddit website (Goldman & Pro-
caccia, 2015). We follow this idea, and build our explanations
on top of the four axioms of the Shapley value.

Now, the essence of our explanation is that any game is de-
composed into several sub-games that their Shapley alloca-
tion is easier to perceive as fair. Specifically, any sub-games
is built such that all the agents are either null players or equiv-
alent to one another, and the values are either all non-negative
or all non-positive. According to the null player axiom each
agent who is a null player should receive a payoff of 0, and
according to the symmetry and efficiency axioms all other
agents should equally share the total outcome, and thus the
Shapley allocation in each sub-game is intuitively fair. For
example, the “glove game” can be decomposed into few sub-
games; in one of the sub-games, agent r obtains a value of $12
when collaborating with l1, but not when collaborating with
l2. When all three agents collaborate, they obtain a value of
$12. In this sub-game l2 is a null player, and agents r and l1
are equivalent. Thus, the Shapley allocation of $6 to agent r,
$6 to agent l1 and $0 to agent l2 is intuitively fair. Finally, fol-
lowing the additivity axiom, since the Shapley allocation of
every sub-game is intuitively fair, and the sum of the Shapley
allocations in each sub-game is equal to the Shapley alloca-
tion in the original game, then the latter is easier to perceive
as fair. We note that this process follows the arguments in the
proof of the uniqueness of the Shapley value (Shapley, 1953).

Practically, we do not directly present the axioms to the
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users. Instead, our algorithm, which we termed X-SHAP, de-
composes any coalitional game into several sub-games, and
automatically generates a brief verbal explanation that ac-
companies each sub-game. For example, recall the sub-game
of the “glove game” that we have previously mentioned. X-
SHAP presents the sub-game to the user, and generates the
following verbal explanation: “In this scenario, l2 does not
contribute anything. r and l1 are identical and always con-
tribute the same. Therefore, the total revenue, which is $12,
should be equally divided between r and l1, and thus, the fair
division is r : $6, l1 : $6, l2 : $0.” Similarly, X-SHAP presents
the other sub-games along with their explanations. X-SHAP
finalizes its explanation by stressing out that since the sum of
all the sub-games is the original game, the proposed division
is fair as it is the sum of all the sub-games divisions.

In order to evaluate the performance of X-SHAP, we con-
ducted a survey with human participants. The survey exam-
ined six coalitional games, representing a variety of scenarios.
Each of the coalitional games was presented to the partici-
pants along with its Shapley payoff allocation as a suggestion
for dividing the payoff among the agents. Then, each sce-
nario was accompanied by one of the following: the complete
explanations of X-SHAP, the decomposition into sub-games
of X-SHAP without their verbal explanations, a heuristic de-
composition into sub-games, a heuristic verbal explanation, a
fixed general explanation of the benefits of the Shapley value,
and no explanation at all. The participants were asked to
rate the proposed allocation by indicating to what extent they
agree or disagree that it is fair. Overall, 630 different peo-
ple participated in the survey, each answering two different
coalitional games with different explanation types. The ex-
planations that were generated by X-SHAP achieved higher
fairness ratings compared to the other explanations in all the
games examined. This indicates that humans perceive the
Shapley payoff allocation fairer if they receive X-SHAP’s ex-
planations.

To summarize, the main contribution of this paper is that
it provides the first successful automatic method that gen-
erates customized explanations of the Shapley allocation for
any given coalitional game.

2 Related Work
Our work is related to the field of Explainable AI (XAI) (Core
et al., 2006; Gunning et al., 2019). In a typical XAI setting,
the goal is to explain the output of an AI system to a human.
This explanation is important for allowing the human to trust
the system, better understand, and to allow transparency of
the system’s output (Adadi & Berrada, 2018). Other XAI
systems are designed to provide explanations, comprehensi-
ble by humans, for legal or ethical reasons (Doran, Schulz,
& Besold, 2017). For example, an AI system for the medical
domain might be required to explain its choice for recom-
mending the prescription of a specific drug (Holzinger, Bie-
mann, Pattichis, & Kell, 2017). Indeed, most of the work on
XAI concerned the explanation of a machine learning based

model. In this paper, we develop a system for explaining a so-
lution concept that is based on a set of axioms. Our work can
be also seen as an instance of x-MASE (Kraus et al., 2020),
explainable decisions in multiagent environments.

The work that is closest to ours, albeit in the context of
voting, is by Cailloux and Endriss (2016). They propose a
logic-based system for providing justifications for the out-
come of a voting rule. They also develop an algorithm that
automatically derives a justification for any outcome of the
Borda rule. The algorithm’s main idea is to decompose the
preference profile into a sequence of sub-profiles, and use one
of six axioms for providing explanations for the sub-profiles
and for their combinations. This approach is further extended
by Peters et al. (2020), which investigate the required length
of the sequence of explanations. Our approach for explain-
ing the Shapley allocation is also based on axioms, and we
also decompose the given coalitional game into a set of sub-
games, which together compose an explanation for the given
coalitional game.

Another work that analyzes a decomposition of a coali-
tional game in relation with the Shapley value is the paper
by Stern and Tettenhorst (2019). They provide a new charac-
terization of the Shapley value, by showing that a coalitional
game can be decomposed into sub-games, one sub-game for
each agent. They prove that the Shapley value equals the
value of the grand coalition in each agent’s sub-game. Sim-
ilarly, de Clippel (2018) provides a new axiomatization for
the Shapley value by replacing the additivity axiom with the
difference formula (DF) axiom.

Spliddit (Goldman & Procaccia, 2015) is a website imple-
menting algorithms for various division tasks (e.g., rent di-
vision), which also explains how the outcomes satisfy cer-
tain fairness requisites. While the website enables users to
compute the Shapley value in a ride-sharing context, it pro-
vides only a general explanation that states the benefits of the
Shapley value. Our work can thus serve as an extension for
Spliddit by providing customized explanations for the Shap-
ley value.

The Shapley value can also be applied for increasing in-
terpretability of a machine learning model. For example,
Štrumbelj and Kononenko (2013) provide explanations based
on quantifying the importance of the features by applying the
Shapley value.

3 Definitions
A coalitional game is defined by a pair (N,v), where N is a
finite set of n agents and v is a function that associates every
subset of N, a coalition, with a real value that represents the
collective payoff its members can gain should they cooper-
ate, i.e., v : 2N → R. The function v is called the character-
istic function. We assume that v always satisfies v( /0) = 0. A
characteristic function v is super-additive if for any pair of
disjoint subsets S,T it holds that v(S∪T )≥ v(S)+ v(T ), and
it is sub-additive if v(S∪T )≤ v(S)+ v(T ).

The main assumption in cooperative game theory is that
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the grand coalition N, which consists of all the agents, will
form. A typical goal is then to allocate the value v(N) among
the agents in some fair way. A solution concept is a vector
φ ∈ RN that represents the allocation to each agent i ∈ N.

The Shapley value is a solution concept that assigns a pay-
off to each agent according to their marginal contribution
(Shapley, 1953). Formally, for each agent i, Shi(N,v) =
∑S⊆N|i∈S

(|S|−1)!(n−|S|)!
n! (v(S)− v(S\{i})).

Shapley value axioms
The Shapley value is the only solution concept that simulta-
neously satisfies the following axioms (Hart, 1989).

Definition 1 (efficiency). The sum of all agents’ payoff
equals the grand coalition’s value. That is, ∑i∈N φi(N,v) =
v(N).

Definition 2 (symmetry). Two agents i and j are said to be
equivalent if for any coalition S ⊆ N that contains neither
i nor j, it holds that v(S∪{i}) = v(S∪{ j}). The symmetry
axiom requires that equivalent agents receive the same payoff,
i.e., φi(N,v) = φ j(N,v).

Definition 3 (null player). Agent i is said to be a null player if
for every coalition S⊆N \{i}, it holds that v(S∪{i}) = v(S).
The null player axiom requires that the payoff for the null
player will be 0, i.e., φi(N,v) = 0.

Definition 4 (additivity). Given two coalitional games (N,v)
and (N,w), let v+w be a function, v+w : 2N → R, such that
for every S ⊆ N, (v+w)(S) = v(S) +w(S). The additivity
axiom requires that the allocation to every agent i ∈ N in the
coalitional game (N,v+w) satisfies φi(N,v+w) = φi(N,v)+
φi(N,w).

4 Coalitional Games that are Easy to Explain
While automatically generating explanations for any coali-
tional game may seem as a complex task, there exist coali-
tional games that it is possible to automatically generate com-
pelling explanations for them. In this section we define easy-
to-explain (ETX) games and show how to generate the appro-
priate explanations for them. In the next section, we use ETX
games for generating explanations for any coalitional game.

Definition 5 (clean). A coalitional game (N,v) is said to
be clean, if v is super-additive and consists of non-negative
values only, or if v is sub-additive and consists of only non-
positive values.

Intuitively, a clean game represents a “common” scenario.
Namely, a clean game can be associated with either a mone-
tary revenue scenario or a taxation scenario. If a coalitional
game consists of non-negative values only, then each coali-
tion in this game may represent the collective revenue its
members gain should they cooperate. It is common to as-
sume that in a revenue scenario a collaboration is formed if
all of the participating agents benefit from the collaboration.
Therefore, a clean game requires that this game should be
super-additive so that the revenue of each coalition is at least
as much as the sum of any of its disjoint subsets. On the other

hand, if the coalitional game consists of non-positive values
only, it can be associated with a taxation scenario, in which
larger coalitions induce higher taxes.
Definition 6 (easy-to-divide (ETD)). A coalitional game
(N,v) is easy-to-divide if all the agents that are not null-
players are equivalent to each other.

The intuition behind this definition is as follows. Let (N,v)
be an easy-to-divide coalitional game, and let p be the num-
ber of null-players in (N,v). If we accept that a solution con-
cept should follow the efficiency, null-player and symmetry
axioms, then it is easy to calculate the allocation in an easy-
to-divide game. Namely, all null-player agents receive a pay-
off of 0 and all of the other agents receive a payoff of v(N)

(|N|−p) .
Clearly, this is also the Shapley value for this game.
Definition 7 (easy-to-explain (ETX)). A coalitional game
(N,v) is easy-to-explain if it is clean and easy-to-divide.

Clearly, a game that is easy-to-explain represents a com-
mon scenario (since the game is clean) and it is easy to under-
stand its payoff allocation (since the game is easy-to-divide).
Consider the following examples, which illustrate the ETX
definition.
Example 1. Let N = {a,b,c}. There are five games, (1)-(5),
with the following characteristic functions:

Coalition (1) (2) (3) (4) (5)
{a} 1 0 1 0 1
{b} 0 0 2 0 1
{c} 0 0 0 0 0
{a,b} 1 -1 4 1 -1
{a,c} 1 0 2 1 1
{b,c} 0 0 2 0 1
{a,b,c} 1 -1 5 1 -1

Games (1) and (2) are ETX. Indeed, it is natural to assume
that a fair division of the revenue in game (1) assigns the to-
tal payoff to a, since b and c are null players. Similarly, a
fair division of the tax in game (2) assigns −0.5 to the two
equivalent agents a and b. Games (3) and (4) are clean but
not ETD, and game (5) is ETD but not clean. Indeed, it is not
straightforward to determine a fair division in these games.

Now, given an ETX game, it is possible to automatically
generate a verbal explanation for the game based on the fact
that the game is also ETD. Specifically, we need to find the
equivalent agents and the null players. Then, it is easy to
generate an explanation that points out which agents do not
contribute to the outcome and which agents have an equal
contribution and thus the total outcome should be equally di-
vided between them. The explanation should also consider
whether the game describes revenues or taxation. For exam-
ple, if agents a and c are equivalent, agent b is a null-player,
the game describes revenues, and the total revenue is $300,
it is possible to generate the following explanation: “In this
scenario, b does not contribute anything. a and c are identical
and always contribute the same. Therefore, the total revenue,
which is $300, should be equally divided between a and b,
and thus, the fair division is a : $150,b : $0,c : $150.”
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5 X-SHAP
In this section we propose the X-SHAP algorithm, which
given any coalitional game, automatically decomposes the
coalitional game into a number of ETX sub-games. Given
the ETX sub-games, X-SHAP automatically generates verbal
explanations for each of them (as described in Section 4) and
presents the payoff allocations along with the explanations to
human users. It is expected that humans will find the Shap-
ley value payoff to be fair in each of the ETX sub-games, and
thus the Shapley value for the given game, which is composed
of the sub-games, should seem fair to humans as well.

The X-SHAP algorithm works as follows. It receives a
coalitional game (N,v) as an input and provides a set X
of characteristic functions that maintains the following two
properties: (i) Each coalitional game (N,x), where x ∈ X , is
easy-to-explain. (ii) The sum of all the characteristic func-
tions in X equals v. That is, ∑x∈X x = v. Note that since
the Shapley value satisfies the additivity axiom, the sum of
Shapley value payoffs assigned to each agent i ∈ N in each
characteristic function in X is equal to the Shapley value pay-
off for i in (N,v). That is, ∀i ∈ N,∑x∈X Shi(N,x) = Shi(N,v).
Once the set X is generated, we generate verbal explanations
for each of the sub-games.

Algorithm 1 describes the pseudo-code for X-SHAP. The
algorithm iterates over all subsets S ⊆ N in ascending order
according to |S|. It maintains a characteristic function accum
that accumulates all the characteristic functions it builds in
each iteration. For each subset S whose value in v is different
from its value in accum, X-SHAP adds the following charac-
teristic function x to X . For each subset of N, T , that contains
S, x(T ) is set to the difference between v(S) and accum(S).

Algorithm 1: X-SHAP
Input : A coalitional game (N,v).
Output: A set of characteristic functions X , along

with their verbal explanations.
1 X ← /0

2 Let accum,x be characteristic functions on N
3 Initialize accum to 0 for any subset
4 for i← 1 to |N| do
5 for every S⊆ N, such that |S|= i do
6 Initialize x to 0 for any subset
7 if v(S) 6= accum(S) then
8 for every T ⊇ S do
9 x(T )← v(S)−accum(S)

10 X ← X ∪{x}
11 accum← accum+ x

12 Generate a verbal explanation for each x ∈ X
13 return X along with the verbal explanations

The number of characteristic functions in X is at most the
number of subsets in N, which is, in fact, the size of the input.

Consider the following example, which illustrates the out-

put that is generated by the X-SHAP algorithm.

Example 2. Consider the following coalitional game (N,v),
in which N = {a,b,c}, and v associates to every subset of
N the following values: v({a}) = v({b}) = 0, v({c}) =
100, v({a,b}) = 300, v({a,c}) = 200, v({b,c}) = 100, and
v({a,b,c}) = 500. The Shapley payoff allocation for each of
the agents in this game is Sha(N,v) = 200,Shb(N,v) = 150
and Shc(N,v) = 150. It is not intuitive that this payoff allo-
cation is indeed fair. For this input, X-SHAP outputs a set X
with the following characteristic functions:

Coalition (1) (2) (3)
{a} 0 0 0
{b} 0 0 0
{c} 100 0 0
{a,b} 0 300 0
{a,c} 100 0 100
{b,c} 100 0 0
{a,b,c} 100 300 100

Each of these functions is ETX and their sum equals v, i.e.,
∑x∈X x = v. The Shapley payoff allocation for each of the
coalitional games (N,x), where x ∈ X is:

Agent (1) (2) (3)
Sha 0 150 50
Shb 0 150 0
Shc 100 0 50

In addition, X-SHAP provides a verbal explanation for each
sub-game. For example, it provides the following verbal ex-
planation for the second sub-game: “In this scenario, c does
not contribute anything. a and b are identical and always
contribute the same. Therefore, the total revenue, which is
$300, should be equally divided between a and b, and thus,
the fair division is a : $150,b : $150,c : $0.”

We now prove that the set X of characteristic functions that
is returned by Algorithm 1 maintains the required properties.

Theorem 1. Each coalitional game (N,x), where x ∈ X, is
easy-to-explain.

Proof. Given a characteristic function x ∈ X , it corresponds
to a subset S⊆ N. X-SHAP constructs x such that it assigns a
non-zero value, val, for every T ⊇ S, and a zero value oth-
erwise. Therefore, for any agent i /∈ S and for every sub-
set P ⊆ N \ {i}, it holds that x(P ∪ {i}) = x(P). That is,
every agent i /∈ S is a null player. On the other hand, ev-
ery agent i ∈ S is not a null player, since x(S \ {i}) = 0 but
x(S) = val 6= 0. In addition, for every two agents i, j ∈ S and
any subset P⊆N \{i, j}, it holds that x(P∪{i}) = x(P∪{ j}).
That is, every two agents i, j ∈ S are equivalent. Therefore,
the coalitional game (N,x) is ETD. Finally, for every pair
of disjoint subsets P1,P2, these are the possible cases: (i)
P1,P2 + S, and thus v(P1) = v(P2) = 0. Now, if val is positive
then v(P1 ∪P2) ≥ v(P1) + v(P2), and if val is negative then
v(P1 ∪P2) ≤ v(P1)+ v(P2). (ii) Without loss of generality,
P1 ⊇ S but P2 + S. We get that v(P1) = val but v(P2) = 0. In
addition, since P1∪P2 ⊇ S, v(P1∪P2) = val = v(P1)+v(P2).
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Therefore, if val is positive then x is super-additive and if val
is negative then x is sub-additive. That is, (N,x) is clean, and
since (N,x) is also ETD it is ETX.

Theorem 2. The sum of all the characteristic functions in X
equals v. That is, ∑x∈X x = v.

Proof. The algorithm iterates over all S⊆N. At the end of an
iteration in which S⊆N is considered, accum(S) equals v(S).
This is because either accum(S) already equals v(S) or x(S)
is set to v(S)−accum(S) in line 9, and after line 11 accum(S)
becomes v(S). After considering S the algorithm does not
consider any S′ ⊆ S, and thus all following iterations do not
change accum(S). Finally, according to the algorithm con-
struction, accum holds the sum of all functions x ∈ X when
the algorithm terminates. Hence, ∑x∈X x = accum = v.

6 Experimental Design
We begin our evaluation by validating the concept of ETX. To
that end, we first ran a survey on Mechanical Turk (Paolacci,
Chandler, & Ipeirotis, 2010). The participants were first given
an appropriate background on coalitional games in general
and instructions specific to the survey. To verify that the par-
ticipants read and understood the instructions, each partici-
pant was required to correctly answer a short quiz with four
questions in order to proceed. The participants were then pre-
sented with an ETX game in which the agents were referred to
as entities, and the values of the characteristic function were
referred to as revenues. The game was composed of three en-
tities, marked as a,b,c, and the participants were presented
with a table of revenues of the entities when they are alone
and when they collaborate with each other. Then, each partic-
ipant was presented with one of the following possible payoff
allocation: 1. The Shapley payoff allocation. 2. The inverse
allocation. In this allocation, the agents that are null players
equally share the total revenue and all the other agents receive
a payoff of $0.

The participants were asked to rate the proposed payoff al-
location by indicating to what extent they agree or disagree
that it is fair. The participants could choose one of seven op-
tions on a Likert scale (Joshi, Kale, Chandel, & Pal, 2015),
between ‘strongly agree’ (7) to ‘strongly disagree’ (1), with
the middle being ‘neither agree nor disagree’ (4). We used
two ETX games: the first two ETX games in the set X from
Example 2 (as shown in columns (1) and (2) there). Each
payoff allocation was presented to 30 different participants
for each of the two ETX games. Overall, we had 120 par-
ticipants in this initial experiment, and the reward for each
participant was $0.3.

In our main experiment, we evaluated the explanation gen-
erated by X-SHAP. We ran a similar survey on Mechanical
Turk, in which the participants were presented with a coali-
tional game and the Shapley payoff allocation. Then, each
participant was presented with one of the following:

1. X-SHAP’s complete explanation. Participants were able
to switch between all the sub-games so that they could exam-

ine each sub-game individually. For each sub-game they were
presented with its allocation according to the Shapley value
with a brief verbal explanation. Finally, each participant was
shown how the sum of all the sub-games and their Shapley
value allocation equal to the original game and its Shapley
value.

2. X-SHAP’s decomposition into sub-games without their
verbal explanations.

3. Sub-game decomposition: A heuristic decomposition of
the game into sub-games, so that for each subset whose value
in the original game is different from 0, there is a sub-game
where this subset gets its original value and all other subsets
get the value 0. The graphical user interface was identical to
that of X-SHAP’s.

4. Marginal contribution: A verbal explanation describing
the largest marginal contribution of each agent.

5. Fixed: A fixed general explanation of the Shapley value
that was taken from the Spliddit website; it states that the
allocation is based on the marginal contribution of each agent
to each possible coalition.

6. No explanation at all.
The participants were asked to rate the proposed payoff al-

location on a Likert scale, as in the initial experiment. The
participants were then presented with a different coalitional
game along with its Shapley payoff allocation accompanied
by one of the above-mentioned explanation types (different
from the explanation type received for the first scenario).
They were again asked to rate the proposed payoff allocation.

Table 1 specifies the coalitional games that we used for the
survey. In each of these games (N,v), N = {a,b,c}, and all
revenues are non-negative. The Shapley payoff allocation for
each of the scenarios appears in Table 2.

Table 1: The coalitional games that we used for the survey.

Coalition (1) (2) (3) (4) (5) (6)
{a} 200 0 0 0 100 300
{b} 200 100 0 0 200 0
{c} 100 200 100 0 300 500
{a,b} 400 300 300 300 200 500
{a,c} 600 400 200 300 300 100
{b,c} 600 300 100 0 300 200
{a,b,c} 800 700 500 300 350 600

Table 2: The Shapley payoff allocation for each of the sce-
narios from Table 1.

Agent (1) (2) (3) (4) (5) (6)
Sha 250 200 200 200 50 250
Shb 250 200 150 50 100 150
Shc 300 300 150 50 200 200

We chose these coalitional games as they represent a vari-
ety of scenarios: in game (1) all the values are greater than
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zero, and agents a and b are equivalent. In game (2) the value
of {a} is zero and a and b are not equivalent, but the Shapley
payoff for a and b is nevertheless identical. In game (3) the
value of {a} and {b} is zero, there are no equivalent agents,
but the Shapley payoff for b and c is nevertheless identical.
In game (4) the value of {a}, {b} and {c} is zero, yet only
b and c are equivalent agents. Note also that game (4) is the
glove game mentioned above. The characteristic functions in
games (1)-(4) are super-additive. This attribute is common
since if two (or more) agents collaborate, they are expected
to gain more than each would have gained by herself. Yet, we
also tested two less common scenarios: In game (5) the char-
acteristic function is sub-additive, while in game (6) the char-
acteristic function is neither super-additive nor sub-additive.

Each of the six explanation types was presented to 35 dif-
ferent participants for each of the six scenarios. Overall, we
had 630 participants in the main experiment, each answering
two different scenarios with different explanations. The re-
ward for each participant was $0.5. In total, i.e., in both the
initial and the main experiments, the average age of the par-
ticipants was 39 with 453 males and 284 females; 13 partici-
pants chose not to specify their gender. We set a requirement
on Mechanical Turk that the approval rate of the works must
be at least 99% and did not require the Turkers to be masters.

7 Results
In our initial experiment, we validate the concept of ETX with
two ETX games. The average fairness rating of the Shapley
allocation was 5.76 and 5.83, which is significantly greater
(p< 0.0001) than with the inverse allocations, in which it was
only 2.5 and 2.13. This validates our assumption that Shap-
ley allocation for ETX games are perceived as fair. We use
these results as an indication of the maximum and minimum
average fairness rating that can be obtained in our setting.

In our main experiment, we evaluate the explanations gen-
erated by X-SHAP. The results, presented in Figure 1, were
obtained by averaging over the ratings of the participants. As
depicted by the figure, the explanations that were generated
by X-SHAP (with or without the verbal explanations) out-
performed all other explanations in terms of fairness rating
in all the scenarios examined. That is, the human partici-
pants perceive the payoff allocation fairer if they receive the
explanations that are generated by X-SHAP. Overall, the av-
erage fairness rating in scenarios in which the X-SHAP ex-
planation was provided is 5.32, which is very close to the
average rating of the Shapley allocation in the ETX games.
We note that other explanation-types occasionally obtained
low ratings, which indicate that the Shapley allocation may
be perceived as unfair.

For checking the statistical significance, we ran repeated
measures ANOVA test, which considers both the scenario and
the type of explanation. The ANOVA test lead to statistically
significant differences (p < 0.01) between X-SHAP and all
other types of explanations (except X-SHAP without verbal
explanations). Indeed, analyzing the outcomes of the Lik-

Figure 1: Average rating of fairness for all explanation types
in each of the six scenarios. Error bars present the standard
error. The average appears in parentheses.

ert scale, and the use of parametric tests to analyze ordinal
data in general, has been subject to an active and ongoing
debate (Mualla et al., 2021). We thus conducted also a non-
parametric test, an ordinal logistic regression analysis, which
is used to assess the difference between two methods with or-
dinal values, such as ratings and pain level reporting (Harrell,
2015). The ordinal logistic regression analysis also demon-
strated the significance of the results.

We note that the explanations that were generated by X-
SHAP for scenarios (4)-(6) yielded a lower average of fair-
ness rating compared to the explanations for scenarios (1)-
(3). A possible reason is that while scenarios (1)-(3) include
only characteristic functions with positive values, in scenar-
ios (4)-(6) the explanations include characteristic functions
with positive values along with characteristic functions with
negative values. The combination of positive and negative
characteristic functions in one explanation may be confusing.
Nevertheless, the interaction effect between the scenario and
the type of explanation is non-statistically significant.

8 Conclusions and Future Work
The Shapley value is termed the most important normative di-
vision scheme in cooperative game theory. However, in some
scenarios, its payoff allocation may seem unfair to humans.
In this paper, we provided the first automatic method that gen-
erates customized explanations for the Shapley value. Our
approach does not directly use psychological insights regard-
ing the perception of fairness by humans. Instead, we utilize
known mathematical axioms, and show that they can be used
for increasing the rating of fairness of the Shapley allocation.

Recall that the number of sub-games that X-SHAP shows
to the user depends on the scenario and the number of agents.
Therefore, in games with many agents, X-SHAP may be re-
quired to present its users with hundreds of sub-games. In
future work, we intend to address this issue and propose dif-
ferent complementary approaches.
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