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A B S T R A C T

To accelerate the shift to bio-based production and overcome complicated functional implementation of natural
and artificial biosynthetic pathways to industry relevant organisms, development of new, versatile, bio-based
production platforms is required. Here we present a novel yeast-based platform for biosynthesis of bacterial
aromatic polyketides. The platform is based on a synthetic polyketide synthase system enabling a first de-
monstration of bacterial aromatic polyketide biosynthesis in a eukaryotic host.

1. Introduction

An increasing number of chemicals are being produced by en-
vironmentally-friendly bio-based synthesis [1,2] to overcome the pro-
blems of low-yielding chemical synthesis or solvent-heavy extraction
from natural resources, for achieving a sustainable way of life. Un-
fortunately, development of microbial cell factories for the bio-based
production of desired chemicals often requires a significant amount of
time, resources and efforts to meet industrial demand, hence the shift
towards bio-based production is slow. Also in many cases native hosts
are not suitable for industrial conditions due to low production level
and/or complicated culturing conditions, necessitating the use of a
heterologous hosts such as Escherichia coli or yeast [3,4]. However,
production of natural products, such as polyketides, in heterologous

hosts has often proven difficult or even impossible [5–7]. To overcome
these limitations, standardized, versatile and programmable biosynth-
esis platforms in genetically tractable and robust hosts are desired.

Polyketides are a large class of bioactive natural compounds found
widely in fungi (type I iterative and type II), bacteria (type I, type II and
type III) and plants (type III), possessing a variety of biological activ-
ities, including antibacterial, anticancer, antifungal, antiviral and more
[8–11]. As a consequence, polyketides have been, and still are, major
leads in drug discovery programs [11–14].

The most diverse and widely studied polyketides originate from
bacteria [11]. Complex bacterial aromatic polyketides can be produced
through non-reducing polyketide pathways, where two-carbon units
(-CH2-CO-, ketides) are polymerized into linear polyketide chains of
various lengths by multicomponent enzyme complexes known as
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polyketide synthase (minimal PKS), and then can be folded to form
aromatic structures [15–17]. Folding in most bacterial systems is fa-
cilitated by aromatases, ketoreductases and cyclases, and the resulting
products are further modified by other classes of tailoring enzymes that
closely interact with the minimal PKS [18]. From the bioengineering
point of view, bacterial type II PKS systems offer flexibility in terms of
choice from vast amount of aromatases, cyclases and tailoring enzymes
to allow for the rational engineering of pathways to form desirable
aromatic compounds [19] and to develop programmable polyketide
production platforms [20]. Development and optimization of such a
production platform in native bacterial hosts can be troublesome due to
the lack of genetic tools, production of unwanted toxic metabolites,
undetermined culturing conditions, and low or conditional production
of desired compounds [3,4,21]. Unfortunately, bacterial type II PKSs
have not yet proven possible to express in eukaryotes [15]. In contrast,
plant (type III) PKSs, that ultimately form aromatic compounds via
linear non-reduced polyketide intermediates, consist of a single enzyme
[22] and can be expressed in heterologous eukaryotic hosts to form a
polyketide chain of varied length, yet the lack of characterized cyclases,
aromatases and tailoring enzymes in plant PKS systems limits the use of
type III PKSs for versatile polyketide biosynthesis [23,24]. Although,
recently it was demonstrated that it is possible to functionally combine
the activity of plant type III PKS with bacterial type II PKS related cy-
clase and aromatase in plants and filamentous fungi [24,25].

Here, we describe a first-of-its-kind programmable polyketide pro-
duction platform in the yeast Saccharomyces cerevisiae, based on com-
bining the synthesis of a polyketide (octaketide) by plant-based type III
octaketide synthase (OKS) from Aloe arborescens to produce type II
polyketide products from benzoisochromanequinone antibiotic - acti-
norhodin pathway (Act) from Streptomyces coelicolor.

2. Materials and methods

2.1. Strains, plasmids and media

The yeast strains used here were isogenic to CEN.PK2–1C. Strains
and plasmids are listed in Supplementary Tables 2 and 3, respectively.
Yeast cells were grown in complete medium (YPD) with 2% glucose and
synthetic complete (SC) from Sigma, supplemented with 2% glucose. E.
coli strains were propagated in LB medium supplemented with 200 mg
of ampicillin, Streptomyces strain was grown in ISP2 medium with 4%
glucose.

All primer names and sequences are listed in Supplementary
Table 4.

2.2. Plasmid and strain construction

To create polyketide expressing strains large set of genes were in-
tegrated by using advanced CRISPR/Cas9 technology [26,27]. To create
expression cassettes, respective genes were codon optimized for yeast
and ordered (Integrated DNA Technologies) as gene blocks. Gene blocks
were amplified using corresponding primers (Supplementary Table 4)
and first USER cloned with single or bi-directional promoters to yeast
integrative plasmids as described in previously published method [26].
All created integrative plasmids with corresponding expression units
are listed in Supplementary Table 3. By employing previously detailed
procedure [26], all integrative plasmids were linearized and with their
corresponding gRNA plasmids transformed into yeast expressing Cas9
for integration of desired genes to the genome. Due to large number of
genes to be integrated, this has been processed in 2–3 steps. In a single
transformation 4–6 genes were introduced and created strain used for
the next round of transformation until all pathway genes were in-
tegrated. All the other plasmids and strains were created in the same
way as previously described [26].

2.3. PKS cluster determination with antiSMASH

In order to collect oktaketide PKS type II clusters, all NBCI assembly
IDs for genomes predicted to contain PKS type II clusters were retrieved
from the antiSMASH database version 2 [28]. Assemblies indicated by
the assembly IDs were downloaded using ncbi-genome-download
(https://github.com/kblin/ncbi-genome-download). Next antiSMASH
5.0 [29] was used to reannotate the genomes to make use of the PKS
type II chain length predictions [30]. Chain length predictions were
collected from the antiSMASH results and filtered for the 8/9 ketide
unit extension size.

2.4. Metabolite extraction

Yeast cells were cultured in 50–2000 mL SC selective or YPD
medium for 168 h at 30 °C, shaking 250 rpm. Streptomyces cells were
grown in ISP2 medium for 168 h at 30 °C, shaking 250 rpm. Cells were
then collected by centrifugation and resuspended in ethyl acetate,
which was acidified with 10% acetic acid. Resuspended cells where
mixed with 0.5 μM acid washed glass beads (Sigma) and bead beaten to
break the cells. Lysates were centrifuged and upper ethyl acetate layer
with extracted metabolites was collected. Ethyl acetate was evaporated
and extracts resuspended in methanol for further analysis by LC-MS.

2.5. Whole cell proteomics

The yeast cultures were grown in YPD medium in triplicates.
Exponentially growing cells were harvested (totally OD600 - 20) and cell
pellets flash-frozen in liquid nitrogen.

To prepare for protein lysis and precipitation, the yeast cell pellets
were treated with 0.5 μL (2.5 U) of Zymolyase in 200 μL of 1 M Sorbitol
0.1 M EDTA at 37 °C for 30 min to digest cell walls and centrifuged at
20,817×g for 1 min. The supernatant was removed before continuing
with a chloroform-methanol extraction as described previously, which
was achieved by the addition of 80 μL of methanol, 20 μL of chloroform,
and 60 μL of water, with vortexing followed by centrifugation at
20,817×g for 1 min to induce phase separation. The methanol and
water layer was removed and then 100 μL of methanol was added and
the sample with vortexing briefly followed by centrifugation for 1 min.
The chloroform and methanol mixture was removed by pipetting to
isolate the protein pellet. The protein pellet was resuspended in
100 mM ammonium bicarbonate (AMBIC) with 20% methanol and
quantified by the Lowry method (Bio-Rad DC assay). A total of 100 μg
of protein was reduced by adding tris(2-carboxyethyl)phosphine
(TCEP) to a final concentration of 5 mM for 30 min, followed by al-
kylation by adding iodoacetamide at a final concentration of 10 mM
with incubation for 30 min, and subsequently digested overnight at
37 °C with trypsin at a ratio of 1:50 (w/w) trypsin:total protein.

Peptides were analysed using an Agilent 1290 liquid chromato-
graphy system coupled to an Agilent 6460QQQ mass spectrometer
(Agilent Technologies, Santa Clara, CA) operating in MRM mode.
Peptide samples (10 μg) were separated on an Ascentis Express Peptide
ES-C18 column (2.7 μm particle size, 160 Å pore size, 50 mm length x
2.1 mm i.d., 60 °C; Sigma-Aldrich, St. Louis, MO) by using a chroma-
tographic gradient (400 μL/min flow rate) with an initial condition of
95% Buffer A (99.9% water, 0.1% formic acid) and 5% Buffer B (99.9%
acetonitrile, 0.1% formic acid) then increasing linearly to 65% Buffer
A/35% Buffer B over 5.5 min. Buffer B was then increased to 80% over
0.3 min and held at 80% for 2 min followed by ramping back down to
5% Buffer B over 0.5 min where it was held for 1.5 min to re-equilibrate
the column for the next sample. The data were acquired using Agilent
MassHunter, version B.08.02, processed using Skyline version 4.1, and
peak quantification was refined with mProphet in Skyline. All data and
skyline files are available via the Panorama Public repository at this
link: https://panoramaweb.org/a-platform-for-polyketide-biosynthesis-
using-yeast.url. Data are also available via ProteomeXchange with
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identifier: PXD013388.

2.6. Comparative metabolite profiling by LC-MS and data analysis

LC-MS analysis was performed using a Dionex Ultimate 3000 ultra-
high-performance liquid chromatography (UHPLC) coupled to a UV/Vis
diode array detector (DAD) and a high-resolution mass spectrometer
(HRMS) Orbitrap Fusion mass spectrometer (ThermoFisher Scientific,
Waltham, MA, USA). UV–Vis detection was done using a DAD-3000 in
the range 200–700 nm. Injections of 5 μL of each sample were separated
using a Zorbax Eclipse Plus C-18 column (2.1 × 100 mm, 1.8 μm)
(Agilent, Santa Clara, CA, USA) at a flow rate of 0.35 mL/min, and a
temperature of 35.0 °C. Mobile phases A and B were 0.1% formic acid in
water and acetonitrile, respectively. Elution was performed with a
17 min multistep system. After 5% B for 0.3 min, a linear gradient
started from 5% B to 100% B in 13 min, which was held for another
2 min and followed by re-equilibration to 5% B until 17 min. HRMS was
performed in ESI-, with a spray voltage of 2750 V respectively, in the
mass range (m/z) 100–1000 at a resolution of 120,000, RF Lens 50%,
and AGC target 2e5. Before analysis, the MS was calibrated using ESI
Negative on Calibration Solution (P/N 88324, Thermo Scientific, San
Jose, USA).

LC-MS/MS analysis was carried out using data-dependent MS/MS
analysis by analyzing the most intense ions form the full-scan using a
master scan time of 1.0 s. Dynamic exclusion was used to exclude ions
for 20 s after two measurements within 30 s. Fragmentation was per-
formed using stepped HCD collision energy of 15, 25, and 35% at a
resolution of 30,000, RF Lens 50%, and AGC target 1e5, while full-scan
resolution was set to 60,000.

Data analyses were performed with the software Xcalibur
3.1.2412.17 (Thermo Fisher Scientific Inc.).

2.7. Isolation of DMAC

The compound isolation was performed in three steps. The crude
extract was initially dissolved in 3.5 mL of 3:1 acetonitrile:methanol
and separated using a Dionex Ultimate 3000 HPLC coupled to a UV/Vis
diode array detector (DAD) operated under the following conditions:
column, Waters XBridge BEH Amide OBD Prep, 130 Å, 5 μm,
10 × 250 mm; column temperature, 30 °C; solvent A, (CH3CN) and
solvent B (H2O buffered with 10 mM (NH4)2CO3, pH 6.5). The mobile
phase was: isocratic 0–2 min at 95% A; gradient 2–20 min from 95 to
60% A; isocratic 21–26 min at 10% A. The column was equilibrated for
18 min prior to each injection. The flow rate was 3.0 mL/min. A peak
that eluted at 5.2 min with UV λmax of 390 nm was manually collected.
The fraction was dried using a rotary evaporator and redissolved in
50% v/v MeOH:water to a final volume of 800 μL. The sample was then
subjected to a second, reverse-phase separation under the following

conditions: column, Agilent ZORBAX Eclipse Plus Phenyl-Hexyl 95 Å
3.5 μm, 4.6 × 150 mm; column temperature, 30 °C; solvent A (CH3OH)
and solvent B (H2O buffered with 10 mM NH4HCO2, pH 3.0); step
gradient profile: 0–8 min, 50% A; 9–15 min, 60% A; 16–22 min, 70% A;
23–28 min, 95% A; 29–35 min, 50% A; flow rate, 1.5 mL/min. A peak
that eluted at 12.2 min with UV λmax of 226, 278 and 390 nm was
manually collected. After drying the fraction and redissolving it again
in 50% v/v MeOH/water, it was subjected to a third reverse-phase se-
paration under the following conditions: column, Waters XBridge C18
3.5 μm, 4.6 × 150 mm; column temperature, 30 °C; solvent A (CH3OH)
and solvent B (H2O buffered with 10 mM (NH4)2CΟ3, pH 6.5); step
gradient profile: 0–8 min, 50% A; 9–15 min, 60% A; 16–22 min, 70% A;
23–28 min, 95% A; 29–35 min, 50% A; flow rate, 1.5 mL/min. The peak
of interest eluted at 3.2 min and was manually collected. The sample
was dried using a rotary evaporator and most of it redissolved in DMSO-
d6 for NMR analysis. A small portion of the sample was dissolved in
50% v/v MeOH/water for MS and MS/MS analysis using the UHPLC
system and Orbitrap HRMS.

2.8. NMR data acquisition and analyses

NMR spectra were recorded in DMSO-d6. All NMR spectra were
acquired at 25 °C on a Bruker Avance III 800 MHz spectrometer
equipped with a TCI Cryoprobe. All spectra 1D 1H, 2D DQF-COSY,
HSQC, HMBC, H2BC were acquired using standard pulse sequences. All
spectra were processed using TOPSPIN 3.6.1 software (Bruker).

3. Results

3.1. Characterisation of polyketide gene clusters

Prior to choosing and building a gene cluster in yeast, we aimed to
determine the number and composition of type II bacterial polyketide
gene clusters. We aimed to do this by looking at the sequence data
available in the databases and employing antiSMASH v.5 [28]. By set
parameters (see Materials and methods) we were able to predict ap-
proximately 600 type II polyketide gene clusters. For approximately
half of the gene clusters (270) we were able to predict the number of
ketide extensions, majority (63%) of them being 8/9 ketides (Fig. 1A).
We subsequently aimed to predict the functional classes to which they
belong (Fig. 1B). From the computational analysis we determined that
50% of the predicted 8/9 ketides belong to angucycline functional class,
followed by 13% anthracycline, 9% aureolic acid, 6% tetracycline and
4% tetracenomycin. Due to lack of annotation information we were not
able to predict functional classes for 18% of the 8/9 ketides. Since, the
8/9 ketides were the most abundant type II polyketides among se-
quenced bacteria, we further decided to concentrate on producing oc-
taketides in yeast.

Fig. 1. Characterisation of polyketide gene clusters.
(A) Prediction of the number of ketide extensions units in type II polyketides, majority (63%) of them being 8/9 ketides. (B) Elucidation of functional classes to which
the predicted 8/9 ketides belong to.
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3.2. Expression of actinorhodin biosynthesis pathway in yeast

First, as a proof-of-concept, we reconstructed a pathway of the
widely studied and most known octaketide-derived actinorhodin from
S. coelicolor (NCBI GenBank: AL645882.2) [31,32] by integrating re-
quired codon optimized genes (See codon optimized sequences in
Supplementary info) into the yeast genome together with its bacterial
minimal PKS (Fig. 2A). Gene assemblies and genomic integrations were
performed in 2–3 steps by first performing in vivo assembly of expres-
sion units in Escherichia coli, and second by using our recently devel-
oped CRISPR/Cas9 genome engineering techniques to integrate the
assembled gene expression units into the yeast genome (Supplementary
Table 1) [26,27]. Since actinorhodin and other intermediates in the
pathway have color [33], successful production through the pathway
was initially expected to be assessed by visual inspection of engineered
yeast. However, from the first designs, no apparent or very modest color
was observed in yeast cells harboring actinorhodin pathway
(Supplementary Fig. 1; TC-140, TC-156). To mitigate the lack of (or
modest) visual phenotypes we next investigated if all proteins from the
Act pathway were successfully expressed using whole cell proteomics.
From this analysis it was evident that most of Act proteins were

detected except for ActVI-2 (dehydrogenase) and ActI-1 (3-oxoacyl-ACP
synthase), the later of which is needed for the first committed step of
the minimal ActPKS (Supplementary Fig. 2). Further, we aimed to
elucidate which metabolites, if any, are produced from first generation
Act pathway design. Since none of the reported pathway metabolites
are commercially available as analytical standards, we performed
comparative LC-MS metabolite profiling using wild type S. coelicolor
whole cell extract as a standard. This analysis indicated that none of the
described intermediates from the Act pathway were detected in the
engineered yeast strains (Fig. 2B; TC-140, TC-156), hinting that the Act
- type II PKS indeed was not functionally expressed or correctly as-
sembled into a functional PKS in yeast.

3.3. Replacement of Act minimal PKS with AaOKS

To overcome the lack of function of type II PKS we replaced the Act
minimal PKS with a type III octaketide synthase from plant A. arbor-
escens (AaOKS) [34], which was described to produce a polyketide
product with an identical chain-length as Act. Hence, the second gen-
eration of yeast production strains were created by replacing the acti-
norhodin minimal PKS with AaOKS, but retaining the rest of the

Fig. 2. Expression of actinorhodin biosynthesis pathway in yeast and replacement of Act minimal PKS with AaOKS.
(A) Schematic overview of actinorhodin pathway with Act minimal PKS or with AaOKS expressed in yeast, including enzymes and chemical compounds produced
through the pathway. Enzymes are listed in blue and green, blue arrows depict chemical reactions catalysed by listed enzymes and produced compounds are depicted
in blue or red shade. (B) Chromatograms from comparative LC-MS metabolomics showing investigated metabolites in yeast. The main products or intermediates
investigated by LC-MS were bicyclic intermediate, (S)-chiral alcohol, (S)-hemiketal, (S)-DNPA, dihydrokalafungin (DHK). Metabolites from the natural actinorhodin
producer S. coelicolor (abbreviated Strep) were used as a standard (positive control) for comparing metabolites produced in wt and engineered yeast strains: TC-3, TC-
140, TC-160, TC-156, TC-158, TC-179, TC-180. Red vertical lines on chromatograms depict the peaks of listed compounds based on known mass and positive control.
Intensities of the peaks and elution times are shown on the corresponding axis.
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actinorhodin pathway (Fig. 2A). The first strain design expressing
AaOKS indeed displayed pigmented colonies indicating the production
of Act cluster metabolites (Supplementary Fig. 1; TC-158). We further
investigated expression optimization of AaOKS by integrating either a
single-copy of the AaOKS gene into the genome or expressing the
AaOKS from a high-copy plasmid. As judged from phenotypic inspec-
tion, only the Act pathway strain expressing AaOKS from a high-copy
plasmid gave rise to pigmented colonies potentially derived from Act
pathway metabolites (Supplementary Fig. 1; TC-160 vs. TC-158). Fur-
ther, from comparative metabolite profiling, the four main products
(bicyclic intermediate, (S)-chiral alcohol, (S)-hemiketal, dihy-
drokalafungin) from the Act pathway were tentatively observed in this
strain (Fig. 2B; TC-158), while no production was observed in the yeast
wt control (TC-3). In addition, no production was also observed in
control strains i) expressing Act pathway without a PKS (TC-156), ii)
expressing Act pathway and single-copy of AaOKS (TC-160), iii) yeast
wt control expressing AaOKS in either single- or high-copy (TC-179 or
TC-180) without the Act pathway (Fig. 2B). The other major inter-
mediate (S)-DNPA from the Act pathway could not be detected or
confirmed reliably, most likely because this product was metabolized
rapidly by Act pathway enzymes. By comparative LC-MS analyses,
based on known mass and published UV data [35], and direct com-
parison to S. coelicolor metabolites, we observed accumulation of a
compound expected to be dihydrokalafungin (DHK), as a final product
(Fig. 2B; TC-158). To further investigate the compound putatively
identified as DHK, we performed more thorough analysis including LC-
MS/MS, as no analytical standards were commercially available. These
results indicated that DHK was indeed being produced in the en-
gineered yeast strain as its MS/MS fragmentation pattern was the same
in both engineered yeast strain and S. coelicolor (Supplementary Fig. 3).

3.4. Optimization of aromatic polyketide production platform

To optimize the platform strain further for production of type II
polyketide compounds, we next integrated a second copy of each of the
four genes encoding ActVI-3, ActVI-2, ActVA-6, ActVB (Fig. 3A), all
showing low abundances as evaluated from whole cell proteomics
analysis (Supplementary Fig. 4). Upon overexpression of the four genes,
the colonies became more intensely colored (Supplementary Fig. 1; TC-
167). To investigate if this phenotype could be correlated with in-
creased DHK production, we performed comparative metabolite pro-
filing by LC-MS, and noted that production of the DHK was relatively
increased (Fig. 3B; TC-158 vs. TC-167).

Next, we aimed to produce one of the most widely studied model
antibiotics, actinorhodin, (a dimer of DHK) in both non-optimized (TC-
158) and optimized (TC-167) yeast platform strains. DHK dimerisation,
as previously described [35], is potentially catalysed by the enzyme
ActVA-4 (Fig. 3A), which initially was not introduced into the yeast
platform strains. Introduction of the dimerase should allow for dimer-
isation of DHK and production of actinorhodin. However, as judged by
the color of yeast colonies (Supplementary Fig. 1; TC-171 with the non-
optimized Act pathway and TC-172 with the optimized Act pathway),
no significant changes were observed after the introduction of di-
merase. Further analysis by comparative LC-MS corroborated the phe-
notypic result revealing no detectable actinorhodin in the yeast strains
(Supplementary Fig. 5). In addition, actinorhodin and its intermediates
can also be toxic to yeast, and accumulated amounts could inhibit cell
growth, and potentially compromise actinorhodin production. We
tested this hypothesis by growing wt yeast in serial dilutions of condi-
tioned medium where S. coelicolor had previously been grown. Ac-
cording to LC-MS analysis (Fig. 2B), this medium contained Act
pathway metabolites together with actinorhodin. Here it was observed
that growth of yeast cells was completely inhibited in 2x and 4x diluted
conditioned medium, and even modestly compromised in 8x diluted
conditioned medium (Supplementary Fig. 6), while yeast cultivated in
standard ISP2 medium displayed normal growth behaviour, thus

indicating toxicity of S. coelicolor derived metabolites. Further, it was
also observed that engineered yeast strains, producing DHK, showed
reduced growth, as judged by colony size and growth profiling
(Supplementary Fig. 1; strains: TC-158, TC-167, TC-171;
Supplementary Fig. 7).

3.5. Programmability of the system

The main goal of this study was to create a versatile and program-
mable platform for production of bacterial aromatic polyketides. To
prove that our polyketide production platform can be engineered to
express different polyketide synthesis modules, we replaced several key
Act enzymes with enzymes from other Streptomyces species to achieve
production of desired products (Fig. 4A). For this purpose, we re-
constructed the Act pathway in yeast so that ActVI-2 (dehydrogenase),
ActVI-4 (dehydrogenase), ActVA-5 (hydroxylase) and ActVB (flavin:
NADH oxidoreductase) from the Act pathway were replaced with en-
zymes Med-9 (dehydrogenase), Med-29 (dehydrogenase), Med-7 (oxy-
genase) and Med-13 (oxidoreductase), respectively, from the me-
dermycin biosynthesis pathway (Med pathway; NCBI GenBank:
AB103463.1) [36–38] (Fig. 4A). Next, we first phenotypically assessed
the reprogrammed yeast strains (Supplementary Fig. 1; TC-175, TC-
177), which provided an indication if the enzymes can be functionally
replaced in the platform strains. Further, we investigated production of
desired compounds with comparative metabolite profiling by LC-MS.
LC-MS analysis revealed that detected metabolites are indeed the Med
pathway intermediates in both strains with 2–4 enzymatic steps re-
placed by enzymes from Med pathway (Fig. 4B; TC-175, TC-177). These
results indicate that the developed platform system can be potentially
reprogrammed and employed for production of diverse bacterial poly-
ketide compounds.

3.6. Structural elucidation and confirmation of Act metabolites in yeast

Since none of the analytical standards for Act metabolites are
commercially available and comparative metabolomics by LC-MS
(using S. coelicolor metabolite extracts as standards) can only putatively
identify Act metabolites produced in yeast, we aimed to elucidate the
structure of produced compounds by nuclear magnetic resonance
(NMR). After scale-up, we searched the chromatogram of the crude
extract for peaks with a UV pattern matching that of actinorhodin. We
focused on the most dominant peak with this UV, which we collected
and subjected to an additional two rounds of HPLC purification. We
isolated a peak with elution time of 3.2 min after the third round of
HPLC and determined its exact mass to be m/z 297.0404 ([M − H]-),
which corresponds to the molecular formula C16H10O6. This is the same
molecular formula as the intermediate DMAC (Supplementary Fig. 8)
[32]. This peak is present only in the chromatogram from the en-
gineered yeast with expressed Act pathway; it is not present in the
chromatogram of the wild-type yeast control extracted under identical
conditions (Supplementary Fig. 9). We subsequently obtained NMR and
IR data and confirmed that the molecule is DMAC (Supplementary
Figs. 10–22 and Supplementary Table 5). It has been previously shown
that DMAC is a shunt product from the Act gene cluster and it usually
forms when ActVI-1 (ketoreductase) is not expressed [32]. Since DMAC
is a major compound that is produced in yeast from the Act biosynthetic
pathway, this indicates that not all pathway enzymes are optimally
functioning, namely ActVI-1. However, because we have tentatively
detected metabolites that are further in the pathway such as DHK, we
believe that ActVI-1 is functional, but not optimally. Such an accumu-
lation of a shunt product probably also results in low productivity of the
later pathway metabolites such as DHK or even no production of acti-
norhodin.
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4. Discussion and conclusions

In summary, we have developed a functional first-of-its-kind eu-
karyotic production platform for bacterial polyketide derived products
by employing a plant type III polyketide synthase to produce com-
pounds originally found only in bacteria. As a proof-of-concept we
engineered and optimized our platform in S. cerevisiae to successfully
produce a compound identified as bioactive bacterial polyketide DHK,
but also a major shunt product DMAC which should be mitigated to
improve production of downstream Act cluster products in future stu-
dies. Finally, we further demonstrated programmability of our system
by replacing key enzymes in Act pathway with enzymes from different
Streptomyces species to produce desired products. Such characterisation
confirms systems ability to functionalize and produce octaketide de-
rived products in a well-described, eukaryotic production workhorse.
We further envision our platform to be useful for production of many
novel compounds, including novel antibiotics, characterisation and
functionalization of them, and moreover, sustainable production
through cell factories.
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Fig. 3. Optimization of aromatic polyketide production platform.
(A) Schematic overview of the optimized actinorhodin pathway where the Act minimal PKS is replaced with AaOKS in yeast, including enzymes and chemical
compounds produced through the pathway. Enzymes encoded by a single-copy gene are indicated in blue, and enzymes encoded by multi-copy genes are indicated in
grey. Blue arrows depict chemical reactions catalysed by listed enzymes and produced compounds are depicted in blue or red shade. Dimerize to form actinorhodin is
shown in red. (B) Chromatograms from comparative LC-MS metabolomics showing investigated metabolites in optimized yeast strains. Main products or inter-
mediates were investigated by LC-MS: bicyclic intermediate, (S)-chiral alcohol, (S)-hemiketal, (S)-DNPA, dihydrokalafungin (DHK). Metabolites from natural acti-
norhodin producer S. coelicolor (abbreviated Strep) was used as a standard (positive control) for comparing metabolites produced in wt and engineered yeast strains:
TC-3, TC-158, TC-167, TC-171, TC-172. Red vertical lines on chromatograms depict the peaks of listed compounds based on known mass and positive control.
Intensities of the peaks and elution times are shown on the corresponding axis.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
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