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a b s t r a c t

A common question in forensic analysis is whether two observed data sets originated from the same
source or from different sources. Statistical approaches to addressing this question have been widely
adopted within the forensics community, particularly for DNA evidence. Here we investigate the
application of statistical approaches to same-source forensic questions for spatial event data, such as
determining the likelihood that two sets of observed GPS locations were generated by the same indi-
vidual. We develop two approaches to quantify the strength of evidence in this setting. The first is a
likelihood ratio approach based on modeling the spatial event data directly. The second approach is to
instead measure the similarity of the two observed data sets via a score function and then assess the
strength of the observed score resulting in the score-based likelihood ratio. A comparative evaluation
using geolocated Twitter event data from two large metropolitan areas shows the potential efficacy of
such techniques.
© 2020 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. All rights reserved. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

There is a growing need for the development of quantitative
statistical methodologies in digital forensics. The OSAC Task Group
on Digital/Multimedia Science recently issued a recommendation
for the development of ‘‘systematic and coherent methods for
studying the principles of digital/multimedia evidence to assess the
causes andmeaning of traces in the context of forensic questions, as
well as any associated probabilities” (Pollitt et al., 2019). In addition,
as stated recently in Casey (2018), there is ‘‘a growing expectation
that forensic practitioners treat digital traces in a manner that is
becoming widely accepted in forensic science: evaluating and
expressing the relative probabilities of the forensic findings given at
least twomutually exclusive hypotheses.’’ Existing forensic tools for
digital evidence, however, are often focused on supporting the
process of information extraction from digital devices followed by
exploratory analysis (e.g., see Roussev, 2016; Årnes, 2017; SWGDE,
2019), with relatively little support for statistical quantification.

In particular, logs of geolocation data are now routinely available
on modern mobile devices. This type of data is typically associated
with events generated on the device, such as actions taken by a user
in a software application. Such data can be collected in a variety of
ier Ltd on behalf of DFRWS. All rig
waysdfrom the device itself, from servers that store the locations
based on IP addresses, from cellular towers, and so on. Given the
general prevalence of mobile devices, this type of spatial event data
is now encountered with increasing regularity during forensic in-
vestigations. For instance, an investigator might wish to determine
if two sets of events with geolocations, corresponding to different
accounts or devices, were in fact generated by the same individual.

The forensic problem of identification of source from observed
evidence has been well-studied. Statistical techniques have played
a key role in forensic analysis, providing investigators with tools
that allow them to make robust inferences from limited and noisy
data. The best-known example is the use of likelihood ratio tech-
niques for determining if a DNA sample from a crime scene is a
match to a suspect's DNA sample. For other types of evidence-
dincluding fingerprints, shoeprints, and bullet casing impres-
sionsdthe development of quantitative methodologies is more
challenging (Stern, 2017). In particular, there are significant chal-
lenges in developing realistic statistical models, both for capturing
the process by which the evidential data is produced and for
modeling the inherent variability of such data from a relevant
population.

The primary contribution of this paper is the development of
quantitative techniques for forensic analysis of geolocated event
data. In particular we investigate two types of approaches to obtain
strength of evidence: a likelihood ratio approach based on
modeling the evidential data directly and a score-based likelihood
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Fig. 1. Location data (taken from Section 9) in a 3.5 square mile region of Orange
County, CA. Green boxes represent geofences with events in both sets. (a) Both the
unknown and known source data were generated by the same individual; (b) the
unknown and known source data were generated by different individuals. The un-
known source data is the same in both panels.
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ratio that instead models a summary measure of the similarity of
the evidence.

2. Motivating example

Suppose that a forensic investigator is given a set of GPS co-
ordinates associated with criminal activity and is tasked with
finding the most likely suspect from a set of individuals for whom
reference location data is available. The GPS coordinates could be
the locations of crime scenes (e.g., in the case of serial crime) or
data gathered from a device of unknown origin (e.g., a burner
phone recovered from a crime scene). In either case, we do not
know who generated this location data and will refer to it as the
unknown source data.

One investigative approach in this context is to gather location
data for a set of potential suspects via a geofence warrant (e.g.,
Valentino-DeVries (2019)). A geofence warrant refers to a situation
where a ‘‘fence” or bounding box is constructed around a set of
locations, such as locations associated with a crime. A law
enforcement agency then requests data from a service provider
(such as Google or Twitter) for any individuals whose devices were
within the geofence during a time-period of interest (e.g., in a
window of time around which the criminal activity occurred). For
individuals who match the geofence (i.e., potential suspects), their
geolocation data is given an anonymous identifier and their data is
sent to law enforcement to aid in the investigation. We will refer to
the location data for these individuals as the known source data
because, once persons of interest have been identified, the service
provider can reveal their identities.

Fig. 1 provides an illustrative example of such a geofence situ-
ation. The data points are geolocated events, with colors and shapes
indicating different accounts. Here we treat A (black points) as the
unknown source data, where each point has an associated geofence
surrounding it whose size and shape was determined based on the
land parcel data described in Appendix C. Fig. 1a and b show geo-
location events from two different known source accounts B1 (red
crosses) and B2 (blue triangles) with at least one GPS coordinate
inside a geofence (highlighted by green boxes).

An investigator looking at this data would need to infer how
likely it is that the locations in each panel of the figure match to the
same source (e.g., were generated by the same individual). In this
example, we have selected the data so that the points in Fig. 1a are
from the same account (over different time-periods) and the points
in 1b are from different accounts. Determining if sets of locations
‘‘match” can be a difficult task due to many factors including vari-
ability in human behavior and the typicality of locations of interest
(e.g., how common they are in the population in general). To
address this problemwe propose a technique that, given two sets of
locations, produces an objective measure of their probative
evidential value. Using our method for the data in Fig. 1, an inves-
tigator would be able to conclude that there is strong support for
the hypothesis that the two sets of locations in Fig. 1a were
generated by the same individual. She would also be able to
conclude that the individual that generated the known source data
(blue triangles) in Fig. 1b can likely be excluded as the source of the
unknown source data (black points). In the remainder of this paper,
we will show how to produce such conclusions given this type of
location data.

3. Related work

In prior work we have developed statistical methods for same-
source questions involving temporal user-generated event data
(Galbraith and Smyth, 2017; Galbraith et al., 2020). In this paper we
extend these approaches to the spatial domain.
Evaluating location-related mobile device evidence and
expressing probative conclusions in the forensic setting is chal-
lenging due to both technological and circumstantial subtleties that
can be present in the data. Casey et al. (2020) discuss these chal-
lenges and present a structured framework for the evaluation of
geolocation data. However, the hypotheses considered in that work
are focused on specific locations of interest rather than comparing
sets of spatial patterns (which is the focus here).

The recent work of Bosma et al. (2019) is similar in spirit to our
work in that they address same-source problems using mobile
geolocation data. They develop a method that uses the location and
time of cellular tower registrations of mobile phones to assess the
strength of evidence that a pair of phones were used by the same
person. Their approach creates features from the cell tower data
and makes parametric modeling assumptions via logistic regres-
sion in how those features indicate same- and different-source
phone usage patterns. The methods that we propose in this paper
differ in that we make no such parametric assumptions, and no
data has to be held out to estimate model parameters (although we
do require a reference set of data in order to estimate the typicality
of locations, e.g., how frequently-visited they are by the population
in general).
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From a statistical perspective, there is also a general line of work
known as spatial point patterns, which focuses on the development
of methodologies for modeling and evaluation of dependence be-
tween spatial sets of locations (e.g., Berman, 1986; Schlather et al.,
2004). Much of this type of work relies on assumptions such as
spatial homogeneity that are not well-suited to the type of bursty
and non-stationary human-generated event data that is often of
interest in a forensics setting. Nonetheless this prior work in spatial
point processes can provide a useful starting point for analyzing
spatial event data in a systematic manner.
Fig. 2. Example of sets of locations for Twitter data from New York. The patterns
correspond to geolocatons of tweets from the same account over two different months,
with month 1 corresponding to A (red) and month 2 corresponding to B (black).
4. Notation & problem statement

To formally define the question of interest, we adopt notation
and terminology from the forensic statistics literature. A common
problem in forensic science is that of determining the degree to
which two samples of pattern evidence ‘‘match,” or have the same
generativemechanism (e.g., Aitken and Taroni, 2004). The evidence
corresponds to observed data and can take different forms such as
measurements related to DNA, fingerprints, or shoe prints. Denote
the evidence as ðA;BÞ, where in general.

A: set of observations for a sample from an unknown source
(e.g., a sample recovered from a crime scene),
B: set of observations for a reference sample from a known
source (e.g., a sample from a suspect).

For geolocated event data, sets A and B could consist of locations
at which actions were taken on two different devices, e.g., locations
where phone calls were made. The forensic question of interest in
this scenario would be to determine how likely it is that the events
on the different devices were generated by the same individual.
Alternatively, sets A and B could consist of locations at which events
were generated from a single account (e.g., accounts on a social
media platform such as Twitter) or locations from the same device
but over two different time periods. The forensic question of in-
terest would be to determine if the same individual was responsible
for generating both sets of events. This scenario is relevant for
example when the person of interest invokes the ‘‘it wasn't me”
defense, with A corresponding to events for which the individual
claims they are not responsible and B corresponding to a sample of
his or her typical activity.

In the scenarios above, A and B refer to sets of (longitude, lati-
tude) coordinates at which events occurred. Fig. 2 provides an
example of such geolocated event data. In this specific example A ¼
fð � 73:984; 40:754Þ, ð� 73:977; 40:761Þ, …, ð�73:987;40:727Þg
for a total of na ¼ 42 events in A, and B ¼ fð � 73:988;40:742Þ, ð�
74:009;40:711Þ,…, ð�73:995;40:718Þg for a total of nb ¼ 39 events
in B.1

The goal of a forensic examination is to assess the likelihood of
observing the evidence ðA;BÞ under two hypotheses

Hs : ðA;BÞ came from the same source;

Hd : ðA;BÞ came from different sources:

In the context of the geolocation data we will be focusing on in
this paper, the term ‘‘source” refers to a specific individual or user
account, and the term ‘‘came from” can be interpreted as meaning
‘‘generated by.” Thus,Hs is the proposition that the sample from the
unknown source A was generated by the same individual or user
1 The latitude and longitude values presented in the text were rounded. Gener-
ally much higher precision is available, e.g., for coordinates provided by GPS.
account as the sample from the known source B. Hd is the propo-
sition that the sample from the unknown source A was not gener-
ated by the specific source of B, but instead from another individual
among an alternative source population. Ommen and Saunders
(2018) provide an in-depth discussion of the competing
propositions.

In this paper, we propose and investigate two approaches for
assessing the strength of evidence in this context. The first is a
likelihood ratio approach that uses kernel density estimation
techniques to estimate the relative likelihood of the observed
location evidence under each proposition, Hs and Hd. The second
approach is to instead measure the similarity of the two sets of
locations via a score function and then assess the strength of the
observed score resulting in the score-based likelihood ratio.

Sections 5e7 discuss the technical details of our proposed ap-
proaches for computing the probative value of location evidence.
Readers who would like to skip these details can go directly to
Section 8, which shows how to form conclusions from the numeric
values computed, and Sections 9e11, which provide a case study
and discussion of the results.

5. The likelihood ratio

The likelihood ratio (LR) is widely accepted in the forensic sci-
ence community as ‘‘a logically defensible way” to assess the
strength of evidence (Willis et al., 2016). It has been applied in a
variety of forensic disciplines, including fingerprints (Champod and
Evett, 2001) and DNA (Evett andWeir,1998). The LR arises naturally
in the application of Bayes’ Theorem to updating the relative like-
lihoods (odds) of the two competing hypotheses (same- and
different-source) given the evidence ðA; BÞ. Bayes' Theorem in the
forensic context is

PrðHsjA;BÞ
PrðHdjA;BÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
posterior odds

¼ PrðA;BjHsÞ
PrðA;BjHdÞ

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{likelihood ratio

PrðHsÞ
PrðHdÞ|fflfflfflffl{zfflfflfflffl}
prior odds

(1)
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where Prð $Þ refers to the appropriate probability distribution. For
the likelihood ratio term these are probability distributions for the
evidence A and B (i.e., either a probability mass function or prob-
ability density function) and for the prior and posterior odds these
are probabilities assigned to the hypotheses.2

The likelihood ratio measures the relative probability of
observing the evidence ðA;BÞ under each of the two competing
hypotheses. A large likelihood ratiomeans the observed evidence is
much more likely under the same-source hypothesis Hs than the
different-source hypothesis Hd. A small LR means that the observed
evidence is much less likely under the same-source hypothesis.
Equation (1) tells the evaluator of the evidence (e.g., a member of
the jury) how to modify his or her prior odds given the evidence to
obtain posterior odds of the two hypotheses. One common view is
that the goal of the forensic examination is to supply the LR to said
evaluator. See Stern (2017) for a thorough discussion of the likeli-
hood ratio and its application in forensic science.

The likelihood ratio in Equation (1) requires probabilistic gener-
ative models Prð $Þ for the evidence ðA; BÞ. Specifying such models
can be extremely difficult in practice. One needs to construct two
models that not only specify the distribution of the locations of the
events in A and B but also the correlation between those locations
under the same- and different-source hypotheses. For that reason,
we pursue two different approaches that avoid the complexities of
specifying such distributions. The first is a likelihood ratio that
conditions on one set of events (rather than modeling the joint
probability of both sets), and the second is a score-based likelihood
ratio that computes a likelihood ratio based on some similarity
function defined on the two sets of events. These general approaches
have been proposed in the statistical forensics literature in the past
but have not previously been applied to spatial event data.

Finally, note that in this paper we treat the event locations in A
and B as real-valued numbers in the two-dimensional plane, and
thus the numerator and denominator terms in the likelihood ratio
are modeled via probability densities, henceforth referred to by
f ð $Þ.
6. Computing the likelihood ratio

A well-known way (Stern, 2017) to simplify the likelihood ratio
is to factor the joint distribution of ðA;BÞ under each model such
that

f ðA;BjHsÞ
f ðA;BjHdÞ

¼ f ðBjA;HsÞf ðAjHsÞ
f ðBjA;HdÞf ðAjHdÞ

: (2)

In this scenariowe can simplify f ðAjHsÞ¼ f ðAjHdÞ ¼ f ðAÞ because
the distribution of the locations A do not depend on the same- or
different-source hypothesis. Furthermore it is natural to assume
that the distribution of locations B is independent of the distribu-
tion of locations A under the different-source hypothesis, which
results in the simplification f ðBjA; HdÞ ¼ f ðBjHdÞ. Given these as-
sumptions, the likelihood ratio (LR) for the same source problem can
be written as

LR¼ f ðBjA;HsÞ
f ðBjHdÞ

: (3)

Traditional parametric models for the conditional densities
2 More generally, the probability distributions in the likelihood ratio can be
conditioned upon additional information that should be considered in evaluating
the evidence. For convenience, we suppress notation regarding the additional in-
formation. For instance, this could be population data relevant to ðA;BÞ as shown in
Section 6.
f ðBjA;HsÞ and f ðBjHdÞ above, such as spatial Poisson point process
models, are often insufficient to capture the typical characteristics
of user-generated geolocated event data that tends to be bursty and
inhomogeneous. For that reason, we focus on non-parametric
kernel density estimation techniques for modeling sets of loca-
tions A and B.

To estimate the likelihood ratio, we first define a reference
population E of geolocated events, denoted E ¼ fek : k¼ 1;…;npg
where ek is the (longitude, latitude) coordinate of the kth event and
np is the total number of population events in E. For a particular set
of geolocated events B, the probability density function in the de-
nominator of Equation (3), f ðBjHdÞ, can be estimated by

bf
0@BjHdÞ¼

Ynb

j¼1

fKD
�
ebj
���E
1A (4)

where fKDð $jEÞ is a kernel density built on the population data E,
and ebj is the location of the jth event in B. See Appendix A for a

more detailed discussion of kernel density estimation and a formal
definition of fKD. The term fKDðejEÞ is the likelihood that a randomly
selected event from the population will occur at some particular
location e. Thus, Equation (4) is the likelihood of observing the set
of locations B in the reference population, under the assumption of
conditional independence of events given themodel. Locations that
are often-visited in the population (e.g., airports, shopping malls,
etc) receive high probability in thismodel, while rare locations (e.g.,
individual homes, areas without cellular service, etc) receive low
probability. Fig. 3a provides an illustration of a population model of
this type, using the Twitter geolocation event data that we describe
later in the paper in more detail.

The numerator of Equation (3), f ðBjA;HsÞ, is the probability of
observing new location data B given that we have already seen
location data A and under the hypothesis that A and B came from
the same source. Effectively, it is a predictive density for geolocated
events from A. We model this as a mixture of two densities where
the first density corresponds to an individual component based on
the locations of events in A, and the second density corresponds to
the population component defined in Equation (4). See Fig. 3 for an
example of such a mixture model using the data presented in the
motivating example of Section 2. This addresses two potential
problems. First, if A has very little data this model will appear
similar to the population model resulting in LR values near 1 and
proper calibration. Second, it allows for the possibility that an in-
dividual would visit new locations in a second sample.

We use a non-parametric kernel density approach for the
mixture model components in f ðBjA;HsÞ, defined as

bf
0@BjA;HsÞ¼

Ynb

j¼1

fMKD

�
ebj
���A; E;a

1A: (5)

Here fMKDð $jA; E;aÞ refers to a mixture of kernel densities (e.g., see
Lichman and Smyth, 2014), defined as

fMKD

�
ebj
���A; E;a�¼afKD

�
ebj
���A�þ ð1�aÞfKD

�
ebj
���E� (6)

where fKDð $jAÞ is a kernel density built on the unknown source data
A, which we refer to as the individual component. The parameter
a2½0;1� determines how much weight to put on the individual
component fKDð $jAÞ of the model relative to the population
component fKDð $jEÞ. If the set of events B contains locations nearby

to those in A, bf ðBjA;HsÞ will be large relative to bf ðBjHdÞ and the LR
will have a value greater than 1 which indicates that A and B are



Fig. 3. Example of the KDE models used to estimate the likelihood ratio for Twitter events in Orange County, CA, from the experimental results in this paper. Overlaid on each panel
are the set of points A from the motivating example in Section 2. (a) Population component used to estimate the denominator of the LR f ðBjHdÞ; (b) individual component built using
the overlaid points; (c) mixture model with a ¼ 0:8 used to estimate the numerator of the LR f ðBjA;HsÞ.
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likely to have been generated by the same individual.
Fig. 4. Hypothetical illustration of the densities of the score function D under the
hypotheses that the samples are from the same source (Hs , dashed line) and that the
samples are from different sources (Hd , solid line). The score-based likelihood ratio
SLRD is the ratio of the conditional density functions g evaluated at d.
7. The score-based likelihood ratio

Instead of specifying a generative model for the observed data,
an alternative approach is to instead measure the similarity be-
tween sets of locations A and B via a score function DðA;BÞ that is
usually univariate and continuous. Typically, low scores indicate
the samples are similar, while high scores indicate considerable
differences.

A natural approach to assess the strength of evidence via score
functions is the score-based likelihood ratio (SLR), which has been
gaining popularity in forensic science (e.g., Bolck et al., 2015;
Meuwly et al., 2017; Galbraith et al., 2020). Given an observed set of
evidence ðA;BÞ related to a forensic investigation and the value of
the score function for that evidence DðA;BÞ ¼ d, the SLR is defined
as

SLRD ¼ gðDðA;BÞ ¼ djHsÞ
gðDðA;BÞ ¼ djHdÞ

(7)

where gð $Þ denotes the conditional probability density function of
DðA;BÞ given one of the two propositions (Hs for same-source or Hd
for different-source). These conditional densities are typically
straightforward to estimate via standard parametric or non-
parametric techniques given data for a large number of instances
or exemplars ðA;BÞ under Hs and Hd. The numerator of the SLR can
be interpreted as the likelihood of observing the score DðA;BÞ ¼ d if
A and B came from the same source. The interpretation of the de-
nominator is the likelihood of observing this score if A and B came
from different sources. The interpretation of the SLR is similar to
that of the LR, with values greater than 1 favoring the same-source
proposition. See Fig. 4 for an example of how the SLR approach
might be applied.

In order to compute the SLR for a particular pair of sets of lo-
cations ðA; BÞ, we need a reference sample of exemplars from a
relevant population. Assume that we have a sample of N accounts
for a given spatial region, then the relevant data consist of the pairs
ðAi;BiÞ for i ¼ 1;…;N. Define a reference data set of all N2 possible
pairwise combinations constructed from these sets of locations,
denotedD ¼ fðAj;BkÞ : j;k ¼ 1;…;Ng. Assuming that ðA;BÞ is not an
element of D ,3 we can use the scores of all of the N same source
3 See Appendix E for the construction of the reference sets when ðA;BÞ is an
element of D , as is the case for the results in Section 10.
pairs,D s ¼ fðAi;BiÞg, to estimate the probability density function in
the numerator of Equation (7) and the scores of all N2 � N pairs
with different sources, D d ¼ fðAj; BkÞ : jskg, to estimate the
probability density function in the denominator of Equation (7).

Given the observed score DðA; BÞ ¼ d, we estimate the score-
based likelihood ratio via

dSLRD ¼ bgðDðA;BÞ ¼ djD sÞbgðDðA;BÞ ¼ djD dÞ
(8)

where bg is a kernel density estimator with a Gaussian kernel and
rule-of-thumb bandwidth (Scott, 1992). We explicitly condition on
the reference setsD s andD d because the score values for the point
patterns in these sets along with the kernel density parameters
fully specify the estimated density.

7.1. Score functions for geolocation data

In terms of defining a suitable score DðA;BÞ for sets of locations A
and B, there are a number of techniques that can be borrowed from
the statistics literature on spatial point patterns. In general, they fall
into two categories: distance-based and area-based techniques
(Haggett et al., 1977). Distance-based techniques use information
on the spacing of points to characterize the pattern (typically, mean
distance to the nearest neighboring point). Area-based techniques
rely on characteristics of the frequency of observed points in sub-
regions of the region under consideration. In this paper we inves-
tigate two different distance-based score functions DðA;BÞ to
quantify the similarity of the points within the sets A and B and
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incorporate area-based information via various event-weighting
strategies. Full details on the score functions are provided in
Appendix B, and a discussion of the motivation for using weights
and definitions of the various weighting strategies used in this
paper are provided in Appendices C and D respectively.

The two score functions we use are the mean nearest neighbor
distance (denoted Dmin) and the earth mover's distance (denoted
EMD), which both rely on computing the distance from each event
in B to the nearest neighboring event in A. Intuitively, we expect
same-source pairs to contain events at locations nearby each other
in the spatial region as individuals tend to be self-consistent
(repeatedly generating events from the same locations over time).
If events in B are spatially clustered among (i.e., ‘‘close to”) events in
A, then the score functions considered tend to be smaller than if the
A and B events are generated independently and do not spatially
cluster together.
8. Drawing conclusions from the LR or SLR

After computing the likelihood ratio,4 the forensic investigator
can then come to a conclusion about the two propositions under
consideration. This conclusion should express the degree of sup-
port provided by the evidence for the same-source hypothesis Hs

versus the different-source hypothesis Hd depending on the
magnitude of the LR. See Willis et al. (2016) for practical guidelines.

When the LR ¼ 1 the conclusion should be that the evidence
provides no assistance in distinguishing between the two hypoth-
eses. For LR>1 the conclusion should be that the evidence is more
probable if the two sets of locations were generated by the same
source. For LR<1 the conclusion should be that the evidence is
more probable if the alternative is true, i.e., that the two sets of
locations were generated by different sources.

To aid in interpretability (e.g., for presentation to a jury), the
likelihood ratio may be expressed by a verbal equivalent according
to a scale of conclusions (Nordgaard and Rasmusson, 2012). Table 1
provides an example of such a verbal equivalent. For a more thor-
ough discussion on expressing the probative value of forensic evi-
dence in a clear and consistent manner, see Thompson (2017).
9. Data

Collecting data directly from a sufficiently large number of
mobile devices for research purposes is difficult. For this reason, we
used geolocation datasets of Twitter events to evaluate our pro-
posed approaches. Twitter, a popular social media and micro-
blogging service, provides a useful publicly accessible5 source of
user-event data that, given certain account configurations, exposes
the geolocation of each event generated by that account. This data
can be thought of as a subset of data collected from a given mobile
device during a forensic investigation6 and is sufficient for illus-
trating our methods.

We consider two spatial regions: Orange County, California, and
the Manhattan borough of New York City. The data was collected
from May 2015 to February 2016, selecting only events (tweets)
with GPS coordinates frompublic accounts. Each event is composed
of tuples of the following form:
4 The score-based likelihood ratio may be used interchangeably with the LR in
this section.

5 Note that while the data is publicly available via Twitter's API (https://
developer.twitter.com/en/docs/tweets/filter-realtime/overview), the terms of use
require that collected data sets cannot be shared amongst researchers.

6 We make the simplifying assumption that all Twitter events for a given account
occur on the same device.
<account_id, longitude, latitude, timestamp>.
Thus, for any given account we have a set of geolocated events

occurring in some bounded region. See Fig. 5 for the background
event rates in both spatial regions.

As the focus of our analysis is on the unique locations a user
visits (and not his or her rate of events at those locations), we define
a visit as a set of events occurring within the same hour and within
50meters of each other and treat the visit as a single effective event
e (the first event from each visit is kept). Table 2 provides summary
statistics for the Twitter data before and after filtering for visits. The
visit data in this table is referred to as the population data, and was
used for constructing the reference population E discussed in Sec-
tion 6.

To generate the spatial event data for our experiments we
filtered the data based on sequential time periods of activity. Users
with at least 1 visit per month in each of the first 2 months were
considered. For a given user, we define the sets of locations A and B
to be all geolocated events in the first or second month, respec-
tively. Table 3 contains summary statistics for the Twitter data used
Fig. 5. Population distribution of Twitter events used in the experimental results in
this paper. (a) In Orange County, CA, note that the area of high density in Anaheim is
the Disneyland Resort. (b) New York, NY.

https://developer.twitter.com/en/docs/tweets/filter-realtime/overview
https://developer.twitter.com/en/docs/tweets/filter-realtime/overview


Table 1
Association of Forensic Science Providers (2009) verbal scale for presenting
conclusions from the LR (or SLR).

LR Value Verbal Expression

1e10 Weak or limited support
10e100 Moderate support
100-1000 Moderately strong support
1000e10,000 Strong support
10,000e100,000 Very strong support
> 100;000 Extremely strong support

Table 2
Number of observed days, accounts, events and visits for the Twitter data sets.
Average number per account denoted in parentheses.

Days Accounts Events Visits

OC 240 103,271 655,917 (6.4) 545,697 (5.3)
NY 239 194,224 1,162,871 (6.0) 989,494 (5.1)
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in the analysis.
10. Results

For both the Orange County and New York regions, we compared
the likelihood-ratio and the score-based likelihood-ratio techniques
in terms of their effectiveness in quantifying the strength of evidence
for pairs of sets of locations A and B. For computational efficiency we
included all same-source pairs (6,714 in OC and 13,523 in NY) and a
stratified random sample of different-source pairs. The samplingwas
stratified by the number of visits in each pattern, na and nb, because
the data is highly skewed towards a small number of visit events per
individual and we wanted to assess performance of the methods
under varying amounts of data. The strata correspond to all 3� 3 ¼ 9
combinations of 1 visit, between 2 and 19 visits, and 20 ormore visits
for na and nb. 1,000 different-source pairs in each strata were
randomly sampled, resulting in 9,000 total different-source pairs in
each region.

For the likelihood ratio approach, two choices for the mixing
parameter a were used. The first was a constant a ¼ 0:80 for all
pairs, and the second was a function of the number of visits in A,
a ¼ f ðnaÞ, defined by the following

f ðnaÞ¼

8>>>>>><>>>>>>:

0:05; for na � 5
0:15; for na2ð5;10�
0:40; for na2ð10;20�
0:55; for na2ð20;50�
0:70; for na2ð50;100�
0:85; for na >100:

(9)

Alternative choices are also possible for the function defining
the mixing parameter. The score-based likelihood ratio approach
was estimated for both the mean inter-event distance and earth
mover's distance score functions under all weighting strategies
discussed in Appendix D.
Table 3
Number of observed accounts and visits for the Twitter data sets used in the analysis.
Average number per account denoted in parentheses.

Region Accounts Visits in A Visits in B

OC 6,714 44,310 (6.6) 38,697 (5.8)
NY 13,523 72,799 (5.4) 65,852 (4.9)
10.1. Motivating example

We begin the exploration of the results by re-visiting the
motivating example in Fig. 1 of Section 2. Recall that the investi-
gator was given one set of locations from an unknown source, A, as
well as sets of locations from two known sources, B1 and B2. She
was tasked with assessing the probative value of each pair of
evidencedðA;B1Þ and ðA;B2Þdin order to determine the likelihood
that either pair was generated by the same source. Using the like-
lihood ratio approach with fixed mixing weights, the LR for ðA;B1Þ
was approximately 1137. Following the verbal equivalents provided
in Section 8, the investigator would conclude that there is strong
support that A and B1 were generated by the same individual. For
the second pair, ðA; B2Þ, the LR was approximately 2.8e-28 which
would lead the investigator to conclude that the individual that
generated B2 could be excluded as the source of A.
10.2. Overall results

The resulting LR and SLR values were thresholded to obtain
binary decisions of same- or different-source, and these binary
decisions were compared to the known ground truth to compute
true and false positive rates. We then varied the threshold to ach-
ieve different trade-offs in terms of sensitivity and specificity. The
area under the receiver operating characteristic (ROC) curve,
abbreviated as AUC, can be used to summarize this trade-off. AUC is
a measure of goodness of fit and can be thought of as the proba-
bility that the method will result in a larger LR or SLR for a
randomly chosen same-source pair than for a randomly chosen
different-source pair (e.g., Fawcett, 2006; Krzanowski and Hand,
2009). Higher AUC values are indicative of better detection
performance.

Using likelihood ratios with a threshold of 1, corresponding to
the data being equally likely to have been generated under either
hypothesis, we classify pairs with LR greater than 1 as same-source
and those with LR less than 1 as different-source. We can then
compare the true and false positive rates for each choice of a.
Table 4 provides these rates (listed as TP@1 and FP@1, respectively)
along with the AUC. In both spatial regions the LR had similar
performance, with the highest true positive rate and AUC belonging
to the varyingmixingweight approach and the lowest false positive
rate for fixed a.

Similarly, using SLRs with a threshold of 1 we can compare the
true and false positive rates for each score function. Table 5 pro-
vides these rates (listed as TP@1 and FP@1, respectively) along with
the AUC. In both spatial regions, the SLR built on the EMD score
function tends to outperform that using Dmin within a given
weighting scheme across TP, FP and AUC. Uniform weights tend to
out-perform both the account and visit weighting schemes in terms
of TP and AUC, but not FP. In Orange County account weights yield
the lowest FP rate, while in NY both account and visit weights yield
similarly low FP rates within a given score function.

Regardless of the region considered and choice of a, D and
weighting scheme used, the likelihood ratio approach outperforms
Table 4
Performance of a classifier based on LR.

Region a TP@1 FP@1 AUC

OC 0.80 0.340 0.026 0.787
f ðnaÞ 0.380 0.038 0.845

NY 0.80 0.251 0.067 0.712
f ðnaÞ 0.285 0.090 0.768



Table 5
Performance of a classifier based on SLRD .

Region D Weights TP@1 FP@1 AUC

OC Dmin Uniform 0.628 0.202 0.768

Dmin Account 0.610 0.171 0.774

Dmin Visit 0.611 0.180 0.768
EMD Uniform 0.654 0.197 0.790
EMD Account 0.614 0.162 0.783
EMD Visit 0.602 0.169 0.774

NY Dmin Uniform 0.508 0.287 0.656

Dmin Account 0.494 0.254 0.666

Dmin Visit 0.493 0.257 0.663
EMD Uniform 0.530 0.253 0.686
EMD Account 0.511 0.235 0.685
EMD Visit 0.504 0.234 0.679
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the score-based likelihood ratio approach in terms of AUC and false
positive rate. While the SLR has a larger true positive rate than the
LR, the cost is a FP rate that is typically an order of magnitude larger.
This phenomenon not only appears in the overall results, but also
when condsidering performance of the techniques within the
strata. Fig. 6 depicts the FP rate of the two approaches versus the
amount of data in the sets A and B (corresponding to a selection of 3
of the 9 strata used in sampling) for both spatial regions. For both
approaches, as the amount of data increases the false positive rate
decreases. The SLR has much higher FP rate than LR across all data
regimes.
Fig. 6. False positive rate of each method under different data regimes in (a) Orange
County, and (b) New York. Low corresponds to 1 event in each of A and B, medium is
between 2 and 19 events, and high is 20 or more events. Showing results for fixed a in
the LR approach and the account weighted EMD for the SLR approach each thresholded
at 1. Trends are similar for other score functions and threshold choices.
11. Discussion

It is worth noting that the manner in which we defined the sets
A and B for the Twitter data (via time) is just one approach and the
techniques we propose are not dependent on how the events in A
and B are defined. For example, other ways of defining the sets of
locations could include events from two different devices (e.g.,
mobile phones) collected over the same time period where an
investigator is interested if they are associated with the same
individual.

For the datasets investigated, we found that the methods
showed promise in terms of being able to separate same-source
pairs of spatial patterns from different-source pairs. This observa-
tion leads us to believe that these methods could be useful for
discovery, e.g., as a method to rank the similarity of multiple
different sets of locations from known sources to a single set of
locations from an unknown source (similar to the motivating
example in Section 2).

There are two main areas that impact the behavior of the
techniques: the characteristics of the spatial region under consid-
eration and amount of evidential data available.

11.1. Region characteristics

The spatial regions considered in this paper have very different
characteristics. Orange County is largely suburban, while New York
is the most densely populated city in the United States. As a result,
the characteristics of the locations and how they are used tend to be
quite different in each of these regions. In Orange County land
parcels are typically single-use with one business or home at each
location. However, in New York the parcels are mostly high rise
buildings that contain many residences and businesses. We found
that the different characteristics of the spatial regions manifest in
different performance of the LR and SLR. In general the classifica-
tion problem for Orange County is easier than it is for New York. The
AUC illustrates this phenomenon, with eachmethod having a larger
AUC in OC than NY. This suggests that an analyst may need to take
into account his or her knowledge of the region under consider-
ation when presenting error rates of the method.

11.2. Amount of evidential data

Varying the number of events in A and B can significantly impact
the behavior of our approaches. The score-based methods tend to
be sensitive to the amount of evidential data available because the
variance of the underlying score functions is highwhen the number
of events is low. The high variance in the score function would be
expected under both the same- and different-source distributions,
making them more similar and generally leading to smaller SLR
values for same-source pairs and larger values for different-source
pairs. There is no natural way to alter behavior of the score func-
tions when the number of observations is low. The LR approach is
less sensitive to the amount of data, which makes intuitive sense as
the likelihoods in both the numerator and denominator have no
explicit reliance on the number of observed events.

12. Conclusion

Analysis of user-generated spatial event data is likely to become
increasingly important in the forensic investigation of digital evi-
dence. However, few methods have been developed to date that use
statistical techniques for analysis of such data. In this paper we have
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taken a step towards the development of such techniques, focusing
on the problem of investigating whether two sets of user-generated
geolocated events were generated by the same source or by different
sources. Given a reference population, we proposed two approaches
to quantify the strength of evidence in this setting. The first is a
likelihood ratio approach based on modeling the location data
directly. The second is to instead measure the similarity of the two
sets of locations via a score function and then assess the strength of
the score resulting in the score-based likelihood ratio. Experimental
results, based on analysis of Twitter data in two spatial regions,
indicate that the proposed methodology provides a useful starting
point for forensic investigation of geolocated event data.
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Appendix A. Kernel Density Estimation

In general, we follow the notation of Lichman and Smyth (2014)
for our definition of kernel densities and mixtures of kernel den-
sities. Assume that we are given a set of 2-dimensional points e ¼
ðx; yÞ that represent the location of an event, denoted E ¼ fei : i ¼
1;…; ng. Kernel density estimation (KDE) is a common choice for
the non-parametric estimation of a bivariate probability density
function f using this data. Given the bivariate Gaussian kernel
function K and a bandwidth parameter h, we get the following
bivariate KDE

fKD
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Thus the estimated density at e is the average of the kernels
centered at the observations ei and scaled by h across all n obser-
vations. KDEs are essentially a local smoothing method.

The choice of the kernel itself is not as important as the selection
of the bandwidth h. As h decreases, the height of the peak at each
observation increases resulting in undersmoothing. As h increases,
the height of the peak at each observation decreases and proba-
bility mass is pushed away from the observation resulting in
oversmoothing. Geolocated event data is hard to model via a ho-
mogeneous bandwidth given the high density of events in urban
areas and low density in sparsely populated areas. More appro-
priate for this data is an adaptive bandwidth method where h is
replaced with a bandwidth that depends on the observation ei

fKD

 
ejEÞ¼1

n

Xn
i¼1

Kðe; eijh¼hðeiÞ
!
: (A.4)

Lichman and Smyth (2014) showed that using an adaptive
bandwidth hðeiÞ determined from the geodesic distance from ei to
its 5th nearest neighbor works well for modeling geolocated
Twitter data, so the KDE estimates in the LR use these values. The
minimum bandwidth was set to 50 meters to prevent issues with
points occurring at the exact same location.

Appendix B. Score Functions for Geolocation Data

To define the score functions, we first construct an inter-event
distance matrix by measuring the geodesic distance (Karney,
2013) from each event in B to each event in A. Let D ¼ ½djk� repre-
sent the nb � na distance matrix where each element djk ¼ dðebj ; eakÞ
denotes the geodesic distance between the position of the jth event
in set B and the position of the kth event in set A.

Appendix B.1. Nearest Neighbor Distances

Treating each point in set B as the focus, we can compute the
inter-event distance to its nearest neighbor in A. Let Dmin represent
the collection of the nb nearest neighbor distances from B to A, and
define it as follows

Dmin≡
n
dmin
j : j ¼ 1;…;nb

o
where dmin

j ¼ min
k2f1;…;nag

djk
(B.1)

If events of type B are spatially clustered among events of type
A, then the nearest neighbor distances Dmin tend to be smaller
than if A and B events are generated independently and do not
cluster together. A variety of characteristics of the distribution of
nearest neighbor distances can be used as score functions DðA;BÞ.
In this paper we consider variants of the weighted arithmetic
average nearest neighbor distance from B to A, defined in general
as

Dmin

�
B;A

���Ub
�
¼
Pnb

j¼1u
b
j d

min
jPnb

j¼1u
b
j

(B.2)

where Ub ¼ fub
j : j¼ 1;…;nbg are weights assigned to each of the

events in B. A discussion of the motivation for using weights and
definitions of the various weighting strategies used here are pro-
vided in Appendices C and D.

Note that it is also possible to define a nearest neighbor distance
from A to B. That distance would compute the nearest neighbor for
each event of type A and weight these according to weights Ua. The
asymmetry of the nearest neighbor distance is one motivation for
seeking an alternative.

Appendix B.2. Earth Mover's Distance

The earth mover's distance (EMD), or Wasserstein metric, is a
measure of the distance between two probability distributions. To
gain an intuition for the EMD, consider the problem of having
multiple piles of earth of different sizes spread over some region
that you wish to move into a collection of holes of different vol-
umes in that same region. The EMD measures the least amount of
‘‘work” it takes to fill the holes with earth, where a unit of work
consists of transporting a unit of earth by a unit of ground dis-
tance. For the problem at hand, we can think of the piles of earth
as one point pattern (B) and the holes as the other (A). EMD has
been widely used as a general approach for measuring distances
between two sets as a function of the distance between elements
of the sets (e.g., Rubner et al., 1998; Cohen, 1999). We develop the
use of EMD in the context of measuring the similarity of spatial
point patterns.

Computing the EMD is based on a solution to the transportation
problem (Hitchcock, 1941). The first step is to find a flow F 0 ¼ ½f 0jk�,



Figure C.1. Area around John Wayne Airport (SNA) in Orange County, California,
highlighting the parcel corresponding to the airport and Twitter events in the region.
Figure credit Lichman (2017).
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where f 0jk is the flow (or amount of mass) moved from ebj to eak , that

minimizes the overall cost

F 0 ¼ arg min
½fjk�

fjk
Xnb

j¼1

Xna

k¼1

fjkdjk (B.3)

subject to the following constraints

fjk � 0 j2 f1;…;nbg; k2f1;…;nag (B.4)
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where in principle the weights Ua and Ub are the same as those
used in Equation B.2. The first constraint (B.4) restricts the flow of
mass from B to A and not vice versa. The next two constraints (B.5,
B.6) limit the amount of mass that can be sent from points in B to
their weights, and the points in A receive no more mass than their
corresponding weights. The last constraint (B.7) ensures the total
amount of mass moved is equal to that of the lighter distribution,
and is referred to as the total flow. Given the solution F 0 that
minimizes (B.3), define the score function DðA;BÞ based on the
earth mover's distance as the cost normalized by the total flow

EMDðB;AjUÞ¼
Pnb

j¼1
Pna

k¼1f
0
jkdjkPnb

j¼1
Pna

k¼1f
0
jk

(B.8)

where U ¼ fUa;Ubg.
Note that the earth mover's distance is a metric when the dis-

tance between the points is a metric and the total weights of the
point patterns are equal. Since geodesic distance is a metric, the
first property is satisfied. We enforce that the weights sum to 1 for
both sets A and B. Therefore, the earth mover's distance considered
in this paper is a metric which implies that EMDðB;AjUÞ ¼ EMDðA;
BjUÞ. This simplifies computation and results in the same conclu-
sions being drawn regardless of which pattern you consider as the
focus of analysis.
Table C.1
Summary statistics for the distribution of number of visits (Type ‘‘Visits”) and unique
accounts with at least one visit (Type ‘‘Accounts”) in each parcel computed from the
full population data in Table 2. The minimum and 25th percentile are 1 for all cases.

Region Type Mean Med. 75th%ile Max

OC Visits 16.5 2 5 72,290
OC Accounts 7.9 1 2 30,874
NY Visits 46.4 4 16 77,760
NY Accounts 26.8 3 10 25,775

7 https://www.scag.ca.gov/.
8 https://wiki.openstreetmap.org/wiki/API.
Appendix C. Geoparcel Data

Geolocated event data is quite useful, but additional informa-
tion can be incorporated if we also consider spatial properties of
locations at which the events occur. High-traffic locations like
shopping malls, theme parks and stadiums will have a high like-
lihood of appearing in any randomly selected point pattern and
thus make patterns generated by different individuals look alike.
Conversely, less common locations such as homes are highly un-
likely to appear in multiple point patterns unless those patterns
were generated by the same individual or someone close to him or
her.

One option for incorporating spatial information is to partition
the spatial region into a regular grid of disjoint cells, and compute
population frequencies of events in each grid cell. However,
defining the grid is a difficult problem as the result can be highly
arbitrary since locations very rarely fall perfectly into a grid.
Further, the spatial resolution of the grid is proportional to the
amount of events in each celldtoo small of a grid size results in
highly sparse data. Given these limitations, we chose to use geo-
parcel information. Geoparcels are disjoint polygons (or parcels)
that partition a spatial region where each individual parcel repre-
sents a specific property. The parcels vary in size and shape
depending on the function of the property, solving the issues posed
by using a grid. Within each parcel, we can measure the rarity of
visits to that particular location. See Figure C.1 for an example of a
parcel and a comparison to a grid-based approach.

We use the same publicly available geoparcel data as Kotzias
et al. (2018). The 32,978 parcels for Orange County were collected
from the Southern California Association of Government website.7

The 21,312 parcels for New York were collected via the Open-
StreetMap API.8 Both the OC and NY data sets exhibit long-tailed
distributions for the number of visits and number of unique ac-
counts with at least one visit in each parcel, as shown in Table C.1
and Figure C.2. On average, parcels in New York have more visits
and unique accounts than parcels in Orange County.

https://www.scag.ca.gov/
https://wiki.openstreetmap.org/wiki/API
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Fig. C.2. Density estimate of the number of parcels versus (a) the number of visits in
the parcel, and (b) the number of unique accounts in that parcel. Note that both figures
are right-truncated due to the extremely long tails.

Appendix D. Weighting Events

In our definitions of score functions DðA;BÞ for spatial point
patterns in Equations B.2 and B.8, we require weights for each
event. We consider three different weighting schemes that rely
upon the geoparcel data discussed in the previous section. The
weights are defined for events in point pattern B, but similar defi-
nitions hold for events in A. All weights are normalized for each
point pattern, i.e.,

Pnb
j¼1u

b
j ¼ 1.

1. Uniform. Let ub
j ¼ n�1

b for j ¼ 1;…;nb. Under uniformweighting,

Equation B.2 simplifies to the unweighted mean nearest
neighbor distance. Furthermore uniform weights result in the
empirical distribution for each point pattern being used as the
relevant distribution in the earth mover's distance calculation.

2. Location Visits. Define the weight for each event as a function of
the number of visits occurring at the location (geoparcel) of that
event across the reference population. Namely,

ub
j ∝
h
nvis
�
[
�
ebj
��i�1

(D.1)

where nvisð[Þ is the number of visits at location [, in this case the
geoparcel in which the jth event in B occurred.

3. Location Accounts. Define the weight for each event as a function
of the number of unique accounts in the reference population
with at least one visit at the location of that event. Namely,

ub
j ∝
h
nacc

�
[
�
ebj
��i�1

(D.2)

where naccð[Þ is the number of unique accounts with at least one
visit at location [, in this case the geoparcel inwhich the jth event in
B occurred.

The uniform weighting scheme is the most naive method, and
requires no geoparcel data. Both locationweighting schemes attempt
to solvewhatwe refer to as the ‘‘Disneyland Problem.” Specifically, in
some spatial regions, a small subset of parcels can be responsible for a
large fraction of the Twitter activity. At such locations, it is highly
likely that any randomly-selected account will generate an event
there. For Orange County, one of these parcels corresponds to the
Disneyland Resort, as is evidenced in Fig. 5a. The location-based
weighting schemes above down-weights events from such parcels,
placing more weight on events at rarer locations such as homes.

Appendix E. Leave-pairs-out Cross Validation

The results in this paper use a slight variant of the set con-
struction for D s and D d discussed in Section 7 because the point
patterns of interest are elements of D . To evaluate the out-of-
sample performance of the techniques we use leave-pairs-out
cross-validation to construct the reference data sets used to esti-
mate the score-based likelihood ratio. Let ðA;BÞ ¼ ðA[;BmÞ be an
arbitrary pair from D , where [ and m may or may not be equal.
Given ðA[;BmÞ let D s ¼ fðAj;BjÞ : j2f1;…;Ngnf[;mgg and
D d ¼ fðAj;BkÞ : j; k2f1;…;Ngnf[;mg; jskg be the sets used in the
results of Section 10. Essentially, we remove any pair with a point
pattern from either account currently being evaluated.
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