
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title

Mixed 0-1 conic quadratic optimization: formulations, convex relaxations and algorithms

Permalink

https://escholarship.org/uc/item/65h4p3jx

Author

Gomez Escobar, Andres

Publication Date

2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/65h4p3jx
https://escholarship.org
http://www.cdlib.org/

Mixed 0-1 conic quadratic optimization: formulations, convex relaxations and
algorithms

by

Andrés Gómez Escobar

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Industrial Engineering and Operations Research

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Alper Atamtürk, Chair
Professor Dorit Hochbaum

Professor Peter Bartlett

Summer 2017

Mixed 0-1 conic quadratic optimization: formulations, convex relaxations and

algorithms

Copyright 2017

by

Andrés Gómez Escobar

1

Abstract

Mixed 0-1 conic quadratic optimization: formulations, convex relaxations and algorithms

by

Andrés Gómez Escobar

Doctor of Philosophy in Engineering - Industrial Engineering and Operations Research

University of California, Berkeley

Professor Alper Atamtürk, Chair

Conic quadratic functions arise often when modeling uncertainty and risk-aversion, and

are used in many fields including finance, machine-learning and robotics. Such functions are

convex, and thanks to substantial efforts over the past two decades in developing techniques

for convex problems, large conic quadratic optimization problems can be solved efficiently

in practice. However, many decision-making problems involving logical choices are discrete

in nature, and thus non-convex. Despite considerable improvements in our ability to solve

mixed-integer linear optimization problems (MILO), their nonlinear and conic counterparts

are still poorly understood and considered intractable.

Most of the advances in solving mixed-integer nonlinear optimization (MINLO) were

obtained by adapting techniques used for linear discrete optimization. One of the first

approaches proposed was to construct a linearization of the nonlinear terms and solving

the optimization problem as a MILO, but since such approaches solve a relaxation of the

original problem, they may fail to find optimal solutions. More recent approaches that have

proved successful involve using linear outer approximations with extended formulations, or

using mixed-integer rounding and lift-and-project cuts, which where original proposed for

MILO. However, such approaches based on previous results for MILO may fail to consider

and exploit the specific structure of the nonlinear discrete problems.

In this dissertation, we study the structures specific to nonlinear mixed-integer optimiza-

tion. Moreover, we propose a variety of novel algorithms for conic discrete optimization.

The algorithms, despite exploiting the nonlinear structure of the problems, are similar to

algorithms commonly used for the linear case.

2

In Chapter 2 we study the problem of maximizing a class of nonlinear utility functions

over the vertices of an integral polytope, and propose an approximation algorithm for the

problem. The algorithm exploits the fact that there exists an optimal solution to the natural

convex relaxation of the problem in an edge of the polytope, and rounds the solution to a

vertex.

One of the principal approaches for solving discrete optimization problems to optimal-

ity are branch-and-bound algorithms. For linear problems, branch-and-bound algorithms

are typically implemented using the simplex method, which allows to use warm-starts to

efficiently solve the convex subproblems at each node of the branch-and-bound tree. In

Chapter 3 we present a simplex method for conic quadratic minimization over polyhedra,

and show that the algorithm outperforms existing methods in both convex and discrete

instances.

In Chapter 4 we study strong formulations for general mixed-binary conic quadratic op-

timization. In particular, we give a complete description of the convex hull of the lower level

set of a mixed-integer conic quadratic function. The convex hull can be described in an

extended formulation using a single conic quadratic constraint and exponentially many lin-

ear inequalities. Thus, the inequalities can be implemented as cutting planes using existing

techniques. Our computational experiments indicate that the inequalities strengthen the for-

mulation considerably, and often result in order-of-magnitude improvements over commercial

software.

In Chapter 5 we consider binary quadratic problems, which are a special case of conic

quadratic problems. We propose an approach based on the decomposition of binary quadratic

functions into a submodular component and a component with a convex relaxation. Then, by

linearizing only the submodular component, we obtain formulations stronger than the natu-

ral convex relaxation of the problem and the formulation obtained from the full linearization

of the quadratic expression. Preliminary computational experiments indicate that the pro-

posed approach can result in considerable faster branch-and-bound algorithms. Finally, in

Chapter 6 we give an overview of the main contributions in the dissertation, and provide

promising directions for future research.

i

A mis papás, Mauricio y Ana Cristina.

ii

Contents

Contents ii

List of Figures iv

List of Tables v

1 Introduction 1
1.1 Notation . 4
1.2 Mixed-integer optimization . 4
1.3 Solution approaches for MIO . 5
1.4 Submodular functions . 9

2 Approximations for conic quadratic maximization 12
2.1 Introduction . 12
2.2 Applications . 14
2.3 Complexity . 20
2.4 Approximation analysis . 23
2.5 Implementation . 29
2.6 Computational experiments . 35
2.7 Conclusions . 42

3 Simplex QP method for conic quadratic minimization 43
3.1 Introduction . 43
3.2 Formulation . 45
3.3 Algorithms . 47
3.4 Computational experiments . 53
3.5 Conclusions . 64

4 Polymatroid cuts for conic quadratic minimization 65
4.1 Introduction . 65
4.2 Previous work . 67
4.3 Conic constraint with unbounded continuous variables 70
4.4 Rotated cone constraints . 72

iii

4.5 Conic constraint with bounded continuous variables 75
4.6 Strengthened polymatroid inequalities . 77
4.7 Computational experiments . 81

5 Submodularity in 0-1 quadratic optimization 91
5.1 Introduction . 91
5.2 Preliminaries . 94
5.3 Strong formulations for submodular quadratic functions 95
5.4 Decomposition schemes . 98
5.5 Strengthening extended polymatroid inequalities for quadratic functions . . . 100
5.6 Computational experiments . 101
5.7 Extensions to conic quadratic optimization 104
5.8 Conclusions . 107

6 Conclusion 108

A Appendix 111
A.1 Regret bound for Algorithm 1 . 111
A.2 Branch-and-bound algorithm . 117
A.3 Convex hull of L2

σ . 119

Bibliography 121

iv

List of Figures

2.1 PERT network with four activities. 18
2.2 Cumulative regret of App and CombUCB in instances with 760 variables. 42

3.1 Barrier vs the simplex QP-based algorithms. 58
3.2 Time per node. 63

4.1 Funcs. g1, g2 with σ = d = 1, c = 2, restricted to x = 0.5. 76
4.2 Functions g1, g2, g3 with σ = d = 1, c = 2, restricted to x = 0.5. 78

5.1 Cut example . 95

v

List of Tables

2.1 Results in the uniform matroid polytope. 37
2.2 Results in the assignment polytope. 37
2.3 Duration estimates in networks with 50 nodes. 39
2.4 Robust portfolio results. 40
2.5 Regret after 20,000 iterations. 41

3.1 The effect of optimality tolerance. 55
3.2 The effect of nonlinearity (cardinality instances). 56
3.3 The effect of nonlinearity (path instances). 56
3.4 The effect of dimension (cardinality instances). 57
3.5 Comparison for discrete cardinality instances. 60
3.6 Comparison for discrete path instances. 61

4.1 Experiments with bounded continuous variables. 83
4.2 Experiments with cardinality constraints. 83
4.3 Experiments with the non-diagonal case (δ = 0.5). 85
4.4 Experiments with the non-diagonal case (δ = 1.0). 85
4.5 Assortment optimization with 200 products and m = 20. 88
4.6 Path with 1,600 vertices and k = 4. 90

5.1 Experiments with n = 100. 103
5.2 Experiments with n = 400. 103

vi

Acknowledgments

First and foremost, I would like to thank my advisor and dissertation chair Alper Atamtürk.

Through our many discussions he taught me how to approach research questions, and pro-

vided me with many pointers and suggestions that made this dissertation possible. He has

also been a constant source of advice, guiding many decisions beyond the doctoral research.

But, more importantly, Alper’s passion for research and excellence was an inspiration for me

during my Ph.D. Without such an advisor, I can only wonder whether I would have worked

as hard as I did, or whether I would have enjoyed the process as much as I did.

I would like to give special thanks to professor Dorit Hochbaum. Few professors are as

passionate and knowledgeable about discrete optimization as she is, and I am very grateful

for her lectures, her support and her mentorship. I would also like to thank professor Peter

Bartlett for his support and valuable lessons in statistics. Many thanks to all the faculty

and staff that made my experience in Berkeley wonderful. Professor Phil Kaminsky was an

exceptional department chair, always available and supportive for students. I thoroughly

enjoyed my conversations with professor Candy Yano, both related to research and life.

Professors Anil Aswani and Paul Grigas have been very supportive and helpful during my

stay at UC Berkeley. I would like to give special thanks to Dr. Deepak Rajan, who was my

integer optimization teacher and with whom I had many insightful conversations regarding

my research. I am also grateful to the IEOR staff, and in particular to Anayancy Paz, who

were always friendly and helpful during my Ph.D.

My time in California has been enhanced thanks to the friends and colleagues I met here.

Thanks to my office mates Avinash, Birce, Chen and Hyemin for all the research discussions,

coffees and beers that we shared. Thanks to my fellow Ph.D. students Auyon, Carlos, Matt,

Quico, Salar, and Yonatan for all the drinks at Triple Rock, board games, soccer games and

lunch(o)s/dinners we had over the years. I am grateful for the Colombian friends I met here,

in particular to Angie, Ingrid, Juan Sebastián, and Lorena, who made me feel closer to the

tierrita. I am immensely grateful to Nora and Doug Smith for providing for me a home away

from home.

Finally, I would like to thank my friends and family from Colombia. In particular, I

would like to thank Andru, Camilo, Juan, Julian, Nathalia and Pablo. And, off course, I

would like to thank Ximena, who despite the distance, has been always present in my life.

All of this was possible thanks to the support and love of my father, mother and brother.

1

Chapter 1

Introduction

The goal of this dissertation is study the structure of conic quadratic problems with discrete

variables, and develop new algorithmic tools for such problems. The dissertation consists of

four parts. The first and second parts study the maximization and minimization of a conic

quadratic objective, respectively, the third part focuses on structural insights for general

mixed-binary optimization with second-order cone constraints, and the fourth part deals

with binary quadratic optimization problems.

Over the past three decades there have been substantial advances in the capabilities of

solving nonlinear and linear discrete optimization problems. On the nonlinear optimization

front, using Newton method with self-concordant barrier functions has resulted in efficient

solution approaches for constrained convex optimization. Second-order cone optimization

(SOCO) in particular has received considerable attention due to its ubiquity in practice. Al-

gorithms tailored for SOCO, including interior point methods, have been studied extensively

in the literature, and large-scale SOCO are solved routinely today.

Linear discrete optimization has also been a major field of study in the Operations Re-

search and Computer Science communities. Most discrete optimization problems are NP -

hard, and there have been two main approaches to tackle such problems. One approach is

to prioritize solution speed and compromise on the quality of the solution found, resulting

in approximation algorithms and heuristics. One technique in particular has been successful

for designing approximation algorithms for many integer optimization problems. The tech-

niques involves solving a convex relaxation of the problem and round the resulting fractional

solution to a suitable integer solution.

The other approach for discrete optimization focuses on solving the problems to opti-

CHAPTER 1. INTRODUCTION 2

mality, typically resulting in some from of exhaustive enumeration and non-polynomial time

algorithms. Among such approaches, branch-and-bound algorithms have been the most ef-

fective for solving general mixed-integer programs: by solving convex relaxation at each

node of the search tree, they substantially reduce the number of solutions to be explored.

State-of-the-art solvers for mixed-integer linear optimization (MILO) leverage the simplex

method for linear programming to efficiently solve the linear programming relaxations, and

use cutting planes based on the polyhedral structure of the feasible region to further enhance

the performance of the algorithm. As a result of the application of these techniques, many

optimization problems considered intractable 30 years ago can be solved within seconds

today.

Despite the advances in nonlinear and discrete optimization, and despite many relevant

applications in finance, machine learning and supply chain problems, our ability to solve

mixed-integer nonlinear optimization (MINLO) is still limited. Most of the work to date

focuses either on transforming MINLO problems into corresponding MILO problems, or

on adapting techniques originally developed for MILO. Both approaches have drawbacks:

transformations typically involve some loss of accuracy or require adding additional variables

and constraints to the optimization model, increasing the difficulty to solve it; and many

tools for MILO do not generalize naturally to MINLO due to the non-polyhedral structure

induced by nonlinear functions. In this dissertation we study structures specific to nonlinear

discrete optimization, and we address in particular the case of mixed-integer second or-

der cone optimization (MISOCO), i.e., discrete optimization problems with conic quadratic

constraints.

In Chapter 2 we study the problem of maximizing a conic quadratic function over a dis-

crete set. This problem arises in a variety of applications, including project management and

reinforcement learning. The problem is well understood if the discrete set is a matroid, but

no efficient approaches are known for more complicated sets. We propose an approximation

algorithm for the case where the discrete set corresponds to the vertices of a polytope. The

algorithm first solves a convex relaxation of the optimization problem to find a solution in

an edge of the polytope; then it rounds the fractional solution to a suitable vertex. The ob-

jective value of the solution found is within 20% of the optimal objective value, which is an

improvement over the previous best bound of 37% for matroid polytopes. New methodolo-

gies in project scheduling and robust conic quadratic optimization are also proposed, using

the approximation algorithm in settings where no other approaches exist in the literature.

Branch-and-bound solvers for mixed-integer linear optimization rely on the dual simplex

CHAPTER 1. INTRODUCTION 3

method and warm starts to efficiently solve the subproblems at each node of the branch-and-

bound tree. Simplex-like methods are also available for convex quadratic problems, but have

not been developed for second order conic optimization problems. In Chapter 3 we propose

an algorithm with warm start capabilities for minimizing a conic quadratic function subject

to linear constraints. The algorithm is suitable to solve the convex subproblems arising in

branch-and-bound approaches. In the computational experiments the algorithm outperforms

interior point methods when directly used to solve convex problems, and is faster by an order

of magnitude in large instances. Moreover, when used with a branch-and-bound algorithm

to solve discrete instances, the algorithm also outperforms commercial solvers, which use a

polyhedral outer approximation.

Cutting plane methods are among the most effective tools for solving MILO problems

to optimality. There is an increasing effort to develop strong formulations for MINLO,

but current general purpose solvers for MINLO and MISOCO still do not use many valid

inequalities to tighten the relaxations. In Chapter 4 we propose valid inequalities for the lower

level set of a mixed-integer conic quadratic function. The inequalities completely describe

the convex hull of the considered set when the quadratic term is separable. The inequalities

are nonlinear in the original space of variables, but can be implemented as linear cuts in

an extended formulation. The computational experiments indicate that the inequalities can

improve current commercial solvers by many factors, even in instances with non-separable

quadratic terms.

Another approach that has been used successfully in MILO and MINLO is to use extended

formulations. By adding a polynomial number of variables and constraints, it is often possi-

ble to have stronger formulations than the ones obtained by adding a similar number of valid

inequalities. In Chapter 5 we study extended formulations for binary quadratic optimization.

We establish connections between classical linear formulations for quadratic problems, sub-

modularity and the minimum cut problem. Then, by decomposing the quadratic functions

into a convex component and a submodular component, and using extended formulations to

represent the submodular component, we find stronger convex relaxations than alternatives

proposed in the literature.

CHAPTER 1. INTRODUCTION 4

1.1 Notation

Throughout the paper, we use B, N, Z and R to denote the set of binary, natural, integer

and real numbers. We use R+ to denote the nonnegative real numbers. Given a set N , we

use RN to denote the set of real vectors whose components are indexed by the elements of

N . Similar notation is used for sets Z and N. Given a set S ⊆ N and v ∈ Rn, we use v(S)

to denote
∑

i∈S vi.

1.2 Mixed-integer optimization

Given functions f : Rn+m → R and gi : Rn+m → R, i = 1, . . . , `, a mixed-integer optimization

problem is an optimization problem of the form

min f(x, y)

(MIO) s.t. gi(x, y) ≤ 0, i = 1, . . . , `

x ∈ Zn, y ∈ Rm.

If n = 0 and all functions f , gi are convex, then MIO is a convex optimization problem.

Additionally, if all functions are affine, then MIO is a linear program (LP), and if f is a

quadratic function and all functions gi are affine, then MIO is a quadratic problem (QP). If

n > 0 and all functions are affine, then MIO is a MILO, and if some of the functions are

nonlinear, then we say that MIO is a MINLO. In this dissertation we focus in problems

where all functions are convex. We now discuss some basic definitions and properties for

MIO. Most of the material in this section is taken from Nemhauser and Wolsey (1988).

Definition 1. A set T ⊆ Rn is convex if for all x1, x2 ∈ T we have that that λx1+(1−λ)x2 ∈
T for all 0 ≤ λ ≤ 1.

The set X = {(x, y) ∈ Zn × Rm : gi(x, y) ≤ 0, i = 1, . . . , `} is the feasible region of MIO.

If n = 0, then the feasible region of MIO is convex.

The set Xc = {(x, y) ∈ Rn+m : gi(x, y) ≤ 0, i = 1, . . . , `} is the convex relaxation of X.

We also say that the optimization problem min
(x,y)∈Xc

f(x, y) is the convex relaxation of MIO.

Since optimization problems over convex sets are in general easier than optimization over dis-

crete sets, strategies to solve MIO often involve solving optimization problems over suitable

convex relaxations.

CHAPTER 1. INTRODUCTION 5

Definition 2. Given a set X ⊆ Rn, a point x ∈ Rn is a convex combination of points of

X if there exists a finite set of points {xi}ti=1 in X and a λ ∈ Rt
+ such that

∑t
i=1 λi = 1

and x =
∑t

i=1 λix
i. The convex hull of X, denoted conv(X), is the set of all points that are

convex combinations of points in X.

Clearly, for any set X, conv(X) is convex by definition. As Proposition 1 states, opti-

mization over a set is equivalent to optimization over the convex hull of the set. Thus, in

principle, any discrete optimization problem can be transformed into a convex optimization

problem.

Proposition 1 (Nemhauser and Wolsey (1988)). Given X ⊆ Zn × Rm and any c ∈ Rn,

d ∈ Rm, we have that

min {c′x+ d′y : (x, y) ∈ X} = min {c′x+ d′y : (x, y) ∈ conv(X)} .

An important class of problems that have received most of the attention in the literature

are problems in which all constraints are linear.

Definition 3. A rational polyhedron is a set of the form {x ∈ Rn : Ax ≤ b}, where A is a

finite rational matrix and b a finite rational vector.

Definition 4. A polyhedron P is bounded if there exists M ∈ R+ such that

P ⊆ {x ∈ Rn : −M ≤ xi ≤M, for i=1,. . . ,n}. A bounded polyhedron is called a polytope.

Proposition 2 (Pulleyblank (1973)). A polyhedron is a convex set.

Proposition 3 (Nemhauser and Wolsey (1988)). If P ⊆ Rn+m is a rational polyhedron and

X = P ∩ (Zn × Rm), then conv(X) is a rational polyhedron.

There is a rich theory of polyhedra that was developed to solve MILO. Moreover, the

natural convex relaxations for MILO are LPs, which are very well understood and have many

unique properties (e.g., duality, basic solutions). However, solving MINLO requires handling

non-polyhedral sets, which are less understood and lack many of properties that solvers for

MILO exploit.

1.3 Solution approaches for MIO

Most optimization problems with discrete variables are NP -hard. Thus, unless P = NP , it

is not possible to have an algorithm that finds optimal solutions in polynomial time. First we

CHAPTER 1. INTRODUCTION 6

cover approximation algorithms, which focus on solution speed while providing guarantees

on the quality of the solutions. Then we cover the branch-and-bound algorithm, which is

the most widely used algorithm to solve MIO to optimality. Finally we focus on cuts, a

technique that is often paired with branch-and-bound algorithms to efficiently solve MIO.

Approximation algorithms

We now provide a brief overview of approximation algorithms. The reader is referred to

Williamson and Shmoys (2011) and the references therein for an in-depth treatment of the

subject.

Definition 5 (Williamson and Shmoys (2011)). An α-approximation algorithm for MIO is

a polynomial-time algorithm that for all instances of the problem produces a solution with

objective value within a factor of α of the objective value of the optimal solution.

The value α is called the performance guarantee, approximation ratio or approximation

factor of the algorithm. We use the convention that α > 1 for minimization problems

and 0 < α < 1 for maximization problems. Thus, for a maximization problem, an α-

approximation indicates that the objective value of the solution found by the algorithm is

at least α times the optimal objective value.

The value α can be a function of the number of variables in MIO (e.g., α = log n for

minimization, or α = 1/n for maximization). In that case, the performance guarantee of the

algorithm degrades as the size of the problem increases. In this dissertation, we are mainly

concerned with algorithms where the performance guarantee does not depend on the number

of variables (e.g., α = 1/2). We say that such algorithms have constant approximation ratio.

An important technique in the design of approximation algorithms for MILO is to round

the solution found by a suitable convex relaxation. The convex relaxation is often the

natural LP relaxation (e.g., Hochbaum 1982, for the set cover problem), although other

convex relaxations have also been used (e.g., Goemans and Williamson 1995, using a SDP

relaxation for the max-cut problem). However, few rounding approximation algorithms based

on convex relaxations have been proposed for MINLO. In Chapter 2 we propose such an

algorithm.

CHAPTER 1. INTRODUCTION 7

Branch-and-bound algorithm

We now present a classic branch-and-bound algorithm for MIO. In the description of the

algorithm, L is a collection of mixed-integer optimization problems
{

MIOi
}

of the form

minx∈Xi f(x), and associated with each problem in L is a lower bound zi ≤ ziMIO, where ziMIO

is the optimal objective value of MIOi. Moreover, let MIOi
c denote the convex relaxation of

MIOi. Finally, given a set X, we say that {Xj}kj=1 is a division of X if
⋃k
j=1X

j = X.

1. Initialization L ← {MIO} , X0 ← X, z0 ← −∞, z̄MIO ←∞.

2. Termination test If L = ∅, then the solution x0 that yielded z̄MIO is optimal.

3. Problem selection and relaxation Select and delete MIOi from L. Solve its relax-

ation MIOi
c. Let zic be the optimal value of the relaxation and xic be an optimal solution

if one exists.

4. Pruning a. If zic ≥ z̄MIO, then go to Termination test.

b. If xic 6∈ X i, then go to Division.

c. If xic ∈ Xi and zic < z̄MIO, then z̄MIO ← zic. Delete all problems from L with

zi ≥ z̄MIO. Go to Termination test.

5. Division Let {X ij}kj=1 be a division of X i. Add problems
{

MIOij
}k
j=1

to L, where

zij = zic for j = 1, . . . , k. Go to Termination test.

There are different possible implementations for branch-and-bound algorithms. For

MILO, the most common choice is to solve LP-relaxations at each node of the search tree, and

to use dichotomies for Division: if x` corresponds to an integer variable and xic` = f with f

fractional, then X i,1 = X ∩{x ∈ Rn+m : xic` ≤ bfc} and X i,2 = X ∩{x ∈ Rn+m : xic` ≥ dfe}.
Moreover, after solving the LP-relaxation MIOi

c, the optimal basis is also stored. Then,

using the simplex method with the basis as a warm start, optimization of the child problems{
MIOij

c

}k
j=1

can be done efficiently.

There is no “typical” branch-and-bound algorithm for MINLO. In particular, there is no

consensus on the best convex relaxation to use. One approach is to use the natural convex

relaxation, obtained by relaxing the integrality constraints. However, due to the absence

of the simplex method or a similar method with warm starts for nonlinear optimization,

such approach results in high computational times. An alternative is to use a linear outer

CHAPTER 1. INTRODUCTION 8

approximation instead of the natural convex relaxation. This approach can use the simplex

method, but the relaxations are weaker, resulting in less effective pruning and a larger search

tree; moreover, additional steps to refine the approximation need to be incorporated in the

branch-and-bound algorithm. In Chapter 3 we show that for a class of SOCO an simplex-

based algorithm can be used, resulting in both strong relaxations and fast solution times.

Cuts and strong formulations

Strong convex relaxations are critical to the performance of branch-and-bound algorithms.

With stronger relaxations, the algorithm can prune more effectively and less subproblems

need to be solved. In particular, if the convex hull of the feasible region of MIO is known and

the objective function is linear, then a branch-and-bound algorithm would require solving

a single convex problem. Therefore, branch-and-bound algorithm are often paired with

techniques that dynamically strengthen the convex relaxations.

Definition 6. The inequality h(x) ≤ 0 is called a valid inequality for X if it is satisfied by

all points in X.

There is a rich theory of valid inequalities for the case where X is a polyhedron. Since

in that case conv(X) is a polyhedron, it is sufficient to study linear valid inequalities. The

valid inequalities required to describe conv(X) are called facets or facet-defining inequalities.

Moreover, there are a number of ways to identify and systematically generate facet-defining

inequalities. Typically, an exponential number of facet-defining inequalities is required to

describe the convex hull of X. Nevertheless, optimization over conv(X) can be done in poly-

nomial time whenever the separation problem can be solved in polynomial time (Grötschel

et al. 1981).

Definition 7 (Separation). Given a set X ⊆ Rn and a point x̄ ∈ Rn, the separation problem

consists in deciding whether x̄ ∈ X and, if x̄ 6∈ X, producing a valid inequality for X such

that h(x̄) > 0.

The reader is referred to Nemhauser and Wolsey (1988) and the references therein for an

in-depth treatment of valid inequalities for polyhedra.

In most practical applications, there is not a complete description of conv(X) available,

and the separation problem cannot be solved exactly. Nevertheless, adding valid inequalities

may significantly improve the strength of the convex relaxation. Thus, most commercial

CHAPTER 1. INTRODUCTION 9

branch-and-bound algorithms for MILO generate valid inequalities on the fly as cuts. A

common approach to decide which inequalities to use consists in adding the most violated

inequalities: given a family of valid inequalities {hj(x) ≤ 0}j∈J available to the algorithm

and a fractional point x̄ 6∈ X, a most violated inequality hj(x) ≤ 0 can be found by solving

the optimization problem

max
j∈J

hj(x). (1.1)

Since |J | is often exponential in the number of variables, problem (1.1) may be NP -hard

and, in that case, it is typically solved using heuristics.

Using valid inequalities has resulted in a considerable improvement of branch-and-bound

algorithms (Bixby 2012). However, since non-polyhedral sets arising in MINLO are not well

understood, solvers for MINLO currently use only a limited number of valid inequalities. We

address this problem in Chapter 4, and propose valid inequalities for general conic quadratic

constraints.

1.4 Submodular functions

Submodularity is an important concept in discrete optimization, akin to convexity or con-

cavity in continuous optimization.

Definition 8. Given a finite set N = {1, . . . , n}, and a real-valued function f on the subsets

of N ,

1. f is nondecreasing if f(S) ≤ f(T) for S ⊆ T ⊆ N .

2. f is monotone if either f or −f is nondecreasing.

3. f is submodular if f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T) for all S, T ⊆ N .

Submodular function can also be characterized as functions that exhibit diminishing

returns.

Proposition 4 (Nemhauser et al. (1978)). f is submodular if and only if

f(S ∪ {j})− f(S) ≥ f(T ∪ {j})− f(T), for all j ∈ N and S ⊆ T ⊆ N \ {j}.

Edmonds (1970) was the first to formally study the properties of submodular functions.

In particular, he established a correspondence between submodular functions and a class of

polyhedra.

CHAPTER 1. INTRODUCTION 10

Definition 9. Given a submodular function f on N with f(∅) = 0, the polyhedron

EP (f) =

{
π ∈ Rn :

∑
j∈S

πj ≤ f(S) for S ⊆ N

}

is the extended polymatroid associated with f , and let Π(f) denote the set of extreme points

of EP (f).

Edmonds (1970) shows that optimization of linear functions over extended polymatroids,

i.e.,

max
π∈EP (f)

c′π, (1.2)

can be solved by the greedy algorithm.

Proposition 5 (Edmonds (1970)). Assume without loss of generality that c1 ≥ c2 ≥ . . . ≥
cn ≥ 0 (if cn < 0 then the problem is unbounded), and let Sj = {1, . . . , j} with S0 = ∅. Then

an optimal solution π∗ of (1.2) is πj = f(Sj)− f(Sj−1) for 1 ≤ j ≤ n.

From Proposition 5 we obtain a characterization of Π(f). In particular π ∈ Π(f) if and

only if πi = f(Sj) − f(Sj−1), where S(0) = ∅ and Sj = {(1), . . . , (j)} for some permutation

((1), (2), . . . , (n)) of N .

Now consider the convex lower envelope of a submodular function f , given by conv(K)

whereK = {(x, t) ∈ {0, 1}n × R : f(x) ≤ t}. Since there is a natural correspondence between

the extended polymatroid EP (f) and the set of valid inequalities for K (Atamtürk and

Narayanan 2008), it follows that the convex hull of K is described by bound constraints and

inequalities corresponding to the extreme points of the extended polymatroid.

Corollary 1. Given any submodular function f and K = {(x, t) ∈ {0, 1}n × R : f(x) ≤ t},

conv(K) = {(x, t) ∈ [0, 1]n × R : π′x ≤ t, ∀π ∈ Π(f)} .

Since the work of Edmonds (1970), submodularity has played a key role in the design

of algorithms for combinatorial problems. In particular, there are numerous polynomial

time algorithms for unconstrained submodular minimization (Schrijver 2000, Iwata et al.

2001, Grötschel et al. 2012, Orlin 2009, Iwata and Nagano 2009), and a number of ap-

proximation algorithms for maximization of a monotone submodular function over matroid

constraints (Nemhauser et al. 1978, Fisher et al. 1978, Calinescu et al. 2011) and knapsack

CHAPTER 1. INTRODUCTION 11

constraints(Sviridenko 2004, Kulik et al. 2009), and the maximization of non-monotone sub-

modular functions (Buchbinder et al. 2012). Moreover, submodularity has also been used

to find strong formulations for NP -hard optimization problems (Atamtürk and Narayanan

2008, 2009, Ahmed and Atamtürk 2011, Atamtürk and Bhardwaj 2015, Atamtürk and Bhard-

waj 2017, Zhang et al. 2017).

We conclude this section by providing some classes of submodular functions.

Proposition 6 (Nemhauser et al. (1978)). 1. Affine functions, i.e., f(S) = c0 +
∑

i∈S ci,

are submodular.

2. Given f1, . . . , fk submodular functions on N and nonnegative α1, . . . , αk, the function

h(S) =
∑k

i=1 αifi(S) is submodular.

3. Given a monotone submodular function f and a concave function g : R+ → R, the

function h(S) = g(f(S)) is submodular.

In particular, Proposition 6 implies that functions of the form h(S) =
∑

i∈S ai+g
(∑

i∈S ci
)

with a ∈ RN , c ∈ RN
+ and g concave are submodular. In Chapters 2 and 4 we propose dif-

ferent techniques for optimization problems with functions of that form.

12

Chapter 2

Approximations for conic quadratic

maximization

2.1 Introduction

For a rational polytope X ⊆ Rn, let VX ⊆ X denote the set of vertices of X. We consider

the discrete optimization problem

max
x∈VX

f(x) := c′x+ g(d′x), (2.1)

where c and d are rational vectors in Rn and g : R → R is a monotone concave function.

We refer to f as the utility function. Problem (2.1) includes combinatorial optimization

problems, where X is an integral polytope, e.g., trees, flows, matchings, with an objective

function that exhibits diminishing returns. The concave utility function f is often used to

model probabilistic objectives.

In Section 2.2 we present five applications of problem (2.1) involving different utility

functions. The first one is in modeling reliability of a parallel system, where g takes a

negative exponential form. The second application is in the assortment planning application,

where g is the multinomial logit probability function. The third application is on estimating

project duration with stochastic task durations. We propose an improvement over PERT

(project evaluation and review technique) by solving a maximum value-at-risk problem of the

form (2.1) to determine a critical path, where g is the square root function. As the fourth

application, we present a class of robust conic quadratic optimization problems, where g

is the square root function. Finally, for the fifth application, we present a combinatorial

CHAPTER 2. APPROXIMATIONS FOR CONIC QUADRATIC MAXIMIZATION 13

multi-armed bandit algorithm, and g is again the square root function.

Connections to submodularity

Independently, the square root function also arises in approximating submodular functions.

Given a non-negative, monotone, submodular function h, which is accessible through either a

value oracle or random sampling, Goemans et al. (2009) and Balcan and Harvey (2010) con-

sider constructing an approximation ĥ such that ĥ(S) ≤ h(S) ≤ αĥ(S) for S ⊆ {1, · · · , n}1.

They give a construction of a function of the form ĥ(S) =
√∑

i∈S di with an approxima-

tion ratio of O(
√
n log n) that uses a polynomial number of queries to h, and show that the

approximation ratio is close to the best possible.

Note that when VX ⊆ {0, 1}n and d ≥ 0, the objective function f is submodular. Max-

imization of submodular functions over special structured binary polytopes has received

considerable attention. Fisher et al. (1978) show that when X is a matroid polytope and

the objective is any non-negative, monotone submodular function accessible through a value

oracle, the greedy algorithm yields a 1/2-approximation, and Nemhauser et al. (1978) prove

that the approximation ratio of the greedy algorithm is (1 − e−1) if X is the uniform ma-

troid. Other (1 − e−1)-approximation algorithms have been given when the objective is

non-negative, monotone and X is either a down-monotone polytope defined with a single

knapsack constraint (Sviridenko 2004) or an arbitrary matroid (Calinescu et al. 2011), and

a (1− e−1 − ε)-approximation algorithm is known for the case when X is a down-monotone

polytope defined with multiple knapsack constraints (Kulik et al. 2009). For a non-monotone

objective, Buchbinder et al. (2012) give a 1/2-approximation algorithm for the unconstrained

case, and Vondrák et al. (2011) give a 0.325-approximation algorithm for down-monotone

polytopes. Ahmed and Atamtürk (2011) study the polytope induced by problem (2.1) when

VX = {0, 1}n, d ≥ 0 and g is strictly concave and increasing, and use submodularity to

derive a strong formulation for exact algorithms. Atamtürk and Narayanan (2009) give valid

inequalities for the lower level set of non-decreasing f , whereas Atamtürk and Bhardwaj

(2015) give valid inequalities for the lower level set of non-increasing f .

In this work we do not make use of submodularity, but exploit the structure of the

function f to derive an approximation algorithm for any polytope X. The algorithm rounds

an optimal solution to the continuous relaxation maxx∈X f(x) to a vertex of X. When c′x

1When h is accessible through sampling, the condition ĥ(S) ≤ h(S) ≤ αĥ(S) needs to hold only in most
of the sets with high probability.

CHAPTER 2. APPROXIMATIONS FOR CONIC QUADRATIC MAXIMIZATION 14

and g(d′x) are non-negative on VX and g is monotone, we show that the gap of the continuous

relaxation is at most 100%, and the approximation ratio of the algorithm is 1/2. Moreover,

when g is the square root function, the gap is at most 25%, and the approximation ratio

improves to 4/5. Both of these bounds are tight.

Exploiting the structure of the utility function f leads to a number of advantages com-

pared to relying on submodularity alone. For the square root case and monotone f , the

approximation ratio of 4/5 is better than (1− e−1) ≈ 0.63. In the general case, the proposed

approximation algorithm can be used with arbitrary polytopes. We give examples with path

and assignment polytopes, which are neither down-monotone nor matroids. Moreover, we do

not require that f be monotone – even if g is monotone, the function f may be non-monotone

– and the approximation ratios of 4/5 for the square root or 1/2 for the general case are

better than 0.325. Moreover, unlike approximation algorithms based on submodularity, we

also get a tight upper bound on the optimal objective value (which is used in the robust

conic quadratic optimization application discussed in Section 2.2).

The chapter is organized as follows. In Section 2.2 we give applications in reliability

modeling, assortment planning, in estimating project duration with stochastic times ,in ro-

bust optimization and reinforcement learning that motivate problem (2.1). In Section 2.3

we prove NP -hardness of (2.1) for simple polytopes. In Section 2.4 we give a high-level de-

scription of the approximation algorithm and show that the gap of the continuous relaxation

of problem (2.1) is tight. In Section 2.5 we propose efficient implementations of the pro-

posed approximation algorithms, and compare with alternatives found in the literature. In

Section 2.6 we illustrate the empirical performance of the approximation algorithms through

computational experiments for varying utility functions and polytopes. In Section 2.7 we

conclude the chapter with a few final remarks.

2.2 Applications

Reliability modeling

Given a parallel system with components N , where each component has an independent

failure/malfunction probability qi, i ∈ N , the reliability of the system is the probability that

not all components malfunction simultaneously, i.e., 1−
∏n

i=1 qi.

Now given a set of candidate components N with revenue ri and malfunction probability

qi, i ∈ N , consider the problem of finding a subset S ⊆ N with a revenue and reliability

CHAPTER 2. APPROXIMATIONS FOR CONIC QUADRATIC MAXIMIZATION 15

tradeoff. Letting xi = 1 if component i is selected and 0 otherwise, the problem can be

formulated as

max
x∈VX

∑
i∈N

rixi + β

(
1−

∏
i∈N

qxii

)

= max
x∈VX

∑
i∈N

rixi + β

(
1− exp

(∑
i∈N

xi ln(qi)

))
, (2.2)

where β > 0 is the weight given to the reliability and X is an integral 0-1 polytope with

additional restrictions (e.g. a cardinality constraint). Note that (2.2) is a special case of

problem (2.1), where g(d′x) = β (1− exp(−d′x)) is the negative exponential function and

di = − ln(qi).

Problems of the form of (2.2) arise when considering how to allocate resources either to

defend a parallel system from threats such as terrorist attacks or cyber attacks, or to attack

a series system to ensure that the system is disrupted. Bier et al. (2005) and Hausken (2008)

study continuous versions of such problems, in which they derive the Karush-Kuhn-Tucker

conditions explicitly, and Levitin and Hausken (2008) consider a discrete version when all

components are identical. Formulations similar to (2.2) also arise as substructures of more

complicated systems (Ahmed and Papageorgiou 2013, Gen and Yun 2006).

Assortment with multinomial logit choice model and fixed costs

Given a set of products N , consider the problem of choosing an assortment S ⊆ N satisfying

a set of constraints so as to maximize the profit. In this context consumer preferences are

commonly modeled with a multinomial logit (MNL) choice model (Van Ryzin and Mahajan

1999, Chong et al. 2001). In the MNL choice model the utility of products i ∈ N are

modeled as ui = µi + ζi, where µi ∈ R is a known parameter, and ζi are i.i.d. standard

Gumbel random variables. For an assortment S, the probability that a customer purchases

item i ∈ S is given by

pi(S) =
eµi

1 +
∑

j∈S e
µj
·

Consider an online advertiser that earns a variable profit ci for displaying ad i ∈ N as

well as constant profit β if the ad is clicked. Constant profit margins have been considered

by Van Ryzin and Mahajan (1999) among others. Then, an optimal set of up to k ads to

CHAPTER 2. APPROXIMATIONS FOR CONIC QUADRATIC MAXIMIZATION 16

display in order to maximize the expected profit is formulated as

max
S: |S|≤k

∑
i∈S

(ci + βpi(S)).

More generally, the problem is stated as

max
x∈VX

c′x+ β
d′x

1 + d′x
, (2.3)

which is a special case of problem (2.1) with g(d′x) = β d′x
1+d′x

.

Various versions of the assortment problem with multinomial logit choice model have

been studied in the literature (Rusmevichientong et al. 2010, Sen et al. 2015). For many of

these the constraint set XV is the uniform matroid (corresponding to maximum cardinal-

ity constraint). Note that formulation (2.3) allows, among others, differential pricing and

probabilities according to the position of the ad when X is the assignment polytope.

PERT and VaR critical paths

Given a set of activities V with duration `i ≥ 0 for i ∈ V and a set A of dependencies

between pairs of activities, the Critical Path Method (CPM) computes the completion time

of the overall project by finding a longest path on the directed acyclic graph G = (V,A).

The duration of the project is the length of the longest path, referred to as the critical path,

between a source node s representing the start time of the first activity and a destination

node t representing the completion of the last activity. The activities on the critical path

are monitored carefully as delays in those activities result in delays in the completion time

of the project.

The Project Evaluation and Review Technique (PERT) is a simple and prevalent gen-

eralization of CPM to incorporate the uncertainty in activity durations. The traditional

PERT computes the deterministic critical path using the expected duration of the activities,

and then makes an assessment of the probability of completion time of the project based on

the deterministic critical path (e.g. Nahmias 2001, Chapter 9). Since the uncertainty is not

taken into account when computing the deterministic critical path, the estimation of PERT

can be poor. In order to incorporate the uncertainty, we consider an alternative where we

compute a path with maximum value-at-risk.

The Value-at-Risk at confidence level α ∈ (0.5, 1) of duration D is

VaRα(D) = sup{` ∈ R : Pr(D ≤ `) ≤ α}. (2.4)

CHAPTER 2. APPROXIMATIONS FOR CONIC QUADRATIC MAXIMIZATION 17

Observe that the value-at-risk of any path is at most the value at risk of the project. Let P
be the set of feasible paths, let Dp be the duration of a path p ∈ P and let D∗ = maxp∈P Dp

be the duration of the project. Since Pr(D∗ ≤ `) ≤ Pr(Dp ≤ `) for any p ∈ P , we have

VaRα(D∗) = sup{` ∈ R : Pr(D∗ ≤ `) ≤ α} ≥ sup{` ∈ R : Pr(Dp ≤ `) ≤ α} = VaRα(Dp).

A path with the largest value-at-risk at confidence level α thus provides the best lower bound

on the value-at-risk of the project. We call such a path a VaRα-critical path.

Let xij = 1 if arc (i, j) ∈ A belongs to the path and 0 otherwise, δ+(i) denote the set

incoming arcs to i and δ−(i) denote the set of outgoing arcs from i. If the durations are

independent and normally distributed with mean µij and variance σ2
ij, then the VaRα-critical

path corresponds to the optimal solution to

max
∑

(i,j)∈A

µijxij + Φ−1(α)

√ ∑
(i,j)∈A

σ2
ijxij

s.t.
∑

(j,i)∈δ+(i)

xji −
∑

(i,j)∈δ−(i)

xij =

−1 if i = s

1 if i = t

0 if i ∈ V \ {s, t}

xij ∈ {0, 1}, ∀(i, j) ∈ A,

(2.5)

where Φ is the c.d.f of the standard normal distribution. Problem (2.5) is a case of problem

(2.1), where the objective is submodular but the feasible region is neither down-monotone

nor a matroid.

Example

Figure 2.1 illustrates a network with four activities. Using the traditional PERT method,

we find that the (deterministic) critical path is given by activities (s, 2) and (2, t), and

the duration of the project is estimated to be exactly 2 at any confidence level. On the

other hand, for δ ≥ 0.08, the VaR-critical path is given by activities (s, 3) and (3, t), with

corresponding value-at-risk 1.8 + 2.77δ at 97.5% confidence level. The VaR0.975-critical path

provides a better assessment of the risk of the project duration.

CHAPTER 2. APPROXIMATIONS FOR CONIC QUADRATIC MAXIMIZATION 18

Figure 2.1: PERT network with four activities.

Robust optimization with conic quadratic objective

Given a feasible region Z ⊆ Rp and matrix Q ∈ Sp+, consider the problem with the conic

quadratic objective

min
z∈Z

c′z +
√
z′Qz. (2.6)

Problem (4.7) arises when minimizing value-at-risk as a mean-risk objective (e.g. Ahmed

2006, Atamtürk and Narayanan 2008). The reader is referred to Lobo et al. (1998) and

Alizadeh and Goldfarb (2003) for other applications conic quadratic optimization.

We describe a robust formulation of problem (4.7), generalizing the approach given by

Bertsimas and Sim (2003, 2004) for linear objectives. Let c0 and Q0 � 0 be the nominal mean

and covariance and N = {1, . . . , n} be a set of potential events, each of which may increase

the mean and covariance by ci ≥ 0 and Qi � 0, i ∈ N . For example, Qi may represent the

increase in volatility and correlations in financial markets for a particular stress scenario.

Then c(S) = c0 +
∑

i∈S ci and Q(S) = Q0 +
∑

i∈S Qi are the mean and covariance when

events S ⊆ N are realized. The goal of the robust optimization is to find a solution that

minimizes the worst objective given that only a small number, k ≤ n, events are realized,

i.e.,

min
z∈Z

max
S⊆N :|S|≤k

c(S)′z +
√
z′Q(S)z. (2.7)

Letting

X =

{
x ∈ [0, 1]n :

n∑
i=1

xi ≤ k

}
, (2.8)

problem (4.37) can be equivalently stated as

CHAPTER 2. APPROXIMATIONS FOR CONIC QUADRATIC MAXIMIZATION 19

min
z∈Z

max
x∈VX

c′0z +
∑
i∈N

(c′iz)xi +

√
z′Q0z +

∑
i∈N

(z′Qiz)xi. (2.9)

Observe that for a given value of z the inner maximization problem is of the form (2.1) with

g(x) =
√
ξ + x, where ξ ≥ 0 does not depend on x.

Combinatorial multi-armed bandits

The combinatorial multi-armed bandit problem is a sequential decision problem. Given a

set N = {1, 2, · · · , n} of items, each with a stochastic weight with expected value wi and

support in [0, 1], the goal is to choose, at each round t = 1, 2, · · · , at set St ⊆ N satisfying

a set of constraints such that
∑

i∈St wi is maximized. If the expected weight vector w is

known a priori, then the best stategy is to choose S∗ = arg maxS
∑

i∈S wi at each round. We

consider the case when the expected weights are initially unknown, and at each stage of the

sequential problem, the decision maker plays a feasible St ⊆ N and observes realizations w̃ti

for i ∈ St . A policy for this problem is evaluated in terms of the cumulative regret R(T)

with respect to choosing, at each stage, the best set in hindsight:

R(T) =
T∑
t=1

rt,

where rt =
∑

i∈S∗ wi −
∑

i∈ST wi is the regret in round t.

Let xti be 1 if item i is played at round t and 0 otherwise, dti =
∑t−1

τ=0 x
τ
i be the total

number of times item i has been played by round t, w̃ti be the random realization of item

i at round t, ŵti = 1
dti

∑t−1
τ=0 w̃

τ
i x

τ
i be the observed sample average of the weight of item i by

round t. Given 0 < δ < 1, Algorithm 1 describes a policy for the combinatorial multi-armed

bandit. The policy is an adaptation of the Confidence Ball 2 policy of Dani et al. (2008)

and of the Uncertainty Ellipsoid policy of Rusmevichientong and Tsitsiklis (2010).

The policy uses the principle of optimism under uncertainty to handle the exploration and

exploitation tradeoff: at each round t, we mantain an unbiased estimate ŵt of the unknown

weight vector w. A natural confidence region for w is the ellipsoid

Bt =

{
ν ∈ Rn :

n∑
i=1

(ŵti − νi)2dti ≤ βt

}
centered on ŵt, in which the length of each axis is inversely proportional to the number of

times we have sampled the corresponding item. Then, at each stage, we play the set that

has the most optimistic weight ν ∈ Bt.

CHAPTER 2. APPROXIMATIONS FOR CONIC QUADRATIC MAXIMIZATION 20

Algorithm 1 Multi-armed bandit policy.

Input: 0 < δ < 1, probability; N , item set of cardinality n.
1: initialization:
2: t← 1
3: ∀i ∈ N : x0

i ← 1, w̃0
i ← 1 . ŵ1

i = 1, d1
i = 1

4:

5: loop

6: βt ← max
{

64n(ln t) ln(t2/δ), n
(

8
3

ln(t2/δ)
)2
}

.

7: Bt = {ν ∈ Rn :
∑n

i=1(ŵti − νi)2dti ≤ βt}
8: Play St = arg maxS maxν∈Bt

∑
i∈S νi ⇔ arg maxS

∑
i∈S ŵ

t
i +
√
βt
∑

i∈S
1
dti

9: Observe w̃, update dt+1 and ŵt+1

10: t← t+ 1.
11: end loop

Using an analysis similar to Dani et al. (2008), we can prove upper bounds on the regret

after T iterations.

Theorem 1 (Problem independent upper bound). The regret R(T) of Algorithm 1 is with

high probability at most O∗(n
√
T), where the O∗ notation hides a polylogarithmic dependence

on T . More precisely,

P
(
∀T,R(T) ≤ 2

√
TnβT lnT

)
≥ 1− δ.

Theorem 2 (Problem dependent upper bound). Let ∆ be the regret of the best subopti-

mal feasible solution. The regret R(T) of Algorithm 1 is then with high probability at most

O(n
2

∆
ln3 T). More precisely,

P

(
∀T,R(T) ≤ 4nβT lnT

∆

)
≥ 1− δ.

For the sake of completeness, we include a proof of the high probability bounds in Ap-

pendix A.1.

2.3 Complexity

In this section we show that problem (2.1) is NP -hard for the uniform matroid polytope,

the path polytope, and the assignment polytope. Note that the results are valid even when

g is given explicitly.

CHAPTER 2. APPROXIMATIONS FOR CONIC QUADRATIC MAXIMIZATION 21

Proposition 7. For c ≥ 0, d ≥ 0 and any strictly concave function g, problem

max
x∈{0,1}n

{
c′x+ g(d′x) :

n∑
i=1

xi = k

}
(2.10)

is NP -hard.

Proof. Ahmed and Atamtürk (2011) show that the unconstrained problem

max
x∈{0,1}n

−c′x+ g(d′x) (2.11)

is NP -hard when g is the negative exponential function. We first extend their proof for

any strictly concave function. The proof is by reduction from Partition: Given positive

numbers ci, i ∈ N , Partition calls for a set S ⊆ N such that
∑

i∈S ci =
∑

i∈N\S ci. If∑
i∈N ci = 0, then S = ∅ is a trivial answer. Otherwise, let y∗ = arg maxy∈R {g(y)− g(1)y},

which can be computed in polynomial time since it is the solution of a convex problem (note

that if g is differentiable, y∗ can be computed in closed form). If necessary, by negating

and/or scaling the data, we may assume without loss of generality that
∑

i∈N ci = 2y∗.

Then, there exists S ⊆ N with the desired property if and only if

max
x∈{0,1}n

−g(1)c′x+ g(c′x) = −g(1)y∗ + g(y∗),

which is true if and only if c′x = y∗.

Next we show that (2.10) is NP -hard. Given an instance of (2.11), let c̄ = maxi∈N ci.

Then problem (2.11) can be written as

max
S⊆N
−c̄ |S|+

∑
i∈S

(c̄− ci) + g

(∑
i∈S

di

)

= max
k=0,··· ,n

(
−c̄k + max

x∈{0,1}n

{
(c̄− c)′x+ g(d′x) :

n∑
i=1

xi = k

})
,

which can be solved by solving n problems of the form (2.10).

We will prove NP -hardness of problem (2.1) for special polytopes by reduction from

problem (2.10).

CHAPTER 2. APPROXIMATIONS FOR CONIC QUADRATIC MAXIMIZATION 22

Uniform matroid polytope.

The uniform matroid polytope is given by

X =

{
x ∈ [0, 1]n :

n∑
i=1

xi ≤ k

}
, (2.12)

with k ∈ N.

Proposition 8. Problem (2.1) is NP -hard when X is the uniform matroid polytope and g

is strictly concave.

Proof. Observe that if c, d ≥ 0, g is non-decreasing and X is the uniform matroid polytope,

then any optimal solution x∗ satisfies

n∑
i=1

xi = k (2.13)

and is also an optimal solution for (2.10). In general, given an instance of (2.10), let

d̄ = min
j=1,...,n

{
cj + g

(
n∑
i=1

di

)
− g

(
−dj +

n∑
i=1

di

)}

and consider the optimization problem

max
x∈{0,1}n

{
n∑
i=1

(ci − d̄)xi + g

(
n∑
i=1

dixi

)
:

n∑
i=1

xi ≤ k

}
. (2.14)

Observe that any optimal solution x∗ of (2.14) satisfies (2.13) by construction. Moreover, the

objective value of any solution satisfying (2.13) is c′x+ g(d′x)− d̄k (where d̄k is a constant),

and therefore we see that x∗ is an optimal solution of (2.10).

Path polytope.

The path polytope on an acyclic directed graph is described in (2.5).

Proposition 9. Problem (2.1) is NP -hard when X is the path polytope and g is strictly

concave.

CHAPTER 2. APPROXIMATIONS FOR CONIC QUADRATIC MAXIMIZATION 23

Proof. Consider an instance of problem (2.10). We construct an equivalent path instance on

a directed graph G = (V,A) with O(n2) vertices and arcs. Let V = {(i, j) ∈ Z2 : 1 ≤ i ≤
n + 1, 0 ≤ j ≤ k} be the set of vertices. G has an arc for the vertex pair (i, j), (i + 1, j)

with value (0, 0), which corresponds to setting xi = 0 in problem (2.10); G has an arc for

pair (i, j), (i + 1, j + 1) with value (ci, di), which corresponds to setting xi = 1 in problem

(2.10). Note that a path between (1, 0) and (i, j) corresponds to a choice of x1, . . . , xi−1 such

that
∑i−1

l=1 xl = j, thus paths between (1, 0) and (n + 1, k) correspond to feasible solutions

of problem (2.10). Therefore, we have that the set of optimal solutions of problem (2.10)

correspond to set of longest paths between (1, 0) and (n+ 1, k).

Assignment polytope.

The m×m assignment polytope is given by

X =

{
x ∈ Rm×m :

m∑
i=1

xij = 1,
m∑
j=1

xij = 1, xij ≥ 0

}
.

Proposition 10. Problem (2.1) is NP -hard when X is the assignment polytope and g is

strictly concave.

Proof. Consider an instance of problem (2.10). We construct an equivalent n×n assignment

instance. Let xij have objective values (cj, dj) for i = 1, · · · , k, and values (0, 0) for i =

k + 1, · · · , n. Note that given any assignment we can construct a feasible solution x̄ to

problem (2.10) with same objective value: set x̄j = 1 if xij = 1 for some i ≤ k, and set

x̄j = 0 otherwise. Moreover, any feasible solution to (2.10) corresponds to at least one

assignment by construction. Therefore, we get that an optimal solution to (2.10) can be

obtained by finding an optimal assignment.

2.4 Approximation analysis

In this section we discuss approximation algorithms for problems (2.1) and (2.9) that use

the continuous relaxation

max
x∈X

c′x+ g(d′x). (2.15)

CHAPTER 2. APPROXIMATIONS FOR CONIC QUADRATIC MAXIMIZATION 24

First we describe an algorithm for the maximization problem (2.1), next we describe the

approach used for the robust problem (2.9), then we prove constant approximation ratios

for both methods, and finally we give a simple extension for unbounded polyhedra.

Approximation algorithm

The approximation algorithm for (2.1) consists of rounding an optimal solution to the con-

tinuous relaxation (2.15) to particular extreme points X if the continuous optimal solution

is not an extreme point itself.

Proposition 11. If there exists an optimal solution to problem (2.15), then there exists an

optimal solution on an edge of X.

Proof. Let x0 be an optimal solution to (2.15). Consider the linear optimization problem

max c′x

s.t. d′x = d′x0 (2.16)

x ∈ X.

Observe that X̄ = X ∩ {x ∈ Rn : d′x = d′x0} is a nonempty polytope. Let x∗ be an optimal

extreme point of X̄. Note that x∗ is also an optimal solution to problem (2.15). Let F0

be the zero-dimensional face of X̄ defined by active constraints at x∗. Removing constraint

(2.16) from F0 results in a face F1 of X of dimension at most 1. Therefore x∗ ∈ F1 and F1

is either an extreme point or an edge of X, as desired.

If the face F1 described in Proposition 11 has zero-dimension, then F1 is an optimal solu-

tion to problem (2.1) and the approximation algorithm returns it as the solution. Otherwise,

F1 is an edge of X, and the approximation algorithm computes the two extreme points of

F1 and returns the one with the best objective value.

Proposition 12. Given a rational polytope X and a rational optimal solution x0 to the

continuous problem (2.15), there exists a polynomial-time algorithm that finds an optimal

solution x∗ of problem (2.15) on an edge E of X and, if x∗ is not an extreme point of X,

two extreme points x1 and x2 of E.

Proof. Computing F1 as described in Proposition 11 requires finding an optimal extreme

point to a linear program, which can be done using a polynomial time algorithm for linear

CHAPTER 2. APPROXIMATIONS FOR CONIC QUADRATIC MAXIMIZATION 25

programs that finds an (interior) optimal primal-dual pair, and then using the polynomial

algorithm of Megiddo (1991) to find an optimal extreme point. Therefore, computing x∗ on

an edge E of X can be done in polynomial time. If x∗ is not an extreme point of X, the

two extreme points of E can be found similarly by solving two auxiliary linear programs by

converting tight inequalities defining F1 into equalities.

The approximation algorithm is displayed in Algorithm 2. We first solve the continuous

relaxation (line 1) and compute an optimal x∗ on an edge of X. If optimal x∗ is a vertex,

then we have found an optimal solution to the discrete problem (lines 3-4). Otherwise, we

compute the two extreme points of the edge (line 6) and then we select the best vertex

(line 7).

Algorithm 2 Approximation algorithm.

Input: X, polytope; f , objective function with f(x) = c′x+ g(d′x) .
Output: x, a vertex of X.

1: x0 ← maxx∈X f(x)
2: Compute an optimal x∗ on edge E.
3: if x∗ is vertex then
4: x← x∗

5: else
6: (x1, x2)← vertices(E)
7: x← arg max{xi:i=1,2} f(xi)
8: end if
9: return x

Corollary 2. If the convex problem (2.15) can be solved in polynomial time, then Algorithm

2 is a polynomial-time algorithm.

Interior point algorithms can be used to solve convex problems in polynomial time if used

with a self-concordant barrier functions (Nemirovski and Todd 2008). In particular, if g is a

negative exponential, logarithmic or power function, then (2.15) can be solved in polynomial

time (see chapters 5.3.1 and 5.3.2 of Nesterov and Nemirovskii (1994)).

Approximation for robust conic quadratic programs

Note that in order to have an approximation algorithm to problem (2.9), an upper bound to

problem (2.1) needs to be computed (instead of a lower bound). To this end, we propose

CHAPTER 2. APPROXIMATIONS FOR CONIC QUADRATIC MAXIMIZATION 26

to solve the approximate robust optimization problem

min
z∈Z

max
x∈X

c′0z +
∑
i∈N

(c′iz)xi +

√
z′Q0z +

∑
i∈N

(z′Qiz)xi, (2.17)

where the feasible region of the inner maximization problem is relaxed from VX to X. We

evaluate the strength of formulation (2.17) in terms of the translated approximation ratio

∆ =
ωc − ωn
ωd − ωn

, (2.18)

where ωn, ωc and ωd are the optimal objective values of the nominal problem (4.7), the

continuous relaxation (2.17) and the discrete problem (2.9), respectively. Note that when

ωn ≥ 0, a translated approximation ratio ∆ implies a ∆-approximation algorithm in the

usual sense for the minimization problem (2.9)2.

Approximation ratio

We now characterize the approximation ratio of Algorithm 2. In this section we assume that

c′x ≥ 0 and g(d′x) ≥ 0 over VX . If x∗ is a vertex of X, then the algorithm is exact. Now let

x1 and x2 be two vertices of X such that x∗ = (1−λ)x1 +λx2 with 0 < λ < 1, ai = c′xi and

bi = d′xi, i = 1, 2. Without loss of generality, assume that g(b1) ≤ g(b2). We can bound the

gap between the optimal objective of (2.15) and the best extreme point solution by

ρ(λ) :=
f ((1− λ)x1 + λx2)−max {f(x1), f(x2)}

max {f(x1), f(x2)}

=
a1 + λ(a2 − a1) + g (b1 + λ(b2 − b1))−max {a1 + g(b1), a2 + g(b2)}

max {a1 + g(b1), a2 + g(b2)}
· (2.19)

For any λ ∈ [0, 1] we have

max {a1 + g(b1), a2 + g(b2)} ≥ a1 + g(b1) + λ (a2 + g(b2)− a1 − g(b1)) , (2.20)

and

max {a1 + g(b1), a2 + g(b2)} ≥ a2 + g(b2) ≥ g(b2). (2.21)

Using (2.20) in the numerator of (2.19), and (2.21) in the denominator, we get

ρ(λ) ≤ g (b1 + λ(b2 − b1))− g(b1)− λ(g(b2)− g(b1))

g(b2)
=: ρ+(λ). (2.22)

2It is not possible to have an approximation algorithm for (2.9) when ωn < 0: it is possible to construct
non-trivial instances where ωd = 0, and every other feasible solution is arbitrarily bad in comparison.

CHAPTER 2. APPROXIMATIONS FOR CONIC QUADRATIC MAXIMIZATION 27

Remark 1. A sufficient condition for a2 ≥ 0 is that c ≥ 0 and x is nonnegative. More

generally, if c′x ≥ −k for x ∈ VX and k ≥ 0, we can use (2.22) to bound the gap of the

problem

max
x∈VX

k + c′x+ g(d′x). (2.23)

Lemma 1. If g is concave, non-decreasing, differentiable, for any ` ≤ b1,

ρ(λ) ≤ g (`+ λ(b2 − `))− g(`)− λ(g(b2)− g(`))

g(b2)
.

Proof. Since g is non-decreasing, as by assumption g(b1) ≤ g(b2), we have b1 ≤ b2. Taking

the derivative of (2.22) with respect to b1, we get that

ρ′+(λ) =
1

g(b2)
(1− λ)

(
g′ (b1 + λ(b2 − b1))− g′(b1)

)
.

Since g is concave, g′ is non-increasing and g′ (b1 + λ(b2 − b1))− g′(b1) ≤ 0. The function ρ+

is then non-increasing in b1, and setting b1 = `, we get the upper bound.

Lemma 2. If g is concave, non-increasing, differentiable, for any ` ≥ b2,

ρ(λ) ≤ g (`+ λ(b2 − `))− g(`)− λ(g(b2)− g(`))

g(b2)
.

Proof. The proof is analogous to the proof of Lemma 1.

We now give approximation ratios for different forms of function g.

Proposition 13 (Root function). If g(z) = zp with 0 < p < 1 and d′x ≥ 0 for all x ∈ VX ,

the approximation ratio of Algorithm 2 is

1

1 +
(

1
p

) p
p−1

(1− p)
.

Proof. We use Lemma 1 with ` = 0 to get

ρ(λ) ≤ (λb2)p − λbp2
bp2

= λp − λ. (2.24)

Expression (2.24) is maximized at λ∗ =
(

1
p

) 1
p−1

, and ρ(λ∗) ≤
(

1
p

) p
p−1

(1− p). The continuous

relaxation has then a gap of at most
(

1
p

) p
p−1

(1− p) and the result follows.

CHAPTER 2. APPROXIMATIONS FOR CONIC QUADRATIC MAXIMIZATION 28

Corollary 3. If g(z) =
√
z and d′x ≥ 0 for all x ∈ VX , Algorithm 2 has 4/5 approximation

ratio.

Corollary 4. The translated approximation ratio for problem (2.9) satisfies ∆ ≤ 1.25.

Remark 2. The gap of the continuous relaxation of the square root function is tight: consider

the case in which X has only two extreme points x1 and x2, with (a1, b1) = (1, 0) and

(a2, b2) = (0, 1); the value of an optimal extreme point solution is 1, while the optimal

solution to the continuous relaxation is 0.75x1 + 0.25x2, with value 1.25. We can similarly

prove that the approximation ratios of 0.72 and 0.68 (approximately) of the cubic and quartic

roots are tight.

Proposition 14 (Monotone function). When g is nonnegative and monotone, Algorithm 2

has an approximation ratio 1/2.

Proof. From (2.22), we have that

ρ(λ) ≤g (b1 + λ(b2 − b1))− g(b1)− λ(g(b2)− g(b1))

g(b2)

≤g(b2)− g(b1)− λ(g(b2)− g(b1))

g(b2)
((g (b1 + λ(b2 − b1)) ≤ g(b2) by monotonicity))

≤g(b2)− g(b1)

g(b2)
((since g(b1) ≤ g(b2) w.l.o.g))

=1− g(b1)

g(b2)
≤ 1.

The continuous relaxation has therefore a gap of at most 100%. In other words, selecting

the better of the two extreme points solutions results in a 1/2-approximation guarantee.

Example: Exponential utility

Consider the exponential utility function, g(z) = 1 − e−z. Consider the case where X has

only two extreme points x1 and x2, with (a1, b1) = (1, 0) and (a2, b2) = (0, b), and let

λ∗ = −1
b

ln
(

1−e−b

b

)
. It can be shown that the gap ρ(λ∗) defined in (2.19) approaches 1 as b

goes to infinity. For instance, when b = 100, ρ(λ∗) ≈ 0.94.

CHAPTER 2. APPROXIMATIONS FOR CONIC QUADRATIC MAXIMIZATION 29

Example: Logarithmic utility

Consider the logarithmic utility function, g(z) = ln(1 + z). Consider the case where X has

only two extreme points x1 and x2, with (a1, b1) = (ln(1 + b), 0) and (a2, b2) = (0, b), and

let λ∗ = 1
ln(1+b)

− 1
b
. It can be shown that the gap approaches 1 as b goes to infinity. For

instance, when b = 1040, ρ(λ∗) ≈ 0.94.

Example: MNL probability function

Consider the MNL probability function, g(z) = 1 − 1
1+z

. Consider the case where X has

only two extreme points x1 and x2, with (a1, b1) = (b
1+b

, 0) and (a2, b2) = (0, b), and let

λ∗ =
√

1+b−1
b

. It can be shown that the gap approaches 1 as b goes to infinity. For instance,

when b = 1000, ρ(λ∗) ≈ 0.94.

Unbounded polyhedra with integrality constraints

When X is an unbounded polyhedron, the solution x∗ given by Proposition 11 may lie on

an extreme ray, in which case it is not possible to find two extreme points. We consider, in

this section, the particular case when X is a polyhedron with integral extreme points and

rational rays and the feasible region consists of all integer points of X.

In this case we can still find an optimal solution to the continuous relaxation x∗ on a face

F1 with dimension at most one as before (Proposition 11). If F1 is an extreme point or an

edge, then the algorithm is identical to the polytope case. If F1 is a ray, let x1 be its extreme

point. In this case, we let x2 = x1 + γ(x∗− x1), where γ is the least common multiple of the

denominators of the entries of (x∗ − x1). Since x∗ is a convex combination of x1 and x2, the

analysis of Section 2.4 holds.

2.5 Implementation

The general algorithm proposed in Section 2.4, despite being polynomial, may not be efficient

in practice. In this section we discuss improvements of Algorithm 2 that exploit additional

information on X or function g, and we also give an explicit formulation of problem (2.17).

CHAPTER 2. APPROXIMATIONS FOR CONIC QUADRATIC MAXIMIZATION 30

0-1 polytopes

In many of the applications of problem (2.1), including those discussed in Section 2.2, X is

a binary polytope, i.e., a polytope with 0-1 valued vertices. Given an optimal solution x∗ on

an edge of the polytope, we describe a simple O(n) procedure for finding the extreme points

x1 and x2, provided that x∗ 6= x1+x2
2

. Observe that because x∗ is a convex combination of

only two binary extreme points, i.e., x∗ = λx1 + (1− λ)x2, each component of x∗ is either 0,

1, λ or 1− λ for some λ ∈ (0, 1).

Denote by x(i) the i-th coordinate of vector x. Then for each i = 1, . . . , n, one of the

following cases is true:

x∗(i) = 0 Let x1(i) = 0 and x2(i) = 0.

x∗(i) = λ Let x1(i) = 1 and x2(i) = 0.

x∗(i) = 1− λ Let x1(i) = 0 and x2(i) = 1.

x∗(i) = 1 Let x1(i) = 1 and x2(i) = 1.

Note that if λ = 1/2, it is not obvious how to round the components to 0 and 1 consistently

for each component. From the previous observation, the condition x∗ 6= x1+x2
2

is equivalent

to having no x∗i = 1
2
, which is easily verifiable.

Lagrangian relaxation

In many cases there may be efficient algorithms for maximizing a linear function over X,

while directly solving the nonlinear problem (2.15) may be computationally more challenging.

Here we give a Lagrangian relaxation approach that exploits an oracle for the linear problem.

Suppose g is concave and increasing, the inverse h of g is differentiable and the derivative

h′ has an inverse h′−1. Then

max
x∈X

f(x) = max
x∈X

c′x+ g(d′x)

= max
x∈X, t∈R

{c′x+ t : t ≤ g(d′x)}

= max
x∈X, t∈R

{c′x+ t : h(t) ≤ d′x} . (2.25)

CHAPTER 2. APPROXIMATIONS FOR CONIC QUADRATIC MAXIMIZATION 31

Let y ≥ 0 be the dual variable associated with the constraint h(t) ≤ d′x. Since h is convex,

the Lagrangian dual with respect to this constraint has no duality gap. We obtain

max
x∈X

f(x) = min
y≥0

max
x∈X,t∈R

(c′ + yd′)x+ t− yh(t) = min
y≥0

θ(y). (2.26)

Note that θ(y) is a one-dimensional convex function, which can be optimized using line

search methods.

We now describe how to evaluate θ(y). Taking derivatives in (2.26) with respect to t, we

find that 1− yh′(t) = 0, or t = h′−1
(

1
y

)
. Replacing in (2.26), we obtain

θ(y) = h′−1

(
1

y

)
− yh

(
h′−1

(
1

y

))
+ max

x∈X
(c′ + yd′)x,

which can be computed efficiently using the linear oracle.

Example: Square root function

For g(z) = β
√
ξ+z, we have that h(z) =

(
z
β

)2

−ξ, h′(z) = 2z
β2 , h′−1(z) = β2z

2
and

θ(y) =
β2

4y
+ yξ+ max

x∈X
(c′ + yd′)x.

Example: Exponential utility

For g(z) = 1− e−z, we have that h(z) = − ln(1− z), h′(z) = 1
1−z , h′−1(z) = 1− 1

z
and

θ(y) = 1− y + y ln(y) + max
x∈X

(c′ + yd′)x.

Example: Logarithmic utility

For g(z) = ln(1 + z), we have that h(z) = ez − 1, h′(z) = ez, h′−1(z) = ln(z) and

θ(y) = y − ln(y)− 1 + max
x∈X

(c′ + yd′)x.

Example: MNL probability function

For g(z) = z
1+z

, we have that h(z) = z
1−z , h′(z) = 1

(1−z)2 , h′−1(z) = 1− 1√
z

and

θ(y) = (1−√y)2 + max
x∈X

(c′ + yd′)x.

CHAPTER 2. APPROXIMATIONS FOR CONIC QUADRATIC MAXIMIZATION 32

Proposition 15. Problem (2.26) can be solved with O
(

ln
(
g′(d′xL)

ε

))
calls to the linear

optimization oracle, where ε > 0 is the precision and xL = arg maxx∈Xc
′x.

Proof. Let y∗ = arg miny≥0θ(y), and let x∗ and t∗ be optimal solutions to (2.25). Since t∗ =

g(d′x∗) and t∗ = h′−1
(

1
y∗

)
, we have that y∗ = 1

h′(g(d′x∗))
. Using the inverse function theorem,

we get that y∗ = g′(d′x∗). Moreover, c′xL ≥ c′x∗ and d′xL ≤ d′x∗ and, since g is concave,

g′ is non-increasing and in particular g′(d′x∗) ≤ g′(d′xL). Therefore 0 ≤ y∗ ≤ g′(d′xL), and

solving problem (2.26) using golden section search requires
ln
(
g′(d′xL)

ε

)
− ln (0.618)

+ 2

calls to the linear oracle.

Remark 3. Let y∗ = arg miny≥0θ(y). If maxx∈X(c+ y∗d)′x has a unique optimal solution x∗,

then x∗ is an optimal solution to problems (2.15) and (2.1). Otherwise, if maxx∈X(c+ y∗d)′x

has optimal extreme point solutions x1 and x2, then there exists an optimal solution x∗ to

problem (2.15) which can be written as a convex combination of x1 and x2. Moreover, note

that each evaluation of θ(y) yields a vertex of X. Therefore, instead of selecting the best

vertex among x1 and x2, we can select the best among all evaluated vertices, resulting in a

practical improvement of Algorithm 2.

Remark 4. The Lagrangian relaxation provides an upper bound on the optimality gap, given

by ∣∣∣∣Vcont − Vint

Vint

∣∣∣∣ , (2.27)

where Vcont = miny≥0 θ(y) is the value of the continuous relaxation and Vint is the objective

value of the best extreme point found.

CHAPTER 2. APPROXIMATIONS FOR CONIC QUADRATIC MAXIMIZATION 33

Approximate robust formulation

In this section we discuss how to solve the approximate robust conic quadratic optimization

problem

(ARCQO) ζ := min
z∈Z

max
x∈Rn

c′0z +
∑
i∈N

(c′iz)xi +

√
z′Q0z +

∑
i∈N

(z′Qiz)xi : Ax ≤ b, x ≥ 0

= min

z∈Z,y≥0

{
1

4y
+ c′0z + yz′Q0z + max

Ax≤b,x≥0

n∑
i=1

(c′iz + yz′Qiz)xi

}
,

where the equality follows from the analysis in the previous section. Let w be the dual

variables associated with the inner maximization problem. Using standard LP duality, we

get that

ζ = min
1

4y
+ c′0z + yz′Q0z + b′w

(ARCQO′) s.t A′iw ≥ c′iz + yz′Qiz i = 1, . . . , n

z ∈ Z, y ≥ 0, w ≥ 0,

where A′i denotes the transpose of the i-th column of A. We now substitute y = 1/ŷ,

introduce additional nonnegative variables vi, i = 0, . . . , n, and enforce the rotated second

order cone constraints z′Qz ≤ ŷvi to get the equivalent formulation

ζ = min
1

4
ŷ + c′0z + v0 + b′w

(ARCQO′′) s.t A′iw ≥ c′izi + vi i = 1, . . . , n

z′Qiz ≤ ŷvi i = 0, . . . , n

z ∈ Z, ŷ ≥ 0, w ≥ 0, v ≥ 0.

A case of particular interest is when Z is a SOCP-representable convex set.

Proposition 16. If Z is SOCP-representable, then the approximate robust conic quadratic

optimization problem (ARCQO) is SOCP-representable.

Note that there are efficient interior point algorithms for the special case of SOCPs (e.g.

Nesterov and Todd 1998).

Remark 5. Unlike the linear case studied in Bertsimas and Sim (2004), the exact robust

counterpart (2.9) is NP -hard. Note that most robust counterparts of conic quadratic pro-

grams are NP -hard, and safe tractable approximations are used instead (Ben-Tal et al. 2009,

CHAPTER 2. APPROXIMATIONS FOR CONIC QUADRATIC MAXIMIZATION 34

chapters 5-7). In our case, the approximation ratio is constant (1.25), and the approximation

belongs to the same complexity class as the nominal problem (4.7).

Computational complexity

We now discuss the theoretical computational complexity of the approximation algorithm

for specific polytopes, and compare it with the existing approaches in the literature.

Computational complexity for the uniform matroid

The greedy algorithm, with complexity O(nk), is a well-known approach to tackle a mono-

tone submodular maximization problem over the uniform matroid. We now argue that the

Lagrangean version of the approximation algorithm described in 2.5 may be preferable in

large instances.

First note that maximizing a linear function over the uniform matroid can be done

in O(n) time using quickselect. The complexity of the approximation algorithm is thus

O
(
n ln

(
g′(d′xL)

ε

))
. Note that ε corresponds to the required precision of a lagrangean mul-

tiplier related with the nonlinear term, and does not depend on n or k. Moreover, for the

exponential utility, logarithmic utility and MNL probability function we have that g′(d′x) ≤ 1

whenever d′x ≥ 0 (a similar dimension-independent upper bound can be obtained for the

square root function if ξ > 0). Therefore, we see in small instances with high precision (i.e.,

k < ln 1
ε
) the greedy algorithm is preferable, but in instances with large values for k and n

the proposed approximation algorithm is faster.

Badanidiyuru and Vondrák (2014) proposed another algorithm for maximizing a submod-

ular function over the uniform matroid that does not depend on k. However, the complexity

of their algorithm is O
(
n
ε

ln n
ε

)
, which is worse than the complexity of our approximation

algorithm for all values of n.

Computational complexity for matroids

We consider the case when X is a matroid which is known through an independence or-

acle. There are randomized algorithms for maximizing a monotone submodular function,

which rely on the multilinear extension, but such algorithms are computationally expensive.

For example, the algorithm of Calinescu et al. (2011) runs in Õ(n8) time, and the authors

comment that the high complexity is due to the number of samples necessary to achieve

CHAPTER 2. APPROXIMATIONS FOR CONIC QUADRATIC MAXIMIZATION 35

high probability bounds. A more efficient algorithm was proposed by Badanidiyuru and

Vondrák (2014), with complexity O
(

1
ε4
nk ln2 n

ε
+ T

(
1
ε2
n ln n

ε
+ 1

ε
k2
))

, where k is the max-

imum cardinality of a feasible solution and T is the time complexity of the independence

oracle. Observe that the time complexity of the Lagrangean version of our approximation

algorithm is better: finding a maximum weight independent set (linear oracle) can be done

in O (n lnn+ Tn) using the greedy algorithm, and the overall complexity of the algorithm

is thus O
(
(n lnn+ Tn) ln 1

ε

)
.

Computational complexity for 0-1 down-monotone polytopes

Vondrák et al. (2011) propose a general framework for maximizing a submodular function

over down-monotone polytopes using contention resolution schemes, which are general ran-

domized rounding techniques that convert a fractional solution obtained from solving a re-

laxation into a feasible integer solution while preserving the quality of the solution. However,

finding such a resolution scheme (which depends on fractional solution found) is computa-

tionally challenging, even when the polytope is a matroid: it requires solving an LP which

is only known through a separation oracle (using the ellipsoid method, which is known to

perform poorly in practice), and in which each evaluation of the separation oracle is noisy (if

ε is the maximum violation allowed for a given constraint, then we require poly(1/ε) calls to

the separation oracle to guarantee feasibility with high probability). In contrast, using the

rounding technique for 0-1 polytopes described in Section 2.5, we deterministically recover

a feasible solution in only O(n) time.

General case

Most approximation algorithms in the literature rely on rounding down fractional solutions,

and such algorithms do not guarantee feasibility if the polytope is not down-monotone (to

the best of our knowledge there is no other approximation algorithm for general polyhedra).

In contrast our approach exploits the structure of the objective function, but it makes no

assumption about the polyhedron besides the existence of an efficient optimization oracle.

2.6 Computational experiments

In this section we study the empirical performance of the approximation algorithm. First

we test the approximation algorithm in instances for which there are other approximation

CHAPTER 2. APPROXIMATIONS FOR CONIC QUADRATIC MAXIMIZATION 36

methods in the literature; next we test the approximation algorithm in the assignment

polytope; then we test the approximation algorithm for the PERT application; then we

test the approximation algorithm for the robust optimization application; and finally we

test the algorithm in the combinatorial multi-armed bandit context. Note that for the

assignment polytope, PERT, robust optimization and multi-armed applications, methods

based on submodularity are not applicable. All experiments are conducted on one thread of

a Dell computer with a 2.2 GHz Intel R©CoreTM i7-2670QM CPU and 8 GB main memory.

Experiments for the uniform matroid polytope

In this section we conduct computational experiments over the uniform matroid, comparing

the proposed approximation algorithm and the greedy algorithm. We solve the problems

with the Lagrangian approach described in Section 2.5, using golden section for the line

search and quickselect as the linear oracle.

Each coefficient ci is generated uniformly in [0, 1] and scaled so that
∑n

i=1 ci = 1. Each

coefficient di is generated uniformly in [0, 1/ci], and scaled so that
∑n

i=1 di = 1. The scaling

ensures that the weights of the linear and nonlinear parts of the objective are similar, and

the coefficients are generated so that there is a tradeoff between the linear and nonlinear

contributions. Both of these choices contribute to making the instances more challenging.

We set k = n/10 and we use g(x) = 1 − e−d
′x, as in the reliability problem described in

Section 2.23. Table 2.1 shows, for different values of n, the time required by the approxima-

tion algorithm and the greedy algorithm to solve the instances in milliseconds and the gap

between the solutions found, computed as

f ∗Greedy − f ∗Approx.

f ∗Greedy

,

where f ∗Greedy and f ∗Approx. are the objective values of the solutions found by the greedy algo-

rithm and the approximation algorithm, respectively. Each column represents the average

over five instances generated with the same parameters. We also computed an upper bound

of the gap with respect of the optimal solution using (2.27), and the gaps are under 0.1%

for both approaches.

We see that the solutions generated by both approaches are very similar in terms of

the objective value. Yet, the proposed approximation algorithm is faster than the greedy

algorithm in all cases, and is considerably so for the larger instances.

3Experiments with other functions yield similar results.

CHAPTER 2. APPROXIMATIONS FOR CONIC QUADRATIC MAXIMIZATION 37

Table 2.1: Results in the uniform matroid polytope.

n = 100 n = 1, 000 n = 10, 000 n = 100, 000 n = 500, 000

Time approximation (ms) 2 4 26 102 305
Time greedy (ms) 3 18 1,184 112,533 2,819,163

Gap −1.5× 10−16 2.4× 10−15 −3.1× 10−15 8.1× 10−9 1.7× 10−8

As we observed in Section 2.5, the time complexity of existing approximation algorithms

for other down-monotone polytopes is much larger than the complexity of the greedy al-

gorithm. The results for the uniform matroid polytope suggest the performance of the

approximation algorithm may be orders of magnitude faster than existing approaches in

other polytopes in practice.

Experiments for the assignment polytope

In this section we conduct computational experiments over the n× n assignment polytope.

We solve the problems with the Lagrangian approach described in Section 2.5, using golden

section for the line search and the the Hungarian method as the linear oracle. The coefficients

are generated as in the uniform matroid polytope case, and we use g(x) = d′x
1+d′x

, as in the

assortment optimization problem.

Table 2.2 shows, for different values of n, the time required by the approximation algo-

rithm to solve the instances in milliseconds and the upper bound of the optimality gap given

by (2.27). Each column represents the average over five instances generated with the same

parameters.

Table 2.2: Results in the assignment polytope.

n = 3 n = 10 n = 100 n = 1000

Time approximation (ms) 1 2 66 2,892
Gap 0.24% 0.01% 0.00% 0.00%

We observe that in problems with n ≥ 100 the solutions to approximation algorithm are

very close to optimal, and in the smaller instances the average gap is at most 0.24%. In

both cases the approximation the reported gap is far from the worst case bound. Moreover

CHAPTER 2. APPROXIMATIONS FOR CONIC QUADRATIC MAXIMIZATION 38

the approximation algorithm can solve instances with n = 1, 000 (i.e. 1,000,000 variables)

in under three seconds.

PERT

The networks for the critical path experiments are constructed as follows. Let V = {0, 1, · · · , r}
and p be the density parameter. For each pair (i, j), i < j, construct an arc with probability

p. For each arc the expected duration cij is drawn from U [0.5(j − i), 1.5(j − i)], and the

standard deviation
√
dij from U [0.25cij, 0.75cij].

The goal is to find the critical 0-r path that best approximates the Value-at-Risk at

confidence level α of the completion time of the project (as defined in (2.4)). We compare

the two approaches described in Section 2.2:

Det-critical We use the Value-at-Risk of the deterministic critical path.

VaR-critical We use the Lagrangian version of the approximation algorithm to solve prob-

lem (2.5), and use the resulting path to approximate the Value-at-Risk.

For each instance we compute the simulated Value-at-Risk (VaRsim) of the completion time

of the project using Monte Carlo simulation with 2,000 replications. In each replication we

generate samples for the duration of each arc according to the normal distributions. We

then compute VaRα(D) = sup{` ∈ R : Pr(D ≤ `) ≤ 1 − α} using binary search on `, and

we evaluate Pr(D ≤ `) by the fraction of replications in which D ≤ ` (where D is the length

of the critical path).

Table 2.3 presents the results for instances with 50 nodes. It shows the density p; the

solution approach used; and for varying confidence levels the estimated Value-at-Risk VaRest.,

and the gap between VaRest. and VaRsim, computed as

VaRsim. − VaRest.

VaRsim.

·

Each row represents the average over five instances generated with the same parameters. In

all cases, the solution of approximation algorithm is within 0.1% of optimal (computed using

(2.27)) and computing the VaRα-critical path takes less than 0.1 seconds.

The computational experiments suggest that explicitly using the risk information to

select the critical path results in paths that better estimate the Value-at-Risk of the project

compared to using the deterministic critical path by PERT: the gap between the estimated

CHAPTER 2. APPROXIMATIONS FOR CONIC QUADRATIC MAXIMIZATION 39

Table 2.3: Duration estimates in networks with 50 nodes.

Density Method
90% CL 97.5% CL 99% CL

Est. Gap Est. Gap Est. Gap

Det 10,137 26.4% 12,031 16.5% 13,203 14.6%
0.3 VaR 10,811 20.2% 13,008 9.8% 14,375 7.1%

Sim 13,008 - 14,414 - 15,469 -

Det 10,002 33.4% 11,563 30.3% 12,344 30.1%
0.5 VaR 11,699 22.2% 14,453 12.9% 15,625 11.5%

Sim 15,029 - 16,593 - 17,656 -

Det 10,479 35.4% 12,383 30.2% 13,281 29.2%
0.8 VaR 12,036 25.8% 15,078 15.0% 16,250 13.3%

Sim 16,230 - 17,734 - 18,750 -

Average
Det 31.7% 25.7% 24.6%
VaR 22.7% 12.6% 10.6%

and true Value-at-Risk of the project is reduced by almost half. Note that the quality of the

approximation for both approaches decreases as the density of the network increases, and

the VaRα-critical path is comparatively better for higher values of confidence.

These experiments on estimating project duration indicate that the approximation algo-

rithm is effective in finding optimal solutions to VaR-critical path problem.

Robust portfolio optimization

We illustrate the method for robust conic quadratic programs proposed in Section 2.4 using

a canonical finance application. Given a set of assets N = {1, . . . , n}, with expected return µ

and covariance matrix Σ, the portfolio with minimum value-at-risk can be found by solving

the optimization problem

min
z∈Z
− µ′z + β

√
z′Σz,

where Z =
{
z ∈ Rn

+ :
∑

i∈N zi = 1
}

is the set of long-only budget-constrained portfolios.

For simplicity we test the case where Σ is a diagonal matrix with entries Σii = σ2
i . In

the robust version, we consider the events that may reduce the expected return of asset i

to µi − ci and increase the variance of it to σ2
i + di. The decision-maker wishes to select a

robust portfolio, given that k of the events happen simultaneously.

CHAPTER 2. APPROXIMATIONS FOR CONIC QUADRATIC MAXIMIZATION 40

For the particular case of diagonal Σ and each event corresponding to a single variable,

the approximate robust formulation in Section 2.5 can be further simplified to

min
1

4
ŷ −

∑
i∈N

µizi +
∑
i∈N

σ2
i vi + kw

s.t w ≥ cizi + divi i = 1, . . . , n

z2
i ≤ ŷvi i = 1, . . . , n

z ∈ Z, ŷ ≥ 0, w ≥ 0, v ≥ 0.

In order to compute the optimality gap, we solve the robust problem (2.9) exactly by

enumerating all extreme points of the uniform matroid polytope, i.e.,

min t

s.t. t ≥ −
∑
i∈N

(µi − cixi)zi +

√∑
i∈N

(σ2
i + dixi)z2

i ∀x ∈ VX

z ∈ Z, t ∈ R

(2.28)

which requires
(
n
k

)
conic quadratic constraints.

We solve both formulations using CPLEX 12.6.2. In our experiments we use k = 3, β = 2,

µi is drawn from U [0, 1], σi is drawn from U [0, 2µi] (thus risky assets have on average high

expected return) and ci and
√
di are drawn form U [0, 2]. Table 2.4 presents the results. It

shows, for n between 10 and 70, the time required to solve the problems for both formulations

in milliseconds, and the value of the approximation ratio (2.18). Each column represents the

average over five instances generated with the same parameters. For instances with n > 70,

formulation (2.28) is impractical due to its high memory requirements.

Table 2.4: Robust portfolio results.

n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 n = 70

Time approximation (ms) 8 10 17 35 36 39 59
Time exact (ms) 59 1,092 7,904 33,252 101,113 266,131 601,215

∆ 1.000 1.008 1.004 1.001 1.000 1.000 1.000

We see that the approximate robust formulation is very accurate in practice, finding

optimal solutions (with ∆ = 1) in most of the cases. Its performance is far from worst case

bound of 1.25. We also observe that the approximate robust problem scales very well in

practice.

CHAPTER 2. APPROXIMATIONS FOR CONIC QUADRATIC MAXIMIZATION 41

Multi-armed bandit

We consider the multi-armed bandit problem where the weight of each arc follows a Bernoulli

distribution whose parameter is uniformly generated on [0, 1]. To evaluate a policy in terms

of regret, we simulate the learning process: at each step we play a solution according to the

policy, then we generate random variates from the Bernoulli distributions of each item, and

finally we use the generated variates to update the parameters of the policy. We compare the

regret of Algorithm 1 using the approximation algorithm to solve the subproblems (NlUCB),

with other approaches found in the literature. In particular the test the alternatives proposed

by Chen et al. (2013) (CombUCB) and György et al. (2006) (Exp). Note that algortihm

Exp is designed for the more general adverserial case, but is limited to the path polytope.

We summarize the results in Table 2.5. It shows, from left to right: the number of

variables in the problem; the policy used to solve the problem; the average regret after 20,000

simulation iterations. Each row represents the average over 5 simulations with the same

parameters. Figure 2.2 presents the average cumulative regret of NlUCB and CombUCB

as a function of the iteration for the path instances of size 760 (others sizes have similar

behavior).

Table 2.5: Regret after 20,000 iterations.

Variables Policy Regret

40
NlUCB 356

CombUCB 1,6885
Exp 25,188

180
NlUCB 747

CombUCB 8,018
Exp 79,304

760
NlUCB 3,669

CombUCB 31,670
Exp 175,237

In all cases, NlUCB achieves lower regret than the other methods.

CHAPTER 2. APPROXIMATIONS FOR CONIC QUADRATIC MAXIMIZATION 42

Figure 2.2: Cumulative regret of App and CombUCB in instances with 760 variables.

2.7 Conclusions

In this chapter we consider the problem of maximizing a class of concave utility functions

over the extreme points of a polytope, which is NP -hard for many classes of polytopes. Such

problems naturally arise in combinatorial problems in which the feasible region is composed

of the extreme points of an integral polytope. We exploit the property that there exists a

solution of the continuous relaxation of the problem on an edge of the polytope to develop

an approximation algorithm. The algorithm requires either an oracle for the continuous

relaxation of the nonlinear problem, or an oracle for linear programs over the polytope, and

is polynomial time under mild assumptions on the function g and the polytope X. We

prove that the proposed approach is a 1/2-approximation. When the concave function in

the objective is the square root function, the proposed approach is a 4/5-approximation.

We also propose a simple 1.25-approximation algorithm for a class of robust conic quadratic

minimization problems. Computational experiments suggest that both approaches find so-

lutions with very small optimality gap, are much more efficient than alternatives found in

the literature in some cases, and are the first approximation algorithms proposed for other

cases.

43

Chapter 3

Simplex QP method for conic

quadratic minimization

3.1 Introduction

Consider the minimization of a conic quadratic function over a polyhedron, i.e.,

(CO) min
x∈Rn

{
c′x+ Ω

√
x′Qx : x ∈ X

}
,

where c ∈ Rn, Q ∈ Rn×n is a symmetric positive semidefinite matrix, Ω > 0, and X ⊆ Rn is

a rational polyhedron. We denote by CDO the discrete counterpart of CO with integrality

restrictions: X ∩ Zn. CO and CDO are frequently used to model utility with uncertain

objectives as in parametric value-at-risk minimization (El Ghaoui et al. 2003), portfolio

optimization (Atamtürk and Jeon 2017), and robust counterparts of linear programs with

an ellipsoidal objective uncertainty set (Ben-Tal and Nemirovski 1998, 1999, Ben-Tal et al.

2009).

Note that CO includes LP and QP as special cases. The simplex method (Dantzig et al.

1955, Wolfe 1959, Van de Panne and Whinston 1964) is still the most widely used algorithm

for LP and QP, despite the fact that polynomial interior point algorithms (Karmarkar 1984,

Nesterov and Nemirovskii 1994, Nemirovski and Scheinberg 1996) are competitive with the

simplex method in many large-scale instances. Even though non-polynomial, the simplex

method has some distinct advantages over interior point methods. Since the simplex method

iterates over bases, it is possible to carry out the computations with high accuracy and little

cost, while interior point methods come with a trade-off between precision and efficiency.

Moreover, an optimal basis returned by the simplex method is useful for sensitivity analysis,

while interior point methods do not produce such a basis unless an additional “crashing”

CHAPTER 3. SIMPLEX QP METHOD FOR CONIC QUADRATIC MINIMIZATION44

procedure is performed (e.g. Megiddo 1991). Finally, if the parameters of the problem change,

re-optimization can often be done very fast with the simplex method starting from a primal

or dual feasible basis, whereas warm starts with interior point methods have limitations

(Yildirim and Wright 2002, Çay et al. 2017). In particular, fast re-optimization with the

dual simplex method is crucial when solving discrete optimization problems with a branch-

and-bound algorithm.

CO is a special case of SOCO (Lobo et al. 1998, Alizadeh and Goldfarb 2003), which

can be solved by polynomial-time interior points algorithms (Alizadeh 1995, Nesterov and

Todd 1998, Ben-Tal and Nemirovski 2001a). Although CO can be solved by a general conic

quadratic solver, we show in this chapter that iterative QP algorithms scale much better. In

particular, simplex-based QP algorithms allowing warm starts perform orders of magnitude

faster than interior point methods for CO.

For the discrete counterpart CDO, a number of different approaches are available for

the special case with a diagonal Q matrix: Ishii et al. (1981) give a polynomial time for

optimization over spanning trees; Bertsimas and Sim (2004) propose an approximation al-

gorithm that solves series of linear integer programs; Atamtürk and Narayanan (2008) give

a cutting plane algorithm utilizing the submodularity of the objective for the binary case;

Atamtürk and Narayanan (2009) use parametric linear programming for the binary case with

a cardinality constraint.

The aforementioned approaches do not extend to the non-diagonal case or to general

feasible regions, which are obviously NP -hard as quadratic and linear integer optimization

are special cases. The branch-and-bound algorithm is the method of choice for general CDO.

However, branch-and-bound algorithms that repeatedly employ a nonlinear programming

(NLP) solver at the nodes of the search tree are typically hampered by the lack of effective

warm starts. Borchers and Mitchell (1994) and Leyffer (2001) describe NLP-based branch-

and-bound algorithms, and they give methods that branch without solving the NLPs to

optimality, reducing the computational burden for the node relaxations. On the other hand,

LP-based branch-and-bound approaches employ linear outer approximations of the nonlinear

terms. This generally results in weaker relaxations at the nodes, compared to the NLP

approaches, but allows one to utilize warm starts with the simplex method. Therefore,

one is faced with a trade-off between the strength of the node relaxations and the solve

time per node. A key idea to strengthen the node relaxations, as noted by Tawarmalani

and Sahinidis (2005), is to use extended formulations. Atamtürk and Narayanan (2007)

describe mixed-integer rounding inequalities in an extended formulation for conic quadratic

CHAPTER 3. SIMPLEX QP METHOD FOR CONIC QUADRATIC MINIMIZATION45

integer programming. Vielma et al. (2016) use an extended formulation for conic quadratic

optimization that can be refined during branch-and-bound, and show that an LP-based

branch-and-bound using the extended formulations typically outperforms the NLP-based

branch-and-bound algorithms. The reader is referred to Belotti et al. (2013) for an excellent

survey of the solution methods for mixed-integer nonlinear optimization.

In this chapter, we reformulate CO through the perspective of its objective function and

give algorithms that solve a sequence of closely related QPs. Utilizing the simplex method,

the solution to each QP is used to warm start the next one in the sequence, resulting in a small

number of simplex iterations and fast solution times. Moreover, we show how to incorporate

the proposed approach in a branch-and-bound algorithm, efficiently solving the continuous

relaxations to optimality at each node and employing warm starts with the dual simplex

method. Our computational experiments indicate that the proposed approach outperforms

the state-of-the-art algorithms for convex as well as discrete cases.

The rest of the chapter is organized as follows. In Section 3.2 we give an alternative

formulation for CO using the perspective function of the objective. In Section 3.3 we present

coordinate descent and accelerated bisection algorithms that solve a sequence of QPs. In

Section 3.4 we provide computational experiments, comparing the proposed methods with

state-of-the-art barrier and other algorithms.

3.2 Formulation

In this section we present a reformulation of CO using the perspective function of its objec-

tive. Let X = {x ∈ Rn : Ax = b, x ≥ 0} be the feasible region of problem CO. For convex

quadratic q(x) = x′Qx, consider the function h : Rn+1 → R+ ∪ {∞} defined as

h(x, t) =

x′Qx
t

if t > 0,

0 if x′Qx = 0, t = 0,

+∞ otherwise.

Observe that

min
{
c′x+ Ω

√
x′Qx : x ∈ X

}
= min

{
c′x+

Ω

2
h(x, t) +

Ω

2
t : x ∈ X, t =

√
x′Qx

}
≥ ζ,

CHAPTER 3. SIMPLEX QP METHOD FOR CONIC QUADRATIC MINIMIZATION46

where

(PO) ζ = min

{
c′x+

Ω

2
h(x, t) +

Ω

2
t : x ∈ X, t ≥ 0

}
.

We will show that problems CO and PO have, in fact, the same optimal objective value

and that there is a one-to-one correspondence between the optimal primal-dual pairs of both

problems.

Proposition 17. Problem PO is a convex optimization problem.

Proof. It suffices to observe that h is the closure of the perspective function tq(x/t) of the

convex quadratic function q(x), and is therefore convex (e.g. Hiriart-Urruty and Lemaréchal

2013, p. 160). Since all other objective terms and constraints of PO are linear, PO is a

convex optimization problem.

Proposition 18. Problems CO and PO are equivalent.

Proof. If t > 0, the objective function of problem PO is continuous and differentiable, and

since the feasible region is a polyhedron and the problem is convex, its KKT points are

equivalent to its optimal solutions. The KKT conditions of PO are

Ax = b, x ≥ 0, t ≥ 0

−c′ − Ω

t
x′Q = λ′A− µ (3.1)

Ω

2t2
x′Qx− Ω

2
= 0 (3.2)

µ ≥ 0

µ′x = 0,

where λ and µ are the dual variables associated with constraints Ax = b and x ≥ 0, respec-

tively. Note that t > 0 and (3.2) imply that t =
√
x′Qx. Substituting t =

√
x′Qx in (3.1),

one arrives at the equivalent conditions

Ax = b, x ≥ 0

−c′ − Ω√
x′Qx

x′Q = λ′A− µ (3.3)

t =
√
x′Qx (3.4)

µ ≥ 0

µ′x = 0.

Ignoring the redundant variable t and equation (3.4), we see that these are the KKT con-

ditions of problem CO. Therefore, any optimal primal-dual pair for PO with t > 0 is an

CHAPTER 3. SIMPLEX QP METHOD FOR CONIC QUADRATIC MINIMIZATION47

optimal primal-dual pair for CO. Similarly, we see that any optimal primal-dual pair of

problem CO with x′Qx > 0 gives an optimal primal-dual pair of problem PO by setting

t =
√
x′Qx. In both cases, the objective values match.

On the other hand, if t = 0, then PO reduces to problem

min
x∈Rn
{c′x : Ax = b, x ≥ 0, x′Qx = 0} ,

which corresponds to CO with x′Qx = 0, and hence they are equivalent.

Since they are equivalent optimization problems, we can use PO to solve CO. In partic-

ular, we exploit the fact that, for a fixed value of t, PO reduces to a QP.

3.3 Algorithms

For simplicity, assume that PO has an optimal solution; hence, X is nonempty and may be

assumed to be bounded. Consider the one-dimensional optimal value function

g(t) = min
x∈X

c′x+
Ω

2
h(x, t) +

Ω

2
t· (3.5)

As X is nonempty and bounded, g is real-valued and, by Proposition 17, it is convex.

Throughout, x(t) denotes an optimal solution to (3.5).

In this section we describe two algorithms for PO that utilize a QP oracle. The first one

is a coordinate descent approach, whereas, the second one is an accelerated bisection search

algorithm on the function g. Finally, we discuss how to exploit the warm starts with the

simplex method to solve convex as well as discrete cases.

Coordinate descent algorithm

Algorithm 3 successively optimizes over x for a fixed value of t, and then optimizes over t

for a fixed value of x. Observe that the optimization problem in line 4 over x is a QP, and

the optimization in line 5 over t has a closed form solution: by simply setting the derivative

to zero, we find that ti+1 =
√
xi+1

′Qxi+1.

First observe that the sequence of objective values
{
c′xi + Ω

2ti
x′iQxi + Ω

2
ti

}
i∈N

is non-

increasing. Moreover, the dual feasibility KKT conditions for the QPs in line 4 are of the

form

−c′ − Ω

ti
xi+1

′Q = λ′A− µ. (3.6)

CHAPTER 3. SIMPLEX QP METHOD FOR CONIC QUADRATIC MINIMIZATION48

Algorithm 3 Coordinate descent.

Input: X polyhedron; Q psd matrix; c cost vector; Ω > 0
Output: Optimal solution x∗

1: Initialize t0 > 0 . e.g. t0 = 1
2: i← 0 . iteration counter
3: repeat

4: xi+1 ← arg min
x∈X

{
c′x+ Ω

2ti
x′Qx+ Ω

2
ti

}
. solve QP

5: ti+1 ← arg min
t≥0

{
c′xi+1 + Ω

2t
xi+1

′Qxi+1 + Ω
2
t
}

. ti+1 =
√
xi+1

′Qxi+1

6: i← i+ 1
7: until stopping condition is met
8: return xi

Let ‖ · ‖ be a norm and suppose that the QP oracle finds feasible primal-dual pairs with

ε > 0 tolerance with respect to ‖ · ‖. In particular xi+1 in line 4 violates (3.6) by at most ε,

i.e., ∥∥∥∥−c′ − Ω

ti
xi+1

′Q− λ′A+ µ

∥∥∥∥ ≤ ε.

Proposition 19 below states that, at each iteration of Algorithm 3, we can bound the violation

of the dual feasibility condition (3.3) corresponding to the original problem CO. The bound

depends only on the precision of the QP oracle ε, the relative change of t in the last iteration
∆i

ti
, where ∆i = ti+1 − ti, and the gradient of the function f(x) = Ω

√
x′Qx evaluated at the

new point xi+1.

Proposition 19 (Dual feasibility bound). A pair (xi+1, ti+1) in Algorithm 3 satisfies∥∥∥∥−c′ − Ω
x′i+1Q√
xi+1

′Qxi+1

− λ′A+ µ

∥∥∥∥ ≤ ε+
|∆i|
ti
· ‖∇f(xi+1)‖

CHAPTER 3. SIMPLEX QP METHOD FOR CONIC QUADRATIC MINIMIZATION49

Proof. ∥∥∥∥−c′ − Ω
xi+1

′Q√
xi+1

′Qxi+1

− λ′A+ µ

∥∥∥∥
=

∥∥∥∥−c′ − Ω
xi+1

′Q

ti + ∆i

− λ′A+ µ

∥∥∥∥
=

∥∥∥∥−c′ − Ω
xi+1

′Q

ti
− Ωxi+1

′Q

(
1

ti + ∆i

− 1

ti

)
− λ′A+ µ

∥∥∥∥
=

∥∥∥∥−c′ − Ω
xi+1

′Q

ti
− λ′A+ µ+ Ω

(
∆i

ti · ti+1

)
xi+1

′Q

∥∥∥∥
≤ε+

∥∥∥∥Ω
∆i

ti
· xi+1

′Q

ti+1

∥∥∥∥ = ε+ Ω
|∆i|
ti
·
∥∥∥∥ xi+1

′Q√
xi+1

′Qxi+1

∥∥∥∥ .
Let t∗ be a minimizer of g on R+. We now show that the sequence of values of t produced

by Algorithm 3, {ti}i∈N, is monotone and bounded by t∗.

Proposition 20 (Monotonicity). If ti ≤ t∗, then ti+1 =
√
xi+1

′Qxi+1 satisfies ti ≤ ti+1 ≤ t∗.

Similarly, if ti ≥ t∗, then ti ≥ ti+1 ≥ t∗.

Proof. If ti ≤ t∗, then Ω
2ti
≥ Ω

2t∗
. It follows that x(ti+1) is a minimizer of an optimiza-

tion problem with a larger coefficient for the quadratic term than x(t∗), and therefore

xi+1
′Qxi+1 = t2i+1 ≤ t∗2 = x∗′Qx∗, and ti+1 ≤ t∗. Moreover, the inequality ti ≤ ti+1 fol-

lows from the convexity of the one-dimensional function g and the fact that function g is

minimized at t∗, and that g(ti+1) ≤ g(ti). The case ti ≥ t∗ is similar.

Since the sequence {ti}i∈N is bounded and monotone, it converges to a supremum or

infimum. Thus {ti}i∈N is a Cauchy sequence, and lim
i→∞

∆i = 0. Corollaries 5 and 6 below

state that Algorithm 3 converges to an optimal solution. The cases where there exists a

KKT point for PO (i.e., there exists an optimal solution with t∗ > 0) and where there are

no KKT points are handled separately.

Corollary 5 (Convergence to a KKT point). If PO has a KKT point, then Algorithm 3

converges to a KKT point.

Proof. By convexity, the set of optimal solutions to (3.5) is an interval, [t`, tu]. Since by

assumption there exists a KKT point, we have that tu > 0. The proof is by cases, depending

on the value of t0 in line 1 of Algorithm 3.

Case t` ≤ t0 ≤ tu Since t0 is optimal, we have by Proposition 20 that t1 = t0. Since ∆0 = 0

and t0 =
√
x′i+1Qxi+1 > 0, we have that ‖∇f(xi+1)‖ < ∞ in Proposition 19, and

|∆i|
ti
· ‖∇f(xi+1)‖ = 0.

CHAPTER 3. SIMPLEX QP METHOD FOR CONIC QUADRATIC MINIMIZATION50

Case t0 < t` We have by Proposition 20 than for all i ∈ N, ti =
√
x′iQxi ≥ t0 > 0. There-

fore, there exists a number M such that 1
ti
‖∇f(xi+1)‖ < M for all i ∈ N, and we find

that |∆i|
ti
· ‖∇f(xi+1)‖ ∆i→0−−−→ 0.

Case t0 > tu We have by Proposition 20 than for all i ∈ N, ti =
√
x′iQxi ≥ tu > 0.

Therefore, there exists a number M such that 1
ti
‖∇f(xi+1)‖ < M for all i ∈ N, and

we find that |∆i|
ti
· ‖∇f(xi+1)‖ ∆i→0−−−→ 0.

Therefore, in all cases, Algorithm 3 convergences to a KKT point by Proposition 19.

Corollary 6 (Convergence to 0). If t∗ = 0 is the unique optimal solution to min{g(t) :

t ∈ R+}, then for any ξ > 0 Algorithm 3 finds a solution (x̄, t̄), where t̄ < ξ and x̄ ∈
arg min

{
c′x :

√
x′Qx = t̄, x ∈ X

}
.

Proof. The sequence {ti}i∈N converges to 0 (otherwise, by Corollary 5, it would converge to

a KKT point). Thus, limi→∞
√
x′iQxi = 0 and all points obtained in line 4 of Algorithm 3

satisfy xi+1 ∈ arg min
{
c′x :

√
x′Qx = ti+1, x ∈ X

}
.

We now discuss how to initialize and terminate Algorithm 3, corresponding to lines 1

and 7, respectively.

Initialization.

The algorithm may be initialized by an arbitrary t0 > 0. Nevertheless, when a good initial

guess on the value of t∗ is available, t0 should be set to that value. Moreover, observe that

setting t0 =∞ results in a fast computation of x1 by solving an LP.

Stopping condition.

Proposition 19 suggests a good stopping condition for Algorithm 3. Given a desired dual

feasibility tolerance of δ > ε, we can stop when ε + |∆i|
ti
· ‖∇f(xi+1)‖ < δ. Alternatively,

if ∃k s.t. maxx∈X ‖∇f(x)‖ ≤ k < ∞, then the simpler
∣∣∣∆i

ti

∣∣∣ ≤ δ−ε
k

is another stopping

condition. For instance, a crude upper bound on ∇f(x) = Ω
∥∥∥ x′Q√

x′Qx

∥∥∥ can be found by

maximizing/minimizing the numerator x′Q over X and minimizing x′Qx over X. The latter

minimization is guaranteed to have a nonzero optimal value if 0 6∈ X and Q is positive

definite.

CHAPTER 3. SIMPLEX QP METHOD FOR CONIC QUADRATIC MINIMIZATION51

Bisection algorithm

Algorithm 4 is an accelerated bisection approach to solve PO. The algorithm maintains lower

and upper bounds, tmin and tmax, on t∗ and, at each iteration, reduces the interval [tmin, tmax]

by at least half. The algorithm differs from the traditional bisection search algorithm in

lines 7–11, where it uses an acceleration step to reduce the interval by a larger amount: by

Proposition 20, if t0 ≤ t1 (line 7), then t0 ≤ t1 ≤ t∗, and therefore t1 is a higher lower

bound on t∗ (line 8); similarly, if t0 ≥ t1, then t1 is an lower upper bound on t∗ (lines 9

and 10). Intuitively, the algorithm takes a “coordinate descent” step as in Algorithm 3 after

each bisection step. Preliminary computations show that the acceleration step reduces the

number of steps as well as the overall solution time for the bisection algorithm by about

50%.

Algorithm 4 Accelerated bisection.

Input: X polyhedron; Q psd matrix; c cost vector; Ω > 0
Output: Optimal solution x∗

1: Initialize tmin and tmax . ensure tmin ≤ t∗ ≤ tmax

2: ẑ ←∞ . best objective value found
3: repeat
4: t0 ← tmin+tmax

2

5: x0 ← arg min
x∈X

{
c′x+ Ω

2t0
x′Qx+ Ω

2
t0

}
. solve QP

6: t1 ←
√
x0
′Qx0

7: if t0 ≤ t1 then . accelerate bisection
8: tmin ← t1
9: else

10: tmax ← t1
11: end if
12: if c′x0 + Ω

√
x0
′Qx0 ≤ ẑ then . update the incumbent solution

13: ẑ ← c′x0 + Ω
√
x0
′Qx0

14: x̂← x0

15: end if
16: until stopping condition is met
17: return x̂

Initialization.

In line 1, tmin can be initialized to zero and tmax to xLP
′QxLP , where xLP is an optimal

solution to the LP relaxation minx∈X c
′x.

CHAPTER 3. SIMPLEX QP METHOD FOR CONIC QUADRATIC MINIMIZATION52

Stopping condition.

There are different possibilities for the stopping criterion in line 16. Note that if we have

numbers tm and tM such that tm ≤ t∗ ≤ tM , then c′x(tM) + Ω
√
x(tm)′Qx(tm) is a lower

bound on the optimal objective value c′x∗ + Ω
√
x∗′Qx∗. Therefore, in line 5, a lower bound

zl on the objective function can be computed, and the algorithm can be stopped when

the gap between ẑ and zl is smaller than a given threshold. Alternatively, stopping when
|t1−t0|
t0
·Ω
∥∥∥ x0′Q√

x0′Qx0

∥∥∥ < δ−ε provides a guarantee on the dual infeasibility as in Proposition 19.

Warm starts

Although any QP solver can be used to run the coordinate descent and bisection algorithms,

simplex methods for QP are particularly effective as they allow warm starts for small changes

in the model parameters in iterative applications. This is the main motivation for the QP

based algorithms presented above.

Warm starts with primal simplex for convex optimization

All QPs solved in Algorithms 3–4 have the same feasible region and only the objective

function changes in each iteration. Therefore, an optimal basis for a QP is primal feasible

for the next QP solved in the sequence, and can be used to warm start a primal simplex QP

solver.

Warm starts with dual simplex for discrete optimization

When solving discrete counterparts of CO with a branch-and-bound algorithm one is par-

ticularly interested in utilizing warm starts in solving convex relaxations at the nodes of

the search tree. In a branch-and-bound algorithm, children nodes typically have a single

additional bound constraint compared to the parent node.

For this purpose, it is also possible to warm start Algorithm 3 from a dual feasible basis.

Let (x∗, t∗) be an optimal solution to PO and B∗ be an optimal basis. Consider a new

problem

min

{
c′x+

Ω

2t
x′Qx+

Ω

2
t : x ∈ X̄, t ≥ 0

}
, (3.7)

where the feasible set X̄ is obtained from X by adding new constraints. Note that B∗ is

a dual feasible basis for (3.7) when t = t∗. Therefore, Algorithm 3 to solve problem (3.7)

can be warm started by initializing t0 = t∗ and using B∗ as the initial basis to compute x1

CHAPTER 3. SIMPLEX QP METHOD FOR CONIC QUADRATIC MINIMIZATION53

with a dual simplex algorithm. The subsequent QPs can be solved using the primal simplex

algorithm as described above.

3.4 Computational experiments

In this section we report on computational experiments with solving convex CO and its

discrete counterpart CDO with the algorithms described in Section 3.3. The algorithms are

implemented with CPLEX Java API. We use the simplex and barrier solvers of CPLEX

version 12.6.2 for the computational experiments. All experiments are conducted on a work-

station with a 2.93GHz Intel R©CoreTM i7 CPU and 8 GB main memory using a single thread.

Test problems

We test the algorithms on two types of data sets. For the first set the feasible region is de-

scribed by a cardinality constraint and bounds, i.e., X = {x ∈ Rn :
∑n

i=1 xi = b, 0 ≤ x ≤ 1}
with b = n/5. For the second data set the feasible region consists of the path polytope of an

acyclic grid network. For discrete optimization problems we additionally enforce the binary

restrictions x ∈ Bn.

For both data sets the objective function q(x) = c′x + Ω
√
x′Qx is generated as follows:

Given a rank parameter r and density parameter α, Q is the sum of a low rank factor matrix

and a full rank diagonal matrix; that is, Q = FΣF ′ +D, where

• D is an n× n diagonal matrix with entries drawn from Uniform(0, 1).

• Σ = HH ′ where H is an r × r matrix with entries drawn from Uniform(−1, 1).

• F is an n× r matrix in which each entry is 0 with probability 1− α and drawn from

Uniform(−1, 1) with probability α.

Each linear coefficient ci is drawn from Uniform(−2
√
Qii, 0).

Experiments with convex problems

In this section we present the computational results for convex instances. We compare the

following algorithms:

ALG1 Algorithm 3.

CHAPTER 3. SIMPLEX QP METHOD FOR CONIC QUADRATIC MINIMIZATION54

ALG2 Algorithm 4.

BAR CPLEX’ barrier algorithm (the default solver for convex conic quadratic problems).

For algorithms ALG1 and ALG2 we use CPLEX’ primal simplex algorithm as the QP solver.

Optimality tolerance

As the speed of the interior point methods crucially depends on the chosen optimality toler-

ance, it is prudent to first compare the speed vs the quality of the solutions for the algorithms

tested. Here we study the impact of the optimality tolerance in the solution time and the

quality of the solutions for CPLEX’ barrier algorithm BAR and simplex QP-based algo-

rithm ALG1. The optimality tolerance of the barrier algorithm is controlled by the QCP

convergence tolerance parameter (“BarQCPEpComp”), and in Algorithm 3, by the stopping

condition |∆i|
t
≤ δ.

In both cases, a smaller optimality tolerance corresponds to a higher quality solution.

We evaluate the quality of a solution as optgap = |(zmin − z)/zmin| , where z is the objective

value of the solution found by an algorithm with a given tolerance parameter and zmin

is the objective value of the solution found by the barrier algorithm with tolerance 10−12

(minimum tolerance value allowed by CPLEX). Table 3.1 presents the results for different

tolerance values for a 30 × 30 convex grid instance with r = 200, α = 0.1, and Ω = 1. The

table shows, for varying tolerance values and for each algorithm, the quality of the solution,

the solution time in seconds, the number of iterations, and QPs solved (for ALG1). We

highlight in bold the default tolerance used for the rest of the experiments presented in

this chapter. The tolerance value 10−7 for the barrier algorithm corresponds to the default

parameter in CPLEX.

First observe that the solution time increases with reduced optimality tolerance for both

algorithms. With lower tolerance, while the barrier algorithm performs more iterations,

ALG1 solves more QPs; however, the total number of simplex iterations barely increases.

For ALG1 the changes in the value of t are very small between QPs, and the optimal bases

of the QPs are thus the same. Therefore, using warm starts, the simplex method is able to

find high precision solutions inexpensively. ALG1 achieves much higher precision an order

of magnitude faster than the barrier algorithm. For the default tolerance parameters used

in our computational experiments, Algorithm 3 is several orders of magnitude more precise

than the barrier algorithm.

CHAPTER 3. SIMPLEX QP METHOD FOR CONIC QUADRATIC MINIMIZATION55

Table 3.1: The effect of optimality tolerance.

Tolerance
BAR ALG1

optgap time #iter optgap time #iter #QP

10−1 8.65× 10−2 29.9 10 5.48× 10−5 3.2 835 4
10−2 8.77× 10−3 41.5 15 3.24× 10−7 4.2 844 6
10−3 6.98× 10−4 54.6 23 2.60× 10−9 4.3 844 8
10−4 5.52× 10−5 62.9 27 2.12× 10−11 4.7 844 10
10−5 3.72× 10−6 66.8 29 6.80 × 10−13 5.2 844 12
10−6 7.12× 10−7 69.6 30 5.32× 10−13 5.4 844 13
10−7 2.04 × 10−8 72.0 32 5.15× 10−13 6.0 844 15
10−8 2.65× 10−9 74.0 33 5.15× 10−13 6.2 844 17
10−9 2.42× 10−10 75.9 34 5.15× 10−13 6.6 844 19
10−10 1.97× 10−11 78.7 35 5.15× 10−13 7.0 844 21
10−11 9.61× 10−12 79.6 36 5.15× 10−13 7.4 844 23
10−12 0 89.6 39 5.15× 10−13 7.8 844 25

Effect of the nonlinearity parameter Ω.

We now study the effect of changing the nonlinearity parameter Ω. Tables 3.2 and 3.3

show the total solution time in seconds, the total number of simplex or barrier iterations,

and the number of QPs solved in cardinality (1000 variables) and path instances (1760

variables), respectively. Each row represents the average over five instances for a rank (r)

and density(α) configuration and algorithm used. For each parameter choice the fastest

algorithm is highlighted in bold.

First observe that in both data sets the barrier algorithm is the slowest: it is 3.5 and

6 times slower than the simplex QP-based methods for the cardinality instances, and is up

to 15 times slower for the path instances. The barrier algorithm does not appear to be too

sensitive to the nonlinearity parameter Ω, whereas the simplex QP-based methods are faster

for smaller Ω.

The number of simplex iterations in ALG1 increases with the nonlinearity parameter

Ω. Indeed, the initial problem solved by ALG1 is an LP (corresponding to Ω = 0), so as

Ω increases the initial problem becomes a worse approximation, and more work is needed

to converge to an optimal solution. Also note that Algorithm 4 requires fewer QPs to be

solved, but as a result it benefits less from warm starts (it requires more simplex iterations

per QP than ALG1). Indeed, in ALG2 the value of t changes by a larger amount at each

iteration (with respect to ALG1), so the objective function of two consecutive QPs changes

CHAPTER 3. SIMPLEX QP METHOD FOR CONIC QUADRATIC MINIMIZATION56

Table 3.2: The effect of nonlinearity (cardinality instances).

Method
Ω = 1 Ω = 2 Ω = 3

r α time #iter #QP time #iter #QP time #iter #QP

100 0.1
ALG1 1.0 22 20 1.1 53 24 1.3 104 29
ALG2 0.8 41 14 0.9 95 15 0.9 150 15
BAR 4.6 16 - 4.9 24 - 5.2 26 -

100 0.5
ALG1 1.1 33 23 1.1 69 24 1.5 144 37
ALG2 0.8 60 14 0.9 125 15 0.9 200 15
BAR 4.5 21 - 5.1 25 - 5.8 29 -

200 0.1
ALG1 0.9 33 19 1.1 73 25 1.2 110 25
ALG2 0.8 49 14 0.9 126 14 0.9 172 14
BAR 4.7 22 - 4.5 22 - 5.1 25 -

200 0.5
ALG1 1.0 48 22 1.1 99 22 1.2 151 25
ALG2 0.9 94 14 0.9 179 14 1.0 233 15
BAR 4.4 21 - 4.9 24 - 5.2 26 -

avg
ALG1 1.0 34 21 1.1 73 24 1.3 127 29
ALG2 0.8 61 14 0.9 131 15 0.9 189 15
BAR 4.3 20 - 4.9 24 - 5.3 27 -

Table 3.3: The effect of nonlinearity (path instances).

Method
Ω = 1 Ω = 2 Ω = 3

r α time #iter #QP time #iter #QP time #iter #QP

100 0.1
ALG1 4.4 940 12 6.4 1,307 16 7.5 1,505 18
ALG2 4.8 1,283 11 6.4 1,637 13 7.5 1,865 14
BAR 68.4 26 - 56.7 21 - 46.3 16 -

100 0.5
ALG1 4.7 902 14 7.4 1,191 21 8.3 1,391 21
ALG2 4.9 1,148 12 6.5 1,474 13 7.7 1,772 14
BAR 54.3 19 - 48.8 16 - 47.4 16 -

200 0.1
ALG1 4.5 836 14 5.7 1,053 15 7.3 1,220 18
ALG2 4.4 932 12 6.0 1,377 13 7.4 1,671 13
BAR 63.7 25 - 49.8 18 - 54.5 20 -

200 0.5
ALG1 4.1 858 12 5.5 1,048 15 6.8 1,237 16
ALG2 4.4 978 12 6.0 1,363 13 7.5 1,626 13
BAR 70.5 26 - 60.2 21 - 52.4 18 -

avg
ALG1 4.4 884 13 6.2 1,150 17 7.5 1,338 18
ALG2 4.6 1,086 12 6.2 1,463 13 7.5 1,734 13
BAR 64.2 24 - 53.9 19 - 50.2 17 -

by a larger amount.

CHAPTER 3. SIMPLEX QP METHOD FOR CONIC QUADRATIC MINIMIZATION57

Effect of the dimension

Table 3.4 presents a comparison of the algorithms for the convex cardinality instances with

sizes 400, 800, 1600, and 3200. Each row represents the average over five instances, as before,

generated with parameters r = 200, α = 0.1, and Ω = 2. Additionally, Figure 3.1 shows the

solution time for each algorithm and the speed-up factor of the simplex QP-based algorithms

compared to the barrier algorithm as a function of the dimension (n).

Table 3.4: The effect of dimension (cardinality instances).

Method
n = 400 n = 800 n = 1600 n = 3200

time #iter #QP time #iter #QP time #iter #QP time #iter #QP

ALG1 0.2 43 20 0.6 65 19 2.8 75 25 11.7 104 25
ALG2 0.2 73 14 0.5 116 14 2.2 129 15 9.1 175 15
BAR 0.3 21 - 2.4 22 - 22.1 27 - 204.9 30 -

Observe in Table 3.4 that the number of QPs solved with the simplex-based algorithms

does not depend on the dimension. The number of simplex iterations, however, increases

with the dimension. For n = 400 all algorithms perform similarly and the problems are solved

very fast. However, as the dimension increases, the simplex-based algorithms outperform the

barrier algorithm, often by many factors. For n = 3200, the fastest simplex-based algorithm

ALG2 is more than 20 times faster than the barrier algorithm. Similar results are obtained

for other parameter choices and for the path instances as well. In summary, the simplex-

based algorithms scale better with the dimension, and are faster by orders of magnitude for

large instances.

Discrete instances

In this section we describe our experiments with the discrete counterpart CDO. As of ver-

sion 12.6.2 of CPLEX, it is not possible to employ a user-defined convex solver such as

Algorithm 3 at the nodes of the CPLEX’ branch-and-bound algorithm. Therefore, in order

to test the proposed approach for CDO, we implement a rudimentary branch-and-bound

algorithm described in Appendix A.2. The algorithm uses a maximum infeasibility rule for

branching, and does not employ presolve, cutting planes, or heuristics. We test the following

configurations:

CHAPTER 3. SIMPLEX QP METHOD FOR CONIC QUADRATIC MINIMIZATION58

0

50

100

150

200

250

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

Ti
m

e
(s

)

Dimension

Barrier

ALG1

ALG2

(a) Solution time as a function of dimension.

0

5

10

15

20

25

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

Sp
ee

d
u

p
 f

ac
to

r

Dimension

ALG1

ALG2

(b) Speed-up as a function of dimension.

Figure 3.1: Barrier vs the simplex QP-based algorithms.

BBA1 Branch-and-bound algorithm in Appendix A.2 using Algorithm 3 as the convex

solver. The first QP at each node (except the root node) is solved with CPLEX dual

simplex method using the parent dual feasible basis as a warm start (as mentioned in

Section 3.3) and all other QPs are solved with CPLEX primal simplex method using

the basis from the parent node QP as a warm start.

BBBR Branch-and-bound algorithm in Appendix A.2, using CPLEX barrier algorithm as

the convex solver. This configuration does not use warm starts.

CHAPTER 3. SIMPLEX QP METHOD FOR CONIC QUADRATIC MINIMIZATION59

CXBR CPLEX branch-and-bound algorithm with barrier solver, setting the branching rule

to maximum infeasibility, the node selection rule to best bound, and disabling presolve,

cuts and heuristics. In this setting CPLEX branch-and-bound algorithm is as close as

possible to our branch-and-bound algorithm.

CXLP CPLEX branch-and-bound algorithm with LP outer approximations, setting the

branching rule to maximum infeasibility, the node selection rule to best bound, and

disabling presolve, cuts and heuristics. In this setting CPLEX branch-and-bound al-

gorithm is as close as possible to our branch-and-bound algorithm.

CXLPE CPLEX branch-and-bound algorithm with LP outer approximations, setting the

branching rule to maximum infeasibility, the node selection rule to best bound, and

disabling cuts and heuristic. Since presolve is activated, CPLEX uses extended formu-

lations described in Vielma et al. (2016). Besides presolve, all other parameters are set

as in CXLP.

CXD CPLEX default branch-and-bound algorithm with LP outer approximations.

In all cases the time limit is set to two hours.

Table 3.5 presents the results for discrete cardinality instances with 200 variables and

Table 3.6 for the discrete path instances with 1,740 variables (30 × 30 grid). Each row

represents the average over five instances with varying rank and density parameters, and

algorithm. The tables show the solution time in seconds, the number of nodes explored in

the branch-and-bound tree, the end gap after two hours as percentage, and the number of

instances that are solved to optimality for varying values of Ω. For each instance class we

highlight in bold the algorithm with the best performance.

First of all, observe that the difficulty of the instances increases considerably for higher

values of Ω due to higher integrality gap. The problems corresponding to high values of the

density parameter α are also more challenging.

Performance of CPLEX branch-and-bound

Among CPLEX branch-and-bound algorithms, CXD is the best choice when Ω ≥ 2. Con-

figuration CXD is much more sophisticated than the other configurations, so a better per-

formance is expected. However, note that for Ω = 1 configuration CXD is not necessarily

the best. In particular in the path instances (Table 3.6) CXLP and CXLPE are 2.3 times

CHAPTER 3. SIMPLEX QP METHOD FOR CONIC QUADRATIC MINIMIZATION60

Table 3.5: Comparison for discrete cardinality instances.

Method
Ω = 1 Ω = 2 Ω = 3

r α time nodes egap #s time nodes egap #s time nodes egap #s

100 0.1

BBA1 1 156 0.0 5 26 3,271 0.0 5 652 68,318 0.0 5
BBBR 16 156 0.0 5 349 3,270 0.0 5 4,664 43,695 0.1 3
CXBR 35 276 0.0 5 513 3,497 0.0 5 5,260 32,782 0.2 2
CXLP 34 9,562 0.0 5 7,200 209,576 0.7 0 7,200 244,911 2.2 0

CXLPE 2 374 0.0 5 81 7,640 0.0 5 2,629 111,293 0.0 5
CXD 3 368 0.0 5 37 5,152 0.0 5 604 58,076 0.0 5

100 0.5

BBA1 1 87 0.0 5 51 6,274 0.0 5 1,323 140,874 0.0 5
BBBR 10 87 0.0 5 686 6,274 0.0 5 6,134 56,394 0.3 1
CXBR 24 183 0.0 5 1,027 6,734 0.0 5 6,399 39,710 0.4 1
CXLP 294 26,957 0.0 5 7,200 229,641 0.8 0 7,200 263,810 2.3 0

CXLPE 2 349 0.0 5 191 14,737 0.0 5 4,967 215,292 0.1 3
CXD 3 373 0.0 5 144 16,070 0.0 5 3,300 245,251 0.0 5

200 0.1

BBA1 1 247 0.0 5 20 3,259 0.0 5 388 55,248 0.0 5
BBBR 24 247 0.0 5 321 3,259 0.0 5 4,573 39,647 0.1 3
CXBR 52 460 0.0 5 540 3,711 0.0 5 5,295 34,090 0.2 2
CXLP 221 17,205 0.0 5 7,200 208,874 0.6 0 7,200 230,304 2.0 0

CXLPE 4 473 0.0 5 122 6,064 0.0 5 3,376 111,205 0.0 4
CXD 4 360 0.0 5 52 6,413 0.0 5 1,062 67,577 0.0 5

200 0.5

BBA1 4 674 0.0 5 170 24,636 0.0 5 1,140 156,632 0.0 5
BBBR 77 674 0.0 5 2,106 17,743 0.0 4 5,590 47,725 0.2 2
CXBR 104 680 0.0 5 2,452 15,816 0.0 4 6,127 38,973 0.3 1
CXLP 3,514 120,007 0.1 4 7,200 212,082 1.0 0 7,200 240,445 2.3 0

CXLPE 18 1,461 0.0 5 1,722 61,593 0.0 4 5,020 198,891 0.2 2
CXD 16 1,612 0.0 5 1,068 75,098 0.0 5 4,647 299,723 0.1 4

avg

BBA1 2 291 0.0 20 67 9,360 0.0 20 876 105,268 0.0 20
BBBR 32 291 0.0 20 865 7,637 0.0 19 5,240 46,865 0.2 9
CXBR 54 400 0.0 20 1,133 7,440 0.0 19 5,770 36,389 0.3 6
CXLP 1,016 43,433 0.0 19 7,200 215,043 0.8 0 7,200 244,867 2.2 0

CXLPE 7 664 0.0 20 529 22,508 0.0 19 3,998 159,170 0.1 14
CXD 7 678 0.0 20 325 25,683 0.0 20 2,403 167,657 0.0 19

faster than CXD. This result suggests that in simple instances the additional features used

by CXD (e.g. cutting planes and heuristics) may be hurting the performance.

The extended formulations result in much stronger relaxations in LP based branch-and-

bound and, consequently, the number of branch-and-bound nodes required with CXLPE is

only a small fraction of the number of nodes required with CXLP. However, CXLPE requires

CHAPTER 3. SIMPLEX QP METHOD FOR CONIC QUADRATIC MINIMIZATION61

Table 3.6: Comparison for discrete path instances.

Method
Ω = 1 Ω = 2 Ω = 3

r α time nodes egap #s time nodes egap #s time nodes egap #s

100 0.1

BBA1 256 145 0.0 5 3,616 1,774 0.0 5 7,200 2,988 5.4 0
BBBR 3,577 91 0.2 4 7,200 184 4.9 0 7,200 236 11.7 0
CXBR 7,200 67 20.8 0 7,200 79 ∞ 0 7,200 129 ∞ 0
CXLP 533 2,428 0.0 5 7,200 24,776 4.5 0 7,200 20,099 15.0 0

CXLPE 713 315 0.0 5 6,337 2,432 1.9 1 7,200 2,837 23.2 0
CXD 1,309 164 0.0 5 3,361 1,176 0.0 5 7,200 2,644 6.4 0

100 0.5

BBA1 589 353 0.0 5 4,799 2,317 0.4 3 6,472 2,698 4.6 1
BBBR 6,071 134 0.7 2 7,200 175 4.9 0 7,200 162 11.5 0
CXBR 7,200 24 ∞ 0 7,200 56 ∞ 0 7,200 70 ∞ 0
CXLP 1,132 6,187 0.0 5 7,200 23,671 4.4 0 7,200 16,851 12.8 0

CXLPE 903 607 0.0 5 6,207 2,906 2.4 1 7,200 3,128 16.1 0
CXD 1,532 267 0.0 5 5,189 2,123 0.3 4 7,200 2,645 5.6 0

200 0.1

BBA1 149 77 0.0 5 1823 1,075 0.0 5 6,411 3,401 2.5 1
BBBR 3,245 76 0.0 5 7,200 171 2.4 0 7,200 180 10.5 0
CXBR 7,200 34 ∞ 0 7,200 45 ∞ 0 7,200 68 ∞ 0
CXLP 436 1,548 0.0 5 7,200 30,265 2.9 0 7,200 20,579 12.4 0

CXLPE 487 188 0.0 5 4,565 1,681 1.0 3 7,200 2,402 17.7 0
CXD 1,965 106 0.0 5 4,481 1,453 0.4 4 7,200 2,532 4.2 0

200 0.5

BBA1 292 196 0.0 5 3,862 2,337 0.3 4 7,200 3,703 3.7 0
BBBR 4,826 113 0.2 3 7,200 173 3.9 0 7,200 176 12.7 0
CXBR 7,200 20 ∞ 0 7,200 51 ∞ 0 7,200 89 ∞ 0
CXLP 859 4,989 0.0 5 7,200 28,007 4.4 0 7,200 18,873 13.3 0

CXLPE 923 399 0.0 5 5,730 2,363 1.7 3 7,200 2,691 17.9 0
CXD 2,028 177 0.0 5 4,752 1,899 0.3 4 7,200 2,775 6.3 0

avg

BBA1 322 193 0.0 20 3,525 1,876 0.2 17 6,821 3,198 4.1 2
BBBR 4,430 103 0.3 14 7,200 176 4.0 0 7,200 189 11.6 0
CXBR 7,200 36 ∞ 0 7,200 58 ∞ 0 7,200 89 ∞ 0
CXLP 740 3,788 0.0 20 7,200 26,680 4.1 0 7,200 19,101 13.4 0

CXLPE 757 377 0.0 20 5,710 2,346 1.8 8 7,200 2,765 18.7 0
CXD 1,708 178 0.0 20 4,446 1663 0.3 17 7,200 2,650 5.6 0

more time to solve each branch-and-bound node, due to the higher number of variables

and the additional effort needed to refine the LP outer approximations. For the cardinality

instances, CXLPE is definitely the better choice and is faster by orders of magnitude. For the

path instances, however, CXLP is not necessarily inferior: when Ω = 1 CXLP is competitive

with CXLPE, and when Ω = 3 CXLP performs better.

CHAPTER 3. SIMPLEX QP METHOD FOR CONIC QUADRATIC MINIMIZATION62

The barrier-based branch-and-bound CXBR, in general, performs poorly. For the car-

dinality instances, it outperforms CXLP but is slower than the other algorithms. For the

path instances it has the worst performance, often struggling to find even a single feasible

solution (resulting in infinite end gaps).

Performance of BBA1

Note that BBA1 and BBBR are very simple and differ only by the convex node solver. BBA1

is faster than BBBR by an order of magnitude. BBA1 is also considerably faster than the

simplest CPLEX branch-and-bound algorithms CXBR and CXLP.

We see that BBA1 outperforms CXLPE (which uses presolve and extended formulations)

in all instances. Observe that in the cardinality instances with Ω = 1, 2 and path instances

with Ω = 1, BBA1 requires half the number of nodes (or less) compared to CXLPE to solve

the instances to optimality (since the relaxations solved at each node are stronger), which

translates into faster overall solution times. In the more difficult instances BBA1 is able to

solve more instances to optimality, and the end gaps are smaller.

Despite the fact that BBA1 is a rudimentary branch-and-bound implementation, it is

faster than default CPLEX in most of the cases. Indeed, BBA1 is the better choice in 21 of

the instance classes considered, while CXD is better in only 2. Moreover, in the instances

where CXD is better the difference between the algorithms is small (around 10% difference

in solution times), while in the other instances BBA1 is often faster by many factors. We

observe that CXD is comparatively better for the instances with a low factor rank (r = 100),

and BBA1 is comparatively better for the instances with a high factor rank (r = 200).

Warm starts

Algorithm BBA1 is faster than BBBR in part due to a faster convex solver (as observed

in the results for convex instances), and in part due to node warm starts. To quantify the

impact of warm starts, we plot in Figure 3.2 the time per node (computed as solution time

divided by the number of branch-and-bound nodes) for BBA1, BBBR and CXLPE, and also

plot the solution time for the corresponding convex instances with solvers ALG1 and BAR1.

For the small cardinality instances with 200 variables, Algorithm 3 is slightly worse than

the barrier algorithm to solve the convex relaxations; however, it is 15 times faster than

1The time per node is similar for all combinations of parameters Ω, r and α, and thus we plot the average
over all parameters.

CHAPTER 3. SIMPLEX QP METHOD FOR CONIC QUADRATIC MINIMIZATION63

0.076

0.008

0.069

0.112

0.025

0.000

0.020

0.040

0.060

0.080

0.100

0.120

Continuous Discrete

Ti
m

e
(s

)

ALG1/BBA1 BAR/BBBR CXLPE

(a) Cardinality instances

6.039

2.026

56.093

40.348

2.548

0.000

10.000

20.000

30.000

40.000

50.000

60.000

Continuous Discrete

Ti
m

e
 (

s)

ALG1/BBA1 BAR/BBBR CXLPE

(b) Path instances

Figure 3.2: Time per node.

barrier when used in branch-and-bound due to the node warm starts from dual feasible

solutions. For the larger path instances with 1,740 variables, Algorithm 3 is 10 times faster

than the barrier algorithm to solve the convex relaxations, and is about 20 times faster for

the discrete instances. Thus node warm starts make the algorithm twice as fast. Finally,

observe that the solve time per node for BBA1 is smaller compared to CXLPE: the proposed

simplex-based algorithm is thus as effective as the simplex method for extended formulations

in exploiting warm starts. Moreover, it solves the nonlinear convex relaxations at each node

to optimality, whereas CXLPE solves its LP relaxation. The improved lower bounds lead to

significantly small search trees.

We conclude that Algorithm 3 is indeed suitable for branch-and-bound algorithms since it

benefits from node warms starts from the parent nodes, resulting in a significant improvement

in solution times.

CHAPTER 3. SIMPLEX QP METHOD FOR CONIC QUADRATIC MINIMIZATION64

3.5 Conclusions

We consider minimization problems with a conic quadratic objective and linear constraints,

which are natural generalizations of linear programming and quadratic programming. Us-

ing the perspective function we reformulate the objective and propose simplex QP-based

algorithms that solve a quadratic program at each iteration. Computational experiments

indicate that the proposed algorithms are faster than interior point methods by orders of

magnitude, scale better with the dimension of the problem, return higher precision solutions,

and, most importantly, are amenable to warm starts. Therefore, they can be embedded in

branch-and-bound algorithms quite effectively.

65

Chapter 4

Polymatroid cuts for conic quadratic

minimization

4.1 Introduction

Mixed-integer second order cone optimization problems can be written as

min f ′x+ g′z

(MISOCO) s.t.
√
x′Qix ≤ zi, i = 1, . . . , ` (4.1)

(x, z) ∈ X ⊆ Zn+ × Rm
+ × R`

+

where Qi � 0 for i = 1, . . . , `. We refer to inequalities (4.1) as the second order conic

constraints. Many design and estimation optimization problems are modeled as MISOCO

(Lobo et al. 1998, Alizadeh and Goldfarb 2003, Atamtürk et al. 2012). In particular, second

order conic constraints are frequently used to model probabilistic optimization with Gaussian

distributions (Birge and Louveaux 2011) and robust optimization problems with ellipsoidal

uncertainty sets (Ben-Tal and Nemirovski 1998, 1999, Ben-Tal et al. 2009).

Linear mixed-integer optimization (MILO) is a special case of MISOCO. Strong formula-

tions have proven to be one of the critical components in solving MILO, and state-of-the-art

solvers for MILO employ a variety of valid inequalities as cutting planes. However, relatively

few classes of strong valid inequalities are known to strengthen the convex relaxations of

MISOCO and, more generally, nonlinear mixed-integer optimization.

General valid inequalities for convex nonlinear and/or conic mixed-integer optimization

include intersection cuts, disjunctive cuts, and lift-and-project cuts (Ceria and Soares 1999,

Stubbs and Mehrotra 1999). Çezik and Iyengar (2005) discuss Gomory cuts for general

CHAPTER 4. POLYMATROID CUTS FOR CONIC QUADRATIC MINIMIZATION 66

conic optimization problems. Atamtürk and Narayanan (2010) give conic MIR cuts for

conic mixed-integer optimization and Atamtürk and Narayanan (2011) study lifting for conic

mixed-integer optimization. Dadush et al. (2011) investigate the split closure of a convex

set. Belotti et al. (2015) study the intersection of a convex set and a linear disjunction.

Kılınç et al. (2010) and Bonami (2011) discuss the separation of split cuts using outer

approximations and nonlinear programming, respectively. Kılınç-Karzan and Yıldız (2015)

study disjunctions on the second order cone.

Another stream of research involves generating strong cuts by exploiting structured sets as

it is common for the linear integer case. Although the applicability of such cuts is restricted to

certain classes of sets, they tend to be far more effective than the general cuts that ignore any

special structure. Aktürk et al. (2009, 2010) give second-order representable perspective cuts

for a nonlinear scheduling problem with variable upper bounds, which are generalized further

by Günlük and Linderoth (2010). Ahmed and Atamtürk (2011) give strong lifted inequalities

for maximizing a submodular concave utility function. Atamtürk and Narayanan (2009),

Atamtürk and Bhardwaj (2015) study binary knapsack sets defined by a single second-order

conic constraint. Modaresi et al. (2016) derive closed form intersection cuts for a number of

structured sets.

To goal of the current chapter is to contribute to the understanding of convex hull of

simple conic mixed-integer sets that form the building blocks of more general constraint

sets as relaxations. In a related paper, Atamtürk and Narayanan (2008) give extended

polymatroid inequalities for second order conic constraints (4.1) with diagonal Qi matrices

on binary variables, and show that these inequalities describe the convex hull in that case. In

this chapter, we first extend their results to the mixed-binary case and show that a nonlinear

generalization of the polymatroid inequalities is sufficient to describe the convex hull for the

mixed-binary case with unbounded continuous variables. We then show how additional

constraints, in particular, the upper bounds on the continuous variables, can be used to

further generalize and strengthen the first class of inequalities. Interestingly, although the

inequalities are derived for the diagonal case, they can be applied to the non-diagonal case

as well through a suitable relaxation. Computational experiments indicate that the derived

inequalities are quite effective for the diagonal and as well as the non-diagonal cases.

We should note that utilizing the diagonal entries of matrices is standard for constructing

convex relaxations in quadratic optimization (e.g. Poljak and Wolkowicz 1995, Anstreicher

CHAPTER 4. POLYMATROID CUTS FOR CONIC QUADRATIC MINIMIZATION 67

2012). In particular, for x ∈ {0, 1}n, we have

x′Qx ≤ z ⇐⇒ x′(Q− diag(a))x+ a′x ≤ z

with a ∈ Rn such that Q − diag(a) � 0. This transformation is based on the ideal (convex

hull) representation of the separable quadratic term x′diag(a)x as a′x for x ∈ {0, 1}n.

A similar approach is also available for convex quadratic optimization with indicator

constraints. For x ∈ {0, 1}n and y ∈ Rn s.t. ` ◦ x ≤ y ≤ u ◦ x, we have

y′Qy ≤ z ⇐⇒ y′(Q− diag(a))y + a′t ≤ z, y2
i ≤ xiti

with t ∈ Rn
+ (e.g. Aktürk et al. 2009, Günlük and Linderoth 2010). This transformation is

based on the ideal representation of each quadratic term aiy
2
i subject to indicator constraints

as a linear term aiti along with a rotated cone constraint y2
i ≤ xiti.

Since in the conic quadratic constraint (4.1), the terms are not separable even for the

diagonal case, simple transformations as in the quadratic cases above are not sufficient to

arrive at an ideal formulation. We show that it is necessary to exploit the submodularity of

the underlying set function to arrive at the ideal representations.

The rest of the chapter is organized as follows. In Section 4.2 we review the results of

Atamtürk and Narayanan (2008). In Section 4.3 we give the complete convex hull descrip-

tion of a single mixed-binary conic constraint. In Section 4.5 we study mixed-binary conic

constraints with upper bounds on the continuous variables. In Section 4.6 we show how to

include additional constraints to generalize and strengthen the inequalities. In Section 4.7 we

report on a computational study done to test the effectiveness of the proposed inequalities

for solving MISOCO, including instances with non-diagonal matrices.

4.2 Previous work

Let x denote an n-dimensional vector of binary variables, y denote an m-dimension vector of

continuous variables, and c and d be nonnegative vectors of dimension n and m, respectively,

σ ≥ 0 be a constant. Define N = {1, . . . , n} and M = {1, . . . ,m}.
For p > 1 and y ≥ 0, we study a p-order conic constraint of the form

p
√∑

i∈N

cix
p
i +

∑
i∈M

diy
p
i ≤ z, (4.2)

CHAPTER 4. POLYMATROID CUTS FOR CONIC QUADRATIC MINIMIZATION 68

where the second order conic constraint corresponds to the case p = 2. Throughout, instead

of the convex inequality (4.2) we will use

p
√∑

i∈N

cixi +
∑
i∈M

diy
p
i ≤ z. (4.3)

Constraint (4.3) is equivalent to (4.2) over binary x, but it is stronger over the continuous

relaxation of x since xpi = xi for xi ∈ {0, 1}, but xpi < xi for xi ∈ (0, 1). Inequality (4.3) is

concave in x, but convex in y. We will exploit both the concavity on x and the convexity on

y.

Previous work

In this section we state, without proof, the main results of Atamtürk and Narayanan (2008)

for the set

Kσ =

(x, z) ∈ {0, 1}n × R+ :
p
√
σ +

∑
i∈N

cixi ≤ z

 .

For a given a permutation ((1), (2), . . . , (n)) of N , let

σ(k) = σ +
k−1∑
i=1

c(i), and

π(k) = p
√
c(k) + σ(k) − p√σ(k). (4.4)

and define the extended polymatroid inequality as

p√
σ +

n∑
i=1

π(i)x(i) ≤ z. (4.5)

Let Πσ be the set of such coefficient vectors π for all permutations of N .

Proposition 21 (Convex hull of Kσ).

conv(Kσ) =
{

(x, z) ∈ [0, 1]n × R+ :
p√
σ + π′x ≤ z, ∀π ∈ Πσ

}
.

The set function defining Kσ is submodular; therefore, Πσ form the extreme points of

an extended polymatroid. Since the maximization of a linear function over an extended

polymatroid can be solved by the greedy algorithm (Edmonds 1970), a point x̄ ∈ Rn
+ can be

separated from conv(Kσ) via the greedy algorithm by sorting x̄i in non-increasing order in

O(n log n).

CHAPTER 4. POLYMATROID CUTS FOR CONIC QUADRATIC MINIMIZATION 69

Proposition 22 (Separation). A point x̄ 6∈ conv(Kσ) such that x̄(1) ≥ x̄(2) ≥ . . . ≥ x̄(n) is

separated from conv(Kσ) by inequality (4.5).

Atamtürk and Narayanan (2008) also consider a mixed-integer extension and give valid

inequalities for the mixed-integer set

Lσ =

(x, y, z) ∈ {0, 1}n × [0, 1]m × R+ :
p
√
σ +

∑
i∈N

cixi +
∑
i∈M

diy
p
i ≤ z

 .

Without loss of generality, the upper bounds of the continuous variables in Lσ are set to one

by scaling. For T ⊆M , define d(T) :=
∑

i∈T di.

Proposition 23 (Valid inequalities for Lσ). For T ⊆M inequalities

p
√
σ +

∑
i∈T

diy
p
i + π′x ≤ z, π ∈ Πσ+d(T) (4.6)

are valid for Lσ.

Inequalities (4.6) are obtained by setting the subset T of the continuous variables to their

upper bounds and relaxing the rest and they dominate any inequality of the form

p
√
σ +

∑
i∈T

diy
p
i + ξ′x ≤ z

with ξ ∈ Rn.

Finally, note that the optimization of a linear function over Lσ:

min{a′x+ b′y + z : (x, y, z) ∈ Lσ} (4.7)

is solvable in polynomial time: For a fixed value of x, problem (4.7) reduces to a (convex)

conic quadratic optimization problem in y that can be solved easily. On the other hand, for

fixed a value of y problem (4.7) reduces to a submodular minimization problem that can be

solved by the greedy algorithm (Shen et al. 2003). Without loss of generality, assume that

ci > 0 for all i, as otherwise xi can be set to either 0 or 1, depending on the sign of ai. Index

the binary variables so that a1
c1
≤ . . . ≤ an

cn
(breaking ties arbitrarily) and let Si = {1, . . . , i}

for i = 1, 2, . . . , n. There exists an optimal solution (x∗, y∗) to (4.7) such that x∗k = 1 if

k ∈ Si for some i = 1, . . . , n, and x∗k = 0 otherwise. Thus, problem (4.7) can be solved by

fixing the binary variables according to sets Si one at a time and then solving the remaining

conic quadratic optimization problem in polynomial time.

CHAPTER 4. POLYMATROID CUTS FOR CONIC QUADRATIC MINIMIZATION 70

4.3 Conic constraint with unbounded continuous

variables

In this section we consider the mixed-integer set

Hσ =

(x, y, z) ∈ {0, 1}n × Rm+1
+ :

p
√
σ +

∑
i∈N

cixi +
∑
i∈M

diy
p
i ≤ z

 .

Note that Hσ is the relaxation of Lσ by dropping the upper bounds on the continuous vari-

ables y. Thus, the only class of valid inequalities of type (4.6) are the extended polymatroid

inequalities
p√
σ + π′x ≤ z, ∀π ∈ Πσ

from the “binary-only” relaxation by letting T = ∅. Here, we define a new class of nonlinear

valid inequalities for Hσ and prove that they are sufficient to define its convex hull.

Consider the inequalities

p
√(p√

σ + π′x
)p

+
∑
i∈M

diy
p
i ≤ z, π ∈ Πσ. (4.8)

Proposition 24. Inequalities (4.8) are valid for Hσ.

Proof. Consider the extended formulation of Hσ given by

Ĥσ =

(x, y, z, s) ∈ {0, 1}n × Rm+2
+ :

p
√
sp +

∑
i∈M

diy
p
i ≤ z,

p
√
σ +

∑
i∈N

cixi ≤ s

 .

The validity of inequalities (4.8) for Hσ follows directly from the validity of the extended

polymatroid inequality
p√
σ + π′x ≤ s, π ∈ Πσ (Proposition 21) for Ĥσ.

Remark 6. For M = ∅ inequalities (4.8) reduce to the extended polymatroid inequalities

(4.5).

Remark 7. Although inequalities (4.8) are nonlinear in the original space of variables, they

can be represented as linear inequalities in the extended formulation Ĥσ. Such a represen-

tation is desirable when they are used as cutting planes in branch-and-cut algorithms.

Remark 8. Since inequalities (4.8) correspond to extended polymatroid inequalities in an

extended formulation, the separation for them is the same as in the binary case and can be

done by sorting in O(n log n) (Proposition 22).

Proposition 25. Inequalities (4.8) and the bound constraints describe conv(Hσ).

CHAPTER 4. POLYMATROID CUTS FOR CONIC QUADRATIC MINIMIZATION 71

Proof. Consider the optimization of an arbitrary linear function over the convex relaxation

of Ĥσ:

min − a′x− b′y + rz (4.9)

(P1) s.t.
p
√
sp +

∑
i∈M

diy
p
i ≤ z (4.10)

p√
σ + π′x ≤ s, ∀π ∈ Πσ (4.11)

x ∈ [0, 1]n, y ∈ Rm
+ , z ≥ 0, s ≥ 0. (4.12)

Note that the constraint p
√
σ +

∑
i∈N cixi ≤ s in Ĥσ is implied by inequalities (4.11). We

prove that for any linear objective (P1) is either unbounded or has an optimal solution that

is integer in x.

Without loss of generality, we can assume that r > 0 (if r < 0 then the problem is

unbounded, and if r = 0 then (P1) reduces to a linear program over an integral polyhedron),

r = 1 (by scaling), ai, bi > 0 (otherwise xi = 0 or yi = 0 in any optimal solution), and di = 1

for all i ∈ M (by scaling yi). Eliminating the variable z from (P1) we rewrite the problem

as

min − a′x− b′y +
p
√
sp +

∑
i∈M

ypi

(P2) s.t.
p√
σ + π′x ≤ s, ∀π ∈ Πσ

x ∈ [0, 1]n, y ∈ Rm
+ , s ≥ 0.

Let µ ∈ Rm
+ be the dual variables for constraints y ≥ 0. From the KKT conditions of (P2)

with respect to y, we see that

−µk = bk −

(
sp +

∑
i∈M

ypi

) 1−p
p

yp−1
k , ∀k ∈M.

However, the complementary slackness conditions ykµk = 0 imply that µk = 0 for all k, as

otherwise −µk = bk contradicts with the assumption that bk > 0. Therefore, it holds that

yk =
p−1
√
bk ·

p
√
sp +

∑
i∈M

ypi , ∀k ∈M.

Defining β =
∑m

i=1 b
p

p−1

i , we have ∑
i∈M

biyi = β p

√
sp +

∑
i∈M

ypi

CHAPTER 4. POLYMATROID CUTS FOR CONIC QUADRATIC MINIMIZATION 72

and ∑
i∈M

ypi = β

(
sp +

∑
i∈M

ypi

)
. (4.13)

Observe that if β > 1, equality (4.13) cannot be satisfied, and the feasible (P2) is dual

infeasible, therefore, unbounded. Moreover, if β = 1 then either the problem is unbounded

or s = 0 in any optimal solution, which implies that x = 0 and all optimal solutions are

integral in x. Finally, if β < 1, we deduce from (4.13) that∑
i∈M

ypi =
β

1− β
sp.

Replacing the summands in the objective, we rewrite (P2) as

min − a′x+ (1− β)
p−1
p s

(P3) s.t.
p√
σ + π′x ≤ s, ∀π ∈ Πσ

x ∈ [0, 1]n, s ≥ 0.

As β < 1, (P3) has an optimal solution and, by Proposition 21, it is integral in x.

4.4 Rotated cone constraints

In this section we focus on rotated cone constraints. Consider the mixed-integer set

Rσ =

{
(x, y, w, z) ∈ {0, 1}n × Rm+2

+ : σ +
∑
i∈N

cixi +
∑
i∈M

diy
2
i ≤ 4wz

}

=

(x, y, w, z) ∈ {0, 1}n × Rm+2
+ :

√
σ +

∑
i∈N

cixi +
∑
i∈M

diy2
i + (w − z)2 ≤ w + z

 .

Observe that, even when M = ∅, the set Rσ is defined by a second-order cone constraint

with unbounded continuous variables. Thus, previous results were not applicable to Rσ. On

the other hand, the inequalities discussed in Section 4.3 (with p = 2) can be used directly.

In particular, inequalities (4.8) reduce to√(√
σ + π′x

)2
+
∑
i∈M

diy2
i + (w − z)2 ≤ w + z, π ∈ Πσ. (4.14)

We can also write inequalities (4.14) in rotated cone form,

(
√
σ + π′x)2 +

∑
i∈M

diy
2
i ≤ 4wz, π ∈ Πσ.

CHAPTER 4. POLYMATROID CUTS FOR CONIC QUADRATIC MINIMIZATION 73

Observe that the second-order cone constraint defining Rσ has additional structure that

is not exploited by inequalities (4.14), namely the presence of the continuous variables w

and z in both sides of the inequality. However, as Proposition 26 states, inequalities (4.14)

are actually sufficient to describe the convex hull of Rσ.

Proposition 26. Inequalities (4.14) and bound constraints completely describe the convex

hull of Rσ.

Proof. Consider the optimization of an arbitrary linear function over the convex relaxation

of R̂σ, using a similar extended formulation as in Proposition 24:

min a′x+ b′y + pw + qz

(PR) s.t.

√
s2 +

∑
i∈M

diy2
i + (w − z)2 ≤ w + z (4.15)

√
σ + π′x ≤ s, ∀π ∈ Πσ

x ∈ [0, 1]n, y ∈ Rm
+ , w ≥ 0, z ≥ 0, s ≥ 0.

Without loss of generality, we can assume that p > 0 and q > 0 (if p < 0 or q < 0 then

the problem is unbounded, and if p = 0 or q = 0 then (PR) reduces to a linear program over

an integral polyhedron). Moreover observe that if w = 0 or z = 0 in an optimal solution,

then x = 0 and the optimization problem has an integral optimal solution. Thus, we can

assume that z > 0 and q > 0 and we infer from KKT conditions with respect to w and z

that

−p = −λ+ λ
w − z√

s2 +
∑

i∈M diy2
i + (w − z)2

(4.16)

−q = −λ− λ w − z√
s2 +

∑
i∈M diy2

i + (w − z)2
, (4.17)

where λ is the dual variable associated with constraint (4.15). We deduce from (4.16) that

w − z = λ−p
λ

√
s2 +

∑
i∈M

diy2
i + (w − z)2, and we deduce from (4.17) that

w − z =
q − λ
λ

√
s2 +

∑
i∈M

diy2
i + (w − z)2. (4.18)

Thus, we find that λ = p+q
2

.

CHAPTER 4. POLYMATROID CUTS FOR CONIC QUADRATIC MINIMIZATION 74

Moreover, we obtain from (4.18) that

(w − z)2 =

(
q − λ
λ

)2
(
s2 +

∑
i∈M

diy
2
i + (w − z)2

)

=

(
q − p
q + p

)2
(
s2 +

∑
i∈M

diy
2
i + (w − z)2

)

= β

(
s2 +

∑
i∈M

diy
2
i

)
, (4.19)

where β =
(q−p
q+p)

2

1−(q−p
q+p)

2 . Therefore, we have that√
s2 +

∑
i∈M

diy2
i + (w − z)2 =

√
1 + β

√
s2 +

∑
i∈M

diy2
i . (4.20)

Moreover, since in any optimal solution of (PR) constraint (4.15) is binding, we have that

w + z =
√

1 + β

√
s2 +

∑
i∈M

diy2
i . (4.21)

Multiplying equality (4.16) by w in both sides, and multiplying equality (4.17) by z in

both sides, we find that

pw + qz = λ(w + z)− λ (w − z)2√
s2 +

∑
i∈M diy2

i + (w − z)2

= λ
√

1 + β

√
s2 +

∑
i∈M

diy2
i − λ

β
(
s2 +

∑
i∈M diy

2
i

)
√

1 + β
√
s2 +

∑
i∈M diy2

i

((4.19), (4.20),(4.21))

= λ
s2 +

∑
i∈M diy

2
i√

1 + β
√
s2 +

∑
i∈M diy2

i

=
λ√

1 + β

√
s2 +

∑
i∈M

diy2
i .

Therefore, we see that problem (PR) reduces to

min a′x+ b′y +
p+ q

2
√

1 + β

√
s2 +

∑
i∈M

diy2
i

(PR’) s.t.
√
σ + π′x ≤ s, ∀π ∈ Πσ

x ∈ [0, 1]n, y ∈ Rm
+ , s ≥ 0,

which has an integral optimal solution (Proposition 25).

CHAPTER 4. POLYMATROID CUTS FOR CONIC QUADRATIC MINIMIZATION 75

4.5 Conic constraint with bounded continuous

variables

In this section we study the set Lσ, the generalization of Kσ with upper bounded continuous

variables. As Example 1 illustrates, conv(Lσ) is significantly more difficult to describe than

conv(Hσ).

Example 1. Consider the three-dimensional set given by

L2
σ =

{
(x, y, z) ∈ {0, 1} × [0, 1]× R+ :

√
σ + cx+ dy2 ≤ z

}
.

We show in Appendix A.3 that

conv(L2
σ) = {(x, y, z) ∈ [0, 1]× [0, 1]× R+ : g(x, y) ≤ z} ,

where

g(x, y) =

g1(x, y) =
√(√

σ + x(
√
c+ σ −

√
σ)
)2

+ dy2 if y ≤ x+ (1− x)
√

σ
σ+c

g2(x, y) =
√
σ(1− x)2 + d(y − x)2 + x

√
σ + c+ d otherwise.

Observe that the inequality g1(x, y) ≤ z is a particular case of (4.8). The difficulties arise

with the function g2:

(a) The discrete and continuous variables are tied together in the term√
σ(1− x)2 + d(y − x)2.

(b) The inequality g2(x, y) ≤ z is not valid. In particular, it cuts off the feasible point

(x, y, z) = (1, 0,
√
σ + c). Moreover, the inequality g2(x, y) ≤ z cuts off portions of

conv(L2
σ) whenever y ≤ x+ (1− x)

√
σ√
σ+c

.

(c) The condition y ≤ x+ (1− x)
√
σ√
σ+c

depends both on x and y.

Figure 4.1 shows functions g1 and g2 for a fixed value of x, and illustrates point (b) above.

We see that the function g2 is always “above” the function g1, and cuts the convex hull of

L2
σ (the shaded region) whenever y ≤ x+ (1− x)

√
σ√
σ+c

.

We now give valid inequalities for conv(Lσ). For T ⊆M , consider the inequalities

p

√√√√√
 p
√
σ +

∑
i∈T

diy
p
i + π′x

p

+
∑
i∈M\T

diy
p
i ≤ z, π ∈ Πσ+d(T). (4.22)

Proposition 27. Inequalities (4.22) are valid for Lσ.

CHAPTER 4. POLYMATROID CUTS FOR CONIC QUADRATIC MINIMIZATION 76

Figure 4.1: Funcs. g1, g2 with σ = d = 1, c = 2, restricted to x = 0.5.

Proof. For T ⊆M , let

Lσ(T) =

(x, y) ∈ {0, 1}n × [0, 1]m, s ≥ 0 :
p
√
σ +

∑
i∈N

cixi +
∑
i∈T

diy2
i ≤ s

 ,

and consider the extended formulation of Lσ given by

L̂σ =

(x, y, s) ∈ Lσ(T), z ≥ 0 :
p
√
sp +

∑
i∈M\T

diy
p
i ≤ z

 .

The validity of inequalities (4.22) for Lσ follows from the validity of

p
√
σ +

∑
i∈T

diy
p
i + π′x ≤ s, π ∈ Πσ+d(T) (4.23)

for Lσ(T) (Proposition 27).

Remark 9. If T = ∅, then inequalities (4.22) coincide with inequalities (4.8). If T = M ,

then inequalities (4.22) coincide with inequalities (4.6). If T ⊂ M , then inequalities (4.22)

dominate inequalities (4.6).

Remark 10. Inequalities (4.22) are convex, since they correspond to the projection of convex

inequalities (4.23) in an extended formulation.

CHAPTER 4. POLYMATROID CUTS FOR CONIC QUADRATIC MINIMIZATION 77

Example 2. Consider the set

L6
0 =

(x, y, z) ∈ {0, 1}4 × [0, 1]2 × R+ :

√√√√ 4∑
i=1

xi + y2
1 + y2

2 ≤ z

 .

For the permutation (1,2,3,4) inequalities (4.22) are

T = ∅:
√

(x1 + 0.41x2 + 0.32x3 + 0.27x4)2 + y2
1 + y2

2 ≤ z,

T = {1}:
√

(0.41x1 + 0.32x2 + 0.27x3 + 0.24x4 + y1)2 + y2
2 ≤ z,

T = {1, 2}: 0.32x1 + 0.27x2 + 0.24x3 + 0.21x4 +
√
y2

1 + y2
2 ≤ z.

Observe that for T = ∅ and T = {1}, the resulting inequalities dominate the corre-

sponding inequalities obtained from (4.6), given by x1 + 0.41x2 + 0.32x3 + 0.27x4 ≤ z and

0.41x1 + 0.32x2 + 0.27x3 + 0.24x4 + y1 ≤ z, respectively.

Example 1 (Continued). We obtain from (4.22) the valid inequality

g3(x, y) =
√
σ + dy2 + x

(√
σ + c+ d−

√
σ + d

)
≤ z

for L2
σ. Observe that if σ = 0, then g1(x, y) ≤ z, g3(x, y) ≤ z and the bound constraints give

a complete description of conv(L2
σ) since

g3(x, y) =
√
dy + x

(√
c+ d−

√
d
)

=
√
d (|y − x|) + x

√
σ + c+ d = g2(x, y)

whenever y ≥ x + (1 − x)
√

σ
σ+c

= x. If σ > 0, then g3(x, y) ≤ z is valid and provides an

approximation of conv(L2
σ) (Figure 4.2).

4.6 Strengthened polymatroid inequalities

The polymatroid inequalities of Sections 4.3, 4.4 and 4.5 use the conic constraint and the

bounds of the variables. In this section we show how to strengthen the polymatroid inequali-

ties using additional constraints. In particular, given any mixed-integer setX ⊆ {0, 1}n×Rm
+ ,

we consider the generalization

Gσ =

(x, y) ∈ X, z ≥ 0 :
p
√
σ +

∑
i∈N

cixi +
∑
i∈M

diy
p
i ≤ z

 .

First, in Section 4.6 we describe a lifting procedure for obtaining valid inequalities for Gσ,

where computing each coefficient requires solving an integer optimization problem. Then,

in Section 4.6 we discuss how the strengthened polymatroid inequalities can be efficiently

implemented in practice.

CHAPTER 4. POLYMATROID CUTS FOR CONIC QUADRATIC MINIMIZATION 78

Figure 4.2: Functions g1, g2, g3 with σ = d = 1, c = 2, restricted to x = 0.5.

Valid inequalities for Gσ

For a given a permutation ((1), (2), . . . , (n)) of N and T ⊆M , let

hk(x, y) = σ +
k−1∑
i=1

c(i)x(i) +
∑
i∈T

diy
p
i

σ̄(k) = max {hk(x, y) : (x, y) ∈ X, xk = 1} , and (4.24)

ρ(k) =

 p√c(k) + σ̄(k) − p√σ̄(k) if σ̄(k) <∞

0 otherwise.
(4.25)

Consider the inequality

p
√√√√√
 p
√
σ +

∑
i∈T

diy
p
i +

n∑
i=1

ρ(i)x(i)

p

+
∑
i∈M\T

diy
p
i ≤ z. (4.26)

Proposition 28. Inequalities (4.26) are valid for Gσ.

Proof. Let

Gσ(T) =

(x, y) ∈ X, s ≥ 0 :
p
√
σ +

∑
i∈N

cixi +
∑
i∈T

diy
p
i ≤ s

 ,

CHAPTER 4. POLYMATROID CUTS FOR CONIC QUADRATIC MINIMIZATION 79

and consider the extended formulation of Gσ given by

Ĝσ =

(x, y, s) ∈ Gσ(T), z ≥ 0 :
p
√
sp +

∑
i∈M\T

diy
p
i ≤ z

 .

To prove the validity of (4.26) for Gσ, it is sufficient to show that

p
√
σ +

∑
i∈T

diy
p
i +

n∑
i=1

ρ(i)x(i) ≤ s (4.27)

is valid for Gσ(T). In particular, we prove by induction that

p
√
σ +

∑
i∈T

diy
p
i +

k∑
i=1

ρ(i)x(i) ≤
p
√√√√σ +

k∑
i=1

c(i)x(i) +
∑
i∈T

diy
p
i (4.28)

for all (x, y) ∈ X and k = 0, . . . , n.

Base case: k = 0 Inequality (4.28) holds trivially.

Inductive step Let (x̄, ȳ) ∈ X, and suppose inequality (4.28) holds for k − 1. Observe

that if x̄(k) = 0 or ρ(k) = 0, then inequality (4.28) clearly holds for k. Therefore, assume that

x̄(k) = 1 and σ̄(k) <∞. We have

p
√√√√σ +

k∑
i=1

c(i)x̄(i) +
∑
i∈T

diȳ
p
i =

p√
hk(x̄, ȳ) + c(k)

=
p√
hk(x̄, ȳ) +

(p√
hk(x̄, ȳ) + c(k) −

p√
hk(x̄, ȳ)

)
≥

p√
hk(x̄, ȳ) +

(
p√
σ̄(k) + c(k) −

p√
σ̄(k)

)
(4.29)

≥
p
√
σ +

∑
i∈T

diȳ
p
i +

k∑
i=1

ρ(i)x̄(i), (4.30)

where (4.29) follows from σ̄(k) ≥ hk(x̄, ȳ) (by definition of σ̄(k)) and from the concavity

of the root function, and (4.30) follows from
p
√
hk(x̄, ȳ) ≥

p√
σ +

∑
i∈T diȳ

p
i +

∑k−1
i=1 ρ(i)x̄(i)

(induction hypothesis) and from the definition of ρ(k).

Example 2 (Continued). Let X6 =

{
(x, y) ∈ {0, 1}4 × [0, 1]2 :

4∑
i=1

xi + y1 + y2 ≤ 3

}
and con-

sider the set G6
0 = L6

0 ∩X6. For the permutation (1,2,3,4) inequalities (4.26) are

CHAPTER 4. POLYMATROID CUTS FOR CONIC QUADRATIC MINIMIZATION 80

T = ∅:
√

(x1 + 0.41x2 + 0.32x3 + 0.32x4)2 + y2
1 + y2

2 ≤ z,

T = {1}:
√

(0.41x1 + 0.32x2 + 0.32x3 + 0.32x4 + y1)2 + y2
2 ≤ z,

T = {1, 2}: 0.32x1 + 0.32x2 + 0.32x3 + 0.32x4 +
√
y2

1 + y2
2 ≤ z.

Observe that, in all cases, the resulting inequalities dominate the corresponding inequali-

ties obtained from (4.22).

Remark 11. If T = ∅ and X = {0, 1}n × Rm
+ , then inequalities (4.26) reduce to inequalities

(4.8). If T = ∅ and X ⊂ {0, 1}n × Rm
+ , then inequalities (4.26) dominate inequalities (4.8).

Remark 12. If X = {0, 1}n× [0, 1]m, then inequalities (4.26) reduce to inequalities (4.22). If

X ⊂ {0, 1}n × [0, 1]m, then inequalities (4.26) dominate inequalities (4.22).

Remark 13. For the case of the pure-binary set defined by a cardinality constraint, i.e.,

X = {x ∈ {0, 1}n :
∑n

i=1 xi ≤ k}, inequalities (4.26) coincide with the inequalities proposed

in Yu and Ahmed (2015).

Computational efficiency

Note that computing each coefficient of inequality (4.26) requires solving the integer opti-

mization problem (4.24), which may not be practical in most cases. However, observe from

Remarks 11 and 12 that solving the optimization problem over any relaxation of X results

in valid inequalities at least as strong as the ones resulting from using only the bounds

constraints.

In particular, assume in problem (4.24) that for i ∈ T there exists ui ≥ 0 such that

yi ≤ ui (otherwise the problem is unbounded and ρi = 0) and ui = 1 (by scaling). Moreover

let XP be a polytope such that X ⊆ XP . Convex constraints can also be included in XP by

using a suitable linear outer approximation (Ben-Tal and Nemirovski 2001b, Tawarmalani

and Sahinidis 2005, Hijazi et al. 2013, Vielma et al. 2016, Lubin et al. 2016).

Given XP , the approximate coefficients

ρ̂(k) =
p
√
c(k) + σ̂(k) − p

√
σ̂(k), with (4.31)

σ̂(k) = σ + max

{
k−1∑
i=1

c(i)x(i) +
∑
i∈T

diyi : (x, y) ∈ XP , xk = 1

}
can be computed efficiently by solving a linear program. Moreover, the linear program re-

quired to compute σ̂(k) differs from the one required for σ̂(k−1) in two bound constraints, corre-

sponding to x(k−1) and x(k), and one objective coefficient, corresponding to x(k−1). Therefore,

using the simplex method with warm starts, each σ̂(k) can be computed efficiently, using only

a small number of simplex pivots.

CHAPTER 4. POLYMATROID CUTS FOR CONIC QUADRATIC MINIMIZATION 81

4.7 Computational experiments

In this section we report computational experiments performed to test the effectiveness of

the polymatroid inequalities in solving MISOCO problems with a branch-and-cut algorithm.

All experiments are done using CPLEX 12.6.2 solver on a workstation with a 2.93GHz

Intel R©CoreTM i7 CPU and 8 GB main memory and with a single thread. The time limit

is set to two hours and CPLEX’ default settings are used unless specified otherwise. The

inequalities are added only at the root node using callback functions.

Instances with bounded continuous variables

In this section we test the effectiveness of the polymatroid inequalities (4.8) and (4.22) in

solving optimization problems of the form

min{−a′x− b′y + Ωz : (x, y, z) ∈ Lσ} (4.32)

with σ = 0 and compare them with default CPLEX with no user cuts. For two numbers

` < u, let U [`, u] denote the continuous uniform distribution between ` and u. The data for

the model is generated as follows: ai ∼ U [0, 1],
√
ci ∼ U [0.85ai, 1.15ai] for i ∈ N , bj ∼ U [0, 1],√

dj ∼ U [0.85bj, 1.15bj] for j ∈M , and Ω is the solution1 of

−a(N)− b(M) + Ω
√
c(N) + d(M) = 0.

Inequalities (4.8) are added as linear cuts in an extended formulation, as described in

Remark 7. For p = 2, inequalities (4.22) are of the form f(x, y) ≤ z, where

f(x, y) =

√√√√√
√σ +

∑
i∈T

diy2
i + π′x

2

+
∑
i∈M\T

diy2
i .

As only linear inequalities can be added through callbacks in CPLEX (as of version 12.6.2),

we utilize the gradient inequalities for (4.22). Thus, given a fractional solution (x̄, ȳ), we

add the linear underestimator g(x, y) ≤ z, where

g(x, y) = f(x̄, ȳ) +∇xf(x̄)′(x− x̄) +∇yf(ȳ)′(y − ȳ).

1This choice of Ω ensures that the linear and nonlinear components are well-balanced, resulting in
challenging instances with large integrality gap.

CHAPTER 4. POLYMATROID CUTS FOR CONIC QUADRATIC MINIMIZATION 82

In particular, we have that

g(x, y) = ψ +
1

ψ

ηπ′(x− x̄) + ζ
∑
i∈T

diȳi(yi − ȳi) +
∑
i∈M\T

diȳi(yi − ȳi)

 ,

where

η =

√
σ +

∑
i∈T

diȳ2
i + π′x̄,

ζ =
η√

σ +
∑

i∈T diȳ
2
i

,

ψ =

√
η2 +

∑
i∈M\T

diȳ2
i .

A greedy heuristic is used to choose T ⊆ M for inequalities (4.22): if ȳ satisfies ȳ(1) ≥
ȳ(2) ≥ . . . ≥ ȳ(m), then we check for violation inequalities for each Ti of the form Ti =

{(1), (2), . . . , (i)} for i = 0, . . . ,m. When adding the gradient inequalities corresponding to

(4.22), CPLEX’ barrier algorithm is found to be more effective than using the default setting

to solve the subproblems of the branch-and-bound tree. Therefore, we report the results for

inequalities (4.22) with the barrier algorithm.

Table 4.1 presents the results for n = 100. Each row represents the average over five

instances generated with the same parameters and shows the number of continuous variables

(m), the initial gap (igap), the root gap improvement (rimp), the number of nodes explored

(nodes), the time elapsed in seconds (time), and the end gap (egap)[in brackets, the number

of instances solved to optimality (#)]. The initial gap is computed as igap = topt−trelax
|topt| ×100,

where topt is the objective value of the best feasible solution at termination and trelax is

the objective value of the continuous relaxation. The end gap is computed as egap =
topt−tbb
|topt| × 100, where tbb is the objective value of the best lower bound at termination. The

root improvement is computed as rimp = troot−trelax
topt−trelax

× 100, where troot is the value of the

continuous relaxation after adding the valid inequalities to the formulation.

We observe in Table 4.1 that the use inequalities (4.8), which do not exploit the upper

bounds of the continuous variables, close 80.0% of the initial gap on average, but the gap

improvement does not translate to better solution times or end gaps. On the other hand,

inequalities (4.22), which exploit the upper bounds of the continuous variables, close 99%

of the initial gap on average. This improves the performance of the algorithm substantially,

reducing the average solution time by half and the end gap from from 5.4% to 0.7%.

CHAPTER 4. POLYMATROID CUTS FOR CONIC QUADRATIC MINIMIZATION 83

Table 4.1: Experiments with bounded continuous variables.

m igap
cpx inequality (4.8) inequality (4.22) (barrier)

rimp nodes time egap[#] rimp nodes time egap[#] rimp nodes time egap[#]

20 1,554.7 0.0 283,747 420 0.0[5] 90.4 19,976 628 0.0[5] 99.5 316 25 0.0[5]
50 724.6 0.0 1,887,926 2,223 0.0[5] 79.4 1,206,283 5,770 65.4[1] 98.8 1,635 857 0.0[5]
100 267.8 0.0 982,945 5,343 16.1[2] 70.1 615,494 7,200 54.6[0] 98.7 1,506 2,959 2.0[3]

Average 0.0 1,051,539 2,662 5.4[12] 80.0 613,918 4,533 40.0[6] 99.0 1,152 1,280 0.7[13]

Instances with a cardinality constraint

In this section we test the value of strengthening the polymatroid inequalities utilizing ad-

ditional problem constraints. To do so, we solve optimization problems with a cardinality

constraint:

min
x∈{0,1}n

{
−a′x+ Ω

√
c′x :

n∑
i=1

xi ≤ k

}
, (4.33)

where a and c are generated as in Section 4.7 and Ω = Φ−1(α), where Φ is the cumulative

distribution function of the normal distribution and α ∈ {0.95, 0.975, 0.99}. We set n = 200,

and set k to be 15%, 20% and 25% of the total number of variables. Inequalities (4.5)

and (4.26) are compared with default CPLEX. The coefficients of inequalities (4.26) are

computed using linear programming with warm starts as outlined in Section 4.6—observe

that, in this case, the coefficients (4.31) coincide with (4.25) since the feasible region is an

integral polytope.

Table 4.2: Experiments with cardinality constraints.

k α igap
cpx inequality (4.5) inequality (4.26)

rimp nodes time egap[#] rimp nodes time egap[#] rimp nodes time egap[#]

30
0.95 4.4 23.7 7,150,715 2,528 0.3[4] 36.6 3,754,826 2,073 0.4[4] 48.9 2,614,446 1,510 0.2[4]
0.975 7.2 7.2 13,632,197 6,120 1.8[1] 23.7 9,573,199 5,945 1.8[1] 39.8 9,235,158 5,797 1.0[1]
0.99 11.9 4.0 16,867,459 7,200 5.0[0] 14.7 10,899,169 7,200 5.7[0] 31.6 13,328,370 7,200 4.1[0]

Average 11.6 12,550,124 5,283 2.4[5] 25.0 8,075,731 5,073 2.6[5] 40.1 8,392,658 4,836 1.8[5]

40
0.95 1.9 20.7 6,235,270 1,674 0.1[4] 70.5 620,389 261 0.0[5] 75.0 90,179 62 0.0[5]
0.975 3.3 9.6 13,961,488 4,360 0.4[3] 49.2 3,268,824 2,122 0.2[4] 57.3 2,729,459 1,557 0.2[4]
0.99 5.6 6.0 15,334,782 6,738 1.8[1] 30.0 6,110,571 6,149 1.7[1] 42.6 5,222,829 5,799 1.2[1]

Average 12.1 11,843,847 4,257 0.8[8] 49.9 3,333,261 2,844 0.6[10] 58.3 2,680,821 2,472 0.5[10]

50
0.95 1.0 8.9 270,852 72 0.0[5] 93.3 249 2 0.0[5] 93.3 98 2 0.0[5]
0.975 1.6 8.0 3,882,494 1,045 0.0[5] 81.3 316,625 221 0.0[5] 84.4 198,916 92 0.0[5]
0.99 2.8 7.9 14,835,539 4,600 0.3[3] 57.3 4,695,268 3,480 0.2[3] 64.3 983,894 1,537 0.2[4]

Average 8.3 6,329,628 1,906 0.1[13] 77.3 1,670,714 1,234 0.1[13] 80.7 394,293 544 0.1[14]

CHAPTER 4. POLYMATROID CUTS FOR CONIC QUADRATIC MINIMIZATION 84

Table 4.2 presents the results for each value of k and α. We see that for instances

with k = 50, using inequalities (4.5) or (4.26) results in gap improvement of more than

75% and faster solutions times than default CPLEX. In particular, using inequalities (4.26)

results in solutions times that are four times faster than default CPLEX on average. As

expected, for instances with tighter cardinality constraints, inequalities (4.26), which exploit

the cardinality constraints, are more effective than inequalities (4.5) in reducing the solution

times as well as end gaps. On the other hand, when the cardinality constraint is loose, the

effectiveness of both classes of inequalities improve.

Instances with non-diagonal quadratic term and cardinality

constraint

Although the inequalities in this chapter are developed for the diagonal case of the conic

inequalities (4.1), they can, nevertheless, be used for the general non-diagonal case as well

through a relaxation. Consider an optimization problem of the form

min
x∈{0,1}n

{
−a′x+ Ω

√
x′Qx :

n∑
i=1

xi ≤ k

}
, (4.34)

with Q = D +Q0, where Q0 � 0, D � 0 and D is diagonal. Given a general matrix Q � 0,

matrices Q0 and D can be computed using the smallest eigenvalue (Frangioni and Gentile

2006) or solving an SDP (Frangioni and Gentile 2007). Alternatively, in many large-scale

instances Q is a covariance matrix built through a factor model, in which case D is the

diagonal matrix with the specific variances, Q0 = XFX ′, where X ∈ Rn×r is the exposure

matrix and F ∈ Rr×r is the factor covariance matrix. Either way, given Q0 and D, problem

(4.34) can be reformulated as

min
(x,y)∈{0,1}n×R+

−a′x+ Ω

√√√√ n∑
i=1

Diixi + y2 :
n∑
i=1

xi ≤ k,
√
x′Q0x ≤ y

 ,

and the polymatroid inequalities can be applied to the diagonal objective.

In the computational experiments we generate the data using a factor model. Let F =

GG′, with G ∈ Rr×r and Gij ∼ U [−1, 1], Xij ∼ U [0, 1] with probability 0.2 and Xij =

0 otherwise, Dii ∼ U [0, δq̄], where δ ≥ 0 is a diagonal dominance parameter and q̄ =
1
N

∑
i∈N Q0ii, and ai ∼ U [0.85

√
Qii, 1.15

√
Qii]. The parameter Ω is set as in Section 4.7.

We let n = 200, r = 40 and k equal to 10%, 15%, and 20% of the number of the variables.

CHAPTER 4. POLYMATROID CUTS FOR CONIC QUADRATIC MINIMIZATION 85

The effectiveness of inequalities (4.8) and (4.26) are compared with default CPLEX. The

inequalities are added using an extended formulation as described in Remark 7.

Table 4.3: Experiments with the non-diagonal case (δ = 0.5).

k α igap
cpx inequality (4.8) inequality (4.26)

rimp nodes time egap[#] rimp nodes time egap[#] rimp nodes time egap[#]

20
0.95 1.7 22.6 9,557 74 0.0[5] 53.3 3,957 23 0.0[5] 55.6 2,367 17 0.0[5]
0.975 3.0 21.3 33,468 242 0.0[5] 53.5 13,316 86 0.0[5] 55.9 5,839 40 0.0[5]
0.99 5.2 15.2 164,568 1,845 0.0[5] 52.8 80,735 730 0.0[5] 55.3 23,577 269 0.0[5]

Average 19.7 69,198 720 0.0[15] 53.2 32,669 280 0.0[15] 55.6 10,594 109 0.0[15]

30
0.95 0.8 15.5 7,115 57 0.0[5] 53.3 1,656 11 0.0[5] 52.4 1,159 9 0.0[5]
0.975 1.3 14.9 18,901 135 0.0[5] 53.1 2,800 20 0.0[5] 54.0 2,095 15 0.0[5]
0.99 2.3 5.7 76,675 1,005 0.0[5] 61.1 8,265 48 0.0[5] 62.1 5,131 30 0.0[5]

Average 12.0 34,230 399 0.0[15] 55.8 4,240 26 0.0[15] 56.2 2,795 18 0.0[15]

40
0.95 0.4 23.3 2,910 18 0.0[5] 48.5 611 6 0.0[5] 50.5 577 6 0.0[5]
0.975 0.7 20.0 4,216 30 0.0[5] 54.3 884 7 0.0[5] 55.5 839 7 0.0[5]
0.99 1.1 13.5 46,030 514 0.0[5] 55.9 2,493 18 0.0[5] 56.7 2,144 14 0.0[5]

Average 18.9 17,719 187 0.0[15] 52.9 1,329 10 0.0[15] 54.2 1,187 9 0.0[15]

Table 4.4: Experiments with the non-diagonal case (δ = 1.0).

k α igap
cpx inequality (4.8) inequality (4.26)

rimp nodes time egap[#] rimp nodes time egap[#] rimp nodes time egap[#]

20
0.95 2.9 21.6 64,283 927 0.0[5] 55.1 14,984 165 0.0[5] 59.1 6,233 68 0.0[5]
0.975 5.0 15.5 240,224 3,975 0.4[3] 44.4 189,826 3,390 0.4[3] 50.9 102,053 1,915 0.1[4]
0.99 9.0 6.4 378,116 7,200 2.2[0] 35.7 477,553 7,200 1.9[0] 43.1 430,707 5,966 0.6[2]

Average 14.5 227,541 4,034 0.9[8] 45.1 227,454 3,585 0.8[8] 51.0 179,664 2,650 0.2[11]

30
0.95 1.1 17.1 32,629 316 0.0[5] 77.2 1,082 12 0.0[5] 78.2 682 10 0.0[5]
0.975 2.0 12.5 150,756 2,046 0.1[4] 72.9 12,202 107 0.0[5] 75.5 4,896 39 0.0[5]
0.99 3.5 10.5 258,866 3,679 0.5[3] 67.8 115,507 1,510 0.1[4] 70.6 59,106 511 0.0[5]

Average 13.4 147,417 2,014 0.2[12] 72.6 42,930 543 0.0[14] 74.8 21,561 187 0.0[15]

40
0.95 0.6 23.9 6,522 64 0.0[5] 72.3 270 9 0.0[5] 74.8 192 8 0.0[5]
0.975 1.0 24.0 31,022 414 0.0[5] 71.0 823 12 0.0[5] 72.1 695 11 0.0[5]
0.99 1.6 17.6 122,568 2,907 0.2[3] 73.9 4,416 37 0.0[5] 75.1 2,543 26 0.0[5]

Average 21.8 53,371 1,128 0.1[13] 72.4 1,836 19 0.0[15] 74.0 1,143 15 0.0[15]

Tables 4.3 and 4.4 present the results for different choices of the diagonal dominance

parameter δ2. Observe that adding inequalities (4.8) or (4.26) closes the initial gaps by 45%

to 75%, resulting in significant performance improvement over default CPLEX. In particular,

using inequalities (4.26) for instances with k = 20 leads to seven times speed-up with δ = 0.5

and two times speed-up with δ = 1) and lower end gaps. Moreover, for instances with

2Intuitively, if δ = 0.5 then the factors explain 80% of the variance in the problem; if δ = 1.0, then the
factors explain 66% of the variance in the problem.

CHAPTER 4. POLYMATROID CUTS FOR CONIC QUADRATIC MINIMIZATION 86

k ≥ 30 using inequalities (4.26) results in at least an order-of-magnitude speed-up over

default CPLEX. As in the previous section, inequalities (4.26), exploiting the cardinality

constraint, are more effective than (4.8). The impact of both inequalities increases with

higher diagonal dominance.

Binary fractional programming instances

Consider the binary fractional linear program

max
x∈{0,1}n

{
m∑
i=1

γi

∑n
j=1 ρijνijxj

νi0 +
∑n

j=1 νijxj
:

n∑
j=1

xj ≤ k

}
. (4.35)

Problem (4.35) arises for example in assortment optimization under the mixed multinomial

logit model. In this setting n is the number of products being offered and m is the number of

customer classes, where each class is assumed to choose a product according to a multinomial

logit model with parameters specific to the class. Parameter ρij is revenue obtained by selling

product j to customer class i, νij is the preference associated for a customer of class i of

buying product j, νi0 is the no-purchase preference for a customer of class i, γi represents the

proportion of customers that belong to class i, and k is the maximum number of products

that can be offered. The goal is to maximize the total product obtained from selling products.

Following the work of Sen et al. (2015), problem (4.35) can be transformed into an

equivalent minimization problem. Let ρ̄i = maxj=1,...,n ρij, and observe that we can write

(4.35) as

m∑
i=1

γiρ̄i −min
∑
i∈M

γi
νi0p̄i +

∑
j∈N νij (p̄i − pij)xj

νi0 +
∑

j∈N νijxj

s.t.
∑
j∈N

xj ≤ k

x ∈ {0, 1}N .

We now propose a MISOCO formulation different from the one proposed in Sen et al.

CHAPTER 4. POLYMATROID CUTS FOR CONIC QUADRATIC MINIMIZATION 87

(2015), allowing us to use inequalities (4.14). Introduce new variables

zi :=
νi0p̄i +

∑
j∈N νij (p̄i − pij)xj

νi0 +
∑

j∈N νijxj

s2
i := νi0p̄i +

∑
j∈N

νij (p̄i − pij)xj

wi := νi0 +
∑
j∈N

νijxj,

and reformulate the problem as

min
∑
i∈M

γizi

s.t.
∑
j∈N

xj ≤ k

s2
i ≤ wizi ∀i ∈M√
νi0p̄i +

∑
j∈N

νij (p̄i − pij)xj ≤ si ∀i ∈M (4.36)

wi = νi0 +
∑
j∈N

νijxj ∀i ∈M

x ∈ {0, 1}N , z ∈ RM
+ , s ∈ RM

+ , w ∈ RM
+ .

Note that constraint (4.36) can be strengthened using the polymatroid inequalities proposed

in this chapter.

We test the inequalities in the instances with n = 200 and m = 20 used in Sen et al.

(2015). We compare the MILO formulation and conic formulation with McCormick esti-

mators used in Sen et al. (2015), and the conic formulation with strengthened polymatroid

inequalities proposed in this chapter, using a time limit of 600 seconds. Table 4.5 shows the

results for different values of the parameters ν0 and k. The initial gap and root improve-

ment shown in the table correspond to the gap of the classic MILO formulation (with no

McCormick inequalities) and the improvement with respect to the MILO formulation.

We see that MISOCO formulations perform much better than MILO formulations, es-

pecially in instances with tight cardinality constraint. In particular, instances with k ≤ 20

cannot be solved in 600 seconds using the MILO formulation and results in large end gaps;

19 out of 20 instances can be solved to optimality using the conic formulation proposed in

Sen et al. (2015), with an average time of 77 seconds; and using polymatroid inequalities, all

CHAPTER 4. POLYMATROID CUTS FOR CONIC QUADRATIC MINIMIZATION 88

Table 4.5: Assortment optimization with 200 products and m = 20.

ν0 k igaps
MILO+McCormick MISOCO+McCormick inequality (4.26)

rimp nodes time[#] egap rimp nodes time[#] egap rimp nodes time[#] egap

5

10 50.9 76.4 2,294 600[0] 10.8 100.0 67 24[5] 0.0 100.0 11 8[5] 0.0
20 18.0 69.4 5,921 600[0] 4.8 99.4 125 148[4] 0.1 100.0 8 13[5] 0.0
50 0.9 66.7 16,350 267[3] 0.1 100.0 8 127[4] 0.0 100.0 30,344 162[5] 0.0
100 0.0 100.0 1 3[5] 0.0 100.0 0 123[4] 0.0 100.0 28,600 335[5] 0.0

10

10 46.8 70.9 2,109 600[0] 11.6 100.0 36 26[5] 0.0 100.0 1 7[5] 0.0
20 39.8 78.1 3,831 600[0] 7.9 100.0 101 33[5] 0.0 100.0 5 11[5] 0.0
50 5.6 71.4 14,088 600[0] 1.2 100.0 242 40[5] 0.0 100.0 5 11[5] 0.0
100 0.0 100.0 0 2[5] 0.0 100.0 0 4[5] 0.0 100.0 13,112 147[5] 0.0

Average 4.2 4,460 328[13] 3.6 99.9 78 66[37] 0.0 100.0 70 66[40] 0.0

20 instances with low cardinality can be solved to optimality, with an average time of less

than 10 seconds. Among the MISOCO formulations, we observe that the conic formulation

proposed in Sen et al. (2015) performs better in instances with large cardinality, and the for-

mulation proposed in this section performs better in instances with low cardinality. Finally,

the formulation we propose is the only formulation that is able to solve all 40 instances in

less than 600 seconds.

Robust conic instances

We now consider the discrete version of the robust SOCO discussed in Chapter 2. For the

sake of completeness we recall the problem and formulation.

We describe a robust formulation of a conic quadratic minimization problem,

min
z∈Z

a′z +
√
z′Qz.

.

Let a0 and Q0 � 0 be the nominal mean and covariance and M = {1, . . . ,m} be a set

of potential events, each of which may increase the mean and covariance by ai ≥ 0 and

Qi � 0, i ∈ M . Then a(S) = a0 +
∑

i∈S ai and Q(S) = Q0 +
∑

i∈S Qi are the mean and

covariance when events S ⊆M are realized. The goal of the robust optimization is to find a

solution that minimizes the worst objective given that only a small number, k ≤ m, events

are realized, i.e.,

min
x∈X

max
S⊆M :|S|≤k

a(S)′x+
√
x′Q(S)x. (4.37)

CHAPTER 4. POLYMATROID CUTS FOR CONIC QUADRATIC MINIMIZATION 89

Solving the inner maximization problem for a fixed value of x is NP -hard. However, in

Chapter 2 we showed that the approximate formulation

min
1

4
y + a′0x+ t0 + kw

s.t. a′ix+ ti ≤ w i ∈M

x′Q0x ≤ yt0 (4.38)

x′Qix ≤ yti i ∈M (4.39)

x ∈ X, y ≥ 0, t ≥ 0, w ≥ 0 (4.40)

provides solutions for the original problem with tight guarantees. In particular, the price of

robustness, i.e., the additional objective cost incurred by the robust formulation, is at most

25% more than the cost of the optimal solution.

In Chapter 2 we considered the case when the feasible region X is convex. However, in

many practical applications, the region X may be discrete. In particular, when the variables

are restricted to be binary, we can use polymatroid inequalities on constraints (4.38)-(4.39)

to strengthen the formulations. In particular, if Q0 = D0 + U0 where D0 � 0, U0 � 0 and

D0 is diagonal, we can write constraint (4.38) in an extended formulation as

n∑
i=1

D0ii
xi + s2 ≤ yti (4.41)√
x′U0x ≤ s

s ≥ 0,

and apply the inequalities presented in Section 4.4.

We model a decision-maker that seeks a path with minimal value-at-risk and robust to

interruptions in the arcs (corresponding to traffic incidents or attacks by an adversary).

The feasible region in our computational experiments is thus given by path constraints in a

40 × 40 grid network. The nominal costs a0 and Q0 are generated as in the computational

experiments with non-diagonal covariance matrix. There is a potential event corresponding

to each arc in the problem, and each event results in an increase of the expected duration

and variance of that arc: thus we have that ai ∼ U [0, 2a0i]e
i, where ei is the vector which

has value 1 in the i-th position and 0 elsewhere, and the matrix Qi satisfies

Qijk =

∼ U [0, 2Q0ii] if i = j = k

= otherwise.

CHAPTER 4. POLYMATROID CUTS FOR CONIC QUADRATIC MINIMIZATION 90

Table 4.6 shows the results for different values of α. We can use that using strengthened

polymatroid cuts results in a better root improvement of 55% - compared to 30% achieved by

default CPLEX-, and help solving all problems to optimality in an average of 2,672 seconds.

The other configurations, on the other hand, are unable to solve the more difficult prob-

lems within a time limit of two hours. Thus we conclude that the polymatroid inequalities

presented in this Chapter are helpful for tackling robust discrete conic quadratic problems.

Table 4.6: Path with 1,600 vertices and k = 4.

α igaps
cpx + polymatroid + strengthened poly

rimp nodes time[#] egap rimp nodes time[#] egap rimp nodes time[#] egap

0.950 22.6 35.1 63,533 3,124[4] 0.6 44.3 72,322 5,220[3] 1.2 56.8 17,057 917[5] 0.0
0.975 24.1 30.2 95,337 4,239[4] 0.8 41.1 87,697 7,200[0] 3.5 55.2 53,022 2,648[5] 0.0
0.990 25.7 26.6 153,481 7,200[0] 2.2 37.9 80,160 7,200[0] 7.6 53.5 102,578 4,452[5] 0.0

Average 30.6 104,117 4,854[8] 1.2 41.1 80,060 6,540[3] 4.1 55.2 57,552 2,672[15] 0.0

91

Chapter 5

Submodularity in 0-1 quadratic

optimization

5.1 Introduction

In this Chapter we consider the binary quadratically constrained quadratic optimization

(BQCQO) problem

min a′0x+ x′Q0x

(BQCQO) s.t. a′kx+ x′Qkx ≤ bk, k = 1, . . . , `

x ∈ {0, 1}n,

where Q0 and Qk, i = k, . . . , n are positive semi-definite matrices. The positive semi-definite

assumption is without loss of generality since otherwise terms of the form γ(x2
i − xi) with

γ ≥ 0 can be added to make the resulting quadratic functions convex (Hammer and Rubin

1970). Problem BQCQO arises often in practice in network problems, with both minimum

and maximum cut problems being special cases of unconstrained BQCQO, and in optimiza-

tion under uncertainty, where the quadratic functions correspond to covariance matrices.

Moreover, most combinatorial problems can be modeled as binary linear optimization prob-

lems, which is a special case of BQCQO. Our study is based on the structure of the discrete

set given by the lower level set of a quadratic function

HQ = {(x, t) ∈ {0, 1}n × R : x′Qx ≤ t} .

Different approaches have been suggested to formulate and solve BQCQO. One approach

involves the linearization of the quadratic terms by introducing additional variables, thus

CHAPTER 5. SUBMODULARITY IN 0-1 QUADRATIC OPTIMIZATION 92

transforming BQCQO into a MILO. One of the best known linearization techniques (Glover

and Woolsey 1974, Hansen 1979) is to replace each term x2
i by xi, to replace each bilinear

term xixj by a new variable zij, and to add the linear constraints zij ≤ xi, zij ≤ xj and

zij ≥ xi+xj−1. The linear formulation coincides with the convex underestimators proposed

by McCormick (1976) for non-convex optimization. Other linearization techniques have also

been proposed that require adding only O(n) additional linear variables (Chaovalitwongse

et al. 2004, Adams and Forrester 2005, Sherali and Smith 2007). Another approach is

the Reformulation-Linearization Technique (RLT) proposed in Adams and Sherali (1986)

and Sherali and Adams (1990), which constructs a hierarchy of linear formulations which

ultimately results in a convex-hull description of the problem, but each subsequent linear

formulation in the hierarchy requires additional variables and constraints. In general there

is a tradeoff between the size and the strength of a formulation (Adams et al. 2004), as

formulations that use less variables typically result in easier to solve convex subproblems

in a branch-and-bound algorithm, but also result in weaker convex relaxations an more

branch-and-bound nodes need to be explored to prove optimality.

Linearization of the quadratic functions may result in weak formulations or require a

prohibitively large amount of additional variables. In such cases it may be referable to use

the natural nonlinear convex relaxation of HQ, where the binary constraint is replaced by

bound constraints. A standard approach to improve the convex formulation is to decompose

the matrix Q into two matrices Q = D+R, where D is a diagonal matrix with nonnegative

entries and R � 0 (Poljak and Wolkowicz 1995, Anstreicher 2012). Then observe that for x

binary we have that

x′Qx ≤ t⇔
n∑
i=1

Diixi + x′Rx ≤ t (5.1)

since xi = x2
i . Moreover, for all 0 < xi < 1 we have that x2

i < xi, and we see that formulation

(5.1) is stronger.

A different line of research has focused on indetifying and exploiting submodularity in

discrete optimization. In the seminal work of Edmonds (1970), key properties of submodular

functions and their connections with linear optimization were studied. Since then, submod-

ularity has played a key role in the design of approximation algorithms for maximization

problems (Nemhauser et al. 1978, Fisher et al. 1978, Sviridenko 2004, Calinescu et al. 2011,

Buchbinder et al. 2012), of polynomial time algorithms for a class of submodular optimiza-

tion problems (Schrijver 2000, Iwata et al. 2001, Grötschel et al. 2012, Orlin 2009, Iwata and

Nagano 2009), and of strong formulations for NP -hard optimization problems (Atamtürk

CHAPTER 5. SUBMODULARITY IN 0-1 QUADRATIC OPTIMIZATION 93

and Narayanan 2008, 2009, Ahmed and Atamtürk 2011, Atamtürk and Bhardwaj 2015,

Zhang et al. 2017).

In this paper we suggest an alternative decomposition to the one proposed in Poljak and

Wolkowicz (1995), Anstreicher (2012), where we decompose the quadratic function into a

submodular function and a convex function. In particular, we write Q = U +R where R � 0

and Uij ≤ 0 for all i, j = 1, . . . , n, i 6= j, and exploit submodularity of the quadratic function

fU(x) = x′Ux

to strengthen the formulations. Similar decompositions were used by Atamtürk and Bhard-

waj (2017) and Zhang et al. (2017), but they used submodularity to derive a family of

extended polymatroid inequalities. Since the number of such inequalities is factorial in the

number of variables, they implement them using a cutting plane algorithm. In contrast,

we use an extended formulation which is more compact -it requires O(n2) variables and

constraints- and is as strong. Our main contributions are:

1. We establish connections between submodularity, classical linearization techniques

(McCormick inequalities) and the minimum-cut problem.

2. We formally establish the strength of the proposed decomposition Q = U + R with

respect to the natural convex relaxation. In previous works (Atamtürk and Bhardwaj

2017, Zhang et al. 2017) the proposed decomposition was used but the problem of

determining whether it is stronger was not addressed. In the current work we show

that in general it can be weaker, but that for diagonally dominant matrices U the

decomposition is guaranteed to be stronger.

3. Using McCormick inequalities, we get more compact formulations that Atamtürk and

Bhardwaj (2017), Zhang et al. (2017). Moreover, despite that using McCormick in-

equalities may result in weak formulations, by applying them to only a submodular

term in the quadratic expression, we get formulations that are guaranteed to be stronger

than the natural convex relaxation and as strong as the formulations of Atamtürk and

Bhardwaj (2017), Zhang et al. (2017).

4. We show how to derive stronger formulations by using additional constraints of the

optimization problem.

The rest of this chapter is organized as follows. In Section 5.2 we review submodular

functions, and the connections between quadratic submodular functions and the minimum

CHAPTER 5. SUBMODULARITY IN 0-1 QUADRATIC OPTIMIZATION 94

cut problem. In Section 5.3 we study strong formulations for submodular quadratic func-

tions, and establish connections between extended polymatroid inequalities, the McCormick

inequalities and minimum cut formulations. In Section 5.4 we give sufficient conditions in

which the proposed decomposition results in stronger formulations. In Section 5.5 we show

how extended polymatroid inequalities can be strengthened using additional constraints of

the optimization problem. In Section 5.6 we present preliminary computational experiments.

In Section 5.7 we show how the results can be extended to address conic quadratic optimiza-

tion, and in Section 5.8 we conclude the chapter.

5.2 Preliminaries

Binary quadratic functions, submodularity and minimum cut

problems

Given a matrix Un×n, consider the function fU : {0, 1}n → R given by

fU(x) = x′Ux.

Fisher et al. (1978) showed that the function fU is submodular if and only the matrix U has

non-positive off-diagonal entries, i.e., Uij ≤ 0 for all i, j = 1, . . . , n with i 6= j. We refer to

matrices U corresponding to submodular functions as submodular matrices.

Definition 10. We say that matrix U is a submodular matrix if Uij ≤ 0 for all i, j = 1, . . . , n

with i 6= j.

Binary quadratic optimization with submodular matrices and minimum cut problems

are closely related. Given a graph G = (V,A), vectors a ∈ RV and c ∈ RA
+, consider the

minimum cut problem

min

∑
i∈V

aixi +
∑

(i,j)∈A

cijyij : xi − xj ≤ yij,∀(i, j) ∈ A, x ∈ {0, 1}V , y ∈ {0, 1}A
 . (5.2)

Observe that, in any optimal solution, we have that cijyij = cijxi(1 − xj). Thus we that

problem (5.2) is equivalent to

min
x∈{0,1}n

x′Ux, (5.3)

where Uii = ai +
∑

(i,j)∈A cij, Uij = −cij for (i, j) ∈ A, and Uij = 0 otherwise.

CHAPTER 5. SUBMODULARITY IN 0-1 QUADRATIC OPTIMIZATION 95

Example 3. Consider the graph with four vertices and four arcs shown in Figure 5.1. Suppose

a1 = . . . = a4 = 0 and c12 = c13 = c24 = c34 = 1. Then any cut with source set S has value

x′Ux, where xi = 1 if i ∈ S and

U =

2 −1 −1 0

0 1 0 −1

0 0 1 −1

0 0 0 0

 .

1

2

3

4

Figure 5.1: Cut example

Remark 14. Observe that the matrix corresponding to a given cut is not unique. Given any

submodular matrix U , any matrix Ū such that Uii = Ūii and Uij +Uji = Ūij + Ūji results in

the same quadratic function.

5.3 Strong formulations for submodular quadratic

functions

In this section we consider the set

HU = {x ∈ {0, 1}n, t ∈ R : fU(x) ≤ t} ,

where fU(x) = x′Ux and U is a submodular matrix. For simplicity we assume that the

matrix U is symmetric.

One approach to find strong formulations for HU is to exploit the submodularity of fU

and add extended polymatroid inequalities for the form

π′x ≤ t, π ∈ Π(fU) (5.4)

CHAPTER 5. SUBMODULARITY IN 0-1 QUADRATIC OPTIMIZATION 96

to the formulation. This is the approach used by Atamtürk and Bhardwaj (2017) and Zhang

et al. (2017). For the particular case of quadratic submodular functions and for a permutation

((1), (2), . . . , (n)) of N , the coefficients of the inequality are given by

π(k) = U(k),(k) + 2
k−1∑
i=1

U(i),(k). (5.5)

Note that the formulation with extended polymatroid inequalities involves a factorial number

of constraints, requiring the use of a cutting plane algorithm. We now show that for the case

of submodular quadratic functions, classical linearization techniques may be preferable.

Extended formulations for submodular quadratic constraints

We now give two extended formulations of HU . The first formulation uses McCormick

inequalities and is given by

n∑
i=1

Uiixi + 2
n∑
i=1

n∑
j=i+1

Uijzij ≤ t

(QE) zij ≤ xi, zij ≤ xj, ∀i = 1, . . . , n, j = i+ 1, . . . , n,

xi ∈ {0, 1}, zij ≥ 0, ∀i = 1, . . . , n, j = i+ 1, . . . , n.

Observe that since Uij ≤ 0 for all i 6= j, only upper bounds of variables zij need to be

included in the formulation and we omit constraints of the form xi + xj ≤ 1 + zij.

The second formulation corresponds to reformulating HU as a cut problem. Given any

matrix Cn×n such that Cij+Cji = −Uij−Uji with Cij ≥ 0 for all i 6= j, and Cii = Uii−
n∑
j=1
j 6=i

Cij,

let

n∑
i=1

Ciixi +
n∑
i=1

n∑
j=1
j 6=i

Cijyij ≤ t (5.6)

(QC) xi − xj ≤ yij, ∀i, j = 1, . . . , n, i 6= j

xi ∈ {0, 1}, yij ≥ 0, ∀i, j = 1, . . . , n, i 6= j.

Proposition 29. Formulations QE and QC are equivalent.

CHAPTER 5. SUBMODULARITY IN 0-1 QUADRATIC OPTIMIZATION 97

Proof. Substitute yij = xi − zij. Then xi − xj ≤ yij ⇔ zij ≤ xj and yij ≥ 0 ⇔ zij ≤ xi.

Moreover,

n∑
i=1

Ciixi +
n∑
i=1

n∑
j=1
j 6=i

Cijyij =
n∑
i=1

Cii +
n∑
j=1
j 6=i

Cij

xi −
n∑
i=1

n∑
j=i+1

(Cijzij + Cjizji) .

We can assume without loss of generality that zij = zji since Cij ≥ 0 and Cji ≥ 0, and we

see that QC and QE are equivalent.

We now show that formulation QE is at least as strong as the formulation obtained by

adding all inequalities (5.4).

Proposition 30. Formulation QE implies all extended polymatroid inequalities (5.4).

Proof. Let x ∈ [0, 1]n, assume without loss of generality that x1 ≥ x2 ≥ . . . ≥ xn, and let

π ∈ Π(fU) be the extreme point corresponding to the permutation (1, 2, . . . , n). We find

that

n∑
i=1

Uiixi + 2
n∑
i=1

n∑
j=i+1

Uijzij ≥
n∑
i=1

Uiixi + 2
n∑
i=1

n∑
j=i+1

Uij min {xi, xj} (5.7)

=
n∑
i=1

Uiixi + 2
n∑
i=1

n∑
j=i+1

Uijxj (5.8)

=
n∑
j=1

(
Ujj + 2

j−1∑
i=1

Uij

)
xj

=π′x,

where inequality (5.7) follows from Uij ≤ 0 and zij ≤ min{xi, xj}, and (5.8) follows from the

assumption xi ≥ xj for i < j. Thus we see that formulation QE implies the most violated

extended polymatroid inequality π′x ≤ t, and therefore implies all such inequalities.

Observe that since the additional constraints of QE correspond to the closure problem

(Picard 1976), it follows that QE and QC give a complete convex hull description of HU

in an extended formulation. Moreover, using extended polymatroid inequalities yields the

convex hull of HU in the original space of variables (Proposition 1). However formulations

QE and QC are more compact, requiring only O(n2) additional variables and constraints.

If inequalities (5.4) are implemented using a cut-and-branch algorithm, only a small subset

of the inequalities would be added, and formulations QE and QC would result in stronger

relaxations in all nodes of the branch-and-bound tree.

CHAPTER 5. SUBMODULARITY IN 0-1 QUADRATIC OPTIMIZATION 98

5.4 Decomposition schemes

As mentioned in the introduction, given a general quadratic constraint

x′Qx ≤ t, (5.9)

we propose to decompose matrix Q = U + R where U is submodular and R � 0 and

equivalently write (5.9) as

fU(x) + x′Rx ≤ t.

Then, as explained in Section 5.3, we use an extended formulation based on McCormick

inequalities to represent the lower level set of fU . However it is not true that for any choice

of U the resulting formulation is stronger than the natural convex relaxation. Moreover,

although we use McCormick inequalities in our formulation, it is not true that McCormick’s

linearization is stronger than the natural convex relaxation. Example 4 illustrates these

concepts.

Example 4. Consider the matrix Q =

 1 −0.5 −0.5

−0.5 1 0.7

−0.5 0.7 1

, and let x̄′ =
(
0.5 0.5 0.5

)
.

We now study the strength of different relaxations of (5.9) for at x̄. First observe that

x̄′Qx̄ = 0.6. Moreover,

n∑
i=1

Qiix̄i +
∑

i 6=j:Qij≤0

Qij min{x̄i, x̄j}+
∑

i 6=j:Qij>0

Qij max{x̄i + x̄j − 1, 0} = 0.5,

and we see that the McCormick linearization is weaker at x̄. Now let U =

 0 −1.5 −1.5

−1.5 0 −0.3

−1.5 −0.3 0

and R =

1 1 1

1 1 1

1 1 1

. Clearly, U is submodular , R � 0 and Q = U +R, but

n∑
i=1

Uiix̄i +
∑
i 6=j

Uij min{x̄i, x̄j}+ x′Rx = −1.05,

and we see that, for this choice of matrix U and vector x̄, the resulting decomposition using

formulation QE is very weak.

CHAPTER 5. SUBMODULARITY IN 0-1 QUADRATIC OPTIMIZATION 99

Sufficient conditions for strong decompositions

We now show that if U is chosen to be diagonally dominant, then the resulting formulations

are stronger for all x ∈ [0, 1]n. First we introduce a third extended formulation for HU

similar to QC but involving a quadratic constraint:

n∑
i=1

(
n∑
j=1

Uij

)
x2
i −

n∑
i=1

n∑
j=1
j 6=i

Uijy
2
ij ≤ t (5.10)

(QCS) xi − xj ≤ yij, ∀i, j = 1, . . . , n, i 6= j

xi ∈ {0, 1}, yij ≥ 0, ∀i, j = 1, . . . , n, i 6= j.

Proposition 31. Formulation QCS and the formulation induced by the quadratic constraint

x′Ux ≤ t are equivalent.

Proof. Let x ∈ [0, 1]n, assume without loss of generality that x1 ≥ x2 ≥ . . . ≥ xn. We can

assume without loss of generality that variables yij in (5.10) satisfy yij = (xi − xj)+. We

have that

n∑
i=1

(
n∑
j=1

Uij

)
x2
i −

n∑
i=1

n∑
j=1
j 6=i

Uijy
2
ij =

n∑
i=1

(
n∑
j=1

Uij

)
x2
i −

n∑
i=1

n∑
j=i+1

Uij(xi − xj)2

=
n∑
i=1

Uiix
2
i + 2

n∑
i=1

n∑
j=i+1

Uijxixj = x′Ux,

where the first equality follows by substituting yij = xi − xj for i < j and yij = 0 for i > j,

and the second inequality follows from rearranging terms.

Corollary 7. If U is diagonally dominant, then formulations QE and QC are stronger than

the formulation induced by the quadratic constraint x′Ux ≤ t.

Proof. By Proposition 31, we need to prove that QE and QC are stronger than QCS, and by

Proposition 29, it is sufficient to show than QC is stronger than QCS. Since U is diagonally

dominant, we have that
∑n

j=1 Uij ≥ 0, thus for 0 ≤ xi ≤ 1 we have that x2
i

∑n
j=1 Uij ≤

xi
∑n

j=1 Uij. Moreover, for 0 ≤ yij ≤ 1 we have that −Uijy2
ij ≤ −Uijyij. Therefore the left

hand side of (5.6) is greater or equal than the left hand side of (5.10).

Example 4 (Continued). Consider the decomposition given by U =

 0.9 −0.3 −0.3

−0.3 0.3 0

−0.3 0 0.3

and R =

 0.1 −0.2 −0.2

−0.2 0.7 0.7

−0.2 0.7 0.7

. It can be shown that R � 0, and clearly U is a diagonally

CHAPTER 5. SUBMODULARITY IN 0-1 QUADRATIC OPTIMIZATION 100

dominant submodular matrix and Q = U +R. Moreover we have that

n∑
i=1

Uiix̄i +
∑
i 6=j

Uij min{x̄i, x̄j}+ x′Rx = 0.675,

and we see that, for this choice of matrix U and vector x̄, the resulting decomposition is

stronger than the McCormick linearization and the natural convex relaxation.

5.5 Strengthening extended polymatroid inequalities

for quadratic functions

We now show how to strengthen extended polymatroid inequalities using additional con-

straints of the optimization problem. The inequalities are similar from the strengthened

polymatroid inequalities presented in Chapter 4.

Given any set X ⊆ {0, 1}n and a submodular symmetric matrix U , consider the set

LU = {(x, z) ∈ X × R+ : x′Ux ≤ z} . (5.11)

Let (((1), (2), . . . , (n)) be a permutation of {1, . . . , n}, and let

ζ(k) = min

{
k−1∑
i=1

U(i),(k)x(i) : x ∈ X, x(k) = 1

}
. (5.12)

Proposition 32. The inequalities

n∑
i=1

(U(i)(i) + 2ζ(i))x(i) ≤ z (5.13)

are valid for LU .

Proof. We prove that

k∑
i=1

(U(i)(i) + 2ζ(i))x(i) ≤
k∑
i=1

k∑
j=1

U(i)(j)x(i)x(j), ∀x ∈ X,

by induction on k.

Base case k = 1 Trivial.

CHAPTER 5. SUBMODULARITY IN 0-1 QUADRATIC OPTIMIZATION 101

Inductive step k → k + 1 If x(k+1) = 0, the results follows directly from the induction

hypothesis. Otherwise, for any x ∈ X with x(k+1) = 1 we have that

k+1∑
i=1

(U(i)(i) + 2ζ(i))x(i) =
k∑
i=1

(U(i)(i) + 2ζ(i))x(i) + U(k+1)(k+1)) + 2ζ(k+1)

≤
k∑
i=1

(U(i)(i) + 2ζ(i))x(i) + U(k+1)(k+1) + 2
k∑
i=1

U(i)(k)x(i) (5.14)

≤
k∑
i=1

k∑
j=1

U(i)(j)x(i)x(j) + U(k+1)(k+1) + 2
k∑
i=1

U(i)(k)x(i) (5.15)

=
k+1∑
i=1

k+1∑
j=1

U(i)(j)x(i)x(j),

where (5.14) follows from the definition of ζ and (5.15) follows from the induction hypothesis.

Remark 15. If X = {0, 1}, then inequalities (5.13) reduce to the extended polymatroid

inequalities (5.4). If X ⊂ {0, 1}, then inequalities (5.13) dominate (5.4).

Remark 16. We can use any relaxation of X, and in particular a linear programming relax-

ation, to compute lower bounds on the coefficients ζ efficiently.

5.6 Computational experiments

In this section we report preliminary computational experiments in solving BQCQO in a

branch-and-bound algorithm, using the proposed decomposition. All experiments are con-

ducted using Gurobi 7.5 solver on a workstation with a 2.93GHz Intel R©CoreTM i7 CPU and

8 GB main memory and with a single thread. The time limit is set to two hours and Gurobi’s

default settings are used.

The instances considered are randomly generated binary quadratic optimization problems

of the form

min x′Qx (5.16)

s.t.
n∑
i=1

aixi ≥ b (5.17)

n∑
i=1

xi = k (5.18)

x ∈ {0, 1}n. (5.19)

CHAPTER 5. SUBMODULARITY IN 0-1 QUADRATIC OPTIMIZATION 102

Problems of the form (5.16)-(5.19) arise often in decision-making under uncertainty. Given a

choice of n items with return vector r ∼ N (a,Q), the decision maker wishes to minimizes risk

(5.16) while guaranteeing a given expected return (5.17), and satisfying additional constraints

(5.18).

For simplicity we consider diagonal dominant matrices Q. Observe that in such cases a

decomposition can be computed efficiently, where

Rij =

∑

k 6=i:Qik>0

Qij if i = j

Qij if j 6= i and Qij > 0

0 if j 6= i and Qij ≤ 0,

and U = Q−R. Observe that in such cases both matrices Q and R are diagonally dominant

and in particular R � 0.

In the computational experiments we generate matrix Q mimicking a factor model, i.e.

Q = Σ + D with Σ = XFX ′, where X ∈ Rn×m is the exposure matrix, F ∈ Rm×m is

the factor covariance matrix and D is a diagonal matrix with the specific variances. In

our experiments matrix Σ is generated with m = 20, F = GG′, with G ∈ Rm×m and

Gij ∼ U [−1, 1], Xij ∼ U [0, 1] with probability 0.2 and Xij = 0 otherwise. To guarantee

diagonal dominance, we set Σii =
∑

j 6=i |Σij| for all i = 1, . . . , n. Each diagonal element of D

is given by Dii ∼ U [0, δq̄], where δ ≥ 0 is a diagonal dominance parameter, q̄ = 1
N

∑
i∈N Σii.

The vector of expected return is generated as ai ∼ U [0.85
√
Qii, 1.15

√
Qii], so the expected

return of an item is proportional to its risk. We set k = 0.15n and b = β
∑n

i=1 ai, where β

is a return parameter.

We test three different formulations for the objective:

def. The natural convex relaxation, x′Qx.

diag. The diagonal decomposition (5.1),
∑n

i=1Diixi + x′Σx.

sub. The proposed submodular decomposition, fU(x) + x′Rx, implemented with the ex-

tended formulation QE.

Tables 5.1 and 5.2 present the results for different problem sizes n. Each row represents

the average over five instances generated with the same parameters and shows for each

formulation and for different values of the parameters δ and β, the initial gap (igap), the

the number of nodes explored (nodes), the time elapsed in seconds (time), and the end gap

CHAPTER 5. SUBMODULARITY IN 0-1 QUADRATIC OPTIMIZATION 103

(egap)[in brackets, the number of instances solved to optimality (#)]. The initial gap is

computed as igap = topt−trelax
|topt| × 100, where topt is the objective value of the best feasible

solution at termination and trelax is the objective value of the continuous relaxation.

Table 5.1: Experiments with n = 100.

δ β
def. diag. sub.

igap nodes time egap[#] igap nodes time egap[#] igap nodes time egap[#]

0.1
0.15 69.1 22,492,560 7,200 8.7[0] 63.2 22,519,280 7,200 8.7[0] 57.2 33 0 0.0[5]
0.17 65.2 20,455,440 7,200 8.9[0] 60.3 20,214,080 7,200 0.0[0] 52.9 114 1 0.0[5]
0.20 52.9 14,971,898 5,202 0.9[3] 49.8 15,117,790 5,225 0.9[3] 40.6 132 1 0.0[5]

Average 62.4 19,306,633 6,534 6.2[3] 57.8 19,283,717 6,542 6.[3] 50.2 93 1 0.0[5]

0.5
0.15 70.9 17,600,914 6,100 4.0[2] 49.9 17,714,534 6,081 4.0[2] 43.1 19 0 0.0[5]
0.17 66.9 17,912,420 6,622 4.3[1] 48.0 17,776,260 6,618 4.3[1] 40.7 118 1 0.0[5]
0.20 52.7 4,807,298 1,553 0.0[5] 39.5 4,800,138 1,553 0.0[5] 31.5 59 1 0.0[5]

Average 63.5 13,440,211 4,758 2.8[8] 45.8 13,430,311 4,751 2.8[8] 38.5 66 1 0.0[15]

1.0
0.15 72.1 13,337,372 4,818 2.0[3] 41.5 13,324,100 4,842 2.0[3] 34.0 73 1 0.0[5]
0.17 68.0 11,883,686 4,621 1.5[3] 38.8 12,035,878 4,660 1.5[3] 31.5 42 1 0.0[5]
0.20 53.4 1,779,981 515 0.0[5] 31.1 1,770,680 506 0.0[5] 24.3 98 0 0.0[5]

Average 64.5 9,000,346 3,318 1.2[11] 37.1 9,043,553 3,336 1,2[11] 29.9 71 1 0.0[15]

Table 5.2: Experiments with n = 400.

δ β
def diag. sub.

igap nodes time egap[#] igap nodes time egap[#] igap nodes time egap[#]

0.1
0.15 68.2 895,789 7,200 51.0[0] 62.0 901,037 7,200 51.0[0] 55.5 189 30 0.0[5]
0.17 64.2 980,722 7,200 49.8[0] 59.0 1,007,364 7,200 49.8[0] 51.3 734 100 0.0[5]
0.20 52.6 1,892,852 7,200 38.1[0] 49.1 1,863,882 7,200 38.1[0] 40.0 1,416 269 0.0[5]

Average 61.7 1,252,331 7,200 46.3[0] 56.7 1,256,577 7,200 46.3[0] 49.0 780 135 0.0[15]

0.5
0.15 69.7 1,040,322 7,200 37.9[0] 47.0 1,041,994 7,200 37.9[0] 40.0 176 11 0.0[5]
0.17 65.7 1,115,298 7,200 37.0[0] 45.6 1,105,936 7,200 37.0[0] 38.0 493 34 0.0[5]
0.20 52.8 2,185,410 7,200 28.6[0] 38.3 2,175,204 7,200 28.6[0] 30.5 899 75 0.0[5]

Average 62.7 1,451,028 7,200 34.5[0] 43.6 1,442,933 7,200 34.5[0] 36.2 523 41 0.0[15]

1.0
0.15 70.9 1,196,390 7,200 29.2[0] 37.7 1,197,232 7,200 29.2[0] 30.1 296 10 0.0[5]
0.17 67.1 1,276,054 7,200 27.8[0] 35.9 1,278,420 7,200 27.8[0] 28.7 124 13 0.0[5]
0.20 53.9 2,350,680 7,200 21.5[0] 29.7 2,350,224 7,200 21.5[0] 23.3 265 21 0.0[5]

Average 63.9 1,606,682 7,200 26.2[0] 34.5 1,608,258 7,200 26.2[0] 27.4 228 15 0.0[15]

Observe that diag. results in better inital gaps than def., and sub. results in better

initial gaps than diag.. Thus, using the more general submodular matrices instead of

diagonal matrices in the decomposition indeed results in stronger formulation. We also

see that there is no noticeable difference in the performance of Gurobi’s branch-and-bound

algorithm for formulations def. and diag. despite the different convex relaxations; a

CHAPTER 5. SUBMODULARITY IN 0-1 QUADRATIC OPTIMIZATION 104

possible explanation is that Gurobi’s by default decomposes binary quadratic functions using

a diagonal component.

There is a dramatic improvement in the performance of Gurobi’s branch-and-bound al-

gorithm when using configuration sub.: instances that cannot be solved in two hours of

branch-and-bound can now be solved in under one second for n = 100, and in under two

minutes for n = 400. The performance improvement is due in part to the strength of the

convex relaxation. Moreover, since binary linear optimization is better understood than bi-

nary quadratic optimization, using a tight linear representation for the submodular quadratic

function allows Gurobi to use more tools than what would be possible otherwise.

5.7 Extensions to conic quadratic optimization

We now show how the ideas presented in this chapter can be used in conic quadratic opti-

mization with binary variables. Consider a conic quadratic constraint of the form√
x′Qx ≤ s (5.20)

where Q = U+R where U is a symmetric submodular matrix such that x′Ux ≥ 0 and R � 0.

Then, introducing a new variable t ≥ 0, we can write (5.20) in an extended formulation as

√
t2 + x′Rx ≤ s
√
x′Ux ≤ t.

Thus, in this section, we study the set

K =
{

(x, t) ∈ {0, 1}n × R :
√
x′Ux ≤ t

}
.

If the function fU is non-decreasing, i.e.,

Uii + 2
n∑
j=1
j 6=i

Uij ≥ 0, ∀i = 1, . . . , n,

then the function g(x) =
√
x′Ux is submodular (Zhang et al. 2017). Then extended polyma-

troid inequalities π′x ≤ t, π ∈ Π(g) can be added to strengthen the formulation. However,

as illustrated in Section 5.3, using valid inequalities in an extended formulation may result

in stronger formulations.

CHAPTER 5. SUBMODULARITY IN 0-1 QUADRATIC OPTIMIZATION 105

We propose a class of quadratic submodular inequalities. Given a permutation ((1), (2), . . . , (n))

of N , define for k = 1, . . . , n and ` = 1, . . . , k − 1

σ(k) =
k−1∑
i=1

U(i)(i) + 2
k−1∑
i=1

k−1∑
j=i+1

U(i)(j)

Λ(k)(k) =
√
σ(k) + U(k)(k) −

√
σ(k)

Λ(k)(`) = Λ(`)(k) =
1

2

√√√√σ(k) + U(k)(k) + 2

∑̀
i=1

U(i)(k) −

√√√√σ(k) + U(k)(k) + 2
`−1∑
i=1

U(i)(k)

and consider the inequality

fΛ(x) := x′Λx ≤ t. (5.21)

Proposition 33. Inequality (5.21) is valid for K.

Proof. Let x ∈ {0, 1}n. We have that

√
x′Ux =

√√√√ n∑
i=1

U(i)(i)x(i) + 2
n∑
i=1

n∑
j=i+1

U(i)(j)x(i)x(j)

=
n∑
k=1

√√√√ k∑
i=1

U(i)(i)x(i) + 2
k∑
i=1

k∑
j=i+1

U(i)(j)x(i)x(j) −

√√√√k−1∑
i=1

U(i)(i)x(i) + 2
k−1∑
i=1

k−1∑
j=i+1

U(i)(j)x(i)x(j)

=

n∑
k=1

√√√√U(k)(k) + 2
k∑
i=1

U(i)(k)x(i) +
k−1∑
i=1

U(i)(i)x(i) + 2
k−1∑
i=1

k−1∑
j=i+1

U(i)(j)x(i)x(j)

−

√√√√k−1∑
i=1

U(i)(i)x(i) + 2
k−1∑
i=1

k−1∑
j=i+1

U(i)(j)x(i)x(j)

x(k)

≥
n∑
k=1

√√√√U(k)(k) + 2

k∑
i=1

U(i)(k)x(i) + σ(k) −
√
σ(k)

x(k) =
n∑
k−1

ψk(x)x(k) (5.22)

where the last inequality follows from concavity of the square root function,

U(k)(k) + 2
∑k

i=1 U(i)(k)x(i) ≥ 0 and σ(k) ≥
∑k−1

i=1 U(i)(i)x(i) + 2
∑k−1

i=1

∑k−1
j=i+1 U(i)(j)x(i)x(j) (since

fU is non-decreasing). Moreover we have that for all k = 1, . . . , n, function ψk(x) +
√
σ(k) is

the composition of a concave function and a monotone modular function (plus a constant),

CHAPTER 5. SUBMODULARITY IN 0-1 QUADRATIC OPTIMIZATION 106

and is therefore submodular. Therefore we have that

ψk(x) + σk ≥
√
U(k)(k) + σ(k) +

k∑
`=1

√√√√U(k)(k) + σ(k) + 2

∑̀
i=1

U(i)(k)

−

√√√√U(k)(k) + σ(k) + 2
`−1∑
i=1

U(i)(k)

x`.

=
√
U(k)(k) + σ(k) + 2

k∑
`=1

Λ(`)(k)x`.

Replacing in (5.22), we get the desired result.

Since the right hand side of inequalities (5.21) is a submodular quadratic function, the

inequality can be strengthened further (Section 5.3).

Proposition 34. The extended polymatroid inequalities corresponding to permutation

((1), (2), . . . , (n)) of functions fΛ and g(x) =
√
x′Ux are the same.

Proof. The π ∈ Π(fΛ) be the extreme point of EP (fΛ) corresponding to permutation

((1), (2), . . . , (n)). Then from (5.5) we have that

π(k) =Λ(k)(k) + 2
k−1∑
`=1

Λ(`)(k)

=
√
σ(k) + U(k)(k) −

√
σ(k)

+
k−1∑
`=1

√√√√σ(k) + U(k)(k) + 2

∑̀
i=1

U(i)(k) −

√√√√σ(k) + U(k)(k) + 2
`−1∑
i=1

U(i)(k)

=

√√√√σ(k) + U(k)(k) + 2
k−1∑
i=1

U(i)(k) −
√
σ

=

√√√√ k∑
i=1

U(i)(i) + 2
k∑
i=1

k∑
j

U(i)(j) −

√√√√k−1∑
i=1

U(i)(i) + 2
k−1∑
i=1

k−1∑
j=i+1

U(i)(j).

It is easy to check that it coincides with the extreme point of EP (g) corresponding to the

same permutation.

CHAPTER 5. SUBMODULARITY IN 0-1 QUADRATIC OPTIMIZATION 107

5.8 Conclusions

In this chapter we study how to exploit submodularity in binary quadratic optimization. We

show that, once a quadratic submodular component as been identified, using classical lin-

earization techniques give the convex hull description of the submodular component. More-

over, when the submodular component corresponds to a quadratic function with a diagonally

dominant matrix, we obtain tighter formulations than the natural convex relaxation and the

formulation resulting from fully linearizing the quadratic expression. Our computational

experiments indicate that the approach proposed can result in considerable improvements

when solving BQCQO with a branch-and-bound algorithm.

108

Chapter 6

Conclusion

In this dissertation we consider diverse classes of mixed-integer nonlinear optimization prob-

lems, with focus on optimization problems with conic quadratic functions. We study both

maximization and minimization of conic quadratic objectives with linear constraints, and

optimization problems with quadratic and conic quadratic constraints. We propose algo-

rithms that account both for the non-linearity of the problem and discrete variables. The

algorithms share many similarities with classic algorithms for MILO. We now recount our

main contributions and provide directions for future research.

In Chapter 2 we study the problem of maximizing a class of nonlinear functions over the

vertices of polyhedra. We prove that there exists an optimal solution to the natural convex

relaxation of the problem, and that by rounding the solution to a suitable vertex we obtain a

1/2-approximation algorithm. When the nonlinear function corresponds to a conic quadratic

function, the approximation ratio is improved to 4/5. The approximation algorithm proposed

is the first approximation proposed for polyhedra that are not down-monotone. Moreover,

our algorithm fits the paradigm of rounding fractional solutions obtained from convex relax-

ations that has proven successful for MILO but has not been exploited for MINLO. Finally,

using the natural convex relaxation, we propose approximation algorithms for a class of

robust SOCO, extending previous results for robust LP.

In Chapter 3 we study the problem of minimizing a conic quadratic function over polyhe-

dra. We rewrite the objective function using the perspective function of a quadratic function,

and show how to solve the optimization problem by solving a sequence of QPs. We show

that the resulting algorithm, when using the simplex method to solve the QPs, scales better

than the barrier algorithm used by commercial software and can be an order of magnitude

faster in larger instances. Moreover, when used in a branch-and-bound algorithm, our ap-

CHAPTER 6. CONCLUSION 109

proach outperforms all alternatives used by commercial software, including SOCO-based

branch-and-bound and LP-based branch-and-bound with extended formulations.

In Chapter 4 we study the structure of a single mixed-binary conic quadratic constraint

with separable quadratic term. We give the convex-hull description of the set considered,

and show how the inequalities can be implemented in commercial software using a single

conic quadratic inequality and linear cuts. We also give the complete convex hull description

of the set defined by a rotated cone constraint with binary and continuous variables. We

extend the previous results to consider upper bounds on the continuous variables and other

constraints of the optimization problem. In our computational experiments we show that

using the proposed inequalities may result in orders-of-magnitude improvements with respect

to commercial software.

In Chapter 5 we propose a decomposition strategy for binary quadratic optimization.

The decomposition aims to exploit submodular component of a general quadratic function.

By using the connections between quadratic submodular functions and the minimum cut

problem, we find a strong extended formulation for the submodular component requiring

O(n2) additional variables and constraints. We also give sufficient conditions for the pro-

posed decomposition to be stronger than the natural convex relaxation of the problem. Our

preliminary computational experiments suggest that the proposed approach can be very

effective for solving binary quadratic problem to optimality in a branch-and-cut algorithm.

In this dissertation we give four different algorithmic approaches, each suited for a specific

problem considered. In our computational experiments we demonstrate how each algorithm

by itself improves the existing solution approaches. However, our current ability to solve

nonlinear discrete optimization problems is still limited compared to our ability to solve

their linear counterparts. Bridging the gap between linear and nonlinear discrete optimiza-

tion requires combining and integrating different techniques for MINLO. Promising ideas for

future research include integrating algorithms with warm-starts (Chapter 3) with valid in-

equalities (Chapter 4) in a branch-and-cut algorithm; and using the ideas given in Chapter 2

to efficiently produce feasible solutions in a branch-and-bound algorithm. Decomposition

strategies like the one proposed in Chapter 5 can be used in presolve to further strengthen

the convex relaxations. Developing branching and node selection strategies for MINLO, and

integrating them with other existing techniques is another direction worth exploring.

Most of the work to date in MINLO has focused in the pure-binary case, which is simpler

due to the underlying polyhedral structure. Furthermore, only simple feasible regions have

been considered to date. In Chapter 4 we begin studying MISOCO with binary and contin-

CHAPTER 6. CONCLUSION 110

uous variables and general feasible regions, and illustrate both its similarities and differences

with the pure-binary case. We hope that the work presented here leads to the study of

other structured problems often encountered in practice. In particular, understanding the

structure of conic constraints with knapsack constraints or a fixed-charge network structure

is of particular interest, due to the numerous applications in fields such as finance or machine

learning.

111

Appendix A

Appendix

A.1 Regret bound for Algorithm 1

Let x∗ = arg minx∈VXw
′x be the best solution, so the regret in round t is rt = w′x∗ − w′xt.

Recall that the confidence region at time t is the ellipsoid

Bt =

{
ν ∈ Rn :

n∑
i=1

(νi − ŵti)2dti ≤ βt

}
,

and in each round the play the solution corresponding to

max
x∈VX ,ν∈Bt

ν ′x.

To prove the high probability regret bounds, we prove first that if w ∈ Bt for all t, then

the sum of the squares of the regret cannot be large. Then we show that the probability

that the true weight w belongs to the confidence region Bt for all t is high. Finally we use

these facts to prove the regret bounds.

Sum of squares regret bound

Proposition 35. For all v ∈ Bt and x ∈ X,

|v′x− ŵ′x| ≤

√√√√βt

n∑
i=1

xi
dti
.

APPENDIX A. APPENDIX 112

Proof.

|v′x− ŵ′x| =

∣∣∣∣∣
n∑
i=1

(vi − ŵi)
√
dti

xi√
dti

∣∣∣∣∣
≤

√√√√ n∑
i=1

(vi − ŵi)2dti

√√√√ n∑
i=1

x2
i

dti
(Cauchy-Schwarz)

≤
√
Bt

√√√√ n∑
i=1

xi
dti

Proposition 36. If w ∈ Bt for all t, then

T∑
t=1

(
rt
)2 ≤ 4nβT (lnT + 1).

Proof. Given t, let vt ∈ Bt be the vector that maximizes v′xt. Since w ∈ Bt, we have

w′x∗ ≤ v′txt and

rt =w′x∗ − w′xt

≤(vt − w)′xt

=(vt − ŵt)′xt + (ŵt − w)′xt

≤2

√√√√βt

n∑
i=1

xi
dti
. (Proposition 35)

We have then

T∑
t=1

(
rt
)2 ≤4βT

T∑
t=1

n∑
i=1

xi
dti

≤ 4nβT

T∑
t=1

1

t

≤ 4nβT (lnT + 1).

Remark 17. Note that Proposition 36 gives a stronger bound than the corresponding 8nβT lnT

of Theorem 6 of Dani et al. (2008).

APPENDIX A. APPENDIX 113

Ellipsoid growth

Let Zt =
∑n

i=1(wi − ŵti)2dti be the squared distance between the true weight vector and the

center of the confidence region. In this section we study the growth of Zt. Recall that d1
i = 1

and ŵ1
i = 1 for all i ∈ N .

Proposition 37. For all t,

Zt ≤ n+ 2
t−1∑
τ=1

n∑
i=1

(wi − ŵτi) dτi (wi − w̃τi)xτi
dτ+1
i

+
t−1∑
τ=1

n∑
i=1

(wi − w̃τi)2 xτi
dτ+1
i

. (A.1)

Proof. We prove the result by induction. For the inductive step, we will use the identities

dt+1
i = dti + xti,

ŵt+1
i =

ŵtid
t
i + w̃tix

t
i

dt+1
i

.

Consider:

Zt+1 =
n∑
i=1

(
wi − ŵt+1

i

)2
dt+1
i

=
n∑
i=1

(
wi −

ŵtid
t
i + w̃tix

t
i

dt+1
i

)2

dt+1
i

=
n∑
i=1

(wid
t
i − ŵtidti + wix

t
i − w̃tixti)

2

dt+1
i

=
n∑
i=1

((
wi − ŵti

)2 dti
2

dt+1
i

+ 2
(wi − ŵti) dti (wi − w̃ti)xti

dt+1
i

+
(wi − w̃ti)

2
xti

dt+1
i

)

≤ Zt + 2
n∑
i=1

(wi − ŵti) dti (wi − w̃ti)xti
dt+1
i

+
n∑
i=1

(wi − w̃ti)
2
xti

dt+1
i

.

By induction, it follows that

Zt ≤ Z1 + 2
t−1∑
τ=1

n∑
i=1

(wi − ŵτi) dτi (wi − w̃τi)xτi
dτ+1
i

+
t−1∑
τ=1

n∑
i=1

(wi − w̃τi)2 xτi
dτ+1
i

.

Finally, Z1 =
∑n

i=1(wi − ŵ1
i)

2d1
i ≤ n, completing the proof.

Note that the last term in equation (A.1) is bounded by

t−1∑
τ=1

n∑
i=1

xτi
dτ+1
i

(w̃τi − wi)2 ≤ n

t∑
τ=2

1

τ
≤ n ln t.

APPENDIX A. APPENDIX 114

Concentration

To bound the remaining term, define the indicator Et =

1 if Zτ ≤ βτ for all τ ≤ t,

0 otherwise
, and

consider the random variable

Mt = 2Et

n∑
i=1

xti
dti
dt+1
i

(ŵti − wi)(w̃ti − wi).

Proposition 38. Mt is a martingale difference sequence with respect to the sequence of plays

Ht.

Proof.

E [Mt|Ht] = 2Et

n∑
i=1

xti
dti
dt+1
i

(ŵti − wi)E
[
(w̃ti − wi)

]
= 0,

since x1, · · · , xt, ŵ1, · · · , ŵt and E1, · · · , Et are fully determined by the story Ht, and

E [(w̃ti − wi)] = 0 for all i ∈ N .

Proposition 39. Given δ ∈ (0, 1),

P

(
∀t,

t−1∑
τ=1

Mτ ≤
βt
2

)
≥ 1− δ.

Before proving Proposition 39, we introduce a theorem from Freedman (1975).

Theorem 3 (Freedman). Suppose M1, · · · ,Mt is a martingale difference sequence, and b is

a uniform upper bound on the steps Mi. Let V denote the sum of conditional variances,

V =
t∑

τ=1

Var(Mτ |M1, · · · ,Mτ−1).

Then, for every a1, a2 > 0,

P

(
t∑

τ=1

Mτ ≥ a1 and V ≤ a2

)
≤ exp

(
−a2

1

2a2 + 2a1b/3

)
.

Proof of Proposition 39. Note that the steps Mt are bounded by
√
nβt:

|Mt| = 2Et

∣∣∣∣∣
n∑
i=1

xti
dti
dt+1
i

(ŵti − wi)(w̃ti − wi)

∣∣∣∣∣
≤ 2

√√√√Et

n∑
i=1

dti(ŵ
t
i − wi)2

√√√√ n∑
i=1

xti
2 dti

dt+1
i

2 (w̃ti − wi)2 (Cauchy-Schwarz)

≤ 2
√
βt
√
n =

√
βtn. (Proposition 35)

APPENDIX A. APPENDIX 115

Moreover, the sum of conditional variances is bounded by 4βtn ln t:

t∑
τ=1

Var(Mτ |M1, · · · ,Mτ−1) ≤4
t∑

τ=1

Eτ

(
n∑
i=1

dτi (ŵ
τ
i − wi)2

)(
n∑
i=1

xτi
2 dτi

dτ+1
i

2 (w̃τi − wi)2

)

≤4
t∑

τ=1

Eτβτ

(
n∑
i=1

xτi
dτi

dτ+1
i

2

)

≤4βt

n∑
i=1

t∑
τ=1

Eτx
τ
i

1

dτ+1
i

≤4βtn ln(max{τ ≤ t : Eτ = 1})
≤4βtn ln t.

Since the sum of conditional variances is always bounded, we can apply Theorem 3 with

a1 = βt
2

, a2 = 4βTn lnT :

P

(
t∑

τ=1

Mτ ≥
βt
2

)
=P

(
t∑

τ=1

Mτ ≥
βt
2

and V ≤ 4βTn lnT

)

≤ exp

(
−
(
βt
2

)2

8βTn lnT + 2
3
βt
2

√
nβt

)

= exp

(
−βt

32n lnT + 4
3

√
nβt

)
≤max

{
exp

(
−βt

64n lnT

)
, exp

(
−3
√
βt

8
√
n

)}
≤ δ
t2
. (Definition of βt)

Finally, we apply union bound to get

P

(
t−1∑
τ=1

Mτ ≥
βt
2

for some t

)
≤

∞∑
t=1

P

(
t−1∑
τ=1

Mτ ≥
βt
2

)

≤
∞∑
t=2

δ

t2

≤ δ

(
π2

6
− 1

)
≤ δ.

Remark 18. Note that the bound of the conditional variances is tighter than the bound of

8βtn ln t given in the proof of Lemma 14 of Dani et al. (2008). We can therefore use a smaller

βt than in Dani et al. (2008).

APPENDIX A. APPENDIX 116

Confidence

Proposition 40. With high probability, the true weight vector is contained in Bt for all t.

In particular,

P (∀t, Et = 1) = P

(
∀t,

n∑
i=1

(wi − ŵti)2dti ≤ βt)

)
≥ 1− δ.

Proof. We prove by induction that, if the event described in Proposition 39 holds, then∑n
i=1(wi − ŵti)2dti ≤ βt for all t. Note that, since

∑n
i=1(wi − ŵ1

i)
2d1
i ≤ n ≤ β1, E1 = 1 .Now

assume
∑t−1

τ=1 Mτ ≤ βt
2

. Then, by inductive hypothesis, Eτ = 1 for all τ < t, and we have

n∑
i=1

(wi − ŵti)2dti ≤ n+
t−1∑
τ=1

Mτ +
t−1∑
τ=1

n∑
i=1

xτi
dτ+1
i

(w̃τi − wi)2 (Proposition 37)

≤ n+
βt
2

+ n ln t

≤ βt.

We have shown Et = 1, completing the induction.

Regret bounds

We now prove the high probability bounds for the regret.

Proof of Theorem 1.

R(T) =
T∑
t=1

rt

≤

√√√√T
T∑
t=1

r2
t (Cauchy-Schwarz)

≤2
√
TnβT lnT . (Proposition 36)

Proof of Theorem 2. Note that, for all t, either rt = 0 or rt ≥ ∆. Either way, rt ≤ r2t
∆

. We

APPENDIX A. APPENDIX 117

have then

R(T) =
T∑
t=1

rt

≤
T∑
t=1

r2
t

∆

≤4nβT lnT

∆
. (Proposition 36)

A.2 Branch-and-bound algorithm

Algorithm 5 describes the branch-and-bound algorithm used in computations. Throughout

the algorithm, we maintain a list L of the nodes to be processed. Each node is a tuple

(S,B, lb), where S is the subproblem, B is a basis for warm starting the continuous solver

and lb is a lower bound on the objective value of S. In line 3 list L is initialized with the root

node. For each node, the algorithm calls a continuous solver (line 9) which returns a tuple

(x, B̄, z), where x is an optimal solution of S, B̄ is the corresponding optimal basis and z is

the optimal objective value (or∞ if S is infeasible). The algorithm then checks whether the

node can be pruned (lines 10-11), x is integer (lines 12-15), or it further branching is needed

(lines 16-18).

We now describe the specific implementations of the different subroutines. For branching

(line 17) we use the maximum infeasibility rule, which chooses the variable xi with value vi

furtherest from an integer (ties broken arbitrarily). The subproblems S≤ and S≥ in line 18

are created by imposing the constraints xi ≤ bvic and xi ≥ dvie, respectively. The PULL

routine in line 5 chooses, when possible, the child of the previous node which violates the

bound constraint by the least amount, and chooses the node with the smallest lower bound

when the previous node has no child nodes. The list L is thus implemented as a sorted list

ordered by the bounds, so that the PULL operation is done in O(1) and the insertion is done

in O(log |L|) (note that in line 18 we only add to the list the node that is not to be processed

immediately). A solution x is assumed to be integer (line 12) when the values of all variables

are within 10−5 of an integer. Finally, the algorithm is terminated when ub−lbbest
|lbbest+10−10| ≤ 10−4,

where lbbest is the minimum lower bound among all the nodes in the tree.

APPENDIX A. APPENDIX 118

Algorithm 5 Branch-and-bound algorithm

Input: P , discrete minimization problem
Output: Optimal solution x∗

1: ub←∞ . Upper bound
2: x∗ ← ∅ . Best solution found
3: L← {(P, ∅,−∞)} . list of nodes L initialized with the original problem
4: while L 6= ∅ do
5: (S,B, lb)← PULL(L) . select and remove one element from L
6: if lb ≥ ub then
7: go to line 4
8: end if
9: (x, B̄, z)← SOLVE(S,B) . solve continuous relaxation

10: if z ≥ ub then . if S is infeasible then z =∞
11: go to line 4 . prune by infeasibility or bounds
12: else if x is integer then
13: ub← z . update incumbent solution
14: x∗ ← x
15: go to line 4 . prune by integer feasibility
16: else
17: (S≤, S≥)← BRANCH(x) . create two subproblems
18: L← L ∪

{
(S≤, B̄, z), (S≥, B̄, z)

}
. add the subproblems to L

19: end if
20: end while
21: return x∗

The maximum infeasibility rule is chosen due to its simplicity. The other rules and

parameters correspond to the ones used in CPLEX branch-and-bound algorithm in default

configuration.

APPENDIX A. APPENDIX 119

A.3 Convex hull of L2
σ

A point (x, y, z) belongs to conv(L2
σ) if and only if there exist x1, x2, y1, y2, z1, z2, λ such that

the system

x = (1− λ)x1 + λx2 (A.2)

y = (1− λ)y1 + λy2 (A.3)

z = (1− λ)z1 + λz2 (A.4)

z1 ≥
√
σ + dy2

1 (A.5)

z2 ≥
√
σ + c+ dy2

2 (A.6)

0 ≤ y1, y2 ≤ 1, x1 = 0, x2 = 1 (A.7)

is feasible. Observe that from (A.2) and (A.7) we can conclude that λ = x. Also observe

that from (A.2), (A.5) and (A.6) we have that

z = (1− x)z1 + xz2

⇔ z ≥ (1− x)
√
σ + dy2

1 + x
√
σ + c+ dy2

2.

Therefore, the system is feasible if and only if

z ≥ min
y1,y2

(1− x)
√
σ + dy2

1 + x
√
σ + c+ dy2

2 (A.8)

s.t. y = (1− x)y1 + xy2 (γ)

y1 ≤ 1 (α1)

y2 ≤ 1 (α2)

y1 ≥ 0 (β1)

y2 ≥ 0, (β2)

and let γ, α and β be the dual variables of the optimization problem above. From KKT

conditions for variables y1 and y2 we find that

−(1− x)
dy1√
σ + dy2

1

= γ(1− x) + α1 − β1

−x dy2√
σ + c+ dy2

2

= γx+ α2 − β2

=⇒ y1√
σ + dy2

1

+ ᾱ1 − β̄2 =
y2√

σ + c+ dy2
2

+ ᾱ2 − β̄2, (A.9)

APPENDIX A. APPENDIX 120

where ᾱ, β̄ correspond to α and β after scaling. We can deduce from (A.9) and complemen-

tary slackness that y1, y2 > 0 (unless y = 0) and that y1 ≤ y2. Therefore, in an optimal

solution either 0 < y1, y2 < 1 (and ᾱ = β̄ = 0) or y2 = 1 (and ᾱ2 ≥ 0). If ᾱ = β̄ = 0, then

y∗1 = y

√
σ

x
√
c+ σ + (1− x)

√
σ

and

y∗2 = y

√
c+ σ

x
√
c+ σ + (1− x)

√
σ

satisfy conditions (A.9) and (A.3). Moreover, if

y∗2 ≤ 1

⇔ y ≤ x
√
c+ σ + (1− x)

√
σ√

c+ σ
= x+ (1− x)

√
σ

c+ σ
,

then y∗1, y
∗
2 also satisfy bound constraints, and thus correspond to an optimal solution to the

optimization problem. Replacing in (A.8), we find that

z ≥
√(√

σ + x(
√
c+ σ −

√
σ)
)2

+ dy2

when y ≤ x + (1 − x)
√

σ
σ+c

. On the other hand, if y∗1 > 1, an optimal solution to the

optimization problem is given by ȳ2 = 1 and ȳ1 = y−x
1−x . Replacing in (A.8)

z ≥
√
σ(1− x)2 + d(y − x)2 + x

√
σ + c+ d

when y ≥ x+ (1− x)
√

σ
σ+c

.

121

Bibliography

Adams, W. P. and Forrester, R. J. (2005). A simple recipe for concise mixed 0-1 linearizations.

Operations research letters, 33:55–61.

Adams, W. P., Forrester, R. J., and Glover, F. W. (2004). Comparisons and enhancement strategies

for linearizing mixed 0-1 quadratic programs. Discrete Optimization, 1:99–120.

Adams, W. P. and Sherali, H. D. (1986). A tight linearization and an algorithm for zero-one

quadratic programming problems. Management Science, 32:1274–1290.

Ahmed, S. (2006). Convexity and decomposition of mean-risk stochastic programs. Mathematical

Programming, 106:433–446.

Ahmed, S. and Atamtürk, A. (2011). Maximizing a class of submodular utility functions. Mathe-

matical Programming, 128:149–169.

Ahmed, S. and Papageorgiou, D. J. (2013). Probabilistic set covering with correlations. Operations

Research, 61:438–452.

Aktürk, M. S., Atamtürk, A., and Gürel, S. (2009). A strong conic quadratic reformulation

for machine-job assignment with controllable processing times. Operations Research Letters,

37:187–191.

Aktürk, M. S., Atamtürk, A., and Gürel, S. (2010). Parallel machine match-up scheduling with

manufacturing cost considerations. Journal of Scheduling, 13:95–110.

Alizadeh, F. (1995). Interior point methods in semidefinite programming with applications to

combinatorial optimization. SIAM Journal on Optimization, 5:13–51.

Alizadeh, F. and Goldfarb, D. (2003). Second-order cone programming. Mathematical programming,

95:3–51.

Anstreicher, K. M. (2012). On convex relaxations for quadratically constrained quadratic program-

ming. Mathematical programming, 136:233–251.

Atamtürk, A., Berenguer, G., and Shen, Z.-J. (2012). A conic integer programming approach to

stochastic joint location-inventory problems. Operations Research, 60:366–381.

Atamtürk, A. and Bhardwaj, A. (2015). Supermodular covering knapsack polytope. Discrete

Optimization, 18:74–86.

Atamtürk, A. and Bhardwaj, A. (2017). Network design with probabilistic capacities. BCOL

Research Report 16.01, UC Berkeley.

Atamtürk, A. and Jeon, H. (2017). Lifted polymatroid for mean-risk optimization with indicator

variables. BCOL Research Report 17.01, UC Berkeley.

BIBLIOGRAPHY 122

Atamtürk, A. and Narayanan, V. (2007). Cuts for conic mixed-integer programming. In Inter-

national Conference on Integer Programming and Combinatorial Optimization, pages 16–29.

Springer Berlin Heidelberg.

Atamtürk, A. and Narayanan, V. (2008). Polymatroids and mean-risk minimization in discrete

optimization. Operations Research Letters, 36:618–622.

Atamtürk, A. and Narayanan, V. (2009). The submodular 0-1 knapsack polytope. Discrete Opti-

mization, 6:333–344.

Atamtürk, A. and Narayanan, V. (2010). Conic mixed-integer rounding cuts. Mathematical Pro-

gramming, 122:1–20.

Atamtürk, A. and Narayanan, V. (2011). Lifting for conic mixed-integer programming. Mathemat-

ical programming, 126:351–363.

Badanidiyuru, A. and Vondrák, J. (2014). Fast algorithms for maximizing submodular functions.

In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 1497–1514. SIAM.

Balcan, M. and Harvey, N. J. A. (2010). Learning submodular functions. CoRR, abs/1008.2159.

Belotti, P., Góez, J. C., Pólik, I., Ralphs, T. K., and Terlaky, T. (2015). A conic representation of

the convex hull of disjunctive sets and conic cuts for integer second order cone optimization.

In Numerical Analysis and Optimization, pages 1–35. Springer.

Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., and Mahajan, A. (2013). Mixed-

integer nonlinear optimization. Acta Numerica, 22:1131.

Ben-Tal, A., El Ghaoui, L., and Nemirovski, A. (2009). Robust optimization. Princeton University

Press.

Ben-Tal, A. and Nemirovski, A. (1998). Robust convex optimization. Mathematics of operations

research, 23:769–805.

Ben-Tal, A. and Nemirovski, A. (1999). Robust solutions of uncertain linear programs. Operations

research letters, 25:1–13.

Ben-Tal, A. and Nemirovski, A. (2001a). Lectures on Modern Convex Optimization: Analysis, Al-

gorithms, and Engineering Applications. MPS-SIAM Series on Optimization. SIAM, Philadel-

phia.

Ben-Tal, A. and Nemirovski, A. (2001b). On polyhedral approximations of the second-order cone.

Mathematics of Operations Research, 26:193–205.

Bertsimas, D. and Sim, M. (2003). Robust discrete optimization and network flows. Mathematical

programming, 98:49–71.

Bertsimas, D. and Sim, M. (2004). The price of robustness. Operations research, 52:35–53.

Bier, V. M., Nagaraj, A., and Abhichandani, V. (2005). Protection of simple series and parallel

systems with components of different values. Reliability Engineering & System Safety, 87:315

– 323.

Birge, J. R. and Louveaux, F. (2011). Introduction to stochastic programming. Springer Science &

Business Media.

BIBLIOGRAPHY 123

Bixby, R. E. (2012). A brief history of linear and mixed-integer programming computation. Docu-

menta Mathematica, pages 107–121.

Bonami, P. (2011). Lift-and-project cuts for mixed integer convex programs. In International

Conference on Integer Programming and Combinatorial Optimization, pages 52–64. Springer.

Borchers, B. and Mitchell, J. E. (1994). An improved branch and bound algorithm for mixed integer

nonlinear programs. Computers & Operations Research, 21:359–367.

Buchbinder, N., Feldman, M., Naor, J., and Schwartz, R. (2012). A tight linear time (1/2)-

approximation for unconstrained submodular maximization. In Foundations of Computer

Science (FOCS), 2012 IEEE 53rd Annual Symposium on, pages 649–658.

Calinescu, G., Chekuri, C., Pál, M., and Vondrák, J. (2011). Maximizing a monotone submodular

function subject to a matroid constraint. SIAM Journal on Computing, 40:1740–1766.

Çay, S. B., Pólik, I., and Terlaky, T. (2017). Warm-start of interior point methods for second order

cone optimization via rounding over optimal Jordan frames. ISE Technical Report 17T-006,

Lehigh University.

Ceria, S. and Soares, J. (1999). Convex programming for disjunctive convex optimization. Mathe-

matical Programming, 86:595–614.

Çezik, M. T. and Iyengar, G. (2005). Cuts for mixed 0-1 conic programming. Mathematical

Programming, 104:179–202.

Chaovalitwongse, W., Pardalos, P. M., and Prokopyev, O. A. (2004). A new linearization technique

for multi-quadratic 0–1 programming problems. Operations Research Letters, 32:517–522.

Chen, W., Wang, Y., and Yuan, Y. (2013). Combinatorial multi-armed bandit: General frame-

work and applications. In Dasgupta, S. and Mcallester, D., editors, Proceedings of the 30th

International Conference on Machine Learning (ICML-13), volume 28, pages 151–159. JMLR

Workshop and Conference Proceedings.

Chong, J.-K., Ho, T.-H., and Tang, C. S. (2001). A modeling framework for category assortment

planning. Manufacturing & Service Operations Management, 3:191–210.

Dadush, D., Dey, S. S., and Vielma, J. P. (2011). The split closure of a strictly convex body.

Operations Research Letters, 39:121–126.

Dani, V., Hayes, T. P., and Kakade, S. M. (2008). Stochastic linear optimization under bandit

feedback. In COLT.

Dantzig, G. B., Orden, A., and Wolfe, P. (1955). The generalized simplex method for minimizing

a linear form under linear inequality restraints. Pacific Journal of Mathematics, 5:183–196.

Edmonds, J. (1970). Submodular functions, matroids, and certain polyhedra. In Guy, R., Hanani,

H., Sauer, N., and Schönenheim, J., editors, Combinatorial Structures and Their Applications,

pages 69–87. Gordon and Breach.

El Ghaoui, L., Oks, M., and Oustry, F. (2003). Worst-case value-at-risk and robust portfolio

optimization: A conic programming approach. Operations Research, 51:543–556.

Fisher, M., Nemhauser, G., and Wolsey, L. (1978). An analysis of approximations for maximizing

submodular set functions II. In Balinski, M. and Hoffman, A., editors, Polyhedral Combina-

BIBLIOGRAPHY 124

torics, volume 8 of Mathematical Programming Studies, pages 73–87. Springer Berlin Heidel-

berg.

Frangioni, A. and Gentile, C. (2006). Perspective cuts for a class of convex 0–1 mixed integer

programs. Mathematical Programming, 106:225–236.

Frangioni, A. and Gentile, C. (2007). Sdp diagonalizations and perspective cuts for a class of

nonseparable miqp. Operations Research Letters, 35:181–185.

Freedman, D. A. (1975). On tail probabilities for martingales. The Annals of Probability, 3:pp.

100–118.

Gen, M. and Yun, Y. (2006). Soft computing approach for reliability optimization: State-of-the-

art survey. Reliability Engineering & System Safety, 91:1008 – 1026. Special Issue - Genetic

Algorithms and ReliabilitySpecial Issue - Genetic Algorithms and Reliability.

Glover, F. and Woolsey, E. (1974). Converting the 0-1 polynomial programming problem to a 0-1

linear program. Operations research, 22:180–182.

Goemans, M. X., Harvey, N. J. A., Iwata, S., and Mirrokni, V. S. (2009). Approximating submodu-

lar functions everywhere. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA 2009, New York, NY, USA, January 4-6, 2009, pages 535–544.

Goemans, M. X. and Williamson, D. P. (1995). Improved approximation algorithms for maximum

cut and satisfiability problems using semidefinite programming. Journal of the ACM (JACM),

42:1115–1145.

Grötschel, M., Lovász, L., and Schrijver, A. (1981). The ellipsoid method and its consequences in

combinatorial optimization. Combinatorica, 1:169–197.

Grötschel, M., Lovász, L., and Schrijver, A. (2012). Geometric algorithms and combinatorial opti-

mization, volume 2. Springer Science & Business Media.

Günlük, O. and Linderoth, J. (2010). Perspective reformulations of mixed integer nonlinear pro-

grams with indicator variables. Mathematical programming, 124:183–205.

György, A., Linder, T., and Ottucsák, G. (2006). The shortest path problem under partial moni-

toring. In Lugosi, G. and Simon, H., editors, Learning Theory, volume 4005 of Lecture Notes

in Computer Science, pages 468–482. Springer Berlin Heidelberg.

Hammer, P. L. and Rubin, A. A. (1970). Some remarks on quadratic programming with 0-1

variables. Revue française d’informatique et de recherche opérationnelle. Série verte, 4:67–79.

Hansen, P. (1979). Methods of nonlinear 0-1 programming. Annals of Discrete Mathematics,

5:53–70.

Hausken, K. (2008). Strategic defense and attack for series and parallel reliability systems. European

Journal of Operational Research, 186:856 – 881.

Hijazi, H., Bonami, P., and Ouorou, A. (2013). An outer-inner approximation for separable mixed-

integer nonlinear programs. INFORMS Journal on Computing, 26:31–44.

Hiriart-Urruty, J.-B. and Lemaréchal, C. (2013). Convex Analysis and Minimization Algorithms I:

Fundamentals, volume 305. Springer Science & Business Media.

Hochbaum, D. S. (1982). Approximation algorithms for the set covering and vertex cover problems.

SIAM Journal on computing, 11:555–556.

BIBLIOGRAPHY 125

Ishii, H., Shiode, S., Nishida, T., and Namasuya, Y. (1981). Stochastic spanning tree problem.

Discrete Applied Mathematics, 3:263–273.

Iwata, S., Fleischer, L., and Fujishige, S. (2001). A combinatorial strongly polynomial algorithm

for minimizing submodular functions. Journal of the ACM (JACM), 48:761–777.

Iwata, S. and Nagano, K. (2009). Submodular function minimization under covering constraints. In

Foundations of Computer Science, 2009. FOCS’09. 50th Annual IEEE Symposium on, pages

671–680. IEEE.

Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. In Proceedings

of the Sixteenth Annual ACM Symposium on Theory of Computing, pages 302–311. ACM.

Kılınç, M., Linderoth, J., and Luedtke, J. (2010). Effective separation of disjunctive cuts for convex

mixed integer nonlinear programs. Optimization Online.

Kılınç-Karzan, F. and Yıldız, S. (2015). Two-term disjunctions on the second-order cone. Mathe-

matical Programming, 154:463–491.

Kulik, A., Shachnai, H., and Tamir, T. (2009). Maximizing Submodular Set Functions Subject to

Multiple Linear Constraints, chapter 60, pages 545–554.

Levitin, G. and Hausken, K. (2008). Protection vs. redundancy in homogeneous parallel systems.

Reliability Engineering & System Safety, 93:1444–1451.

Leyffer, S. (2001). Integrating SQP and branch-and-bound for mixed integer nonlinear program-

ming. Computational Optimization & Applications, 18:295–309.

Lobo, M. S., Vandenberghe, L., Boyd, S., and Lebret, H. (1998). Applications of second-order cone

programming. Linear algebra and its applications, 284:193–228.

Lubin, M., Yamangil, E., Bent, R., and Vielma, J. P. (2016). Polyhedral approximation in mixed-

integer convex optimization. arXiv preprint arXiv:1607.03566.

McCormick, G. P. (1976). Computability of global solutions to factorable nonconvex programs:

Part iconvex underestimating problems. Mathematical programming, 10:147–175.

Megiddo, N. (1991). On finding primal- and dual-optimal bases. INFORMS Journal on Computing,

3:63–65.

Modaresi, S., Kılınç, M. R., and Vielma, J. P. (2016). Intersection cuts for nonlinear integer

programming: Convexification techniques for structured sets. Mathematical Programming,

155:575–611.

Nahmias, S. (2001). Production and Operations Analysis. McGraw Hill.

Nemhauser, G. L. and Wolsey, L. A. (1988). Integer and Combinatorial Optimization. Interscience

Series in Discrete Mathematics and Optimization.

Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. (1978). An analysis of approximations for

maximizing submodular set functions I. Mathematical Programming, 14:265–294.

Nemirovski, A. and Scheinberg, K. (1996). Extension of Karmarkar’s algorithm onto convex

quadratically constrained quadratic problems. Mathematical Programming, 72:273–289.

Nemirovski, A. and Todd, M. (2008). Interior-point methods for optimization. Acta Numerica,

17:191–234.

BIBLIOGRAPHY 126

Nesterov, Y. and Nemirovskii, A. (1994). Interior-Point Polynomial Algorithms in Convex Pro-

gramming. Society for Industrial and Applied Mathematics.

Nesterov, Y. E. and Todd, M. J. (1998). Primal-dual interior-point methods for self-scaled cones.

SIAM Journal on optimization, 8:324–364.

Orlin, J. B. (2009). A faster strongly polynomial time algorithm for submodular function mini-

mization. Mathematical Programming, 118:237–251.

Picard, J.-C. (1976). Maximal closure of a graph and applications to combinatorial problems.

Management science, 22:1268–1272.

Poljak, S. and Wolkowicz, H. (1995). Convex relaxations of (0, 1)-quadratic programming. Math-

ematics of Operations Research, 20:550–561.

Pulleyblank, W. (1973). Faces of matching polyhedra. Ph.D. Thesis, University of Waterloo.

Rusmevichientong, P., Shen, Z.-J. M., and Shmoys, D. B. (2010). Dynamic assortment optimization

with a multinomial logit choice model and capacity constraint. Operations research, 58:1666–

1680.

Rusmevichientong, P. and Tsitsiklis, J. N. (2010). Linearly parameterized bandits. Mathematics

of Operations Research, 35:395–411.

Schrijver, A. (2000). A combinatorial algorithm minimizing submodular functions in strongly

polynomial time. Journal of Combinatorial Theory, Series B, 80:346–355.

Sen, A., Atamtürk, A., and Kaminsky, P. (2015). A conic integer programming approach to

constrained assortment optimization under the mixed multinomial logit model. Research

Report BCOL.15.06, IEOR, University of California–Berkeley.

Shen, Z.-J. M., Coullard, C., and Daskin, M. S. (2003). A joint location-inventory model. Trans-

portation science, 37:40–55.

Sherali, H. D. and Adams, W. P. (1990). A hierarchy of relaxations between the continuous and

convex hull representations for zero-one programming problems. SIAM Journal on Discrete

Mathematics, 3:411–430.

Sherali, H. D. and Smith, J. C. (2007). An improved linearization strategy for zero-one quadratic

programming problems. Optimization Letters, 1:33–47.

Stubbs, A. R. and Mehrotra, S. (1999). A branch-and-cut method for 0-1 mixed convex program-

ming. Mathematical Programming, 86:515–532.

Sviridenko, M. (2004). A note on maximizing a submodular set function subject to a knapsack

constraint. Operations Research Letters, 32:41 – 43.

Tawarmalani, M. and Sahinidis, N. V. (2005). A polyhedral branch-and-cut approach to global

optimization. Mathematical Programming, 103:225–249.

Van de Panne, C. and Whinston, A. (1964). Simplicial methods for quadratic programming. Naval

Research Logistics Quarterly, 11:273–302.

Van Ryzin, G. and Mahajan, S. (1999). On the relationship between inventory costs and variety

benefits in retail assortments. Management Science, 45:1496–1509.

Vielma, J. P., Dunning, I., Huchette, J., and Lubin, M. (2016). Extended formulations in mixed

integer conic quadratic programming. Mathematical Programming Computation.

BIBLIOGRAPHY 127

Vondrák, J., Chekuri, C., and Zenklusen, R. (2011). Submodular function maximization via the

multilinear relaxation and contention resolution schemes. In Proceedings of the forty-third

annual ACM symposium on Theory of computing, pages 783–792. ACM.

Williamson, D. P. and Shmoys, D. B. (2011). The design of approximation algorithms. Cambridge

university press.

Wolfe, P. (1959). The simplex method for quadratic programming. Econometrica: Journal of the

Econometric Society, pages 382–398.

Yildirim, E. A. and Wright, S. J. (2002). Warm-start strategies in interior-point methods for linear

programming. SIAM Journal on Optimization, 12:782–810.

Yu, J. and Ahmed, S. (2015). Polyhedral results for a class of cardinality constrained submodular

minimization problems. Discrete Optimization.

Zhang, Y., Jiang, R., and Shen, S. (2017). Ambiguous chance-constrained bin packing under

mean-covariance information.

