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Abstract

Understanding Type II-Plateau Supernovae and the Red Supergiants that

Cause Them

by

Jared A. Goldberg

Observations of the transient, explosive deaths of massive stars are well-poised to

provide insight into stellar physics when combined with theoretical understanding. From

spherically symmetric stellar evolution models, we confirm and sharpen early analytic

calculations for the Supernova (SN) plateau luminosity and duration as a function of

the red supergiant (RSG) progenitor properties. When the RSG radius at the time

of the explosion is known, we show how the explosion energy and ejecta mass can be

directly inferred; otherwise, we show that a family of explosions could produce the same

plateau luminosity, duration, and photospheric velocity. We also explore the impact of

large-scale radial stellar pulsations on these predictions. Then, motivated in part as an

effort to understand the turbulent outer envelope responsible for early-time SN emission,

we complete global 3D radiation-hydrodynamics (RHD) simulations of RSG envelopes

with Athena++. These simulations reveal an extended density structure with large-scale

convective plumes spanning large fractions of the stellar surface. These computations also

provide insights to guide evolutionary modeling efforts, such as a physically-motivated

x



calibration of the convective mixing length which helps determine the envelope density

structure. Driving a strong shock through these 3D simulations, we then show novel

results on how the inhomogeneous 3D convective structure leads to a longer-duration,

fainter shock breakout (SBO) signal compared to predictions from semi-analytic and

spherically-symmetric models.
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Chapter 1

Introduction

1.1 Background

As massive (9M⊙ ≲ M ≲ 25M⊙) stars approach the end of their lives, they expand to

become Red Supergiants (RSGs), which are characterized by their cool effective tem-

peratures (Teff ≲ 4000K), large stellar radii (R ≈ 300 − 1200R⊙), and relatively high

luminosities (L ≈ 104 − 105.5L⊙) (see, e.g. Levesque et al., 2006; Drout et al., 2012;

Massey et al., 2021). Although their luminosity is generated in the core via nuclear

fusion of He, C, O, and heavier and heavier elements, their observable properties are pri-

marily moderated by the physics of their hydrogen-rich, fully-convective stellar envelope

and the outer surface layers. These dynamic outer layers are also intrinsically variable, in

many cases exhibiting large-amplitude fluctuations in brightness caused both by coher-

ent oscillation modes (e.g. Kiss et al. 2006; Soraisam et al. 2018; Dorn-Wallenstein et al.

2020) and stochastic convective processes (e.g. Ren & Jiang, 2020). Moreover, due to the
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low densities and large pressure scale heights (H/R ≈ 0.1 − 0.5), individual convective

plumes can span a significant fraction of the stellar envelope (see, e.g. Schwarzschild,

1975; Freytag et al., 2002). Thus, spectro-interferometric observations of nearby RSGs

(e.g. Arroyo-Torres et al. 2015; Kravchenko et al. 2019, 2021; Montargès et al. 2021; Nor-

ris et al. 2021) can probe their large-scale 3D surfaces and reveal their (often asymmetric)

surface properties via tomographic measurements.

As the RSG runs out of nuclear fuel, an Fe-rich core accumulates and eventually

collapses under its own gravity, forming a proto-neutron star or black hole. During the

collapse, neutrinos are released which drive turbulence in the core material surrounding

the proto-neutron star (e.g. Janka, 2012). In many cases, this imparts sufficient energy

(∼ 1051 erg) into the star to overcome its binding energy (∼ 1049 − 1050 erg), causing a

strong shockwave to propagate through the star. In this explosion, the stellar envelope

and outer core material mix via the Rayleigh-Taylor Instability (RTI; see e.g. Chevalier &

Klein 1978; Weaver & Woosley 1980; Wongwathanarat et al. 2015; Duffell 2016; Utrobin

et al. 2017). After the shock reaches the stellar surface in a bright flash called “shock

breakout” (SBO; see Colgate 1968; Lasher & Chan 1979 for early work, as well as the

review by Waxman & Katz 2017), the Hydrogen-rich ejecta expands and cools, emitting

radiation which is observed as a Hydrogen-rich (“Type II”) Supernova (SN). Once the

temperature in the outer ejecta reaches the H-recombination temperature of ≈ 6000K,

the photospheric emission reaches a “plateau” for ≈ 100 days, with heat trapped in the

optically thick ejecta released only where the expanding envelope has cooled enough for

2



ionized H to recombine into neutral H. Finally, once the ejecta has become optically thin,

late-time emission (after ≈100 days) is powered by the radioactive decay of 56Ni. In this

way Type II-Plateau Supernovae (SNe-IIP) provide a unique time-lapse glimpse into the

structure of the star. Emission from the outer ejecta occurring early in the SN reveals

the outer stellar layers, and we see deeper and deeper “into the star” as the photosphere

migrates inwards in mass coordinate in the expanding ejecta.

While this qualitative picture of the endpoint of massive stellar evolution is well-

established, there are still important uncertainties left to be explained both from the-

oretical modeling and from observations. In fact, it is still a subject of debate which

stars will collapse directly into black holes and which will explode as core-collapse SNe in

the first place. At the heart of the controversy is the so-called “Missing Red Supergiant

Problem,” which claims that, for SNe-IIP which have both observations of the SN explo-

sion and observations of the RSG progenitor from archival data, the stellar luminosities

of confirmed SN progenitors are typically lower compared to the distribution of RSG

luminosities observed in resolved stellar populations (see, e.g. Smartt, 2009, 2015; Van

Dyk, 2017; Kochanek, 2020). In fact, there is an apparent lack of any observed SN-IIP

progenitor with a luminosity of log(L/L⊙) ≳ 5.2, while particularly massive RSGs have

been seen with luminosities above 105.5L⊙ (with some debate the statistical significance of

the “problem” is subject to debate, see discussions by Davies & Beasor (2018, 2020b,a)).

This is corroborated by some modeling efforts which suggest that more massive RSGs

are less likely to explode (e.g. Sukhbold et al., 2016; Ertl et al., 2016; Patton & Sukhbold,
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2020) with some sensitivity to input physics including nuclear reaction rates (such as C

burning Sukhbold et al., 2018), core-boundary mixing (e.g. Davis et al., 2019), stellar

winds (e.g. Renzo et al., 2017), and binarity (e.g. Zapartas et al., 2021).

Luckily, recent years have seen an explosion of time-domain astronomical data which

can shed light on some of these uncertain physical processes, thanks to an expanding

network of ground- and space-based telescopes including the Zwicky Transient Facility

(ZTF; Masci et al. 2019), the Dark Energy Survey (DES; Flaugher et al. 2015), the

All-Sky Automated Survey for Supernovae (ASAS-SN; Shappee et al. 2014; Kochanek

et al. 2017b), Las Cumbres Observatory (LCOGT; Brown et al. 2013a) and its Global

Supernova Project, and many others. And this wealth of data will expand with upcoming

surveys — starting in 2023, the Vera Rubin Observatory will revolutionize time-domain

astronomy with repeated nightly imaging of the entire sky with outstanding spatial res-

olution in its Legacy Survey of Space and Time (LSST; Ivezić et al. 2019). Additionally,

from around Fall 2024, the ULTRASAT mission (Sagiv et al., 2014; Asif et al., 2021)

will capture hundreds of elusive ultraviolet SN SBOs from space, which have only been

seen in a few serendipitous detections by NASA’s GALEX mission (2003-2013). Because

SNe encode information about the stellar physics, such observations have the potential

to yield insights into the structure, composition, explosion mechanism, and environments

surrounding stars as they end their lives. This carries implications beyond constraining

stellar physics; for example, SNe inject thermal and kinetic energy into the circumstel-

lar and interstellar medium, leading to feedback which drives galactic winds and strews
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heavy elements into the universe (e.g. Hopkins et al., 2014). Ongoing theoretical work

is therefore valuable in order to uncover the underlying physical properties of observed

events and realize the data’s scientific potential.

To this end, there has been considerable work describing the relationship between SN

lightcurves and the bulk properties of their progenitor stars (e.g. Arnett, 1980; Litvinova

& Nadyozhin, 1983; Popov, 1993; Kasen & Woosley, 2009; Nagy et al., 2014; Nagy &

Vinkó, 2016; Nakar et al., 2016; Sukhbold et al., 2016; Shussman et al., 2016b). These

works yield a variety of analytically-motivated scaling relations for observables such as

the plateau brightness at day 50 L50 and the plateau duration tp, with the mass of the

H-rich ejecta Mej, explosion energy Eexp, and progenitor radius R, built on a variety of

assumptions for the composition, density, opacity, and velocity structure of the ejecta.

This work has been complemented by detailed numerical studies calculated for suites of

stellar evolution models evolved assuming spherical symmetry (1D models), such as the

work of, e.g., Kasen & Woosley (2009); Dessart & Hillier (2010); Dessart et al. (2013,

2017); Bersten et al. (2011); Morozova et al. (2016); Sukhbold et al. (2016); Martinez

& Bersten (2019); Eldridge et al. (2019). When combined with data, these theoretical

efforts can shed light on physical prescriptions which can be fed back into 1D stellar

models. For example, Dessart et al. 2013 found that spectroscopic models of observed

SNe-IIP favor smaller-radius progenitors for a given ejecta mass than most stellar evolu-

tion codes at the time were producing, which can be rectified by using a larger convective

efficiency parameter α in the H-rich envelope (which we discuss further in Chapter 5).
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Predictions for the SN emission across a range of explosions also enable parameter-space

studies comparing grids of models to samples of observed SNe. In some cases, direct

recovery of Mej, Eexp, R is claimed by matching models to individual observed SNe,

such as Pejcha & Prieto (2015b) using the scaling relations from Litvinova & Nadyozhin

(1983); Popov (1993) to recover explosion energies, radii, and ejecta masses from the

bolometric lightcurves from their (Pejcha & Prieto, 2015a) sample. We discuss the value

and limitations of such approaches in in Chapters 2 and 4.

At early times (t ≲ 20 − 30 days) SN-IIP emission comes from the shock break-

out (Lasher & Chan, 1979; Matzner & McKee, 1999; Katz et al., 2010; Waxman &

Katz, 2017) and radiative shock-cooling (such as Nakar & Sari, 2010; Rabinak & Wax-

man, 2011; Sapir et al., 2011; Katz et al., 2012; Sapir et al., 2013; Morozova et al.,

2016; Shussman et al., 2016a; Sapir & Waxman, 2017; Faran et al., 2019) of the outer-

most ≲ 0.01 − 0.1M⊙ of material. The density structure of that material is uncertain,

and potentially three-dimensional in nature, yielding differences between models of early

lightcurves for different assumed progenitor model surface profiles. Moreover, even be-

yond the theoretical uncertainties, observations of these epochs often show an excess in

luminosity compared to 1D explosion models with “barren” photospheres (e.g. Khazov

et al., 2016; Förster et al., 2018; Hosseinzadeh et al., 2018). These early lightcurves

are then fit by invoking additional circumstellar material (CSM) around the progenitor

model (e.g. Dessart et al., 2017; Moriya et al., 2017, 2018; Morozova et al., 2017, 2018),

often assumed to be in the form of a dense wind with ρ(r) ∝ 1/r2, though recent efforts
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have calculated self-consistent CSM profiles due to mass-loss due to pre-supernova out-

burts in 1D (Morozova et al., 2019) and 3D (Tsang et al., 2022). Moreover, the outer

structure may be influenced by the presence of large-scale 3D asymmetries seen in both

simulations and observations of RSG stellar envelopes, which are by design absent in

spherically symmetric models.

1.2 Summary

This dissertation complements and builds upon this body of theoretical work, exploring

the relationship between various properties of Red Supergiant stellar structure and the

impact on the SN emission in their ensuing explosions. Chapter 2 (Goldberg et al.,

2019) begins by characterizing the relationship between bulk properties of the explosion,

namely Mej, Eexp, and R, with properties of the lightcurve, such as L50, tp, and the

observable ET (Nakar et al., 2016). We confirm and sharpen early analytical scaling

relations for these SN observables with stellar properties, but show that measurements

of the photospheric velocity during the plateau phase cannot be simply leveraged to lift

degeneracies inherent in lightcurve modeling. Rather, for a given SN, we find that a

family of explosions will produce the same light curve and velocities on the plateau.

Chapter 3 (Goldberg et al., 2020) goes beyond bulk properties of static RSG models

by exploring the implications of large-amplitude radial pulsations for the resulting SN

emission. We find that the effects of fundamental-mode pulsations are well-described

by the scalings introduced in Chapter 2 between lightcurve observables and the stellar
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radius for a hydrostatic star. However, if a star is pulsating in an overtone, with some

regions of the star undergoing expansion and other regions undergoing contraction at

the moment of explosion, then the resulting SN reveals the progenitor’s over-dense or

under-dense interior structure depending on the location of the SN photosphere within

the ejecta as a function of time.

Keeping in mind the uncertainties in R due to stellar pulsations, but armed with

the confidence that the effects of R at the moment of the explosion are generally well-

described by the scaling relations in Chapter 2, Chapter 4 (Goldberg & Bildsten, 2020)

then leverages those relations to estimate the families of possible explosion properties

for a selection of observed SNe with independent constraints on the progenitor radius.

We show that a huge grid of progenitor models which takes into account reasonable

uncertainties in 1D stellar evolution modeling prescriptions and input physics (such as

rotation, the efficiency of convection, convective boundary mixing, and wind mass-loss

rates) spans nearly the entire Mej − R parameter space expected for RSGs. This allows

us to produce multiple valid models for each SN with > 50% variations in Mej, Eexp, and

R; constraints on the progenitor radius then allow Eexp and Mej to be further recovered

to within ≈ 20%.

Motivated in part by the desire to understand the outermost layers of the RSG enve-

lope, which might then enable the ability to extract additional information from early-

time observations, we turn to global 3D radiation-hydrodynamics (RHD) simulations of

RSG envelopes with Athena++, which are described in Chapter 5 (Goldberg et al., 2022).
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This work reveals a number of interesting properties of convection in the RSG envelope

regime, including a radius, Rcorr, around which the nature of the convection changes, and

the presence of an outer ”halo” of material much more extended than 1D stellar evolu-

tion predicts. We also use these 3D models to calibrate Mixing Length Theory (MLT;

Böhm-Vitense 1958; Henyey et al. 1965) parameters used in 1D models.

The bulbous extended RSG surface, which also exhibits large-scale fluctuations in

density, velocity, and temperature in agreement with the work of (Chiavassa et al., 2011a),

is exactly the region responsible for early SN emission. Therefore, in Chapter 6 (Goldberg

et al., 2022), we develop and validate a method to deposit a strong SN shock into the

simulation domain of our 3D envelope models, and calculate the resulting shock breakout

emission. The extended halo entails a SBO at lower densities than in 1D models, and

the large-scale density fluctuations cause the shock to break out at different radii at

different times, prolonging the SBO duration (which is in better agreement with existing

observations). While these intrinsically 3D properties eliminate the possibility of using

observed rise times to directly measure R, they also suggest that observations of the UV

SBO encode and therefore could probe the 3D surface inhomogeneity in the outer RSG

layers.

Finally, we discuss some implications of this work, open questions, and possible future

directions in Chapter 7.
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1.3 Software

This work makes extensive use of the open-source software instrument MESA (Modules

for Experiments in Stellar Astrophysics). The MESA instrument papers are often re-

ferred to using roman numerals: Paxton et al. (2011, MESA I), Paxton et al. (2013,

MESA II), Paxton et al. (2015, MESA III), Paxton et al. (2018, MESA IV), Paxton et al.

(2019, MESA V), and Jermyn et al. (2022, MESA VI). Additionally, Chapter 3 utilizes

the GYRE stellar pulsation software (Townsend & Teitler, 2013; Townsend et al., 2018).

Chapters 2, 3, and 4 make extensive use of the open-source version of the multi-group

radiation-hydrodynamics software STELLA (Blinnikov & Sorokina, 2004; Baklanov et al.,

2005; Blinnikov et al., 2006). Chapters 5 and 6 utilize the 3D fluid simulation software

instrument Athena++ (Stone et al., 2020), and in particular, the radiation-hydrodynamics

modules described by Jiang et al. (2014); Jiang (2021).

Analysis made significant use of the following packages: py mesa reader (Wolf &

Schwab, 2017), NumPy (Harris et al., 2020), SciPy (Virtanen et al., 2020), and matplotlib

(Hunter, 2007). Figure colors made use of the additional python packages cmocean

(Thyng et al., 2016) and cmasher (van der Velden, 2020).

1.4 Permissions and Attributions

1. The content of Chapter 2 and Appendices A and B are adapted and reproduced

from Goldberg et al. (2019) with permission from The Astrophysical Journal.
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2. The content of Chapter 3 is adapted and reproduced from Goldberg et al. (2020)

with permission from The Astrophysical Journal.

3. The content of Chapter 4 is adapted and reproduced from Goldberg & Bildsten

(2020) with permission from The Astrophysical Journal Letters.

4. The content of Chapter 5 and Appendices C and D are adapted and reproduced

from Goldberg et al. (2022) with permission from The Astrophysical Journal.

5. The content of Chapter 6 is adapted and reproduced from Goldberg et al. (2022)

with permission from The Astrophysical Journal.

My graduate work has also afforded me opportunities to participate in exciting re-

search efforts led by others (Tsang et al., 2020; Hiramatsu et al., 2021a,b) as well as two

MESA instrument papers (Paxton et al., 2018, 2019), but that work does not appear in

this dissertation.
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Chapter 2

Inferring Explosion Properties from

Type II-Plateau Supernova Light

Curves

Through an expanding network of ground- and space-based telescopes, the astrophysical

community has an unprecedented ability to probe transient events. Along with a host of

facilities, such as the All Sky Automated Survey for Supernovae (ASAS-SN; Kochanek

et al. 2017b), the Las Cumbres Observatory (Brown et al., 2013b) is building the largest

set of data ever collected on all nearby supernova (SN) events. Some SNe discovered have

known progenitors in distant galaxies (Smartt, 2009). And the data are improving —

The Zwicky Transient Facility (ZTF; Bellm et al. 2019) has begun discovering multiple

SNe on a nightly basis, and the Large Synoptic Survey Telescope (LSST; LSST Science
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Collaboration et al. 2009) will revolutionize time-domain astronomy with repeated nightly

imaging of the entire sky with outstanding spatial resolution.

In this Chapter (and in fact, in this dissertation) we focus on Type IIP SNe, core-

collapse events of dying massive stars (M > 10M⊙) which yield distinctive light curves

that plateau over a period of ≈100 days. The duration and brightness of these light

curves reflect the progenitor’s radius (R), ejected mass (Mej), energy of the explosion

(Eexp), and 56Ni mass (MNi). Inferring these properties from the observations has broad

applications. Extracting progenitor information from SN observations could lend insight

into which stars explode as SNe and which collapse directly into black holes. It would

also have implications for the missing red supergiant (RSG) problem identified by Smartt

(2009) and updated by Smartt (2015), whereby Type II SNe with known progenitors

seem to come from explosions of RSGs with initial masses of MZAMS ≲< 18M⊙, whereas

evolutionary models have a cutoff mass of around 30M⊙.

Our understanding has benefitted from 3-dimensional modeling of light curves and

spectroscopic data for specific Type IIP events, such as the work of Wongwathanarat

et al. (2015) and Utrobin et al. (2017), as well as 3D simulations which probe specific

regions of parameter space of these SNe (e.g. Burrows et al. 2019). Although 3D models

are incredibly useful for describing specific systems and probing specific regions of the

possible parameter space of progenitors and their explosions, substantial effort is required

to estimate the parameters of a single observed explosion. The computational demand

for individual 3D calculations presents a challenge for probing the parameter space of
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possible progenitor models for a large ensemble of explosions.

Here, we utilize the open-source 1-dimensional stellar evolution software instrument,

Modules for Experiments in Stellar Astrophysics (MESA; Paxton et al. 2011, 2013, 2015,

2018, 2019), to model an ensemble of Type IIP SN progenitors, interfacing with the

radiative transfer code STELLA (Blinnikov et al., 1998; Blinnikov & Sorokina, 2004; Bak-

lanov et al., 2005; Blinnikov et al., 2006) to simulate their light curves and photospheric

evolution. We include the effects of the Duffell (2016) prescription for mixing via the

Rayleigh-Taylor Instability, which allows for significant mixing of important chemical

species such as 56Ni, and yields a more realistic density and temperature profile in the

ejecta at shock breakout (Paxton et al. 2018, MESA IV).

The increasing abundance of data has led to a new approach to understanding Type

IIP progenitors and explosions in an ensemble fashion. Pejcha & Prieto (2015b,a), and

Müller et al. (2017) took such an approach, characterizing a total of 38 Type IIP SNe by

their luminosity and duration of the plateau, as well as the velocity at day 50 as inferred

via the Fe II 5169 Å line. By fitting these three measurements to the analytics of Popov

(1993)1 and early numerics of Litvinova & Nadyozhin (1983), these authors inferred Mej,

Eexp and R from these observables.

To this end, we show that MESA+STELLA reproduces a scaling for plateau luminosity

at day 50, L50, similar to that of Popov (1993), and we introduce new best-fit scaling

laws for L50 and for the duration of the plateau tp in the limit of 56Ni-rich events. We

1See also Sukhbold et al. 2016’s update to the Kepler results of Kasen & Woosley 2009, which find
similar scalings.
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also discuss the relationship between our model properties and the observable ET , the

time-weighted integrated luminosity that would have been generated if there was no 56Ni

in the ejecta (Shussman et al., 2016a; Nakar et al., 2016), and show how ET can also

be used to provide similar constraints on explosion properties. As an observable, ET is

defined by Equations (2.14) and (2.15). Additionally, we show that the measured velocity

at day 50 from the Fe II 5169Å line does not scale with ejecta mass and explosion energy

in the way assumed by Popov (1993). Rather, as found observationally by Hamuy &

Pinto (2002); Hamuy (2003) and explained by Kasen & Woosley (2009), agreement in

L50 entails agreement in velocities measured near the photosphere at day 50 (as we show

in Figures 2.21 and 2.22).

As our work was being completed, Dessart & Hillier (2019) submitted a paper that

also highlights the non-uniqueness of light curve modeling for varied progenitor masses

due to core size and mass loss due to winds. Here we additionally highlight the non-

uniqueness of light curve modeling even for varied ejecta mass. As such, our calculated

scaling relationships yield families of explosions with varied R, Mej, and Eexp which could

produce comparable light curves and similar observed Fe II 5169Å line velocities (e.g. see

Figures 2.25 and 2.26). Given an independent measurement of the progenitor R, along

with a bolometric light curve and an observed nickel mass (MNi) extracted from the tail,

one can directly constrain Mej and Eexp. Otherwise, these families of explosions can be

used as a starting point to guide further detailed, possibly 3D, modeling for observed

events.
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2.1 Our Models

Our modeling takes place in three steps. First, we construct a suite of core-collapse

supernova progenitor models through the Si burning phase using MESA following the

example_make_pre_ccsn test case, described in detail in Paxton et al. 2018 (MESA IV).

Second, we load a given progenitor model at core infall, excise the core (as described

in section 6.1 of MESA IV), inject energy and Ni, and evolve the model until it ap-

proaches shock breakout. This closely follows the example_ccsn_IIp test case. Third,

to calculate photospheric evolution and light curves after shock breakout, we use the

shock breakout profile produced in the second step as input into the public distribution

of STELLA included within MESA, and run until day 175. At the end of the STELLA run, a

post-processing script produces data for comparison to observational results (specifically

bolometric light curves and Fe II 5169Å line velocities as described in MESA IV).

In order to create a diversity of progenitor characteristics, we chose models with

variations in initial mass MZAMS, core overshooting fov and f0,ov, convective efficiency

αMLT in the hydrogen envelope, wind efficiency ηwind, modest surface rotation ω/ωcrit, and

initial metallicity Z. This study concerns itself especially with achieving diversity in the

ejecta mass Mej by means of the final mass at the time of explosion Mfinal, and the radius

R at the time of the explosion. Table 2.1 lists physical characteristics of all progenitor

models utilized in this Chapter with Lprog = the stellar luminosity just prior to explosion.

Our naming convention is determined by the ejecta mass and radius at shock breakout,

M<Mej> R<R>. For our sample of Type IIP SNe models, we use three progenitor
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models from MESA IV, the 99em 19, 99em 16, and 05cs models, renamed M16.3 R608,

M12.9 R766, and M11.3 R541, respectively. Additionally, we create three new models

using MESA revision 10398 to capture different regions of parameter space. We created a

model with the same input parameters as 99em 19, here named M15.7 R800. In order to

explore a diversity of radii for similar parameters, we also created M15.0 R1140, a model

with nearly identical input to M15.7 R800, except for reduced efficiency of convective

mixing αMLT = 2.0 (the default value is αMLT = 3.0) to create a more radially extended

star with otherwise similar properties. Finally, in order to include smaller progenitor radii

and mass in our suite, we created M9.3 R433, which has the same progenitor parameters

as the 12A-like progenitor model from MESA IV, except greater overshooting fov =

0.01. These “standard suite” models are denoted by a * in Table 2.1. All models are

solar metallicity, except the 05cs-like progenitor from MESA IV, M11.3 R541, which has

metallicity Z = 0.006.

Beyond this standard suite, we construct M20.8 R969, a MZAMS = 25M⊙ non-

rotating model with no overshooting and wind efficiency ηwind = 0.4, which has a very

tightly bound core and leads to significant fallback at energies Eexp < 2 × 1051 ergs

(see also Appendix A). Additionally, to highlight the families of explosions which pro-

duce comparable light curves (see Section 2.6), we construct three progenitor models

which, when exploded with the proper explosion energy, all produce light curves similar

to that of our M12.9 R766 model exploded with 0.6 × 1051 ergs and MNi = 0.045M⊙.

M9.8 R909 was MZAMS =13.7M⊙ with a final mass of 11.4M⊙, created with overshooting
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fov = 0.016, f0,ov = 0.006, initial rotation (v/vc)ZAMS = 0.2, wind efficiency ηwind = 1.0,

and αMLT = 2.0. M10.2 R848 was MZAMS = 13.5M⊙ with a final mass of 12.0M⊙, which

was created with overshooting fov = 0.01, f0,ov = 0.004, initial rotation (v/vc)ZAMS = 0.2,

wind efficiency ηwind = 0.8, and αMLT = 2.0. M17.8 R587 was MZAMS =20.0M⊙ with

a final mass of 19.41M⊙, which was created with no overshooting, no rotation, wind

efficiency ηwind = 0.2, and αMLT = 3.5.

During the explosion phase, which we carry out using MESA revision 10925 to include

an updated treatment of fallback (see Appendix A), we vary the total energy of the stellar

model at the time of explosion (Etot) from 2 × 1050 ergs to 2 × 1051 ergs, with 0.2, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.2, 1.4, 1.6, and 2.0 ×1051 ergs. These models are significantly

impacted by the Duffell (2016) prescription for mixing via the Rayleigh-Taylor instability,

which smooths out the density profile and leads to the mixing of H deep into the interior

of the ejecta and 56Ni out towards the outer ejecta (see MESA IV). We use the RTI

coefficient DR = 3.0. For a further exploration of the impact of changing the strength of

RTI-driven mixing on ejecta and light curve evolution, see the work of P. Duffell et al.

(2019, in preparation).
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At the handoff between MESA and STELLA, we initialize STELLA with 400 zones and 40

frequency bins, and an error tolerance 0.001 for the Gear-Brayton method (Gear, 1971;

Brayton et al., 1972), which leads to converged models. We also rescale the abundance

profile of 56Ni and 56Co to match a specified total Nickel mass MNi. This resets the Nickel

decay clock to the time of shock breakout. We consider 56Ni masses of MNi/M⊙ =0.0,

0.015, 0.03, 0.045, 0.06, and 0.075; the impact of 56Ni in our models is discussed in

detail in Section 2.4. As most of the mixing is accounted for by Duffell RTI, we only

employ modest boxcar smoothing of abundance profiles at handoff as recommended in

MESA IV, using 3 boxcar passes with a width of 0.8 M⊙. Additionally, as described in

Paxton et al. 2019 and Appendix A here, we use a minimum innermost velocity cut of

material moving slower than 500 km s−1 to prevent numerical artifacts in STELLA caused

during interactions between reverse shocks and slow-moving material near STELLA’s inner

boundary. This study concerns itself with intrinsic properties of the SNe and their

progenitors, determined primarily by quantities on the plateau, and therefore we do not

include circumstellar material (CSM) in STELLA.

2.1.1 Estimating Fallback

Even when the total energy of a stellar model is greater than zero (i.e. the star is

unbound), it is possible for some of the mass which does not collapse into the initial

remnant object to become bound and fall back onto the central object, which we define as

Mfallback. This typically occurs as a result of inward-propagating shock waves generated at
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Figure 2.1: Energy deposited in the explosion versus ejected mass for our standard suite,
as well as for the M20.8 R969 model, all exploded at 12 different explosion energies.
Marker shapes correspond to different initial progenitor models as follows — pentagon:
M9.3 R433; triangle: M11.3 R541; circle: M12.9 R766; hexagon: M15.0 R1140; dia-
mond: M15.7 R800; star: M16.3 R608; square: M20.8 R969. Explosions which would
have Etot = 0 (corresponding to Edep = |Ebind|) are shown as red points whose x-
coordinate is determined by the same model assuming no fallback. The red dotted line
serves as a visual guide, indicating explosions with no fallback for each progenitor model.
Color corresponds to the total energy of the ejecta just after the explosion Etot.

compositional boundaries within the ejecta. The relationship between progenitor binding

energy, explosion energy, and fallback can be seen in Figure 2.1, which shows the final

mass of our models versus the total energy deposited Edep, which is equal to the total

energy of the model after the explosion Etot plus the magnitude of the total energy of the

bound progenitor model at the time of explosion Ebind. Fallback is particularly common

in explosions where the explosion energy is not significantly larger than the binding

energy of the model at the time of explosion. In general, more tightly bound models

require larger total final energies to unbind the entirety of the potential ejecta.
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Figure 2.2: Ejecta masses and explosion energies as determined by the kinetic energy
at day 50 in STELLA considered as a part of our standard suite, with fallback masses
Mfallback < 0.4M⊙. Lighter colors correspond to smaller progenitor radii, which are
labeled.

The proper treatment of fallback in 1D simulations remains an open question because

of complexities such as the interaction between accretion-powered luminosity and the in-

ner boundary of the explosion models. In MESA, the current implementation of fallback

is effective as a computationally robust approximation that allows experimentation, but

it should not be viewed as an accurate model of the physical processes at work. Conse-

quently we restrict our study to models with little fallback material: Mfallback < 0.4M⊙.

The models which survive this cut are shown in figure 2.2. For a full description of our

treatment of fallback, see Appendix A.
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2.2 Analytic Expectations

The luminosity of a Type IIP SN is, approximately, powered by shock cooling due to

expansion out to around 20 days (the “shock cooling phase”), then Hydrogen recombi-

nation until around 100 days (the “plateau phase”), and the radioactive decay chain of

56Ni → 56Co → 56Fe beyond that (the “Nickel tail”).

The expansion time of the SN ejecta is expressed as te ≈ R/vSN, where R is the radius

of the star at the time of the explosion, and the velocity vSN is defined by the mass of the

ejecta Mej and kinetic energy of the ejecta at infinity Eexp = Mej v
2
SN/2.2 Similarly, the

time it takes to reach shock breakout after core collapse (tSB) scales with te, such that

tSB ≈ 0.91d R500E
−1/2
51 M

1/2
10 , (2.1)

where R500 = R/500R⊙, E51 = Eexp/1051 ergs, and M10 = Mej/10M⊙, and the di-

mensionful prefactor comes from a linear fit to our numerical models. This timescale is

primarily a property of the models, but would observationally correspond to the differ-

ence in time between the first neutrino signal from core collapse and the first detection

in the electromagnetic spectrum from shock breakout.

Following Kasen & Woosley (2009), in the limit of no accumulated heating of the

ejecta due to 56Ni decay, the luminosity on the plateau (taken here to be at day 50,

denoted L50) is set by the total internal energy (E) to be radiated out divided by the

duration of the plateau:

2During the the homologous phase, the kinetic energy of the ejecta is approximately equivalent to
the total energy of the explosion, since radiation accounts only for a small fraction of the total energy
at late times.
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L50 =
E(tp)

tp
=

E0te
t2p

, (2.2)

where tp is the duration of the plateau, E0 ≈ Eexp/2 is the initial internal energy of

the ejecta at shock breakout, and the second equality comes from assuming the internal

energy evolution for homologous expansion (where r(t) ≈ vt, for a Lagrangian fluid

element with constant velocity v) in a radiation-dominated plasma, E0te = E(tp)tp.

Here we compare to the analytics of Popov (1993), which consider the effects of both

H recombination and radiative diffusion. Historically, analytic scalings which ignore

recombination (Arnett, 1980) or radiative diffusion (Woosley & Weaver, 1988; Chugai,

1991) have also been considered. These scalings are also detailed in Kasen & Woosley

(2009) and Sukhbold et al. (2016). From a 2-zone model including an optically thick

region of expanding ejecta behind the photosphere and an optically thin region outside

the photosphere, Popov finds that the luminosity on the plateau (here taken at day 50)

and duration of the plateau should scale as

L50 ∝ M−1/2E5/6
expR

2/3κ−1/3T
4/3
I ,

t0 ∝ M1/2E−1/6
exp R1/6κ1/6T

−2/3
I ,

(2.3)

where κ is the opacity in the optically thick component of the ejecta, and TI is the

ionization temperature of Hydrogen, and M is the relevant mass (which could depend on

the extent to which H is mixed throughout the ejecta). Kasen & Woosley (2009) recovers

a similar set of scalings from their models:
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L50 ∝ M
−1/2
ej E5/6

expR
2/3X1

He,

t0 ∝ M
1/2
ej E−1/4

exp R1/6X
1/2
He ,

(2.4)

where XHe is the mass fraction of He. There is some disagreement in the literature as to

whether the mass M used in the Popov scalings should be the mass of the hydrogen-rich

envelope (Menv) or the mass of the ejecta (Mej). Sukhbold et al. (2016), for example,

use Menv in recreating these scalings, since recombination in the Hydrogen-rich envelope

drives the evolution of the supernova, with little contribution from the hydrogen-poor

innermost ejecta coming from the core. However, in our models, the relevant mass is the

total ejecta mass Mej, as we see mixing of hydrogen deep into the interior of the star and

core elements into the envelope due to RTI. Since hydrogen recombination thus plays a

significant role in setting the temperature throughout the entirety of the ejecta, it is the

entire ejecta mass that is used in the scalings we derive later. Additionally, we make the

assumption that by day 50, Eexp is equal to the kinetic energy of the ejecta.

Popov also recommended assuming that the observed photospheric velocity of the

supenova ejecta should scale like vSN, such that vPh ∝ (Eexp/Mej)
1/2. However, this

scaling, which does describe the typical velocity of the SN ejecta, should not be used

when describing photospheric velocities at a fixed time, for reasons we discuss in Section

2.5.

The above scalings do not take into account additional heating by the radioactive

decay chain of 56Ni, which does not significantly affect the luminosity on the plateau, but

does extend the duration of the plateau by heating the ejecta at late times. We discuss
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more detailed expectations for the effects of 56Ni in Appendix B, and its impact on our

models in Section 2.4. This correction is typically written as

tp = t0 × f
1/6
rad , (2.5)

where frad can be expressed as

frad = 1 + CfMNi M
−1/2
ej E−1/2

exp R−1, (2.6)

and Cf is a numerical prefactor which encodes the energy and decay time of the 56Ni

decay chain (Kasen & Woosley 2009; Sukhbold et al. 2016; and Appendix B).

These scaling relationships serve as a useful guide when modeling Type IIP super-

nova light curves. However, complexities arising from changes in temperature profiles,

density profiles, realistic distributions of important elements such as H and 56Ni, and

stellar structure can lead to differences between these simplified analytic expectations

and numerical models. For example, the Popov analytics are derived for emission from

a two-zone model with an optically thick inner region with a single opacity κ and an

optically thin outer region and a flat density profile. More realistic evolution of the

temperature and density profiles of one of our SN ejecta models is shown in Figure 2.3,

akin to Figure 11 of Utrobin (2007). Thus, in the following sections we aim to provide

expressions which relate observables to the physical properties of the explosions, namely

the progenitor R, Mej, and Eexp, while also capturing the ejecta structure underlying

these events.
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Figure 2.3: Density (upper panel) and temperature (lower panel) of the ejecta at every
10 days in the evolution starting at day 20 for our M16.3 R608 model exploded with
1051 ergs and MNi = 0.03M⊙. Darker colors indicate earlier times. Also plotted are the
photosphere (τ = 2/3; plus markers), and the location where τ = c/3v (star markers),
which is shown only on the temperature plot to reduce clutter, to demonstrate the extent
of the region where the photon diffusion time is shorter than the expansion time.
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2.3 Luminosity at day 50

We use the bolometric luminosity 50 days after shock breakout, L50, as our diagnostic

for the plateau luminosity, as in most cases, this is beyond the time where shock heating

of CSM would affect the luminosity (Morozova et al., 2017). Moreover, for all but one

progenitor model, increasing the amount of 56Ni has a negligible impact on L50, as the

internal energy at day 50 of the outer region of the ejecta is still dominated by the

initial shock. However, in explosions where the plateau is naturally short, there can be

marginal, but noticeable, additional luminosity at day 50 from 56Ni decay. This can be

seen in Figure 2.4, which shows the differences between a selection of light curves and the

corresponding light curves with no 56Ni. We show light curves for M16.3 R608, a typical

model with a typical MNi = 0.03M⊙ (left), and for high MNi = 0.075M⊙ explosions of

the only progenitor model in which we see significant deviation in L50 as a result of 56Ni

heating, M9.3 R433 (right), where L50 varies by up to 15% between an explosion with no

56Ni and one with MNi = 0.075M⊙. Noting this, we choose a moderate, constant value

of MNi = 0.03M⊙ typical of observed events (Müller et al., 2017), and calculate how L50

scales with Mej, Eexp, and R.

We fit two formulae to our sample suite of 57 explosions. First, we assume the power

law coefficients of Popov (1993), and let the normalization float, finding

log(L50/[erg s−1]) = 42.18 − 1

2
logM10 +

5

6
logE51 +

2

3
logR500, (2.7)
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Figure 2.4: Light curves for increasing explosion energies of our M16.3 R608 model with
MNi = 0.03M⊙ (left) and our smallest model, M9.3 R433, with MNi = 0.075M⊙ (right).
Thin lines correspond to the same explosions, but with no 56Ni. The red lines correspond
to the models with the typical MNi given L50, from the relationship in Pejcha & Prieto
(2015b), and their no-nickel counterparts.

29



where 42.18 is a linear fit from our models and logarithms are base 10, with M10 =

Mej/10M⊙, R500 = R/500R⊙, and E51 = Eexp/1051 ergs. For these models, root mean

square (RMS) deviations of L50 from values derived by applying Equation (2.7), corre-

sponding to the blue points in Figure 2.5, are 7.9%, with a maximum deviation in L50

of 32%. The normalization for an explosion with M10 = R500 = E51 = 1 is comparable

to but somewhat lower than the value of 42.27 given in Sukhbold et al. (2016) (who use

Menv rather than Mej), as well as the value of 42.21 calculated in Popov (1993) for default

H recombination temperatures and opacities. Kasen & Woosley (2009) give a value of

42.10+ log(XHe/0.33), letting XHe range from 0.33 to 0.54.

We perform a second fit for the normalization and the power laws in M10, E51, and

R500, and recover scalings that are similar to those in Equation (2.7). We find a slightly

shallower scaling with Mej and Eexp, and a slightly steeper dependence on R500:

log(L50/[erg s−1]) = 42.16 − 0.40 logM10 + 0.74 logE51 + 0.76 logR500, (2.8)

where the normalization and power law coefficients are fit from our models. The RMS

deviation of the models from Equation (2.8), shown as red triangles in Figure 2.5, is

4.7%, with deviations not exceeding 14.3% for any model with MNi = 0.03M⊙. This is a

better fit than the one that assumes the exact Popov scaling.

The luminosities of our models, as they compare to the fitted formulae, are shown

in Figure 2.5. Most models agree with the Popov scaling, while the Popov scaling over-

predicts L50 in low-ejecta mass high-explosion energy cases. The x-axis of Figure 2.5 is
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Figure 2.5: Fitting formulae predictions for L50 (colored markers) compared with the
model L50 (black circles; upper panel), and their residuals (lower panel) for our suite of
57 explosions at constant MNi = 0.03M⊙. Each diagonal family of points reflects one
progenitor model exploded with different energies.

tSB, chosen because it scales with explosion energy for a fixed ejecta mass and radius

(Equation (2.1)), and increases with increasing Mej and R, visually distinguishing the six

different progenitor models and different explosion energies.

Although the presence of 56Ni does not affect light curve properties at day 50 in a

majority of models, in a few explosions there is slight variation in L50 introduced by

the extra heating from 56Ni (seen in Figure 2.4). Because this effect is only distinctly

noticeable in our model with the smallest values of Mej and R, this can lead to variations

in our recovered power laws when fitting to different fixed 56Ni masses. However, this

correction is typically small, falling within the scatter in which our models agree with
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the fitted formulae. We find that the power law scalings of Equation (2.8) describe all

models with MNi ranging from 0.0 − 0.075M⊙ within 18.2%, with RMS deviations of

4.8%, where the largest deviations occur in events where MNi = 0.0M⊙, which are not

consistent with any observed Type IIP SNe.

We now use Equation (2.8) to compare our MESA+STELLA results to models from other

software instruments. In Table 2.2, we show our predictions for L50 compared against

luminosities from the MESA+CMFGEN models (without Duffell RTI) of Dessart et al. (2013),

the Kepler+Sedona models of Kasen & Woosley (2009), and the MESA+CMFGEN models

in Lisakov et al. (2017). In general, the disagreement between our formula and these

other models is similar to the scatter within our own models, with the exception of the

two lowest-energy explosions in Kasen & Woosley (2009) and the low luminosity suite

in Lisakov et al. (2017). Equation (2.8) agrees with the Dessart et al. (2013) models

with an RMS error of 9%, but slightly underpredicts luminosity in a majority of cases.

Compared to the models of Kasen & Woosley (2009), Equation (2.8) gives RMS errors

of 17% with no clear under- or overprediction. The low-luminosity models from Lisakov

et al. (2017) have greater disagreement, with RMS errors 23% from Equation (2.8). This

is not surprising, as on the low-luminosity end, our treatment of fallback discussed in

Section 2.1 and Appendix A excludes most models in this region of parameter space from

our fitting formulae, as significant fallback after the initial core collapse is often seen for

low explosion energies.
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Table 2.2: Comparison of Equation (2.8) to CMFGEN models from Dessart et al. (2013),
Kepler+Sedona models from Kasen & Woosley (2009), and low-luminosity CMFGEN

models from Lisakov et al. (2017). Bolometric luminosities at day 50 for Dessart et al.
(2013) are recovered from light curves provided by L. Dessart (private communication).
These luminosities are compared to Equation (2.8) applied to Mej, Eexp, and R from the
various models.

Source Model Mej Eexp R L50 Equation (2.8) % diff
[M⊙] [1051 erg] [R⊙] [1042 erg s−1] [1042 erg s−1]

Dessart+13 m15Mdot 10.01 1.28 776 2.55 2.40 -5%
m15 12.48 1.27 768 2.56 2.17 -15%
m15e0p6 12.46 0.63 768 1.19 1.29 8%
m15mlt1 12.57 1.24 1107 3.13 2.81 -10%
m15mlt3 12.52 1.34 501 1.61 1.63 1%
m15os 10.28 1.40 984 3.49 3.05 -12%
m15r1 11.73 1.35 815 2.62 2.44 -7%
m15r2 10.39 1.34 953 3.30 2.87 -13%
m15z2m3 13.29 1.35 524 1.70 1.65 -3%
m15z4m2 11.12 1.24 804 2.48 2.31 -6%
s15N 10.93 1.20 810 2.51 2.29 -9%
s150 13.93 1.20 610 2.47 2.29 -8%

K&W 2009 M12 E1.2 Z1 9.53 1.21 625 1.91 1.99 4%
M12 E2.4 Z1 9.53 2.42 625 3.67 3.33 -9%
M15 E1.2 Z1 11.29 1.21 812 2.16 2.27 5%
M15 E2.4 Z1 11.29 2.42 812 4.35 3.80 -12%
M15 E0.6 Z1 11.25 0.66 812 1.26 1.45 15%
M15 E4.8 Z1 10.78 4.95 812 7.80 6.59 -15%
M15 E0.3 Z1 11.27 0.33 812 0.59 0.87 46%
M20 E1.2 Z1 14.36 1.22 1044 2.61 2.52 -4%
M20 E2.4 Z1 14.37 2.42 1044 4.85 4.18 -13%
M20 E0.6 Z1 14.36 0.68 1044 1.40 1.63 17%
M20 E4.8 Z1 14.37 4.99 1044 8.57 7.16 -17%
M25 E1.2 Z0.1 13.27 1.26 632 1.67 1.82 8%
M25 E2.4 Z0.1 13.24 2.48 632 3.08 3.00 -2%
M25 E0.6 Z0.1 13.28 0.65 632 0.86 1.11 29%
M25 E4.8 Z0.1 13.18 4.90 632 5.31 4.98 -6%

Lisakov+17 X 8.29 0.25 502 0.446 0.550 24%
XR1 8.08 0.26 581 0.513 0.643 23%
XR2 7.90 0.27 661 0.592 0.737 24%
XM 9.26 0.27 510 0.423 0.567 34%
YN1 9.45 0.25 405 0.381 0.446 17%
YN2 9.45 0.25 405 0.381 0.446 17%
YN3 9.45 0.25 405 0.375 0.446 19%
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2.4 Plateau Duration and ET

Although the plateau duration tp is theoretically motivated by Popov (1993); Kasen &

Woosley (2009), and others, it is important to reliably extract it from our models as well

as observations. We discuss two ways of extracting tp, one defined by observables, and

the other extracted from properties of the theoretical models, which we use to evaluate

the impact of 56Ni.

For a definition which can be applied to observed or calculated light curves, we follow

Valenti et al. (2016), fitting the following functional form to the logarithm, y(t), of the

bolometric luminosity around the fall from the plateau:

y(t) = log10(Lbol) =
−A0

1 + e(t−tp)/W0
+ (P0 × t) + M0. (2.9)

An example is shown in Figure 2.6. We use the python routine scipy.optimize.curve fit

to fit the light curve starting at the time when the luminosity evolution is 75% of the way

to its steepest descent, defined when d logLbol/dt is at its most negative after the initial

drop at shock breakout, which occurs shortly before transitioning to the nickel tail. We

fix the value of P0 to be the slope on the 56Ni tail. We interpret the fitting parameter tp

to be the plateau duration.

As the recombination-powered photosphere moves into the innermost ejecta, the op-

tical depth at the inner boundary declines orders of magnitude and the photospheric

temperature plummets. This transition, shown in Figure 2.7, is the physical end of the

plateau. Thus, for our modeling definition of the plateau duration, we use the time,

post-shock breakout, when the optical depth τIB through the ejecta becomes < 10. This
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Figure 2.6: Diagram of fitting Equation (2.9) to find the 115 day duration of the plateau
for our model M16.3 R608 exploded with Eexp = 1051 ergs and MNi = 0.03M⊙. Fitting
parameters are labelled, but we only ascribe physical significance to tp.

time will be denoted hereafter as tτ=10, and can be used as a metric for plateau duration

when comparing to models where there is no 56Ni, where Equation (2.9) does not accu-

rately capture the fall from the plateau. As shown by the black markers in Figure 2.7,

the observable tp roughly corresponds to the physical end of the plateau phase around

tτ=10. Across all progenitor models, explosion energies, and nonzero nickel masses which

we consider, RMS differences between tτ=10 and tp are 4.1% and all differences are within

±7%.

2.4.1 Impact of 56Ni on plateau duration in our models

The presence of radioactive 56Ni prolongs the photospheric evolution and extends the

plateau by providing extra heat to the ejecta. This is shown in Figure 2.8, where we

show ejecta temperature profiles of the same SN explosion with different MNi. At day 50,
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Figure 2.8: Ejecta temperature profiles at different times with increasing amounts of 56Ni
for our M16.3 R608 model exploded with 1051 ergs. The location of the photosphere is
shown for each model by the colored stars.

the photosphere for all models remains in the outer ejecta, where there is very little 56Ni.

At later times, the photosphere has moved in farther for models with lower MNi, whereas

additional heat from the 56Ni decay chain causes the recombination-powered photosphere

to move in more slowly in models with higher MNi.

The analytics in Appendix B and Section 2.2 treat the ejecta as a single zone, with

heating from 56Ni decay throughout. However, 56Ni is more highly concentrated in the
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center of the ejecta. Thus, heat from 56Ni decay remains trapped in the optically thick

inner region, extending the plateau more at late times. This more concentrated 56Ni

heating should have a more significant impact on the plateau duration than it would for

an analytic one-zone model, as the internal energy of the inner ejecta is more relevant

than that of the ejecta as a whole at the end of the plateau. Figure 2.9 shows the

diversity of asymptotic 56Ni and Hydrogen distributions within our standard suite of

models at handoff to STELLA for the highest-energy (Etot = 2 × 1051 ergs) highest-Nickel

(MNi = 0.075M⊙) cases.

Moreover, the distribution of 56Ni, which can vary amongst different progenitors de-
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0.03M⊙, for the fiducial explosion (black dashed line), compared to models where 56Ni is
re-distributed by hand out to some fraction of the ejecta at the time of shock breakout
(solid colored lines). The light curve for the same explosion with no Ni is given by the
grey dashed line in the upper panel.

pending on core structure and mixing, can also introduce inherent scatter to the plateau

duration (Kozyreva et al., 2018). Figure 2.10 shows light curves and 56Ni profiles for the

M16.3 R608 model exploded with Eexp = 1051 ergs and MNi = 0.03M⊙, where the same

56Ni mass is re-distributed by hand at the time of shock breakout out to some fraction

of the ejecta. Although this exercise spans a greater diversity in 56Ni concentration than

any of our models, we see for this otherwise unexceptional light curve that the plateau

duration tp can vary by almost 10 days.
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A full examination of the effects of changing the distributions in the framework of

the Duffell RTI prescription (Paxton et al., 2018) is beyond the scope of this Chapter,

and will be the subject of future study (P. Duffell et al. in Prep.). Here we examine the

impact of 56Ni on the value of frad in tp = t0 × f
1/6
rad (Equation (2.5)), where t0 is the

plateau duration for the same explosion with no 56Ni.

Following Kasen & Woosley (2009), Sukhbold et al. (2016), and others, 56Ni extends

the plateau as

tp/t0 = (1 + CfMNiE
−1/2
51 M

−1/2
10 R−1

500)
1/6, (2.10)

we can extract Cf by fitting to our models using the tτ=10 definition of plateau duration.

We consider all six progenitor models with explosion energies sufficient to cause minimal

fallback, with MNi/M⊙=0.0, 0.015, 0.03, 0.045, 0.06, and 0.075. We exclude models

where the plateau is so long that the Nickel tail does not appear at any point in our

simulations, and models which have a less than half a decade drop in Lbol from day 50

to the top of the nickel tail, as no such events have been observed.3

This gives a total of 332 light curves including the 57 with no 56Ni, which we compare

to the light curves of identical explosions with no 56Ni. Figure 2.11 shows the ratio of the

plateau duration, tτ=10, of each of these light curves compared to tτ=10 for an identical

explosion with no 56Ni, t0, following Kasen & Woosley (2009) but with our suite of 332

model light curves. We recover Cf ≈ 87, which is an order of magnitude larger than

3This primarily excludes models at high nickel masses and low explosion energies, specifically:
M9.3 R433: E51 = 0.2 with MNi = 0.075M⊙; M11.3 R541: E51 = 0.3 with MNi = 0.06M⊙
and MNi = 0.075M⊙; and M16.3 R608: E51 = 0.3 with MNi = 0.045M⊙, MNi = 0.06M⊙, and
MNi = 0.075M⊙; E51 = 0.4 with MNi = 0.06M⊙ and MNi = 0.075M⊙; and E51 = 0.4 with
MNi = 0.075M⊙.
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analytic scaling Equation (2.10) (red dashed line) with Cf determined from our fits.
Color corresponds to MNi in units of solar masses. Deviations of each of the models from
this relationship are shown on the lower panel.

the approximate lower bound Cf ≈ 7.0 derived in Appendix B, and roughly a factor of

4 larger than Cf = 24 (derived in Kasen & Woosley 2009, typographical error corrected

in Sukhbold et al. 2016). This likely results from the different 56Ni mass distributions in

our models from those in Kasen & Woosley (2009). As demonstrated in Figure 2.10, this

can yield significant differences in the plateau duration. Our fit shows similar scatter for

all 56Ni masses considered, with more scatter introduced by intrinsic differences among

the individual models than by the changing MNi. For MNi ≳ 0.03M⊙, this typically leads

to a 20 - 60% increase in the plateau duration.
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2.4.2 Plateau Durations for Nickel Rich Events

For Nickel-rich events, the 56Ni and 56Co decay dominates the internal energy of the

inner ejecta, such that CfMNiM
−1/2
10 E

−1/2
51 R−1 > 1. Assuming that t0 scales as in Popov

(1993), we can approximate

tp ∝ M
1/2
ej E−1/6

exp R1/6 × (1 + CfMNiM
−1/2
ej E−1/2

exp R−1)1/6

→ tp ∝∼ M
1/6
Ni M

5/12
ej E−1/4

exp .

(2.11)

The two features of interest are the power law behavior and the disappearing scaling

with the progenitor radius. We thus expect that the plateau duration for 56Ni-rich events

does not depend on the progenitor radius. To check, we perform a power law fit for tp

as a function of MNi, Mej, Eexp, and R for 218 model light curves where MNi ≳ 0.03M⊙.

We find that log(tp/days) = 2.184 + 0.134 log(MNi) + 0.429 log(M10) − 0.280 log(E51) −

0.018 log(R500) with RMS deviations of 2.10% and a maximum deviation of 8.1%. Since

the dynamic range in R is a factor of two and the scaling is negligible, we perform a fit

for these same models to only MNi, Mej, and Eexp, recovering

log(tp/days) =2.184 + 0.134 log(MNi) + 0.411 log(M10) − 0.282 log(E51). (2.12)

These coefficients are excellent matches to the power laws in Equation (2.11). Our

models, and their agreement with this fit, are shown in Figure 2.12. RMS deviations

between this fit and our models are 2.13%, with maximum deviation of 7.5%. Typical
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Figure 2.12: Plateau durations for our 218 SN light curves with MNi ≳ 0.03M⊙ (upper
panel) and the difference in plateau duration between the model tp and the plateau
duration tfit extracted by applying Equation (2.12) to the Mej, Eexp, and MNi of each
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the models and tfit. The x-axis is the time the model takes to reach shock breakout.

differences between the plateau durations recovered from the fit and those extracted from

our models are 2 − 5 days, with the largest discrepancy being 11 days, which is for a

relatively low-luminosity SN with a plateau duration of 156 days. For all of the scaling

equations of this section, the scatter in our models does not require that we report the

fits to three decimal places; this is done for the sake of completeness.

We also checked the agreement of Equation (2.12) with the publicly available light

curves from Dessart et al. (2013). For all of those models where the light curve has a

clear end of plateau and nickel tail, we found that our fitting formula recovers a plateau

which is 7 - 20% shorter when using the values for MNi, Mej, and Eexp reported in Dessart

et al. (2013). This amounts to a difference of 8 - 27 days, with the worst agreement in
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the case of the low-metallicity (1/10 solar) model m15z2m3, and the best agreement in

the case of their “new” s15N model. The RMS difference in |tp − tfit| is 18 days, about

14% relative to the average plateau in their models.

2.4.3 Constraining Explosion Parameters with ET

Following the work of Shussman et al. (2016a), Nakar et al. (2016), Kozyreva et al.

(2018), and others, we can also express the impact of 56Ni on tp in terms of the ratio of

the time-weighted energy contribution of the 56Ni decay chain to the observable quantity

ET . This ratio is defined in Nakar et al. (2016) as

ηNi =

∫ tp
0

tQNi(t)dt

ET
, (2.13)

where

ET =

∫ ∞

0

t(Lbol(t) −QNi(t)) dt, (2.14)

is the time-weighted energy radiated away which was generated by the initial shock and

not by 56Ni decay, and

QNi =
MNi

M⊙

(
6.45e−t/8.8d + 1.45e−t/113d

)
× 1043 erg s−1, (2.15)

is the instantaneous heating rate of the ejecta due to the decay chain of radioactive

56Ni assuming complete trapping given in Nadyozhin (1994), and t is the time in days

since the explosion. It is generally assumed that Lbol(t) = QNi(t) after the photospheric

phase, on the Nickel tail, and so the integral for ET is often expressed to be bounded at

tNi ≈ tp. We find this to be valid; see the lower panel of Figure 2.13.
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Figure 2.13 shows the impact of 56Ni on light curves and the integrated ET for the

M16.3 R608 model exploded with Eexp = 1051 ergs at different MNi. The lower panel gives

the cumulative ET , integrated from shock breakout to the time on the x-axis. Most of

the contribution to ET comes from luminosity on the plateau, with little contribution at

early times (t < 20 d) and no contribution from the Nickel tail. In the very 56Ni-rich case,

the cumulative integral may dip slightly negative around day 20, as radiative cooling is

briefly less efficient than heating from the 56Ni decay chain (Lbol < QNi in this region).

This is more pronounced in models exploded at lower energies. As expected, although

heating from the radioactive decay chain of 56Ni extends the plateau and elevates the

Nickel tail, it has very little impact on the final integrated value of ET calculated from

our model light curves. Indeed, the variations of ET for the same explosion but different

56Ni are at a few per-cent level.

Dimensionally, using the Popov scalings for L50 and plateau duration with no 56Ni

(t0), ET is expected to scale as

ET ∝ L50t
2
0 ∝ M

1/2
ej E1/2

expR, (2.16)

and thus ηNi should scale as MNi/ET . A more detailed derivation of this same scaling

is given in Shussman et al. (2016a). This recovers the extension to the plateau duration

given by Equation (2.10), recast as

tτ=10/t0 = (1 + aηNi)
1/6, (2.17)

where the scaling factor a can be fit from models and encodes information about the

internal structure of the ejecta, and in particular the concentration of 56Ni. Kozyreva
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Figure 2.13: Impact of 56Ni on Lbol (upper panel) and cumulative ET integrated from
shock breakout to the time on the x-axis (lower panel) for M16.3 R608 model exploded
with Eexp = 1051 ergs and MNi/M⊙ = 0.0, 0.015, 0.03, 0.045, 0.06, and 0.075. Points
indicate tp for the events where MNi > 0.0M⊙.

et al. (2018) find that for typical models, a ≈ 4 (their Figure 5). Figure 2.14 shows

the extension of the plateau as a function of ηNi in our models. We find slightly higher

values for a, with more models falling along a ≈ 5.5, indicating a larger impact of 56Ni

on the plateau duration, in part because ηNi encodes information about 56Ni mixing, and

our models make use of the Duffell RTI prescription whereas mixing is parameterized in

Kozyreva et al. (2018). We show good agreement with the functional form in Equation

(2.17).

For SNe with a reasonably well-sampled bolometric light curve where MNi is mea-

sured from the Nickel tail, ET can be calculated and used to constrain Mej, Eexp, and

progenitor R for a given explosion. In addition, ET can provide a critical constraint for
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explosions with lower MNi, where the 56Ni decay chain does not dominate the internal

energy of ejecta and thus the power law of Equation (2.12) should not apply. Although

observationally MNi must be extracted from the Nickel tail in order to calculate ET , ET

does not follow any scaling with MNi, as it subtracts the contribution of 56Ni heating in

the light curve evolution.

To determine how ET scales with Mej, Eexp, and R in our models, we use the same

218 model light curves as with tp in Equation (2.12), to recover

log(ET/erg s) =55.460 + 0.299 log(M10) + 0.435 log(E51) + 0.911 log(R500) (2.18)

for our suite of models, which does not include interactions with CSM. This scaling has

a slightly shallower dependence on Mej, Eexp, and progenitor R than Equation (2.16).
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The agreement between our models and Equation (2.18) is shown in Figure 2.15. RMS

deviations between our models are 5.0%, with a maximum deviation of 12.4%. Although

the fit was performed on models with MNi ≳ 0.03M⊙ to be consistent with our set of

models for tp, the recovered scaling applies similarly well for our models with MNi <

0.03M⊙, with RMS deviations of 5.3% and all deviations under 20%. The overlapping

black rings in Figure 2.15 show the typical scatter in values of ET for the same explosion

when varying MNi. Each set of overlapping rings corresponds to ET for a single progenitor

model exploded with a single Eexp, but with different values of MNi. This scatter in ET

when only varying MNi is well within the scatter between the models and the fitted

Equation (2.18).
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2.5 Observed Velocity Evolution

We now discuss the diagnostic value of the material velocity inferred from the absorption

minimum of the Fe II 5169Å line, often measured and reported at day 50, vFe,50. Ideally,

the measured Fe line velocities would provide an additional quantitative measurement

that would allow for estimation of progenitor and explosion properties (Pejcha & Prieto,

2015a; Müller et al., 2017). However, as we show here, these measurements are highly

correlated with bolometric luminosity measurements at a fixed time on the plateau, and

are largely redundant at day 50. If there is no substantial CSM around the star, than

earlier time (≲ 20 day) measurements may prove more useful (see Section 2.6.2).

The Fe II 5169Å velocity is typically used to approximate the velocity at the pho-

tosphere (vPh), although there is substantial evidence that measured line velocities are

typically higher than that predicted for the model photosphere (τ = 2/3) (e.g. Utrobin

et al. 2017; MESA IV). In a homologously expanding medium, the strength of a given

line is quantified using the Sobolev optical depth (Sobolev, 1960; Castor, 1970; Mihalas,

1978; Kasen et al., 2006), which accounts for the shift in the line profile due to the steep

velocity gradient in the ejecta. This is captured in MESA+STELLA following MESA IV,

where the τSob = 1 condition is used to measure iron line velocities (vFe). Although in

the following we discuss both this velocity and the velocity at the model photosphere,

we recommend using vFe defined when τSob = 1 when comparing to observations.
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2.5.1 Velocities in Explosion Models

When the velocity profile of the ejecta becomes fixed in time, this material is said to

be in homologous expansion. Analytically, homology is often approximated r = vt for a

fluid element at radial coordinate r with velocity v at time t. While not quite true for

material in the center of the ejecta, which is expanding more slowly and therefore the

initial radial coordinate is still relevant, this approximation generally holds for faster-

moving material which has experienced more significant expansion at a given time, as

well as for the slower-moving material at late times when it is becoming visible. This is

reflected in Figure 32 of MESA IV.

Many software instruments devoted to modeling radiative transfer, such as Sedona, as-

sume homologous expansion in the true sense of a fixed velocity profile. Figure 2.16 shows

the extent to which this is satisfied in our M16.3 R608 model exploded with 1051 ergs.

The upper panel shows the relative error in predicting the radial coordinate of a fluid

element at day 160 by assuming rh(day 160) = r(t0) + v(t0)(160d − t0) for homology

starting at t0 = days 10, 20, and 50. We define ∆r160 = r160 − rh(day160), where r160 =

the true radius of that fluid element at day 160 in STELLA. The lower panel shows the

deviation between the velocity profiles at days 10, 20, and 50, and that at day 160. Be-

fore homology, the innermost material is moving slightly faster than its day 160 value,

and the outer material is moving slightly slower. Even in the envelope, there is deviation

between the day 10 velocity profile and day 160 at the level of a few per-cent. By day 20

this falls below 2%, and by day 50 typical deviations of the velocity profile in the bulk of
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Figure 2.16: Agreement between hydrodynamical models and homologous expansion.
The upper panel shows the relative error in predicting the radial profile day 160 by
assuming homology starting at days 10, 20, and 50, compared to the true radial coordinate
at day 160 in STELLA. The lower panel shows the absolute relative deviation between the
velocity profiles at days 10, 20, and 50, and the profile at day 160.

the ejecta from the velocity profile at day 160 are at the level of 0.5%. Generally, by day

20, the difference in predicted radial coordinate of the half-mass fluid element at day 160

is below 3% of its true value in the hydrodynamical simulation. At this time the radial

coordinate predicted for day 50 is also within 2% of its true value at day 50.

Figure 2.17 shows approximately homologous velocity profiles (taken here at day 50)

scaled by the square root of Eexp for all 6 progenitor models at all energies that cause

sufficiently little fallback. Each family of colored lines reflects explosions of an individual

model, and each of the 6 families of lines contains the profiles for multiple explosion
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52



energies for that model. When looking at any fixed mass coordinate within a single

progenitor model, the fluid velocity divided by
√

Eexp is constant. Moreover, as shown

in Figure 2.18, looking at the same dimensionless mass coordinate inside the ejecta and

scaling also by the square root of Mej, this relationship holds for any dimensionless ejecta

mass coordinate throughout the entire velocity profile, with small variations only near

the inner boundary, where the reverse shock becomes relevant and where fallback has a

greater effect.

Popov (1993), Pejcha & Prieto (2015a), and others, have often assumed that

Eexp ≈ 1

2
Mejv

2
Ph,50, (2.19)

where vPh,50 is the photospheric velocity at day 50, in order to close the system of

equations for L50 and tp as a function of Mej, Eexp and progenitor radius R. While the

scaling law suggested in Equation (2.19) holds for the fluid velocity at a fixed dimension-

less ejecta mass coordinate, as shown in Figure 2.18, as the photosphere moves deeper

into the ejecta, it does not probe velocities at the same mass coordinate at a given time

post shock-breakout. Rather, at a fixed time in the evolution, faster-expanding ejecta in

higher energy explosions allows the observer to see deeper mass coordinates, compared

to a lower energy explosion of the same star. This is evident in Figure 2.19, which

shows velocity profiles for the M16.3 R608 model at 5 different explosion energies, mark-

ing the location of the photosphere and Fe II 5169Å line at fixed times. As a result of

the expanding ejecta, we expect a shallower scaling for velocity as a function of energy

at fixed mass than the naive vPh,50 ∝ E
1/2
exp. Indeed a linear fit for a single model with
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fixed ejecta mass and radius finds shallower scalings: vPh,50 ∝ E0.36
exp , and vFe,50 ∝ E0.30

exp .

These scalings approximately hold for the other individual models.

Additionally, a velocity scaling with Mej and Eexp becomes murkier when comparing

across models of different masses at fixed explosion energy, since there is no reason for

the same explosion energy to yield the “same” mass coordinate at the same time in two

different progenitors. In fact, as seen in Figure 2.20, vFe and vPh at day 50 are not even

monotonic in Mej for different stars at fixed Eexp. Thus, we cannot derive any power

law for vPh,50 or vFe,50 solely as a function of Mej and Eexp. As we show in the following

section, additional dependences are relevant (Equation 2.20).

2.5.2 L50 - vPh,50 Relation

This result highlights a true degeneracy, discovered observationally by Hamuy (2003)

and explained by Kasen & Woosley (2009). We start with the Stefan-Boltzmann formula

for luminosity, L = 4πR2
photσT

4
eff , where Rphot is the photospheric radius, and note that

Teff is roughly constant at the photosphere and set by H recombination to Teff ≈ 6000 K.

At fixed time on the plateau, (e.g. day 50) while the ejecta is expanding homologously

with radial position r ≈ vt for any given mass coordinate, for the photosphere at day 50

L50 ∝ v2Ph,50 and so vPh,50 ∝
√
L50. In this way, the luminosity, together with homologous

expansion, sets the location of the photosphere within the expanding ejecta, which in

turn sets the velocity measured at or near the photosphere.

Figure 2.21 shows vPh,50 and vFe,50 versus L50 for all 57 explosions which experience
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Figure 2.21: Velocity versus Luminosity at day 50 for a variety of progenitor models and
explosion energies. Open navy blue markers denote photospheric velocities (τ = 2/3)
and closed red markers denote Fe II 5169 Å velocities (τSob = 1). Points with error bars
are data from 2 samples: Gutiérrez et al. (2017a) (blue) and Pejcha & Prieto (2015b)
(black).

sufficiently little fallback (6 models with 6-12 explosion energies each). Also plotted are

data from Pejcha & Prieto (2015b) and Gutiérrez et al. (2017a).4 In both observational

data sets, velocities are inferred from the Fe II 5169Å line, suggesting that these velocities

are better captured in our models at τSob ≈ 1, rather than assuming the line is formed

at the photosphere (τ = 2/3). We also see good agreement between our models and the

scaling vPh,50 ∝
√
L50.

It is therefore unsurprising that the Fe velocities during the plateau phase match the

4Luminosities from Pejcha & Prieto (2015b) are bolometric luminosities provided by O. Pejcha (pri-
vate communication). Luminosities from Gutiérrez et al. (2017a) were estimated fromMV measurements
at day 50 provided by C. Gutierrez (private communication), assuming negligible bolometric correction
BC≈ 0 for MV following the correction for SN1999em on the plateau, shown in Bersten & Hamuy (2009).
Typical V band bolometric corrections on the plateau of Type IIP SNe are BC≈ −0.15 to 0.1, and the
variation in logL50 from assuming a BC of 0 versus other values within that range is smaller than the
error bars on the data.
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data for a model with a luminosity match at day 50. This was seen in Section 6 of

MESA IV, Figure 42, where two models with light curve agreement with SN199em show

identical velocity evolution. Figure 2.22 shows the luminosity and velocity of those two

progenitor models, renamed M12.9 R766 and M16.3 R608 in our suite, blown up with

slightly adjusted explosion energies to produce even better light curve agreement. In the

case where models match closely in both L and tp, the agreement in velocity is excellent

throughout the evolution of the SN.

As with L50 in Section 2.3, we fit a power law for v50 as a function of Mej, Eexp, and

R to our models with constant nickel mass MNi = 0.03M⊙. We do this with both vFe,50
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Figure 2.23: Model vFe (τSob = 1) at day 50, and velocities recovered with the fitting
formulas (upper panel), and their residuals (lower panel) for our suite of 57 explosions
with MNi = 0.03M⊙. So as to clarify the model space, we use time to shock breakout as
the x-axis.

and vPh,50 at day 50, noting that observationally, vFe,50 is the relevant scaling. For the

photospheric velocity at day 50, we found power laws that are very similar to the scaling

found if vPh,50 ∝ L
1/2
50 :

log(vPh/km s−1) = 3.54 − 0.19 logM10 + 0.36 logE51 + 0.32 logR500, (2.20)

where the prefactor and power law coefficients are all fit from our models.

This is valuable insofar as it reinforces the degeneracy highlighted in Figures 2.21

and 2.22, but, as discussed, this velocity is unmeasurable, and observed Fe II 5169Å line
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velocities are better estimated by (τSob = 1). A similar fit to vFe at day 50,

log(vFe,50/km s−1) = 3.61 − 0.12 logM10 + 0.30 logE51 + 0.25 logR500, (2.21)

yields higher predicted velocities everywhere, and shows somewhat shallower dependence

on each of the explosion properties. The model Fe line velocities and their residuals as

compared with Equation (2.21) are shown in Figure 2.23.

Although the degeneracy is less pronounced for τSob = 1 than for the photosphere,

with some scatter in Figure 2.21 and differences in the recovered power laws, this scat-

ter is small compared to intrinsic variations in luminosity and plateau duration, and is

therefore insufficient to break the degeneracy between v and L in order to provide accu-

rate estimates for Mej, Eexp, and R. It is for this reason that we do not advocate using

measured velocities at day 50 to infer explosion properties.

2.6 Families of Explosions

2.6.1 Inverting Our Scalings

Due to the degeneracies highlighted in Section 2.5, we cannot simply extract Mej, Eexp,

and R from light curve measurements and vFe,50. Attempting to invert all three scalings

(Equations (2.8), (2.18), and (2.12)) is ill-conditioned and within the scatter within our

models. However, we can use the scalings to solve for two of the three relevant explosion

properties as a function of the third, revealing a family of possible explosions that yield
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nearly identical bolometric light curves.

SNe with direct progenitor observations are improving with time, so we solve Equa-

tions (2.8) and (2.12) for Mej and Eexp as a function of MNi, L50, tp, and R, to find

log(E51) = −0.728 + 2.148 log(L42) − 0.280 log(MNi) + 2.091 log(tp,2) − 1.632 log(R500),

log(M10) = −0.947 + 1.474 log(L42) − 0.518 log(MNi) + 3.867 log(tp,2) − 1.120 log(R500),

(2.22)

where MNi is in units of M⊙, L42 = L50/1042 erg s−1 and tp,2 = tp/100 d. Alternatively,

we can use a measured ET rather than tp to find

log(E51) = −0.587 − 1.497 log(R500) + 1.012 log(ET55) + 0.756 log(L42),

log(M10) = −0.685 − 0.869 log(R500) + 1.872 log(ET55) − 1.101 log(L42),
(2.23)

where ET55 = ET/1055erg s.

Before demonstrating how to apply these fitting formula to observed SNe, we show

how well modeled events can be matched. The upper panel of Figure 2.24 shows the

fraction of models with light curve properties matching their fitted values (applying

Equations (2.8), (2.12), and (2.18)) within a given deviation tolerance shown on the x-

axis. The lower panel shows the fraction of models in which we can recover the values of

Mej and Eexp within a given deviation tolerance by applying Equation (2.22) (solid lines)

or Equation (2.23) (dashed lines) to the model light curve observables and R. Given

that there is no statistical meaning to the sample of models beyond probing different

regions of parameter space, this merely provides a heuristic guide to how well our sample

of models match with the fitted formulae.

Applying Equation (2.22) using tp to our suite of Nickel-rich SNe, we recover Mej and
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Figure 2.24: Distribution of deviations between our models and Equations (2.8) and
(2.12) (upper panel), and the distribution of deviations between recovered values of Mej

and Eexp by applying the inverted scalings (Equation (2.22)) to the model light curve
properties and radii, and the models themselves (lower panel). This gives a heuristic for
the agreement between the fitted formulae and our suite of models.

Eexp with RMS deviations between the models and the fits of 10.7% and 10.4%, respec-

tively, with maximum deviations of 35% and 27%. Using ET and Equation (2.23), we

recover Mej and Eexp with RMS deviations between the models and the fits of 7.3% and

7.6%, respectively, with maximum deviations of 16% and 18%. Although the modeling

uncertainties for the inverted ET scalings are smaller than those which use tp, the ob-

servable uncertainty is greater and may be accompanied by an offset, as excess emission

within the first 10-40 days due to interaction with CSM may cause an excess in ET as

compared to our models.
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Figure 2.25: Degeneracy curves applying Equation (2.22) (orange) and Equation
(2.23) (blue) as a function of progenitor radius R for an “observed” SN with
log(L50/erg s−1)=42.13, log(ET/erg s)=55.58, tp=123, and MNi = 0.045M⊙. The shaded
region corresponds to the RMS deviations between our models and the values recovered
by applying Equations (2.22) and (2.23). Short black lines correspond to the radii of the
M17.8 R587, M12.9 R766, M10.2 R848, and M9.8 R909 models, which produce the light
curves, velocities, and ET evolution shown in Figure 2.26.

Using these relations, we now show how very comparable light curves (and thus

comparable Fe II 5169Å line velocities on the plateau) can be produced with different

progenitors exploded at different energies. Figure 2.25 shows an example of the family

of models in Mej − Eexp parameter space as a function of R that could produce an

“observed” SN light curve with log(L50/erg s−1)=42.13, log(ET/erg s)=55.58, tp=123,

and MNi = 0.045M⊙, which are the values matching a randomly selected model out of

our suite: the M12.9 R766 model exploded with Eexp = 6 × 1050 ergs and that MNi.
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Figure 2.26: Light curves, cumulative ET, and velocities for four different explosions
which yield nearly the same L50, tp, and velocities at day 50.
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To exhibit how this exercise would proceed, we construct three additional models

consistent with the bands in Figure 2.25, based off Equation (2.22) using tp. We then

exploded these progenitor models with Eexp as dictated by the degeneracy curve: one

with Mej = 17.8M⊙ and R = 587R⊙, which we explode with 1 × 1051 ergs, one with

Mej = 10.2M⊙ and R = 848R⊙, which we explode with 5 × 1050 ergs, and one with

Mej = 9.8M⊙ and R = 909R⊙, which we explode with 4.5 × 1050 ergs. The values of R

for these three models, and for M12.9 R766 exploded with 6 × 1050 ergs, are shown as

black tick marks in Figure 2.25. Figure 2.26 shows the resulting light curves, velocities,

and accumulated ETs. We see very good agreement in L50 and along the plateau, and

recover tp values from 120 to 125 days for all four light curves.

The values of ET for three of the four light curves agree within ≈ 2%, ranging from

3.75 to 3.84×1055 erg s; however, the 5 × 1050 erg explosion of the M10.2 R848 model

has a value of ET which is noticeably higher, at 4.26×1055 erg s. Additionally, velocities

agree on the plateau, and thus cannot be used to break the light curve degeneracy, which

at least spans a factor of 2 in explosion energy, nearly a factor of 2 in Mej, and a factor of

1.5 in progenitor R. This captures much of the parameter space in which IIP SNe from

RSG progenitors could be produced to begin with!

2.6.2 The Importance of Velocities at Early Times

Although velocity measurements at day 50 are largely degenerate with measurements of

L50, as discussed in detail in Section 2.5, early time velocities up to day ≈20 could be
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used to distinguish between low-energy explosions of large-radius lower-mass RSGs and

high-energy explosions of compact-radius high-mass RSGs in cases where there is mini-

mal CSM present. As seen in the lower panel of Figure 2.26, higher energy explosions of

compact stars yield faster velocities at early times. Before around day 20, the radial coor-

dinate of the photosphere is moving outward, and the declining photospheric temperature

is set by shock cooling rather than by recombination. Thus in this phase the velocity

measured near the photosphere is not dictated by the plateau luminosity as it is at day 50.

Early light curves and photospheric velocities are discussed in detail by Morozova et al.

(2016) and Shussman et al. (2016b). Shussman et al. (2016b) find an expression for the

photospheric velocity at early times as a function of Mej, Eexp, and R (their Equation 48),

assuming that the density profile of the progenitor model behaves like a power law in ra-

dial coordinates. After the photosphere leaves the so-called breakout shell (5d ≲ t ≲ 20d),

Shussman et al. (2016b) find that vPh(t)/km s−1 ≈ 1.2 × 104M−0.3
15 E0.38

51 R−0.14
500 t−0.2

d where

M15 = Mej/15M⊙ and td = t/d. At day 15 this equation describes our full suite of models

with RMS deviations of 5.5% and with all deviations under 15%.

As is also seen in Figure 2 of Morozova et al. (2016), no single power law fully describes

progenitor density profiles around the photospheric mass coordinate in our models for

any fixed time in the light curve evolution. Nonetheless our entire suite of models, which

does not include the presence of circumstellar material, can approximately be described
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by the fitted power law

log(vPh,15) = 3.90 − 0.22 log(M10) + 0.43 log(E51) − 0.13 log(R500), (2.24)

where vPh,15 is the photospheric velocity at day 15 in km s−1, with RMS deviations of

3.7% and a maximum deviation of 10% between the models and Equation (2.24). The

dynamic range in vPh,15 in our models is a factor of ≈ 3, ranging from ≈ 4, 000 − 12, 000

km s−1.

Although Equation (2.24) and Shussman’s Equation 48 describe our models well,

we warn the reader that velocities at this time are sensitive to the density structure

of the outermost ejecta including any asphericity, as well as any interactions with any

circumstellar material present. Thus more work is needed in order to faithfully capture

the early-time velocities and their dependence on the relevant properties of the explosion,

especially in cases where CSM is present. Nonetheless, early time velocity measurements

could in principle provide a third constraint and break the light curve degeneracies, thus

allowing an inference of Mej, progenitor R, and Eexp for a given observed Type IIP SN.

2.7 Concluding Remarks

We have shown the utility of using MESA+STELLA to model an ensemble of Type IIP

SN progenitors, a capability introduced by Paxton et al. (2018). We introduced new

best-fit scaling laws for the plateau luminosity at day 50, L50 (Equation 2.8), and for the
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duration of the plateau tp in the limit of Nickel-rich (MNi ≥ 0.03M⊙) events (Equation

2.12) as a function of ejecta mass, explosion energy, and progenitor radius. We also

recovered a similar fit for the observable ET (Equation 2.18). Velocity measurements on

the plateau cannot be described by vPh,50 ≈ (2Eexp/Mej)
1/2 assumed by Popov (1993) or

the scaling given in Litvinova & Nadyozhin (1983), but rather scale with L50 as noted

by Hamuy (2003); Kasen & Woosley (2009) and others, shown in our Figure 2.21. While

early-time velocities observed during the photospheric phase (≈ day 15) could provide

a promising third independent constraint on Mej, Eexp, and R, these velocities can be

affected by interaction with CSM, deviations from spherical symmetry, and the specifics

of the density profile of the progenitor star. Thus early velocities require more work in

order to simply interpret in observed systems. Presently, given a bolometric light curve,

one can at best recover a family of explosions which produce comparable light curves and

thereby velocities on the plateau, as demonstrated in Figures 2.22 and 2.26. This can then

be used to guide modeling efforts, especially when coupled with other constraints, such

as a measurement of the core mass and thereby progenitor mass at the time of explosion

(as in Jerkstrand et al. 2012). With a clear independent constraint on one explosion

parameter, such as an observed progenitor radius, the other explosion properties can be

recovered to around 15%.
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Chapter 3

A Massive Star’s Dying Breaths:

Pulsating Red Supergiants and

Their Resulting Type IIP

Supernovae

Periodic variability is prevalent in Red Supergiant (RSG) stars, and is interpreted as being

a result of radial pulsations (Stothers, 1969; Stothers & Leung, 1971; Guo & Li, 2002).

The mechanism driving these pulsations is not fully understood, but they are thought to

be driven by a κ mechanism in the hydrogen ionization zone with some uncertain feedback

within the convective envelope (Heger et al., 1997; Yoon & Cantiello, 2010). Kiss et al.

(2006) and Percy & Khatu (2014) identified periods of a few hundred to a few thousand
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days with varying stellar lightcurve morphology for RSGs in the AAVSO International

Database. Such pulsations have also been observed occurring in RSGs within the Small

and Large Magellanic Clouds (Feast et al., 1980; Ita et al., 2004; Szczygie l et al., 2010;

Yang & Jiang, 2011; Yang & Jiang, 2012; Yang et al., 2018), M31 and M33 (Soraisam

et al., 2018; Ren et al., 2019), M51 (Conroy et al., 2018), M101 (Jurcevic et al., 2000),

within HST archival data of NGC 1326A, NGC 1425, and NGC 4548 (Spetsieri et al.,

2019), and within the GAIA DR2 RSG sample (Chatys et al., 2019). These works identify

these RSG pulsations as consistent with radial fundamental modes and some first radial

overtones.

More luminous RSGs generally exhibit longer periods and higher pulsation ampli-

tudes, with all RSGs in M31 brighter than Mk ≈ −10 mag (log[L/L⊙] > 4.8) varying

with ∆mR > 0.05 mag, with R-band variability around ∆mR ≈ 0.4 in some of the more

luminous objects (Soraisam et al., 2018). Although it is expected that the metallicity of

the host environment might have some small impact on the period-luminosity relation-

ship (Guo & Li, 2002), this effect is weak compared to the scatter within the data (see,

e.g. Conroy et al. 2018; Ren et al. 2019; Chatys et al. 2019). It is not known whether

there is a strong relationship between the host metallicity and pulsation amplitude, but

the amplitudes reported for metal-rich M31 are similar to the pulsation amplitudes of

RSGs in M33 despite the ≈0.25 dex difference in metallicity (Ren et al., 2019). There

is, however, a noticeable increase in the number ratio of RSGs pulsating in their fun-

damental mode versus the first overtone mode with increasing metallicity (Ren et al.,
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2019).

Multi-epoch studies of Red Supergiants as potential progenitors for direct collapse

into black holes are underway (Kochanek et al., 2008), which are ideal for probing the

variability of these objects as candidates for core-collapse supernovae (CCSNe) as in

Kochanek et al. (2017a) and Johnson et al. (2018). So far, the majority of supernovae

(SNe) whose progenitors have been monitored are consistent with no variability, with

the exception of the progenitor of the Type IIb SN 2011dh (Kochanek et al., 2017a),

which was variable in R-band by 0.039 ± 0.006 mags per year (Szczygie l et al., 2012).

This is not inconsistent with the near ubiquity of RSG pulsations at high luminosities,

as most progenitors observed before undergoing Type II SNe have been on the lower end

of the RSG luminosity spectrum (Smartt, 2009, 2015), where pulsation amplitudes are

likewise generally lower. However, still relatively few such events have been monitored,

and there is an open theoretical question about how CCSN lightcurves are influenced by

the presence of progenitor pulsations.

Recent work highlights that modeling of lightcurves and photospheric velocities alone

is insufficient to extract progenitor characteristics from observed SNe (Dessart & Hillier,

2019; Goldberg et al., 2019; Martinez & Bersten, 2019). A progenitor radius can provide

a crucial constraint, allowing to distinguish between, say, a more compact higher ejecta-

mass event with a higher explosion energy, and an event with a larger progenitor radius,

lower ejecta mass, and lower explosion energy. This has been done recently by creating

matching lightcurve models for SNe with observed progenitor radii (e.g. Martinez &
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Bersten 2019), fixing a mass-radius relationship by fixing stellar evolution parameters

(such as metallicity, mixing length in the H-rich envelope, overshooting, winds) and fitting

to a large set of population synthesis lightcurve models (e.g. Eldridge et al. 2019), and in

an ensemble fashion by using a prior on the radius of RSGs to extract explosion energies

statistically for an existing sample of IIP lightcurves (Murphy et al., 2019). Because, in

reality, the progenitor radius could be affected by RSG pulsations, this could lend itself

to additional uncertainty in any explosion parameters recovered from SN observations,

especially in the case of directly using an observed progenitor radius at an unknown phase

relative to the time of explosion.

Observed Type IIP SNe are also often reported to show excess emission before day

≈30, often attributed to interaction with the extended environment surrounding the

progenitor (e.g. Khazov et al. 2016; Morozova et al. 2017, 2018; Förster et al. 2018;

Hosseinzadeh et al. 2018). Because models of early emission depend sensitively on the

progenitor density profile (e.g. Nakar & Sari 2010; Sapir et al. 2011; Katz et al. 2012;

Sapir & Waxman 2017; Faran et al. 2019), any modification of the outer stellar structure

and surrounding environment could translate to distinct changes in the early SN emission

(see, e.g., Morozova et al. 2016). For example, the effects of pulsation-driven superwinds

(Yoon & Cantiello, 2010) on early SN-IIP lightcurves have been directly considered by

Moriya et al. (2011, 2017). However, 1D modeling of the extended atmospheres of mas-

sive stars is inherently limited, as 1D codes cannot reproduce the detailed 3D structure

of the outermost envelope (see e.g. Chiavassa et al. 2011a; Arroyo-Torres et al. 2015;
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Kravchenko et al. 2019). Therefore, in this work we primarily restrict our discussion

to plateau properties after day ≈30, at which point the SN emission comes from the

modified interior of the star and not the outermost ≈ 0.2M⊙.

In this work, we consider effects of pulsations on the bulk density structure of the

stellar envelope and the impact these structural differences have on the resulting Type

IIP SNe. In Section 3.1 we discuss our approach to capturing the effects of radial pulsa-

tions on the internal structure of the star using the open-knowledge 1D stellar evolution

software instrument Modules for Experiments in Stellar Astrophysics (MESA; Paxton et al.

2011, 2013, 2015, 2018, 2019), and compare our pulsating models to expectations from

linear theory. In Section 3.2 we demonstrate the effects these structural changes have on

the resulting SN lightcurves. We show the luminosity at day 50 (L50), time-integrated

shock energy (ET ), and plateau duration (tp) for SNe of progenitors pulsating in their

fundamental mode scale with the progenitor radius at the moment of explosion as given

by Popov (1993); Kasen & Woosley (2009); Nakar et al. (2016); Goldberg et al. (2019) and

others. Furthermore, we show that for pulsations where the displacement is not mono-

tonic, such as the first overtone, SN emission from different regions within the ejecta is

influenced by the differing structure.

3.1 Modeling Radial Pulsations

We construct our fiducial model of a CCSN progenitor with MESA revision 11701. We

choose a nonrotating, solar-metallicity (Z = 0.02) model of 18M⊙ at ZAMS, with a
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convective efficiency of αMLT = 3.0 in the Hydrogen-rich envelope. We use modest

convective overshooting parameters fov = 0.01 and f0,ov = 0.004, and winds following

MESA’s ‘Dutch’ prescription with efficiency ηwind = 0.4 (Glebbeek et al., 2009; Vink et al.,

2001; Nugis & Lamers, 2000). After the end of core carbon burning, identified when the

central fraction of 12C falls below 10−6, we introduce a maximum timestep of 10−3 years.

This is to ensure that the model remains numerically converged, as well as to ensure that

we resolve changes its structure when causing it to pulsate on a timescale of hundreds of

days. Other inputs are determined following the 25M_pre_ms_to_core_collapse case

of the MESA test suite. At the time of core-collapse, 1715 days after the end of core

Carbon burning, the unperturbed model has a total mass of M = 16.3M⊙, a radius of

R = 880R⊙, and a luminosity of L = 1.56 × 105L⊙.

After evolving the model through the end of core carbon burning, we use the pulsation

instrument GYRE (Townsend & Teitler, 2013; Townsend et al., 2018) to identify the periods

and radial displacement eigenfunctions for the first 3 radial (l = 0) modes. We recover

a fundamental pulsation period of 534 days, a first overtone period of 240 days, and a

second overtone period of 154 days. The radial displacement eigenfunction ξ(r) for the

fundamental mode, and the first and second overtones, normalized to max(ξ(r)) = 1, are

shown in Figure 3.1.

To model the effects of pulsation on the density structure of the envelope, we inject

the fundamental eigenmode as a velocity proportional to the radial displacement given

by GYRE. For a zone with radial coordinate r, we set v(r) = 1.2 cs,surf ξ(r), where cs,surf is
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Figure 3.1: Normalized radial displacement eigenfunctions for our fiducial stellar model
at core Carbon depletion.

the sound speed at the surface of the unperturbed model and ξ(r) is normalized to be 1

at its maximum value. The resulting pulsation causes significant variation in the radius,

from 760 - 1100 R⊙ over the course of a few pulsations. This amplitude was chosen to

resemble the 0.3-0.4 mag amplitudes seen by Soraisam et al. (2018). We do not claim that

the growth in the pulsations is being modeled correctly; rather, we are only interested

in the effects of realistically large pulsations on the SN properties. In order to achieve

core collapse at different phases of the pulsation, we inject this velocity eigenfunction

starting at increments of 36.5 days up to 474.5 days after core carbon depletion and

allow the model to ring as it evolves to core collapse, as shown in Figure 3.2. For the

fundamental mode, the recovered average peak-to-peak period is 535 days, and trough-

to-trough period is 550 days, as the pulsation becomes increasingly nonlinear, especially

near the minimum radius. However, both are close to the 534 day period expected of a
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small amplitude pulsation.

The process of causing our models to pulsate with the first radial harmonic is nearly

identical to that described above. However, since the overtone pulsation period of 240

days is approximately half that of the fundamental mode, and there is a node in the

radial displacement eigenfunction such that the surface displacement is only caused by

oscillation in the outer envelope, the radial pulsation amplitude is comparatively small

for a given injected velocity amplitude. Figure 3.3 shows the overtone pulsation injected

with different amplitudes. A fundamental mode is also shown for comparison. The re-

covered average peak-to-peak and trough-to-trough periods are 236 days and 241 days,

respectively, taken over the first 4 pulsation cycles. Particularly for larger amplitude

pulsations, the fundamental mode grows in the overtone-injected models, causing mod-

ulation on longer timescales than the overtone period. This effect gets stronger with

increasing initial pulsation amplitude, making it very difficult to create a model which

rings with a “pure” overtone and has a sizeable pulsation amplitude.
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Figure 3.2: Stellar radius as a function of time, after injecting the velocity eigenfunction
of the fundamental radial mode. The left-most point on each curve corresponds to the
time of injection relative to the earliest injection, and the right-most point corresponds
to the model at the time of core collapse. The black line shows the negligible variation
in the stellar radius of the unperturbed model.
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Figure 3.3: Stellar radius as a function of time in our models injected with first overtone
velocity eigenfunctions. The injected initial velocity amplitudes shown here are A = 0.69
(dark blue), 1.71 (average blue), and 3.42 (light blue), for velocities injected of the form
v(r) = Acs,surf ξ(r) where ξ is the displacement eigenfunction for the first overtone. A
fundamental mode pulsation is also shown, with its starting point chosen to visually
resemble the modulation seen in the overtone models.
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3.1.1 Analytic Expectations in the Linear Regime

For a small perturbation, we can express the radius of that element as r⃗ = r⃗0+ ξ⃗, where r⃗0

is the unperturbed radius and ξ⃗ is the Lagrangian displacement. For a radial oscillation

with ξ⃗ = ξeiωt r̂, where ω is the frequency of oscillation, the velocity of that fluid element

is v⃗ = iωξ⃗. By continuity, the density of the fluid element changes as

dρ

dt
+ ρ∇⃗ · v⃗ = 0, (3.1)

where d/dt represents the Lagrangian time derivative d/dt = ∂/∂t + v⃗ · ∇⃗. Equation

(3.1) yields the Lagrangian density perturbation ∆ρ,

∆ρ = −ρ0∇⃗ · ξ⃗ = −ρ0
1

r2
d

dr
r2ξ. (3.2)

In order to check the agreement between our pulsating model and the expectations

from linear theory, we save the density profile at the maximum and minimum radius for

fundamental mode and overtone pulsations. Figure 3.4 shows the agreement between

our models and Equation (3.2). Here we normalize ξ to match the displacement in

the pulsating model at the mass coordinate corresponding to 300R⊙ in the unperturbed

model, at an overhead mass of 5.7M⊙. This location was chosen because it corresponds to

roughly half of the envelope mass and half of the stellar radius in log-space. The surface

is most severely affected by nonlinearities, and this work primarily explores effects on the

bulk of the material. We also choose to display the overtone profiles at the first maximum

(1/4 period after injecting the velocity eigenfunction) and the second minimum (7/4

period after injection) of the model with an injected velocity of v(r) = 1.71 cs,surf ξ(r),
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Figure 3.4: Comparison of linear theory for the Lagrangian density perturbation (black
lines) with differences in the model density profiles from the density profile of the unper-
turbed starting model (colored lines) for fundamental mode pulsations (solid) and first
overtone pulsations (dashed).

as these times are most consistent with being “pure” overtones. The agreement is very

good in the interior of the star. Deviations from linear theory occur primarily near the

surface, where nonlinearities due to nearly sonic motion cause a larger impact.

3.2 Exploding Pulsating Models

At the time of explosion, the density profiles in the envelope vary significantly for different

pulsation phases. This can be seen in Figure 3.5, which shows density profiles in the

envelope at core-collapse for the fundamental-mode models as a function of radius (left

panel). Additionally, Figure 3.5 shows a comparison between Lagrangian density profiles

of the unperturbed model, a fundamental mode pulsation near maximum, and a large-
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amplitude overtone near maximum (right panel). In order to achieve a large-amplitude

overtone pulsations, we inject a velocity profile with v(r) = 5.48 cs,surf ξ(r), where ξ is the

displacement for the first overtone, approximately quarter-period before core-collapse,

1533 days after core C depletion, so that it is approaching its first maximum at the

time of explosion. To produce a fundamental mode pulsator with the same stellar radius

and similar phase, we inject a velocity profile v(r) = 2.86 cs,surf ξ(r) approximately a

quarter-period before core-collapse, 1460 days after core C depletion. Our models show

significant diversity in their density profiles, particularly near the surface. Moreover, the

overtone pulsation at maximum phase is denser in the interior of the star compared to

the unperturbed model, but less dense near the surface, whereas the fundamental mode

near maximum is less dense everywhere.

We explode our models at different radii. At a central temperature of log(Tc/K) = 9.9,

we instantaneously zero out the velocity profile to “freeze in” the density structure of

the envelope, since the time to shock breakout (≈ 2 days) is much shorter than the

pulsation period, and since the kinetic energy associated with the pulsation is orders of

magnitude below the total binding energy of the star. This also helps quell artificial

velocity fluctuations which begin to arise in the core around the time of core Si burning.

We then continue to evolve the model until core infall. At that point, we excise the core,

as described in section 6.1 of Paxton et al. (2018) (hereafter MESA IV). Because each

model is evolved independently after core C burning, there is some small variation in

the excised mass, ranging from 1.6 to 1.74M⊙, leading to ejecta masses of Mej =14.54
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Figure 3.5: Left: Density profiles in the envelope of our pulsating models just before
core collapse, where color corresponds to time the pulsation was injected as in Figure
3.2. Right: Lagrangian density profiles at core-collapse for large-amplitude pulsations
approaching maximum displacement, where the velocity eigenfunctions were injected just
1/4 phase before core-collapse to preserve the purity of the modes. In both panels, the
dotted black line shows the unperturbed model.
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to 14.68M⊙. The unperturbed model has an excised mass of 1.73M⊙. We allow the new

inner boundary to infall until it reaches an inner radius of 500 km. We then halt the

infall, and inject energy in the innermost 0.1 M⊙ of the star for 10−4 seconds, until each

model reaches a total energy of 1051 ergs.

We proceed by modeling the evolution of the shock including Duffell RTI (Duffell,

2016), and hand off the ejecta model at shock breakout to the 1D radiation-hydrodynamics

software STELLA (Blinnikov et al., 1998, 2000, 2006; Baklanov et al., 2005) as described

in MESA IV. The time to shock breakout is 2 days for the unperturbed model, and varies

from 1.7 days for our smallest-radius model to 2.5 days for our largest-radius model. At

this explosion energy, there is negligible additional fallback, which we evaluate using the

fallback scheme described in Appendix A of Goldberg et al. (2019) with an additional

velocity cut of 500 km s−1 at handoff to STELLA. We then rescale the distribution of

56Ni to match a total mass of 0.06 M⊙, which is typical of observed events and roughly

matches the Ni masses observed in SNe with L50 equal to that of the unperturbed model

via the L50 −MNi relations from Pejcha & Prieto (2015a) and Müller et al. (2017). We

use 1600 spatial zones and 40 frequency bins in STELLA, which yields convergence in the

bolometric lightcurves for the given ejecta models (see also Figure 30 of MESA IV and

the surrounding discussion). While a significant fraction of SNe II-P have excess emission

for the first ∼ 20 days (e.g. Morozova et al. 2017), and pulsation-driven outbursts have

been proposed as one means of mass loss at the end of the lives of RSGs (e.g. Yoon &

Cantiello 2010), we do not include any extra material beyond the progenitor photosphere
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to generate our model lightcurves. In addition, we are focused on the emission from the

bulk of the ejecta, that occurs after day 30.

3.2.1 Pulsations and Plateau Properties

As discussed in detail by Arnett (1980), Popov (1993), Kasen & Woosley (2009), Sukhbold

et al. (2016), Goldberg et al. (2019), and others, the plateau luminosity of a Type IIP SN

at day 50, L50, depends on the radius of the progenitor. Popov (1993) gives L50 ∝ R5/6

at fixed ejecta mass Mej and explosion energy Eexp. From a suite of MESA+STELLA mod-

els, Goldberg et al. (2019) recovered a similar scaling, L50 ∝ R0.76. Figure 3.6 shows

lightcurves for the 13 phases of pulsation shown in Figure 3.2, as well as for the unper-

turbed model denoted by the black line in Figure 3.2. As expected from the scalings,

the luminosity at day 50 varies by 0.13 dex, or 0.33 mag, with the brighter explosions

corresponding to larger radii, with radii ranging from 760-1120R⊙. The slope on the

plateau is somewhat steeper in the brighter SNe, such that the variation at early time

is greater than closer to the end of the plateau. Additionally, following Goldberg et al.

(2019), in the 56Ni-rich limit MNi ≳ 0.03M⊙, the plateau duration should be approxi-

mately independent of the progenitor radius, with some variation for varied distributions

of 56Ni and Hydrogen. This can also be seen in our lightcurves in Figure 3.6, where the

recovered plateau durations (using the method of Valenti et al. 2016 as in Goldberg et al.

2019) ranges from 116.8 to 119.5 days with no correlation with progenitor radius. These

trends are shown in greater detail in the upper and lower panel of Figure 3.7, which show
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Figure 3.6: Lightcurves for our fundamental mode pulsator at different phases of pulsa-
tion. Color corresponds to time the pulsation was injected, as in Figure 3.2, and tracks
pulsation phase. The dotted black line shows the lightcurve of the unperturbed model.

good agreement between our models and the scalings.

Figure 3.5 also shows changes in the outer density profiles and their slopes as a result

of these pulsations. These changes do modify the calculated early lightcurves shown

in Figure 3.6, causing greater luminoisty excesses at early times in the more extended

models. In observations, such apparent excesses are often interpreted as evidence for

material beyond the normal stellar photosphere. However, because this part of the outer

envelope is intrinsically uncertain in 1D models, we are not in a position to make strong

claims about whether the variety seen in early lightcurve observations can be explained

by pulsations alone.

Additionally, the total energy deposited by the shock is reflected in the observable ET

(Nakar et al., 2016; Shussman et al., 2016a), defined as the total time-weighted energy
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Figure 3.7: Lightcurve observables versus progenitor radius at the time of explosion for
our unperturbed model (black star) and pulsating models (colored points). The plateau
duration (upper panel), ET (middle panel), and L50 (lower panel) are shown along with
scalings from Goldberg et al. (2019). Colors match the colors in Figures 3.2 and 3.6.
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radiated away in the SN which was generated by the initial shock and not by 56Ni decay:

ET =

∫ ∞

0

t [Lbol(t) −QNi(t)] dt, (3.3)

where t is the time in days since the explosion and

QNi =
MNi

M⊙

(
6.45e−t/8.8d + 1.45e−t/113d

)
× 1043 erg s−1, (3.4)

is the 56Ni decay luminosity given in Nadyozhin (1994), which is taken to be equivalent to

the instantaneous heating rate of the ejecta assuming complete trapping. ET also scales

with the progenitor radius for constant Mej and Eexp, given as ET ∝ R by the analytics

and modeling of Nakar et al. (2016); Shussman et al. (2016a); Kozyreva et al. (2018),

and as ET ∝ R0.91 recovered from MESA+STELLA models by Goldberg et al. (2019). The

middle panel of Figure 3.7 shows the agreement between ET in our model lightcurves

and the scalings. Like with L50, ET as a function of progenitor radius exhibits some

scatter, which is not surprising given the significant differences in the density profiles

especially in the models near pulsation minima at core-collapse, but overall agrees well

with the predicted scalings.

3.2.2 Comparing Fundamental and Overtone Pulsations

Although a majority of observed pulsating RSGs are dominated by the fundamental

mode, there is evidence for some pulsating with the first overtone (e.g. Kiss et al. 2006;

Soraisam et al. 2018; Ren et al. 2019). Because of the radial crossing in the overtone,

the progenitor radius used in scaling laws may not be sufficient to predict L50. Typically,

the expansion time characterized by the time to shock breakout and the mean density
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of the SN ejecta are considered in analytics. However, the local radius and density

profile of the progenitor at the mass coordinate of the SN photosphere, which is located

near the H-recombination front and is defined by the location where the mean optical

depth τ = 2/3, must be taken into account. As seen in the left panel of Figure 3.5,

inside the mass coordinate of ≈ 14.5 − 15M⊙, which is near the zero-crossing in the

radial displacement (see Figure 3.4), the overtone progenitor model is denser than the

unperturbed model, and outside that coordinate it is less dense. On the other hand,

the fundamental mode pulsation is less dense everywhere when it is at a positive radial

displacement, suggesting that at fixed photospheric mass coordinate in the SN, the star

should appear “larger” and therefore the SN would be brighter.

As shown in the upper panel of Figure 3.8, the evolution of the mass coordinate of

the SN photosphere does not change significantly for the pulsating models compared to

the unperturbed model. At day 50, the SN photosphere has moved 1.5M⊙ into the ejecta

for the unperturbed and overtone models, corresponding to a stellar mass coordinate

of 14.8M⊙, which is near the zero-crossing in the overtone displacement and density

perturbation in the progenitor model. This is reflected by the lightcurves shown in the

lower panel of Figure 3.8. The evolution of the photospheric radius (middle panel of

Figure 3.8) and mass coordinate do not differ tremendously on the plateau between the

three models, but the lightcurves show a distinct difference. Whereas the progenitor radii

for the fundamental and overtone are nearly identical, the overtone explosion at day 50

is fainter by 0.046 dex or 0.115 mags, and in fact much closer in L50 to the unperturbed
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progenitor model than to the fundamental mode. Additionally, the SN from the overtone

pulsator is brighter at early times, when the SN emission is coming from what appears

to be a more radially extended star with a steeper density profile, and fainter at later

times, when the emission appears to be coming from a more compact star.

3.3 Discussion & Conclusions

There is strong observational evidence for variability in large samples of RSGs caused by

radial pulsations in their envelopes, typically with periods between a few hundred and a

few thousand days (Kiss et al., 2006; Soraisam et al., 2018; Chatys et al., 2019). Since

the final stages of burning take place over week-long timescales, much shorter than the

pulsation period, the density structure of the envelope can reflect any pulsation phase

at the time of explosion. This is significant, as the radius and density structure of a

given Type IIP SN progenitor are important in determining the luminosity evolution of

its resulting SN.

We consider the effects of pulsations on the stellar envelope and SN emission after

core-collapse. We show that SNe of fundamental mode pulsators, which account for

the majority of observed pulsating RSGs, behave like “normal” Type IIP SNe from

progenitors at different radii. We find that L50 and ET scale with the progenitor radius

at the time of explosion consistent with the work of Popov (1993); Kasen & Woosley

(2009); Nakar et al. (2016); Goldberg et al. (2019) and others, and that the plateau

duration remains independent of progenitor radius as expected in the 56Ni−rich regime.
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The luminosity plateau declines more steeply for brighter events between days 30 and 80,

which in this study correspond to models with positive radial displacement at the time

of core collapse. This is consistent with the observed correlation seen in Type II SNe

more broadly between the brightness and steeper plateau decline (e.g. Anderson et al.

2014; Valenti et al. 2016).

Additionally, we show that large-amplitude pulsations in the first overtone yield dif-

ferent lightcurves compared to fundamental-mode pulsations at the same radius. This

results from the nonmonotonic overtone density perturbation, which, for an explosion

near pulsation maximum, causes the SN to “see” a puffier star at early times, but a

more compact star at later times. This yields a supernova which is initially brighter than

either the fundamental-mode pulsator at equivalent radius or the unperturbed model at

a smaller radius, but fainter once emission is coming from the denser interior. In all

cases, the differing stellar radii and density profiles also yield signatures in the calculated

early SN emission, but future work aided by a more accurate treatment of the progen-

itor’s extended atmosphere is necessary to make definitive statements and quantitative

predictions.

Motivated by the observed oscilllations, we only considered the impact of radial pul-

sations on the resulting SNe light curves. Non-radial pulsations, if present, would lead to

additional phenomena, for example apparent asymetries during the plateau phase. Ex-

isting spectropolarimetric observations (Wang et al. 2001; Leonard & Filippenko 2001;

Leonard et al. 2001, 2006; Wang & Wheeler 2008; Kumar et al. 2016; Nagao et al. 2019)
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sometimes show very low (or undetectable) levels of assymetries during the plateau, with

increasing polarization evident in the late time tail attributed to asymmetries deep in

the helium core.

Because a fundamental uncertainty in recovered explosion properties from Type IIP

SNe stems from the unknown radius at the time of core-collapse, the presence of a

pulsation would translate to an additional uncertainty in recovering progenitor properties

from SN lightcurves even in conjunction with progenitor detections. Therefore, continued

studies of RSG variability will be important in determining the uncertainties within a

single progenitor radius detection. Future work is also needed to accurately model the

winds and surface layers of massive stars, as well as the density profile of any extended

material, all of which are required to effectively model early SN emission and could

be affected by these pulsations. Nonetheless, this work highlights the influence of the

complete density profile of the progenitor star on the SN emission on the plateau, beyond

the initial shock cooling and early spherical phase.
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Chapter 4

The Value of Progenitor Radius

Measurements for Explosion

Modeling of Type II-Plateau

Supernovae

Massive stars (M ≳ 10M⊙) at the end of their evolution become red supergiants (RSGs)

with radii of ≈ 400 − 1000R⊙, before ending their lives as core-collapse Type IIP su-

pernovae (SNe) with lightcurves that plateau over ≈ 100 days. The progenitor radius

(R), ejected mass (Mej), explosion energy (Eexp), and 56Ni mass (MNi) determine these

lightcurves (e.g. Popov, 1993; Sukhbold et al., 2016), and inferring these properties from

observations could lend insight into which stars explode as SNe. Although early work
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provided scaling relations attempting to uniquely relate plateau properties and expansion

velocities to explosion characteristics (e.g. Litvinova & Nadyozhin, 1983; Popov, 1993),

recent work highlights the nonuniqueness of lightcurve and velocity modeling for a given

SN after ≈20 days (Dessart & Hillier, 2019; Goldberg et al., 2019; Martinez & Bersten,

2019).

Building on Goldberg et al. (2019, hereafter GBP19) (reproduced in Chapter 2), we

verify these degeneracies by comparing explosions of very different progenitor models to

Nickel-rich (MNi > 0.03M⊙) events with bolometric lightcurves, a well-sampled decline

from the plateau, and constraints on the progenitor radius. We utilize the open-source

1D stellar evolution code Modules for Experiments in Stellar Astrophysics (MESA, Paxton

et al., 2011, 2013, 2015, 2018, 2019) for our evolutionary and explosion models and the

multi-group radiation-hydrodynamics instrument STELLA (Blinnikov et al., 1998, 2000,

2006) to produce lightcurves and model expansion velocities. Emission in the first 20

days depends on the radial density structure of the outer < 0.1M⊙ of matter around a

vigorously convecting RSG progenitor (e.g. Morozova et al., 2016). SN emission during

this time can be modified by the uncertain circumstellar environment (e.g.Morozova

et al. 2017), and may reflect the intrinsically 3D structure of these outer layers (see e.g.

Chiavassa et al. 2011a). Therefore we restrict our analysis to observations after day ≈20,

when emission comes from the bulk of the stellar envelope. However, we still show our

results for earlier times, where the qualitative trends may hold.
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4.1 Observed SNe & Their Degeneracy Curves

GBP19 showed that Type IIP supernovae with 56Ni mass (MNi ≥ 0.03M⊙), luminosity

at day 50 (L50), and plateau duration (tp) can approximately yield the ejected mass

(M10 ≡ Mej/10M⊙) and asymptotic explosion energy (E51 ≡ Eexp/1051ergs) as a function

of progenitor radius (R500 ≡ R/500R⊙), via the following relations:

log(E51) = −0.728 + 2.148 log(L42) − 0.280 log(MNi)

+ 2.091 log(tp,2) − 1.632 log(R500),

log(M10) = −0.947 + 1.474 log(L42) − 0.518 log(MNi)

+ 3.867 log(tp,2) − 1.120 log(R500),

(4.1)

where MNi is in units of M⊙, L42 = L50/1042 erg s−1 and tp,2 = tp/100 d, and log

is base 10. Moreover, because expansion velocities inferred from the Fe II 5169Å line

are determined by line-forming regions near the photosphere, velocity data during the

plateau period do not break this degeneracy (L50
∝∼ v250, Hamuy & Pinto 2002; Kasen

& Woosley 2009). Rather, SNe with the same L50, tp, and MNi and similar expansion

velocities during the plateau can be realized by a family of explosions with a range of R,

Eexp, and Mej obeying the Equation (4.1) relations.

4.1.1 Measuring Nickel Mass and Plateau Duration of SNe-IIP

We estimate the plateau duration tp following Valenti et al. (2016), fitting the functional

form y(t) to the bolometric luminosity (Lbol) around the fall from the plateau:

y(t) ≡ log(Lbol) =
−A0

1 + e(t−tp)/W0
+ (P0 × t) + M0. (4.2)
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We use the python routine scipy.optimize.curve fit to fit the lightcurve starting

when the luminosity evolution is 75% of the way to its steepest descent, fixing P0 to be

the slope on the 56Ni tail (GBP19). The fitting parameter tp is the plateau duration. We

also extract the 56Ni mass from Lbol by calculating the cumulative observable ET (Nakar

et al., 2016), which corresponds to the total time-weighted energy radiated away in the

SN generated by the initial shock and not by 56Ni decay:

ETc(t) =

∫ t

0

t′ [Lbol(t
′) −QNi(t

′)] dt′, (4.3)

where t is the time in days since the explosion and

QNi =
MNi

M⊙

(
6.45e−t

′/tNi + 1.45e−t
′/τCo

)
× 1043 erg s−1, (4.4)

is the 56Ni → 56Co → 56Fe decay luminosity given by Nadyozhin (1994), equivalent

to the heating rate of the ejecta assuming complete trapping with tNi = 8.8 days and

τCo = 111.3 days. As t → ∞ and all shock energy has radiated away, the slope of the

ETc curve on the 56Co decay tail should be zero when the estimate of MNi is correct.

This method yields excellent agreement between the resulting model lightcurve tails and

observed lightcurves, and with the 56Co decay luminosity (Nadyozhin, 1994):

L(t → ∞) = 1.45 × 1043 exp

(
− t

τCo

)
MNi

M⊙
erg s−1. (4.5)

4.1.2 Supernova Selection

In order to further explore this degeneracy, we apply these scalings to five observed

supernovae: SN2004A, SN2004et, SN2009ib, SN2017eaw, and SN2017gmr.

SN2004A was discovered by K. Itagaki on 9 January 2004 in NGC6207 (Hendry
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et al., 2006). Following Pejcha & Prieto (2015a) we adopt an explosion date of MJD

53001.53. Progenitor observations indicate log(Lp/L⊙) = 4.9± 0.3 and Teff = 3890± 375 K,

implying a radius of ≈ 625R⊙ (Smartt, 2015). From the Pejcha & Prieto (2015a) bolomet-

ric lightcurve, we get log(L42) = −0.07. Estimates for the 56Ni mass include MNi/M⊙ =

0.050+0.040
−0.020 from points on the bolometric-corrected V-band tail and MNi/M⊙ = 0.042+0.017

−0.013

comparing to the tail of 1987A, which the original authors average to yield MNi/M⊙ =

0.046+0.0031
−0.017 (Hendry et al., 2006). We measure a plateau duration of tp =124 days and

use MNi = 0.042M⊙.

SN2004et was discovered in NGC6946 by S. Moretti on 2004 September 27, with a

well-constrained explosion date of 22.0 September 2004 (MJD 53270.0) (Li et al., 2005).

There is some disagreement in the literature about the progenitor (see Smartt 2009 and

Davies & Beasor 2018) since follow-up imaging show R- and I-band flux excesses in the

location of the inferred progenitor in HST pre-imaging (Crockett et al., 2011). As a

result, Martinez & Bersten (2019) report a progenitor radius of 350R⊙ − 980R⊙. We

adopt the bolometric lightcurve given by Martinez & Bersten (2019), which indicates

log(L42) = 0.27. Estimates for the 56Ni mass include MNi/M⊙ = 0.048 ± 0.01 from the

scaled 56Co decay tail of 1987A to MNi = 0.06±0.02 estimated using V-magnitudes from

250-315 days (Sahu et al., 2006). We measure tp = 123.1 days and use MNi = 0.063M⊙.

SN2009ib was discovered by the Chilean Automatic Supernova Search on 6.30 Au-

gust 2009 in NGC1559, with an estimated explosion date of MJD 55041.3 (Takáts et al.,

2015). HST pre-images indicate either a yellow source with log(Lp/L⊙) = 5.04 ± 0.2,
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or possibly a fainter RSG with log(Lp/L⊙) = 5.12 ± 0.14 and R ≈ 1000R⊙ assuming

Teff ≈ 3400K (Takáts et al., 2015). This event is peculiar in that there is a shallow drop

from the plateau luminosity to the 56Co decay tail, falling noticeably off of the Müller et al.

(2017) relation between L50 and MNi. From the Takáts et al. (2015) lightcurve, we mea-

sure log(L42) = −0.33 and MNi/M⊙ = 0.043, and tp = 139.8, days. Nakar et al. (2016)

also highlighted that this event had a ratio of the integrated 56Ni decay chain energy to

integrated shock energy of ηNi = 2.6, much larger than typical values of ηNi ≈ 0.2 − 0.6

(e.g. ηNi for SN1999em ≈ 0.54).

SN2017eaw was discovered by P. Wiggins on 14.238 May 2017 in NGC6946, with

an estimated explosion date of MJD 57886.0 (Szalai et al., 2019). Pre-explosion imaging

suggestslog(Lp/L⊙) = 4.9±0.2 and Teff = 3350+450
−250 K, corresponding to R ≈ 845R⊙,

obscured by a > 2 × 10−5M⊙ dust shell extending out to 4000R⊙ (Kilpatrick & Foley,

2018), assuming the distance to NGC6946 to be D = 6.72 ± 0.15 Mpc (from the tip of

the red giant branch (TRGB) by Tikhonov 2014).1 We adopt the bolometric lightcurve

of Szalai et al. (2019) using D = 6.85 Mpc, although more recent TRGB measurements

suggest D = 7.72 ± 0.78 Mpc (Van Dyk et al., 2019). Estimates for the 56Ni mass

assuming D = 6.85 Mpc range from MNi/M⊙ = 0.036 − 0.045 (Szalai et al., 2019) to

MNi = 0.05M⊙ (Tsvetkov et al., 2018). From the Szalai et al. (2019) lightcurve, we

measure tp = 117.2 days, MNi = 0.048M⊙, and log(L42) = 0.21.

SN2017gmr occurred in NGC988, discovered on MJD 58000.266 during the DLT40

1See also Rui et al. (2019), who infer a radius of 636±155R⊙ from early SN temperature observations
(consistent with the progenitor SED), in an expanding dusty environment.
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SN search with the explosion epoch assumed to be MJD 57999.09 at D = 19.6±1.4 Mpc

(Andrews et al., 2019). No progenitor detection was made, but shock-cooling modeling

of the early SN recovers R ≈ 500R⊙. Andrews et al. (2019) find MNi = 0.13 ± 0.026M⊙

assuming all late-time luminosty comes from Ni decay, although multipeaked emission

lines emerging after day 150 suggest asymmetries present either in the core’s explosion

or in late-time interaction with the surrounding environment. We adopt the Andrews

et al. (2019) bolometric lightcurve, and measure log(L42) = 0.57, MNi/M⊙ = 0.13, and

tp =94.5 days.

4.1.3 The Degeneracy Curves

The families of explosion parameters recovered by inserting each SN’s MNi, L50, and tp

into Equations (4.1) are shown in Figure 4.1 as a function of R. Also shown is a large

suite of RSG progenitor models to demonstrate the potential variety of Mej and R within

reasonable stellar evolution assumptions. For each event, Mej and Eexp can be inferred

from the plot for a given R.

The progenitor models were constructed using MESA revision 10398, and evolved to

Fe core infall, following the example_make_pre_ccsn test case described in detail by

Paxton et al. (2018, hereafter MESA IV). We varied the initial mass (MZAMS/M⊙ =10.0-

15.0 in increments of 0.5M⊙, and 15.0-25.0 in increments of 1.0M⊙), surface rotation

(ω/ωcrit = 0.0; 0.2), mixing length α in the H-rich envelope (αenv=2.0; 3.0; 4.0), core

overshooting (fov = 0.0; 0.01; 0.018), and wind efficiency (ηwind = 0.1 − 1.0, increments
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Figure 4.1: Degeneracy curves for Mej (top) and Eexp (bottom) recovered from Equa-
tions (4.1) as a function of R for the observed SNe considered here. Shaded solid-color
regions correspond to the ≈ 11% RMS deviations between the models of GBP19 and their
recovered parameters. Additional observational uncertainties are not included. The Mej

and R of 2179 progenitor models are also shown in the background, with color ranging
from yellow to purple tracking MZAMS = 10 − 25M⊙.
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of 0.1) using MESA’s ‘Dutch’ wind scheme. All models had Z = 0.02. Only models which

reached Fe core infall are shown. Rather than one relationship between Mej and R, this

set of models suggests a wide range in which RSGs can exist. This diversity reflects

the importance of winds in determining the final masses and radii of stellar models

(Renzo et al., 2017), and supports recent work showing diversity in progenitor masses for

comparable positions on the HR diagram (Farrell et al. 2020).

4.2 Explosion Models & Comparison to Observations

We then select progenitor models to explode in order to match observations guided by

Equations (4.1) applied to a SN’s respective L42, MNi, and tp. For SNe 2004A, 2004et,

SN2017eaw, and 2017gmr, we chose three progenitor models each, consistent with the

respective degeneracy curves in Figure 4.1, with ejecta masses near the larger-Mej, middle-

Mej, and smaller-Mej intersections of the theoretical curves and the progenitor model

suite. For SN2017eaw, we chose three additional models consistent with a distance 10%

farther away (i.e. increasing L50 and MNi by 21%, not shown in Figure 4.1). Very low

Mej and radii are recovered for SN2009ib, with little overlap with our progenitor grid, so

we exploded only two progenitors, one off the grid (α = 6). Properties of these models

at the moment of explosion, input physics, and values for MNi are shown in Table 4.1.

Also shown are the time to shock breakout (tsb) and the mass above the photosphere at

day 20 (δmph,20).

We then excised the Fe cores with an entropy cut of 4 erg g−1 K−1, and exploded these
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models using MESA with Duffell RTI (Duffell, 2016) and the fallback estimation technique

described in Appendix A of GBP19, with an additional velocity cut of 500 km s−1 at

handoff to STELLA at shock breakout.2 All explosions resulted in negligible fallback. At

shock breakout, we rescaled the 56Ni distribution to match the desired MNi, and imported

the ejecta profile into STELLA to model the evolution post-shock-breakout. We used 400

spatial zones and 40 frequency bins in STELLA, which yields convergence in bolometric

lightcurves on the plateau (see Figure 30 of MESA IV and the surrounding discussion).

For SN2017eaw at 6.85 Mpc, we used 800 spatial zones in order to more faithfully capture

the outermost layers of the ejecta. Because we are focused on matching plateau emission

from the bulk of the ejecta, occurring after day ≈ 20, we do not include any extra material

beyond the progenitor photosphere for most of our model lightcurves.

2For all models except 2017eaw at 6.85 Mpc, MESA revision 10925 was used, as in GBP19. Because
we consider excess emission in the early lightcurve of 2017eaw at 6.85 Mpc, revision 11701 was used with
a dense mesh near the surface set by ‘split merge amr logtau zoning=.true.’ in inlist controls

to ensure that the outer region is adequately resolved.
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4.2.1 Comparison to Observed SNe

Despite intrinsic scatter amounting to ≈11% RMS deviations between model param-

eters and Mej and Eexp recovered from Equations (4.1) applied to model radii and

lightcurves (GBP19), computations approximately obeying Equations (4.1) produce bolo-

metric lightcurves which match the observations. Figure 4.2 shows the results for SN2004A

(top two panels) and SN2004et (bottom two panels). Both SN2004A and SN2004et ex-

hibit good agreement between models, lightcurves, and velocity evolution on the plateau,

with no model being the “best-fit” for either event. Photospheric velocities at very early

times (≲ 20 days) do differ between different models, with more compact, higher-Eexp

models yielding faster early-time velocities. However, velocity measurements before day

20 are rare, and at these times velocities might be modified by the circumstellar environ-

ment (e.g. Moriya et al. 2018). The early observed lightcurve (≲ 30 days) of SN2004et

also exhibits a clear luminosity excess compared to the lightcurve models. Such excess

is often attributed to interaction with an extended envelope or wind, or with pre-SN

outbursts(e.g. Morozova et al., 2017, 2019).

All three models for SN2004et are consistent with the reported R = 350 − 980R⊙.

For SN2004A, only the low-mass/low-energy model M9.3 R596 E0.4 is consistent with

the progenitor observations, and we conclude for that SN that Mej ≲ 10M⊙ and Eexp ≲

0.4 × 1051 erg.
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vFe, τSob = 1

vph, τ = 2/3

41.5

42.0

42.5

43.0

lo
g(
L

b
o
l/

er
g

s−
1
) SN2004et

SN2004et observations

M11.8 R945 E0.76

M14.9 R816 E1.0

M18.3 R791 E1.2

0 50 100 150

Time [days]

2500

5000

7500

v
[k

m
s−

1
] 04et, Fe II average

vFe, τSob = 1

vph, τ = 2/3

Figure 4.2: Lightcurves and Fe line velocities for SN2004A (top two panels) and SN2004et
(bottom two panels). Grey markers correspond to the observations, and colored lines
correspond to explosion models, ordered in ascending Mej and Eexp, and descending R.
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4.2.2 SN2017eaw at Two Distances

To show the impact of changing the assumed distance on our modeling, we model

SN2017eaw at two different distances: 6.85 Mpc, using the fiducial Szalai et al. (2019)

lightcurve, and at 7.54 Mpc, with the same tp but with 21% brighter Lbol and MNi =

0.0581M⊙. Models were selected to match Equations (4.1) with the appropriate L42, tp,

and MNi for each distance. Figure 4.3 compares models to observations. The top two

panels correspond to D = 6.85 Mpc, and the bottom two panels to D = 7.54 Mpc.3

Like SN2004A and SN2004et, models agree well with the data, and agreement in L50

also yields agreement in the velocity of the models after day ≈ 20. Agreement be-

tween models and both velocity and luminosity data is better for D = 7.54 Mpc. For

D = 6.85 Mpc, two of our models, M10.2 R850 E0.65 and M12.7 R719 E0.84, match

the progenitor properties within the uncertainties. At a 10% farther distance, assuming

21% brighter Lp and the same Teff , only our M11.9 R849 E0.9 model is consistent with

the updated progenitor properties. Assuming the measured progenitor radius of 845R⊙,

we chose models with R ≈ 850R⊙ for both distances. The 10% greater distance leads

to ≈ 17% increase in Mej, from 10.2M⊙ to 11.9M⊙ and ≈ 40% increase in Eexp, from

0.65×1051 ergs to 0.9×1051 ergs.

For D = 6.85 Mpc, we also show lightcurves with and without a dense wind to

reproduce the early excess emission (top two panels of Figure 4.3). We affix a wind

3The farther distance was motivated by the fact that velocities of models matching L50 and tp of the
fiducial distance are ≈ 10% discrepant with observed velocities. Since L50 ∝ D2 ∝∼ v2Fe,50 (Hamuy &
Pinto 2002; Kasen & Woosley 2009; GBP19), an intrinsically brighter SN at a distance ≈ 10% farther
produces models which better match the velocity data. This distance is also consistent with a recent
TRGB estimate of 7.72± 0.78 Mpc (Van Dyk et al., 2019).
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Figure 4.3: Lightcurves and Fe-line velocities for observations and models of SN2017eaw
at D =6.85 Mpc (top two panels) and D =7.54 Mpc (bottom two panels). Grey markers
correspond to observations, and colored lines correspond to explosion models. Colored
dotted lines in the upper panels correspond to models with an additional 0.4M⊙ wind
(vwind = 8 km s−1, Ṁwind = 0.2M⊙/year).
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density profile with total mass Mwind and ρwind(r) = Ṁwind/4πr2vwind, where Ṁwind is

a constant, and vwind is the wind velocity. We varied Ṁwind = (0.1, 0.2, 0.3, 0.4)M⊙/yr

and vwind = (3, 5, 8, 12) km/s with Mwind from 0.2 − 0.8M⊙. In the top of Figure 4.3 we

show values of vwind = 8 km s−1, Ṁwind = 0.2M⊙/year, and Mwind = 0.4M⊙. We find

that the same wind parameters produce comparable early excesses when added to the

three degenerate lightcurves, suggesting that the excess is set by properties of the wind

itself and the underlying lightcurve, rather than, e.g. Eexp. This wind also modifies the

early velocity evolution. We do not claim that this is the only way to reproduce the early

excess, as a variety of other outer density profiles can give rise to similar early excesses

without affecting plateau properties (e.g. Morozova et al., 2019).

4.2.3 Modeling Challenges

For two events, SN2009IB and SN2017gmr, we see general agreement between models

and bulk properties of the lightcurves (L50 and tp), with distinct differences shown in Fig-

ure 4.4. Specifically, these models differ beyond an early luminosity excess which might

be explained by pulsations, a wind, varied structure of the extended stellar atmosphere,

or other early interaction.

In SN2009ib (top two panels of Figure 4.4), the relatively low luminosity and high

56Ni heating yield lightcurve models which rise significantly between days 20 − 80. The

narrow overlap between Equations (4.1) and our model grid suggests low Mej and small R.

For a reasonable range of R, explosion energies recovered are also low (E51 ≈ 0.2 − 0.3).
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Figure 4.4: Lightcurves and Fe line velocities for SN2009ib (top two panels) and
SN2017gmr (bottom two panels). Grey markers correspond to observations, and col-
ored lines correspond to explosion models.
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The disagreement between the models and the velocity data may indicate that Lbol is

underestimated in some way (see the discussion in section 4.2.2). However, we found

that additional models consistent with the velocity data and a brighter lightcurve of the

same tp still exhibit a similar, slightly shallower positive plateau slope. It is also possible

that the estimated explosion epoch is too early. Moreover, neither explosion is consistent

with a RSG of R ≈ 1000R⊙ (derived assuming Teff = 3400K), as R = 1000R⊙ implies

exceedingly low Mej ≈ 3M⊙ and Eexp ≈ 6× 1049erg. However, model M7.86 R375 E.023

is able to reproduce the observed log(Lp/L⊙) = 5.04 ± 0.2 with Teff ≈ 5450K, thus

favoring the yellower source scenario.

For SN2017gmr (bottom two panels of Figure 4.4), all models agree equally well with

the lightcurve, but indicate an excess in observed luminosity after the plateau as the

lightcurve transitions to the 56Co-decay tail. Observed velocities are taken from the

reported Fe-line radius evolution, and are only shown before day 120, after which point

the evolution is not photospheric. The slight disagreement between modeled and observed

velocities suggests that perhaps the distance is overestimated, but modeling to match a

fainter bolometric lightcurve provides no change in the apparent late-time excess.

Although this event has no progenitor pre-image, if R at the time of explosion is

consistent with ≈ 500R⊙ recovered from fitting shock-cooling models to the photometric

bands (Andrews et al., 2019), Equations (4.1) imply an enormous Eexp ≈ 5 × 1051 ergs!

Our 533R⊙ progenitor model indeed matches L50 and tp when exploded with 4.6 ×

1051 ergs, shown in green in the lower two panels of Figure 4.4.
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Our modeling procedure only considers matching L50 and tp. To compare directly to

the day 1 results in Andrews et al. (2019) Figure 9, we re-ran the SN2017gmr models with

a surface resolution adequate to resolve emission at day 1 (δmph ∼ 10−3 − 10−4M⊙). All

three of our models yield luminosities at 1 day post-shock-breakout (L1) a factor of ≈ 2

lower than L1 of SN2017gmr recovered by their Sapir & Waxman (2017) shock-cooling

model fits. Of our models, the day 1 photospheric temperature (T1) of M16.5 R533 E4.6

does come closest to the reported shock-cooling T1 = 25, 900K, with T1 ≈ 27, 000K, as

compared to 29,000K for M12.5 R683 E3.0 and 30,000K for M9.5 R907 E1.9. At this

time in the lightcurve evolution, the emitting region is coincident with the location of a

density inversion in the stellar models, which is the focus of current ongoing studies.

For the lightcurve morphological differences, we have no easily available remedy with-

out additional free parameters. Because we use the Duffell (2016) mixing prescription

with coefficients calibrated to the 3D simulations as recommended in MESA IV, the

resulting smoothing of the density profile and compositional mixing are held ‘fixed.’

Nonetheless, the Equations (4.1)-motivated models agree well with the L50 and tp obser-

vations.

4.3 Discussion

The capability of MESA+STELLA to model observed SNe was introduced in MESA IV and

demonstrated there and by Ricks & Dwarkadas (2019) to model a few Type IIP SNe.

GBP19 introduced scaling relations (Equations 4.1) fit from a suite of MESA+STELLA
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models in order to guide explosion modeling efforts for an observed SN lightcurve with

a given L50, tp, and MNi. In the absence of understanding in models of the first 20 days,

our application of these relations to the observed SNe 2004A, 2004et, 2009ib, 2017eaw,

and 2017gmr shows families of explosion models that match the data for a wide range of

Mej, R, and Eexp. These degeneracies will not be easily lifted without an observed pro-

genitor radius (and understanding the progenitor’s variability; see Goldberg & Bildsten

2020) or other constraints. However, when combined with a radius given by progenitor

pre-imaging or fitting the shock-cooling phase, we show that explosion models can be

constrained following Eexp ∝ R−1.63 and Mej ∝ R−1.12.

If there was confidence in stellar evolutionary input constraining a R −Mej relation

at the time of explosion, then these degeneracies could be broken, as assumed in the

population synthesis/lightcurve modeling of Eldridge et al. (2019). However, when vary-

ing rotation, winds, core overshooting, and mixing length within a reasonable range of

values, we find no single ejecta-mass−radius relation.

It remains possible that detailed spectral modeling will lend insights which might aid

in uniquely determining explosion properties from plateau observations. Additionally,

velocity observations before day ≈ 20 or photospheric radii derived from shock-cooling

models with a secure density structure in the outer < 0.1M⊙ remain other promising

paths forward to breaking the remaining degeneracies exhibited here.
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Chapter 5

Numerical Simulations of Convective

Three-Dimensional Red Supergiant

Envelopes

As massive (M ≳ 10M⊙) stars leave the main sequence, they expand to become Red

Supergiants (RSGs), reaching radii of ≈ 300−1200R⊙ and luminosities of ≈ 104−105.5L⊙

(e.g. Levesque et al., 2006; Drout et al., 2012; Massey et al., 2021), approaching the

Eddington limit and receiving increasing hydrostatic support from radiation pressure.

These stars are characterized by low-density convective hydrogen-rich envelopes with

large scale heights (H/r ≈ 0.3) and sonic convection near their surfaces. They are

intrinsically variable and pulsate in large-amplitude coherent modes (e.g. Kiss et al.

2006; Soraisam et al. 2018; Chatys et al. 2019; Ren et al. 2019; Dorn-Wallenstein et al.
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2020) and their 3D nature is revealed to us in spectro-interferometric observations of

nearby stars (e.g. Arroyo-Torres et al. 2015; Kravchenko et al. 2019, 2021; Montargès

et al. 2021; Norris et al. 2021).

It is a theoretical challenge to realistically model stars, or even parts of stars, in 3D.

This is especially true when radiative transfer must also be simultaneously solved through

a highly turbulent medium with large density variations over optical depths ranging

from far above unity down to the radiating photosphere. This radiation hydrodynamic

(RHD) challenge has been very well-addressed in cases where this region is close to

plane-parallel, starting with the fundamental work for the Sun (Stein & Nordlund, 1989,

1998), and now ranging across the HR diagram (e.g. Trampedach et al., 2013, 2014a,b;

Magic et al., 2013a,b, 2015; Chiavassa et al., 2018a; Sonoi et al., 2019), building on

earlier 2D RHD work (see Ludwig et al. 1999 for an excellent summary). These 3D

computations have yielded a physical understanding of the nature of RHD convection

in this limit, and provide a quantitative ability to set the outer boundary condition in

1D stellar models (e.g. Trampedach et al., 2014a; Salaris & Cassisi, 2015; Magic, 2016;

Mosumgaard et al., 2018; Spada et al., 2021) for log g ≳ 1.5, including for asteroseismic

applications (Mosumgaard et al., 2020). While we have detailed understanding of the

outer layers and quantitative surface relations for more compact, less luminous stars as

guided by these works, such clarity has not been reached where the region requiring RHD

calculations necessitates spherical geometry to capture large-scale plumes, and where the

luminosity is locally super-Eddington.
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In fainter giants, some of these aspects have been further addressed with global 3D

simulations. In Red Giant Branch (RGB) stars, simulations of the convective interior

reveal relatively flat velocity profiles set by large-scale convective plumes, and large tem-

perature and density fluctuations (Brun & Palacios, 2009). These large-scale plumes

extend up through the photosphere and produce granulation effects which can be inter-

preted by comparison of 3D models to interferometric data (e.g. Chiavassa et al., 2010a,

2017). In Asymptotic Giant Branch (AGB) stars, 3D simulations have revealed addi-

tional insights about the pulsational and circumstellar structure, with nearly-spherical

shock fronts from large-scale convective cells which also levitate material to radii at which

they can form dust (e.g. Freytag & Höfner, 2008; Freytag et al., 2017). These simula-

tions can then be used to, e.g., generate inner boundary conditions for 1D wind models

(Liljegren et al., 2018), and interpret both interferometric and photometric observations

(e.g. Chiavassa et al., 2018b, 2020).

In the luminous RSG regime, early simulations focused on surface turbulence and

magnetic properties (e.g. Freytag et al. 2002; Dorch 2004). Further simulations have

been used to provide limb darkening coefficients and confirm the presence of large convec-

tive cells from interferometric observations of Betelgeuse (Chiavassa et al., 2009, 2010b).

Chiavassa et al. (2011b) provide photocentric noise models towards quantifying Gaia

astrometric parallax uncertainties and explain the “cosmic noise” impacting Hipparcos

photometric measurements of Betelgeuse and Antares, while Chiavassa et al. (2011a)

characterize microturbulence and macroturbulence parameters in grey- and frequency-
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dependent RSG atmosphere simulations. Further predictions from these models have

been made with radiation transfer post-processing with the software OPTIM3D (Plez &

Chiavassa, 2013) and reveal the inability to define a single “surface” responsible for set-

ting the effective temperature, Teff .

A unifying feature of theory and observations of RSGs is the turbulent, extended

outer envelope which manifests these inherently 3D convective properties. In 1D stellar

evolution models, convection is conventionally handled by the Mixing Length Theory

(MLT). The MLT approach derives from considering the fate of fluid elements as they

move vertically a distance referred to as the mixing length ℓ ≡ αH, where α is a free

parameter which can be calibrated to observations or by 3D simulations (Böhm-Vitense,

1958; Henyey et al., 1965; Cox & Giuli, 1968). Especially in Red Giants and Supergiants,

mixing length assumptions, especially the value of α (and assumptions relevant to the

structure and location of convective boundaries, which we will not explore in this work)

strongly influence the stellar radii and Teff (e.g. Stothers & Chin, 1995; Meynet & Maeder,

1997; Massey & Olsen, 2003; Meynet et al., 2015). While empirical constraints are useful,

even crucial, for producing RSG models which match observed stars in luminosity, L, and

Teff (e.g. Chun et al., 2018), a first-principles calibration of MLT to 3D simulations of

RSG envelopes remains an open channel for theoretical progress in characterizing the

nature of convection in these very luminous objects.

The turbulent RSG envelope also plays a crucial role at the end of the star’s life, as a

strong shock emerges from the collapsed core and propagates rapidly through the enve-
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lope. Such explosions result in Type II-P SNe with ≃100-day plateaus in their lightcurves

whose properties depend on the envelope structure, and especially the progenitor radius,

ejected mass, explosion energy and 56Ni mass (e.g. Popov 1993; Kasen & Woosley 2009;

Sukhbold et al. 2016). The exact initial mass range of stars exploding as Type II-Ps is

still a matter of significant debate (the so-called “RSG problem”, e.g. Smartt, 2009, 2015;

Davies & Beasor, 2018; Kochanek, 2020; Davies & Beasor, 2020b,a). If the RSG radius

is known at the moment of explosion, then light curve modeling can be used to constrain

the ejected mass (Goldberg et al., 2019; Martinez & Bersten, 2019; Goldberg & Bildsten,

2020), with some sensitivity to the pulsation mode and phase at the time of explosion

(see discussion in Goldberg et al. 2020). However, if the progenitor radius is unknown,

very different stellar properties can yield identical lightcurves and photospheric velocities

after the first ≈ 30 days (Dessart & Hillier, 2019; Goldberg et al., 2019), limiting our

ability to infer masses and explosion energies solely from these observations.

Early Supernova observations can assist with breaking these degeneracies, but doing

so is hampered by our lack of understanding of the density structure of the outermost

RSG layers responsible for the early time emission (see, e.g. Morozova et al., 2016). In

addition, Type II-P SNe frequently exhibit luminosities in excess of explosion models that

assume a simple stellar photosphere (e.g. Morozova et al. 2017, 2018). This early excess is

often attributed to interaction between the SN ejecta and the progenitor’s outgoing wind

(e.g. Moriya et al., 2018) or ejecta from pre-SN outbursts (Fuller, 2017; Morozova et al.,

2019), and poses challenge in cleanly interpreting these early phases of SN evolution (see,
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e.g. Hosseinzadeh et al., 2018). It is also possible that these discrepancies are because

the density structure in the vicinity of the photosphere is simply not well-described by

conventional 1D stellar models. One important long-term goal of our effort is to better

constrain the role of the 3D gas distribution in early SN emission.

This Chapter is organized as follows: In §5.1, we describe motivating expectations for

the 3D regime we aim to explore, making use of Modules for Experiments in Stellar As-

trophysics (MESA Paxton et al., 2011, 2013, 2015, 2018, 2019) to illustrate the importance

of a proper 3D treatment of RSG envelopes. In §5.2 we describe our 3D Athena++ (Stone

et al., 2020) RHD setup for RSG envelopes, and in §5.3 we discuss the convective proper-

ties of these envelopes, comparing where possible to findings of earlier 3D RSG models.

We then compare our 3D envelope models to predictions from MLT where appropriate

(§5.4). Finally, we discuss our results and comment on future directions in §5.5.

5.1 Properties of 1D Red Supergiant Models and

Open Challenges

For our initial exploration, we constructed a suite of solar-metallicity (Z = 0.02) models

in MESA, following the test suite case make pre ccsn IIp in revision 15140, shown in

Fig. 5.1 from the onset of core H burning through the end of core Si burning. Our fiducial

non-rotating models have modest exponential overshoot with overshooting parameter

fov = 0.016, a wind efficiency of ηwind = 0.2 using the 'Dutch' scheme in MESA (Glebbeek
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Figure 5.1: H-R diagrams of non-rotating MESA models with initial masses of Mi/M⊙=12
(blue), 14 (orange), 16 (green), and 20 (red), from the main sequence through core Si
burning. Final masses are given in the legend.

et al., 2009; Vink et al., 2001; Nugis & Lamers, 2000), core mixing length αc = 1.5

in regions where the H fraction XH ≤ 0.5, and mixing length αH = 3 in the H-rich

envelope (XH > 0.5). These parameters were chosen to be similar to those of the Type

IIP Supernova progenitor models in Paxton et al. (2018), motivated also by the findings

of Farmer et al. (2016).

The left panels of Figure 5.2 show the structure of four model RSG envelopes at the

end of core C burning (central XC < 10−6) with initial masses ranging from 12 to 20

M⊙. The x-axis excludes the He core, which is always inside of r = 10R⊙ for all models.

Through the envelope, the density falls by 3-4 orders of magnitude, nearly matching

ρ ∝ 1/r2 through most of the inner envelope. The pressure scale height, H = P/ρg,

is large due to the weak gravity in the envelope, with H/r ≈ 0.3 even at the half-
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radius coordinate. The envelope is fully convective, and both radiation pressure and gas

pressure contribute significantly to the total pressure, with gas pressure dominating near

the surface. Additionally, the opacity is very large throughout the envelope, dominated

by opacity peaks from H and He ionization transitions inside the convective region.

Where convection is “efficient”, ∇ is nearly ∇e ≈ ∇ad and the fluid structure follows

the adiabat. There are two senses in which convection is said to be inefficient. When the

convection is inefficient in the superadiabatic sense (i.e. ∇ ≫ ∇e, where ∇ = d lnT/d lnP

and ∇e is the internal ∇ of a convective parcel; see Table D.1 in Appendix D), a rising

fluid element will be hotter than the surrounding medium, and it will accelerate as it

moves outwards in order to carry the flux. The stellar entropy profile thus declines. The

convection can also be inefficient in the radiative sense, or “lossy”, when a convective

fluid parcel has sufficient time to radiate its internal energy to the cooler surrounding

as it rises. In a medium with Pgas ≫ Prad, the optical depth at which radiation is able

to contribute significantly to the energy transport and lossy convection is expected is

τ < τcrit, where

τcrit ≈
Prad

Pgas

c

vc
, (5.1)

where c is the speed of light, and vc is the radial component of the convective velocity.

The factor of Prad/Pgas comes from the fact that in the gas-pressure-dominated region

near the cool stellar surface the parcel must evacuate the radiation field Prad/Pgas times

in order to carry the same flux by radiation as convection (Kippenhahn et al., 2013).

For τ > τcrit where a parcel is unable to lose heat to radiation, ∇e ≈ ∇ad. We will note
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Figure 5.2: Top to bottom: Density, temperature, pressure scale height divided by radius,
radiation to gas pressure ratio, and opacity as a function of radial coordinate r in Z = 0.02
RSG models. Left: Initial masses of Mi/M⊙=12 (blue), 14 (orange), 16 (green), and 20
(red), all with αH = 3. Right: Masses of M = 16M⊙, varying the mixing length in the
Hydrogen-rich envelope, αH, for αH = 1 (blue), αH = 2 (orange), αH = 3 (green), and
αH = 6 (red); here winds were neglected to isolate the effects of varying αH, leading to
the slight differences between the green lines in the left and right panels.
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later, in §5.3.4, the close relationship between τ/τcrit and the more commonly-discussed

convective efficiency parameter, γ.

In MLT, ∇ − ∇e is directly related to the mixing length ℓ = αH by (Kippenhahn

et al., 2013)

Fconv = ρcPT
√
gQ

ℓ2√
ν
H−3/2(∇−∇e)

3/2, (5.2)

where Fconv is the flux carried by convection, Q = −D lnT/D ln ρ = (4− 3βP )/βP where

βP = Pgas/(Prad + Pgas) for an equation of state (EOS) made up of radiation and gas,

ν = 8 following Henyey et al. (1965) and others, and cP is the specific heat at constant

pressure.

So as to explore the dependence of the RSG envelope structure on the mixing length

αH, we constructed additional 16M⊙ RSG models varying αH from 1 to 6. In these, we

neglect mass loss due to winds (ηwind = 0.0) and vary αH away from the fiducial value of

αH = 3 only at the end of core He burning in order to ensure that the resulting models

have comparable core masses, Mc,He = 5.2M⊙, and luminosities, log(L/L⊙) = 5.06. The

structure of these models is shown in the right panels of Figure 5.2. Lower values of αH

produce models with larger radii, lower densities, and lower temperatures throughout the

envelope.

The upper panels of Fig. 5.3 show the specific entropy, s, profiles for models varying

the initial mass (left) and αH (right) at the end of core C burning. The lower panels

compare τcrit (dashed lines) to the optical depth τ (solid lines). The transition to lossy

convection with radiation-dominated transport typically occurs around T ≈ 104K and
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Figure 5.3: Specific entropy (upper panels) and optical depths (lower panels) for RSG
models of different initial mass and αH = 3 (left panels), and varying αH with M = 16M⊙
(right panels). The optical depth remains much higher than τcrit (dashed lines) until
τ ≈ 300 near T ≈ 104 K.

τ = τcrit ≈ 300, which is near the H opacity peak seen in Fig. 5.2. At that location,

the peak in opacity and large luminosity implies L ≫ LEdd there, a critical distinction

for RSG models compared to main-sequence, RGB, or AGB stars. As T approaches

Teff , vc declines to zero in a very thin radiative region above the convection zone. The

green models are comparable between the left and right panels, with the only substantive

difference being the inclusion of mass loss in the left panel leading to a slightly lower core

mass, Mc,He = 4.9M⊙, and luminosity, log(L/L⊙) = 5.02.

Varying initial mass increases the luminosity and thereby s, with relatively flat en-

tropy profiles that begin to decline near the surface. Decreasing αH decreases the effi-

ciency of the convection, causing a steeper temperature gradient and an entropy decline.

Larger mixing lengths correspond to more efficient convection and produce higher Teff .
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For a given luminosity, this leads to different radii with varying αH, from R = 460R⊙

when αH = 6 to R = 1223R⊙ when αH = 1, despite comparable envelope masses and

luminosities.

The assumed mixing length thus plays a dual role in determining the stellar structure.

Foremost, the entropy profile declines even where τ ≫ τcrit, especially for lower αH,

suggesting true superadiabatic convection with nonnegligible ∇−∇e. The choice of αH

influences ∇−∇e via Eq. (5.2) for a given Fconv, and therefore determines the deviation of

the temperature profile from the adiabat. Secondly, αH determines the adiabat on which

the envelope sits. This effect can also be seen in models of cool stars more generally

(e.g. Stothers & Chin, 1995; Meynet & Maeder, 1997; Massey & Olsen, 2003; Meynet

et al., 2015) and is pronounced where convection occurs over orders of magnitude in

radius, such as in cool giants. Running a further suite of models where we varied the

location where the mixing length coefficient changes from a fixed αc=1.5 to variable

αH at different temperature coordinates, rather than setting the transition to be at the

H-He interface as in our fiducial models, we find that changing αH in the lossy outer

envelope below a few times 104K (where τ ≲ τcrit) is what primarily determines the outer

radius of the star, as the entropy decline in that region is fixed (as seen in the upper

right panel of Fig. 5.3). Since ρ ∝∼ 1/r2, the stellar radius determines the density at the

base of the envelope, the radiation to gas pressure ratio, the entropy, and thereby the

adiabat. So even though less efficient convection at lower αH would predict a steeper

radial temperature profile for fixed inner boundary, this is more than offset by the fact
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that the entropy deep within the envelope is larger for lower αH. Although αH has

been constrained for stellar models where Prad ≪ Pgas and H/r ≪ 1 throughout their

convective regions (see, e.g. Trampedach et al., 2014b; Magic et al., 2015; Sonoi et al.,

2019), the ‘true’ value of αH in the RSG envelope regime has never been calibrated to

3D simulations. Comparisons of 1D stellar models to observed RSG populations suggests

αH ≈ 2 − 3 in different environments based on their location on the HR diagram, and

in particular their effective temperatures (e.g. Ekström et al. 2012; Georgy et al. 2013;

Chun et al. 2018).1

In MLT, the convective velocity vc is related to the superadiabaticity and the mixing

length by

v2c = gQ (∇−∇e)
ℓ2

νH
. (5.3)

Where τ > τcrit, a fluid parcel retains most of its heat and ∇e ≈ ∇ad. Note that

superadiabatic convection with ∇ > ∇e ≈ ∇ad leads to an increase in the convective

velocity, while lossy convection yields a decrease in the convective velocity required to

carry the flux as ∇e deviates from ∇ad and approaches ∇.

Fig. 5.4 shows the superadiabaticity (∇ − ∇ad)/∇ad (upper panel) and convective

Mach number (middle panel) as a function of temperature coordinate for four 16M⊙

models with varying αH. As the superadiabaticity becomes large, particularly for larger

αH, convective velocities become nearly supersonic.

In the plane parallel limit, the turbulent pressure term needed to incorporate the

1See also the discussion by Joyce et al. (2020) of how MLT uncertainties bear on stellar evolutionary
and hydrodynamical models of α Ori compared to asteroseismic observations.
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effects of the 3D Reynolds stress in a radial 1D model is Pturb = ρvrvr ≈ βρv2c up to a

prefactor β typically assumed to be unity (Henyey et al., 1965).2 This quantity is shown

in the lower panel of Fig. 5.4 for vc given by MESA assuming β = 1. Moving towards the

stellar surface, the expected turbulent pressure rises, even exceeding the thermal pressure

(Ptherm = Pgas +Prad) in the cooler (T ≲ 104 K) regions of the αH ≥ 3 models. Due to the

intrinsically 3D nature of large-scale convection and the resulting turbulent pressure, the

handling of this large expected pressure contribution is another way in which 3D results

can guide 1D models.

Moreover, the envelopes of these models are only very loosely gravitationally bound.

The lower panel of Fig. 5.5 shows the local total energy (dashed lines) and cumulative

total energy integrated from the surface inwards (solid lines). The upper panel shows

the ratio of the cumulative total energy to the gravitational energy. The kinetic energy

assuming v = vc is neglected, as it only contributes only a few times 1045 erg in total for

these models. As seen in the upper panel, the gravitational energy and the internal energy

nearly cancel, and for our αH = 1 model the internal energy exceeds the gravitational

binding energy inside the envelope. This demonstrates the precariousness of these RSG

envelopes, and why they can become unbound even from small energy deposited there

from direct collapse of the He core to a black hole (e.g. Nadezhin 1980; Coughlin et al.

2018). This also highlights the importance of incorporating the envelope’s self-gravity in

2In a plane parallel atmosphere where the z-direction is identified with radial gravity, the radial
component of the gradient of ρvv is equal to the gradient of ρvrvr when deriving Pturb from the Euler
equations. However, in spherical polar geometry the gradient of ρvv yields geometric terms (ρvθvθ +
ρvϕvϕ)/r which contribute to the momentum equation Landau & Lifshitz (1987). These terms are a
small correction when H ≪ r, which is not strictly the case in the RSG regime, or could vanish if
2vrvr − (vθvθ + vϕvϕ) ≈ 0.

125



−1.0

−0.5

0.0

∫ M m
(e
−
G
m
/
r
)d
m

∫ M m
(G
m
/
r
)d
m

M = 16M�

100 1000

r [R�]

−4

−3

−2

−1

0

1

2

∫ M m
(e
−
G
m
/r

)
d
m

[1
0

4
7

er
g]

αH = 1 αH = 2 αH = 3

−4

−3

−2

−1

0

1

2

e
−
G
m
/
r

[1
0

1
3

er
g

g
−

1
]

cumulative

local

Figure 5.5: Upper panel: The ratio of the cumulative internal energy to the magnitude
of the cumulative potential energy, integrated from the surface. Lower panel: Specific
(solid) and cumulative (dashed) total energy (IE + PE) calculated from the surface
inward in the envelope of 16 M⊙ RSG models with αH=1, 2, 3.

126



Name RIB/R⊙ Rout/R⊙ heat source resolution (r × θ × ϕ) duration mc/M⊙ Mfinal/M⊙
RSG1L4.5 400 22400 “hot plate” 384 × 128 × 256 5865 d 12.8 16.4
RSG2L4.9 300 6700 fixed L 256 × 128 × 256 5766 d 10.79 12.9

Table 5.1: Simulation properties, including inner boundary (RIB), outer boundary (RIB),
heat source (as described in the text), resolution, run duration, core mass mc, and total
mass at the simulation end (Mfinal). All models have θ = π/4 − 3π/4 and ϕ = 0 − π,
with δr/r ≈ 0.01, and we restrict our analysis to material outside 450R⊙. The naming
scheme indicates log(L/L⊙).

our 3D calculations.

5.2 3D Model Setup and Equilibration

5.2.1 Model Setup in Athena++

To explore the 3D convective properties of RSGs, we constructed two large-scale simu-

lations using Athena++. For these simulations, we use spherical polar coordinates with

128 uniform bins in polar angle θ from π/4− 3π/4 and 256 bins in azimuth ϕ from 0− π

with periodic boundary conditions in θ and ϕ, covering 70.6% of the face-on hemisphere

(i.e. solid angle Ω = 1.41π). Outside of the simulation domain, Athena++ uses ghost

zones to enforce its boundary conditions (see Stone et al. 2020 for more details). For

the “periodic” boundary in θ, the ghost zones from π/4 (3π/4) are copied from last

active zones around the 3π/4 (π/4) boundary, so that the mass and energy flux across

the theta boundary is conserved. Although the spherical polar grid in Athena++ can in

principle include the whole sphere, such a setup will cause a timestep that is too small

to perform these simulations. That is why we only cover the polar region between π/4
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and 3π/4, which is designed to represent a large typical wedge of the star. There are

2 options for a boundary condition in order to conserve mass and energy in the θ/ϕ

direction. The method described here is preferred over a reflective boundary condition,

which will lead to “splashback” (as is seen at the inner boundary). Athena++ solves the

ideal hydrodynamic equations coupled with the time-dependent, frequency-integrated ra-

diation transport equation for specific intensities over discrete angles (Jiang et al., 2014;

Jiang, 2021). We adopt the spherical polar angular system as defined in Section 3.2.4

of Jiang (2021) with 120 total angles per grid for the specific intensities. In this ini-

tial work, we consider a non-rotating stellar model and neglect magnetic fields. This

is likely a safe assumption, as the envelope rotation reduces dramatically as the stars

ascend the Hayashi track after core H depletion, though some RSG envelopes may have

non-negligible rotation due to interaction or a merger with a companion (see, e.g., Joyce

et al. 2020).

The RHD equations are (Jiang, 2021):

∂ρ

∂t
+ ∇ · (ρv) = 0,

∂(ρv)

∂t
+ ∇ · (ρvv + Pgas) = −Gr − ρ∇Φ,

∂E

∂t
+ ∇ · [(E + Pgas)v] = −cG0

r − ρv ·∇Φ,

∂I

∂t
+ cn ·∇I = S(I,n),

(5.4)

where ρ is the gas density and v is the flow velocity. The gas pressure tensor and scalar

are given by Pgas and Pgas, respectively. The total gas energy density is E = Eg + ρv2/2,

where Eg = 3Pgas/2 is the gas internal energy density. Source terms G0
r and Gr are
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the time-like and space-like components of the radiation four-force Mihalas & Mihalas

(1984). The frequency-integrated intensity I is a function of time, spatial coordinate,

and photon propagation direction n.

The mass in the simulation domain is not negligible, and because the envelope is

expected to be only loosely bound, it is important to include an accurate gravitational

acceleration, which we take to be spherically symmetric, with −∇Φ = −Gm(r)/r2. Here

G is the gravitational constant, r is the radial coordinate, and m(r) is the total mass

inside r. We calculate m(r) as the sum of the “core” mass interior to the inner boundary

(IB) and the total mass between the IB and r at each time step.3 The gas temperature

is T = (Pgasµmp)/(kBρ), where kB is the Boltzmann constant, and mp is the proton

mass, with mean molecular weight µ = 0.643 to match our MESA models. A radiation

temperature Tr can be calculated from the radiation energy density Er included in the

G0
r source term as Tr = (Er/ar)

1/4 where ar = 4σSB/c is the radiation constant and σSB

is the Stefan-Boltzmann constant; this is typically, but not necessarily, identical to T .

To calculate the radiation energy and momentum source terms, the lab frame intensity

I(n) with angle n is first transformed to the co-moving frame intensity I0(n0) with angle

n0 via Lorentz transformation (Mihalas & Mihalas, 1984; Jiang, 2021). The source terms

describing the interactions between gas and radiation in the comoving frame are

S0(I0,n0) = cρκaP

(
carT

4

4π
− J0

)
+ cρ(κs + κaR) (J0 − I0) , (5.5)

3An exploratory simulation did not include the self-gravity of the material within our simulation
domain, instead using only a fixed mass from inside the inner boundary. In that simulation, the envelope
rapidly expanded to Rphot>3000R⊙ with a sharp increase in mass in the simulation domain coming from
the IB, and never reached a quasi-hydrostatic convective steady state.
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where κaR and κaP are the Rosseland and Planck mean absorption opacities determined

by interpolation of the OPAL opacity tables (Iglesias & Rogers, 1996), and κs is the

electron scattering opacity, all evaluated in the comoving frame. The angular quadrature

of the intensity in the co-moving frame is J0 =
∫
I0(n0)dΩ0/(4π). After the specific

intensities I0(n0) are updated in the co-moving frame, they are Lorentz transformed

back to the lab frame. The radiation momentum and energy source terms G0
r and Gr

are calculated by the differences between the angular quadratures of I(n) in the lab

frame before and after adding the source terms. See Jiang (2021) for more details of the

implementation. The hydrodynamic equations are solved using the standard Godunov

method in Athena++ (Stone et al., 2020). Similar numerical methods and setup have

been successfully used to model stellar envelopes in different locations of the HR diagram

(Jiang et al., 2015, 2018).

5.2.2 RSG Setup and Model Evolution

We used the NASA supercomputer Pleiades to run two 3D RHD simulations. Each run

takes about two months to finish with 80 skylake nodes in Pleiades. For this study, we

motivate our initial and boundary conditions with the fiducial 15.4M⊙, Z = 0.02, αH = 3

model at the end of core C burning discussed in §5.1 (shown in green in the left panels

of Fig. 5.2). Our first model, referred to hereafter RSG1L4.5, is initialized in 3D by

assuming a purely radiative envelope with luminosity equal to the radiative luminosity

at r = 400R⊙ in the MESA model (which is a few % of the total luminosity). The mass
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and radius of the IB are 400R⊙ and 12.8M⊙. To generate the initial conditions, the

temperature (T = 7.19 × 104 K) at the IB is first set to equal the 400R⊙ coordinate

in the MESA model, and density (ρ = 5.45 × 10−8 g/ cm−3) selected to approximately

recover the 15.4M⊙ total mass. To perturb from the radiatively stable initial conditions

and supply the convective luminosity, we increase the temperature at the IB by 10%

compared with the initial condition (a “hot plate”), while density is fixed and velocity is

reflective at the inner boundary, akin to the setup of Jiang et al. (2018). This boundary

condition produces a radiative layer near the bottom with the desired luminosity, which

causes the envelope away from the bottom boundary to be convective. In this setup,

we do not know in advance what the luminosity will be. RSG1L4.5 was one of 3 initial

runs with this inner boundary condition; the other two at 20% and 40% Temperature

increases gained mass too rapidly and never reached a convective steady state.

All our analysis will be done in the convective region starting from ≈ 450R⊙. As

convection sets in, the luminosity reaches log(L/L⊙) = 4.5, with some periodic and

stochastic variability which we will discuss in more detail in §5.3.4. Because mass flux

through the inner boundary cannot be exactly 0 on a spherical polar mesh even with

our reflective velocity boundary condition, a small amount of additional mass enters the

simulation domain as time goes on. At the end of the simulation, the total mass of this

model is 16.4M⊙. This 6.5% increase in the total mass of the star (≈20% in the mass

inside our simulation domain) is not of concern, as the aim of this work is to create

realistic 3D envelope models to study the convective structure, not to diagnose a mass-
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luminosity relation in 3D models (which would also be sensitive to core properties). The

simulation domain for this model is 384 radial zones, with δr/r ≈ 0.01, with a free outer

boundary at r = 22400R⊙. The choice of a large simulation domain was motivated, in

part, to capture any wind structure or extended atmosphere, make sure we capture the

stellar photosphere so that the outer boundary is always in the optically thin limit for

the radiation field, as well as to provide ample space for expansion in explosions of this

envelope model in forthcoming work. With a logarithmic radial grid spacing, the large

outer boundary is achieved with small additional cost for our simulation, and 87 zones

lie within r < 1000R⊙.

Our second model, referred to hereafter RSG2L4.9, is initialized with the same method

as RSG1L4.5 for the region that will become convective. This model has the IB at 300R⊙

with 10.79M⊙ enclosed, and the total initial mass at 14M⊙. The simulation domain has

256 radial zones (98 at r < 1000R⊙) with δr/r ≈ 0.01, with a free outer boundary at

r = 6700R⊙, still far away from the stellar surface. Between 300R⊙ and 400R⊙, the

initial profile is constructed with the radiative luminosity to be 105L⊙ and this is kept

fixed in the inner boundary (“fixed L”). This serves the same purpose as the boundary

condition used in the previous model to drive convection for the region above. We

therefore similarly only perform our analysis for the region above ≈450R⊙. We first run

for 740 days with fixed total Fr at the inner boundary (including advection and diffusion).

After an initial relaxation period, this scheme begins to add mass somewhat rapidly, so

we switch to fixing only the diffusive Frad,0 at the inner boundary. This leads to a small,
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Figure 5.6: History of the averaged radial profiles for our RSG1L4.5 (red, left) and
RSG2L4.9 (orange, right) models. Top to bottom show log(density), convective velocity,
log(temperature), and log(opacity). All logarithms are base 10 and units inside the
logarithms are cgs, and velocites are reported in km/s. Vertical dotted lines indicate
when the envelope appears to have reached a convective steady state. Horizontal dashed
lines approximate the region where some fraction of the stellar area has τ > τcrit.

steady decrease in the total envelope mass from the inner boundary. At the end of the

simulation, the total mass of this model is 12.9M⊙. In both cases, most of the mass

change happens during the initial transient relaxation from the initial conditions to a

convective structure. From day 4500 to the end of the simulation, the mass inside the

simulation domain changes by less than 1% (0.03M⊙) for RSG1L4.5, and 10% (0.2M⊙)

for RSG2L4.9. The properties of these models are summarized in Table 5.2.

Radial profiles of both simulations as a function of time are shown as space-time dia-

grams in Fig. 5.6. Radial density, opacity, and temperature are calculated by finding the

volume-weighted average over spherical shells at each time (which we hereafter denote
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with ⟨· · · ⟩), and the magnitude of the velocity, is calculated from the mass-weighted aver-

age over spherical shells (which we hereafter denote with ⟨· · · ⟩m), |v| =
√
⟨v2r + v2θ + v2ϕ⟩m.

Horizontal dashed lines approximate the location where radiation begins to dominate the

energy transport at late times. Inside the dashed line, convection is expected to resemble

MLT, with denser material sinking as less dense material rises. We will explore this ex-

pectation in more detail in §5.3.4 and 5.4. For computational reasons, both models have

density floors imposed with ρfloor = 5.35×10−16 g/cm3. The fast-moving low-density ma-

terial at very large radii is caused by negligible amounts of density-floor material falling

onto the star due to gravity.

The two simulations begin with an initial transient phase, as convection sets in from

the unstable spherically symmetric initial conditions. In RSG1L4.5, the intial transient

phase is accompanied by some material being launched outwards, falling back onto the

stellar surface around day 2500. Additionally, convection begins to appear at the density

inversion near the stellar surface, and makes its way to the IB by ≈ 1000 days. By day

2000, the amplitudes of the convective velocities steady and by day 4000 the RSG1L4.5

simulation appears to have fully settled into equilibrium, with regular fluctuations in the

stellar properties particularly in the region above τ = τcrit.

In RSG2L4.9, the fixed luminosity at the IB triggers convection at small radii in

addition to the surface, so convection sets in quickly. The initial transient causes a sharp

increase in the mass contained in the stellar envelope coming from the inner boundary,

accompanied by a rapid expansion of the envelope around day 500. With the change in
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Figure 5.7: Left: Surface rendering of the radial velocity fluctuations at r = 600R⊙ in
RSG1L4.5 at day 4707. Right: Snapshot of radial velocity slices for the same model.
Panels show radial slices at r = 500R⊙ (top) to 800R⊙ (bottom) in 100R⊙ intervals, and
axes show the extent in azimuth ϕ and co-polar angle cos(θ). The volume-weighted mean
sound speed is 33 km/s at r = 500R⊙, 26 km/s at 600R⊙, 19 km/s at 700R⊙, and 8 km/s
at 800R⊙.

inner boundary condition at day 740, the rapid growth ceases, and by day 2000 the model

begins to settle into a pattern of semi-regular oscillations. By day 4500, the amplitude of

radial fluctuations dies down and the envelope exhibits similar steady-state behavior to

the RSG1L4.5 simulation with larger radial extent and higher velocities. We now check

this apparent steady-state behavior for both simulations.

5.2.3 Defining a ‘Steady State’

By the end of the simulations, both models have thermal and kinetic energy content

Efluid =
∫

(E + Er)dV comparable to the binding energy Ebind =
∫

(ρΦ)dV , with a
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ratio of Efluid/|Ebind| of 0.23 for RSG1L4.5 (with Etot = Efluid + Ebind = −3.0 × 1047erg

extending the volume to Ω = 4π) and 0.32 for RSG2L4.9 (Etot = −1.4 × 1047erg). The

comparable gas and binding energies reinforce our choice of including the envelope mass

in our gravitational.

The convective plumes show large (≳ 200R⊙) vertical and lateral extents, leading to

a nearly-radius-independent velocity profile with an-order-of-magnitude scatter, shown

in Fig. 5.7. When fluid flow is this coherent, the velocity field will be time-correlated

for around an eddy-turnover time at any given spatial location. Beyond this timescale,

we expect no memory of past convective plumes at a fixed coordinate. To start our

exploration of the timescale required for the model to reach equilibrium, we calculate the

autocorrelation of the radial velocity at fixed coordinates. The autocorrelation function

for an arbitrary time-dependent parameter Y (t) is defined for time lag ∆t by

acf(Y,∆t) =

∫
(Y (t) − Ȳ )(Y (t + ∆t) − Ȳ )dt∫

(Y (t) − Ȳ )2dt
, (5.6)

where Ȳ is the time-averaged value. Fig. 5.8 shows the autocorrelation function for the

radial velocity, acf(vr,∆t), for a few different radii in each model. Dark lines give the

mean of the autocorrelation functions at 169 angles distributed across the stellar model,

and the shaded areas give the standard deviation of the acf at each radius. Only radial

velocities after day 1000 are considered for each model. The less luminous RSG1L4.5

model stays correlated for ≈550 days, whereas the more luminous RSG2L4.9 model

decorrelates faster, over a timescale of ≈300 days. This is because the more luminous

model exhibits larger convective velocities as required to carry the flux, even though the
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Figure 5.8: Average autocorrelation of radial velocities across different angles at different
radii for the RSG1L4.5 model (upper panel) and the RSG2L4.9 model (lower panel) as
a function of the time lag. All data in this plot are after the simulations have run for
1000 days. The shaded region gives the standard deviation of the acf across the different
angles.

mass and radii are comparable. These timescales are short compared to the simulation

duration, so we can proceed in our analysis with additional confidence that both models

have reached their convective steady state after ≈4000 days.

A direct check as to whether the models have reached a convective steady state is

to explore the RHD equations for the time-averaged profiles. The momentum equation

quickly equilibrates such that ∂ρv/∂t → 0 when taking the time-average on a dynamical

timescale (i.e. the sound-crossing time across a pressure scale height, 10s to 100s of days

in the outer envelope), but the energy equation will only reach equilibrium in our region
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of interest as convection is able to distribute the luminosity over a few eddy turnover

times, which is significantly longer. Combining and rearranging RHD Eqs. (5.4) including

the source term

G0
r =

∂Er

∂t
+ ∇ · Fr, (5.7)

where vFr is the total radiation flux (including Frad,0 = −1/3(c/κρ)(darT
4
r /dr) for

radiative diffusion and Fadv = Ervr for advection), with g = −∇Φ · r̂, for spherically

symmetric Φ(r), we recover

∂

∂t
(E + Er) + ∇ · [(E + Pgas)v + Fr − (ρvΦ)] = −Φ∇ · (ρv) = −Φ

∂

∂t
ρ. (5.8)

In a steady state, ∂/∂t → 0 when we take the time average ⟨· · · ⟩t. Taking the radial

component of the divergence we find

〈
1

r2
∂

∂r
[r2(E + Pgas)vr + r2Fr,r̂ − r2(ρvrΦ)]

〉

t

= 0. (5.9)

Thus if r2 ⟨(E + Pgas)vr + Fr,r̂ − (ρvrΦ)⟩t ≡ r2⟨Ftot⟩ is spatially constant, the model can

be considered to have equilibrated. This expression is equivalent to the time-average

of the volume-weighted average of the total luminosity Ltot, including enthalpy, gravity,

kinetic energy, and radiation terms, divided by 4π. Though there is a net change in

Ltot due to mass gained/lost near the IB, in the region of interest, our steady state

criteria are sufficiently satisfied by both models in the region of interest, as shown in

Fig. 5.9. The transparent colored lines show the volume-averaged total luminosity from

days 4001−5864 in approximately 3 day intervals for the RSG1L4.5 model (red) and

evolution from day 4501−5766 in approximately 5 day intervals for the RSG2L4.9 model
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Figure 5.9: Volume-average of 4πr2((E +Pgas)vr +Fr,r̂ − (ρvrΦ)) at different times (thin
colored lines) compared to the time-average (solid black line) for our RSG1L4.5 (red,
upper panel) and RSG2L4.9 (orange, lower panel) models outside r = 450R⊙.

(orange). The solid black lines give the time-average of this quantity, whose variance at

different radii is significantly less than the scatter at different times. The small number

of distinct convective plumes implies a fundamental variance in the stellar luminosity

reflected in the scatter at large radii that we discuss in more detail in §5.3.4.

5.3 3D Model Properties

Having shown how to initiatlize a 3D RSG model and evolve it to its effectively equilib-

rium state, we now will describe the properties of the resulting models, compare to prior
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work, and discuss some of the unique properties of these highly luminous models.

5.3.1 Convective Properties and Comparison to Prior 3D CO5BOLD

RSG Work

Aspects of the observable 3D structure of RSGs have been studied in a series of pioneering

papers (e.g. Chiavassa et al. (2009, 2010b, 2011b,a); Kravchenko et al. (2018)) using

the RHD “star-in-a-box” COnservative COde for the COmputation of COmpressible

COnvection in a BOx of L Dimensions, L=2,3 (CO5BOLD, Freytag et al., 2002, 2010,

2012). In those simulations, the computational grid was cubic equidistant with typical

mesh spacing of ≈ 8.6R⊙, with LTE radiation transport by short characteristics using

opacity tables as function of P, T interpolated from PHOENIX data at T ≲ 12, 000 K

(Hauschildt et al., 1997) and OPAL values (Iglesias et al., 1992) at higher T . The EOS

included ideal gas and ionization, but radiation was only present in the energy equation,

and not as a pressure source. The gravitational potential was modeled by a Plummer

potential Φ = −GM∗/(r40 + r4/
√

1 + (r/r1)8)
1/4 fixed to the static Cartesian mesh with

M∗ = 12M⊙ and 3M⊙ of material contained in the simulation domain, and the luminosity

was supplied via an energy source within the inner Plummer radius (r0).

That work focused on stellar properties at low optical depth, where radiation trans-

port dominates, and have been compared to recent tomagraphic observations of nearby

RSGs to interpret their surface convective structure (e.g., Kravchenko et al., 2019, 2020,

2021). The neglect of radiation pressure deep within the star inhibited the ability to
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correctly simulate the deeper nearly-constant-entropy convective zone there. Hence, the

convective flux in the interior of those RSG models is significantly lower than the ra-

diative flux, with radiation carrying over 80% of the flux everywhere. Because of this,

those simulations exhibit a positive entropy gradient out to ≈75% of the stellar radius

(see Fig. 3 of Chiavassa et al. 2011a). While this is no concern when restricting analysis

to the turbulent surface layers where the entropy profile does decline, it is counter to

the theoretical expectations for a fully turbulent RSG envelope, which should have a

nearly-flat, declining entropy profile throughout the convective envelope, with enthalpy

and kinetic flux accounting for a significant fraction of the total flux.

In agreement with the CO5BOLD models, our Athena++ RSG simulations show a handful

of large-scale, coherent convective plumes across the star, with radial velocities of tens

of km/s and density fluctuations of 10% increasing to factors of a few at larger radii

(see Figs. 5.7 and 5.10). As emphasized by Stein & Nordlund (1998), we see a topology

of large area upwellings surrounded by narrow lanes of downward flows. Additionally,

the specific entropy, radiative luminosity, and ratio of kinetic to thermal energy density

in representative snapshots of our two models are shown in Fig. 5.11. The red/orange

shaded regions give a sense of the scatter. Like in the CO5BOLD models, we observe a

‘halo’ of bound, high-entropy material above the conventional photosphere, with density

fluctuations exceeding an order of magnitude in the outer-most parts of the star. The

entropy profile in the interior of our Athena++ models is nearly adiabatic, declining

slightly out to 100 − 200R⊙ beneath the 1D photosphere, and declining more rapidly as
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Figure 5.11: Specific entropy (top panels), radiative luminosity (middle panels), and ra-
tio of the turbulent kinetic energy to the internal energy (bottom panels) in our RSG1L4.5
model at day 4707 (red, left) and RSG2L4.9 at day 4927 (orange, right). Mass-weighted
averages are shown in black, with 80% of the mass lying within the shaded regions. The
1D photosphere, where ⟨L(r)⟩ = 4πr2σSB⟨Tr(r)⟩4, is given by the vertical dashed line.

radiation is able to carry more of the flux. These entropy profiles are similar to those

seen in lower-luminosity RHD models (e.g. Stein & Nordlund, 1998; Magic et al., 2015).

Following Chiavassa et al. (2011a), we define the 1D photosphere by calculating 1D

radial profiles of the luminosity ⟨L(r)⟩ and radiation temperature ⟨Tr(r)⟩; r = Rphot

is then defined as the location where ⟨L(r)⟩ = 4πr2σSB⟨Tr(r)⟩4. The energy transport

in the stellar interior is dominated by convection, and radiation carries ≈ 10% of the

luminosity in the convective region. Moreover, the turbulent kinetic energy density from

the vigorous convective motions dominates over the thermal energy in the outer envelope,

in agreement with the findings of (Chiavassa et al., 2011a).
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5.3.2 Stochastic Angular Momentum

The 3D properties of convection in RSG interiors are also of interest for predicting prop-

erties of the remnant in failed SNe (e.g. Coughlin et al., 2018; Quataert et al., 2019). Re-

cently, Antoni & Quataert (2022) completed a detailed study of convective fluid motion

with applications to collapsing RSGs using 3D hydrodynamical simulations of idealized

RSG models spanning a factor of 20 in stellar radius. Their work considers an ideal

gas with polytropic index γ = 1.462 in a Plummer potential Φ = −GM/(rn + an)1/n

with n = 8 for a smoothing radius a ≪ ro in their dimensionless code units where

ro = Rphot/6. This converges to a point mass in their region of interest. These pure-

hydro simulations enforce a photospheric radius by providing a cooling sink at large fixed

radii and smoothly decreasing the temperature outside the photosphere to be equal to

their temperature floor. Their study focused on quantifying the randomly distributed

angular momentum of the inner layers of the convective RSG envelope, and how these

shells evolve during later collapse.

In our models, we likewise observe large tangential velocity fluctuations due to the

random convective fluid motion with coherence across many scale heights. Fig. 5.12

shows the radial and tangential components of the fluid velocity for equatorial (z = 0,

θ = π/2) slices through our Athena++ models, as well as the density structure. The

large radial velocity plumes carry material out beyond Rphot (the dotted lines). As the

fluid becomes optically thin, the temperature plummets and the pressure scale height

drops, and the very large convective plumes fragment into smaller bubbles of surface
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Figure 5.12: Equatorial (θ = π/2, z = 0) slices for our RSG1L4.5 (left 6 panels) and
RSG2L4.9 (right 6 panels) models at different simulation times. At each time for each
model, the left panel shows radial velocity (red/blue colors) and density (orange/purple
colors) is beneath. The right panel shows polar tangential velocity (vθ) and azimuthal
velocity (vϕ) is beneath. The simulation domain is from ϕ = 0 to π; thus the y-axis is
reflected in the lower half of each panel as indicated by axis labels. With θ = 0 along the
+z axis and ϕ = 0 along the +x axis, vθ > 0 indicates material flowing into the page, and
vϕ > 0 indicates material flowing clockwise around the page (due to the inverted y-axis).
The dashed line indicates the simulation inner boundary and the dotted line denotes the
1D photosphere.
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Figure 5.13: Specific angular momentum profiles at different snapshots (thin colored
lines), compared to the time-average (solid black lines), for our RSG1L4.5 (red, upper
panel) and RSG2L4.9 models (orange, lower panel).

convection. This is especially apparent in the more luminous RSG2L4.9 model (right

6 panels). Additionally, there is some outward-moving high-density material evident at

large radii. We will discuss this material in greater detail in §5.3.4. The velocities in

r, θ, and ϕ are comparable, with values of tens of km/s. The tangential flows (vθ and vϕ)

exhibit smaller-scale structures at smaller radii, in agreement with the results of Antoni

& Quataert (2022).

Although the net angular momentum in the envelope is nearly zero, these tangential

velocity fluctuations result in finite specific angular momentum jrand at a given radius at
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any given time. The magnitude (denoted || · · · ||) of the mass-weighted average of the ran-

dom specific angular momentum profiles, equivalent to ||jrand|| = ||⟨ρv×r⟩/⟨ρ⟩||, is shown

in Fig. 5.13. As in Fig. 5.9, faint colored lines correspond to individual snapshots in our

models, and the solid black line indicates the time-average. In agreement with Antoni &

Quataert (2022), these simulations exhibit relatively flat specific angular momentum pro-

files, pointing to the non-local coherent nature of the convective plumes. Due to the high

∼ 10 km/s tangential velocities and the fact that our simulation domain emphasizes large

radii (r > 400R⊙), we find specific angular momenta of 1018 − 2× 1019cm2/s throughout

our simulation domain. Transforming to a local rotational velocity ωrot = ||jrand||/r2,

this corresponds to a range of ωrot, declining from ≈10−3 rad/day to 10−4 rad/day before

rising outside Rphot in RSG1L4.5, and a flatter, slightly declining time-averaged profile

around a few ×10−3 rad/day in RSG2L4.9 with the scatter between snapshots ranging

from a few times 10−5 to 8×10−4 rad/day. These values are slightly larger than those

reported by Antoni & Quataert (2022), likely owing to the larger convective velocities

present in our simulations.4 Following Quataert et al. (2019), we should reduce our esti-

mate by the expected scaling for the larger number of eddies available in a 4π steradian

simulation, which would then be a factor of (Ω/4π)1/2 ≈ 0.6× smaller. This modifies our

values to a few×1017−1019 cm2/s, which are closer to those found by Antoni & Quataert

(2022).

4Antoni & Quataert (2022) reported values for volume-averaged specific angular momentum ||⟨v×r⟩||,
which are nearly equivalent to the mass-weighted average in their region of interest where r < 5

6Rphot.
At large radii, the mass-weighted average, equal to the total angular momentum in a shell divided by
the total mass of the shell, favors the denser turbulent plumes rather than the high-volume low-density
background, leading to larger values of ||jrand||. However this effect is not so dramatic that reporting
the volume-weighted average would account for the apparent difference.
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Figure 5.14: Characteristic density fluctuations versus the (volume-weighted) average
turbulent mach number for the 6 model snapshots shown in Fig. 5.12. Each point cor-
responds to the averaged value in each radial shell. The upper panel shows the area
fraction of the star at each location with τ < τcrit along a radial line of sight. Where
A(τ > τcrit) = 1 we expect the flow to follow the δρ/ρ ∝ M2 scaling, indicated by the
black dashed line.

5.3.3 Nature of 3D Convective Structure

In a clumpy or turbulent medium, density fluctuations are often characterized by σ2
ρ = ⟨ρ2⟩

⟨ρ⟩2

(see, e.g. Owocki & Sundqvist, 2018, in the context of stellar winds). For a log-normal

density distribution typical of convective flows, this is related to the characteristic density

fluctuations by (δρ/ρ)2 = σ2
ln ρ = ln

(
⟨ρ2⟩
⟨ρ⟩2

)
(Schultz et al., 2020). Locally, the buoyant

acceleration felt by a perturbed fluid element with density ρ+δρ will be related to gravity

as a ≈ (δρ/ρ)g. The perturbation will approximately traverse a scale height (or mixing

length) in time t with velocity v ∼ a t ∼ (δρ/ρ)(H/v)g. Thus v2 ∼ gH(δρ/ρ), or

δρ/ρ ∝ M2, where M = v/cs is the Mach number. Fig. 5.14 shows the characteristic
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density fluctuations δρ/ρ =
√

σ2
ln ρ versus the average Mach number in each spherical

shell for 450R⊙ < r < Rphot using the snapshots shown in Fig. 5.12. The area fraction

of the star where the optical depth along a radial line of sight is greater than the angle-

averaged τcrit, A(τ > τcrit), is also shown. Where A(τ > τcrit) is large, the fluid in both

models follows closely with the expected δρ/ρ ∝ M2 scaling. As A(τ > τcrit) decreases

and convection no longer dominates the energy transport everywhere, the scaling flattens

and the density fluctuations begin to saturate. Other snapshots exhibit the same behavior

in both models.

Other stellar properties also exhibit large fluctuations at a given radius, particularly

in the outer stellar layers, where the transition to radiation-dominated energy transport

does not happen at one single radial location. Fig. 5.15 shows radial profiles of the density,

gas temperature, Prad/Pgas ratio, and opacity for characteristic snapshots of RSG1L4.5

and RSG2L4.9 (day 4707 and 4927, respectively), with solid black lines showing the

volume-averaged radial profiles and color indicating the scatter. The density, which falls

like 1/r2 in the nearly-adiabatic interior, exhibits variations over 2-3 orders of magnitude

near Rphot, with an extended atmosphere which is absent in 1D models (compare to the

cyan line in the upper left panel).

The ratio of radiation to gas pressure is also significant, with ⟨Prad/Pgas⟩ = 0.15 at

r = 450R⊙ in the RSG1L4.5 model, and ⟨Prad/Pgas⟩ = 0.48 at r = 450R⊙ in RSG2L4.9

owing to the larger luminosity and lower density within the envelope. Moreover, rather

than a smooth transition from the H opacity peak to electron scattering, the temperature
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Figure 5.15: Top to bottom: Density, temperature, Prad/Pgas ratio, and opacity for
our RSG1L4.5 model at day 4707 (red, left panels) and our RSG2L4.9 model at day
4927 (orange, right panels). Color saturation indicates the volume-weighted probabil-
ity of finding a fluid element at a given (ρ, T,H/r, Prad/Pgas, κ) at each radial coordi-
nate, and solid black lines give the volume-weighted averages of each (non-log) quantity
(⟨ρ⟩, ⟨T ⟩, ⟨H/r⟩, ⟨Prad/Pgas⟩, ⟨κ⟩). The vertical black dashed line is Rphot. As Prad is not
defined in the free-streaming regime, the ratio Prad/Pgas is only shown for r ≤ Rphot. The
κ panels (bottom) show both the volume-averaged opacity log(⟨κ⟩) reported by Athena++

(solid lines), and the recovered OPAL opacity (dotted lines) from the volume-averaged
T and ρ profiles. For reference, the cyan line in the upper left panel shows the density
profile of the fiducial MESA model (green line in the left panels of Fig. 5.2).
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and opacity display bimodal behavior in the ≈ 100 − 200R⊙ region beneath Rphot. This

bimodality is not seen in the ρ profile. Near and even within the 1D photosphere, at

some angular locations outer convective plumes exhibit large opacities, whereas other

angular locations are dominated by cool material beyond the H opacity peak. Due to

the dramatic 4-order-of-magnitude differences in opacity of different material at fixed

radius, a linear volume-average of the opacity, given by the black line in the bottom

panels, will necessarily favor the high-opacity material. Most notably, the opacity above

which L locally exceeds LEdd, κEdd = 4πGcm/Lsurf , is κEdd ≈ 6 cm2/g for RSG1L4.5 and

κEdd ≈ 2 cm2/g for RSG2L4.9. In the bimodal transitionary region, a large fraction of

the material has κ > κEdd! Moreover, the presence of bimodal temperature and opacity

distributions in this transitionary region causes a smearing out of the H-opacity peak, so

the H opacity cliff, predicted by OPAL using the volume-averaged ρ and T profiles, is

less steep in the 3D simulation.

This transitionary region corresponds to the place where A(τ > τcrit) goes from 1 to

0 and the turbulent motions deviate from classical convection. We now turn to exploring

the fundamentally 3D properties of this convection in the RSG regime.

5.3.4 Transition to Radiation-Dominated Energy Transport

In classical MLT, a flow of fluid parcels, or “bubbles,” approximately maintain their en-

tropy and carry heat out as they rise with convective velocity vc over a mixing length

ℓ (See Ludwig et al. 1999 Appendix A for a review). As hot bubbles rise, there is
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a temperature contrast between the bubble and the surroundings, and on sufficiently

long timescales, a rising convective plume loses its heat via diffusion at a rate Lbubble ≈

f4πℓ2cPrad/τb, where τb is the optical depth of the bubble, and f depends on the ge-

ometry of the bubble. The ratio of the heat content of the bubble to the heat lost

as the bubble rises over distance ℓ is given by γ, the convective efficiency factor (see,

e.g. Henyey et al., 1965; Cox & Giuli, 1968; Ludwig et al., 1999; Kippenhahn et al.,

2013). In a radiation-pressure-dominated plasma (Prad ≫ Pgas), γ = (vcτb)/(cf), and

in a gas-pressure-dominated regime γ = [(Pgas/Prad)τbvc]/(2fc), as a parcel needs to

evacuate the radiation field ∼ Prad/Pgas times in order to lose its thermal content. In

the radiation-dominated regime then τcrit = c/vc, and in the gas-dominated regime

τcrit = (Pradc)/(Pgasvc). Up to a geometric prefactor, where τb ∼ τ , the efficiency γ

thus decreases with decreasing τ/τcrit. In both regimes, where τ < τcrit, a bubble radiates

a significant portion of its heat as it rises.

In solar-like convection, and in evolved lower-mass stars, the transition through

τ = τcrit is at low enough optical depth, τ ∼ a few, that it can be studied in detailed,

plane parallel RHD conputations (e.g. Trampedach et al., 2013, 2014a,b; Magic et al.,

2013a,b, 2015; Chiavassa et al., 2018a; Sonoi et al., 2019), and incorporated into 1D stel-

lar models via a tabulated boundary condition (e.g. Trampedach et al., 2014a; Salaris &

Cassisi, 2015; Magic, 2016; Mosumgaard et al., 2018; Spada et al., 2021). However, in our

spherical-polar near-super-Eddington RSG models, the large density fluctuations in the

global convective plumes discussed in the previous section extend out into the τ ≤ τcrit
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Figure 5.16: Optical depth τ in characteristic snapshots of our RSG1L4.5 (day 4707;
red, upper panel) and RSG2L4.9 (day 4927; orange, lower panel) models. Color satura-
tion indicates the volume-weighted probability of finding a fluid element at each radial
coordinate with a given τ , calculated along radial lines of sight. Optical depth τ1D, inte-
grating the volume-averaged opacity and volume-averaged density, is given by the black
line. The grey dashed line indicates the average τcrit at each radius (truncated outside
r = Rphot); near the outer layers of the star, most material is either significantly above
or below τcrit, with little material with τ ≈ τcrit.

region, and behave somewhat differently.

Fig. 5.16 compares the optical depth profile integrated along radial lines of sight in our

3D Athena++ simulations to the critical optical depth τcrit where we use the amplitude of

the radial velocity |vr| =
√

v2r as our proxy for vc. Due to the bimodal opacity distribution

of material above and below H-recombination, at a given radius near where τ1D = τcrit,

there is very little material with τ near τcrit. Rather, most of the fluid has τ ≫ τcrit

by over an order of magnitude, or τ ≪ τcrit by more than an order of magnitude. This

is yet another signature of the large-scale plume structure; within a given plume, the
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convective velocities are set nonlocally, and except at interfaces between plumes there is

little opportunity for radiative losses as fluid interacts primarily within the same plume.

Comparing to the same snapshots in Fig. 5.11, while the entropy profiles begin to decline

due to superadiabatic convection even where τ > τcrit (especially in the more luminous

RSG2L4.9 model), the entropy profiles decline significantly in the region where some

material has τ < τcrit, due to the plumes losing heat via diffusion and, where τ ≲ 1,

non-local radiative losses.

At optical depths with radiation-dominated energy transport where τ < τcrit, but

still τ > 1, radiation forces may significantly impact fluid motion at high L ∼ LEdd. In

our simulations, we observe a change in the dynamics between regions of high and low

τ/τcrit. This change can be seen in Fig. 5.17, which shows the area fraction of material

with τ < τcrit, compared to correlations between the radial velocity and the density,

opacity, and entropy of the fluid, defined by

corr(x, y) =

∑
(xi − ⟨x⟩) (yi − ⟨y⟩)√∑

(xi − ⟨x⟩)2∑ (yi − ⟨y⟩)2
(5.10)

and the sum is taken over all zones (subscript i) in each radial shell. Where A(τ <

τcrit) = 0, the density and opacity are anti-correlated with the radial velocity, and the

entropy is positively correlated with the radial velocity (where +vr is defined as moving

outwards). This is as expected for typical MLT-like convection; the material that sinks is

denser, lower-entropy (colder), and more opaque material than the surrounding medium.

However, for the outer radii where τ < τcrit, the correlation switches and cold (low-

entropy), opaque, dense regions rise! The shaded area indicates radii where the fluid
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Figure 5.17: Fraction of the solid angle where τ < τcrit along a radial line of sight
(top panel), as well as the correlations of radial velocity with the density (second panel),
opacity (third panel), and entropy (bottom panel). Colored lines show ≈ 350 total
snapshots starting from day 4000 in RSG1L4.5 and day 4500 in RSG2L4.9, until the end
of the simulations. The shaded area indicates radii where the time-average of A(τ < τcrit)
is between 5% and 95%. The RSG1L4.5 data are truncated at r = 1000R⊙, where the
density approaches the density floor.
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shows a mix of τ > τcrit and τ < τcrit material, quantified by where the time-average of

A(τ < τcrit) is between 5% and 95%, and it also captures the region in the star where the

correlations invert. This inverted correlation is also characteristic of surface turbulence

driven by the Fe opacity peak in younger massive stars (Schultz et al., in prep). In these

highly luminous stars, L can exceed LEdd at the τ = τcrit location due to the presence

of opacity peaks, and further analysis is required to understand what drives these near-

surface dynamics. Because the nature the RHD turbulence changes where τ < τcrit, we

thus presume for now that τ ≈ τcrit is an outer boundary where MLT treatments may

cease to be appropriate in the RSG regime.

Moreover, the observable photosphere around Rphot is in this lossy, inverted-correlation,

turbulent-pressure-dominated region! The convective motions here give rise to lumi-

nosity variations on timescales comparable to the timescales of the global convection

cells. Fig. 5.18 shows the lightcurves of the last ≈2000 days of our simulations, de-

termined at the simulation outer boundary as L(t) = 4π
Ωsim

∫
r2Fr(t)dΩ, where Ωsim =

∫ 3π
4

θ=π
4

∫ π
ϕ=0

d(cos θ)dϕ is the solid-angle of our simulation domain. Fitting a second-order

polynomial to the lightcurves5 and subtracting L(t) − Lpoly(t), we compute the time-

weighted variance as σ2
L =

∑
[L(t) − Lpoly(t)]2dt/

∑
dt, and the fluctuation amplitude

as max[L(t) − Lpoly(t)] − min[L(t) − Lpoly(t)]. The lightcurves beyond day 4000 ex-

hibit ≈ 3% mean luminosity fluctuations, with
√

σ2
L = 0.89 × 103L⊙ in RSG1L4.5, and

√
σ2
L = 1.9 × 103L⊙ in RSG2L4.9. Fluctuation amplitudes are ≈10%: 3.6 × 103L⊙ in

RSG1L4.5 and 8.6×103L⊙ in RSG2L4.9. The peak-to-peak fluctuations in the lightcurves

5in python, using numpy.polyfit
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Figure 5.18: Lightcurves starting at day 4000 for both simulation runs. The RSG1L4.5
lightcurve is shown red on the lower panel and RSG2L4.9 in orange on the upper panel.
Characteristic velocity decorrelation times for each model are indicated on the figure.

are irregular in time, and for RSG2L4.9 a single dominant period could not be found in the

power spectrum. This is likely due to the stochastic nature of the convective fluctuations.

For the de-trended RSG1L4.5 power spectrum calculated from day 4500 onward, there

is some excess power centered around 310 days/cycle with a 70 day spread resembling

quasi-periodic oscillations with a wide window function. This flattens out when consid-

ering the lightcurve after day 4000, and disappears when considering the lightcurve from

much earlier than that. We discuss briefly in the Conclusions (§5.5) how this variability

compares to observations.

5.3.5 Caveats of the 3D models

There are a few caveats which we believe do not impact any of the results presented here,

but are worth stating. First, while we include radiation pressure in the stellar interior,
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the radiation transport module in Athena++ is not yet compatible with arbitrary gas

equations of state. As such, our assumed value of µ = 0.645 entails that the gas pressure

may be overestimated by up to a factor of 2 in the outer regions with T ≲ 104K, which

could help account for the relatively low Teff of our models. However, it should be noted

that this region is exactly where turbulent pressure is expected to dominate over thermal

pressure, which would be even more significant if the gas pressure were lower than in

our models here due to H recombination. Secondly, while these simulations employ full

self-consistent coupling between radiation and hydrodynamics, the grey OPAL opacities

do not account for frequency-dependent effects. As shown by Chiavassa et al. (2011a),

non-grey opacities could lead to a steeper thermal gradient in the optically thin region,

with weaker temperature fluctuations, which affects the stellar spectrum and thereby

interferometric determinations of stellar radii. The small changes in the mass within the

simulation domain are dominated by IB effects and not outflows. The incorporation of

non-grey phenomena would also be required to place first-principles constraints on mass

loss and other important observable stellar properties. Finally, while our simulation

domain captures a very large fraction of the Ω = 2π hemisphere, the relatively few

convective plumes suggest that a full Ω = 4π simulation might yield more accurate

cancellation of random angular momenta than our estimate, and may have an impact on

the RSG lightcurve, which shows variability consistent with these stochastic convective

fluctuations.
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5.4 Implications for 1D calculations

Computational RHD models of convection enable tests of MLT assumptions, possible

calibrations, and incorporation into 1D models. A fundamental set of early 2D RHD

simulations (Ludwig et al., 1999) calibrated MLT parameters for portions of the low-

optical-depth regime in L ≪ LEdd stars, which was followed up with 3D simulations by

Sonoi et al. (2019), who do not definitively conclude if any particular convection model

gives the best correspondence between 1D and 3D models, but constrain α ≈ 1 − 2

across a grid of cool giant atmospheres (Red Giants with Teff > 4000K), in agreement

with some observational constraints (e.g. Joyce & Chaboyer, 2018). Other works (e.g.

Trampedach et al. 2014b; Magic et al. 2015; Salaris & Cassisi 2015) recovered similar

calibrations in similar L ≪ LEdd stars, though as convection becomes more vigorous in

stars with higher luminosity and stronger opacity peaks and plumes take up larger and

larger fractions of the star, the convective motions, particularly at the stellar surface,

can deviate significantly from MLT (see e.g. discussion in Trampedach et al., 2013).

We now discuss the implications of our 3D models for 1D calculations, focusing on the

region where corr(vr, ρ) < 0 so convection can be fairly compared to MLT’s working

hypothesis. Hereafter, we will refer to the location where the vr − ρ correlation inverts

(corr(vr, ρ) = 0) as the “correlation radius,” Rcorr.
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Figure 5.19: Radial fluid velocity magnitudes at characteristic snapshots of our models
compared to MLT. The left panel shows RSG1L4.5 at day 4707, and the right panel
shows RSG2L4.9 at day 4927. Mass-weighted average velocities are shown as thick black
lines, with 68% and 80% of the mass lying within the dark and light shaded regions,
respectively. The grey lines indicate the convective velocities predicted from MLT given
the volume-averaged temperature and density profiles and the model luminosity, for
integer values of α = 1 − 10. The plots are truncated where corr(vr, ρ) = 0, outside of
which the turbulent motions do not resemble MLT-like convection.
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5.4.1 Comparing Convective Velocities to MLT Expectations

We first check the fluid velocities in our models against expectations from MLT for spher-

ical stellar envelopes with luminosity L, and ρ(r), and T (r) profiles matching averages

of our 3D models. Where convection carries most of the flux, as in the RSG interior,

Fconv ≈ L/4πr2, and from Eqs (5.2) and (5.3),

vc ≈
(α

4

)1/3
(

L

4πr2
PQ

ρ2cpT

)1/3

. (5.11)

Fig. 5.19 compares this expectation to the fluid motion in our two RSG envelope models

as a function of the mixing length parameter α, with the diagnostic velocity taken to

be
√
v2r in the 3D models. We represent the 3D data via bands, with 80% of the mass

having velocities lying within the light colored regions, and 68% having velocities within

the darker colored regions. The mass-weighted averages are indicated by the thick black

lines. For clarity, we show here the comparison for individual model snapshots; the time-

averaged profiles display similar behavior. The azimuthal and polar velocity profiles

are comparable, with ⟨
√

v2θ⟩m ≈ ⟨
√

v2ϕ⟩m ≈ 5 − 8 km/s in RSG1L4.5 and 7-9 km/s in

RSG2L4.9, with large scatter (≳ ±5km/s), and radial motion accounts for ≈ 1/3−1/2 of

the turbulent kinetic energy density. We see good (factor of ≈ 2) agreement between the

convective velocities predicted by MLT and the 3D models, and the scatter in convective

velocities is much larger than the factor of 101/3 introduced by varying α by a factor of

10. In both models, the velocity profile is flatter across a larger radial domain than MLT

would predict for a fixed α. We speculate that this can be attributed to the nonlocal,

large-scale nature of the plumes, as the velocity profile is set by the motion of a mixture
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of plumes which do not change significantly over the simulation domain; this is also noted

in, e.g., Brun & Palacios (2009) in 3D simulations of RGB stars.

5.4.2 Calibration of Mixing Length Parameters in the Absence

of Pturb

Convective efficiency is important in determining the stellar radius as discussed in detail

in §5.1; therefore it is valuable to have a first-principles calibration of mixing length

parameters, especially α, within the RSG regime motivated by 3D models. Because the

nature of the turbulent energy and momentum transport changes outside Rcorr, we treat

Rcorr as an outer boundary beyond which MLT treatments cannot be calibrated, and

perhaps cease to be appropriate, in the high-luminosity RSG regime.

Most 1D stellar-evolutionary models do not account for turbulent pressure, and when

included, it is a challenge (see discussion in Trampedach et al. 2014b), so we first explore

the case where P = Ptherm = Prad+Pgas. We generate a 1D model from the 3D simulations

by finding the time-averaged, volume-averaged radial density and temperature profiles

from each 3D simulation run (ρ1D(r) and T1D(r), respectively). We choose volume-

averages along surfaces of constant gravity (radial coordinates) due to the loosely-bound

nature of the envelope, though where r < Rcorr different averages do not significantly

affect our results. We calculate κ from these profiles using the OPAL tables. The total

luminosity is taken to be the time-averaged luminosity in the outermost zone L = Lsurf ,

up to the end of the simulation starting from day 4000 in RSG1L4.5 and from day 4500
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Figure 5.20: Comparison of superadiabaticity (upper panels) and specific entropy (lower
panels) derived from our 3D models (black dashed lines) and from MLT (solid colored
lines), for RSG1L4.5 (left) and RSG2L4.9 (right) when Pturb is neglected. All values
shown are derived from the time-averaged, shellular (volume-weighted) averaged density
and temperature profiles, as well as the time-averaged luminosity at the simulation outer
boundary, beyond day 4000 in RSG1L4.5 and beyond day 4500 in RSG2L4.9.

in RSG2L4.9. We assume an EOS of ideal gas + radiation with µ = 0.645, as in our

3D model, which is appropriate for r < Rcorr as T ≳ 104K. We then solve the Henyey

et al. (1965) MLT equations assuming y = 3/4π2, and consider only material inside Rcorr

(where τ > τcrit ≫ 1) for different values of α (see Appendix C for more specific details).

The upper panels of Fig. 5.20 show the comparison between the superadiabaticity,

expressed as (∇−∇ad)/∇ad, using ∇ predicted by MLT and ∇ derived directly from the

averaged 3D data. The x-axis limits are 450R⊙ and Rcorr, respectively. We see signifi-

cant deviations between ∇ from ∇ad, with nearly-adiabatic behavior in the interior and

increasing superadiabaticity outward. The lower panels show entropy profiles, which are

often used to calibrate MLT parameters to 3D atmosphere models in more compact, less

luminous stellar environments (e.g. Trampedach et al., 2014b; Magic et al., 2015; Magic,
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2016; Sonoi et al., 2019). For our averaged 3D data, we calculate s including radiation

and gas entropy, s = kB
µmp

ln
(
T 3/2/ρ

)
+ 4

3
arT

3/ρ, where T is in K and ρ is in g/cm3, and

for MLT we integrate ds = cP d lnT [1 −∇ad/∇] using ∇ given by MLT, connecting to

the nearly-adiabatic r = 500R⊙ location to ensure agreement in the additive constant.

Both models display nice agreement with α = 4 in the interior. At larger radii, the

RSG1L4.5 model (left panels) exhibits greater superadiabaticity than implied by α = 4,

in better agreement with α = 2 − 3. This contributes to the entropy profile, which falls

more steeply than α = 4 and approaches the value predicted by α = 3 in our region of

consideration. The more luminous RSG2L4.9 model (right panels of Fig. 5.20) closely

follows the α = 4 predictions throughout most of the domain of interest, with generally

excellent agreement for the entropy profile, becoming more shallow as r approaches Rcorr.

5.4.3 Estimating Pturb in a 1D model and MLT Implications

In a vigorously convective stellar envelope, turbulent pressure can become comparable

to the thermal pressure and provide hydrostatic support. A fully self-consistent 1D

implementation of turbulent pressure in 1D models remains an open challenge, as the

inclusion of turbulent pressure leads to unrealistically steep pressure gradients near con-

vective boundaries, especially near the stellar surface (Trampedach et al., 2014b). In

MLT, turbulent pressure can be incorporated by modifying the pressure scale height and

the adiabatic temperature gradient. Using the chain rule to include Ptot = Pturb +Ptherm,

the modified adiabatic temperature gradient, ∇′
ad, is given by (Henyey et al., 1965),
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Figure 5.21: Impact of turbulent pressure on mixing length calibration. Compari-
son of superadiabaticity (middle panel) and entropy (lower panel) are shown, for our
averaged 3D RSG2L4.9 model (black dashed lines) and MLT with different α (solid
colored lines) as a function of temperature. The upper panel shows Pturb/Ptherm (dot-
ted line) and d lnPtherm/d lnPtot (dash-dot line), which are included in the MLT cal-
culation and in the averaged 3D ∇. The grey dashed line in the middle panel shows
∇therm = d lnT/d lnPtherm to facilitate direct comparison to Fig. 5.20. All values shown
are derived from the time-averaged (beyond day 4500), shellular (volume-weighted) av-
eraged density, temperature, and kinetic energy profiles, as well as the time-averaged
luminosity at the simulation outer boundary. The x-axis extends from r = 450R⊙ to
Rcorr = 865R⊙.
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∇′
ad =

(
d lnT

d lnPtherm

)

ad

× d lnPtherm

d lnPtot

. (5.12)

The substitution ∇ad → ∇′
ad is then made where ∇ad appears in the MLT equations

(Henyey et al. 1965; see also our Appendix D) and H is calculated as Ptot/ρg. The

lack of a reliable method to estimate Pturb inhibits such an incorporation in most 1D

MLT implementations. For convenience, definitions of different gradients we used are

also summarized in Appendix D.

Quantifying the pressure associated with turbulent kinetic energy densities from 3D

RHD models allows us to explore how the 1D gradients are modified for these stars. The

nonlocal nature of the convective motions means that the characteristic fluid velocity

used in calculating Pturb is not simply identified with the velocity parameter in MLT.

Therefore, in order to estimate the impact of turbulent pressure on the thermodynamic

gradients and recovered values of α, we determine d lnPtherm/d lnPtot directly from 1D

averages of our 3D models. For this initial exploration, we calculate Pturb and thereby

d lnPtherm/d lnPtot using the time-average of the angle-averaged Pturb = ⟨ρvrvr⟩. We then

use Henyey et al. (1965)’s formula with turbulent pressure motivated by the 3D data to

solve for ∇ at different values of α.

Fig. 5.21 shows the results of this exercise for the RSG2L4.9 model. The upper

panel shows the adiabatic correction term (d lnPtherm/d lnPtot; dash-dot line), as well

as the ratio of turbulent pressure to thermal pressure (dotted line). The value of ∇ =

d lnT/d lnPtot from the averaged 3D data, for which we now include turbulent pressure

as Ptot = Ptherm + Pturb, is shown by the black dashed line in the middle panel. For
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direct comparison to Fig. 5.20, we compare ∇ here to ∇ad rather than ∇′
ad. To further

facilitate direct comparison, the grey dashed line in the middle panel shows the value of

∇therm = d lnT/d lnPtherm, which was taken to be equivalent to the true ∇ in §5.4.2 and

is equivalent to the dashed black line in the upper right panel of Fig. 5.20. The lower

panel shows the entropy, calculated using ∇′
ad and ∇. The black dashed line in the lower

panel gives the entropy profile for our 3D-motivated 1D model, which is equivalent to the

black dashed line in the lower right panel in Fig. 5.20, as the turbulent pressure terms

cancel in the expression for s (i.e. ∇′
ad/∇ = ∇ad/∇therm). For the MLT values, shown

by the colored lines, each value of α recovers a larger value of ∇ compared to §5.4.2,

but a slightly shallower s profile (as the turbulent pressure correction in ∇′
ad accounts

for a greater portion of the ∇ − ∇ad excess). Therefore, if a 1D stellar evolution code

were to include a turbulent pressure correction to MLT using the Henyey et al. (1965)

parameters, we would recommend a value of α = 3.2 from this model.

5.5 Discussion & Conclusions

We have constructed global 3D radiation hydrodynamical simulations in the RSG regime

which include an accurate gravitational potential and radiation pressure in the convective

interior for the first time. These simulations span ≈70% of the 2π hemisphere and yield

predictions for the turbulent structure and dynamics from the middle of the convective

envelope out beyond the photosphere. Our incorporation of radiation pressure in optically

thick regions has enabled realization of the expected nearly-constant entropy profile and
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convective-luminosity domination in the convective interior. In agreement with Freytag

et al. (2002) and Chiavassa et al. (2009) we find that the convection is dominated by a

few large-scale plumes which flow through most of the simulation domain and survive

for timescales of ≈300 and ≈550 days (for RSG1L4.5 and RSG2L4.9, respectively; see

Fig. 5.8). When the models reach a convective steady state, RSG1L4.5 has log(L/L⊙) ≈

4.5 and Rphot ≈ 800R⊙, and RSG2L4.9 has log(L/L⊙) ≈ 4.9 and Rphot ≈ 900R⊙.

Both models display ≈10% variation in luminosity owing to the large-scale turbulent

surface structure (see Fig. 5.18). Temporal observations (see, e.g. Kiss et al. 2006;

Soraisam et al. 2018; Conroy et al. 2018; Chatys et al. 2019; Ren et al. 2019; Soraisam

et al. 2020) reveal RSG variability on timescales of a few hundred to thousands of days

in a variety of host environments. These signals include both periodic and stochastic

behavior, with increasing ubiquity of larger-amplitude fluctuations for brighter stars. In

M31, for example, all RSGs brighter than log(L/L⊙) > 4.8 display lightcurve fluctuations

with ∆mR > 0.05 mag, up to around ∆mR ≈ 0.4 (Soraisam et al., 2018). Periodic

variability is interpreted as radial pulsations (Stothers, 1969; Stothers & Leung, 1971;

Guo & Li, 2002), likely driven by a hydrogen ionization region inside the convective

envelope (Heger et al., 1997; Yoon & Cantiello, 2010). The stochastic fluctuations (e.g.

Ren & Jiang, 2020) qualitatively agree with our models, and we intend further analysis

to compare these convective models directly to observations.

In the outer stellar layers, radiation carries an increasing fraction of the total lumi-

nosity as convection becomes lossy. This transition is associated with reaching an optical
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depth τ < τcrit ≈ 100. Moreover, large density fluctuations and appreciable bimodality

in κ and T lead to a range of radii with increasing amounts of material at τ < τcrit

(see Figs. 5.15,5.16). In the region where τ along some lines of sight falls below τcrit,

the correlations of radial velocity with the fluid density, entropy, and opacity fluctua-

tions invert from what is characteristic of convective fluid motions (see Fig. 5.17); indeed

the denser, lower-entropy, higher-opacity material rises! These inverse correlations at

A(τ < τcrit) < 1 where L locally exceeds LEdd will not be seen if radiation pressure is

not inlcuded. The change in the nature of convective motions in the outermost stellar

layers of these highly luminous RSGs also prohibits a comparison to MLT treatments.

Hence, we define the radius where these correlations invert as Rcorr, taking it as an outer

boundary where MLT-like treatments cease to be appropriate.

Inside Rcorr, where MLT is applicable, the velocity profiles are flatter than MLT-like

convection due to the nonlocal, large-scale convective plumes, but display good order-of-

magnitude agreement (see Fig. 5.19). By comparing entropy profiles and superadiabatic

gradients inside R < Rcorr, we find from our 3D simulations that the mixing length α

appropriate for convection in this regime is α ≈ 3 − 4 (see Fig. 5.20 for models which

neglect pressure from the turbulent motions and Fig. 5.21 which includes an estimate for

such a correction). This convective efficiency is more consistent with estimates of larger-

than-solar mixing lengths from the HR position of RSG populations (Chun et al., 2018),

supernova color evolution (Dessart et al., 2013), and even some 3D treatments of the

Sun which compare conventional MLT to other prescriptions for handling the different
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flux terms (e.g. Porter & Woodward, 2000). Future work of immediate interest will focus

on better understanding the nature and implications of the surface turbulence outside of

Rcorr. Similar inverted-correlation behavior is also seen in other simulations of luminous

stars (e.g. in OB-star envelopes; Schultz et al. (2022)), but not in simulations of solar-like

convection (e.g. Stein & Nordlund 1998), and may owe to RHD effects where τcrit ≫ 1

and L ≳ LEdd.

In addition to exhibiting large density fluctuations which increase at large radii, the

Athena++ RSG models display shallower density profiles in their outer stellar halos com-

pared to traditional 1D hydrostatic models, and material near τ = 1 (≈50−100R⊙ beyond

Rcorr) reaches densities 1 – 2 orders of magnitude lower than barren 1D model photo-

spheres. In the eventual explosion of a RSG as a Type IIP Supernova, shock propagation

(and therefore the SN emission) may be moderated by these 3D envelopes. Early SN

emission (first ≈ 30 days) is sensitive to the outermost < 0.01− 0.1M⊙ of material; thus

the inverted-correlation surface-turbulent outer halo defines the emitting region for the

shock breakout and shock cooling phases of SN evolution. These phases have been stud-

ied extensively for 1D hydrostatic models with a well-defined outer radius (e.g., Nakar

& Sari 2010; Morozova et al. 2016; Shussman et al. 2016a; Sapir & Waxman 2017; Faran

et al. 2019; Kozyreva et al. 2020), but not for fundamentally 3D envelopes. The outer

halo of material will also modify the predicted UV shock breakout signatures. The extent

to which the 3D envelope properties discussed above may aid in our understanding of

early-time Type IIP SN emission is thus an exciting avenue for our future exploration.
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Chapter 6

Shock Breakout in 3-Dimensional

Red Supergiant Envelopes

The explosion resulting from the core-collapse of a massive (10M⊙ ≲ M ≲ 25M⊙) star

generates a strong shock, unbinding the hydrogen-rich red supergiant (RSG) envelope. As

the shock nears the outer layers, radiation escapes, leading to a hot (T > 105K), bright

flash, known as the “shock breakout” (SBO). For 1D (spherically-symmetric) models

with a well-defined outer radius, semi-analytical solutions exist for the shock propagation

(e.g. Lasher & Chan, 1979; Matzner & McKee, 1999; Katz et al., 2010), with extensive

predictions for the bolometric and optical-UV lightcurves (Nakar & Sari, 2010; Rabinak

& Waxman, 2011; Sapir et al., 2011; Katz et al., 2012; Sapir et al., 2013; Shussman et al.,

2016a; Sapir & Waxman, 2017; Kozyreva et al., 2020). One important prediction of these

1D models is that the observed SBO duration is set by the light-travel time across the
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stellar surface, R/c ≲ 1hour, which if measured would provide a direct constraint on the

stellar radius, R. This is a crucial measurement, as it would constrain the ejected mass

(Mej) and explosion energy (Eexp) when combined with information from the Type IIP

Supernova (SN-IIP) lightcurve (Goldberg et al., 2019; Goldberg & Bildsten, 2020).

Observations of SBO from SNe-IIP are presently sparse, with only a few serendipi-

tous detections by NASA’s GALEX satellite, all of which show durations of > 6 hours

(e.g. Schawinski et al., 2008; Gezari et al., 2008, 2010, 2015). This prolonged duration

is often attributed to interaction with a dense wind beyond a traditional 1D photo-

sphere (e.g. Gezari et al., 2008; Haynie & Piro, 2021) or by assuming an outer density

orders of magnitude lower than traditional 1D models (Schawinski et al., 2008). This

prolonged SBO is further corroborated by differences between SNe-IIP seen by Kepler

(Garnavich et al., 2016) and TESS (Vallely et al., 2021; Tinyanont et al., 2022) com-

pared to spherically-symmetric SBO models. In upcoming years, the data are expected

to improve dramatically, as future satellites such as ULTRASAT (Sagiv et al., 2014; Asif

et al., 2021) are poised to capture hundreds of SBO’s at high cadence, a number which

will grow when combined with data from wide-field X-ray satellites (Bayless et al., 2022).

SBO in realistic 3D RSG envelopes, which exhibit large-scale coherent plumes span-

ning large fractions of the stellar surface (e.g. Chiavassa et al., 2011b; Goldberg et al.,

2022), has not been explored. We show that large-scale, fully convective, intrinsically

3D envelopes yield significant differences in the predicted SBO signal, which has implica-

tions for the detectability of these transients, as well as the ability to extract information
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about the progenitors and explosions from the lightcurves. This work is organized as

follows: in §6.1, we discuss our simulation setup and verification. In §6.2, we discuss

the shock evolution in a fiducial explosion of one of our models, and in §6.3, we discuss

the temperature structure of the 3D SBO and properties of the bolometric lightcurves

and present our initial energy scalings of the SBO brightness and duration when the 3D

surface is taken into account.

6.1 Setup and Model Properties

We use the 3D radiation hydrodynamic (RHD) simulations of RSG envelope models

performed by Goldberg et al. (2022) using Athena++ (Stone et al., 2020; Jiang, 2021)

with X = 0.6, Z = 0.02 (mean molecular weight µ = 0.645) and opacities from OPAL

(Iglesias & Rogers, 1996), described in Chapter 5. Table 6.1 summarizes the properties of

these models; we treat RSG1L4.5 as our fiducial model. The stellar photospheric radius

Rphot is taken where shell-averaged radial profiles of the luminosity ⟨L(r)⟩ and radiation

temperature ⟨Tr(r)⟩ agree, ⟨L(r)⟩ = 4πr2σSB⟨Tr(r)⟩4 where σSB is the Stefan-Boltzmann

constant, following Chiavassa et al. (2011b). We use the RHD scheme presented by Jiang

(2021) with the same simulation domain as in Goldberg et al. (2022) for each model. This

is a spherical polar grid with 120 angles per grid cell for the specific intensities, 128 bins

from θ = π/4−3π/4 and 256 bins from ϕ = 0−π with periodic θ/ϕ boundary conditions,

covering 70.6% of the face-on hemisphere, Ω = 1.41π). For RSG1L4.5 (RSG2L4.9) we use

384 (256) bins in radius, for r = 400− 22, 400R⊙(r = 300− 6, 700R⊙), with δr/r = 0.01,
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Progenitor Model RIB/R⊙ Rout/R⊙ resolution (r × θ × ϕ) mIB/M⊙ Rphot/R⊙ ∆R/R⊙
RSG1L4.5* 400 22400 384 × 128 × 256 12.8 796 80
RSG2L4.9 300 6700 256 × 128 × 256 10.79 902 200

Table 6.1: Properties of the 3D progenitor models from Goldberg et al. (2022), including
inner boundary (RIB), outer boundary (Rout), resolution, mass interior to the simulation
domain (mIB),
photospheric radius Rphot, and span of the fluctuations in the expected radius of SBO
∆R (see discussion in §6.2). The simulation domain extends from θ = π/4 − 3π/4 and
ϕ = 0 − π, with δr/r ≈ 0.01. The naming scheme indicates log(L/L⊙). The * denotes
the model used in our fiducial explosion.

and an outflow outer boundary. No initial perturbations are necessary, as fluctuations

in the fluid properties are achieved by the full 3D RHD treatment in the convectively

unstable envelope in its convective quasi-steady-state. For more details about the 3D

RSG envelope models, see Goldberg et al. (2022).

To simulate the ejection of the 3D RSG envelope, we drive a strong, initially spherical

shock through the Athena++ models, introduced at RIB. The required time-dependent

inner boundary condition is derived from a 1D hydrodynamic simulation of the shock

and ejecta evolution for an appropriately scaled thermal-bomb explosion of a 1D RSG

envelope. The 1D explosion is carried out in MESA r-15140(Paxton et al., 2011, 2013, 2015,

2018, 2019), with a modified version of the example ccsn IIp test suite case, adapted

to excise the entire He core and deposit energy only in the H-rich envelope. It is run to

10 days past SBO, yielding T , ρ, m, radiative flux Frad, and velocity vr at RIB.

When the 1D shock front has just passed RIB (at radius rsh ≈ RIB + 30R⊙), we

map the post-shock ρ, T , and v to our Athena++ simulation domain from RIB to rsh,

leaving the pre-shock 3D envelope above that location unchanged. We then demand
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that the time-dependent boundary condition for T , ρ, v, m, and Frad at r = RIB in

Athena++ match that of the exploded MESA model at the RIB coordinate at each time

step thereafter. We discuss this setup and verification in greater detail below, in §6.1.1.

For our fiducial RSG1L4.5 explosion, 8 × 1050 erg is deposited into the H-rich envelope,

comparable to an ≈ 1051 erg explosion of the whole star.

6.1.1 Shock Initialization and Verification

We now discuss our MESA-motivated Athena++ inner boundary explosion scheme, and

compare spherical explosions on our 3D grid. The spherically symmetric SN shock prob-

lem is well-understood in the strong-shock, radiation-dominated limit. Matzner & McKee

(1999) provide an analytic expression for the shock velocity at radius r,

vsh(r) = A

(
Eexp

∆m

)1/2 [
∆m

ρ0r3

]0.19
, (6.1)

where Eexp is the explosion energy, ρ0(r) is the local pre-shock density, ∆m is the mass

entrained by the shock, and A = 0.736 (Tan et al., 2001). In the radiation-dominated

post-shock plasma (γ = 4/3) the velocity of the fluid just behind the strong shock

front is vfast = 6vsh/7. The density contrast between the pre- and post-shock material

is ρ1/ρ0 = (γ + 1)/(γ − 1) = 7 for γ = 4/3, where a 1 subscript denotes the post-

shock properties and 0 denotes pre-shock properties (Zel’dovich & Raizer, 1967). This

expression is valid when radiation is unable to leak out of the shock front (τ ≫ c/vsh).

Paxton et al. (2018) showed excellent agreement between explosions in MESA and these

semi-analytic expectations.
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In an exploding star, reverse shocks from core boundaries alter the final structure

and composition of the inner SN ejecta via the Rayleigh-Taylor Instability (RTI). This is

captured in MESA via the Duffell (2016) RTI prescription. However, we show below that

when studying the propagation of the forward shock through the hydrogen-rich envelope

and the properties of the outer ejecta shortly after shock breakout, these effects can

safely be ignored. To provide a 1D model which we can import into Athena++ as a new

bottom boundary condition, we excise the entire He core in the MESA model, and put a

thermal bomb in the innermost 0.2M⊙ of the H-rich envelope to reach a specified total

final energy.

As a first verification, we explode the 99em16 progenitor model from Paxton et al.

(2018) in MESA with the full core-envelope structure included, and then again with a

lower explosion energy and the entire He core excised. In both cases, we excise the core

with an entropy cut (at 4 kb/baryon for the Fe core and 20 kb/baryon for the He core)

before causing the infall to stall (at 400 km for the Fe core and 1R⊙ for the He core) and

depositing the explosion energy in the innermost 0.2M⊙ of the ejecta. We then allow

the resulting shock to propagate out through the envelope following the MESA-r15140

test suite case ccsn IIp (see Paxton et al. 2018 for discussion).

A comparison of the shock properties from the two MESA simulations is shown in

Figure 6.1. Snapshots are selected such that the shock fronts are at approximately the

same radius. The grey lines show profiles of the 1051 erg full-star explosion, while the

thin colored lines show the equivalent 8.0×1050 erg shock in the H-envelope. We see good
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agreement in the post-shock temperatures and velocities, and satisfactory agreement in

the outer post-shock density, especially at late times as the shock wave has had sufficient

time to propagate. The post-shock material is nearly isothermal, and the shock velocity

behaves as predicted by Equation (6.1). In the full-star explosion, roughly 80% of the

energy is deposited within the H-rich envelope, which motivates the choice of an 8.0 ×

1050erg energy deposition to compare to a 1051erg full-star explosion and for our fiducial

3D explosion. Although the reverse shock in the full-star explosion accounts for < 20%

of the explosion energy, it is not relevant to the surface material nor the propagation of

the forward-shock.

To ensure that this spherically symmetric explosion is also captured in Athena++, we

import the H-only explosion from MESA to Athena++ at a time when the shock front is

at r ≈ 300R⊙, 0.435 days after the onset of the explosion in MESA. We use a similar

spherical polar grid as in our 3D RSG model, with periodic boundary conditions in θ

and ϕ (θ = π/4 − 3π/4, ϕ = 0 − π), a reflective-velocity inner boundary (at 100R⊙),

and an outflow outer boundary beyond r = 2200R⊙. Figure 6.2 compares the resulting

shock profiles in MESA (thick grey lines) and Athena++ (colored dotted lines). Snapshots

are again selected such that the shock fronts are at approximately the same radius at

times t =0.19, 0.41, 0.67, 0.85, and 1.07 days since handoff in MESA and t =0.19, 0.39,

0.64, 0.83, and 1.08 days since handoff in Athena++. The radial mesh resolution in

Athena++ is given by the dotted points. The Athena++ data shown are angle-averages,

though individual radial rays show the same results for spherical explosions. The two
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Figure 6.3: Velocity, temperature, and density at r = rIB = 400R⊙ in MESA starting at
the time of handoff to Athena++ for the 3 explosion energies discussed in §6.3.

software instruments agree well with each other and with the analytic expectations, with

differences arising only due to the Athena++ resolution near the shock front and reflection

of some low-density material off of the inner boundary. These differences do not impact

the shock propagation or the early post-shock-breakout evolution of the outer envelope.

This agreement gives us confidence in our use of Athena++ for the next stage of our

exploration.

The inner boundaries of our 3D RSG envelope simulations are at r = 300 − 400R⊙

rather than r = 100R⊙, which means the scheme discussed above must be modified to

explode the 3D envelopes. As seen in Figure 6.1, a significant portion of the mass and

explosion energy passes through r = 400R⊙ as the explosion approaches SBO. We thus

developed a second explosion scheme on the exact same grid as our fiducial 3D envelope

180



model, but instead of a fixed inner boundary with specified initial conditions, we specify

the time-dependent fluid velocity v, density ρ, temperature T , and co-moving radiative

flux Frad in the ghost zones at the r = 400R⊙ inner boundary to match a MESA model at

the r = 400R⊙ coordinate at each timestep. This allows energy and mass to be fed into

the model through the inner boundary in order to power the shock.

For this, we must choose a MESA model which matches the average properties of

the RSG1L4.5 envelope model at the r = 400R⊙ coordinate. We thus select a MESA

model selected from the Goldberg & Bildsten (2020) grid of progenitors with pre-shock

ρ(r = 400R⊙), T (r = 400R⊙), and m(r = 400M⊙) approximately matching the shell-

averaged values at the r = 400R⊙ in the fiducial RSG1L4.5 envelope. The chosen model

has a progenitor mass of 19M⊙, mixing length in the H-rich envelope αH = 3.0, modest

wind ηwind = 0.2, no rotation (ω/ωcrit = 0), no overshooting (f = f0 = 0), and metallicity

Z = 0.02. The mass and radius of this MESA RSG progenitor model at the time of core-

collapse are 18.5M⊙ and 659R⊙.

As a first test of this scheme, we populate the Athena++ grid with data from the

profile of the H-envelope only explosion in MESA from r = 400R⊙ outward at the time

when the shock radius in MESA is at rshock = 426R⊙, near but outside the inner boundary

in Athena++. At the time of handoff to Athena++, the enclosed mass below r = 400R⊙

is 12.7M⊙. Figure 6.3 then shows our time-dependent inner boundary condition on v, T ,

and ρ taken from the r = 400R⊙ coordinate in MESA, with the time of handoff identified

when rsh = 426R⊙. The radiative luminosity, which is also passed to Athena++, is
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Figure 6.4: Upper panel: Cumulative kinetic (solid lines) and thermal (dashed lines)
energy integrated from the surface to radius r for different shock locations in MESA (thick
grey lines) and Athena++ (colored lines/points) using the time-dependent boundary con-
dition at r = 400R⊙. Density (second panel), temperature (third panel), and velocity
(fourth panel) profiles are also shown. Point spacing in the lower three panels indicates
the radial grid resolution in Athena++. Black diamonds show analytic expectations for
post-shock density ρ1 = 7ρ0 and and fluid velocity vfast = 6vsh(r)/7 using values from
MESA.
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small compared to the advective luminosity and the sign is negative, as the temperature

gradient is positive in the post-shock material. The comoving radiative luminosity can

also be estimated from Fr = 1
3
(c/κρ)aT 4/400R⊙, where ρ, T , and κ are taken at the

400R⊙ coordinate, which gives log(Fr,400/erg s−1 cm−2) ≈13.3, 13.0, and 13.6 for the

fiducial (black), low-energy (light red) and high-energy (dark red) explosions.

Figure 6.4 compares the shock propagation and energetics in MESA and Athena++

for the 8 × 1050 erg energy deposition, at times t =0.0, 0.15, 0.29, 0.46, and 0.56 days

after handoff (which occurs 0.96 days after explosion) in MESA and t =0.0, 0.15, 0.30,

0.44, and 0.54 days since handoff in Athena++. The upper panel only shows every other

profile for clarity, and the Athena++ grid is given by the rounded points in the lower

3 panels. We see excellent agreement between shock properties in MESA and Athena++,

with discrepancies arising primarily due to the slight time differences between the MESA

and Athena++ profile output. At the time of shock breakout, nearly 80% of the total

shock energy is contained within the Athena++ simulation domain, nearly equipartitioned

between kinetic and thermal energy, with thermal energy accumulated deeper in the

ejecta. This continued agreement further bolsters our confidence in the use of Athena++

to explore the 3D problem.

6.1.2 The 3D shock

To drive this explosion in the 3D envelope, we start with the 3D RHD Athena++ envelopes

at the end of the simulation run described in Goldberg et al. (2022). We then populate
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the innermost portion of the Athena++ simulation domain with the post-shock ρ, T , and

v values from the exploded MESA model between RIB to rsh when rsh ≈ RIB + 30R⊙,

leaving the pre-shock 3D envelope above that location unchanged. We then demand

that the time-dependent T , ρ, v, m, and Frad at r = RIB in Athena++ match that of

the exploded MESA model thereafter. The mass in our simulation domain in the fiducial

explosion is 4.5M⊙ at the time of the peak bolometric luminosity (Lbol) in the SBO,

which extrapolates to Mej = 12.7M⊙ accounting for the limited solid angle, which is a

combination of the initial mass within the simulation domain and the mass fed in by this

time-dependent boundary condition.

The shock propagation is shown in Fig. 6.5 for our fiducial explosion with Mej ≈

12.7M⊙ and Eexp = 0.8×1051erg. We show 128 radial rays equally distributed across the

stellar surface, and highlight four rays corresponding to different topographical features

of the 3D stellar surface: a “valley” (A), a “hillside” (B), a “plateau” (C), and a “moun-

tain” (D) on the stellar surface, with shock breakout expected to occur approximately

in alphabetical order. We discuss this expectation in greater detail in §6.2. Times are

labelled as time to the maximum observed Lbol integrated over the simulation angular

domain. The Matzner & McKee (1999) prediction for the fluid velocity is shown where

valid, using values of rsh and ρ0 along point C, displaying good agreement. We verified

agreement along all radial rays, and the variety in vr at the shock front at any given

time is consistent with the variation in ρ0 and rsh. Additionally, we confirm that the

post-shock ρ1 = 7ρ0 as expected analytically.
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Figure 6.5: Density (top), temperature (middle), and vr (bottom) radial profiles for our
fiducial 3D explosion along 128 rays (thin, faint lines) uniform in (θ, ϕ), with four lines
of sight with different expected SBO times emphasized (thicker solid lines), at different
times. Where applicable, the analytic expressions are shown for the density, 7ρ0, and
fluid velocity near the shock front, vfast = 6vsh/7 where vsh is given by Eq. 6.1 using
values for point C.
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Prior to the explosion, the convective velocity (vc) fluctuations are a few to 20km/s.

As vsh > 2000km s−1 ≫ vc, the resulting change in the shock frame is only at the

1% level. As the shock passes, the post-shock energy is split in near-equipartition

between the radiation energy density and kinetic energy density of the fluid, and the

kinetic energy density of the fluid is dominated by the radial velocity vr. Although

the radial motion of the shock front dominates the kinetics, the impact of the shock

on convective-like fluctuations can be quantified by the tangential velocity dispersion,

σ2
v⊥ =

∑
i(v⊥,idmi − ⟨v⊥,idmi⟩)2/

∑
i(dmi), where v2⊥ = v2θ + v2ψ, dmi is the mass in zone

i and the sum is over all zones in a given radial shell. This is shown in Fig. 6.6, which

compares the characteristic tangential velocity dispersion (colored lines) to the forward-

shock velocity (grey lines), vrms =
√

v2r + v2θ + v2ϕ+ ≈ |vr|, where vrms is calculated as

the kinetic energy in each radial shell divided by the shell mass. The underlying stellar

convective dispersion around 4km/s can be seen in the pre-shock material. Due to the

envelope inhomogeneities, the velocity dispersion grows as transverse pressure gradients

accelerate the fluid; however there is insufficient variety in the shock arrival time for these

fluctuations to grow appreciably, and the tangential velocity dispersion remains an order

of magnitude below the shock velocity.

As the explosion progresses, the shock front begins to corrugate from differing density

profiles seen along each radial ray. Fig. 6.7 shows these growing inhomogeneities in shock

temperature, velocity, and radius in progressive snapshots before SBO for a zoom-in

patch of the stellar surface, compared to the angle-averages (denoted ⟨· · · ⟩). Quantities
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Figure 6.6: Tangential velocity dispersion (rainbow lines) compared to the mass-weighted
rms velocity (thick grey lines) for 6 snapshots of our fiducial explosion.

are shown at the radial coordinate of the fastest-moving material at each angular location

(denoted rfast), and the radial velocity and radiation temperature Tr = (Er/a)1/4 at that

coordinate are denoted vr,fast and Tfast respectively. Locations A, B, C, and D, are labeled.

As the shock propagates further through the envelope, the shock radius begins to vary,

but before breakout remains at the level of ≈ ±3%. Temperature fluctuations reach the

10% level, and velocity fluctuations grow to the 15% level.

SBOs in aspherical axisymmetric explosions have been considered in prior works,

primarily in the case of oblique shock breakout in more compact (e.g. blue supergiant)

stellar sources (e.g. Couch et al., 2011; Suzuki et al., 2016; Afsariardchi & Matzner,

2018), as well as semi-analytically (Suzuki & Shigeyama, 2010; Linial & Sari, 2019; Irwin

et al., 2021). Some 3D simulations of the core-collapse explosion itself have examined

shock propagation all the way up to SBO with neutrino-powered core-collapse explosions

187



−0.25

0.00

0.25

co
s(
θ)

〈rfast〉=572R�

D

C

B

A

−0.25

0.00

0.25

co
s(
θ)

〈rfast〉=651R�

1 2

φ

−0.25

0.00

0.25

co
s(
θ)

〈rfast〉=734R�

1 2

φ

1 2

φ

−0.1 0.0 0.1

(rfast − 〈rfast〉)/〈rfast〉
−0.1 0.0 0.1

(vr,fast − 〈vr,fast〉)/〈vr,fast〉
−0.1 0.0 0.1

(Tfast − 〈Tfast〉)/〈Tfast〉

-16.8
h

rs
-10.9

h
rs

-5.0
h

rs

Figure 6.7: Corrugation of the shock front as it travels through the convective H-rich
envelope prior to SBO. Color indicates fluctuations in radial coordinate (left column),
vr (middle), and T (right) of the fastest-moving material at each angular location. The
approximate radius of the shock front is labeled in the left column and the time before
peak Lbol is labeled on the right.

188



(e.g. Wongwathanarat et al. 2015; Stockinger et al. 2020; Sandoval et al. 2021; Kozyreva

et al. 2022) in RSG envelopes coming from 1D stellar models; in those works, asymmetric

shocks, which sphericalize as they propagate, are introduced by the explosion mechanism.

In contrast, all effects discussed here are introduced by the 3D convective envelope itself.

6.1.3 Measuring the Bolometric Luminosity

We calculate Lbol as the integrated Fr passing through our simulation domain at fixed

radius scaled to the full Ω = 4π. We choose 2700R⊙ for a representative location, and

we confirmed that the lightcurve properties are independent of this choice. Because an

observer sees light coming from the whole star at once, not just light that travels along

radial rays, this representative location, which has a horizon encompassing 95% of the

solid angle of the r ≈ 820R⊙ SBO surface, is convenient for estimating the variation in

Lbol, by taking the bolometric flux at different angular locations. When showing fluid

properties, time 0 is when the star is emitting radiation that corresponds to the peak in

Lbol. This is another motivation to use 2700R⊙ rather than, e.g., r = 2500R⊙ or 3000R⊙,

as the light travel time from the star to the representative location is commensurate with

the time sampling of the 3D simulation output.

6.2 The 3D breakout

Radiation escapes ahead of the shock when the shock reaches an optical depth τsbo =

c/vsh (Lasher & Chan, 1979). The escaping radiation ionizes the pre-shock material and
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the opacity thereafter can be well-approximated by electron-scattering, κes = 0.32 cm2/g.

The radial scattering optical depth (τs) is then related to the column depth y =
∫∞
r

ρdr′

as τs ≡ κesy, and the breakout occurs where τs ≲ τsbo. In the outer layers, 3D simulations

reveal scale heights which are significantly larger than traditional 1D hydrostatic models,

likely owing to turbulent pressure (Chiavassa et al., 2011b). A low-density ‘halo’ of

material out to a few hundred R⊙ past the photosphere is also present above a bulbous

surface with large-scale plumes and order-of-magnitude density fluctuations spanning tens

to hundreds of R⊙. Fig.6.8 shows density (ρ) and τs profiles immediately prior to explosion

for RSG1L4.5. At Rphot = 796R⊙, the shell-averaged density is ⟨ρ⟩ = 6.9 × 10−10 g cm−3

and column depth is ⟨y⟩ = 780 g cm−2, with 80% of the material between ρ = 4.0 ×

10−11 − 1.9× 10−9 g cm−3 and y = 50− 2100 g cm−2. Before the explosion, the opacity in

this outer material is κ ∼ 10−3 cm2 g−1. For RSG2L4.9, not shown, Rphot = 902R⊙, and

⟨ρ⟩ = 7.1 × 10−10 g cm−3, with 80% between ρ = 3.4 × 10−11 − 1.8 × 10−9 g cm−3.

Our fiducial explosion of RSG1L4.5 generates a shock with vsh ≈ 3000km/s approach-

ing breakout, corresponding to τsbo ≈ 100. The τs = 100 ≈ τsbo surface, spanning

∆R ≈ 80R⊙, is shown in Fig.6.9, which would correspond to a horizontal slice through

the bottom panel of Fig. 6.8. The dashed box shows the characteristic patch which we

zoom into, with four points at different topography labeled: a “valley” (A), a “hillside”

(B), a “plateau” (C), and a “mountain” (D). The radial profiles corresponding to each

of these locations are shown as black lines in Fig. 6.8. The location of SBO often lies

outside the traditionally-defined Rphot, at characteristically lower densities. In contrast,
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1D RSG models with a barren photosphere (i.e. no circumstellar material; blue lines in

Fig.6.8), show τs plummeting from 1000 to 1 over ≈7R⊙ (≈1% of the stellar radius) and

ρ ≈ 10−9 g cm−3 for the lowest-density material, about 5× higher than we find at τsbo in

3D models.

Two timescales are relevant to the observed SBO duration from a 3D turbulent star.

The first is the local radiation diffusion time along a radial ray at the moment of SBO

(Katz et al., 2012)

tdiff ≈ Hρ

c
τ ≈ c

κρ0v2sh
, (6.2)

where Hρ is the local (radial) density scale height and the second expression eliminates

Hρ by equating the first expression and the time for the shock to cross Hρ (Hρ/vsh; i.e.

the breakout condition) and expressing τ as κρHρ near the surface. For our fiducial

model where τs = 100, ρ0 ranges from 1.25 − 3 × 10−10g cm−3, yielding tdiff ≈ 1 − 2.2

hours, 3−10× longer than tdiff in 1D models with barren photospheres (Shussman et al.,

2016a). The second timescale, intrinsic to 3D stars, is the time it takes the shock to

reach all of the fluid elements spanned by the ∆R ≈ 80R⊙ corrugation at the surface,

tcross ≈ ∆R/vsh. (6.3)

For ∆R = 80R⊙ and vsh = 3000−5000 km s−1 as is typical in the broken-out rays for the

fiducial explosion seen in Fig. 6.5, this is 5 hours to 3 hours. For the 3D stellar progenitor,

this timescale dominates tdiff , and most importantly, the light-travel time across the star,

R/c, which is ≈ 0.5 hours for R ≈ 800R⊙.

This timing spread can be seen as the shock reaches the inhomogeneous outer layers
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and accelerates down the steeper outer density gradient. Valleys on the stellar surface

(like point A) are shocked first, and mountains (like point D) are shocked later. Fig.6.10

shows the radial velocity, vr, for equatorial slices of our fiducial explosion at four snap-

shots, with t = 0 at the bolometric luminosity (Lbol) peak. Most of the motion of the

shock remains radial. When the shock velocity is vr ≈ 3000 km/s (see Fig. 6.6), the

transverse velocities are v⊥ ≈ 300km/s; even in broken-out layers where fluctuations be-

gin to span an order of magnitude in ρ and the shock accelerates to 4000 − 10000km/s,

v⊥ stays below 1000 km/s.

Fig.6.11 shows the radial coordinate of the fastest-moving material at each angular

location (denoted rfast), the radial velocity and radiation temperature Tr = (Er/a)1/4 at

that coordinate (denoted vr,fast, Tfast respectively), and the local flux at the first location

where Fr/Er = 1/3 inwards along each radial ray. We focus on a zoom-in (dashed box in

Fig.6.9) of our fiducial 0.8×1051 erg explosion of the RSG1L4.5 model. Times are relative

to peak Lbol. We do not find sufficient obliquity that material accelerated in transverse

directions is able to wrap around and reach the outer layers before the forward shock

arrives (which is to be expected, see Matzner et al. 2013 and also discussions in Irwin

et al. 2021). Rather, the “valleys” (A:ϕ = 1.78, cos(θ) = 0.21) have already undergone

breakout and cooled over tdiff , before the “mountains” are hit (D:ϕ = 0.7, cos(θ) = −0.2).

This manifests in lower Tfast, higher vr, and higher Fphot for point A at -3.5 hours, whereas

for point D, the shock front retains its heat and vr,fast remains lower, not yet undergoing

breakout even at the time of peak Lbol. Another intriguing outcome is that as the material
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in the valleys is shocked first and accelerated at an earlier time it gets to larger radii first,

inverting the topography of the surface of maximum velocity, evident in the lower left

panel of Fig. 6.11.

6.3 Observed properties of the 3D SBO

6.3.1 Temperature Structure

In the 1D picture, the observed temperature is set by the energy density at the breakout

location T ≈ (ρv2sh/a)1/4 up to a factor of order unity accounting for thermalization of the

radiation and gas (Nakar & Sari, 2010; Sapir et al., 2013). For vsh = 3000−5000km/s and

ρ = 1.25 − 3 × 10−10g cm−3, this would predict log(T/K) = 5.3 − 5.5. As the post-shock

temperature profile is nearly constant throughout the deep envelope, a similar estimate

is 4πr3shaT
4
sh/3 = Eexp/2, with rsh taken at the average radius where τs = c/vsh, or

Tsh =

(
3Eexp

8πr3sha

)1/4

. (6.4)

Fig. 6.12 shows radiation temperature as a function of (radial) optical depth τ =

∫∞
r

κρdr, for snapshots corresponding to the peak in Lbol for 3 explosions of RSG1L4.5

at different Eexp. Shaded regions indicate the spread in T − τ relations for 80% of Ω,

and the arrows show the prediction for the asymptotic shock temperature from Eq. 6.4

using the average shock front location across the breakout surface, rsh = 820R⊙. The

thin black lines show T − τ relations along an intermediate ray (point C) which has

recently been hit by the forward shock. The radiation and gas temperatures are approxi-
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mately thermalized in the material which has already broken out, and the profile follows

the Eddington grey atmosphere assuming constant flux, T 4 = 3
4
T 4
eff

(
τ + 2

3

)
(Rybicki &

Lightman 1986, dotted line). When tdiff ≪ tcross, we expect a diversity of Teff across the

stellar solid-angle, which is not the case in the limit of tdiff ≫ tcross.

6.3.2 Bolometric properties

The resulting SBO lightcurves of our 3D explosions are fainter, and longer-duration,

than explosions of 1D stellar models. Fig.6.13 shows Lbol for different explosions, and the

explosion properties are summarized in Table 6.2. The upper panel compares log(Lbol) of

our fiducial explosion (black curves) to a 8×1050erg explosion of the RSG2L4.9 model, as
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well as characteristic 1D explosion models from Goldberg & Bildsten (2020) using MESA

and STELLA (Blinnikov & Sorokina, 2004; Baklanov et al., 2005; Blinnikov et al., 2006)

selected for their comparable Eexp, Mej, and radii (blue and cyan). The 1D lightcurves are

corrected for light-travel time as Lbol(t) = 1
R/c

∫ t
t−R/c L (t′) dt′ (Shussman et al., 2016a),

which dominates the SBO duration tSBO ≈ R/c in 1D explosion models. These 1D

explosion lightcurves agree well with the Shussman et al. (2016a) semi-analytical models

(see also the detailed discussions in Kozyreva et al. 2020). The RSG2L4.9 explosion

(orange line in the upper panel) has a smaller Mej = 3.5M⊙ in the simulation domain

and therefore larger vsh, with similar ρ0 but with greater variety and some material

below 10−10 g cm−3. The greater variety of shock arrival times across the larger ∆R =

200R⊙ also leads to a greater diversity in velocities and lightcurves along different lines

of sight. In both models, the intrinsic ∆R dominates over the possible diversity of radii

at which SBO would occur at 20 < τs < 200 corresponding to an order of magnitude

in c/vsh. The lower panel compares three different explosions of the RSG1L4.5 model,

with Eexp = 4 × 1050 erg, 8 × 1050 erg, and 1.6 × 1051 erg; lower-energy explosions have a

longer duration with lower peak luminosity compared to higher-energy explosions. In the

3D explosions, the spread of possible SBO signals is estimated by 4πr2Fr at 64 viewing

angles across the surface, shown as faint lines. A full-star simulation would allow for a

more complete sampling of SBO radii which might increase the duration of the lightcurve.

This can be quantified with explosions at different time snapshots in the star’s evolution.

In the 1D model explosions, the intrinsic rise time of the SBO pulse is equal to tdiff
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explosion models (Goldberg & Bildsten, 2020) are shown in the upper panel (blues),
labeled M[Mej/M⊙] R[Rphot/R⊙] E[Eexp/1051erg]. The x-axis for all 3D curves is the
time since the maximum shell-averaged Lbol (i.e. the peak of the thick curves).
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(Nakar & Sari, 2010; Sapir et al., 2011), but the observed duration of the SBO pulse

is smeared out over the light-travel time R/c (Calzavara & Matzner, 2004; Katz et al.,

2012; Shussman et al., 2016a), as tdiff is typically less than or comparable to R/c for 1D

stellar models with no circumstellar material. For more extended envelopes (R ≳ 700R⊙)

and lower surface densities, the diffusion time can dominate over the light-travel time,

but is still expected to be under ≈ 1hr or so (see discussion in Calzavara & Matzner

2004) In the 3D models, due to the lower densities and larger scale height of material

where SBO occurs, both tdiff and tcross are significantly longer than R/c. Additionally, the

diffusion time and the shock traversal time across the inhomogeneous outer layers scale

differently with the explosion energy. The shock traversal time, tcross ∝ v−1
sh

∝∼ E
−1/2
exp ,

whereas tdiff ∝ (ρ0v
2
sh)−1 ∝∼ E−1

exp (this scaling varies for assumptions about the outer

density profile, but is steeper than E−0.8
exp ; see Rabinak & Waxman 2011, Shussman et al.

2016a, and others).

We define a characteristic SBO duration, ∆t1/2, as the width of the SBO pulse from

half of the peak luminosity on the rise (trise) to half the peak luminosity on the fall (tfall),

∆t1/2 = trise + tfall. Characterizing the breakout by ∆t1/2, rather than trise, is motivated

by the fact that when the SBO duration is mediated by the 3D inhomogeneities, the

morphology of the τs = c/vsh surface will determine the shape of the breakout pulse.

This is also evident when comparing the RSG1L4.5 and RSG2L4.9 lightcurves, which

have similar tcross but different morphology where τs = c/vsh. For the 1D explosions

shown, ∆t1/2 = 0.55 hrs for the 850R⊙ model and 0.45 hrs for the 719R⊙ model, consistent
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Progenitor Model Eexp/1051erg Mej/M⊙ r(τs = 100)/R⊙ Lpeak/1044erg s−1 trise/hr ∆t1/2/hr

RSG1L4.5 0.4 12.7 ≈ 820 0.51 2.33 6.09
0.8* 12.7 ≈ 820 1.12 1.64 4.36
1.6 12.7 ≈ 820 2.66 1.20 3.02

RSG2L4.9 0.8 3.5 ≈ 960 2.65 1.56 4.03

Table 6.2: Summary of the properties of the 3D explosion models, including Eexp and Mej

in the simulation domain at the time of peak Lbol, the approximate average location of
SBO, the peak luminosity, rise time, and duration. The * denotes the fiducial explosion.

with R/c. In the 3D SBOs, ∆t1/2 ≫ R/c, and the relative durations exhibited by the 3D

models are consistent with the semi-analytic expectation that∆t1/2 ∼ tcross ∝∼ ∆R v−1
sh ,

which scales like ∝∼ E
−1/2
exp for fixed Mej and R. This agreement, rather than steeper

dependence on Eexp expected for tdiff > tcross or no dependence on Eexp if the duration

were set by R/c, further supports the notion that tcross is setting the SBO duration for

these explosions. In fact, the numerical values of ∆t1/2 for the explosions summarized in

Table 6.2 agree well with ∆t1/2 ≈ tcross from Eq. 6.3.

In the 3D star, due to the different SBO times at different patches on the stellar

surface, individual SBO signals coming from each angular location peak at different

times within the span of tcross ≈a few hours, and the duration of each of those individual

local breakout signals would be approximately set by tdiff ≈an hour or two as expected

for the nearly planar case discussed by, e.g., Nakar & Sari (2010) and Irwin et al. (2021).

However, an observer far away from the star does not only see emission coming from a

shock breakout along the radial ray directly pointed directly at them. Rather, because

emission streaming out of the photosphere at each location on the stellar surface is

somewhat isotropic (mediated in part by the stellar surface topography), and because
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the difference in light travel time from different patches of the stellar surface (≈ R/c)

is shorter than tcross, observers at different viewing locations far away from the star will

see a SBO signal that is integrated from the broken-out patches across the portion of

the star that they see. This is why the timing of the peak luminosity shown in Fig. 6.13

is more similar for different observer locations, and the duration of the breakout for all

observers matches more closely with tcross.

Since tdiff ∝ v−2
sh but tcross ∝ v−1

sh for a given star, the diffusion time may dominate

the shock traversal time at lower vsh (i.e. low Eexp). This occurs when vsh < c/(κρ0∆R),

or vsh ≈1,300 km s−1 for ∆R = 80R⊙ and ρ0 = 1.25 × 10−10 g cm−3. In those cases,

the emission would appear more spherical and we would also expect less diversity in the

observed temperature.

Furthermore, a characteristic luminosity can be predicted as the internal energy con-

tained outside τ < τsbo, E0, divided by the relevant timescale, t0, or Lchar = E0/t0. Fol-

lowing Nakar & Sari (2010), E0 ≈ 4πr2shρ0v
2
sh(c/κρ0vsh) = 4πr2shcvsh/κ, with rsh ≈ 820R⊙

for RSG1L4.5 as the average radius of the τs ≈ 100 surface. When tcross > tdiff ,

Lchar ≈ E0/tcross rather than identifying t0 = tdiff , so

Lchar ≈ 4πr2sh
c

κ

v2sh
∆R

∝∼ Eexp (6.5)

where the energy scaling is for fixed stellar properties. Because tcross (a few hours) in

the 3D models is larger than tdiff for a 1D stellar model with a barren photosphere (tens

of minutes) or R/c (≈half an hour), this entails a SBO signal a factor of ≈3-10 times

fainter than 1D models predict, as seen in Fig. 6.13. Moreover, the energy scaling is
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in rough agreement with the peak bolometric luminosity Lpeak seen in the 3D explosion

models with varied explosion energy, and the magnitude of Lpeak matches Eq. 6.5 for

Lchar within the variance in vsh ≈ 3000 − 5000km s−1 (Eexp/0.8 × 1051erg)
1/2

for a given

explosion along different lines of sight, which is less than a factor of 2.

Finally, when t > tcross such that most parcels have undergone SBO, but while the fluid

elements have not yet doubled their radius, the emission follows the expected Lbol
∝∼ t−4/3

decline predicted for this planar shock cooling phase (see, e.g., Nakar & Sari, 2010).

The NUV/ULTRASAT band pass (2200-2800Å) is near the peak of the blackbody for

the expected T = 105 − 105.5K near the maximum Lbol, so the rise time and duration of

the bolometric luminosity signal are nearly that which would be observed by ULTRASAT.

The emission cools into NUV bands beyond the UV/bolometric peak, which does extend

the decline in those bands; a full frequency-dependent calculation of SBO emission will

yield further predictions about the radiation temperature which would better map to the

observables expected from future and current high-energy satellite missions.

6.4 Discussion

By driving a SN shock through global 3D RHD simulations of RSG envelopes in Athena++,

in this Chapter we have explored the effects of the 3D surface on the resulting SBO emis-

sion. Two important physical differences serve to prolong the SBO duration compared

to the spherically symmetric case (see, e.g. Nakar & Sari, 2010; Sapir et al., 2011; Katz

et al., 2012; Sapir et al., 2013; Sapir & Waxman, 2017). First, the intrinsic radiation dif-
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fusion time increases due to lower-density material outside the traditional photosphere

present in 3D models which contributes non-negligibly to the optical depth near SBO.

Most importantly, the bulbous 3D surface with a handful of large-scale plumes spanning

∆R ≈ 100R⊙ yields a variety of shock arrival times at the stellar surface, on a timescale

tcross ≈ ∆R/vsh. This is an intrinsically 3D phenomenon, setting the observed SBO

duration for typical explosion energies.

Both timescales dominate over the light-travel time across the stellar surface, R/c,

which is approximately equal to the observed rise time in explosions of 1D stellar progen-

itors in the absence of circumstellar material (see, e.g. Sapir et al., 2013; Shussman et al.,

2016a; Kozyreva et al., 2020). This new 3D understanding provides better agreement

with the hours-long SBO signal observed in the few existing detections of SN SBO in the

UV (e.g. Gezari et al., 2008; Schawinski et al., 2008; Gezari et al., 2010, 2015). The im-

plied longer durations additionally lead to fainter peak luminosities for a given explosion

energy, by a factor of ≈ 3−10. Thus, while useful for constraining the amount of surface

asymmetry and the shock velocity as it reaches the stellar surface, SBO observations

cannot independently constrain the stellar radius.

Additionally, at any point in time near the peak in Lbol, fluid elements across the sur-

face coexist at different stages pre-, mid-, and post-shock-breakout, leading to a diversity

in the temperature as a function of optical depth along different lines of sight. Specifics

of the radiation spectrum await a multi-group 3D calculation, and the 3D nature of the

envelope may have further implications for early-time spectropolarimetric measurements
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(e.g. Leonard et al., 2001; Wang & Wheeler, 2008; Kumar et al., 2016), as well as flash

spectroscopy (e.g. Khazov et al., 2016; Kochanek, 2019; Soumagnac et al., 2020).
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Chapter 7

Implications and Future Directions

As the most common class of massive star explosions, Type II-Plateau Supernovae from

Red Supergiant progenitors have the potential to probe the final stages of the massive

star life cycle, encoding information about their stellar properties, explosion dynamics,

radioactive 56Ni production, and more. This dissertation utilizes 1D stellar evolution

models combined with radiation-hydrodynamical calculations of the SN emission, as well

as 3D RHD simulations, to explore the extent to which we can and cannot extract these

explosion properties from lightcurves and velocity observations. First: what can’t we

recover? We show in Chapter 2 that the standardizable candle relationship between the

plateau luminosity and plateau velocity (see, e.g. Hamuy & Pinto, 2002; Hamuy, 2003;

Kasen & Woosley, 2009) forbids the unique identification of a single explosion model

from lightcurves and velocity information alone, and we show in Chapter 4 that a wide

swath of Mej−R parameter space can be filled by stellar evolution models when allowing

206



for reasonable variations in input physics. This is also found to be true both in non-

evolutionary models for the progenitor structure (e.g. Martinez & Bersten, 2019) and in

other evolutionary calculations (e.g. Dessart & Hillier, 2019). We also show in Chapter 6

that the shock breakout timing variations due to large-scale 3D fluctuations in the RSG

outer layers entail that future observations of SBO will likely not be able to directly

constrain the progenitor radius via light-travel-time effects.

So what can we infer? Foremost, independent constraints on either the progenitor

radius, ejecta mass, or explosion energy can allow for the unique identification of these

explosion properties. Moreover, despite the inherent degeneracy, the scaling relations

derived in Chapter 2 provide good fits across a variety of Nickel-rich events (see both

Chapter 4, and also Hiramatsu et al. (2021b) for applications towards interpreting ob-

servations of a proposed Electron Capture Supernova candidate), and even in principle

for changes in radius due to stellar pulsations (discussed in Chapter 3). Thus, when

combined with a large sample of lightcurves and reasonable priors on, e.g., the pop-

ulation of RSG radii, this work can allow us to characterize observed populations of

SNe-IIP in an ensemble fashion. For example, Murphy et al. (2019) used the scaling

relations described in Chapter 2 with the observed distribution of RSG radii as a prior

to highlight an apparent gap in between the distribution of explosion energies recovered

from the Pejcha & Prieto (2015a) lightcurve sample and the explosion energies recovered

by 3D neutrino-hydrodynamic simulations of the CCSN explosion mechanism. Such an

approach could be reproduced and extended for larger observed SN samples, such as
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the recently published Carnegie Supernova Project sample (Martinez et al., 2022a,b,c),

for which the present analysis involves fitting to a grid of hydrodynamic explosions of

polytropic stellar models which likely span an insufficient region of the Mej − R − Eexp

parameter space to capture all valid solutions within the possible family of explosions.

There are a variety of additional future prospects for building upon and extending

this work. While plateau-phase luminosities and expansion velocities as probed by the

Fe II 5169Å line measured near the SN photosphere during the plateau follow a stan-

dard candle relationship, the full ejecta velocity profile does scale independently with

only the ejected mass and explosion energy (see Figs. 2.17 and 2.18). Two observable

spectroscopic features stand out as likely candidates for probing that velocity profile,

which might then yield additional constraints on Mej and Eexp. Foremost, differences

in the depths of P-Cygni absorption features have been associated with differences in

total envelope mass (see e.g. Hillier & Dessart, 2019), with some evidence that higher

envelope masses correspond to deeper absorption features relative to emission. Secondly,

lines formed at different locations outside the photosphere may exhibit different Doppler

shifts, particularly between lines formed systematically closer to the photosphere (e.g. Fe

II 5169Å) and lines formed farther outside the photosphere (e.g. Hα/β), as the velocity

profile changes with
√
Eexp/Mej. A diversity of velocity ratios is indeed seen in samples

of SNe-IIp (e.g. Takáts & Vinkó 2012; Gutiérrez et al. 2017a,b). Future spectroscopic

modeling efforts could yield quantitative relationships between these (and other) spectro-

scopic observables and the explosion properties of models producing identical lightcurves,
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which will in turn allow Eexp (and Mej and R) to be constrained.

Furthermore, advancements in 3D modeling have led the development of 1D pre-

scriptions to mimic the neutrino-powered CCSN explosion mechanism, such as the STIR

(Couch et al., 2020) and PUSH (Perego et al., 2015; Ebinger et al., 2019; Curtis et al.,

2019; Ebinger et al., 2020; Ghosh et al., 2022) methods. Existing studies using these

implementations to create model lightcurve have used grids of stellar models which fix

stellar input physics such as core-boundary mixing, MLT α, and stellar wind efficiency

and primarily explore sensitivity to the initial stellar mass (e.g. Curtis et al., 2021; Barker

et al., 2022). However, the prospect of having only one allowable explosion energy for a

given stellar model, predicted from first principles, is exciting, and extensions of this line

of work to a broader grid of RSG models spanning the uncertainties in the stellar model-

ing prescriptions might nonetheless place additional theoretical constraints on allowable

parameter space, e.g. in the Mej − Eexp plane.

Down the line, once we gain a good understanding of the explosion energy function

from observations, we can then directly constrain the relationship between the explosion

energy and the productive of radioactive 56Ni (e.g. Müller et al., 2017). Moreover, the

Type II SN explosion energy scale, approximately equal to the asymptotic kinetic en-

ergy of the ejecta, is important to supernova feedback in models of star formation and

the interstellar medium. At present, even the most state-of-the-art cosmological simula-

tions such as FIRE-2 (Hopkins et al., 2018a) and Illustrius-TNG (Pillepich et al., 2018a;

Naiman et al., 2018; Nelson et al., 2018; Springel et al., 2018; Marinacci et al., 2018)
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use a standard explosion energy of 1051 erg for every Supernova energy injection (see,

e.g., discussions in Hopkins et al. 2018b and Pillepich et al. 2018b). We hope that with

more precise constraints on the typical SN explosion energy and dependence on stellar

properties, future simulations will be able to more accurately capture these dynamics.

There is also progress to be made in the 3D simulations of RHD-convective envelopes

and their explosions. One caveat of the 3D Athena++ simulations are the lack of the

enthalpy of recombination and the fixed value of µ in the equation of state (EOS). While

pressure from the trans-sonic turbulent motions dominates in the outer stellar regions

where H recombination may occur, these EOS artifacts might affect the outer envelope

structure (and/or also lead to additional sensitivity to RHD perturbations). One avenue

forward is to explore the sensitivity to a more realistic EOS for the gas. An additional

caveat is the grey treatment of the opacity in the Jiang (2021) RHD module. Chiavassa

et al. (2011a) show some differences in the temperature structure at the RSG surface

between grey-opacity and multi-group calculations with the CO5BOLD and OPTIM3D codes.

A multi-group radiation-transport module has been developed (Y-F Jiang, in prep.)

which can be used to study such effects in the Athena++ simulations. Applied to the

3D SBO problem, multi-group radiation transport calculations would also validate and

quantify our prediction of a range of photon temperatures around the time of the peak

luminosity, due to the mix of emission from different patches of the stellar surface at

varied stages of shock breakout and radiative cooling. This would also enable synthetic

lightcurve calculations for specific UV bandpasses in ULTRASAT and other instruments.
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These calculations will also be useful towards interpreting the first ∼ 10 days of shock-

cooling emission when coming from the intrinsically 3D outer envelope, which have yet

to be fully explored in the 3D simulations.

Another avenue for exploration in 3D is moving beyond barren 3D stellar photo-

spheres, as mass loss during the RSG phase prior to explosion affects early-time SN

emission. There are two mechanisms which might cause significant mass loss during

that time: Wave-driven heating generated by vigorous convection in burning regions

(Quataert & Shiode, 2012; Fuller, 2017; Wu & Fuller, 2021), and pulsationally-driven

superwinds (Yoon & Cantiello, 2010). Spherically symmetric models of the wave-driven

mass loss mechanism show promise in resolving some of the discrepancies in early emis-

sion between models and observations (Morozova et al., 2019; Tinyanont et al., 2022),

but both of these mechanisms may interact differently in 3D envelope structures com-

pared to 1D. To explore the effects of a wave-heating-driven mass-loss mechanism in a

realistic 3D environment, we could resume our 3D RSG envelope models with a sudden,

abrupt increase in the luminosity at the inner boundary, with energy deposition and rates

matching analytic expectations, and study the dynamical effects of such energy injections

on the surface material (to complement very recent work by Tsang et al., 2022, using the

FLASH code). Linking the 3D models to the work on pulsating RSGs described in Chapter

3, it would be interesting to investigate the structure of pulsationally driven winds (Yoon

& Cantiello, 2010) within our the 3D Athena++ envelope simulations. Perhaps resum-

ing the envelope simulations with a background velocity field resembling large-amplitude
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fundamental-mode pulsations, we could self-consistently quantify the mass loss due to

these pulsations or characterize any extended material within the stellar atmosphere.

Current ongoing efforts are also being made to extend our understanding of the con-

vective properties of supergiant envelopes more broadly across the HR diagram, with a

Yellow Supergiant envelope simulation currently running on NASA computing resources.

212



Appendix A

Quantifying Fallback in

Core-Collapse SNe

Here we discuss modifications relative to MESA IV, of MESA modeling of the ejecta

evolution after core collapse in massive stars (roughly M > 8M⊙). These are focused

on cases where the total final explosion energy is positive, but insufficient to unbind the

entirety of the material which does not initially collapse into the compact object. In

these weak explosions, there is some amount of fallback material which does not become

unbound. Our emphasis here is to quantify and remove fallback in model explosions of

RSG progenitor stars. Although we describe models of Type IIP SN explosions, this

scheme can be similarly applied to core collapse events in massive stars which have lost

the majority of their outer Hydrogen envelope, which produce Type IIb and Ib SNe.

In MESA IV, three options existed to treat fallback:
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1. Set the velocity of all inward-moving material with negative total energy to be zero,

which creates a hydrostatic shell that can be excised from the ejecta before handing

off to the radiation hydrodynamics code STELLA to calculate SN observables.

2. During the shock propagation phase, remove material at the inner boundary (IB)

if it has negative velocity (i.e. if it is infalling).

3. Remove material at the IB if it is moving with negative velocity and also has net

negative energy (i.e. it is bound and infalling).

However, triggering fallback based only on conditions in the innermost zone can lead

to problems. For example, in many models at lower explosion energies, while the inner-

most zone may have negative cell-centered velocity, it can be in thermal contact with

neighboring zones. Therefore to remove cells solely based upon their having negative

velocity creates a vacuum at the IB which can remove energy and mass which could

otherwise remain in the ejecta. Moreover, energy deposited at the IB by any inward-

propagating shock can cause the innermost zones to have positive total energy, while

being surrounded by a larger amount of material with net negative energy. Because

of this, in some models, checking only if the innermost zone is bound before triggering

fallback can lead to bound material piling up on top of a small number of cells with

positive total energy. If not removed this can lead to a globally bound hydrostatic shell

building up in the center, which might interact with the ejecta and affect concentrations

of important species such as H and 56Ni, thus affecting SN properties. Such a region can

also lead to numerical problems if not properly excised before handing off to radiative
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transfer codes such as STELLA.

Paxton et al. (2019) (MESA 5) introduces two new user controls to better account for

material which could fall onto the central object during the hydrodynamical evolution

of low explosion energy core-collapse SNe. First, a new criterion is implemented to

select which material is excised from the model.1 At each timestep, MESA calculates the

integrated total energy from the innermost cell to cell j above it:

Ej =

j∑

i=inner

[
ei −

Gmi

ri
+

1

2
u2
i

]
dmi, (A.1)

where for cell i at mass mi and radius ri, ei is the internal energy in erg g−1 and ui

is the velocity in cm s−1. If Ej < 0, then there is a bound inner region, and MESA

continues this calculation outward until it reaches a cell k with local positive total energy

(ek −Gmk/rk + u2
k/2 > 0), causing the integral to be at a local minimum. MESA deletes

material inside this zone, and moves the IB, fixing the inner radius of zone k to be

the new radius of the inner boundary r_center, and setting the velocity at the inner

boundary v_center=0. A schematic diagram of this calculation, in a case where fallback

is triggered but the innermost zones are unbound, is shown in Figure A.1.

Figure A.2 shows the evolution of the inner boundary for explosions of varying total

energy just after the explosion (Etot, defined in Section 2.1), using the new fallback

criterion for the M12.9 R766 progenitor model, which has a total energy of −4.4 × 1050

ergs just before the explosion. Nearly all of the mass lost to fallback occurs while the

forward-moving shock is in the Helium layer, beginning around the time that the reverse

1This criterion is triggered when fallback check total energy is set to .true. in star job.
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Figure A.1: Diagram for new fallback criterion at a timestep where there is net positive
energy near the inner boundary, but a larger, gravitationally bound region above it which
will eventually fall back.

shock generated at the interface between the CO/He layers reaches the inner boundary.

Because the new fallback prescription sets v_center=0 and fixes r_center except in the

case of fallback being triggered, all changes in the radius of the inner boundary are due

to cells being removed from the inner boundary. For sufficiently large explosion energies,

little to no fallback is seen, although some cells of negligible mass are removed from the

inner boundary, causing the radius of the inner boundary to move outward.

Second, in order to remove any slow-moving, nearly hydrostatic material left near

the inner boundary as a result of the fixed r center, which may cause problems after

handing off to radiation hydrodynamic codes (see Figure A.4), MESA allows the user to

specify a minimum innermost velocity for material which gets included in the final ejecta

profile that is handed off to STELLA.2 MESA will then exclude all material beneath the

2This is controlled by thestar job inlist parameter stella skip inner v limit, which is the mini-
mum velocity of the inner ejecta to include in the profile handed off to STELLA in units of cm s−1.
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Figure A.2: Evolution of the mass (upper panel) and radial (lower panel) coordinate
of the inner boundary for the new fallback prescription for the M12.9 R766 progenitor
model from MESA IV for explosions of increasing energy. Colored dots correspond to
times that the forward shock crosses a sharp compositional gradient: entering the He
layer, entering the H layer, and shock breakout. Because the fallback prescription holds
r center fixed and v center= 0, all changes in r center result from inner cells being
removed from the model.
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Figure A.3: Mass of fallback material at shock breakout as a function of the total energy
of the exploded model at the time of shock breakout for three different progenitor models
exploded with 12 different explosion energies. Results are shown for the new integrated
energy fallback criterion with no additional velocity cut (black points), and the same
criterion with a 500 km s−1 velocity cut at shock breakout (red points).

innermost zone that has velocity greater than this velocity cut. This can lead to a small

amount of additional mass which is excluded from the final ejecta profile at handoff.

The result of both modifications is shown in Figure A.3, for three different models

exploded at 12 different explosion energies. This can be loosely compared with Figure 6

of Perna et al. (2014). Included are the M12.9 R766 and M11.3 R541 models from our

standard suite, as well as an additional model, named M20.8 R969, which has binding

energy −8.4 × 1050 ergs just before the explosion, included in order to demonstrate an

explosion in a more massive star where there would be more fallback material due to

more strongly bound core material. Generally, models with and without a velocity cut

end with roughly the same amount of fallback. In cases where the explosion energy is just
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Figure A.4: Effects of a velocity cut on STELLA light curves and Fe II 5169Å line velocities
for our M12.9 R766 progenitor model exploded with Etot = 5.0 × 1051 ergs and a nickel
mass MNi = 0.042M⊙, where we see a noticeable difference between the mass of fallback
material with and without a velocity cut (≈ 0.3M⊙).

barely enough to unbind all of the mass, the velocity cut can remove a small additional

amount of material. However, as seen in Figure A.4, even in this case, a suitable velocity

cut between 100 - 500 km s−1 has very little effect on light curve properties and the

photospheric evolution of the SN, and can greatly reduce numerical artifacts which may

arise from an inward-propagating shock hitting the inner boundary in STELLA. Such a

cut also can lead to a factor of 10 or more speedup in number of timesteps required to

produce a light curve.
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Appendix B

Extension of the Plateau due to

Ni-56 Decay

We start with the thermodynamic equation, where a fluid is heated by nuclear decay (in

our case, of 56Ni) with complete trapping

TdS = dE + PdV = Lnucdt (B.1)

In a 1-zone, radiation-dominated regime, we can express P = E/3V and V =

4π(vt)3/3. Assuming homology, dV/V = 3dt/t, and this becomes

1

t
d(Et) = Lnucdt. (B.2)

To find the total energy at time t, integrate from from tSB to obtain:

E(t) = E0
tSB
t

+
1

t

∫ t

tSB

t′Lnuc dt
′, (B.3)

where Lnuc is due to the 56Ni → 56Co → 56Fe decay chain, following Nadyozhin (1994):
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Lnuc =
NNiQNi

τNi

exp

(−t

τNi

)
+

NNiQCo

τCo − τNi

[
exp

(−t

τCo

)
− exp

(−t

τNi

)]
, (B.4)

where NNi = MNi/(56 amu), τX is the lifetime of radioactive species X, and QX is the

energy per decay of species X.

Assuming only 56Ni is produced in the explosion and all 56Co comes from 56Ni decay,

the contribution to the internal energy due to the 56Ni decay chain over the lifetime of

the SN is

Etot,Ni =
1

tp

∫ tp

tSB

tLnuc dt. (B.5)

We now make a few approximations: First, by the end of the plateau, 56Ni has

undergone many decay times. Thus we take tSB → 0 and tp/τNi → ∞ when in the bounds

of our integrals. However, the decay time of 56Co is 111.3 days, which is comparable to

tp. Thus we approximate tp/τCo ≈ 1 when in the bounds of our integrals. Outside the

integrals, we assume that the time to shock breakout is roughly the expansion time,

tSB ≈ te, where, as in Section 2.2,

te = R0/ve,

ve =

√
2Eexp

Mej

≈ 3.16 × 108M10E51 cm s−1.

Any numerical quantities are, in reality, dependent on the specifics of the relevant

timescales. Here we aim primarily to capture the relevant scaling relationships, fitting

against our models to find appropriate numerical prefactors.
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Computing these integrals and simplifying, we find that

Eint(tp) =
E0 te
tp

+
NNi

tp

[
QNiτNi + QCo

(
0.26τ 2Co − τ 2Ni

τCo − τNi

)]
(B.6)

=
E0 te
tp

× frad, where (B.7)

frad ≡ 1 +
NNi

teE0

(QNiτNi + QCoτ
′
Co) and (B.8)

τ ′Co ≡
(

0.26τ 2Co − τ 2Ni

τCo − τNi

)
, (B.9)

noting that E0, the internal energy at tSB, is roughly half the total energy of the explosion

(mentioned as a comment in K&W), we set E0 = Eexp/2.

We can re-express frad as

frad = 1 +
MNi

E0

τNi

te

(
qNi + qCo

τ ′Co

τNi

)
(B.10)

where qX is the specific (per gram) energy released by the decay of species X; in this

case qX = QX/56 amu.

Following Nadyozhin (1994), we use QNi = 1.75 MeV/nucleon, QCo = 3.73 MeV/nucleon,

τNi = 8.8 days, and τCo = 111.3 days. We thus find that

frad ≈ 1 + 7.0
(
MNi,⊙E

−1/2
51 R−1

500M
−1/2
10

)
. (B.11)

This argument ignores the effects of the distribution of 56Ni, as we necessarily have

assumed in this simple 1-zone model that the nickel is distributed evenly throughout

the ejecta. If the heat from the 56Ni decay is trapped inside the core of the star until

that material becomes optically thin, then this would further extend the duration of the

plateau. Thus, we should treat the factor of 7.0 as a rough lower bound, rather than an
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expectation.

We can also recast Equation (B.11) in terms of ET and ηNi. Although our derivation

assumes all internal energy is trapped to be radiated away, and the Shussman et al.

(2016a) derivation of ET assumes that all energy is radiated away, this is just a difference

in terms and not a difference in physics. Thus at t = tp, plugging in ET = E0tSB ≈ E0te

and ηNi =
(∫ tp

tSB
tLnuc dt

)
/ET to Equation (B.3), we recover

Eint(tp) = E0
te
tp

+
ET ηNi

tp
≈ E0 te

tp
(1 + ηNi), (B.12)

so frad ≈ 1 + ηNi.
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Appendix C

MLT Calibration Details and

Sensitivities

In MLT, as deployed by Henyey et al. (1965), the optical thickness of a bubble is ω = κρℓ,

akin to τb discussed in §5.3.4, which is typically comparable to the optical depth to

the surface (τ) when the opacity is not changing drastically. The convective efficiency

parameter is then given by

γ =
∇−∇e

∇e −∇ad

= γ0vc (C.1)

where γ0 = cpρ/ (8σSBT
3θ), θ = ω/(1 + yω2), and y depends on the geometry of the

bubble. We solve for γ via the cubic equation

γ + γ2 + ϕγ3 =
gHQ (αγ2

0)

ν
(f∇rad −∇ad) , (C.2)

where F = Lsurf/4πr2 = 16σT 4∇rad/3κρH defines ∇rad as the gradient required to carry

all flux by radiative diffusion, ϕ = 3
4
fωθ, ν = 8, and f = 1 as τ > τcrit ≫ 1 inside
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Figure C.1: Comparison of efficiency factor γ (upper panels), superadiabaticity (middle
panels) and entropy (lower panels) derived from our 3D models (black dashed lines)
and from MLT (pastel colored lines) against profiles derived from RSG1L4.5 (left) and
RSG2L4.9 (right) when Pturb is neglected. Each color corresponds to a different value of
α, and each linestyle (solid, dash-dot, dashed) corresponds to a different value of y.

Rcorr. For an ideal gas + radiation, EOS properties vary with αP ≡ Prad/Pgas (Mihalas

& Mihalas 1984; P subscript added to distinguish from α = ℓ/H), with

cP =
5

2

kB
µmp

(
1 + 8αP +

32

5
α2
P

)
, (C.3)

and

∇ad =
1 + 5αP + 4αP

2

5
2

+ 20αP + 16αP 2
. (C.4)

From this, MLT yields a prediction for ∇, which we compare to the gradients derived

from ρ1D and T1D:

∇ =
(1 + γ)f∇rad + ϕγ2∇ad

1 + γ + ϕγ2
. (C.5)
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Following Henyey et al. (1965), we use y = 3/4π2 for our analysis in §5.4. We repeated

this analysis varying y for values ranging from 1/20, which is the prediction for a parabolic

temperature distribution inside a bubble, to 1/2 (as used by Böhm-Vitense (1958)) which

corresponds to a linear temperature distribution (see discussion in Henyey et al., 1965).

This is shown in Fig. C.1. The region inside r < Rcorr is in the limit of higher ω (τ ≫ 1),

so γ0 ∝∼ y, leading to a strong y-dependence in γ for both models. However, variations

in γ lead to large differences in ∇ and s only when γ ≲ 1. For the RSG1L4.5-derived

model, ω is sufficiently large due to the slightly larger envelope mass and smaller radius,

so fractional changes in γ do not lead to significant differences in ∇ or the recovered

entropy profile except for the α = 1 line (which disagrees with the model profiles). In

the case of RSG2L4.9, ω is smaller due to the lower envelope density, so changes in y

do affect the recovered superadiabatic gradient and entropy profiles even for α ≲ 3, with

higher values of y leading to smaller ∇−∇ad and flatter s profiles. However, this effect

is still not substantial for α = 4, which also agrees best with the model. In all cases,

variation in ∇ and s introduced by varying y is dominated by differences for different α.

Comparing the luminosity carried by radiation recovered by MLT to the time-averaged

shell-averaged Fr of the 3D models, there is good agreement between the MLT values

in both models within ≈5% for r ≲ 700R⊙. Outside of those locations, however, MLT

predicts dramatically lower radiative fluxes and higher convective fluxes due to the pres-

ence of the H opacity peak. This is not surprising for two reasons. First, we consider

κ from a 1D OPAL call, where the H opacity spike is sharper (see the bottom panels
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of Fig. 5.15) compared to the 3D data which displays a bimodal distribution of κ in

a given radial shell. Secondly, different values of τ along different lines of sight where

there is appreciable bimodality (see Figs. 5.15,5.16) allow radiation to carry more of the

flux than one would expect from radiative diffusion through a 1D shell with no density

fluctuations.
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Appendix D

Thermodynamic Gradient

Definitions Including Turbulent

Pressure

For convenience, we reproduce here how the MLT equations in 5.4.2 include the Henyey

et al. (1965) turbulent-pressure correction. For clarity, the definitions of the relevant

gradients are given in Table D.1.

Including a turbulent pressure in the expression for the total pressure, Ptot = Ptherm +

Pturb, the modified Eq. C.1 becomes

γ =
∇−∇e

∇e −∇′
ad

= γ0vc, (D.1)

Eq. C.2 becomes

γ + γ2 + ϕγ3 =
gHQ (αγ2

0)

ν
(f∇rad −∇′

ad) , (D.2)
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gradient Definition

∇ actual d lnT
d lnP

in the star

∇therm
d lnT

d lnPtherm
in the star

∇e ∇ inside an eddy as it moves

∇ad

(
d lnT

d lnPtherm

)
ad

from the fluid properties

∇′
ad ∇ad × d lnPth

d lnPtot

∇rad ∇ required to carry Lsurf solely by radiative diffusion= (3LsurfκρH)/(64πr2σSBT
4)

Table D.1: Definitions of various gradients discussed in this work.

and Eq. C.5 becomes

∇ =
(1 + γ)f∇rad + ϕγ2∇′

ad

1 + γ + ϕγ2
. (D.3)
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Anderson, J. P., González-Gaitán, S., Hamuy, M., et al. 2014, ApJ, 786, 67

Andrews, J. E., Sand, D. J., Valenti, S., et al. 2019, ApJ, 885, 43

Antoni, A., & Quataert, E. 2022, MNRAS, 511, 176

Arnett, W. D. 1980, ApJ, 237, 541

Arroyo-Torres, B., Wittkowski, M., Chiavassa, A., et al. 2015, A&A, 575, A50

Asif, A., Barschke, M., Bastian-Querner, B., et al. 2021, in Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series, Vol. 11821, Society of Photo-
Optical Instrumentation Engineers (SPIE) Conference Series, 118210U

Baklanov, P. V., Blinnikov, S. I., & Pavlyuk, N. N. 2005, Astronomy Letters, 31, 429

Barker, B. L., Harris, C. E., Warren, M. L., O’Connor, E. P., & Couch, S. M. 2022, ApJ,
934, 67

Bayless, A. J., Fryer, C., Brown, P. J., et al. 2022, ApJ, 931, 15

Bellm, E. C., Kulkarni, S. R., Graham, M. J., et al. 2019, PASP, 131, 018002

Bersten, M. C., Benvenuto, O., & Hamuy, M. 2011, ApJ, 729, 61

Bersten, M. C., & Hamuy, M. 2009, ApJ, 701, 200

Blinnikov, S., Lundqvist, P., Bartunov, O., Nomoto, K., & Iwamoto, K. 2000, ApJ, 532,
1132

Blinnikov, S., & Sorokina, E. 2004, Ap&SS, 290, 13

230

http://dx.doi.org/10.3847/1538-4357/aab3d4
http://dx.doi.org/10.1088/0004-637X/786/1/67
http://dx.doi.org/10.3847/1538-4357/ab43e3
http://dx.doi.org/10.1093/mnras/stab3776
http://dx.doi.org/10.1086/157898
http://dx.doi.org/10.1051/0004-6361/201425212
http://dx.doi.org/10.1117/12.2594253
http://dx.doi.org/10.1117/12.2594253
http://dx.doi.org/10.1117/12.2594253
http://dx.doi.org/10.1134/1.1958107
http://dx.doi.org/10.3847/1538-4357/ac77f3
http://dx.doi.org/10.3847/1538-4357/ac77f3
http://dx.doi.org/10.3847/1538-4357/ac674c
http://dx.doi.org/10.1088/1538-3873/aaecbe
http://dx.doi.org/10.1088/0004-637X/729/1/61
http://dx.doi.org/10.1088/0004-637x/701/1/200
http://dx.doi.org/10.1086/308588
http://dx.doi.org/10.1086/308588
http://dx.doi.org/10.1023/B:ASTR.0000022161.03559.42


Blinnikov, S. I., Eastman, R., Bartunov, O. S., Popolitov, V. A., & Woosley, S. E. 1998,
ApJ, 496, 454
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