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Abstract

Extreme precipitation (PEx) events have major societal impacts. These events are rare and can

have small spatial scale, making statistical analysis difficult. To mitigate these difficulties a method-

ology was developed to objectively define “coherent” regions wherein data points have matching

annual cycles of precipitation. Regions are found by training self-organizing maps (SOMs) on the

annual cycle of precipitation for each grid point across the contiguous United States (CONUS).

Multiple criteria are applied to identify useful numbers of regions for our future application. This

methodology is applicable across data sets and is tested on both reanalysis and gridded obser-

vational data. This method of regionalization is then used, in conjunction with two automatic

methods of determining the meteorological cause of PEx events, to determine the relationship be-

tween mean precipitation seasonality and the different types of PEx events. The first automatic

method uses simple metrics, derived from the literature, which are ultimately unable to clearly

distinguish between different types of PEx events. The second uses the Quasi-Geostrophic (QG)

omega equation to identify fundamental weather patterns associated with different types of PEx

events. These weather patterns are identified in a novel way using a SOM trained on a pressure-

time series of vertical velocity from each of the advective forcing terms in the QG omega equation

for each PEx event. Using the unsupervised learning of the SOM allows for the identification of

the most descriptive set of 9 patterns in vertical velocity associated with precipitation extremes in

the current climate.
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Chapter 1 Introduction

1.1 Processes and Extreme Precipitation

Extreme precipitation events are one of the leading causes of weather-related economic losses.

This risk has a strongly seasonal component and both the risk as well as the seasonality is known

to vary geographically. The frequency of various meteorological phenomena (e.g. midlatitude

cyclones, convection, fronts, ...) associated with precipitation extremes also varies geographically

and seasonally (Kunkel et al., 2012). Understanding which are the most frequent drivers of extreme

precipitation in the current climate is a primary goal of this work.

The work presented in subsequent chapters will allow us to test the, often assumed, central

hypothesis of the dissertation: The seasonality of mean precipitation is predictive of the distribution

of extreme precipitation generating mechanisms. This hypothesis is seen in papers like Kunkel et al.

(2012) but never tested. This relationship is thought to exist because extreme events make a large

contribution to the mean precipitation during the time of year they occur, and that certain types

of extreme events are more likely to occur at certain times of year. In this work we develop the

tools to assess both aspects of the hypothesis individually and test their relationship.

In chapter 2 we create a methodology to define regions with similar annual cycles of precipi-

tation. Extreme precipitation is rare by definition, which makes small sample sizes a considerable

hurdle in the research process. To address this hurdle we create a process to define coherent regions

to aggregate events within, increasing the sample sizes. This process is based on the annual cycle

of daily precipitation and helps us understand the geographic variation in precipitation seasonality.

These regions are based only on mean daily precipitation and so are not biased by foreknowledge

of any kind of extreme precipitation. This will allow us to assess how the seasonality of mean

precipitation changes in space, which is the first tool needed to test the central hypothesis of this

work.

1



1.1. PROCESSES AND EXTREME PRECIPITATION

We will consider many different approaches to identify the meteorological process or processes

that give rise to individual precipitation extremes. The work of chapter 3 focuses on simple metrics

associated with each process of interest (convection, fronts, and cyclones) that can be calculated ef-

ficiently at grid cell experiencing an extreme. These metrics are physically related to the mechanism

generating extreme precipitation and are in common use (Dowdy and Catto, 2017; Parfitt et al.,

2017). We hypothesize that These commonly used and physically based metrics can distinguish the

primary process causing an extreme event. Our investigations will show that over a continuous area

experiencing extreme precipitation all three of the metrics can be found with noteworthy strength,

and that at a single grid cell the primary processes can change up to 5 times in a 24 hour rainy

period. Because the commonly used metrics are interrelated and variable in time they are unable

to distinguish unambiguously the primary process causing an extreme event. This makes them

unsuitable to test our central hypothesis.

It has been found that extreme precipitation can be scaled as the vertical advection of the sat-

uration specific humidity holding saturation equivalent potential temperature constant (O’Gorman

and Schneider, 2009). The most basic statement of this scaling consists of only two parts: 1) verti-

cal velocity, and 2) atmospheric temperature. Changes in atmospheric temperature and moisture

are well captured by climate models so our work focuses on the dynamical part of extreme pre-

cipitation, the vertical velocity. This consideration leads us to adopt the QG omega equation as

our primary tool to identify meteorological processes associated with extreme precipitation events.

We separately consider the two primary forcings on QG omega to identify the set of 9 most de-

scriptive weather patterns associated with extreme precipitation in the CONUS. This approach

naturally focuses on patterns with strong QG forcings. One notable result is the clear identifica-

tion of a Large-Scale Meteorological Pattern (LSMP) corresponding to a strong pacific northwest

atmospheric river from only a local time series of vertical velocity. Another is the identification

of the seasonal and geographic variation of which weather pattern is most frequently associated

with extreme precipitation. These weather patterns are interpreted and discussed further in chap-

ter 4. This approach makes up the final tool we need to test our central hypothesis. This will

be done by assessing the inter-regional differences in the mixtures of weather patterns as well as

2



1.1. PROCESSES AND EXTREME PRECIPITATION

the intra-regional similarities, both of which are needed to find whether The seasonality of mean

precipitation is predictive of the distribution of extreme precipitation generating mechanisms.

This dissertation is presented in 3 main chapters. Chapter 2 deals with the creation and

testing of a new methodology to define regions suitable for aggregating extreme precipitation events

within (Swenson and Grotjahn, 2019). These regions are the first step in a process assess the

predictability of the distribution of meteorological mechanisms behind extreme precipitation from

mean precipitation seasonality. Chapter 3 discusses an approach to process identification that

we found to be unsuitable for separating events by cause due to the interrelation between the

three metrics we tested (Swenson, 2023, In Preparation). Chapter 4 presents an algorithm for

the identification of the key meteorological process driving an individual precipitation extreme

based on the omega equation. This, combined with the results of chapter 2 allows us to test

the central hypothesis that The seasonality of mean precipitation is predictive of the distribution

of extreme precipitation generating mechanisms. The Omega equation based identification uses

commonly available variables in all gridded datasets, can be applied across datasets, and is readily

interpretable (Swenson and Grotjahn, 2023, In Review). The final chapter provides a summary of

the conclusions.
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Chapter 2 Aggregation of Events Within

Regions Of Similar Precipitation

Seasonality

2.1 Introduction

One of the fundamental problems in researching extreme events is finding a large enough sample

size to make the statistics robust. A common way to build sample size is to aggregate events within

some geographic area (e.g.,Kunkel et al. (1993); Karl and Knight (1998); Grotjahn and Faure

(2008); Kunkel et al. (2012)). Aggregation can be effective for precipitation extremes because

precipitation varies across smaller scales than other atmospheric variables (e.g., temperature and

pressure) (Hewitson and Crane (2005)).

Other climate regionalizations have been made before, most notably in Karl and Knight (1998),

Kottek et al. (2006), and Bukovsky (2011). Previous regionalizations are not suitable to aggregating

extreme precipitation events for one or more reasons: the regions are too large, the regions are too

discontinuous over mountainous regions, the regions are partly defined from elevation, the regions

are defined from combinations of meteorological variables, or the regions are partially based on

local vegetation. In addition, these regionalizations are created or modified by subjective factors

like consensus among researchers or intuition. Our method uses precipitation solely and the shape

and number of the regions result from predefined criteria.

This paper presents an objective way to select geographic areas for grouping extreme precipi-

tation events by training self-organizing maps (SOMs) on the normalized annual cycle of precipi-

tation. Therefore, each region contains points having similar seasonal cycle. The seasonal cycle is

normalized so that the regions are not influenced by the size of the total annual precipitation.

4



2.2. DATA

Removing the total allows us to find larger scale patterns and not have SOM-based regions that

merely show topographic elevation or proximity to the ocean. Seasonality is emphasized because

extreme precipitation events and the meteorological drivers behind them can be mainly seasonal

(Kunkel et al. (2012)). In some areas wintertime precipitation is almost exclusively caused by

frontal systems whereas other areas receive most of their summertime precipitation from convective

systems. Training a SOM on the normalized annual cycle of precipitation may contain similar

extreme precipitation events occurring at different places in the region (Kunkel et al., 2012). The

paper is organized as follows. Section 2 details the different datasets used. Section 3 describes

the methodology. Section 4 tests the approaches. Sections 5 and 6 apply the criteria and compare

reanalyses. Section 7 compares the maps obtained by our method to other regionalizations in the

literature,and concluding remarks are provided in section 8.

2.2 Data

Climate Forecast System Reanalysis (CFSR) precipitation data (Saha and Coauthors (2010a))

are emphasized for training the self organizing map. CFSR uses the Climate Forecast System

model (CFS) data to generate a continuous best estimate of the state of the ocean–atmosphere

system (Saha and Coauthors (2010b)). CFSR is chosen since it has all the fields we need to

create algorithms (in later work) that diagnose the meteorological drivers of precipitation. The

CFSR temporal resolution of four times a day will allow our diagnostics to capture the individual

process(es) driving each extreme event. CFSR incorporates hourly input data. The CFS model

has T382, or approximately 35 km horizontal resolution, using a sigma-pressure hybrid vertical

coordinate with 64 levels and a top pressure of; 0.266 hPa. The CFSR has 0.58 resolution in both

latitude and longitude and temporal resolution of 6 h. Our time period is 1 January 1979 – 31

December 2010.

As a cross check we also apply our methodology to the Climate Prediction Center’s (CPC)

unified precipitation data (Chen et al. (2008a)). The CPC data are based on a rain gauge net-

work spanning the conterminous United States (CONUS) and have been interpolated to a lati-

tude–longitude grid using an optimal interpolation objective analysis technique as in Xie et al.
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2.3. METHODOLOGY

(2007) and Chen et al. (2008b). These gridded precipitation data have a resolution of 0.258 in both

latitude and longitude and are recorded daily as an accumulation from1200 UTC of the day before

to 1200 UTC of the current day. We use data from 1 January 1950 through 31 December 2018.

2.3 Methodology

The goal is to train a SOM to divide the CONUS into regions with similar precipitation charac-

teristics. These regions are called “coherent regions” in this report. Because extreme precipitation

is likely seasonal, we use the annual cycle of precipitation to create our regions. SOMs are a type

of artificial neural network first introduced by Kohonen (1982). SOMs utilize a competitive and

unsupervised learning algorithm to produce a lower dimensional representation of the input data; in

this case almost 6000 average annual cycles, one for each grid point, are grouped into a much more

manageable and representative; 15 average annual cycles, one for each region. Each region’s annual

cycle is the average of the average annual cycle of each grid point within that region. Another fea-

ture is that the 15 representative annual cycles are ordered by similarity, that is, the annual cycles

of region K = 1 and of the highest K value region (e.g., K = 15) are the most dissimilar. This

feature makes it simple to see the full range of patterns extracted from the input data. It should

be noted that the two most dissimilar regions are often adjacent, as seen in Figs. 2.1a–f. This

indicates that two decidedly different regimes abut one another. Where this occurs with a jagged

or messy border suggests that, perhaps due to interannual variations, the boundary is uncertain.

Precipitation has a highly skewed distribution, which makes any measure of the annual cycle very

noisy. It is therefore useful to take the cube root of precipitation before creating the measure of

the annual cycle as that operation is observed to transform precipitation data to an approximately

normal distribution (Stidd (1953)). Processes are described in the next section that were discarded

(sections 4a–c) in favor of using the cube root, which will be discussed further in section 4d. All

leap days are then removed, and a long-term daily mean (LTDM) is created by averaging all the

1 January data from every year, the 2 January data from every year, and so on. This is done for

each grid point individually so the end result is a time series of the cube root of precipitation with

365 values for each grid point. We care most about the timing of precipitation and want the SOM

6



2.3. METHODOLOGY

to be able to easily compare climatologically wet and dry areas. Because of these concerns, each

time series is adjusted so that the range of the data is from 0 to 1. The procedure is to subtract the

minimum value of each time series from every value in the time series and divide the result by the

new maximum of that time series. This normalized annual cycle of precipitation will henceforth be

referred to as the LTDM-n. The LTDM-n allows the methodology to compare the occurrence of

the wettest days at different locations instead of simply creating regions based on annual rainfall

amount.

Without some form of LTDM it is very common to get long strings of zeros in a daily precip-

itation accumulation time series. These strings create a false similarity between distant, climato-

logically dry, areas. Taking an LTDM reduces the chances of zero values occurring and separates

climatologically dry areas better. An added benefit is that a representative seasonal cycle will be

created for each region. Future applications may desire to focus on a specific season (e.g., winter

in California) and having seasonality built into the SOMs is advantageous.

To test that the regions created by the SOM are statistically distinguishable, a test based

upon the “false discovery rate” (FDR) is used (Johnson, 2013). This test checks if the LTDM-n

at each grid point in a region is significantly different than the LTDM-n in every other region at

the 5% level. This method provides a useful upper bound on the number of regions we can find

across the CONUS. This upper bound is 32 regions for the CFSR data and 63 regions for the CPC

data. To find an “optimal” number of regions (KB) rather than merely rely on the upper bound

presented by Johnson (2013), five metrics of four criteria are considered: connectedness, robustness,

compactness, and the number of extreme events in each region during the record.

We prefer that each SOM-based region be contiguous, a property we label connectedness. Con-

nectedness has two elements. First, we want to minimize the number of separate areas that comprise

each SOM region. Second, we prefer each SOM region to be mainly a single larger area and that

any other areas be individually and collectively small. To measure this connectedness attribute,

two metrics were designed. The first counts the number of isolated areas that belong to each re-

gion, where an isolated area is a continuous group of grid points from one single region entirely

surrounded by grid points from other regions. This metric for the mean number of isolated ar-

7



2.3. METHODOLOGY

eas composing the regions will be called the isolated area count (IAC). This average number of

separate areas per region varies from a minimum of 1 to a maximum of about 10 in CFSR data

and about 30 in CPC data. The second measure of connectedness recognizes that a region broken

into several small disconnected areas and one large connected area is preferable to a region broken

into approximately equally sized disconnected areas. To this end the second metric computes, for

each region, the ratio of grid points not belonging to the largest isolated area to the region’s total

number of grid points. This metric of the fraction of areas in the region that are not part of the

largest area will be called the minor areas fraction (MAF). The CONUS average of the MAF is

used. We specify that no region may have connectedness metrics above 6 and 0.25, respectively,

for the two metrics discussed above.

Another criterion is robustness, which refers to how much each SOM region boundary changes

when the number of SOM regions allowed is incremented; the less change to existing region bound-

aries by the addition of another region the better. To measure this quantity, for each grid point

we count the other grid points that are in the same region as the particular grid point for a given

value of K. If, for K + 1 regions, any of the counted grid points are no longer in the same region

as the particular grid point, we discard them from our count and divide the reduced count by the

original count (for K regions). Even if the region were to grow in size, we are only considering

grid points that were part of the original count. Hence, 1 is the largest this metric can be. It is

expected that regions will shrink when K is increased but it is possible for a region to grow in size.

If a particular region grows in size from a map with K regions to a map with K + 1 regions then

robustness can also be one for grid points in that region. However, one or more adjacent regions

will have shrunk, thereby lowering the robustness scores of their grid points. The map average of

these ratios (i.e., the average of the ratios at all the grid points) is between 0 and 1. A map average

near 1 is ideal,with lower values indicating that a map with K regions is not as robust. We specify

that a map average ratio be 0.65 for the map to be considered adequately robust.

The last criterion, compactness, is intended to foster our eventual goal of compositing events

within each region. Long and thin regions are a hindrance to compositing because when a region

extends too far in one direction, lining up the origins of particular events becomes problematic. In

8



2.4. APPROACHES CONSIDERED TO CONSTRAIN THE ANNUAL CYCLE

each region we calculate the nondimensional ratio (or compactness ratio) of the square root of the

total area encompassing the largest connected group of grid points divided by the perimeter of that

area to evaluate how compact each region is. We specify that no region may have a compactness

ratio below 0.075. For reference a perfectly circular region would have a compactness ratio of; 0.28.

The set of K = 15 regions has a median compactness ratio of 0.14.

Thresholds introduced are not general. After looking at maps for K values of 2–63 we subjec-

tively decided on these thresholds of 6 and 0.25 for connectedness, 0.65 for robustness, and 0.075

for compactness. The thresholds are a way of establishing minimal qualifications for each criterion.

2.4 Approaches considered to constrain the annual cycle

This study uses the normalized LTDM of the cube root of precipitation, but it is useful to

see other approaches considered and rejected. Different methods can find an annual cycle. These

include different types of harmonic analysis where more or fewer harmonics are retained depending

on the time scale of interest. One could also use a measure of central tendency for each day of the

year across all years in the data. Four measures of the annual cycle of precipitation are discussed.

One notes that very robust, connected, and compact regions can be made simply by training a

SOM on the full, unprocessed, daily precipitation record at each grid point. For our purposes there

are two issues with this method of regionalization. First, using the full record does not emphasize

seasonality, which is undesirable for the reasons discussed above. Second, this method yields a

precipitation time series for each region that is 32 years long and much less readily interpretable

than a measure of the annual cycle. A figure of the regions produced by training a SOM on the

full, unprocessed, daily precipitation records is shown in figure Supplement1.

2.4.1 Harmonic LTDM to capture the annual cycle

Because we are most interested in what time of year precipitation tends to occur in a specific area,

the logical first step in creating SOM-based precipitation regions is to train the SOM on the annual

cycle of precipitation. Prior studies of the annual cycle of temperature (Grotjahn, 2011; Grotjahn

and Zhang, 2017) found that a limited set of harmonics captures a smoothly varying LTDM.

9



2.4. APPROACHES CONSIDERED TO CONSTRAIN THE ANNUAL CYCLE

Harmonics work because the day-to-day variability remains quite large even when averaging 60

years of data. Given their success in creating a smoothly varying annual cycle by retaining only the

first six harmonics of the LTDM of temperature, wind, and geopotential height, we tested a similar

filtering on precipitation. This filtering creates a smoothly varying annual cycle of precipitation,

here called the harmonic long-term daily mean (HLTDM). Choosing the number of harmonics to

retain in order to adequately represent the annual cycle of precipitation is unclear. In Wang and

LinHo 12 harmonics are used to capture the onset of the Asian monsoon, but in an earlier paper

(Wang and Wang) only 4 harmonics are used. The older paper was not concerned with the precise

timing of the onset, but rather with how the intensity changes from year to year.The newer paper

sought to identify the time of monsoon onset, which required a more detailed representation of the

annual cycle. To choose the number of harmonics here, we observed the average difference between

the LTDM and the HLTDM at each grid point versus how many harmonics we kept. This analysis

led us to use six harmonics because after the sixth harmonic the additional reduction in difference

between the LTDM and the HLTDM, in our map average, becomes small relative to the reduction

in difference gained when adding each of the first six harmonics.

Maps created using six harmonics (Figs. 2.1a,d) were unsatisfactory in that they consistently

failed our tests of connectedness by exceeding the thresholds mentioned above. The most prominent

cause of disconnectedness is a persistent link between Wyoming and Illinois, which belong to

disconnected parts of the same region. This is illustrated in Fig. 2.1d for region 8 where southern

Illinois and eastern Missouri are part of the same region as most of Wyoming. The similarity

between the HLTDMs of the geographically separate areas of Wyoming and Illinois, among other

disconnected regions, indicates that gross seasonality is not enough to define coherent precipitation

regions. Sub seasonal variations should play a stronger role in identifying our regions if we desire

connectedness, especially on smaller scales. With that in mind we experimented with keeping more

harmonics when constructing our HLTDM and we did find that the more harmonics that were kept,

the better the map scored in each of our criteria. However, part of that better score is coming from

large variations on very short time scales still present after averaging the data over the full period

of record, whereas we prefer matching the broader seasonal cycle.
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2.4. APPROACHES CONSIDERED TO CONSTRAIN THE ANNUAL CYCLE

2.4.2 Long-term daily median of precipitation

To retain day-to-day variation, we considered constructing a time series from a central tendency

of the precipitation distribution for each day of the year for each grid point. Because precipitation

is known to have a very skewed distribution (Ison et al.) we tested the median as our central

tendency. Unfortunately,there are multiple locations in Arizona and New Mexico where the median

precipitation is 0 for every day of the year. This does not reflect the seasonality in precipitation

that exists in those areas and makes the long-term daily median a poor choice to represent the

annual cycle of precipitation.

2.4.3 LTDM of precipitation with and without a 3-day running mean

Since a long-term daily median is a poor choice to measure the annual cycle we trained SOMs

on the LTDM of precipitation at each grid point (Figs. 2.1b,e).This LTDM is much noisier and

less intuitive than a HLTDM or long-term daily median but does avoid the issues discussed in the

previous two subsections. This trade off also creates regions that have better connectedness than

regions made using a HLTDM or long-term daily median but there are still areas of significant

disconnectedness. Even averaging 32 years of data, there remains significant variation from one

day to the next in the LTDM. Large daily variations are problematic so we attempt to soften them

with a simple nonrecursive smoother so we used a simple nonrecursive smoother in time on the raw

precipitation data before creating the LTDM. The smoothed value for day X equals one-quarter of

day X− 1 plus one-half of day X plus one-quarter of day X+1. A LTDM is then created from the

smoothed data at each grid point and used to train the SOM. The smoothing altered the shapes of

the SOM regions, but the connectedness metric was not sufficiently improved. Disconnected regions

moved, but their number was not appreciably reduced. The smoothing had insufficient benefit to

any of the four criteria overall.
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2.4.4 Working with the cube root of daily precipitation data

It is well known that precipitation data fit a gamma distribution (Ison et al.) better than a normal

distribution. Therefore, transforming the gamma distributed precipitation data to a more normal

distribution by taking the cube root of precipitation (Stidd (1953)) was tested. This operation

has a much larger effect on large precipitation values than on small precipitation values, effectively

reducing the impact of extreme data. This reduction is valuable because we want the SOMs to be

based on the seasonal cycle, which facilitates coherence in space and has links to extreme precipi-

tation mechanisms mentioned earlier. Additionally, we found that even the LTDMs of neighboring

grid points had large differences in their peak values. Taking the cube root of the raw precipitation

data deemphasizes the spatial variation of these peak values. This method still retains the seasonal

cycle of precipitation and incorporates a reduced form of subseasonal variation leading to maps that

consistently score better in all four criteria than the maps based on any of the methods discussed

above. For low K values the map using the cube root of precipitation performs marginally better

than the map without taking a cube root.The superiority of this method over using the LTDM

without taking the cube root grows as K increases and is easily seen for maps with higher values

of K (Fig. 2.1).

2.5 Results

2.5.1 Criteria values as a function of K

When making composites we increase the number of events sampled by expanding the area we

aggregate over. Because we are analyzing extreme events here we use the raw (i.e., no normalization

or taking of the cube root) precipitation data. We define an extreme event to be a 6-h period that

exceeds the 95th percentile for precipitation accumulation at a particular grid point, after discarding

time steps with zero precipitation. For each region we count the number of time steps when any

grid point reports an extreme as a “regional event.” Creating a threshold for the number of these

regional events that each region must have would necessarily base the threshold on the driest (fewest

precipitation periods) region found by the SOM. Instead, we want each region to aggregate more
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extreme events than could be found from any single grid point within it. To this end we calculate

a regional extremes ratio (RER). The RER is the number of time periods when a point somewhere

in the region exceeds the 95th percentile divided by the number of time periods when there is rain

somewhere in the region. Since RER is a ratio based on exceeding the 95th percentile, then the

RER for an individual grid point would be essentially 0.05 or 5%. We would like our SOM regions

to capture at least 4 times as many extreme events as an individual grid point would,so we apply

a RER threshold of 0.2 or 20% criterion to our analysis. The RER allows comparison of extremely

dry and extremely wet areas of CONUS more than would a fixed number of events. This ratio also

allows intercomparison of different datasets having differing periods of data, grid intervals, and/or

time intervals. Figure 2.2 shows the relationship in CFSR data between K and RER in the region

with the lowest RER along with the 20% threshold. From Fig. 2.2 it is clear that using more

regions means that each of those regions aggregate fewer events and asymptotically approach the

value (RER = 5%) for a single grid point. This simple RER threshold indicates that values of

K > 15 are eliminated from further consideration in the CFSR data.

However, Figs. 2.3a–c show that as the number of regions is increased the compactness ratio

and IAC improve dramatically and MAF sees modest improvement in the worst region’s ratio.

But increasing the number of regions decreases the number of events in each region by decreasing

the average areal extent of each region over which we can aggregate events. Therefore, a balance

is sought between two competing goals. The first goal is to create regions that are large enough

to have meaningfully more events to aggregate compared to considering a single grid point. The

second goal is to create regions that attain high scores in compactness and low (better) scores in

IAC and MAF. Creating a map with fewer regions helps the first goal while creating a map with

more regions helps the second goal.

Of the K values that pass the event threshold described (2–15) the values that do not meet our

robustness criteria (values < 0.65 in Fig. 2.3d) are discarded. The remaining values (K = 3, 5–13,

and 15) are ranked by their median score in compactness ratio, and their worst region’s scores in

MAF and IAC. The worst region’s score was judged to be more important than the median for the

purpose of selecting the optimal value of K due to the lack of variation in the median scores of
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MAF and IAC. In the case of IAC this was particularly true for K > 10. The “optimal” K value

with the best average rank is 15 in this paper. One notes that K = 12 also does very well in this

comparison and is the most compact of all the maps considered.

An odd characteristic is a persistent link between the Florida (FL) peninsula and the New

Mexico/Texas (NM/TX) border area, especially when K is small (K < 10). At first glance this

seems very strange because peninsular Florida has a warm, humid, tropical climate whereas the New

Mexico and Texas border area is arid (Kottek et al. (2006)). This linkage also shows up in the CPC

dataset, which is based on observations, ruling out model error as causing this unexpected similarity.

Our procedure to normalize the data at each grid point causes the grouping of New Mexico with

Florida. Both areas share a late summer relative peak in precipitation and, while Florida is much

wetter, the normalization of precipitation magnitudes causes Florida’s humid maritime seasonal

cycle to closely match New Mexico’s arid continental cycle. For compositing events, having similarly

large spatially separated areas grouped together is very undesirable. We design a process to identify

and label as separate regions large, spatially separate areas that the SOM analysis assigns to one

region. This process is discussed further in section 6.

2.5.2 Variations within the CONUS of the annual cycle

Figure 2.4 illustrates how the normalized annual precipitation cycle varies across the CONUS; the

spatial variation is similar for smaller and larger numbers of regions. The K = 12 regions version is

emphasized because it has the most compact regions of all maps that were considered (K = 2–15).

All along the west coast the wet season starts in November and ends around May or June. Regions

10, 11, and 12 are then primarily differentiated by the relative strength of their dry seasons compared

to the median value of their annual cycle.This strength decreases as we move from north to south.

In the southwest, region 1 encompasses most of Arizona and New Mexico; it has both a weak

wintertime wet season (especially January–March) and much stronger late summer to early fall

wet season (July–September). Hence, this area gets some wintertime precipitation,probably from

Pacific storm tracks, but is more influenced by the North American monsoon (NAM; Adams and

Comrie) in the late summer. The large late summer peak in precipitation makes the annual cycle
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here similar to the annual cycle in the Florida peninsula as discussed above. The northern Great

Plains are dominated by wintertime precipitation with a fairly strong dry season from July into

November (region 9). Moving south through the Great Plains we see a gradual flattening of the

annual cycle down into south Texas (regions 6, 5, and 4). In the southeast and inland from Florida,

region 3 has a weak dry period (October–December) leading into a winter and spring that are near

the annual mean precipitation rate with a slightly wetter summer. The northeast (region 7) is

fairly wet until August and then becomes wet again in November. Eight of the twelve regions in

this map are to some degree wintertime dominated when it comes to precipitation.

2.6 Comparison between CFSR and CPC

When our criteria with respect to K are examined to find the optimal value of K for SOMs

trained on the CPC data, broadly similar results are found, with a few key differences (Figs. 2.5

and 2.6). Comparing the regions with the fewest unique events, for a given value of K, in the CPC

and CFSR-based maps (not shown) shows that the CPC-based maps have far fewer unique events.

If the region with the lowest RER, for a given value of K, in the CPC-based maps is compared to

the region with the lowest RER, for the same value of K, in the CFSR-based maps, they will have

a very similar value of RER (comparing Figs. 2.5 and 2.2). So, even though the different regions

have different numbers of unique events due to the temporal and spatial sampling and length of the

data, the RER is comparable, as intended. The median compactness ratio of the CPC-based maps

generally increases with K apart from a dip into lower values for K = 8 and 9 (Fig. 2.6a). Unlike

CFSR-based maps, the worst region’s compactness ratio generally decreases with increasing K for

K > 5. As the number of regions increases both the median and worst region’s IAC decreases

steadily (Fig. 2.6b). The worst region in the CPC-based maps exhibits this trend much more

strongly than does the worst region in the CFSR-based maps. The median region’s MAF is very

comparable to that of the CFSR-based maps for K > 5, both having small values that vary little.

The worst region’s MAF in the CPC-based maps is fairly constant between 0.4 and 0.5 except for

K = 2, 3, and 5 where it falls below 0.3 (Fig. 2.6c). This is very different from the CFSR-based

maps, which have low values (∼ 0.1) from K = 12 through K = 19 and generally higher values
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(0.3–0.4) elsewhere (Fig. 2.3c).The relationship between robustness and K of the CPC-based maps

is similar to the CFSR-based maps but with overall higher robustness and different local peaks

(Fig. 2.6d).

To find the optimal value of K for the CPC-based maps we used the same 20% threshold of

regional events divided by periods with nonzero precipitation. Applying this threshold requires

K < 17, excluding K = 14. This threshold is similar to the CFSR value despite the large difference

in the upper bounds provided by the false discovery rate for the CFSR-based maps compared to

the CPC-based maps. Again, this is because RER is a far more limiting factor than FDR.

One does not expect the metrics presented here to find the same optimal value of K for both

datasets, but one expects the values of K to be comparable. The median compactness is lowest

for K = 8 and 9. The worst compactness ratio is highest for K = 2–4 and 6. The worst com-

pactness ratios show a decreasing trend with increasing K, which is opposite from the CFSR data.

Additionally, the compactness ratios found for CPC data area bout half as large as those found for

CFSR data. The median region’s IAC is very noisy for K = 2–10 with K = 10 being the largest

value. For K > 10 the median region’s IAC is much smaller. The CPC IAC is generally larger

than for the CFSR data. As with IAC, the median region’s MAF is small for K > 5. The worst

region’s MAF is lowest (i.e., best) for K = 3 and 5 while the other values are higher, between 0.4

and 0.5. The CFSR MAF values are similar except for the worst regions from K = 12–19, where

they are around half as much. The robustness of CPC-based maps is highest (i.e., best) for K = 8,

11, and 15. Compared to CFSR-based maps the CPC-based map shave smaller differences between

the most and least robust maps. By these considerations CPC-based maps with K = 15 regions

perform best.

In CPC data, K = 15 is not large enough to have Florida (FL) separate from the New Mex-

ico–Texas (NM/TX) border region through the SOM analysis; instead, K ≥ 41 is required for this

to happen. However, maps with ≥ 41 regions have far fewer events per region than ideal. Again,

the link between FL and the NM/TX border region is caused by those separate areas experiencing

their respective wet seasons at nearly the same time of year. Because of the distance between FL

and NM, the relatively similar sizes of these two subregions, the region they both belong to should
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be separated into two distinct regions for analysis and making of composites. This approach is

recommended for all regions with a minor area that is greater than a quarter the size of the major

area; for reference, the FL part of region 4 is 0.41 the size of the NM/TX part in Fig. 2.7a. The

FL part of region 5 is 0.53 the size of the NM/TX part in Fig. 2.7c. In the analysis shown in

this paper, the only regions that would meet this requirement encompass FL and NM/TX and the

separation results in a map with 12 and 16 regions and is shown in Figs. 2.7b and 2.7d. One notes

that this threshold does identify other regions for separation at high values of K(≥ 20). For some

of these maps Michigan (MI) is its own region and the two parts of MI are disconnected from one

another.

2.7 Comparison between SOM and other regionalizations

Karl and Knight (1998) used nine regions to analyze precipitation trends over the CONUS

based on combining entire states. State boundaries do not necessarily correspond to meteorological

“boundaries” or climatological zones. Nonetheless, their choice of regions has been popular so it is

important to see how their regions compare with our SOM-based regions. Their map (Fig. 2.8a) is

constrained by state boundaries, and therefore scores very well in our connectedness metrics.The

Karl and Knight map also does a fairly good job of grouping areas by their annual cycle of pre-

cipitation in many parts of the CONUS, although this was not their stated goal. To compare the

Karl and Knight map quantitatively to the SOM method, we created a SOM with nine regions (see

Fig. 2.8c). Both Figs. 2.8c and 2.8e were created with eight regions, and the ninth region comes

from separating Florida from the New Mexico–Texas border region as described in the previous

section. We want a quantitative measure of how much each grid point is like the rest of the grid

points in its region in terms of its annual cycle. For each of Figs. 2.8a and 2.8c we calculate the

root-mean-square difference (RMSD) between the LTDM-n at each grid point and the mean of

each other grid point’s LTDM-n within the region the original grid point belonged to. The RMSD

is found by taking the squared difference in LTDM-n at each day between one grid point and the

average value of the LTDM-n within the region on that day, then taking the average of all days.

Small values of this RMSD indicate that a specific grid point is very much like the rest of its region,
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and large values indicate a grid point that is quite different. The result for each map is plotted in

Figs. 2.8b and 2.8d. We do not believe K = 9 creates regions that are small enough to confidently

aggregate events within. This is because the K = 9 map has a smaller compactness ratio compared

to a map with K = 15 (Fig. 2.3a). Nonetheless, Karl and Knight use nine regions so we make our

comparison using nine SOM-based regions. Even using a small (K = 9) number of regions, the

SOM regions have grid points with a more consistent annual cycle than do the Karl and Knight

regions. While we see a number of areas with particularly poor consistency in Karl and Knight’s

regions, namely Mississippi, western Montana, and the Four Corners states, we also see that their

choice performed very well in the Pacific Northwest.

The North American Regional Climate Change Assessment Program (NARCCAP; Mearns et al.

(2012)) uses regions outlined in Bukovsky (2011) to capture North American regional climatology;

we refer to these regions as the Bukovsky regions. For a more direct comparison to our regions,

we have plotted only those 17 Bukovsky regions that exist over the CONUS (Fig. 2.9b). These

Bukovsky regions closely follow those used by the National Ecological Observatory Network(NEON)

put forward in Kampe et al. (2010). These regions are based on a statistical analysis of nine

ecoclimate state variables, including temperature, precipitation, and solar insolation. One should

not expect them to match exactly our regions since ours are based on normalized precipitation

only. To compare our regions to the Bukovsky regions, we again match the number of regions, now

K = 17 in Fig. 2.9. For each grid point we find the fraction of grid points that were in the same

region as the target grid point under the Bukovsky regions compared to how many are still in the

same region as the target grid point under the SOM regions, similar to our measure of robustness.

This fraction varies between 0 and 1, with values of 1 indicating more agreement between the two

sets of regions; the result of this calculation is shown in Fig. 2.9c. The map average result is

less than 0.5, which means the average grid point is in a region with more than half of the grid

points being different when we compare the Bukovsky regions to our SOM generated regions from

CFSR data. While the maps, overall, are not very similar, one recognizes that there are areas of

fairly good agreement. This is notable because of the differing ways the regions were produced.The

areas of agreement are shown by bluer hues in Fig. 2.9c. The places where agreement is good are
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similar to those found in comparison with Karl and Knight (1998), like the Pacific Northwest, New

England, Southern California, parts of the Great Plains, southern Michigan, and Florida. Overall,

the method used by Bukovsky produces a map that is quite different to the one produced by the

SOM method. That is expected because the two maps were designed with different purposes:

Bukovsky’s purpose being to create regions sensitive to changes in temperature and precipitation

to aid in North American climate change assessment, while ours is to group areas purely by the

annual cycle of precipitation. It is nevertheless encouraging to find some commonalities between

these regionalizations. The same comparison is shown between the Bukovsky regions and SOM

regions based on CPC data (Figs. 2.9d,e). Figure 2.9d was created from a SOM with 16 regions

with the 17th region created by manually separating Florida from the NM/TX border region. The

map average is again below 0.5 and is quite similar to Fig. 2.9c. The CPC and CFSR differences

from the Bukovsky regions are generally similar; a couple of exceptions are for Florida and the very

northernmost part of California.

2.8 Conclusions

This paper introduced a new and objective way to select contiguous geographic areas that

experience precipitation at similar times of the year. Our purpose in devising this methodology

is to identify regions for compositing information about extreme events. We have devised our

method to focus on the timing of precipitation during the year because the timing is a key factor in

determining which meteorological processes are primarily causing the precipitation. Our method

creates “coherent” regions based only on the normalized annual cycle of precipitation, or LTDM-n.

These regions are compact enough to aggregate extreme precipitation events within each region

with confidence that the events are similar. The directness of interpretation of the LTDM-ns that

represent each region makes comparisons to other regionalizations or datasets straightforward and

easily quantifiable. Comparisons to other regionalizations are also aided by flexibility in the number

of regions.

In an effort to optimize the choice forK (the number of SOM regions), six criteria were developed

to measure four aspects of the precipitation regions. We first tested the statistical distinguishability,
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at the 5% level, of each pair of regions using the false discovery rate to reveal the upper bound of the

number of regions that could be created. This produced upper limits of 32 regions for CFSR data

and 63 regions for CPC data. We next applied a criterion called the regional extremes ratio,whose

20% threshold means all the SOM regions must have at least 4 times as many time periods with

at least one grid point reporting precipitation exceeding the 95th percentile than would occur at

a single grid point. In short, this RER criterion requires every region to provide notably more

events for aggregation than if a single grid point was used. Also, RER facilitates comparison across

datasets with different resolution and length. We created two criteria to measure connectedness

because we want to track two distinct aspects of connectedness.The first aspect, measured by IAC,

is how many groups of grid points are disconnected from the largest group in a region. The second

aspect, measured by MAF, is how large are the disconnected groups relative to each other and to

the largest group. Both criteria’s map averages (i.e., the average over all K regions in a particular

map) have a strong inverse trend with K. As more regions are added, the average region becomes

more connected. The trend in the least connected region as K increases is much flatter. This

indicates that there are only a few regions per map that have substantial values of IAC and MAF.

These regions usually occur in mountainous or desert regions of the Southwest. Robustness refers

to how much a map is altered by changing the value of K. The relationship between robustness

and K does not exhibit a clear trend and is better described as a saw tooth function. For one to

several consecutive values of K, robustness is relatively low and then for one to several K values

it is relatively high. Compactness is measured by the ratio of the square root of the area of a

region divided by the perimeter of that region. The map average of compactness tends to increase

(improve) as the value of K increases.

Our methodology was applied to CFSR and CPC precipitation data. The criteria provide a

guide for choosing an optimal value for K, but in practice there were additional problems. A

persistent problem is that fairly high values of K are needed in our tested data to decouple an area

including the Florida peninsula from an area near the NM/TX border that are placed in the same

region by the SOM algorithm. In practice, one might either opt for a larger K or if that is not

feasible (i.e., if the number of events within the regions becomes too small) then manually intervene
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and treat the two areas as separate regions in later applications, as shown in Fig. 2.7.

For these CFSR data, K = 15 is optimal and the map has several notable features and quite

compact regions (Fig. 2.1f). Both the East and Gulf Coasts are broken into three different regions

(although they do share region 2) while the West Coast is divided into only two regions. For these

CPC data, K = 15 is optimal and after separating the Florida and NM/TX border areas yields a

map with 16 regions (Fig. 2.7d). In comparing the CPC map with 16 regions to the CFSR map

with 15 regions the most obvious difference is in the Pacific Northwest. Regions 12 and 13 in the

CFSR are largely combined into region 15 in the CPC data. Florida and the Gulf Coast are in

separate regions for the CPC but the same region for the CFSR. Another notable difference is that

throughout the Great Plains the lines between regions tend to run from north to south or from

east to west in the CFSR map while in the CPC map they are diagonally oriented from southwest

to northeast.

Maps created from CFSR and from CPC data were compared to regions described in Karl and

Knight (1998) (Fig. 2.8). All three maps with nine regions performed least well in our RMSD

test in similar areas of the country. Substantial differences between the local annual cycle and the

regional annual cycle were found along the Rocky Mountains, in the Southwest deserts and along a

line drawn from east Texas to Michigan. These differences have lower magnitudes in the two SOMs

than in the Karl and Knight regions. All three maps did relatively well in the Pacific Northwest

and parts of the High Plains. The two SOMs did much better in Florida, while the Karl and Knight

regions did better in New York State.

Maps created from CFSR and CPC data were compared to the Bukovsky regions (Fig. 2.9).

Both SOMs agree with the Bukovsky regions in the north and south parts of the West Coast as

well as east Texas and New England. The SOMs and the Bukovsky regions disagree more strongly

over much of the Great Basin, western mountains, and central plains. The CFSR map agrees with

Bukovsky in Florida but not in other parts of the Southeast; this relationship is reversed between

the CPC and Bukovsky regions. Overall, the agreements and disagreements between the CPC and

Bukovsky regions are both stronger in magnitude than those between the CFSR regions and the

Bukovsky regions.
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This method can be applied elsewhere in the world and the size of the regions is tunable by

changing the number of regions (K) specified in the SOM. This flexibility allows the technique be

used to investigate problems over different spatial scales. Here our interest is in large-scale meteo-

rology but in principle one could find a dense observational network and examine how precipitation

varies within an individual watershed.

These regions are the first step in a process to automate identification of the primary mete-

orological mechanism or mechanisms creating an extreme precipitation event. This SOM-based

approach can be used to assess how well climate models capture the spatial changes in the annual

cycle of precipitation.
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Figure 2.1: SOM regions created from A) The first 6 harmonics of the long-term daily mean
(LTDM) of precipitation at each grid point, K = 9. B) The LTDM of precipitation, adjusted to
vary from 0 to 1, at each grid point where K = 9. C) The LTDM of the cube root of precipitation,
adjusted to vary from 0 to 1, at each grid point where K = 9. D) Same as in A) but K = 15. E)
Same as in B) but K = 15. F) Same as in C) but K = 15. IAC is the mean value of the isolated
area count and MAF is the mean value of the minor areas fraction. Smaller values are preferable
for both IAC and MAF.
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Figure 2.2: The ratio of periods with extreme precipitation (> 95% value) to periods with nonzero
precipitation (RER) in the CFSR data contained within the region with the lowest RER for each
value of K is shown in red. Our threshold of 20% (meaning four times as many periods with an
extreme somewhere in the region as occur at a single grid point) is shown by the dashed line.
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Figure 2.3: Performance criteria for CFSR based SOM regions created from the LTDM of the cube
root of precipitation, adjusted to vary from 0 to 1, at each grid point. A) Number of regions vs
compactness ratio. The dashed curve is the least compact region and the red curve is the median
region’s compactness ratio. B) Number of regions versus isolated area count. The dashed curve is
the worst performing region and the red curve is the median isolated area count of the regions .
C) Number of regions versus the minor areas fraction. The dashed curve is the worst preforming
region and the red curve is the median minor areas fraction of the regions. D) Number of regions
versus robustness. The red curve shows the map average for robustness for the shown values of K.
Preferred metric values are higher in A) and D), and lower in B) and C).
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Figure 2.4: SOM regions with K = 12 created from the LTDM of the cube root of precipitation,
adjusted to vary from 0 to 1, at each gridpoint. The surrounding plots show the representative
LTDM of the cube root of precipitation, adjusted to vary from 0 to 1, at each gridpoint. The middle
50% of grid points in each region are contained in the shaded area of each subplot. The subplots
each begin at 1 January on the left and end on 31 December on the right. The value K = 12 is
chosen because it separates the NM/TX border region from Florida in these CFSR data and has
the highest compactness ratio of all maps considered (K = 2–15).
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Figure 2.5: Same as Figure 2.2 except for CPC data.
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Figure 2.6: Similar to Figure 2.3 except for CPC based SOM regions.
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Figure 2.7: SOMs regions from the CPC data. A) K = 11, B) K = 11 again but with region 4
separated into two distinct regions to create 12 regions, C) K = 15, and D) K = 15 again but
with region 5 separated into two distinct regions to create 16 regions. IAC is the mean value of
the isolated area count and MAF is the mean value of the minor areas fraction. These CPC data
are created from the LTDM of the cube root of precipitation, adjusted to vary from 0 to 1, at each
grid point, same as was done for CFSR data.
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Figure 2.8: A) Our representation of the nine regions used by Karl and Knight in their 1998 paper.
B) The root mean squared difference (RMSD), described in section 5b, of the regions in A). C)
SOM regions created from the LTDM of the cube root of precipitation (CFSR Data), adjusted to
vary from 0 to 1, K = 9 to match the number of regions in A). D) as in B) but for the regions
shown in C). E) As in C) but for CPC data. F) as in D) but for the regions shown in E). Note
regions in E) are calculated from CPC data but the RMSD is calculated with CFSR data to be
comparable to B) and D). For both C) and E) FL was manually separated from the NM/TX border
region to form the 9th region. This does not substantially affect the results shown in D) and F).
Smaller RMSD is desirable.
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Figure 2.9: A) SOM regions created from the LTDM of the cube root of precipitation (CFSR
data), adjusted to vary from 0 to 1, K = 17 to match the number of regions in B). B) Bukovsky
regions plotted over the CONUS domain. C) The agreement between the maps in A) and B) using
the robustness method described in section 5b except both maps being compared have 17 regions.
Hence, larger (darker blue) values mean greater agreement and smaller (darker red) values mean
less agreement. D) As in A) but for CPC data. E) As in C) but comparing maps B) and D).
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Figure Supplement1: SOMs regions from the full, unprocessed, CFSR daily precipitation record.
A) K=5, B) K=10, C) K=15, and D) K=20. IAC is the mean value of the isolated area count and
MAF is the mean value of the minor areas fraction.
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Chapter 3 Simple Metrics to Identify the

Process(es) Driving Extreme

Precipitation

3.1 Introduction

In this chapter we will try using metrics based on the literature to test the central hypothesis

that The seasonality of mean precipitation is predictive of the distribution of extreme precipitation

generating mechanisms. The goal of this chapter is to develop an algorithm to identity the extreme

precipitation generating mechanisms creating individual extremes. This algorithm will be based on

previous such attempts and should be able to distinguish the primary process causing an extreme

event. To assess this ability we will compare our algorithm to several individual cases from Kunkel

et al. (2012) as well as the seasonal trends from Kunkel et al. (2012) and Dowdy and Catto (2017).

Section 2 provides a background of previous detection and classification algorithms. Section 3

discusses the methods used in this chapter. Section 4 presents the results, which are discussed in

more detail in section 5, and section 6 presents conclusions.

3.2 Background

The importance of meteorological process that create extreme precipitation (e.g. fronts, con-

vection, and extratropical cyclones) is known to vary seasonally and spatially (Kunkel et al., 2012).

This knowledge is often linked to the seasonality of mean precipitation. Here we will test the

hypothesis that the seasonality of mean precipitation is predictive of the distribution of extreme

precipitation generating mechanisms. To do this we need to determine the primary meteorological

cause of individual precipitation extremes. There have been numerous case studies where these
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meteorological processes (fronts, convection, and extratropical cyclones) have been identified for

individual extreme events. That procedure is done by hand and can be quite labor intensive. This

labor can become a prohibitive barrier to create a climatology of the driving meteorological process

behind precipitation events. There has been at least one notable attempt to do this from observed

data (Kunkel et al., 2012), which required hand analysis of thousands of surface weather maps.

This type of analysis is not feasible to repeat for even a single climate model run let alone a full

ensemble. In this chapter our main objective is to create a set of algorithms to identify meteoro-

logical processes, which cause individual extreme precipitation events, from model data. The focus

is on three main processes: fronts, convection, and extratropical cyclones.

3.2.1 Frontal Identification

Objective frontal analysis dates back at least as far as (Renard and Clarke, 1965) and debate

on the precise definition of a front has persisted since the concept was introduced by Bjerknes

(1919). Definitions include: gradient in air temperature, surface humidity gradient, leading edge

of temperature advection, abrupt shift in wind direction, a change in the air’s origin, and warm air

side of the gradients in air temperature and low level humidity (Sanders et al., 2002). Objective

frontal detection schemes typically focus on: a wind shift (Simmonds et al., 2012), a temperature

gradient (Mills, 2005), a combination of moisture and temperature gradients (Catto et al., 2012;

Clarke and Renard, 1966; Hewson, 1998) or a combination of temperature gradient and vorticity

(Parfitt et al., 2017). The vertical levels these schemes are applied to are application dependent

and vary from surface fields to around 850 hPa. Some schemes look at upper level fronts ( 600 hPa)

but they are invariably secondary to the analysis. The schemes of each type are broadly similar

but tuned to the specific needs of those using them. The specifics of one scheme of each type will

be discussed in greater detail below.

Wind Shifts

Simmonds et al. (2012) looks for winds to shift from the northwest quadrant to from the southwest

quadrant and for the change in meridional velocity to be greater than 2 m/s over a 6-hour interval.
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This scheme is designed to look at southern hemisphere fronts so the direction of the wind shifts

would need to be reversed for application to the northern hemisphere. A grid point is flagged as

a front at the end of a 6-hour interval that meets these criteria. Adjacent frontal grid points are

considered to be a frontal object and single unconnected frontal grid points are discarded. The

front is then found to be the smoothed eastern edge of each frontal object. For each front the angle

(relative to the meridian), center of gravity, length, and intensity is recorded. The intensity is the

sum of all the changes in meridional velocity along the length of the front normalized for different

spatial and temporal scales. This scheme cannot detect stationary or very slow moving fronts, both

of which can create flash flood events (Maddox, 1979). Although useful in detecting and tracking

mobile fronts, especially over water, and possessing a natural grid point based measure of intensity;

the emphasis on 10m winds and inability to detect slow-moving or stationary fronts are severe

drawbacks.

Temperature Gradient Only

Mills (2005) use the gradient of air temperature at 850 hPa to measure frontal strength with the

goal of connecting strong pre and post frontal winds to major fire events in Australia. The author

thought that if the temperature gradient was strong at 850 hPa that indicated a deeper tropospheric

structure and strong associated winds. To connect this to precipitation, one would expect a strong

thermal gradient and winds to create strong advection, generating ascent and precipitation (if the

conditions are moist enough). This work differs significantly from many other frontal analyses in

that it does not actually attempt to locate a front, although it can be adapted for that purpose

(Hope et al., 2013). Instead, the goal is to find the area the front impacts with strong winds

and measure the intensity of this impact. This is a very useful, impacts driven, frontal detection

scheme. The primary limitation is that it cannot discern fronts arising from a sharp moisture

gradient between two air masses, as commonly arises from the “Dry-line” in the central U.S.
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Thermal Frontal Parameter

Catto and Pfahl (2013) use a thermal frontal parameter (TFP) defined by Renard and Clarke (1965)

to identify fronts for the purpose of linking them to precipitation events. This TFP is defined, for

some scaler variable τ , as the derivative of the magnitude of the gradient of τ in the direction of

the gradient of τ (equation 3.1).

TFP = −∇|∇τ | · ∇τ

|∇τ |
(3.1)

In Catto and Pfahl (2013) τ is the wet bulb potential temperature at 850 hPa. Points are

identified where the TFP is negative and the gradient of the TFP is zero and those points are

linked together to form fronts. This is done on a very coarse grid (2.5° resolution) to reduce the

influence numerical noise can have on the detection of the location of a front (Simmonds et al.,

2012). To associate precipitation (also on a 2. 5° resolution) with a front the grid box experiencing

the precipitation and the surrounding 8 grid boxes are searched for an instance of a front at the

beginning and end of the 6-hour period of precipitation accumulation. If a front is found then the

precipitation event is associated with that front. Catto and Pfahl (2013) note that misallocation of

precipitation is possible with all automated methods due to the area of influence of a front being

substantially larger than the front itself. This method is also applied to daily precipitation data

and misallocation is slightly higher due to the possibility of a short-lived rainstorm occurring when

no front was present, however a front could pass through earlier or later in the day. In that case

the precipitation would be flagged as frontal.

Vorticity And Temperature Gradient

Parfitt et al. (2017) develop a two variable method for frontal detection. This method combines

a thermal variable, the magnitude of the temperature gradient, with the relative vorticity seen in

equation form below (equation 3.2).

F = ηp|∇(Tp)| (3.2)
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This quantity is divided by the Coriolis parameter and a baseline temperature gradient of 0.45K
100km

to normalize the metric. Grid points with values exceeding 1 at 900 hPa are considered frontal.

This threshold must be found via case study analysis at each pressure level to be considered, which

is a substantial drawback. Additionally, the authors only test their metric over oceans, an ideal

place for automated detection because it completely removes topography. This is not an option

afforded the analysis of fronts appearing over land.

3.2.2 Convective Identification

Thunderstorms and intense convection can often give rise to heavy and localized precipitation.

Dowdy and Catto (2017) use a network of ground based lightning detectors (World Wide Lightning

Location Network: WWLLN). Grid cells with at least two lightning strikes during the 6-hour

precipitation time period of the study (Dowdy and Catto, 2017) are considered to be convective.

This threshold provides an indication of the presence of a deep convective storm colocated with the

precipitation.

Synoptic cloud observations are used to distinguish convective precipitation from stratiform

precipitation by Berg et al. (2013). The authors classify precipitation as convective if observations

find cumulus or cumulonimbus clouds during the period of precipitation.

In their large scale manual identification of meteorological causes of extreme precipitation,

Kunkel et al. (2012) have two classes of convective event, Air Mass Convection (AMC) and

Mesoscale Convective Systems (MCS). Each type was characterized by a convectively unstable

vertical temperature profile. An event was classified as AMC if the precipitation is isolated (exists

at an isolated grid cell or pair of cells). AMC events were also typically found in warm areas and

times of year. The MCS type often needed to be separated from their frontal category because

MCSs often spawn along frontal boundaries before separating. These MCSs are characterized by

moderate southerly winds, sometimes lacking anomalously warm temperatures. Even so, MCS was

often assigned as the category if no other category was appropriate.

The first two schemes rely on observational networks which limit the applicability of techniques

to reanalysis data. But each of these schemes seeks signs of existing vertical instability associated
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with an extreme event to classify the event as convective.

3.2.3 Vortical Identification

Vortical features are often investigated through the study of extratropical cyclones. Many detection

schemes have been implemented to find and track these features, despite no universally accepted

definition (Neu et al., 2013). These tracking schemes usually use one or more of these four variables:

mean sea level pressure (MSLP) (Benestad and Chen, 2006; Hewson and Titley, 2010; Murray and

Simmonds, 1991), upper level vorticity (Hewson and Titley, 2010; Murray and Simmonds, 1991;

Serreze, 1995), lower level vorticity (Inatsu, 2009; Sinclair, 1994, 1997), and geopotential height at

850hPa (Inatsu, 2009; Sinclair, 1994, 1997). These methods use differing levels of terrain filtering

depending on their geographic area of study or their method’s reliability over topography. As with

frontal identification, the misallocation of precipitation is possible by these automated methods

due to the area of influence of an extratropical cyclone being substantially larger than the cyclone

itself.

3.3 Methods

3.3.1 Data

This study uses the fifth version of the European Center for Medium-Range Weather Forecasting’s

(ECMWF) atmospheric reanalysis (ERA5) (Hersbach et al., 2020). All ERA5 data used in this

study, was retrieved from the Climate Data Store (CDS) using their application programming inter-

face (API) as detailed here. This interface allows us to regrid this data set to one degree resolution

in the horizontal and three hours resolution in time. These resolutions are attainable by regridding

and/or data are readily available at these or finer resolutions from many GCMs/reanalysis outputs,

making them a good starting point for this analysis. We defined an extreme event to be the top 5%

of nonzero 3 hour precipitation accumulation at each grid cell. This temporal resolution is short

enough that we can match instantaneous measurements of process strength to the accumulated

precipitation. We have chosen a period from 1980-2010 to diagnose the climatology of PEx drivers
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in the current climate.

3.3.2 Metrics for the Identification of Processes

For each of the three processes of interest (fronts, convection, and cyclones) we create a simple

and easy to calculate metric to measure its strength. These metrics take inspiration from previous

work and attempt to build on their commonalities. A significant difference between this and the

approaches outlined above is that we want to quantify the contribution of each process at the grid

point level. This desire motivated our choice of metrics.

Frontal Intensity

To identify the presence and quantify the strength of fronts associated with the precipitation ex-

treme event we use the absolute value of the horizontal gradient of equivalent potential temperature

at 850 hPa (equation 3.3).

Frontal Metric = |∇pθe| (3.3)

This metric accounts for both temperature and moisture gradients as precipitation can arise from

sharp gradients of both kinds between air masses (Renard and Clarke, 1965). Because PEx can

arise distant from the maximum thermal gradient we take the largest score from among neighboring

grid points. In order to more easily the match the front to the 3-hour precipitation accumulation

we also take the largest score from between the beginning and end of the accumulation period.

Convective Intensity

Convection arises from static instability in the atmosphere and can generate very high precipitation

rates over a relatively small area. We use the change in Convective Available Potential Energy

(CAPE; equation 3.4) during the precipitation event to measure the severity of the convection.

Our metric uses CAPE measured for an air parcel lifted from the surface.

Convection Metric =
∂

∂t
CAPE (3.4)
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This metric measures the change in the stability of the column to convective motions during the

event. Only negative values (decreases in CAPE) are considered an indication of convective activity.

This was inspired by discussions on the nature of convection and CAPE in the context of statistical

equilibrium by Rennó and Ingersoll (1996). Particularly the idea that the energy available for

convection is proportional to the amount of CAPE that is present locally. It is also in line with the

three schemes discussed previously in that it focuses on a sign of vertical instability, in this case

CAPE.

Vortical Intensity

To assess the impact of cyclones and strong vortical features we calculate the vorticity advection

at 500 hPa (equation 3.5).

V orticity Metric = −U · ∇pζ (3.5)

Positive values of this metric are associated with increased upper level vorticity. This could be

because the presence of a midlatitude cyclone. Alternatively, a less notable vortical feature may

be present which could still drive ascending motion through the column during the precipitation

extreme. Similar to the frontal metric we take the largest score from among neighboring grid points

and from between the beginning and end of the precipitation accumulation period.

Scaling The Intensities

Because each of these metrics has different units, comparing their relative importance to a partic-

ular event carries some challenges. We considered several approaches to make the metrics inter-

comparable. The primary one being, placing each metric on a scale relative to the usual strength

of the metric in a particular area. For this approach we created a 0-100 scale based on the local

percentile rank of each metric. Above average frontal metric scores, negative convection metric

scores, and positive vorticity metric scores are retained for each grid point. Other scores are set

to 0 because they are judged to be either the wrong sign to directly generate precipitation (in the

case of convection and vorticity) or unremarkable (in the case of below average frontal scores).
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We judged that a below average thermal gradient (including non-precipitating time periods) was

unlikely to be the direct cause of an extreme precipitation event. The retained scores are then

ranked on a scale from 1-100 at each grid point.

The relative scales are created based on every value of the field in the data. This purposefully

includes times with non-extreme, and even zero, precipitation. This choice allows the separation

of the rarity of each process from whether or not large amounts of moisture were present. When

regional and seasonal statistics are discussed in the following sections the events considered are

every three hour period with precipitation accumulation greater than the local 95th percentile of

those periods with non-zero precipitation.

3.3.3 Self-Organizing Map Regionalization

Recall that our central hypothesis is that The seasonality of mean precipitation is predictive of the

distribution of extreme precipitation generating mechanisms. To test this we use a self-organizing

map (SOM) to identify regions that share the same mean precipitation seasonality (Swenson and

Grotjahn, 2019). This is very useful because it allows us to match a set of extreme events (those

occurring within a particular region) to the seasonal cycle of mean precipitation within that region.

The raw output from the SOM is shown in figure 3.1, as well as it’s isolated area count (the median

number of isolated areas comprising a single region: IAC), minor areas fraction (the median fraction

of a region’s area that is not contained in the largest isolated area: MAF), and compactness ratio

(the median ratio of the square root of a region’s area to its perimeter) which all compare well to

the scores in the results of Swenson and Grotjahn (2019). Additionally this set of regions passes

the regional extremes ratio (RER) threshold of 20% set out in Swenson and Grotjahn (2019) using

this chapter’s three hour definition of a precipitation extreme. Because of the lower resolution used

in this work we have to create maps using less regions than in Swenson and Grotjahn (2019). This

results in Florida (FL) not being separated from the New Mexico / Texas border region naturally.

This necessitates the use of the automatic intervention to separate large enough isolated areas

grouped together by the SOM discussed in Swenson and Grotjahn (2019) to separate FL into a 7th

region. Further discussion of the link between the seasonality of precipitation in FL and the New
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Mexico / Texas border region can be found in Swenson and Grotjahn (2019). We also remove the

borders between regions from the analysis to reduce the uncertainty in the seasonal cycle in each

region. The final regional map is shown in figure 3.2. This figure (3.2) does not display the scores

because IAC and MAF are 1 and 0 respectively because of the processing while the compactness

ratio increases. After processing, the RER is the only criterion likely to be negatively effected and

the threshold is still passed for the processed regions.

Figure 3.1: The raw output of the SOM trained on the normalized long term daily mean of the
cube root of precipitation at each grid point as in Swenson and Grotjahn (2019). IAC and MAF
refer to the map’s median isolated area count and minor areas fraction respectively.
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3.4 Results

3.4.1 Multivariate Metric Distributions

The simplest method to investigate the processes, as described previously, is to examine the various

bivariate distributions of the metrics. An example of this is shown in figure 3.3. This example

displays data from the Southeast region (figure 3.2) during summertime extreme events. There

we see no extreme events with a score between between 5 and 50 in the convective metric (upper

left panel). The overwhelming majority of the events in this 0-4 bin are events with a value of

zero. This indicates that, for these extreme events, convection is either above average strength or

not existent. This is in contrast with the other two metrics shown in this figure, each of which

show a relatively flat distribution from 5-100 with the most frequent score between 0 and 4. The

bivariate distributions show convection is about as likely to be “on” in the presence of a front as

it is in the presence of vorticity (comparing the distributions of convection vs frontal to convection

vs vorticity). Looking at the center bottom panel, when fronts and vorticity are mixed this occurs

more frequently with higher vorticity scores and lower front scores than vice versa.

In contrast during wintertime the mix of processes (figure 3.4) associated with extreme precip-

itation is much different. Far fewer are associated with high convection scores but the gap in the

convection score distribution remains (upper left panel of figure 3.4). The nonzero scores in the

vorticity and frontal metrics are no longer flat, but have many more events at higher scores. The

quadrant where Vorticity and Fronts are both relatively weak is the most sparsely populated with

extreme events (middle right panel of figure 3.4).

As a comparison let’s look at a region that experiences most of its precipitation during winter-

time, like the Pacific Northwest (orange in figure 3.2). In summertime (figure 3.5) the distributions

are very comparable to those of the southeast (figure 3.3) with an increased frequency of high

scores in the vorticity and frontal metrics. But in wintertime there is a decrease in the relative

strengths of the frontal metric scores compared to the vorticity metric scores (figure 3.6 that is

not seen in the southeast. This is somewhat surprising because fronts are discussed regularly in

relation to precipitation in this region. However previous studies disagree on whether the primary
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driver of winter extreme precipitation here is extratropical cyclones (Kunkel et al., 2012) or fronts

(Dowdy and Catto, 2017). Although the two processes are interrelated (extratropical cyclones

commonly develop strong fronts (Bjerknes, 1919)) this study finds unusually high levels of vorticity

advection (which points to cyclonic activity) more commonly associated with wintertime extreme

precipitation than strong thermal gradients in the Pacific Northwest.

3.4.2 Categorical Comparison

For our three metrics we create 8 categories: Front, Vorticity, Convection, Front & Vorticity, Front

& Convection, Vorticity & Convection, All, and None. Only about 1% of events fall into the “None”

category. This is beneficial in that these metrics capture most extremes but can also be interpreted

as a sign that the metrics are too broad. A process is excluded as a factor for an event if it has

either a score of 0 or a score that is 20 less than the process with the highest score. Events fall into

the “None” category if all three metrics have a score of zero and into the “All” category if each

metric is within 20 points of the other two. This 20 point threshold is a subjective choice, which

was made to balance the desire to find the most important process and leave some room for the

possibility of mixed type events.

To examine the geographic and seasonal variations in the relative strengths and frequencies

of each process associated with extreme precipitation the percentage of events that fall into each

category is plotted for each region during the entire year, summer, and winter (figures 3.7-3.9

respectively). The most noticeable trend here is the increased fraction of events that are in the

Convection category during summer for all regions. This is true for regions with strong precipitation

seasonality (the Pacific Northwest, in orange), as well as a region with a flatter seasonal cycle

(the Northeast, in yellow). In the annual plot (figure 3.7) four regions; the Great Plains, Desert

Southwest, Southeast, and Florida have Convection as the category most associated with extreme

precipitation. The two west coast regions share Vorticity as their most frequent category. The

Northeast is the only region with a mixed category (Vorticity and Frontal) as its single most

common category during extreme precipitation. Unsurprisingly Florida is the region with the

largest gap between its most and second most common categories. Florida is also the region with
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the most extreme seasonal shift. It goes from 60% convection in summer to 35% vorticity in

winter. Both of these are large percentages for a single category to occupy.

Case Study - Front

As a way to check this analysis against previous work we consider a single event from the previously

mentioned Kunkel et al. (2012) paper. This event was placed into the frontal type based on the

manual analysis of a limited set of meteorological fields. The results of this work’s analysis are

shown in figure 3.10 at 8 times during the day in question. The colored areas are where the

precipitation threshold of 12.5 mm from Kunkel et al. (2012) is met. The comparison focuses on

the largest connected extreme, running SW-NE from Ohio to Maine. The categories including

fronts in figure 3.10 are prevalent throughout the breadth and duration of this event which shows

good agreement with the previous study. Figure 3.10 also shows definite changes in the mixtures

of processes that are featured throughout event in time. There is a shift in secondary process

whereby the Front & Convection category is present in the western part of the event early and the

eastern part of the event later in the day. This is coupled with the reverse trend in the Vorticity

& Front category. Convection & Vorticity appear together, without as notable thermal gradients,

in isolated pockets that fall mostly around the edges of the precipitation extreme. This case study

largely agrees with the finding that this event is “Frontal” but is also reveals that this front is being

detected by all three metrics. Indeed, no event that was examined in this way was a truly “pure”

case. The identified categories are quite varied in space and time. Some grid points belong to five

different categories during the 24 hour period plotted in figure 3.10. Notably this precipitation

occurs during the last day of Hurricane Katrina’s life cycle. The then tropical depression Katrina

is near the southwestern edge of our precipitation event during this day.

Case Study - Extratropical Cyclone

Figure 3.11 shows how the processes driving the extreme precipitation event of June 17, 1996 change

throughout the course of the day. We will focus on the area from Kansas up to southern Michigan

but it is briefly worth noting the other large area of strong precipitation east of Florida. This area
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lies in the path of tropical storm Arthur and is dominated by the vorticity and convection metrics.

The event in the area of focus was classified as being primarily driven by an extratropical cyclone

in Kunkel et al. (2012). The metrics presented in this paper don’t find unusually strong vorticity

advection, compared to the strength of the thermal gradients for much of this event. The only

place strong vorticity advection shows up is in the southern “tail” of the event and only around

hour 12. For the rest of the event the frontal and convective metrics show up much more strongly,

and are often mixed. This event underlines both the ability for convection to be embedded in, or

near, frontal features and the difficulty of teasing apart the influences of extratropical cyclones and

associated fronts. We again see all three metrics responding to this one event and generate varied

results in space and time. It is interesting to note the way the categories with the frontal metric

active begin as dominant over the region, while categories with convection active grow to dominate

the area later.

Case Study - Front & Tropical Cyclone

The final case study (figure 3.12) contains two separate events and event types, as classified by

Kunkel et al. (2012). The first event is tropical storm Erin creating precipitation over Oklahoma.

This storm moves through north Texas into Oklahoma during the day of this precipitation event.

In the metrics this event shows up very strongly in terms of local thermal gradients with the yellow,

green, and cyan of the frontal categories well represented. This event looks very different than the

area associated with tropical storm Arthur in the previous case (figure 3.11). That event had almost

no grid points that fell into any of the three frontal categories whereas this one is dominated by

them. Both events are associated with tropical storms, Arthur in the previous example and Erin in

the current example. The primary differences are in the stage of development and the presence of

land or water underneath the storm which causes them to appear very differently in these metrics.

The other event was classified as a front by Kunkel et al. (2012). While the frontal categories are

very present here there are also a few areas that fall outside their scope, primarily in the convection

and vorticity category. There are also significant areas where all three metrics are closely matched

in score. While a front is definitely present, this event serves as an example of the mixed nature

46



3.5. DISCUSSION

of extreme precipitation events, which makes distinguishing the primary cause difficult for these

metrics. As in the previous two examples all three metrics return high scores during this one event.

generating varied results in space and time. For example, some areas along the southern edge of

the front take up three different categories in the first 12 hours of the event.

3.5 Discussion

This work has presented an approach to identifying the process or processes responsible for

an extreme precipitation event. The three processes were chosen to be commonly found processes

present in the vast majority of events. This aspect was successful as only 1% of events were not

captured by at least one of our metrics. This does have a downside in that there is a large overlap

between each of the processes, which can be seen clearly in the fractured nature of the case studies

(figures 3.10, 3.11, and 3.12). This fracturing happens in both space (the mosaic like appearance

of the plots) and time as seen by the rapid changing of categories during the course of each event

at some grid points. Because of this overlap between our metrics none of the cases we analyzed fell

into spatially or temporally consistent categories.

Some examples of how these metrics overlap include mesoscale convective systems (MCSs),

which are often born along frontal boundaries before separating (Kunkel et al., 2012). These events

would score strongly in both our convective and frontal metrics. Depending on the presence and

position of a trough the vortical metric could also score highly in some of these MCSs. Squall

lines are a convective system even more closely tied to frontal activity. These type of events could

contribute to the temporal inconsistencies by reaching an area just before the passage of a front

(Newton, 1950). Additionally, CAPE is simply a measure of the current state of the atmosphere.

CAPE can be decreased without convection by the advection of less buoyant air into the column at

low levels. It is also possible for CAPE to decrease due to the heating generated by precipitation

whether or not the precipitation was generated by convection. This contributes to the fractured

nature of these case study events sometimes increasing the convection metric.

One of the ways fronts are sometimes identified is by observing shifts in the wind direction along

the frontal boundary. This can lead to increased vorticity and vorticity advection in the vicinity
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of the front. A link between the frontal and vortical metrics also arises because both fronts (areas

of strong thermal gradients) and troughs (areas with largely cyclonic flow) offten occur toghether.

The frontal and vortical metrics are also both related to the detection of frontal cyclones. These

systems will have areas of strong vorticity advection that overlap with frontal features giving both

metrics high scores. If, for instance, a squall line develops near a front in a frontal cyclone all three

of our metrics will score highly.

In some ways, these results are enlightening. During the case studies we could observe very

general trends in the importance of certain metrics to the extreme event, either changing in time or

moving in space. For our purpose however, the interrelation between the processes do not permit us

to cleanly identify the atmospheric process most associated with a particular precipitation extreme.

Climatologically, these metrics show increased strength of vorticity advection to wintertime

extreme precipitation on the west coast relative to frontal strength (figure 3.8). Though perhaps

initially surprising, previous studies (Dowdy and Catto, 2017; Kunkel et al., 2012) have disagreed

on how to disentangle extratropical cyclones from their associated fronts as the cause of extreme

precipitation. This method finds a stronger relationship between the vortical field and precipitation

extremes rather than the thermodynamic field. In the Northeast, the three frontal categories

narrowly edge the three vortical categories over the course of the year (figure 3.7) where Kunkel

et al. (2012) find that fronts are more common than extratropical cyclones by greater than a 2

to 1 margin. In the Desert Southwest we find a majority of events are convectively influenced.

This is in agreement with the findings of Dowdy and Catto (2017) and disagreement with Kunkel

et al. (2012) who find more than half of events to be frontal in nature. These direct comparisons

are somewhat difficult given the different data, methods, and regional aggregations at play. But,

the disagreements between the previous studies and between this work and the previous studies

highlights the uncertainty still remaining in this kind of endeavor.

3.6 Conclusions

The three processes of focus were Convection, Vorticity Advection, and Fronts which form a

analogous approach to the work in Dowdy and Catto (2017). Each process was given a metric that
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had a physical link to the mechanism used to create extreme precipitation. Thermal gradients for

fronts, vertical instability for convection, and upper level vorticity advection for cyclones.

For convection the metric is based on amount of CAPE consumed during the event, for vorticity

the metric is based on the amount of positive vorticity advection, and for fronts the metric is based

on the strength of the local thermal gradient. These metrics emphasize the strength of each

process relative to strengths found at each location. This avoids the creation of thresholds for each

process that correspond to similar strength or importance between processes. This would be an

extremely problematic process because these processes are often linked, as in the earlier discussion of

extratropical cyclones and fronts. This work clearly shows that these physically relevant metrics are

not strictly related to a single type of atmospheric process and, therefore, do not separate extreme

events cleanly. This means that we are unable to test our central hypothesis that the seasonality of

mean precipitation is predictive of the distribution of extreme precipitation generating mechanisms.

However, we showed that these physically reasonable metrics are unable to determine the main

cause of extreme precipitation.

The metrics are created using simple calculations that can be done at the grid point level to

investigate the spatial change in process mix within an event (figures 3.10-3.12). This comparison

showed broad agreement with Kunkel et al. (2012) when considering the influence of fronts. The

metrics helped us identify areas where convection and vorticity each played the primary supporting

role and how those areas changed during the course of each event. In the first and third event

the “front” was somewhat close to a tropical storm. The remnants of Hurricane Katrina in the

first case and Tropical Storm Erin in the second. Disentangling a probable moisture source from

the dynamical process is a challenge for any process attribution framework. Sometimes a choice

needs to be made between the source of anomalously high moisture and the dynamical process

responsible for the lifting and condensation. This emphasizes a takeaway from this work, that

synoptic scale weather systems can create extreme precipitation through a variety of processes and

that the primary cause cannot be identified from these physically based, grid point level metrics.

The following chapter will present descriptive, rather than prescriptive, approach to identifying the

primary meteorological process behind extreme events.
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Figure 3.2: The 7 regions of similar annual cycle by which our results may be grouped. These
regions result from the approach in Swenson and Grotjahn (2019) for ERA5 daily precipitation
data. Abbreviations for the 7 regions are as follows: Great Plains (GP), Florida (FL), Desert
Southwest (DSW), Southeast (SE), Northeast (NE), Pacific Northwest (PNW), Southwest (SW).
The mean annual cycle of precipitation averaged over all grid points within each region is displayed
in the subplot matching the color of the region. The y-axis of these subplots is precipitation amount
normalized to the region, with the limits chosen separately to span the normalized data for that
region. The x-axis is day of the year with tick marks at the first day of every month.
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Figure 3.3: The plots along the diagonal are the univariate distribution of each of the three processes
(Convection, Vorticity, and Frontal). The x-axis is the rank of the process (broken into 25 bins)
and the y-axis the number of events in that bin (the y axis labels do not apply to the panels on the
diagonal). The lower triangular panels show a kernel density plot of the two processes indicated
on the corresponding x and y axis labels. The upper triangular panels show the same data as a
bivariate histogram.
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Figure 3.4: The plots along the diagonal are the univariate distribution of each of the three processes
(Convection, Vorticity, and Frontal). The x-axis is the rank of the process and the y-axis is a density
function over all events in the named region and season. The lower triangular panels show a kernel
density plot of the two processes indicated on the corresponding x and y axis labels. The upper
triangular panels show the same data as a bivariate histogram.
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Figure 3.5: The plots along the diagonal are the univariate distribution of each of the three processes
(Convection, Vorticity, and Frontal). The x-axis is the rank of the process and the y-axis is a density
function over all events in the named region and season. The lower triangular panels show a kernel
density plot of the two processes indicated on the corresponding x and y axis labels. The upper
triangular panels show the same data as a bivariate histogram.
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Figure 3.6: The plots along the diagonal are the univariate distribution of each of the three processes
(Convection, Vorticity, and Frontal). The x-axis is the rank of the process and the y-axis is a density
function over all events in the named region and season. The lower triangular panels show a kernel
density plot of the two processes indicated on the corresponding x and y axis labels. The upper
triangular panels show the same data as a bivariate histogram.
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Figure 3.7: Central plot shows the regions over which extreme precipitation was aggregated. Around
this are plotted the distributions of the various categories for extreme precipitation within each
region. Concentric rings are in increments of 10%. This includes every event in the record used bar
those in the “ALL” and “None” categories. Those were omitted to aid the visualization. “None”
type events make up no more than 4% of the events of any combination of region and season.
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Figure 3.8: Same as figure 3.7 but for only the winter months (DJF)
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Figure 3.9: Same as figure 3.7 but for only the summer months (JJA)

58



3.6. CONCLUSIONS

Figure 3.10: Plot of the process category for each grid point with precipitation > 12.5mm
day 8 times

during the day of Aug 31, 2005. The categories are labeled as: V - Vorticity, F - Frontal, C -
Convection. The area of interest is the largest connected area of colored dots, classified as a frontal
extreme by Kunkel et al. (2012). All times are UTC.

59



3.6. CONCLUSIONS

Figure 3.11: Plot of the process category for each grid point with precipitation > 12.5mm
day 8 times

during the day of June 17, 1996. The categories are labeled as: V - Vorticity, F - Frontal, C
- Convection. The area of interest is the connected area of colored dots surrounding Wisconsin,
labeled an extratropical cyclone by Kunkel et al. (2012). All times are UTC.
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Figure 3.12: Plot of the process category for each grid point with precipitation > 12.5mm
day 8 times

during the day of Aug 19, 2007. The categories are labeled as: V - Vorticity, F - Frontal, C -
Convection. The areas of interest are Oklahoma (classified as a tropical cyclone by Kunkel et al.
(2012)) and the long line stretching from South Dakota to Pennsylvania (classified as a front by
Kunkel et al. (2012)). All times are UTC.
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Chapter 4 Fundamental Weather Patterns

During Extreme Precipitation:

Identified From The QG Omega

Equation

4.1 Introduction

Understanding how changes to dynamical processes will affect precipitation extremes (PEx)

must start with understanding the links between those processes and PEx in current climate.

O’Gorman and Schneider (2009) showed that a combination of vertical velocity and precipitable

water (PW) can be used to scale PEx intensity. The relationship between precipitable water and

precipitation intensity is straightforward (as PW increases so does precipitation intensity) and has

been investigated (Kunkel et al., 2020). Matching instantaneous vertical velocity to precipitation

accumulation is not as straightforward. Vertical profiles at a single time are not sufficient since

PEx accumulates over time. A single vertical level over several times is also insufficient since

the vertical distribution varies for different PEx events. Vertical velocities sometimes peak hours

before, or indeed after, the onset of peak precipitation rates. Previous studies have focused on the

relationship between omega and precipitation in one or two specific PEx events (Nie et al., 2016;

Pauley and Nieman, 1992). This level of depth is not feasible for for developing a climatology of

PEx events over large and diverse geographic regions. We will group the PEx events objectively

into a small number of categories by applying the self-organizing map (SOM) as in Kohonen (1982).

This automatic grouping will also allow us to examine the types of weather patterns that explain

the variations in PEx as done by Kunkel et al. (2012) without necessitating a huge time investment
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in analysing each individual event by hand. This will, in conjunction with the results of Swenson

and Grotjahn (2019), allow us to test our central hypothesis: The seasonality of mean precipitation

is predictive of the distribution of extreme precipitation generating mechanisms. To do this we will

compare the distribution of mean and extreme precipitation throughout the year, throughout the

CONUS, and within each region. We will then analyze the number and relative importance of each

SOM identified weather pattern throughout the year within regions.

This work considers two methods of forcing vertical motion: differential (in pressure) advection

of vorticity and advection of temperature. Increasing positive vorticity advection over a layer of the

atmosphere causes a larger height decrease at the top of the layer than the bottom. This leads to

a decrease in thickness which corresponds to a cooling of the layer. Hydrostatically, this is caused

by adiabatic cooling from upwards vertical motion. Positive temperature advection through a layer

of atmosphere increases the thickness of the layer. The expansion implies upward motion but also

higher pressure aloft that supports upper level divergence of mass so that the atmospheric column

could have a net loss of mass and thus lowered pressure at bottom. The lower pressure supports

convergence below. The divergence aloft and convergence below cause upward motion.

These two most dominant dynamical process in the QG system (Holton and Hakim, 2013) are

where we focus our effort to identify the weather systems associated with PEx. Though there

exists some cancellation between the two terms (Trenberth, 1978) we use both individually in

our method to identify the large scale weather pattern active during the PEx event. Similar to

precipitable water, diabatic heating is not incorporated into the SOMs because it is not prescriptive

of the different weather phenomena of interest here. When diabatic heating is present the upwards

motion must be present to facilitate cooling to keep the atmosphere in hydrostatic balance.

This paper is divided into the following sections. Section 2 describes the data sets that were

used. Section 3 describes the methods used in this work and is subdivided into subsections dedicated

to numerical methods and self-organizing maps. Section 4 describes the patterns that result from

our method. In Section 5 we discuss the results while section 6 provides the conclusions.
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4.2 Data

For this study we primarily use the fifth version of the European Center for Medium-Range

Weather Forecasting’s (ECMWF) atmospheric reanalysis (ERA5) (Hersbach et al., 2020). This

data, and all ERA5 data used in this study, was retrieved from the Climate Data Store (CDS)

using their application programming interface (API) as detailed here on their website. We regrid

this data set to one degree resolution in the horizontal, 50 hectopascal resolution in the vertical, and

three hours resolution in time. These resolutions are are attainable by regridding and/or data are

readily available at these or finer resolutions from many GCMs/reanalysis outputs. All regridding

operations were done via the CDS API. The horizontal resolution is as fine as is practical for the

quasi-geographic (QG) omega equation (Battalio and Dyer, 2017). The vertical resolution is fine

enough to well sample the vertical structure of the troposphere as well as yielding similar results to

a Q-vector formulation of the omega equation (Pauley and Nieman, 1992). The temporal resolution

allows us to catch short duration events (e.g., small scale convection) and sample over the course

of longer duration events (e.g., stationary fronts or slow-moving mesoscale convection). We have

chosen a period from 1980-2010 to diagnose the climatology of PEx drivers in the current climate.

ERA5 is our source of gridded precipitation accumulations on the same one degree resolution

horizontal grid. PEx events are identified when the 24 hour precipitation accumulation at a grid

cell is in the top 5% of all 24 hour accumulations (0 UTC to 0 UTC) at that grid cell. We center

the time series of omega from each event on the 3 hour period with the highest total precipitation

during each event. Making each event satisfy a 24 hour threshold focuses on events with enough

total rainfall to achieve severe impacts. Focusing on the peak 3 hour precipitation within each

event lets us capture the dynamical processes and instantaneous weather patterns at play near the

most intense precipitation rate.
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4.3 Methods

4.3.1 Self-Organizing Maps

A Self-Organizing Map (SOM) is a type of artificial neural network first introduced by Kohonen

(1982). SOMs utilize a competitive and unsupervised learning algorithm to produce a lower di-

mensional representation of the input data that can be more readily analyzed. A SOM produces a

user defined number of patterns that span the input data. The competitive learning balances each

pattern between being dissimilar to the other patterns and being similar to each input that is best

matched to itself. A valid set of patterns must pass a field significance test based upon the False

Discovery Rate (FDR) (Johnson, 2013) of 1%.

Self-Organizing Maps: Regions

Recall that our central hypothesis is that The seasonality of mean precipitation is predictive of the

distribution of extreme precipitation generating mechanisms. To test this we use a self-organizing

map (SOM) to identify regions that share the same mean precipitation seasonality (Swenson and

Grotjahn, 2019). This is very useful because it allows us to match a set of extreme events (those

occurring within a particular region) to the seasonal cycle of mean precipitation within that region.

The raw output from the SOM is shown in figure 4.1, as well as it’s isolated area count (the median

number of isolated areas comprising a single region: IAC), minor areas fraction (the median fraction

of a region’s area that is not contained in the largest isolated area: MAF), and compactness ratio

(the median ratio of the square root of a region’s area to its perimeter) which all compare well to

the scores in the results of Swenson and Grotjahn (2019). Additionally this set of regions passes the

regional extremes ratio (RER) threshold of 20% set out in Swenson and Grotjahn (2019) using this

chapter’s 24 hour definition of a precipitation extreme. Because of the lower resolution used in this

work we have to create maps using less regions than in Swenson and Grotjahn (2019). This results

in Florida (FL) not being separated from the New Mexico / Texas border region naturally. This

necessitates the use of the automatic intervention to separate large enough isolated areas grouped

together by the SOM discussed in Swenson and Grotjahn (2019) to separate FL into a 7th region.
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Figure 4.1: The raw output of the SOM trained on the normalized long term daily mean of the
cube root of precipitation at each grid cell as in Swenson and Grotjahn (2019). IAC and MAF refer
to the map’s median isolated area count and minor areas fraction respectively.

Further discussion of the link between the seasonality of precipitation in FL and the New Mexico

/ Texas border region can be found in Swenson and Grotjahn (2019). We also remove the borders

between regions from the analysis to reduce the uncertainty in the seasonal cycle in each region.

The final regional map is shown in figure 4.2. Figure 4.2 does not display the scores because IAC

and MAF are 1 and 0 respectively because of the processing while the compactness ratio increases.

After processing, the RER is the only criterion likely to be negatively effected and the threshold is

still passed for the processed regions.
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Self-Organizing Maps: Omega Patterns

Our SOM analysis of processes (hereafter “SOM”) is trained on the time versus pressure pattern

of omega created from each of the advective terms of the QG omega equation centered on each

PEx event. PEx events are chosen following the procedure outlined in the “Data” section. This

analysis is applied between 1980 and 2010 for every PEx event at each of the colored grid cells

in figure 4.2. For each PEx event we create a pressure vs time matrix of omega values forced by

each of two forcing terms. These two matrices are combined to be one input data element to the

SOM. This results in each SOM pattern being a set of two Hovmöller diagrams featuring both

components of the QG omega equation with time on the x-axis and pressure descending on the

y-axis. We use five repetitions of a two-phase learning cycle with 30 rough training iterations and

300 fine tuning iterations. The lattice of nodes is chosen to have a shape which minimizes the

difference between the number of rows and columns. The initial neighborhood radius is set to span

the lattice of patterns. The final neighborhood radius is set to one to prevent over fitting. In every

case the neighborhood function, which weights how much each pattern adjusts with a particular

input, is an Epanechikov function. The displayed results (figure 4.3) come from a SOM with nine

nodes in a 3x3 arrangement. The duration of the training data was chosen to be 36 hours after

testing different length time series as inputs to the SOM and finding only small differences between

the different sets of output patterns. Nine nodes were chosen as the largest square number of

statistically distinguishable nodes for all lengths of time series that were tested. One of the benefits

of the SOM as a method is that the results are sorted by similarity with adjacent patterns being

the most similar to one another. This helps us organize our results into smaller groups of similar

patterns. In the Results section the discussion of the 9 patterns is collected into groups of similar

patterns.
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4.3.2 Numerical

The QG omega equation is a central tool of this work and can be expressed as equation (4.1).

σ0∇h
2ω + f2∂

2ω

∂p2︸ ︷︷ ︸
LHS

= f
∂

∂p
[Vg · ∇h(ζg + f)]︸ ︷︷ ︸

FV

+
R

p
∇h

2(Vg · ∇hT )︸ ︷︷ ︸
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RHS

(4.1)

Where the subscript “g” means the quantities take their geostrophic form and the subscript

“h” indicates the operation is done only in the horizontal. The square of the coriolis parameter

(f2) is fixed to a value of 1e-8 s-2 on the left-hand side (LHS) but f is allowed to vary freely with

latitude on the right-hand side (RHS) as in Räisänen (1995). σ0 is the domain and time average of

the profile of static stability and a function of pressure only. The operator on the (LHS) is inverted

over a limited domain chosen separately for each region. We found that a rectangular domain that

encompassed the region with at least a buffer of one grid cell in each direction was sufficient for

every region. These choices of spatial boundaries result in the need to preform 2D matrix operations

on arrays ranging from 630 to 7410 points per side. The inversion is done using the python package

NumPy (Harris et al., 2020), which is quite suitable for matrix manipulations of the sizes required.

For each day with extreme precipitation somewhere in a region the operator is inverted for each

of the advective forcings separately at enough time steps to create a 36-hour window around the

event at each grid cell (13 inversions per event for the time resolution of our data). The finite

differencing used to calculate the derivatives in equation (4.1) were done using centered 2nd order

differences at two time levels and taking the average. Before the inversion operation we smooth

each forcing term using a 3x3 Gaussian filter in the horizontal. We use homogeneous boundary

conditions (values of omega outside the domain are set to zero) at all six boundaries to isolate the

contributions to vertical motion from each of the advective forcing terms. This is possible because

the LHS operator is linear in omega (Krishnamurti, 1968).

The green contours on figure 4.4 are our proxy for detecting frontal locations in the horizontal

map composites. This field is a thermal frontal parameter (TFP) used by Renard and Clarke
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(1965) as well as Catto et al. (2012). This parameter is defined as the directional derivative of

the horizontal gradient of a scalar thermodynamic variable along its gradient (equation 4.2). We

chose equivalent potential temperature (θe) at 850 hPa as our thermodynamic scalar. This TFP

was selected from among many existing options (many of which may be found in Hewson (1998))

because it takes its maximum values along the warm air side of frontal boundaries, as detailed by

Renard and Clarke (1965). Because figure 4.4 displays composite events, which somewhat smooth

sharp features like fronts, we interpret the areas inside green contours of figure 4.4 as regions with

increased frontal gradient.

TFP = −∇|∇τ | · ∇τ

|∇τ |
(4.2)

4.4 Results

Our method of organizing the results is as follows. Our choice of 9 total patterns was made, as

described earlier, without foreknowledge of the types of patterns we might see. This was done to

create a process that was open to novel insights that an unsupervised machine learning process can

provide. Upon reviewing the 9 patterns we saw that one of the key distinctions the SOM made was

in the timing of extreme precipitation relative to the passage of a midlatitude cyclone. We find a

cyclone very close to the PEx grid cell in 6 of the 9 patterns; 4 are best described as mature frontal

cyclones and 2 SOMs are cyclones with apparent occlusions. We group these 4 and 2 patterns

together respectively, for a more concise discussion because of their similarities. During testing of

the SOM with fewer patterns we noticed that for a SOM with 5 patterns we see close analogues

for each of the 5 groups. This reinforces our assessment of the intra-group similarity between the

frontal cyclone and occluded cyclone patterns.

4.4.1 Convection: Pattern 0

Pattern 0 (upper left panel of figure 4.3) has extremely weak upwards motion from both QG terms.

The members of this pattern have by far the weakest agreement on the sign of omega (green

contours of figure 4.3) with only small areas reaching 2/3 agreement. This level of agreement only
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occurs in the vorticity driven omega panel. Because the agreement is so low there is the possibility

that large magnitudes of omega are canceling each other to produce the pattern shown in figure

4.3. To eliminate this possibility we looked at the average of the absolute value of each member

event and found that the members of pattern 0 do indeed have the weakest QG forced vertical

velocity of the nine patterns. The precipitation field is narrow in time (upper left panel of figure

4.5), evidenced by the large drop in both directions from the middle bar. Figures 4.4 and 4.6 depict

a large horizontal domain (30 degrees latitude by 60 degrees longitude) composite of the events

that make up each pattern. The synoptic elements of figure 4.4 are consistent with convection as

it is sometimes isolated (as in a convection category used by Kunkel et al. (2012)). There is also

a lack of any strong upper level anomaly, the area encompassed by notable precipitation (dotted

contours) is smallest, and CAPE values are the largest of any pattern (figure 4.4). Additionally;

the low level temperature anomalies are weak, pattern 0 is one of only two patterns without a

closed low level circulation in the anomaly wind field, and the PEx grid cell is centered within the

total column water (TCW) anomaly (figure 4.6). These factors lead us to categorize this pattern as

convective, possibly triggered by surface fluxes. We do see a frontal zone (green contours in figure

4.4) so some slow moving or stationary fronts with weak advection may also be incorporated into

this pattern. A pseudo-frontal zone may also appear because the frontal gradient parameter can

be large due to a strong moisture gradient even where the temperature gradient is small. Tropical

cyclone (TC) related PEx events are also very likely to be found in this pattern due to a weaker

QG omega field compared to our other patterns (Fischer et al., 2017).

4.4.2 Atmospheric Rivers: Pattern 2

Pattern 2, the upper right panel of figure (4.3, shows very strong sinking motion from vorticity

advection as well as strong rising motion (constrained below 400 hPa) from temperature advection.

Both motions exist throughout the duration of the pattern in time, but the strongest upwards values

are found in the temperature omega field at low levels between 6 and 3 hours before the event. This

pattern has very strong sign agreement between the members with > 75% agreeing on: downwards

motion from vorticity advection below 500hPa and upwards motion from temperature advection
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below 700hPa. These motions sum to positive (downwards) values of omega throughout the time

pressure domain in figure 4.3. This is the only one of the nine patterns to do this and indicates

the presence of some uncaptured factor causing upwards motion during these types of PEx events.

In figure 4.4 the PEx grid cell is northeast of the midpoint between the upper level low and high

(along the the zero line for 300hPa height anomalies). Also, the surface low is northwest of the

event and a frontal zone is located southwest of the extreme. Pattern 2 is commonly seen in the

Pacific Northwest wherein the surface and upper level low are near the Gulf of Alaska with a strong

ridge ahead over the Rockies and a frontal zone trailing to the southwest. Such a pattern during

heavy rain is likely to occur with an atmospheric river (Ralph et al. (2017), Zhang et al. (2019),

and Collow et al. (2020) among others). Additionally we see an elongated area of anomalous

moisture and temperature that extends far to the southwest of the PEx grid cell (figure 4.6).

This is accompanied by strong low level southwesterly flow along the anomalous areas. This is also

consistent with a phenomena called ’training’, where a line of heavy precipitation cells moves slowly

eastward while the individual cells in that line move along the line (typically SW to NE). Training

can be found in Atmospheric River (AR) events and can cause severe flooding and damage (Nash

and Carvalho, 2020). This pattern is found in the western part of the CONUS more often than

the east and a plurality of events take place in the Pacific Northwest Region (figure 4.7) They are

more common there during winter (figure 4.8) than summer (figure 4.9) as one would expect for

strong ARs. The strong southwesterly warm air advection and the orientation of the high and low

anomalies discussed earlier, strongly indicates that this group of patterns corresponds to Pacific

coast AR driven events. Because AR driven precipitation often occurs in conjunction with upslope

flow and the prevalence of this type of event along the western slopes of the Cascade and Rocky

Mountain ranges in the Pacific Northwest (upper right panel of figure 4.7) we believe that the

uncaptured factor causing upwards motion is upslope flow. This could be verified in subsequent

work by setting omega at the lower boundary equal to the vertical velocity forced by the interaction

between topography and the low level horizontal winds while setting the right-hand side forcings

to zero.

Pattern 2 is also a common pattern in the northern part of the Desert Southwest region (South-
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ern Colorado, see the upper right panel of figure 4.7). This occurs within the path of the North

American Monsoon which, as opposed to ARs in the Pacific Northwest, is a summertime phenom-

ena in the Desert Southwest (compare panel 2 between figures 4.8 and 4.9). Convection (Pattern

0) remains the most common during summer in the DSW, but the prevalence of patterns 2 and 1

indicates that PEx there can also be associated with increased low level moisture transport of the

North American Monsoon (NAM). For both AR and NAM events in this SOM, the PEx grid cell

is not co-located with an approaching upper level extratropical cyclone (ETC) center (no upwards

omega from vorticity advection) but both show definite low level warm, moist air advection.

4.4.3 A Transitional Pattern, Convection Enhanced by Horizontal Moisture

Flux: Pattern 1

We label pattern 1 as a transition pattern for both technical and meteorological reasons. On The

technical side; the SOM organizes patterns by similarity, placing pattern 1 as most like patterns 0,

2, and 4. Meteorologically, pattern 1 has visibly more in common with patterns 0 and 2 than it does

with pattern 4 (figures 4.3, 4.4, and 4.6). The omega pattern itself bears a striking resemblance

to pattern 2, though of lower magnitude (and less sign agreement). Members of this pattern show

very consistent upwards motion from temperature advection but have less agreement in omega

from vorticity than all other patterns except pattern 0. This is despite having similar composite

absolute values of the two omega fields (not shown). Patterns 1 and 2 look fairly different when

comparing their upper and surface highs and lows (figure 4.4). The only point of similarity is that

in both patterns 1 and 2 the PEx grid cell is located around the zero contour of the 300 hPa height

anomaly field. By contrast pattern 1 strongly resembles pattern 0 in terms of upper and lower level

anomaly fields, CAPE amount, shape of frontal zone, and precipitation area (figure 4.4). Pattern

0 and 1 also appear similar in the fields depicted in figure 4.6 but the increased size of the warm

anomaly leads to the presence of warm air advection through the PEx grid cell. This warm air

advection has a more southerly flow in pattern 1 compared to a more southwesterly flow in pattern

2.
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4.4.4 Frontal Cyclones: Patterns 3, 6, 7, and 8

The members of this “frontal cyclones” group are all characterized by two things in the SOM omega

patterns: a transition from rising to sinking motion forced by temperature advection near time 0

and rising motion during and after the event forced by vorticity advection centered near 500 hPa

(figure 4.3). The differences between the patterns in this category are primarily in the timing of

the peak precipitation rate relative the passage of the frontal cyclone. The associated cold front

shows up distinctly in the omega patterns as the transition from rising to sinking motion in the

temperature advection subpanels mentioned previously. These differences in timing are captured,

not only in the composite values of omega, but are also reflected in the areas of maximum sign

agreement among the various members. The key features in the omega fields (upper level rising

motion due to vorticity advection and sinking motion due to temperature advection) each have

at least 75% sign agreement. In fact, pattern 3 is the only frontal cyclone pattern without 90%

sign agreement over some part of these key features. In patterns 3 and 6 the peak precipitation

rate occurs prior to the cold front as judged by upward omega during the peak period in figure

4.3. However, in pattern 7 the peak precipitation is found overlapping the transition from rising

to sinking motion and in pattern 8 the peak precipitation rate happens behind the cold frontal

passage (sinking in the temperature advection subpanel). Unsurprisingly the patterns with later

peak precipitation rates correspondingly have more left skewed precipitation time series (figure

4.5). One other difference to note is the much larger amount of CAPE present in the horizontal

composite (figure 4.4) indicating that pattern 3 is substantially enhanced by convection compared

with the other patterns in this group. Each pattern’s PEx grid cell is approximately coincident

with the center of the surface low with the center of the upper level low to the west (figure 4.4).

4.4.5 Occluded Cyclones: Patterns 4 and 5

These patterns both show a distinct maxima in rising motion forced by temperature advection

around 700 hPa followed in time by one around 300 hPa, as well as strong rising motion from

vorticity advection associated with a cyclone passage (figure 4.3). The peak precipitation in pattern
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4 happens earlier, relative to the described features, than in pattern 5. This conclusion matches

with the precipitation rate data in figure 4.5, which shows significantly less precipitation in the

hours after the peak in pattern 5 compared to pattern 4. In both patterns peak warm air advection

(WAA) shifts from lower to upper levels during the course of the event, which is characteristic

of the motion of warm sector air forming an occlusion. That tongue of warm sector air moves

cyclonically around the trough axis while rising; as the whole system moves across the PEx grid

cell the elevation of the warm air advection driven omega increases and includes a later separate

tropopause level component (Hirschberg and Fritsch, 1991). Both the upwards shift in WAA and

the peak positive vorticity advection (PVA) are well agreed upon by the member events with > 75%

for the WAA shift and > 90% for the location of the PVA. The horizontal plots of figure 4.4 show

a transition between pattern 4 and pattern 5: for pattern 5 the PEx grid cell is further from

the identified frontal zone, west of the surface low center, and northeast of the 300 hPa trough

anomaly. A PEx location at an occluded front would have weak or no thermal frontal parameter

(Catto and Pfahl, 2013). This strengthens our conclusion that the PEx events in pattern 5 are

likely later in the life-cycle of the frontal cyclone than the events in pattern 4 because the frontal

activity is further from the center of the event. Patterns 4 and 5 also differentiate themselves from

the previous cyclonic category by having a slightly southward tilt with height in the low pressure

anomaly. These patterns may also include some closed-low type events, characterized by strong

PVA aloft with weaker (than average for this pattern) temperature advection. Upper level closed

lows without a clear frontal zone also have upper level PVA occurring simultaneously with low level

moisture/temperature advection would be present in these patterns (especially pattern 4). These

are also the only two patterns with the PEx grid cell inside the positive relative vorticity anomaly

(not shown). Figure 4.6 shows the distinctive comma shape in precipitable water which is also

suggestive of an occluded stage not present in other patterns associated with midlatitude cyclones.

4.4.6 Does The Mean Seasonality Predict The Mixture of Omega Patterns?

There are two aspects to assessing the validity of this common assumption. First, we need to check

if the mixtures of extreme processes differ between regions. Swenson and Grotjahn (2019) showed
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that the mean seasonality of the regions used in this work are statistically distinguishable from

one another (except between SGP and FL as already mentioned) so if we cannot tell the mixtures

of omega patterns apart between regions then we cannot say that mean seasonality is strongly

linked to the population of PEx causing patterns. Second, we need to assess the extent that the

regional distributions of extreme processes are representative of the grid cells within each region.

The methodologies to make these two assessments are as follows.

The first method is to plot the average number of events that belong to each group of patterns

(Convection, Convection Enhanced by Horizontal Moisture Flux, Atmospheric Rivers, Frontal Cy-

clones, and Occluded Cyclones) during each month of the year (figure 4.10). This is used to assess

the inter-regional variations in the distribution of extreme precipitation generating processes. In

figure 4.10 we see that in almost every region the relative number of extreme events corresponds to

the relative amount of mean precipitation, with the exception being the Southeast. The Southeast’s

mean and extreme precipitation are almost completely out of phase with one another, as can be

seen in figure 4.10 by comparing the black curve to the total stacked area. Each region’s stacked

area is readily differentiable from each other region; either by shape, size, or color. To quantify

these observations we consider the monthly number of events for each process as an individual

time series. When we compute the correlation between the same omega pattern across regions we

find that every pair of regions has at least two processes with a correlation coefficient below 0.4,

including at least one process with a negative correlation. This is clear evidence that even regions

with similar seasonal cycles of mean and extreme precipitation (i.e. regions that both have most

of their precipitation in the same season) have different mixtures of PEx generating processes. A

complete tabulation of these correlations between regions can be found in figure 4.11. While figure

4.11 could be investigated in depth and contains many useful insights about the spatial relationships

of extreme precipitation generating processes, it’s primary function in this paper is to quantify the

way in which each region’s mixture of extreme precipitation generating processes differ from one

another.

The second method uses the same data as the first to investigate intra-regional variations in the

distribution of extreme precipitation generating processes. We start with the number of occurrences
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of each omega pattern at each grid cell, separated by month. This gives us a vector with 9 ∗ 12

elements representing each grid cell. It’s straightforward to construct such a vector for each region

by averaging all the vectors within the region. We then plot the correlation coefficient between

the vector at each grid cell and the regional average (figure 4.12A). This shows strong correlation

over much of the CONUS with notable exceptions in the Great Plains, Desert Southwest, Pacific

Northwest, and Southwest. These areas of low correlation all are characterized by mountainous

terrain. This result is consistent with precipitation being difficult to analyze in mountainous areas

(Basist et al., 1994; Daly et al., 1994; Marquınez et al., 2003). Turning to figure 4.12B we see

that the areas of weaker correlation from figure 4.12A correspond to areas where the best matching

PEx pattern seasonality is from a different region. These areas are small and figure 4.12B is very

similar to figure 4.2. These low-correlation areas also correspond to the yellow areas of figure 4.12C

which compare the mixture of extreme processes at each grid cell to the average over many random

samples of grid cells. This is done for each grid cell by creating 100 samples of X grid cells, where

X matches the number of grid cells in the original grid cell’s region. These samples are created

without replacement from among shaded grid cells in figure 4.2. The percentage of these samples

which were a better match that the regional PEx generating pattern seasonality is plotted in figure

4.12C. The yellow areas line up well with the areas of disagreement in figure 4.12B but cover a

smaller area in most regions. The areas where this is not the case involve the Northeast. This

region’s mean and extreme seasonality are both relatively flat over the year compared to that of

the other regions. This is a trait also shared by the vast majority of the random samples, meaning

that there is increased similarity between a typical random sample and the Northeast region. This

is not to say that the Northeast region is a collection of grid cells with vastly different extreme

seasonalities because the correlation values in figure 4.12A are too large. Instead this says that for

a random sample of grid cells the seasonality is largely smoothed out in the aggregate.

A main area of disagreement in the Pacific Northwest falls between the eastern slope of the

Cascade mountain range and the western slope of the Rocky mountains. There we see that the

best matching regions are the Southeast and Southwest. Both these regions have a similar overall

shape to PEx seasonality to the Pacific Northwest (figure 4.10) but with many fewer of the AR type
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of event. This indicates that there is an area with a different mixture of PEx generating processes

within the Pacific Northwest, primarily due to the relative lack of AR type events between the

mountain ranges. It should be noted that the Southeast and Southwest are the closest to the

Pacific Northwest in terms of their mixtures of PEx generating patterns so the disagreement is not

large. It should also be noted that the area of disagreement in the Pacific Northwest shrinks from

figure 4.12B to 4.12C. This indicates that the winter dominated seasonal cycle provides predictive

value above that from a random sample.

Another area of disagreement lies along the eastern border of the Great Plains. There the

grid points predominantly are a better match for the extreme process seasonality of the Northeast

(figure 4.12B) and are dissimilar enough from the seasonality of the Great Plains to best match

a random sample of grid points a majority of the time (figure 4.12C). Figure 4.11 shows a strong

correlation between the Great Plains and Northeast for the first six patterns and a weak correlation

patterns 6, 7, and 8. This is corroborated by the bottom 3 panels of figure 4.8 where we see the

complete lack of those patterns throughout the Great Plains except for the eastern border. Those

patterns are also prevalent throughout the Northeast during winter (figure 4.8).

These two examples show that the regions created from mean precipitation seasonality do not

perfectly predict the mixture of PEx generating processes. However, they show that for most areas,

a consistently similar mean precipitation cycle leads to a consistent mix of PEx processes.

4.5 Discussion

4.5.1 Omega Patterns

Our method of focusing on the QG or large-scale forcing of vertical motions associated with PEx

finds more geographic variation in the patterns during winter than summer. This is due to the

high proportion of 95th percentile daily precipitation accumulations that are in our “convection”

pattern instead of patterns with strong quasi-geostrophically forced vertical motion. This method

is very sensitive to distinguishing precipitation events that occur near cyclones (six patterns) and

insensitive to different types of triggered convection (one pattern). At the broadest level this method
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separates events with notable QG influences from those without (pattern 0). Of the remaining eight

patterns, six (patterns 3-8) have evidence of the presence of an extratropical cyclone in the omega

field directly. Another (pattern 2) shows a strong cyclonic feature in the horizontal composite

which is farther from the event than the previously mentioned patterns. The remaining pattern

(1) does not have a strong upper level height anomaly and its most notable feature is the steady

upwards motion driven by positive temperature advection throughout the event, especially at low

levels, which corresponds with moisture advection from the south inferred from figure 4.6. The six

patterns (3-8) with direct evidence of an extratropical cyclone are differentiated by the nature of

the frontal feature most active during the peak of precipitation in time. Patterns 3 and 6 peak in

precipitation at least three hours before the shift from positive to negative temperature advection

(the telltale sign of a cold front) occurs locally. This marks patterns 3 and 6 as including PEx at

squall lines ahead of the front in the warm sector (the area between the warm air edges of the warm

and cold fronts in an ETC). Patterns 7 and 8 both shift from positive to negative temperature

advection between t=0 and t=3 hours indicating that the PEx is occurring near the surface low

center or along a cold front. When compared to the “warm sector” patterns 3 and 6, we see that

significant precipitation cuts off 6-9 hours earlier in the “cold frontal” patterns 7 and 8. The last

cyclonic patterns (4 and 5) exhibit a shift in positive temperature advection from lower to upper

levels and show frontal zones away from the center of the event. This supports the label “occlusion”.

The almost total shutdown of temperature advection after t=3 hours in pattern 5 indicates that

the occlusion is coincident with the PEx. Whereas, the shutdown is not captured in pattern 4.

Additionally the positive temperature advection is stronger and the frontal zone extends closer to

the PEx grid cell in pattern 4 than 5. We say that occlusion happens in both cases but is more

clear for pattern 5.

The frequency of each pattern exhibits significant seasonal dependence within the CONUS. This

can be seen by comparing figures 4.8 and 4.9. The seasonal dependence differs between patterns.

The convective pattern 0 is more prevalent everywhere but the west coast during summer. Patterns

1 and 2 are most active during winter in the west coast regions. While pattern 2 happens very

rarely in any of the three east coast regions at all, pattern 1 can be found during both seasons
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with some regularity in the NE region and during winter in the SE region. Pattern 1 type events

are a predominantly summertime phenomena in the Great Plains and DSW regions. Regardless

of season, areas with pattern 2 as the most frequent pattern lie amongst areas with pattern 1 as

the most frequent (figure 4.13). The frontal cyclone patterns (3, 6-8) occur more often in winter

(figure 4.8) than summer (figure 4.9) in the NW, SW, DSW, SE and FL regions. Patterns 3, 6, 7,

8 occur more frequently during summer in the GP region. Pattern 3 also occurs more frequently

during summer in the NE region. The remaining two patterns, 4 and 5 occur more commonly

during winter except the northern parts of the GP and NE regions.

4.5.2 PEx Regional Climatology

Of the seven regions used (figure 4.2) three experience a plurality of PEx during summertime: the

Great Plains (GP), Desert Southwest (DSW), and Florida (FL). The annual cycle of precipitation,

figure 4.2, is also larger during those months. Only the Northeast (NE) has the most in Fall (not

shown), albeit with a relatively even spread of PEx events among the four seasons (though the

annual cycle of precipitation, figure 4.2, is relatively less during the fall there). The remaining

three regions each have the largest number of events in the winter. These three regions are the

Southeast (SE), Pacific Northwest (PNW), and Southwest (SW). The last of which has more than

half of its events during the winter months. The annual cycle of precipitation in the PNW and

SW is also larger during those winter months, but not so for the SE region. We will classify the

GP, DSW, FL, and NE regions as warm season dominated in terms of extreme precipitation. The

remaining regions (SE, PNW, and SW) are cold season dominated for PEx. Only the SE has a

peak in PEx events that does not match its peak in mean precipitation seasonality (figure 4.10).

Convection is the most common single pattern of PEx annually over the CONUS and with at

least one grid cell in every region (figure 4.13, top panel) and season. During summer, convection

is the most common event type, of the 9, over the vast majority of the CONUS, with a few notable

exceptions: annually and during summer, portions of the GP and NE regions have convectively-

modified frontal cyclone (pattern 3) as most common. But as noted above, several of the patterns

are logically grouped: 4 with 5, and 3 with 6, 7, and 8. When the frequencies of these groups are
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examined, figure 4.14, the apparent dominance of convection (pattern 0) is much lessened in favor

of the four SOMs comprising the frontal cyclone group. Large areas in both the GP and NE regions

have the frontal cyclones group as their most frequent driver of PEx events overall, and they retain

their status over a subset of these area even during summer.

The PNW is heavily influenced by events with notable horizontal moisture fluxes (patterns 1

and 2), especially during fall and winter. The coastal area is particularly dominated by pattern

2, which produces an upper level height field (figure 4.4) very analogous to the composites made

by Gao et al. (2014) for PEx events along the Northern Pacific Coast. In their other regions the

comparison is less clear either because we find a mix of event types to be influential or because

their horizontal domain differs substantially from ours. During summer, only a scattering of the

PNW grid cells have PEx most frequently by cyclones and moisture flux while at most locations

PEx events are by convection.

The SW experiences more than half of its extreme events during winter. During winter the most

frequent type of event varies zonally: the west edge is primarily pattern 1, moving east, inland and

southern California PEx events are most frequently driven by frontal cyclones, and further east,

southern Nevada has a plurality of occluded cyclones (figure 4.14). Our method appears to be

capturing different timings of the extreme precipitation relative to the evolution of a weather

system. From west to east the system might advect moisture into the coastal area, develop a cold

front over the central valley and, finally, occlude and decay over southern Nevada. Much of central

California during summer has the most PEx events from occluding or occluded cyclones whether

all 9 patterns or only the 5 groups are viewed. As mentioned above, these are upper level closed

lows from cold air aloft which creates potential instability soundings and triggers thunderstorms

beneath.

The GP region sees a clear seasonal cycle to the type of event which brings PEx. In summer

frontal cyclones dominate the upper middle of the region, surrounded by areas where convective

events are most frequent. Spring and fall see a relative shift and expansion east and south in the

area dominated by frontal cyclones and the introduction of an area heavily influenced by occluded

cyclones. During winter much of the region is most frequently the occlusion group with much of
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the rest being the frontal cyclone group. Finally, there is some apparent spill over from the PNW

of atmospheric river (pattern 2) and convection / moisture fluxes (pattern 1) in the far northwest

corner of the region.

The northern tip of the DSW is most influenced by the atmospheric river and convection /

moisture flux patterns. The southern part of the DSW is dominated by purely convective PEx

events except during winter which accounts for only 15% of the annual total of PEx events there.

During summer, when most PEx events occur there, the northern part of the DSW is most heavily

influenced by patterns with substantial moisture flux. These are mostly pattern 1 with a small area

dominated by pattern 2. During the other three seasons grid cells in this area have a mixture of

frontal cyclone and occluded type events as the most frequent type.

The NE region is strongly influenced by the frontal cyclone group nearly year round (figure

4.10), with the exception being convection in the western half during the summer (figure 4.14).

The exact make up of these cyclones changes seasonally, with winter having the most diverse group

of most frequent patterns scattered over the grid cells (figure 4.13).

The SE is a bit of an outlier in terms of seasonality of extreme precipitation patterns. The

region experiences the highest average daily precipitation in summer (inset of figure 4.2) yet winter

has the most extreme events of any season (figure 4.10), which matches with the PEx seasonality

found by Gao et al. (2014). This seems to be because warm season convection occurs frequently

but increased frontal cyclone activity during winter and spring months generates the larger fraction

of PEx events. However, the annual cycle of precipitation, figure 4.2, is lowest during winter and

spring. PEx events during the SE summer and fall are most frequently caused by pattern 0:

convection. It is also the only region that shows a substantial difference in the most frequent type

of event associated with PEx between spring and fall (figure 4.14).

The FL region is dominated by the convection pattern annually and in every season. This

result is easily anticipated from figures 4.7, 4.8, and 4.9. As mentioned previously tropical cyclones

will be predominantly found as members of the convective pattern. The work of Fischer et al.

(2017) indicates that the upper level QG omega field of a tropical cyclones is highly asymmetric

and somewhat weaker in magnitude relative to our patterns. This indicates that depending on the
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location of the PEx relative to the tropical cyclone center, some additional tropical cyclone related

PEx events may be found in patterns 1 and 3. The presence of those patterns (0, 1, and 3) in FL

during summer, as well as the near total lack of other patterns, lends credence to this idea.

4.6 Conclusions

In this paper we have captured and described the nine representative time vs pressure patterns

of vertical velocity as they relate to PEx events over the CONUS. A SOM analysis was made by

focusing on QG-forced vertical velocity. The SOM analysis finds multiple different varieties of

frontal and cyclonically driven events while grouping primarily convective events all together. Our

“convective” events have little signature in the QG forced omega fields but are characterized by the

strongest local CAPE. The other 8 patterns all have notable QG forced omega signatures, of which

the key features discussed are well agreed upon by the members of those patterns. The 9 patterns

can be further reduced to 5 groups based on the overall synoptics where some of the SOMs are

analogous but differ in the timing of the QG forcing. From our analysis we learn where extreme

precipitation arises from strong QG forcings and where these forcings are usually absent. Only in

two regions (FL and DSW) are PEx events predominantly generated without strong QG forcings,

but even this is only true seasonally in DSW. In four other regions (GP, NE, PNW, and SW) the

fraction of PEx events generated without strong QG forcings is around one quarter; most PEx

events have strong QG forcing. The Southeast region sits between these two collections of regions

as around 40% of PEx events occur without strong QG forcings.

In addition to creating a descriptive method of allowing vertical velocity to show us the pri-

mary meteorological process driving extreme precipitation, we also examined the idea that the

seasonality of mean precipitation is predictive of the distribution of extreme precipitation generat-

ing mechanisms. Figure 4.12 shows that for most of the CONUS there is a definite relationship

between the mean and extreme process seasonalities. In figure 4.12C, we see that there are areas

with a stronger correlation to a set of random grid points than to the region they belong to. These

areas are by no means the majority but they do show that the relationship between mean seasonal-

ity and the distribution of extreme precipitation generating mechanisms is not always one-to-one,
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especially near topography. While mean seasonality is somewhat predictive of the distribution of

extreme precipitation mechanisms, further study will be required to definitively reject or confirm

our hypothesis.
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Figure 4.2: The 7 regions of similar annual cycle by which our results may be grouped. These
regions result from the approach in Swenson and Grotjahn (2019) for ERA5 daily precipitation
data. Abbreviations for the 7 regions are as follows: Great Plains (GP), Florida (FL), Desert
Southwest (DSW), Southeast (SE), Northeast (NE), Pacific Northwest (PNW), Southwest (SW).
The mean annual cycle of precipitation averaged over all grid cells within each region is displayed in
the subplot matching the color of the region. The y-axis of these subplots is precipitation amount
normalized to the region, with the limits chosen separately to span the normalized data for that
region. The x-axis is day of the year with tick marks at the first day of every month.
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Figure 4.3: These are the nine SOM patterns. In each of the 9 panels the upper sub-panel is
the omega forced by differential vorticity advection. The lower sub-panel is the omega forced by
temperature advection. Blue filled contours are negative (upwards) omega (vertical velocity), red
filled contours are positive (downwards) omega. The green contours indicate the degree to which
the individual member events of each pattern share the sign of the displayed pattern. The contour
values are calculated by subtracting the number of disagreements from agreements and dividing by
the total number of events. The contours are at 0.2, 0.33, 0.5, and 0.8. These correspond to 50, 66,
75, and 90 percent agreement. The vertical red lines at times 0 and 3 bound the time period the
PEx event is centered on. The color of the title text corresponds to the color bar on figure 4.13.
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Figure 4.4: Horizontal composites (30 degrees latitude by 60 degrees longitude) at time 0 for the
member events of each of the omega patterns. Red (blue) lines correspond to high (low) 300hPa
height anomalies. The blue “L” is the center of the sea level pressure negative anomaly field. The
red “H” is the center of the sea level pressure positive anomaly field. The green contours are of the
thermal frontal parameter (Catto and Pfahl, 2013). The axis of relative maximum corresponds to
a frontal feature. The dotted contours are 3 hour precipitation accumulation with contour intervals
of 1.5, 3, 6, and 12mm. The shaded contours are Convective Available Potential Energy (CAPE)
in intervals of 250 J kg-1. The “*” indicates the location of the grid cell experiencing the extreme
event. The color of the title text corresponds to the color bar on figure 4.13.
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Figure 4.5: Composite time series of three hour precipitation for each pattern. Precipitation values
below 1mm are not shown. Vertical red lines bound the time period the PEx event is centered on.
The color of the title text corresponds to the color bar on figure 4.13.
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Figure 4.6: Horizontal composites (30 degrees latitude by 60 degrees longitude) at time 0 for each
of the omega patterns. Orange (purple) filled contours correspond to positive (negative) 850 hPa
temperature anomalies. The contour interval is 1 Kelvin with the 0 contour skipped. Wind barbs
show the direction of the 850 hPa horizontal wind anomalies for areas where the anomalous velocity
is greater than 5 m/s. The blue contour indicates that the total column water (TCW) anomaly is
greater than 3mm. The color of the title text corresponds to the color bar on figure 4.13.
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Figure 4.7: The number of times each pattern occurs at each grid cell considered. The color scale
is logarithmic and grid cells with less than 3 total events of a given pattern are displayed as gray.
The color of the title text corresponds to the color bar on figure 4.13

Figure 4.8: Same as figure 4.7 but for the winter months December-February (DJF).
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Figure 4.9: Same as figure 4.7 but for the summer months June-August (JJA).
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Figure 4.10: Each subplot is a stacked area graph with the average number of events of each type
on the y-axis for each month of the year along the x-axis. The number of events of each type is
represented by the height of the corresponding color at each month and the y-axis associated with
this feature ranges from 0 to 65 events / grid cell. The overlayed black line is a smoothed version
of the mean seasonality from figure 4.2 and the y-axis associated with this feature ranges from 0
to 0.33 normalized precipitation units.
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Figure 4.11: This plot displays the correlation coefficient between the seasonality of each omega
pattern between each pair of regions. Each panel displays the correlation between each pair of
regions for the omega pattern indicated in the panel’s title. The x and y axis of these panels both
show the region’s short names from figure 4.2. The seasonality of each omega pattern in a region
is calculated by finding the total number of occurrences in that region in each month and dividing
by the number of grid cells in the region. This gives it a time series of length 12 for each region
and omega pattern
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Figure 4.12: We create a vector containing the number of extreme events of each type during each
month for each grid cell. A) Shows the correlation coefficient between the vector from each grid
cell and the average of the vectors from all grid cells within that region. B) Shows which regional
average vector has the highest correlation coefficient with the vector from each grid cell. C) Shows
the percentage of random samples of grid cells with an average vector that has a higher correlation
coefficient with the vector from grid cell than its own region’s average vector.
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Figure 4.13: Most frequently occurring pattern at each grid cell over the entire time period (center
top). The other panels reflect the same information but for a single season, as indicated in the
subtitle. Winter is again months DJF, spring is MAM, summer is JJA and fall is SON. Pattern
number is indicated by color, which matches the titles on figures 4.3-4.9, and the label on the color
bar.
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Figure 4.14: Similar to figure 4.13 except for the most frequently occurring group of patterns at
each grid cell over the entire time period (center top). The other panels reflect the same information
but for a single season, as indicated in the subtitle. Groups are as follows: Convection - pattern 0,
Convection/Moisture Flux - pattern 1, Atmospheric River - pattern 2, Occluded Cyclone - pattern
4 and 5, Frontal Cyclone- patterns 3, 6, 7, and 8
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Chapter 5 Conclusions

This work was motivated by the desire to create an automatic scheme to identify the meteo-

rological process most responsible an extreme precipitation event. Studying extreme events often

necessitates aggregation over a larger area to build statistics that one can be confident in. We

found that commonly used regions based on political boundaries (Karl and Knight, 1998) were less

than fully satisfactory because the atmosphere doesn’t care about those boundaries. Other (non-

political) regionalizations have been made but they were tailored for a different task and therefor

didn’t meet our needs for several reasons. Because it is often assumed precipitation and the pro-

cesses that drive it can be highly seasonal we created regions based on the long term seasonality of

precipitation (Karl and Knight, 1998; Kunkel et al., 2012). This groups areas that experience their

rainy seasons at the same time together. We also introduced several novel criteria for selecting the

appropriate number of regions for any gridded precipitation data set. These regions also allowed

us to test the hypothesis that the seasonality of mean precipitation is predictive of the distribution

of extreme precipitation generating mechanisms in chapter 4.

With regions that we are confident in aggregating within, work continued on an automatic

scheme to identify the meteorological process most responsible an event. We selected metrics for

three key atmospheric processes: fronts, vorticity, and convection. Along the way we showed

that these simple and physically motivated metrics are very interdependent so these metrics are

unable to isolate specific processes. This was shown in chapter 3 with extratropical cyclones and

their associated fronts, as well as, for fronts and convective storms like squall lines. Consistently

choosing the “correct” process is fraught with challenges, not least of which is certain fronts may not

have existed without the presence of their associated extratropical cyclone. An additional wrinkle

occurs when a process like a tropical cyclone moistens a distant environment. This can enhance

existing precipitation, making it extreme when it might not have been without the distant cyclone.

If the increased moisture runs up against an unusually cold and/or dry air mass one can see heavy
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precipitation arising just from this moisture front. The front itself would not have existed without

the moisture supplied by the tropical cyclone.

This interdependence led us to use vertical velocity to describe the primary meteorological pro-

cess creating each extreme event. This is a natural choice of variable because extreme precipitation

can be thought of, and scaled, as a combination of vertical velocity and atmospheric moisture

O’Gorman and Schneider (2009). Our interest is in extreme precipitation events so every event we

look at has a lot of moisture by definition. This leaves us to consider the vertical velocity field,

which nicely represents dynamical contributions to extreme rainfall. We found that the two main

forcings of the omega equation should be considered separately, rather than in sum, to display the

shifts in time of one’s importance relative to another. This approach led to our identification of

the set of 9 most representative time vs pressure patterns in both omega forcings. These 9 pat-

terns map onto familiar large scale meteorological patterns which were described and analyzed in

chapter 4. This work also let us test our hypothesis that the seasonality of mean precipitation is

predictive of the distribution of extreme precipitation generating mechanisms in conjunction with

the regions created in chapter 2. We found that, while not perfectly predictive, mean seasonality is

clearly related to the distribution of extreme precipitation generating mechanisms over most of the

CONUS.

In the future I hope for the opportunity to take this framework of regionalization and omega

equation analysis into the realm of climate models. This type of analysis could be used to investigate

and quantify shifts in precipitation seasonality due to changes in climate. Differences in the number,

type, and distribution of the patterns could serve as a useful tool for model evaluation while

describing the dynamical factors giving rise to extreme precipitation in various models. Examining

how these patterns change in future climate could advantageously change our understanding of

which weather patterns are more likely to be associated with heavy rainfall and aid in describing

how these dynamical process are affected by the climate state. Additionally, defining regions based

on seasonality elsewhere in the world may may give key insights into the physical mechanisms that

define precipitation seasonality.
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