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ABSTRACT OF THE DISSERTATION

Multi-scale analysis of sequence and regulatory information in Escherichia
coli

by

Cameron Robert Lamoureux

Doctor of Philosophy in Bioengineering

University of California San Diego, 2023

Professor Bernhard ). Palsson, Chair

Biological information is encoded and transmitted by nucleic acids. Next-generation se-
quencing technologies have unleashed a flood of large-scale genomics and transcriptomics data
capturing this information flow. Here, we develop three analytical frameworks for deriving bio-
logical knowledge from this data at multiple scales, using Fscherichia coli as a model. First, we
introduce the Bitome, a single-base-pair resolution representation of genome annotation informa-
tion for a genome sequence. This binarized construct highlights the uneven patterning of genomic

information. Moreover, we leverage this information representation to classify genes based on
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adaptive mutability and to quantitatively predict mRNA transcript levels based on promoter
sequence. Next, we analyze sequence variation in non-coding regions across 2,350 E. coli strains.
We demonstrate that annotated functional non-coding features are significantly conserved. We
also highlight the sufficiency of non-coding alleles to segment phylogroups, and contrast adaptive
mutations with wild-type variation. Finally, we construct a high-precision, single-protocol 1,035-
sample RNA-seq compendium called PRECISE-1K. Using unsupervised machine learning, we
extract 201 independently-modulated groups of genes (iModulons) that capture the majority of
the known transcriptional regulatory network. iModulons also reveal novel regulons and uncover
a binding-site basis for different functional behavior within the same regulon. In combination,
this expression and regulatory information constitute a knowledge base that may be applied to-
wards the analysis of new data. As a whole, this work introduces a multi-scale suite of analytical

tools that enable study of information flow by converting big data to biological knowledge.
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Chapter 1

Biology as a big data discipline

The genome is biology’s central information repository. It is the blueprint for an organ-
ism’s structure and function. A single genome provides a static snapshot of a specific organism’s
DNA sequence; however, genomes are in fact dynamic and may be studied at multiple scales
through both space and time. For example, as the central dogma [1] dictates, genetic infor-
mation flows from DNA to RNA via transcription (Fig. 1.1). This critical process enables an
organism to respond to its environment, altering the balance of genomic information available for
conversion into the proteins that carry out the actions of life. Indeed, the central dogma relies
on the multiple layers of information that are encoded by a genome sequence, from the codons
that represent amino acids to the binding sites that enable regulation of transcription. More-
over, genome sequences vary even within a species, owing to the inexorable action of molecular
evolution.

Advances in nucleic acid sequencing in the past three decades have revolutionized the
study of genomes and their dynamics across these different dimensions and scales. Microbial

genomes have accumulated rapidly since the first published complete genome sequence - for
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Figure 1.1: The central dogma of molecular biology.

bacterium Haemophilus influenzae in 1995 [2]. In particular, sequence data for the model bac-
terium Fscherichia coli is plentiful. E. coli is of broad importance, owing to its use in the study
of: pathogenesis [3-5] and antimicrobial resistance [6,7]; synthetic biology and the engineering
of microbial strains [8-10]; evolution [11]; metabolic modeling [12,13]; and many more. Over
50,000 E. coli genomes are available from a popular online data resource [14] (Fig. 1.2A). Next-
generation high-throughput sequencing has enabled the rise of RNA-seq [15], a powerful tool for
assessing genome-wide transcriptomic changes in response to environmental stimuli. Indeed, over
10,000 well-annotated E. coli transcriptomes are now available on NCBI GEO [16] (Fig. 1.2B).
Regulatory interactions and structure in E. coli have been elucidated through a combination of

decades-long bottom-up biochemical efforts and recent high-throughput advances in chromatin
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Figure 1.2: Growth in sequencing data. A) Growth in genome sequences for Escherichia coli
deposited in the Bacterial and Viral Bioinformatics Resource Center (BV-BRC). B) Growth

in transcriptomes for E. coli deposited in the National Center for Biotechnology Information
(NCBI) Sequence Read Archive (SRA).

immunoprecipitation (ChIP) [17,18], with a reference database [19] containing over 8,000 inter-
actions.

Converting this wealth of data to biological knowledge is a fundamental goal of twenty-
first century computational biology [20]. Integrating these different vantage points of E. coli’s
genome information will enrich understanding of the relationship between genotype and pheno-
type. Biological data analysis methods that derive new insights from existing data will address

the ”reusability” aspect of the FAIR data management guiding principles [21].

1.1 Genome annotation at scale

A genome sequence explicitly contains the nucleotide that make up an organism’s chromo-
somes. However, implicit in the sequence are additional layers of information that are represented

by different nucleotide groupings. Annotating these different components of a genome is a critical



task to which significant effort has been dedicated. Reference sequence annotations highlight the
locations of core features such as coding genes, non-coding RNAs, and mobile elements. Coding
region nucleotides are by definition components of one of 64 codons specifying a protein’s amino
acid sequence. Thus, coding region nucleotides also implicitly contain the information dictating
a protein’s structure; indeed, recent advances in machine learning have unlocked this relationship
to an astonishing degree [22].

Cis-regulatory genomic regions facilitate the activation of genomic information via tran-
scription. These regions comprise a number of distinct types of information that may be mapped
to specific nucleotides. Transcription start sites (TSS) and transcription termination sites (TTS)
are critical bases that delineate the portions of DNA that are converted into mRNA; TSS, TSS,
and the transcriptional units (TUs) they define have been identified at scale in E. coli [23].
Core promoter regions control RNA polymerase binding via sigma factor recognition [24-27].
Transcription factors (TFs) recognize specific transcription factor binding sites (TFBS) within
cis-regulatory regions and activate or repress transcription of the downstream genes in response
to environmental cues [19,28-30]. Transcriptional attenuators represent yet another grouping
of nucleotides that contain an additional information layer - in this case on the basis of the
mRNA secondary structures they encode [31]. Overall, these layers of genome annotation repre-
sent the information encoded by each individual nucleotide in a genome sequence. Unifying this

information in a formal, actionable construct remains a desirable next step.

1.2 Genome sequences at scale

The huge scale of genome sequences available for E. coli and other organisms has neces-

sitated the development of pangenomics [32]. Pangenomic analyses aim to convert thousands



of individual genome sequences from a species into biological knowledge. Central to this frame-
work are the concepts of core (conserved) and accessory (variable) genomes, which have been
defined for many significant microbial species [33]. These demarcations consist of genes found
across nearly all genomes in a pangenomic population (core) or found in a non-negligible sub-
set (accessory). Pangenome analysis hinges fundamentally on the clustering of gene nucleotide
sequences across genomes based on their sequence similarities, followed by binarization of gene
presence and absence across the genome compendium. The study of antimicrobial resistance [34],
metabolism [35], and virulence [36] have all been enriched by pangenomic analysis.

Pangenome analysis is almost by definition focused on coding regions. While coding se-
quences make up the majority of a typical microbial genome [37], non-coding regions play an out-
size role in manifesting phenotype from genotype. As discussed previously, cis-regulatory regions
in particular are rich with critical information layered at single nucleotide resolution. Indeed,
the single-nucleotide scale of genomic information highlights another limitation of pangenomics:
pangenomic analyses do not directly take into account sequence variation. Extension of pange-
nomic analyses to non-coding regions at single nucleotide resolution would enable multi-scale

analysis of sequence information and variation across multiple genome sequences.

1.3 Transcriptomics and regulation at scale

The availability of large-scale transriptomic data sheds light on the processes by which E.
coli responds to environmental stimuli. As the cell is exposed to different growth conditions - me-
dia, temperature, pH, carbon sources, aerobicity, etc. - the transcription levels of all genes in the
genome are modulated. These modulations are largely mediated by transcription factors: DNA-

binding proteins that either activate or repress transcription initiation at a particular promoter



region by binding to a specific cis-regulatory site, altering the mRNA level of the transcription
unit transcribed from that location. Taken together, these transcription factor-transcription unit
interactions comprise a transcriptional regulatory network (TRN). This network is the infor-
mation processing core of the cell, controlling both the spatial and temporal dissemination of
genomic information.

The E. coli TRN is relatively well-characterized thanks to approaches such as ChIP [17]
paired with differential expression analysis. Indeed, over 75% of E. coli genes are represented
in RegulonDB [19], the premier source for E. coli regulatory network annotation that cata-
logs and curates information on regulons, or groups of co-regulated genes. Nonetheless, even
explicit knowledge of the TRN’s connectivity is not sufficient to explain or predict gene expres-
sion levels [38]. Thus, analytical methods that can further expand knowledge of the TRN and
its dynamics are critical - ideally without necessitating continued laborious bottom-up network

characterization.

1.4 Thesis outline

In this thesis, we present a set of three analytical frameworks for interrogating genomic
and transcriptomic information at scale (Fig. 1.3). In the next chapter, we introduce the Bitome,
a formalized representation of the multiple layers of annotation information for a single genome
sequence at single nucleotide resolution. This structure enables analysis of the patterning of
genome information and prediction of genomic properties based on information content for the
model E. coli strain K-12 MG1655. The third chapter widens the analytical scale to thousands of
genomes; we construct a non-coding alleleome for E. coli. By querying sequence variation within

non-coding regions across the E. coli pangenome, we reveal patterns of conservation and provide
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Figure 1.3: Scales of analysis of sequence information.

an additional dimension for the contextualization of genomic information contained in the F.

coli model strain bitome. Finally, the fourth chapter establishes a large-scale transcriptomics



dataset for E. coli, along with a machine learning method for elucidation of regulatory network
modules from the dataset. Taken together, these analyses leverage big data to extract actionable
biological knowledge regarding the patterning, variation, and processing of genome information

at multiple scales.



Chapter 2

The Bitome: Digitized genomic
features reveal fundamental genome

organization

The information that determines the structure and functioning of an organism is stored
in its genome. However, we currently lack a formal framework for representing and studying
this information. Here, we introduce the Bitome, which is a matrix consisting of binary digits
(bits) that represent the genomic positions of various features within the genome. We construct
a Bitome for the genome of Escherichia coli K-12 MG1655 and make the following discoveries:
(i) genomic features are unevenly encoded, both spatially and categorically; (ii) coding and
intergenic features are captured at base-pair resolution; (iii) adaptive mutations tend to occur
more frequently in genomic positions with fewer features; and (iv) the Bitome feature information

representation empowers classification of both genes with adaptive mutations and essential genes.



The Bitome serves as a formal representation of a genome and offers a valuable tool for studying

its fundamental organizational properties.

2.1 Background

A genome contains various types of information that determine an organism’s structure
and function [39]. Experimental methods at genome scale help uncover genomic features such as
sequence [40], transcription units [41], and regulatory elements [42]. This information is vital for
endeavors like genome-scale metabolic reconstructions [43,44], characterization of transcriptional
regulatory networks [45], and genome design and reduction efforts [8,46].

However, the current representation of genomic information is predominantly focused
on open reading frames and is limited to text or image formats, which hampers comprehen-
sive analysis of genomic information. The genome exhibits structural organization in the form
of macrodomains [47], and the location of a gene can influence its expression levels [48]. For
instance, the Y-ome, representing F. coli genes lacking functional evidence, tends to be con-
centrated near the terminal region [49]. Fundamental genome properties such as GC content
exhibit periodic patterns across different length scales [50]. These findings highlight the need for
a formal construct centered around base pairs that can encompass all encoded features of the
genome sequence.

To address this need, we introduce the Bitome, a matrix that associates each position in
a genome sequence with the corresponding encoded features. As a demonstration, we created a
Bitome for the E. coli K-12 MG1655 genome. Our observations include: (i) uneven patterning
of genomic features throughout the sequence; (ii) differing feature information density within

coding and intergenic regions, distinguishing sub-features within them; (iii) a higher frequency of

10
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Figure 2.1: Schematic representation of the Bitome. Genomic features are associated with
genomic positions in which they appear, enabling binarization of genomic feature information.

adaptive mutations in genomic positions with fewer features; and (iv) the predictive power of the
Bitome formalization in identifying adaptively mutated genes and predicting gene essentiality
based solely on sequence features. Thus, the Bitome represents a novel construct that formally
describes genomic feature information and lays the foundation for actionable predictions based

on this information.
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2.2 Results

2.2.1 The Bitome formalizes genomic features at base-pair resolution

We generated a Bitome for E. coli K-12 MG1655, where each row corresponds to a specific
genomic feature, and each column represents a genomic position. The matrix elements, referred
to as 'bits’, have a binary value of either 1 or 0. A value of 1 indicates the presence of a particular
feature ¢ at a given genomic position j, while 0 indicates its absence (Fig. 2.2A). The Bitome
encompasses various types of genomic features, including: (a) sequence-derived features, such as
codons, (b) experimentally determined features, such as transcription factor binding sites, and
(¢) computationally predicted features, like protein secondary structure (Fig. 2.2B). The K-12
Bitome consists of 1634 rows representing genomic features and 4,641,652 columns representing
genomic positions, encompassing a total of 52.4 million bits. The Bitome is sparse, with only

0.7% of the bits having a value of 1.

2.2.2 Genomic features are patterned unevenly

The structure of the Bitome is exemplified by the gadAXW operon. The number of bits
in each row of this region varies widely, from the full 4243 bits (indicating the presence of an
operon) to 0 bits (for example, most transcription factors don’t have binding sites) (Fig. 2.2D).
Coding regions exhibit higher bit counts per column compared to intergenic regions (Fig. 2.2E).
This difference becomes evident when focusing on a Bitome region located at the edge of a
coding gene (Fig. 2.2C). The intergenic regions within this operon are relatively rich in features,
containing multiple transcription factor binding sites and tightly structured mRNA secondary
structures. The maximum bit count per column is significantly lower than the row dimension

of the Bitome, indicating that only a small fraction of the total genomic features have bits at a
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Figure 2.2: Features encoded by the E. coli K-12 MG1655 genome can be represented as a
binary matrix. (A) E. coli K-12 MG1655 genome with reference genome start position, origin of
replication (ori), and the gadAXW operon marked. (B) A visualization of the Bitome section
at the location of the gad AXW operon. Rows are genomic features, columns genomic position.

Black = 1, white = 0. (C) Close-up visualization of a 200 x 200 section of the Bitome section in
(B). (D and E) Bit counts of the rows (D) and columns (E) of this section.

specific genomic position.

Across the entire Bitome, the bit counts per genomic position range from 2 to 26
(Fig. 2.3A). The majority of positions have between 10 and 15 bits, while a small selection
of positions have more than 15 bits. There is notable variation in the percentage of the to-
tal sequence that encodes different features. For instance, genomic positions encoding carbon

metabolism genes cover 9.1% of the genome, whereas Shine-Dalgarno sequences cover only 0.004%
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(Fig. 2.3B). About 35% of the genomic sequence codes for hydrophobic amino acids like leucine,
alanine, glycine, valine, and isoleucine (Fig. A.1A). Alpha helices are a common structural motif,
encoded by 29% of genomic positions (Fig. A.1B). The organizational structure of the Bitome
enables easy computation of sequence coverage for overlapping features. For example, we ob-
served that glycine is more prevalent in loop regions compared to alpha helices or beta sheets
(Fig. A.1C). We conducted hierarchical clustering of genomic information within genes, tran-
scription units, and operons, and found that clusters were predominantly influenced by more
densely encoded features such as amino acids, without definitively associating features across

categories.

2.2.3 Defining coding and intergenic sub-regions by bit density

The density of bits, measured as bits per base pair (bits/bp), varies across different regions
of the genome. At a resolution of 100 kb, the moving average of bit density shows fluctuations
(Fig. 2.3C). The peak observed at 0.75 Mb is primarily attributed to an increased density of
transcription units in that specific region. Notably, the variation in bit density is not distinctly
periodic. Furthermore, bit density serves as a distinguishing factor between coding and intergenic
features. Protein-coding genes and transcription units generally have a density of 12 bits/bp,
while pseudogenes tend to be less feature-rich (Fig. 2.3D).

The Bitome also provides insights into the bit density within intergenic regions. For
instance, the 5 and 3’ untranslated regions (UTRs) flanking coding genes collectively define
a transcription unit (TU) [41]. These regions have a median length of approximately 50 bp
but can vary significantly in size (Fig. 2.4A). Intergenic regions within TUs and the 5’ and 3’

UTRs exhibit an approximate bit density of 6-7 bits/bp (Fig. 2.4B). Overall, when including
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the genome, calculated in 100 kb windows. Gray dashed lines indicate the mean + 2 standard
deviations. (D) Histograms of bit density for selected features (number of features indicated in
parentheses). Vertical lines indicate medians.

these UTRs and intergenic regions within TUs, TUs occupy approximately 91% of the genome
sequence (Fig. 2.3B). Consequently, the remaining 9% of the genome consists of ”inter-TU”
regions.

These inter-TU regions exhibit a deficiency in features, characterized by a median bit
density of only 2.5 bits per bp (Fig. 2.4B). These areas encompass transcriptional regulatory
sequences such as -10 and -35 elements. Interestingly, the actual positions of these sequences
slightly deviate from their designated nomenclature, with the -35 elements, in particular, tending

to be located approximately 2 bp closer to the transcription start site (TSS) (Fig. 2.4C). The
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Figure 2.4: The Bitome provides a high-resolution view of bit density in intergenic regions. (A)
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both strands are considered. (C) Histograms of the distributions of the -10 (light green) and
-35 (cyan) elements of promoter regions. The center of the element is used to compute distance
to T'SS. Red ticks indicate the canonical locations of the elements, and vertical lines indicate
medians. n = 1306. (D) Histogram of distances between -10 and -35 elements from the same
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distance between these boxes, known to be crucial for RNA polymerase binding to the promoter
region [51], is a feature of the inter-TU region accurately represented by the Bitome (Fig. 2.4D).
Despite the presence of regulatory sequences, our knowledge of the inter-TU regions is primarily

limited to the nucleotide sequences themselves.

2.2.4 Adaptive mutations are biased towards low-information genomic posi-

tions

The Bitome provides valuable insights into distal causation during adaptive laboratory
evolution (ALE). During ALE experiments, single nucleotide polymorphisms (SNPs) are acquired
throughout the genome [52]. Interestingly, coding SNPs occur less frequently at genomic positions
that have a higher bit density, particularly in coding regions (Fig. 2.5A). Among the amino acids,
threonine, which ranks as the sixth most abundant in terms of sequence coverage, is observed to
be the most frequently mutated amino acid, with a mutation frequency surpassing that of the
overall sequence (Fig. 2.5B). In contrast, despite leucine being the most abundant amino acid in
terms of sequence coverage, it is mutated at only two-thirds of the overall genome mutation rate.
Additionally, hydrophobic residues, despite providing a larger sequence target, are less frequently

subject to missense mutations.

2.2.5 The Bitome enables prediction of adaptively mutations and gene essen-

tiality

The Bitome is capable of predicting genes that undergo SNP acquisition during ALE.
By utilizing only the bits from coding gene regions, we trained a support vector machine (SVM)

classifier (Fig. 2.5C) to discern between coding genes that acquire SNPs and those that do not
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Figure 2.5: The Bitome enriches systemic analysis and prediction of adaptive mutations. (A)
Combined histogram of the number of coding genome positions that contain the given number of
bits (purple) and the numbers of SNPs that occur in coding positions with that number of bits
(red). Two-sided Mann-Whitney U test: P = 0.015; n = 3 881 981, m = 7034. (B) Frequency of
SNPs occurring at each amino acid. The gray dashed line is the overall frequency of SNPs across
the entire genome. (C) Diagram of pipeline for predicting genes acquiring SNPs during ALE.
From left to right: Bitome region for gene summed column-wise to give feature vector. Gene
feature vectors combined into gene feature matrix and labeled as having at least one ALE SNP
or not. Training matrix constructed by random down-sampling of majority class (SNP). Support
vector machine (SVM) model trained to classify genes. Colorbar represents Bitome features as in
Fig. 2.2B. (D) Confusion matrix for final model. Scores are accuracy, normalized to true class.
n = 506 in held-out, lockbox test set.

during ALE experiments. The SVM model achieves an accuracy of 75% =+ 1% in this classification
task (Fig. A.2B), exhibiting no bias towards any specific class (Fig. 2.5D). Interestingly, even
after excluding the nucleotide sequence features, the model maintains its accuracy; however, the
performance declines when solely relying on the sequence (Fig. A.1A). Thus, the Bitome faithfully
represents valuable genomic information that is encoded by the sequence but not readily deducible

from it. Notably, the model identifies the specific stop codon UAG as a significant feature for
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predicting genes with observed SNPs, while membership in the sigma factor 32 or Fis/Lrp/H-NS
regulons proves important for predicting non-mutated genes (Fig. A.1E).

We applied a similar approach to classify essential genes from the Keio collection [53]
using Bitome features. The support vector machine classifier achieved an area under the receiver
operating characteristic curve (AUC) of 0.75 (Fig. A.3A), displaying a slight imbalance favoring
the non-essential class (Fig. A.3B). Nonetheless, the classifier successfully identified meaningful
clusters of orthologous groups (COGs) that are relevant for prediction, such as cell cycle and
translation (Fig. A.3D). Notably, residue exposure emerged as an important feature in classi-
fying essentiality, highlighting the Bitome’s potential to unveil unexpected connections between

genomic features and phenotypic outcomes.

2.2.6 Intergenic sequence-based features enable quantitative prediction of in

vivo transcript levels

We then leveraged the Bitome’s intergenic features to predict in vivo transcript levels from
a comprehensive E. coli expression compendium [54]. We performed exploratory data analysis
to investigate each of our sequence-based features and their relationships to transcript levels.
We found minimal high correlations between our sequence-based genomic features, indicating
that they all had the potential to add useful information to our model. Amongst the local
promoter features, the sequence of the -10 element and the nucleotide at the TSS demonstrated
notable relationships to expression level. The canonical TATAAT -10 element sequence produced
the highest median expression level, and the 1-bp-variant -10 element sequences TAAAAT and
TAGAAT followed, amongst well-represented -10 element sequences (Fig. 2.6A). However, the

expression variance both within the same -10 element sequence (over three orders of magnitude)
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and between the medians of different -10 element sequences (over two orders of magnitude)
indicated that this feature - while important - does not suffice to quantitatively distinguish
expression levels. The TSS nucleotide follows a similar pattern, with the four different groups
showing significantly different expression (one-way F test; P=2.88E-5). Interestingly, the most
common TSS nucleotide - A - does not produce the highest median expression, and we see a
preference for a GC base pair at the TSS (Fig. 2.6B).

Replication region stood out amongst the genome-scale features as a contributor to differ-
ences in expression level throughout the genome. Differences in median expression between genes
on the leading strand, on the lagging strand, and in the terminus region were significant (one-way
F test; P=3.5E-14) (Fig. 2.6C). Genes on the leading strand were more highly expressed than
those on the lagging strand, which in turn exceeded the levels of genes found in the terminus
region. Interestingly, this genome-scale feature appeared to affect gene expression levels more
than the actual distance to the origin of replication.

We then used our set of sequence-based features to train machine learning models for
transcript level prediction. We profiled a range of machine learning models of varying complexities
using a five-fold cross validation approach. We found that a random forest model outperformed
the alternative models at this prediction task, achieving an R-squared score of 0.64 upon cross-
validation (Fig. 2.7A). A support vector machine model also performed adequately, yielding an
R-squared score of 0.5, with somewhat less overfitting than the random forest model.

Our quantitative expression model utilized a mixture of expected and surprising features
to drive its predictive success. -10 box score, consistent with its notable role at the exploratory
stage and well-documented importance for transcription, was the second most important feature

in the model, with -35 box score at fifth-most important (Fig. 2.7B). The distance from a gene
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Figure 2.6: Local and genome-scale features distinguish expression levels. (A) Distributions of
expression levels for genes with particular -10 box sequences (9 box sequences with more than 25
examples shown out of 227 total unique -10 box sequences). Box whiskers indicate 1.5*IQR from
Q1 and Q3 (included range indicated by whiskers); center lines are medians. (B) Distributions
of expression levels for each TSS base. (A) Distributions of expression levels for each replication
region. Leading: genes transcribed in the same direction as genome replication; lagging: genes
transcribed opposite to genome replication; terminus: genes located between the terA and terC
sequences for which leading/lagging regions are ill-defined based on stochastic termination of
replication by replication fork collision within terminus region.

to the boundaries of experimentally-determined CIDs - also previously implicated as a partial
determinant of expression level [56] - did also prove useful to the final model; the model picked out
the expected relationship, with lower distances to the CID boundaries yielding higher expression
predictions. However, the GC content and length of the 5° UTR, as first and fourth most

important features, respectively, stood out from the model. These features did not stand out
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Figure 2.7: Machine learning model of expression. (A) Parity plot of best-performing random
forest model, comparing predicted and actual transcript levels for 254 genes in a lockbox dataset.
(B) Summary plot of feature importance calculations, generated with the shap package [55] Each
gene from the lockbox set is represented by a point in each row of the plot. The features are
ordered top-to-bottom based on their average absolute impact on model output (importance).
The 0 point on the x-axis represents a baseline output of the model which is estimated by the
shap package statistically.

during initial exploration of features. In particular, longer, GC-rich 5’ UTRs were associated
with higher expression by the model. Thus, overall, our Bitome-based machine learning model
of in vivo expression in E. coli achieved good performance while highlighting both expected and

unexpected sequence-based features contributing to transcript levels.

2.3 Discussion

Overall, the Bitome exhibits several important characteristics. Firstly, it unveils the
uneven distribution of genomic features and positions. Secondly, it accurately captures the
density of features in both coding and intergenic regions at high resolution. Thirdly, it reveals a

higher occurrence of adaptive mutations at genomic positions with less feature density. Finally,
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it facilitates the prediction of adaptively-mutated and essential genes, as well as quantitative
prediction of transcript levels. Similar to the stoichiometric matrix, which is used to depict the
reactome encoded in a genome in computational models [57], the Bitome serves as a binary,
error-free knowledge-type object. While the stoichiometric matrix has been extensively utilized
to study metabolic genotype-phenotype relationships [58,59], the Bitome provides a comparable
approach to understand the feature information encoded in a genome and supports predictive
analysis based on that information.

Moreover, the Bitome has the potential for expansion to incorporate additional genomic
features, allowing for the identification of further relationships beyond the core sequence-based
features currently included. It can be applied to other genomes to examine and characterize
their feature information distributions. Creating Bitomes for different strains would enable com-
parative analysis of feature information. Machine learning techniques like generative adversarial
networks could be trained on a series of Bitomes from various strains to uncover underlying
principles of genome organization that may not be evident in a single Bitome. These principles
could serve as a foundation for the design of novel genomes. Additionally, analyzing Bitomes at
the gene cluster level could enhance the prediction of gene function across species through syn-
teny analysis. Overall, the Bitome serves as an organized, systematic representation of genomic

information, offering a platform to unravel the "meaning” embedded within genomic sequences.
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2.4 Methods

Assembling genome features

The E. coli strain K-12 substrain MG1655 reference genome (Reference Sequence
NC_000913.3) was downloaded from NCBI in GenBank format. The reference was parsed using
the SeqlO.read function from Biopython [60] (version 1.74). This reference genome defines the
genomic positions. The following genomic features and their genomic locations were parsed from
the reference genome: coding genes (CDS), pseudogenes, RNA-coding genes, insertion elements,
repeat regions, and the origin of replication. Clusters of orthologous groups (COGs) functional
annotations for genes from the reference genome were downloaded from NCBI [61] and linked
via locus tag (b-number). Protein features were obtained from the GEM-PRO pipeline in the
ssbio Python library [62] and linked to CDS from the reference genome by locus tag. Regulatory
features were downloaded from RegulonDB [42] (version 10.0). The following regulatory features
were parsed from RegulonDB: operons, transcription units, promoters (including -10 elements, -35
elements, and transcription start sites [T'SS]), transcriptional and translational terminators, tran-
scriptional and translational attenuators, Shine-Dalgarno sequences, riboswitches, transcription
factor binding sites, and regulons (including sigmulons). Promoters not linked to a transcription
unit were excluded. Genes from the reference genome were linked to operons and transcription
units from RegulonDB via the locus tag. RegulonDB operons and transcription units not linked
to a gene from the reference genome were excluded, and vice-versa. Independently-regulated
gene modules [45] identified via independent component analysis (ICA) were linked to reference

genome genes by locus tag.
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Constructing the Bitome

Genome features were assembled into a sparse matrix using SciPy’s [63] sparse matrix
package. Each row represents a different genomic feature, and each column corresponds to a
genomic position. Each element at row 7 and column j in the matrix has a value of either
1 or 0; 1 indicates presence of feature i in column j, and 0 indicates absence. To preserve
the binary nature of the matrix (only 1s and 0s), features with multiple types were split into
multiple rows as appropriate. For example, the 64 codons and 21 amino acids (this genome
includes selenocysteine) were each represented in their own set of rows. To avoid overlaps and
loss of information, certain features were split into six rows. These rows corresponded to three
‘frames’ (calculated as mod-3 of the start location) for each of the two strands (forward and
reverse). Features treated in this manner were: genes, codons, proteins, amino acids (and all
amino acid-based structural information), COGs. Regulatory features were represented in two
rows corresponding to the forward and reverse strands. Regulons, sigmulons, i-modulons and
transcription factor binding sites were left as single rows as no strand-specific information is

available.

Computing sequence coverages

The ‘bit counts’ associated with each genomic position were calculated by taking the
column-wise sum of the assembled matrix. Sequence coverages for selected features were com-
puted by extracting a sub-matrix with just the rows corresponding to the features in question,
summing the resulting sub-matrix row-wise, and computing the count of non-zero elements in
the resulting vector along the length of the genome. Bit densities (in bits per bp) for genes and

other genomic features were calculated by extracting a sub-matrix corresponding to the genomic
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range of the feature in question, computing the sum of that sub-matrix, and dividing by the

length of the genomic range.

Assembling and mapping ALE mutations

ALE mutations were downloaded from ALEdb [52] (version 1.0). SNPs based on refer-
ence sequence NC_000913.3 were selected. SNP density by genomic feature was calculated by
determining the genomic positions with a 1 annotated for said feature (as described above) and
dividing the total sequence length for that feature into the number of SNPs located at any of the

feature’s locations.

Computing mRNA secondary structure

mRNA minimum free energy structures were calculated with Nupack [64] in sliding 100 bp
windows across the reference genome. A genome-wide average G was calculated; ‘tight’ regions

were defined as those with minimum free energies in the lowest 10%, genome-wide.

Classifying genes with ALE SNPs

The scikit-learn (version 0.22.2) machine learning package was used to predict coding
genes with ALE SNPs [65]. For each of 4186 coding genes, the Bitome matrix region correspond-
ing to that gene’s location was extracted. Each gene matrix was summed column-wise to create a
gene feature vector. These feature vectors were transposed and concatenated into a gene feature
matrix with dimensions 4186 (coding genes) x 1634 (Bitome features). The gene feature matrix
was min/max normalized. A target label vector was generated by checking the location range
of each gene for a SNP in ALEdD; if at least one was found, a 1 was placed in the target label

vector; 0 otherwise. There were 2923 coding genes observed with SNPs, and 1263 without. 20%
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of the data (evenly-weighted by class) was held out to generate a lockbox test dataset for final
model evaluation.

The training data (gene feature matrix without lockbox data) still had a roughly 2-to-
1 class imbalance. Thus, the majority class (SNP) was randomly down-sampled for all model
training and cross-validation discussed below. Different classification models were evaluated
for their performance on the training data. Adaptive boost, logistic regression, support vector
machine, and random forest classifiers from scikit-learn - along with the XGBoost classifier from
XGBoost version 1.0.2 [66] and an artificial neural network implemented with Tensorflow Keras -
were run through 5-fold cross validation with five different downsampled training sets (Fig. A.2A).
This same cross validation was performed after shuffling target labels as a negative control to
obtain the expected accuracy of 50% (guessing), and with only the nucleobase features included.
Hyperparameters for all models were optimized using a 5-fold randomized search cross validation
approach.

Final model performances were assessed by re-training each hyperoptimized model on
five downsampled versions of the lockbox test set. Based on this assessment, a support vector
machine with the following non-default parameters was selected as the final model: penalty="11",
dual=False, C=0.1. Model coeflicients for assessing feature importance were accessed using the

coef_ attribute.

Classifying essential genes

Essential gene labels were obtained from the Keio collection [53]. The scikit-learn package
was again used for the classification workflow. Train and test sets were defined the same way as

for ALE SNPs, except that mean instead of sum was used to collapse each gene sub-matrix into
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a feature vector. There were 294 essential genes (class 1) and 3892 non-essential genes (class 0).

The same classifiers used for predicting ALE SNPs were tested for classifying essential
genes. To address the large class imbalance, class frequency-weighted loss functions were used
(for example, using the class_weight="balanced’ argument for the scikit-learn classifiers). Models
were initially assessed using 5-fold cross validation. Hyperparameters were optimized as with
ALE SNPs.

Final performances were assessed by re-training each hyperoptimized model on the full
training set and predicting based on the lockbox test set. Based on this assessment, a sup-
port vector machine with the following non-default parameters was selected as the final model:
penalty=’11", dual=False, C=0.1, class_weight="balanced’. Model coefficients for assessing fea-

ture importance were accessed using the coef_ attribute.
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Chapter 3

FEscherichia colr functional
non-coding regions are highly

conserved

Rapid accumulation of microbial genome sequences enables large-scale studies of sequence
variation. Most existing studies focus on coding regions to study amino acid substitution pat-
terns in proteins. However, non-coding regulatory regions also distinctly influence physiologic
responses. To assess intergenic sequence variation, we identified non-coding regulatory region
alleles across 2,350 Escherichia coli strains. This “alleleome” consists of 117,781 unique alleles
for 1,169 reference regulatory regions (transcribing 1,975 genes) at single base-pair resolution.
We find that non-coding sequences are overall quite conserved; 64% of nucleotide positions are
invariant, and variant positions vary in just 0.6% of strains on median. Non-coding alleles are

sufficient to recover E. coli phylogroups. Critically, we find that functional non-coding regions
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such as core promoter elements, transcription factor binding sites and transcription start sites
are significantly conserved compared to un-annotated regions, especially when located upstream
of essential or highly-expressed genes. However, variability in conservation of transcription fac-
tor binding sites is significant both within and across regulons. Finally, we contrast mutations
acquired during adaptive laboratory evolution with wild-type variation, finding that the former
preferentially alter positions that the latter conserves. Overall, this analysis highlights the wealth
of information found in E. coli non-coding sequence variation and expands pangenomic studies

to non-coding regions at single-nucleotide scale.

3.1 Background

Rapidly falling costs have yielded an explosion in complete genome sequences across or-
ganisms. Far from the first microbial genome assemblies almost 30 years ago, this wealth of
sequence data necessitates genetic analyses that span thousands of genomes simultaneously [67].
Pathogen genomes are particularly well-represented due to sequencing surveillance efforts [68,69];
understanding genotype-phenotype relationships for these bacteria is critical. Pangenome analy-
sis serves as a key tool towards this end [32]. Pangenome analyses have defined core (conserved)
and accessory (variable) genomes for major microbial species [33] as well as identifying pangenome
openness, or the continued discovery of unique genes as more genomes are sequenced [70]. Ad-
vancements in understanding antimicrobial resistance [34], virulence [36], and metabolism [35]
have all been empowered by pangenomics.

However, pangenome analysis has been primarily focused on coding regions. While coding
sequences make up the majority of a typical microbial genome [37], non-coding regions play an

outsize role in manifesting phenotype from genotype. In particular, promoters [51,71,72] and

30



5 untranslated regions (5 UTRs) [73,74] play a key role in executing the central dogma by
modulating transcription and translation of operons. The core promoter features driving RNA
polymerase binding via sigma factor recognition - the -10 and -35 boxes - are well known [24-27].
In turn, transcription start sites (T'SS) have also been systematically identified [23] at base-
pair resolution. Transcription factors (TFs) influence transcription in response to environmental
stimuli via specific recognition of transcription factor binding sites (TFBS) within promoters
and 5" UTRs [19,28-30]. Transcriptional attenuators also play an important role in regulating
expression of certain genes [31].

All of these sequence features are encoded differently from genes. They are therefore
primarily located in non-coding regions, rendering them invisible to pangenome analyses focused
solely on coding genes. Quantifying variation and conservation within these regions would shed
light on the evolutionary pressures affecting control of expression. Because of the fine-grained
nature of these critical sequence features, a base-pair resolution view of non-coding variation
amongst wild-type genomes is warranted. Coding sequence pangenome analyses typically focus
on presence/absence of homologous gene clusters within each strain or organism studied. To
analyze intergenic sequence variation, a non-coding alleleome must be established, where “al-
leleome” refers to the aggregation of alleles for all sequence-based features of interest across a
species [75-77]. Such a construct would serve to more explicitly link pangenomics to the deep
literature surrounding molecular evolution and variation, which also focuses primarily on coding
regions [78-83].

We therefore built a non-coding alleleome for Escherichia coli, focusing on promoter and
5 UTR regions. We amassed 2,350 fully-sequenced FE. coli strains from across the phylogenetic

tree, isolated from a variety of hosts. From the reference strain K-12 MG1655, we extracted 1,169
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well-annotated non-coding regions that regulate transcription of 1,975 genes. We then identified
and aligned alleles for these intergenic regions across the 2,350 strains. The resulting alleleome
contains 117,781 unique alleles comprising over 400,000 base positions. Overall, we find the E.
coli non-coding alleleome to be remarkably conserved. Furthermore, we: 1) cluster strains based
solely on non-coding alleles, recovering phylogroups; 2) quantify variation and conservation within
key sequence features; 3) identify essentiality and high expression as drivers of feature-specific
conservation; 4) characterize variation in conservation across transcription factor binding sites;
and 5) contrast functionally-impactful adaptive laboratory evolution mutations with wild-type
variants. Taken together, the E. coli non-coding alleleome and analyses enabled by it represent

an important expansion of large-scale genome sequence analysis to less-studied regions.

3.2 Results

3.2.1 The E. coli non-coding alleleome captures variation across a broad

range of strains and regulatory features

In order to construct the E. coli non-coding alleleome, we identified all nucleotide sequence
variants (alleles) for each of 1,169 well-annotated non-coding regions (from the reference strain K-
12 MG1655) across 2,350 complete-genome, wild-type (WT) E. coli strains (Fig. 3.11A). We first
amassed 2,350 completely-sequenced E. coli strains from BV-BRC [14]. The strains represented
14 distinct phylogroups as defined by ClermonTyping [86]. The majority belonged to E. coli
sensu stricto groups, while 109 strains come from more distantly related clades or the fergusonii
and albertii groups (Fig. 3.1B). The majority of strains with known hosts (67%) were isolated

from humans, although other common domestic animals also provided strains (Fig. 3.1C). Bodily
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Figure 3.1: Constructing the E. coli non-coding alleleome. A) Schematic representation of E.
coli non-coding alleleome construction. 1,169 non-coding promoter/5” UTR regions from refer-
ence strain F. coli K-12 MG1655 were mapped across 2,350 pangenome strains using BLAST [84].
The resulting 117,781 alleles across all regions were aligned within each region using MUSCLE [85]
to create the E. coli non-coding alleleome. B) Strain counts for each of 14 phylogroups assigned
by ClermonTyping [86] (phylogenetic tree adapted from ClermonTyping publication). Note:
phylogenetic tree is not to scale. C) Breakdown of E. coli strains by host common name. Inset
indicates bodily fluid/tissue of origin for strains isolated from human hosts. D) Counts and
percentages of non-coding features from model strain K-12 MG1655 included in the non-coding
alleleome. TFBS = transcription factor binding site, TSS = transcription start site, Atten =
transcriptional attenuator, RBS = ribosome binding site. E) 2-D histogram comparing length of
aligned non-coding regions (n=1,169) to number of distinct alleles found for that region across
the alleleome. r = Spearman’s r. Note: the minimum possible allele length for a region is 250 bp;
50 bp downstream from gene start 4+ 200 bp upstream from TSS if TSS is at gene start (i.e. no 5’
UTR). F) Histogram of variant percentages (i.e. percentage of non-dominant base pair) at each
distinct aligned position in the E. coli alleleome. Blue histogram indicates variant % distribution
for positions with non-zero variation. Red bar indicates the number of invariant base pairs.

excretions were the most common known sources of human-isolated strains.
These key non-coding regions capture 35.7% of the total non-coding positions in the ref-
erence strain and control the transcription of 1,975 genes (Fig. 3.1D). Importantly, these regions

included majorities of key non-coding features, including: 84% of TSS, 80% of core promoters,
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and 64% of TRBS. We then searched for these reference non-coding regions across the full set
of E. coli strains, extracting homologous sequences from the expected local regions upstream
of homologous genes in these other strains. Then, for each set of sequences corresponding to a
reference region, we used multiple sequence alignment to determine the W'T occurrence of every
nucleotide (including indels) at every position.

In total, we identified 117,781 distinct alleles across all regions and strains; these alleles
comprise the F. coli non-coding alleleome. The median length of an aligned non-coding region
was 319 base pairs, and the median region had 92 distinct alleles (Fig. 3.1E). Region length and
number of alleles were weakly correlated (0.39, Spearman). The promoter and 5" UTR of deoC
- encoding pyrimidine catabolism enzyme deoxyribose-phosphate aldolase - contained notable
variation, with 294 distinct alleles in the 896-bp region. The upstream region of eno (encoding
glycolysis and degradosome enzyme enolase), despite being the longest region considered at 1,171
bp, had just 184 unique alleles. Much of eno’s upstream region overlaps with the upstream pyrG
gene, which may influence conservation in this multi-purpose region. RNA polymerase core
subunit gene rpoB’s region has just 32 distinct alleles despite a length of 442 bp, highlighting a
level of conservation commensurate with this gene’s essential role. Ascorbate degradation gene
ulaG and glyoxylate cycle enzyme aceB featured particularly variable regulatory regions given
their relatively short lengths. Overall, we assembled 418,549 aligned base pairs; of these, 65%
are completely invariant (Fig. 3.1F). The median variant percentage for variant positions was
just 0.6%, highlighting an overall substantial level of sequence conservation across the non-coding
alleleome. However, specific base pairs are particularly variant. The most variant base pair in
the alleleome is found 222 base pairs upstream of the gadX gene start; an indel results in the

dominant “base” being a gap found in 34.4% of genomes, with A and G in 34.0% and 31.5% of
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cases, respectively.

3.2.2 Non-coding alleles recover phylogroups and highlight outliers

We next investigated the co-occurrence of non-coding alleles across strains. Hierarchical
clustering of strains - with similarity defined as the fraction of shared alleles across the 1,169 re-
gions under consideration - yields 14 clusters, matching the number of phylogroups (Fig. 3.2A).
Overall, strains within the same phylogroup tend to be assigned to the same cluster (Fig. 3.2B).
Thus, as expected, non-coding alleles are more shared within phylogroups, and indeed are suf-
ficient to discriminate between phylogroups in most cases. Interestingly, A, B1, and C - while
most similar within their respective groups - are nonetheless similar enough with each other to be
grouped together in Cluster 2. One strain identified by the phylogenetic method as ambiguous
between phylogroup E and cladel clusters with all phylogroup E strains, again highlighting that
non-coding alleles alone carry sufficient information to determine phylogroups.

Interestingly, clusters 4 and 5 contain single outlier strains from phylogroups B1 and A,
respectively. A second B1 outlier strain appears in cluster 8 with most of the phylogroup D
strains. Closer examination of the median pairwise distances of these two strains with all other
B1 strains confirms that these strains indeed do share much fewer alleles than a typical pair
of Bl strains (Fig. 3.2C). We then further inspected Bl strain GF4-3 (the cluster 4 outlier) by
identifying, for each of the non-coding regions, whether this strain’s allele was completely unique
within phylogroup Bl or shared with at least one other Bl strain. By analyzing the clusters
of orthologous groups (COG) distributions of genes transcribed from the regions within these
unique and shared groups, we identified the particular functional characteristics that contribute

disproportionately to this strain’s distinctiveness (Fig. 3.2D). In particular, this strain has nearly
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Figure 3.2: Non-coding allele clusters capture E. coli phylogroups. A) Clustermap of 2,350
E. coli strains, based on non-coding alleles. Heatmap displays a similarity matrix based on the
fraction of shared alleles across 1,169 distinct non-coding regions (i.e. a value of 1.0 indicates
that strains have identical sequences at all 1,169 non-coding regions. Upper colorbars indicate
phylogroup (determined separately using ClermonTyping [86]; see Materials and Methods) and
cluster assignment based on hierarchical clustering of distance matrix (1 - similarity matrix).
Legend colors correspond to colors from the top colorbar row. B) Cluster vs. phylogroup
assignment matrix. Rows are phylogroups, columns are clusters; e.g. all 30 strains in phylogroup
G are in cluster 6, and cluster 6 contains no other strains. Phylogroup color scheme same as
panel A. n=2,350 total strains. C) Histogram of pairwise similarity (defined as fraction of shared
alleles) within phylogroup B1l. Overall median = median pairwise similarity across all strain
comparisons (i.e. median of all entries in heatmap from panel A. Strains GF4-3 and SC457 are
outlier B1 strains, found in clusters 4 and 8 respectively. D) Relative enrichment of fractions of
clusters of orthologous groups (COGs) for genes transcribed by promoter alleles found uniquely
in strain GF4-3 (cluster 4) vs. by promoter alleles shared with at least one other Bl strain.
For each COG, value is: (fraction of unique allele-transcribed gene COGs) / (fraction of shared
allele-transcribed gene COGs) - 1; i.e. a value of 0 indicates that the COG comprises an equal
fraction of the unique and shared sets. E.g., the “Defense mechanisms” COG is about 1.6x more
represented in the unique set than the shared.
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four times more unique alleles related to secondary metabolite biosynthesis and nearly two times
more related to energy metabolism. These unique characteristics may stem from this strain’s

host, the guineafowl (the only strain in this dataset isolated from this African bird).

3.2.3 aceB intergenic region provides a case study for analysis of sequence

variation within functional sites

As a case study, we focused on a specific 331-bp non-coding region - the 5° UTR and
promoter region upstream of aceB (malate synthase A; a key enzyme in the glyoxylate cycle).
We selected this region due to its relatively large number of alleles despite its short length. This
region was identified in 2,340 of 2,350 strains, with the most common allele appearing in 20.2%
(473/2,340) of strains (Fig. 3.3A). While some common alleles dominate, a variety of more niche
alleles are also present. 90% of strains are accounted for by just 22% of the alleles; however,
accounting for 99% of strains requires 90% of alleles. This region contains one transcription start
site (T'SS) with -10 and -35 elements, 11 TF binding sites of 4 distinct TFs, a transcriptional
attenuator, and the very end of the next upstream gene, metA (homoserine O-succinyltransferase;
catalyzes first step in methionine biosynthesis) (Fig. 3.3B). 20 significantly variant positions
(those with variant base pairs present in at least 15% of strains) are mostly found upstream of
the core promoter region, with a particular concentration in a specific IclR binding site. An
additional 52% (173/331) of positions have minor variants, and 42% (141/331) are invariant.

Assessing variant presence in different genomic features provided a more detailed view of
variation in this region. For example, while 33% of base pairs in this region are annotated as being
part of at least one TF binding site, only 28% of all variant base pairs are found in TF binding

sites (a factor of 0.15 fewer) (Fig. B.1). Conversely, positions with no annotation accounted for
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Figure 3.3: Alleleome for a single intergenic region; a case study. Statistics for a single region
from the non-coding alleleome, comprising the 5 UTR and promoter region for aceB (malate
synthase A). A) Heatmap of phylogroups vs. common alleles for this region. Colorbar is scaled
per row (phylogroup); e.g. hot pink in phylogroup row G, allele column 14 indicates all G strains
(fraction 1.0) have this allele. Alleles are sorted left-to-right in decreasing order of fraction of
strains with allele. Scatterplot above heatmap indicates cumulative fraction of strains covered
by corresponding number of alleles. Not found indicates fraction of each phylogroup for which
this region was not found at all (no allele). B) Depiction of sequence features from reference
strain (K-12 MG1655) in this 331-bp non-coding region (central track), along with dominant
(blue line) and variant (gray dots and red crosses) positions by percentage of genomes found in.
Major variants defined as those present in at least 15% of strains.

42% of the sequence but 49% of the variant base pairs. The core promoter elements - TSS, -10

and -35 elements - are particularly lacking in variants relative to their sequence exposures. No
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transcriptional terminators or ribosome binding sites are annotated for this region. While these
observations hint at potential conservation patterns, one example non-coding region is insufficient

to quantify systematic WT variation trends.

3.2.4 Aggregating non-coding alleles across the genome reveals conservation

in functionally important regions

We repeated the aceB analysis across all 1,169 non-coding regions and combined the
results, revealing genome-wide trends in conservation within the non-coding alleleome (Fig. 3.4A).
On median, 16% of a region’s most present alleles capture the sequence diversity of 90% of
genomes, while a median of 76% of alleles are required to span 99% of genomes (Fig. 3.4B).
However, these distributions are quite broad - indeed, some regions are highly conserved, needing
as few as 23% of alleles to cover 99% of genomes (region upstream of ribosomal protein rpsM ). The
most common allele covers a median of 33% of genomes; however, certain highly conserved regions
- again including the region upstream of ribosomal protein rpsM - are covered almost entirely by
a single dominant allele (Fig. 3.4C). On the median, these regions are 65% invariant base pairs,
32% minor and 2% major variants (Fig. 3.4D). There is notable variability across regions: for
example, 31% of base pairs upstream of gluconeogenesis gene pck (encoding phosphoenolpyruvate
carboxykinase) have major variation.

Most importantly, combining observations of variation across non-coding regions allows
for assessment of conservation within annotated features. On median, non-coding base pairs with-
out annotation vary just 3% more than expected based on their sequence coverage, indicating
minimal deviation from the background mutation rate. All non-coding features aside from atten-

uators vary significantly less than unannotated regions (Mann-Whitney U, FDR0.01). Ribosome
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Figure 3.4: Summary statistics of sequence variation for all 1,169 non-coding regions’ alleles.
A) All summary statistics for each of 1,169 non-coding regions (represented by dashboards from
Fig. 3.3 were aggregated to investigate whole alleleome properties. A) Violin plot showing dis-
tributions of allele percentages needed to cover 90/95/99% of genomes for a given non-coding
region. A) Histogram of % of strains covered by the most common allele; e.g. the non-coding
regions upstream of rpsM and ygfB are identical in over 95% of strains in which the region was
found. A) Box plot showing distributions of variant types across non-coding regions. A) Distri-
butions of sequence and variant base pair percentages across annotation categories (see Figure
3C). #/% regions = number /percentage of regions that have at least one base pair annotated
with the indicated category (e.g. 649/1,169 (56%) of non-coding regions have at least one TF
binding site). Asterisks = significant difference with no annotation regions (U test, FDR 0.01).

binding sites and the core promoter elements (-10 and -35) are the most conserved sequences in
non-coding regions. RBS, -10 elements, and -35 elements are on median 58%, 57%, and 46%
less variant than base pairs without functional annotation, respectively (Fig. 3.4E). TF binding

sites, the spacer between the core promoter elements, and the T'SS and core recognition element
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(CRE) are all more conserved than unannotated regions (20%, 14%, 15% respectively). Coding
regions included in this alleleome due to opposite strand overlap are just 6% less variant than
unannotated non-coding base pairs, and only 3% less variant than expected based on sequence
coverage. However, overlap with coding regions does significantly reduce variation in TF bind-
ing sites, spacers, CREs and attenuators (Fig. B.2A). This effect is minimal when considering
non-coding features that straddle coding region boundaries, suggesting that variation within any
given feature is selected relatively uniformly (Fig. B.2B).

Additionally, conservation in upstream non-coding regions relates to the functions of their
gene products. Regions expressing genes in clusters of orthologous groups (COG) categories
such as “Translation, ribosomal structure and biogenesis” and “Replication, recombination and
repair” are amongst the most conserved (Fig. B.3). Conversely, metabolic COGs appear to
support more non-coding variation, such as amino acid metabolism and secondary metabolite
biosynthesis. Non-coding regions transcribing at least one essential gene are significantly more
conserved than those that do not transcribe any essential genes (Fig. B.4A). These essential-
transcribing regions also have significantly more conserved transcription factor binding sites and
promoters (Fig. B.4B). The effect size is largest for the -10 and -35 elements of the promoter,
highlighting the expected significance of these sigma factor binding regions. Similarly, non-
coding regions also differ significantly in conservation depending on their baseline expression
level (Fig. B.4C). As with essential-transcribing regions, this conservation is also prevalent in the

most critical promoter regions (Fig. B.4D).
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3.2.5 Transcription factor binding sites exhibit significant variation in con-

servation

The non-coding alleleome enables a detailed investigation of conservation within tran-
scription factor binding sites. We identified 22 major transcription factors that have at least
10 binding sites and whose activity explains notable variation within the PRECISE-1K expres-
sion compendium. The median percentage of invariant base pairs within the binding sites of
these TF's is not significantly correlated with the percentage of expression variation explained
(Fig. 3.5A). Most of these transcription factors have binding sites with a wide range of conserva-
tion (Fig. 3.5B). Central carbon metabolism regulator Cra’s binding sites are the most conserved,
with a median of 84% invariance. Nucleotide metabolism regulator PurR’s binding sites are con-
sistently conserved; only one site falls below 70% conservation. A subset of these TFs are further
identifiable as dual regulators, with at least 10 binding sites annotated for both activation and
repression roles. Mostly, this distinction does not result in a difference in binding site conser-
vation (Fig. 3.5C). However, the TF and nucleoid-associated protein IHF has significantly more
conserved repressor sites than activator. IHF is known to be able to bind to DNA in a non-
specific manner and may even be redundant with AT-rich upstream regions in some cases [87].
Example CRP binding sites highlight the range of conservations observed within binding site
sequences (Fig. 3.5D). A binding site upstream of cyoA has no completely conserved base pairs,
while a CRP binding site regulating rpoH expression has only one position with any variation.
Interestingly, the binding site upstream of cyoA exhibits particular variation across the alleleome
in a relatively high-information region of the reference strain CRP motif, possibly indicating a

functional impact of these variants on CRP activity.
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Figure 3.5: Transcription factor binding sites exhibit a wide range of conservation. A) Compar-
ison of expression variance explained to median percentage of invariant base pairs within binding
sites for 22 major transcription factors (min 10 binding sites). Explained variance % is com-
puted based on percentage of expression variance in PRECISE-1K expression compendium [54]
explained by TF’s iModulon (a gene grouping capturing the independent effect of the regulator).
B) Distributions of invariant base pair % for binding sites of 22 major transcription factors. C)
Distributions of invariant base pair % for major regulators with dual regulatory effect (min 10 an-
notated binding sites for each mode of regulation; individual sites annotated as “dual” removed;
effect data from RegulonDB [19] D) Example sequence logos for poorly conserved (top) and
highly conserved (bottom) CRP binding sites. CRP motif from reference strain K-12 MG1655
(from RegulonDB) is shown in middle. Note: all base pairs in cyoA site have variants; some
variants are too small to visualize. Note: position 1 in rpoH site has 7/2350 variants.

3.2.6 Laboratory adaptive mutations are more likely than natural variants to

impact functionally-relevant features

In contrast with natural variants, adaptive laboratory evolution (ALE) exerts selective

pressure for cells to adapt to a particular stress or growth mode. ALE’s preference for high-impact

43



B Seq I
2 40 1 s WT Var
° m ALE
8
o]
e 20 4
° W TEBS
®
-35 Box
0 - Spacer
- — [ oo
;/ [Epepe—— |
#Seq 33.5k 6.3k 16.8k 7.2k 9.7k 20.4k 854 202.0k 147.1k TSS/CRE
#WTVar 12,0k 1.6k 5.7k 1.6k 3.3k 7.4k 189 64,4k 58.5k Attenuator
#ACE 120 iz 43 24 78 52 1 344 244
RBS
s WT Var : Codin
0.5 . | . ALE — 9
C__1 No annot.

Rel Variant
Enrichment

o

o

|

|

|

|

B C
tactgt - CactgC I .
taaaat - tCaaTt [EEEG—— ~ Median: 0%
tagaat - tGgaat [ N
tacgtt » Gacgtt [EEE— © 500 A
gataca - gatGca [N 'I_I'
ttttgata - Gtttgata [INEG_— c
Itggtattta - tggtatttT — 400 A
) I tattta - tatttT 3
Median: -4.5% | ytaaact » Aaaact
Itatgat - tatgaA = 300 1
tcagctatcct - tcagctatcAt ©
atttcttcact - atttcttTact x
o
cggcctatact —» cgTectatact Q 200 -
tggcaaa - tggAaaa o
gaaaac - gaaaaT '_.'
taacat - taaTat — i
tagcat - taTcat o 100
cttaat —» Attaat E-3
ttacagtg - ttaTaTtg
ggtgccagact - TgtgcTaTact 0- 50 25 0 25 50
-20 -10 O 10 20 30 -10 box % GC change
-10 box % GC change from ALE SNPs from WT variants

Figure 3.6: Adaptive laboratory evolution (ALE) mutations are over-represented in wild type-
conserved non-coding regions. A) Breakdown of percentages of all non-coding base pairs consid-
ered by annotation category. In upper panel, blue bars represent % of all base pairs annotated
within each category; red bars represent % of all variant base pairs annotated within each cat-
egory; green bars indicate percentage of all 1,174 non-coding ALE mutations present in each
category. B) Effect of 20 ALE SNPs affecting -10 boxes on GC content. C) Effect of 1,622
distinct wild-type -10 box variant alleles on GC content relative to consensus -10 box sequence
for that region.

mutations becomes clear when comparing the rates of ALE mutations in particular non-coding

regions to wild-type variant rates. For example, ALE mutations are 75% more likely to occur
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in TF binding sites than these base pairs’ sequence exposure would suggest (Fig. 3.6A). Core
promoter elements also exhibit this effect; -10 and -35 boxes are mutated 58% and 35% more
often than expected. Not only are ALE mutations enriched in -10 boxes, but the mutations have
a slight tendency to reduce the GC content of these regions (Fig. 3.6B). The -10 box is typically
the upstream location of DNA strand unwinding for transcriptional bubble formation upon RNA
polymerase binding; thus, decreased GC content is likely to increase transcription at these sites.

Wild-type variants at -10 boxes don’t tend to alter GC content on median (Fig. 3.6C).

3.3 Discussion

Here, we present a non-coding alleleome for Escherichia coli, providing a deep look at
variation in critical transcriptional and translational control regions. We assemble 2,350 complete
genomes across the E. coli phylogenetic tree and identify alleles for 1,169 reference non-coding
regions across this set of strains. We cluster strains based on their non-coding alleles, finding these
to be largely sufficient for distinguishing phylogroups. Centrally, we find that overall sequence
variation in these non-coding regions is minimal; 64% of positions are completely conserved, and
variation at the remaining positions is overwhelmingly minor. As hypothesized, core promoter
features and binding sites are more conserved than non-functional positions. We also show that
essentiality and high expression drive significant conservation, again concentrated in functionally
critical promoter features. The alleleome also provides a rich understanding of conservation
across transcription factor binding sites, highlighting significant variation both between and
within different regulators’ binding sequences. Finally, we contrast wild-type variation with
mutations acquired during adaptive laboratory evolution, determining that adaptive mutations

preferentially alter regions that natural variants conserve.
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This analysis expands our understanding of natural sequence variation beyond coding
regions. While 5° UTR and promoter regions constitute a minor fraction of the genome se-
quence, they encode the critical control functions that enable E. coli to adapt its transcriptome
in response to environmental signals. Our understanding of precisely how these sequences influ-
ence expression in vivo - as opposed to via synthetic promoter libraries - remains limited. This
non-coding alleleome provides a new dimension with which the function of these regions may be
further elucidated. For example, models that aim to predict expression level directly from pro-
moter sequence may benefit from understanding how conserved each base pair in the promoter
region is; a similar approach is important for the function of AlphaFold(45).

The identification of two unique strains whose non-coding alleles do not cluster notably
with any other phylogroups highlights a potential bias in complete E. coli genome sequences
currently available. The E. coli strain GF4-3, isolated from a guineafowl, harbors distinct non-
coding alleles from any other strain observed in this study. E. coli sequence diversity may be
significantly more rich than we currently realize due to over-representation of strains isolated
from a handful of host organisms.

E. coli’s genome is largely dominated by coding genes; in the reference strain K-12
MG1655, 87% of base pairs are part of a coding gene [37]. As a result, many positions within
the non-coding alleleome are technically also within coding regions. This situation may arise
due to promoter regions found within operons, such that a promoter overlaps with the nearest
upstream gene; strand differences, where a gene encoded on one strand is directly opposite a
promoter region on the other; or divergent promoters, where a relatively small promoter region
is shared between two genes transcribed in opposite directions. Our analysis indicates that, in

general, coding positions vary at the expected rate based on their sequence coverage. However,
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further study is needed to determine whether the coding or non-coding functions encoded in
these regions are driving conservation patterns.

The non-coding alleleome’s quantification of variation in transcription factor binding sites
provides an opportunity for expansion of binding motif definition. Motifs aim to summarize the
specific sequence required for binding of a transcription factor to DNA by combining the sequences
of experimentally-determined binding sites and indicating the probability of finding each base
at each position. Motifs are typically generated by combining binding sites controlling different
transcription units within the same strain. Frequently, real observed binding site sequences differ
significantly from a canonical motif. Thus, alleleome variation within the same binding site may
provide an alternative information source for assessment of binding site sequence importance
by allowing comparison of alternative sequences within a more similar sequence and functional
context. Any time a new experimental binding site is identified, alleleome variation within the
proposed site can be assessed to provide context for the likely strength or importance of the site.
However, because we do also observe significant variation in conservation across binding sites,
this approach may only provide one piece of information as part of a larger picture.

Overall, this E. coli non-coding alleleome quantifies base pair-level variation and conser-
vation at genome- and species- scale. The data generated in this study provides a rich resource
for analyzing non-coding regions in any E. coli genome. We believe that this type of analy-
sis should be expanded to other organisms to enable comparative non-coding alleleomics. As
sequence data continues to balloon, this study provides a blueprint for compiling, quantifying,
and analyzing non-coding variation, revealing patterns of conservation and their relationship to

phenotypic outcomes.
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3.4 Methods

Assembling complete E. coli genome sequences

Complete E. coli genome sequences and metadata were downloaded from BV-BRC (for-
merly known as PATRIC) [14]. These genomes were subjected to the following quality control
steps. Completeness and quality were verified by selecting genomes with “Contig L50” of 1 and
“Contig N50” ; 4M. Furthermore, only genomes without ambiguous bases (i.e. only ACGT in
sequence) were selected. Finally, genomes were selected only if they had coding sequences anno-
tated (i.e. a GFF/FAA file was also downloaded). Phylogroups were assigned for each genome
sequence using the ClermonTyping in silico tool [86]. Genomes annotated as “Non Escherichia”
or “Unknown” were excluded. After these filtering steps, 2,350 complete genome sequences re-

mained.

Generating coding sequence pangenome

A coding sequence pangenome was generated as described previously [88]. All FAA files
for all amino acid sequences of all genes from all valid strains were combined into a single file and
subjected to duplicate removal, yielding a listing of all 918,781 non-redundant protein sequences.
This file was then provided to the CD-HIT protein sequence clustering program (v.4.8.1 [89] with
the following non-default options: “n 5 -c 0.8”. This processing yielded 80,453 gene clusters.
These clusters (and their constituent individual alleles) were then given unique identifiers and

referenced back to the strain(s) from which they came.
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Identifying reference non-coding regions and features

High-confidence transcription start sites (T'SS) for the reference strain Escherichia coli K-
12 MG1655 (genome accession number NC_000913.3, BV-BRC/PATRIC genome ID 511145.12)
were accessed from RegulonDB [19]. This resource has been extensively manually curated and
comes with additional annotation of non-coding and regulatory features for these high-confidence
TSSes. 2,228 TSS were annotated as transcribing at least one coding gene. Each TSS was
mapped to the first gene it transcribes using the Bitome [37]. Then, a sequence region starting
from 200 base pairs upstream of the TSS through 50 base pairs downstream of the first gene’s
start codon was extracted for each of these T'SS/first gene pairs. At this stage, a separate region
was extracted for alternate T'SSes transcribing the same first gene, even if the regions partially

overlapped. These nucleotide sequences were then written to a FASTA file.

Searching for reference non-coding regions across all strains

For each pangenome strain, coding genes that appeared in a cluster with a K-12 MG1655
gene were selected. For each of these coding genes, the maximum upstream-from-gene-start
length for a reference non-coding region was determined. A local search region spanning 100
base pairs further upstream from this maximum reference upstream length through 100 base
pairs downstream of the pangenome strain’s gene start was extracted. For example, if a reference
non-coding region from K-12 MG1655 had a 150-bp 5’ UTR, plus the additional standard 200
bp upstream from the TSS, the local search region in a pangenome strain for this non-coding
region would start 450 base pairs upstream of the pangenome strain’s gene that clustered with
the reference strain gene transcribed by the reference non-coding region. Within each pangenome

strain, all such search regions were combined into a single FASTA file and passed to create a
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BLAST search database with the BLAST+ [84] program makeblastdb. Then, blastn was used to
search for all reference non-coding regions against this strain- and region-specific database. For
each pangenome strain, only BLAST matches for a reference non-coding region in the local search
region upstream of the pangenome strain gene corresponding to the appropriate reference strain
gene were kept. If multiple alignments were found within the correct local search region, the
alignment with the lowest E-value was selected. For each match, the corresponding nucleotide
sequence of the non-coding region allele from each strain was extracted from the strain’s genome.

Finally, all sequence matches for a given reference non-coding region were grouped together.

Building the non-coding alleleome

For each set of non-coding sequences corresponding to a particular reference non-coding
region (non-coding alleles), the nucleotide sequences were aligned using multiple sequence align-
ment tool MUSCLE [85] with all default arguments. Aligned sequences with greater than 20%
gaps were filtered out. Then, only non-coding regions with an allele found in at least 75% of
strains were kept. At this point, due to alternate TSS for the same transcription unit, some
non-coding regions could be subsets of others. Thus, for each set of alternate TSS, only the
longest aligned set was selected for further analysis as the other regions would be subsets thereof.
These steps led to the identification of 1,169 final regions that - with all of their alleles - comprise

the E. coli non-coding alleleome.

Annotating alleleome base pairs with variant and feature information

For each aligned base pair in the alleleome, variant percentage was calculated as the

percentage of strains that have the non-dominant base at that position. Then, using the Bit-
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ome [37], each base pair was annotated for presence/absence of the following features: gene, TSS,
core recognition element, -10 box, -35 box, -10/-35 spacer region, ribosome binding site (Shine-
Dalgarno sequence), transcription factor binding site, and transcriptional attenuator. Further-
more, each non-coding region was annotated as essential or non-essential, with essential defined
as any of the TSS in the non-coding region transcribing at least one gene annotated as essential
in the Keio collection [53]. Each non-coding region was also assigned a baseline expression level
category of Low, Medium, or High, based on the median of median expression levels across all
genes transcribed from the region, using the PRECISE-1K definitions of the three categories [54].
Finally, clusters of orthologous groups (COG) categories were assigned to each non-coding region
based on the unique set of COGs assigned to genes transcribed from each region (a non-coding

region could be assigned multiple COGs).

Clustering strains by non-coding alleles

The linkage function from the SciPy [90] hierarchical clustering package was used on a
pairwise distance matrix between all 2,350 strains, with non-default argument method="average’.
The pairwise distance was constructed by taking the complement of a similarity matrix, where
the similarity between two strains was defined as the fraction of all 1,169 non-coding regions for
which the two strains had exactly the same allele. Then, flat clusters were computed using the
Scipy fcluster function in ‘maxclust’ mode. The optimal ‘maxclust’ parameter was determined
using a sensitivity analysis considering values from 2 through 25 inclusive and computing the
mean silhouette score across all strains. This analysis selected 14 as the optimal number of

clusters.
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Chapter 4

A multi-scale Escherichia col:
expression and regulation knowledge

base

Rapid accumulation of transcriptomic data necessitates scalable approaches to extract
insights from this information. In this study, we constructed a comprehensive knowledge base for
Escherichia coli K-12 MG1655, focusing on gene expression and regulation. The expression com-
ponent comprises a high-quality RNA-seq compendium consisting of 1,035 samples, encompassing
various growth conditions such as 9 different media, 39 supplements (including antibiotics), 42
heterologous proteins, and 76 gene knockouts. Utilizing this extensive resource, we uncovered
global expression patterns and employed machine learning techniques to identify 201 modules
that capture 86% of known regulatory interactions, forming the regulatory component. By lever-

aging these modules, we discovered two previously unknown regulons and quantified system-level
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regulatory responses. Additionally, we integrated 1,675 curated, publicly-available samples into
the knowledge base, enhancing its scope. Furthermore, we demonstrated workflows that enable
the analysis of new data against this knowledge base, exemplified by deconstruction of regulation
during aerobic transition. This resource not only sheds light on the FE. coli transcriptome on
a large scale but also presents a blueprint for top-down transcriptomic analysis of non-model

organisms.

4.1 Background

Over the past decade, RNA sequencing (RNA-seq) has emerged as a powerful and efficient
method to assess the expression state of cell populations. The availability of large RNA-seq
datasets [45,91-94] has necessitated the development of big data analysis methods to enhance our
understanding of transcription and regulation [45,95-99]. As datasets continue to expand, these
methods that can effectively convert this vast amount of data into biological insights increase
in importance. Thus, a unified and comprehensive resource that integrates expression data,
regulatory information, and big data analysis is desirable.

The analysis of large RNA-seq datasets from multiple sources can be complicated by batch
effects that can hinder accurate analysis and interpretation. Consequently, mitigating these batch
effects remains a crucial goal and an area of ongoing research [100,101]. One possible strategy
to mitigate this issue is the utilization of single-protocol, high-quality, and curated RNA-seq
datasets. However, creating such datasets is time-consuming and costly.

Transcriptional regulatory networks (TRNs) are key tools for representing regulation
within an organism. Constructing TRNs involves exhaustively characterizing the binding of reg-

ulators to promoter regions of target genes and their impact on gene transcription. Consequently,
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inferring regulatory signals directly from an RNA-seq dataset, without prior knowledge of the
TRN, would be a valuable component to a data-driven, top-down transcriptional resource.

Independent component analysis (ICA) [102] is a signal processing algorithm that outper-
forms other methods in extracting biologically relevant regulatory modules from gene expression
data [103]. Application of ICA to publicly available prokaryotic expression data has consistently
identified TRN modules across various organisms [45,104-108]. ICA’s effectiveness stems from
its ability to identify independent sets of genes that exhibit consistent variation across samples,
regardless of group size or overlapping membership. Hence, a dataset with sufficient scale and
diversity in conditions is crucial for the successful application of this method.

In this study, we introduce an expression and regulation resource for Escherichia coli K-12
MG1655, a key model organism. The expression component, known as PRECISE-1K, consists of
a single-protocol RNA-seq dataset comprising 1,035 samples. This dataset, named the Precision
RNA-seq Expression Compendium for Independent Signal Extraction, encompasses 38% of
publicly available high-quality RNA-seq data for E. coli K-12 and covers a wide range of growth
conditions. The data were generated between 2013 and 2021.

To create the regulatory component of the resource, we employ ICA to extract 201
independently modulated groups of genes called iModulons, which collectively capture 86% of
known regulatory interactions. We showcase the utility of this resource by: (1) describing genome-
wide expression patterns; (2) elucidating systems-level transcriptome properties and responses;
(3) proposing new regulons for two putative transcription factors; (4) identifying the promoter
sequence basis for two distinct subsets of the CRP regulon; (5) integrating an additional 1,675
high-quality publicly available E. coli K-12 samples and extracting similar regulatory modules;

and (6) providing a workflow for system-level transcriptome analysis of external data using our
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knowledge base.

The example workflow and all analyses presented in this study can be accessed and
utilized through our GitHub repositories: https://github.com/SBRG/preciselk-analyze and
https://github.com/SBRG/preciselk. The PRECISE-1K dataset, along with iModulons for
Public K-12 and other organisms mentioned, can also be explored at iModulonDB.org [109].

PRECISE-1K serves as the expression component and iModulons serve as the regulation
component of a comprehensive transcriptomic knowledge base. This resource empowers analyses
that shed light on the transcriptomic responses of this critical model organism, enabling research
in cellular biology, pathogenicity, and systems biology. Moreover, it offers valuable insights to
inform the design of novel experimental studies. Beyond its applicability to E. coli, this resource
provides a framework for extracting regulatory information in other organisms, particularly those

lacking extensive prior annotation.

4.2 Results

4.2.1 PRECISE-1K is a 1,035-sample, high-precision, single-protocol RNA-

seq compendium

To enable a comprehensive analysis of transcription and regulation in E. coli K-12
MG1655, we developed PRECISE-1K (Fig. 4.1A; Fig. C.1). PRECISE-1K is a large, curated ex-
pression compendium, comprising 1,035 RNA-seq samples generated by a single research group.
The dataset follows a standardized experimental and data processing protocol (see Methods) and
includes samples from 45 distinct projects. It encompasses a wide range of growth conditions,

including: 5 strains, 4 temperatures, 5 pH levels, 9 base media, 18 carbon sources, 38 supple-
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ments, 76 unique gene knockouts, 421 evolved samples, and 87 fed-batch cultures (Fig. C.2). The
projects comprising PRECISE-1K involve adaptation to new growth conditions [110-114], expres-
sion of heterologous [115] and orthologous [116] genes, as well as a genome-reduced strain [46].
This compendium represents a significant expansion to the original 278-sample PRECISE [45],
nearly quadrupling its size (Fig. 4.1B). Biological replicates exhibit strong correlation, with a
median Pearson’s r value of 0.99 (Fig. 4.1C). Therefore, PRECISE-1K provides a diverse set of
conditions that allows for analysis of the F. coli transcriptome and its myriad responses.
Principal component analysis (PCA) of PRECISE-1K identifies some expected batch
effects. The separation between samples in the principal component space is primarily driven
by differences in growth conditions across projects (Fig. C.3). Projects involving diverse growth
media (e.g., the two-component system knockout [117] and antibiotic resistance project [118])
and projects with significant genome modifications (e.g., genome-reduced E. coli strain [46])
exhibit notable divergence from other projects. Clustering by library preparer can largely be
explained by project-based clustering, indicating that this commonly observed batch effect [100]
is not prominent in PRECISE-1K; this observation is further supported by the strong correlations

observed among biological replicates.

4.2.2 PRECISE-1K segments genes by expression, variance, and regulatory

effect

We conducted a systems-level analysis of expression trends in PRECISE-1K to compare
data-driven observations with prior expectations. Initially, we compared the median expression
levels of genes across PRECISE-1K with their median absolute deviations (MAD) to establish

expression-based categories for all genes (Fig. 4.1D). For instance, the glutamate-dependent acid
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Figure 4.1: PRECISE-1K, a 1035-sample high-precision expression compendium, reveals ex-
pression trends in the E. coli transcriptome. A) Overview of construction of PRECISE-1K
compendium. Values indicate the number of unique categories for each condition (except evo
strains). abx = antibiotics. B) The growth in single-protocol transcriptomics samples contained
in the PRECISE to PRECISE-1K databases. C) Histogram of Pearson’s r for both all replicate
pairs and all non-replicate pairs (pairwise combinations of samples across projects that are not
direct biological replicates). Samples included in PRECISE-1K are required to have replicate
correlations of at least 0.95. D) 2-D histogram of median expression level against median abso-
lute deviation (MAD) of expression for all 4257 genes in PRECISE-1K. Table defines expression
categories as per corresponding box color/location in histogram. For each axis, category splits
are defined at median +/— 1 standard deviation. E) 2-D histogram of median-to-min expres-
sion difference against median-to-max expression difference for all 4257 genes in PRECISE-1K.
Table defines regulatory categories as per corresponding box color/location in histogram. For
each axis, low-to-medium split defined at 3 loge[TPM] units (8-fold change from median ex-
pression); medium-to-high split defined at 6 logo[TPM] units (32-fold change). F) Median vs
MAD expression 2-D histogram, separated by availability of proteomics data in two large recent
datasets [119,120]. Blue = proteomics data available; red = no proteomics data available. G)
Histogram of the number of differentially expressed genes (DEGs) computed between condition
pairs within the same project (n=6103 pairs). GSH = glutathione, Met = methionine.
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resistance system 2 genes (gadABCE) exhibit medium aggregate expression but display high
variation across conditions due to the specifiticy of their response. On the other hand, the
lipoprotein-encoding gene Ipp, known for its abundance in E. coli [121,122], exhibits the highest
median expression with medium variation, likely owing to its structural role in peptidoglycan.
The majority of genes demonstrate medium expression with medium variation, while only a small
fraction of genes (101) show both high expression and high variability, including the copper/silver
export system component cusF. Notably, 82% of genes (3505/4257) exhibit variation within one
standard deviation of the overall median variation across all genes, while only 19 genes with low
overall expression display low variation, mainly consisting of insertion elements and prophage
genes.

Next, we compared the median expression levels of genes with their minimum and max-
imum levels to determine the extent of regulatory influence on expression level (Fig. 4.1E).
Approximately 36.1% of genes exhibit a tight range of expression, indicating relatively low ef-
fects of regulation. However, 45.6% of genes display medium or high upwards inducibility, and
36% exhibit medium or high downwards inducibility, suggesting that regulatory effects can sig-
nificantly impact gene expression levels for a majority of genes. For example, cpxP - a protein
responding to extracytoplasmic stresses as part of the CpxAR two-component system [123] - has
a nearly unique tendency to be both highly up- and down-regulated from its median level. This
characteristic may result from CpxP’s role as both a direct effector of various stress responses
and a negative feedback regulator for the response pathway as a whole [124].

Additionally, PRECISE-1K sheds light on the relationship between gene expression and
other data types. Genes with available proteomics data in two large datasets [119,125] exhibit

significantly higher expression, consistent with a known bias towards higher-expressed genes in
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proteomics samples (Fig. 4.1F). However, no significant difference in variability was observed.
Furthermore, poorly-annotated genes (referred to as the ”y-ome” in E. coli [49]) have significantly
lower expression compared to genes with more complete annotation, suggesting that the lack of
transcription in standard laboratory conditions might contribute to the relative lack of annotation
for these genes (Fig. C.4). Functional categories such as ”Translation” and ”Cell Cycle” exhibit
the highest expression levels, while specialized categories like ” Carbohydrate Metabolism” display
lower median expression levels (Fig. C.5).

We conducted differential gene expression analysis within each project included in the
PRECISE-1K compendium. Across all pairwise within-project comparisons, a median of 471
differentially expressed genes (DEGs) were identified (Fig. 4.1G). Some comparisons yielded
minimal DEGs, while others resulted in a much larger number. For example, comparing wild-
type growth in minimal media to the deletion of two-component system (TCS) response regulator
baeR with ethanol supplementation yielded 1868 DEGs. Generally, gaining biological insights
solely from DEGs may require analyzing hundreds to thousands of genes.

In summary, these findings demonstrate the ability of PRECISE-1K to capture genome-
wide expression patterns, affirm existing expectations, and uncover new knowledge. Serving as
an expression knowledge base, PRECISE-1K not only houses expression data but also enables
knowledge-generating analyses. Quantifying the impact of regulation on gene expression at the

systems level represents the next phase of knowledge extraction facilitated by this resource.
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4.2.3 Top-down extraction of independently-modulated groups of genes cap-

tures the transcriptome at the systems level

We utilized Independent Component Analysis (ICA) to identify 201 iModulons from the
PRECISE-1K dataset. iModulons are distinct groups of genes that co-vary across the dataset,
captured by iModulon activity levels that represent their response in each PRECISE-1K condi-
tion. iModulons account for 83% of the total dataset variance. 117 iModulons are classified as
Regulatory, exhibiting significant enrichment in genes belonging to known regulons (see 4.2A and
Materials and Methods for regulatory enrichment details). These regulatory iModulons explain
56% of the total variance in PRECISE-1K. iModulons capturing smaller regulons closely align
with known regulons, while those capturing larger regulons recover smaller subsets of the genes,
leading to lower precision and recall (Fig. 4.2B).

Furthermore, 36 genomic iModulons capturing known genetic alterations and 17 biological
iModulons composed of genes with shared functions but lacking significant regulon enrichment
account for an additional 19% of the variance. 22 technical iModulons, explaining just 2%
of the variance, are primarily dominated by a single short, uncharacterized gene, with 12 of
them consisting of only that one gene. It is likely that these iModulons capture noise in the
dataset. Moreover, nine uncharacterized iModulons collectively account for 6% of the variance
in the dataset. Overall, 88% of the variance captured by iModulons can be attributed to either
regulatory, genomic, or biological phenomena.

58% of genes (2485 out of 4257) are members of at least one iModulon. These genes exhibit
higher expression variation compared to genes not present in any iModulons (P = 1.03F — 217,
Mann-Whitney U test, m = 2485, n = 1772) (see 4.2C). However, the median expression does

not significantly differ (P = 0.33), indicating that iModulon membership is not limited to higher-
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expressed genes. Interestingly, even 56% (823 out of 1473) of the less-expressed y-ome genes [49]
are members of at least one iModulon, suggesting the potential of iModulons in uncovering
putative functions for these uncharacterized genes.

The median Modulon consists of 10 genes, but many iModulons are much larger, such
as global stress responses RpoS (122 genes) and SoxS (117) (Fig. C.6A). Among the 189 multi-
gene iModulons, 77% (145) exhibit significantly intercorrelated genes, particularly among regu-
latory and biological iModulons (88% and 82%, respectively) (Fig. C.7). In contrast, genomic
and technical iModulons show lower proportions of significantly intercorrelated genes (47% and
13%, respectively). Genomic iModulons, which capture genetic alterations in small subsets of
the dataset, may not show global correlation, indicating that iModulons can capture localized
expression patterns beyond global correlations. Interestingly, eight out of nine uncharacter-
ized iModulons contain significantly intercorrelated genes, presenting opportunities for further
biologically-relevant discoveries.

A substantial portion of genes in an iModulon (35%, 879 out of 2485) are members of
two or more iModulons, with two genes (ynfM and bhsA) appearing in seven each (Fig. C.6B).
Only 15% (131) of multi-iModulon genes are members of significantly correlated iModulons.
However, within each of their iModulons, multi-iModulon genes rank in the 44th percentile
in terms of intercorrelation with other iModulon genes. This suggests that multi-iModulon
genes are influenced by distinct, recoverable signals, showcasing iModulons’ ability to capture
overlapping regulatory modules of varying scales. The relationships between iModulons and
genes are concentrated in a subset of large iModulons and genes present in multiple iModulons
(Fig. C.6C-D).

Moreover, 80 metabolism-related and 50 stress response-related iModulons account for
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Figure 4.2: iModulons extracted from PRECISE-1K capture the transcriptional regulatory net-
work. A) A breakdown of PRECISE-1K iModulons by their annotation category; see Methods
for category details. Pie chart denotes iModulon annotation categories by percentage of variance
explained. Gray wedge indicates variance unexplained by iModulons. B) Summary of precision
and recall for 117 regulatory iModulons. RegulonDB (http://regulondb.ccg.unam.mx) [42]
regulons used as reference. C) 2-D histograms of median gene expression and median abso-
lute deviation in gene expression by iModulon membership. D) Comparison of regulators and
regulatory interactions recovered by PRECISE-1K iModulons and available in RegulonDB. All
= all evidence levels; Strong = only strong evidence interactions per RegulonDB; P1K+ = all
interactions for which the corresponding regulator is captured by an iModulon. E) Histogram
of RegulonDB regulon sizes, colored depending on whether each RegulonDB regulon is or is
not captured by at least one PRECISE-1K iModulon. F') Histogram of the number of differ-
ential iModulon activities (DiMAs) computed between condition pairs within the same project
(n = 6103; same as 4.1G). G) Comparison of number of DEGs and DiMAs for the same condi-
tion pairs. Linear best fit curve is shown in red, and indicates a 20-fold dimensionality reduction
from DEGs to DiMAs. n = 4483 comparisons with non-zero DiMAs.

32% and 30% of the variance in PRECISE-1K, respectively (Fig. C.8A). This division empha-

sizes a “fear-greed” tradeoff, wherein metabolic capabilities are diversely regulated, while stress
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responses are more centrally controlled. Notably, just two iModulons - RpoS and ppGpp, major
stress response regulators - collectively account for 6% of the variance in the dataset (Fig. C.8B-
C).

iModulons capturing signals of global regulators - defined here as those with more than
25 regulatory targets - contribute significantly to the overall dataset variance. For instance,
flagella-related regulators FIhDC and F1iA combinedly explain over 5% of the expression variance,
while anaerobic growth regulators FNR and ArcA explain over 3% of the variance (Fig. C.8C).
These findings underscore the ability of global regulators to mobilize large-scale transcriptomic
responses, and they are responsible for the variance between wild-type control samples run across
projects, despite overall tight correlation (Fig. C.9). Importantly, these batch variations are

explicitly captured by iModulon activities.

4.2.4 Regulatory modules represent the majority of the known transcriptional

regulatory network

iModulons extracted from PRECISE-1K reconstruct a substantial portion of the total
regulatory interactions available in RegulonDB [42], the premier database for curated and vali-
dated regulatory network information for E. coli. Regulatory iModulons capture 32% of all known
regulatory molecules (and 48% with strong evidence) (Fig. 4.2D). Furthermore, they reconstitute
23% of all specific regulatory interactions (33% of strong-evidence interactions). iModulons are
known to capture regulatory signals by identifying the most strongly-regulated genes in a regulon
based on promoter sequence [126]. This sequence-based effect likely accounts for the relatively
lower precision and recall enrichment statistics observed for larger iModulons that capture more

global regulators. Thus, considering a regulatory iModulon as a biomarker for all of its regula-
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tor’s interactions reveals that iModulons reconstitute 80% of all known regulatory interactions
(86% when considering only strong evidence). Importantly, iModulons preferentially capture the
signals of larger regulons (Fig. 4.2E), increasing their utility in describing the transcriptome state
across growth conditions.

Subsampling PRECISE-1K and recomputing iModulons demonstrates regulatory network
coverage at different compendium sizes. On average across five trials, 20%-scale subsamples of
PRECISE-1K (207 samples) yield 111 iModulons, of which 67% (75) are regulatory iModulons
also captured from PRECISE-1K (Fig. C.10A). As more samples are added, the total number of
extracted iModulons increases; however, the relative fraction of regulatory iModulons decreases.
Nonetheless, regulatory recovery increases with scale: 33% of strong-evidence regulators are cap-
tured in iModulons from 20%-scale subsamples, compared with 48% from PRECISE-1K’s iMod-
ulons (Fig. C.10B). Captured regulatory interactions follow a similar pattern. Critically, the step
from 80%-scale subsamples (828 samples) to full PRECISE-1K elicits an increase in regulatory
discovery following a plateau between the 60%- and 80%-scales, indicating that PRECISE-1K’s
scale provides an advantage for regulatory recovery.

In all, iModulons provide the regulatory component of this transcriptome knowledge base.
The subsequent sections demonstrate transcriptomic knowledge that can be derived from these

regulatory modules.

4.2.5 Systems-level analysis of transcriptome states using regulatory modules

As iModulons explicitly represent activity levels, they facilitate the use of differential
iModulon activity (DiMA) analysis. This type of analysis allows for a systems-level comparison of

transcriptome states by reducing hundreds or thousands of differentially expressed genes (DEGs)
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to a median of only 28 iModulons (Fig. 4.2F). When comparing any two conditions in PRECISE-
1K, DiMA analysis yields nearly 20 times fewer differentially activated iModulons than DEGs
(Fig. 4.2G), highlighting the particular utility of DIMA for systems-level transcriptional analysis.
On average, DiMAs directly account for 37% of variance between conditions. Considering that all
iModulons together explain a median of 80% of variance between conditions, DiIMAs contribute
to a median of 47% of the variance explained by all iModulons (Fig. C.11).

The activities of iModulons reflect the overall activity state of a transcriptional regu-
lator across environmental conditions in PRECISE-1K. A stimulon is a higher-level regulatory
structure composed of multiple regulons that respond to a particular stimulus (Fig. C.1). While
iModulons encompass independently modulated groups of genes, in many cases, these inde-
pendent groups of genes are regulated in response to similar environmental stimuli, forming a
stimulon. Two-component systems (TCS), consisting of a membrane-bound sensor and a cy-
toplasmic response regulator, enable the cell to sense and respond to important extracellular
signals. iModulons derived from PRECISE-1K capture the response signals for 15 of the 27
known TCS response regulators, providing insight into the cell’s regulatory response to critical
stimuli such as nitrogen, inorganic phosphate, and alkali metals.

Furthermore, iModulons can be clustered based on their activities, revealing higher-order
structures in the F. coli transcriptome. For instance, one cluster captures the joint regulation
of flagella formation by the transcription factor complex FIhDC and the sigma factor FLiA (o9g)
(Fig. C.12). Six iron-related iModulons, five anaerobiosis-related iModulons, and four amino
acid-related iModulons also group together based on their activities. Thus, the combination
of iModulons can shed light on broad transcriptome patterns, providing a new definition of a

stimulon.
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4.2.6 Regulon discovery for putative transcription factors YgeV and YmfT

Functional annotation for putative transcription factors (TFs) remains a challenging
task [127-129]. However, iModulons present a powerful tool for discovering and analyzing new
regulons. PRECISE successfully elucidated the regulons for three previously uncharacterized
TFs (YieP, YiaJ /PlaR, and YdhB/AdnB) and expanded the regulons of three known TFs (MetJ,
CysB, and KdgR) [45]. Many of these regulatory interactions were further confirmed through
DNA-binding profiles [45,130,131]. Additionally, iModulons derived from a microarray dataset
predicted three novel regulons [132]. The iModulons from PRECISE-1K reaffirm these previous
findings and reveal two new potential regulons.

The putative YgeV regulon includes 13 genes, among which 7 are implicated in nucleotide
transport and metabolism (Fig. 4.3A). YgeV is predicted to be a Sigmab4-dependent transcrip-
tional regulator, and Sigmab4-dependent promoters were previously identified upstream of the
xdhABC and ygeWXY operons, which are part of the YgeV iModulon [133]. Although the
iModulon does not contain the gene ygeV, ygeV is transcribed divergently from ygeWXY. A
prior study [134] indicated reduced expression of ygfT in a YgeV mutant strain. As ygfT is part
of the YgeV iModulon, this suggests that YgeV may serve as an activator for the genes within
its iModulon. The activity of the YgeV iModulon rarely deviates from the reference condition;
however, it is most active when TCS response regulators BaeR or CpxR are knocked out and the
strain is exposed to ethanol (Fig. 4.3B). Therefore, we hypothesize that the TF YgeV responds
(either directly or indirectly) to ethanol to activate genes related to purine catabolism and is
repressed by TCS BaeRS and CpxAR.

The putative YmfT regulon consists of 15 genes, including ymfT itself. It includes 12

out of the 23 genes in the el4 prophage [135] (Fig. 4.3C). The putative YmfT iModulon shows
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the highest activity in strains lacking the ferric uptake regulator Fur or when challenged with
oxidative stress induced by hydrogen peroxide (Fig. 4.3D). The absence of Fur leads to overpro-
duction of iron uptake proteins, oxidative damage, and subsequent mutagenesis [136]. Hence, we
propose that YmfT responds to oxidative stress to modulate the expression of the el4 prophage.

These examples demonstrate the potential of iModulons in predicting new regulons and

identifying optimal conditions for studying their activities.
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Figure 4.3: iModulons discover new regulons. A) iModulon gene weights for the putative
YgeV iModulon vs. median log2[TPM]. B) Activity of the YgeV iModulon in different media
conditions. Each colored bar is the mean of two biological replicates (shown as individual black
points). C) iModulon gene weights for the putative YmfT iModulon vs. median loga[TPM]. D)
Activity of the YmfT iModulon in different media conditions. Each colored bar is the mean of
two biological replicates (shown as individual black points).
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4.2.7 Stratifying promoter-level mechanisms of Crp regulation

iModulons uncover distinct, independent sub-groups of genes within global regulons, re-
vealing unique regulatory dynamics. An illustrative example is seen in the Fur-1 and Fur-2
iModulon activities, which each capture subsets of the Fur regulon. These activities exhibit
non-linear correlations based on both iron availability and aerobicity [118].

In this section, we investigate how iModulons reflect the biochemical mechanisms of
transcription factor (TF) binding by examining the relationship between two iModulons - Crp-1
and Crp-2 - that stratify the CRP regulon. The CRP regulon contains multiple RNA polymerase-
interacting domains (Arl-3) [137] that facilitate its binding to Class I and Class II promoters.
Class I promoters involve binding centered 61.5 base pairs upstream of the transcription start
site, while Class II promoters are centered 41.5 base pairs upstream [138,139] (Fig. 4.4A).

The activities of the Crp-1 and Crp-2 iModulons across all PRECISE-1K conditions ex-
hibit a distinct nonlinear relationship (Fig. 4.4B). As expected, low activities of both iModulons
correspond to the deletion of CRP, which is known to activate most of the genes in these two
iModulons. Notably, the deletion of the Ar2 binding domain - implicated in Class II regulation
- results in some Crp-1 activity but no Crp-2 activity (orange dot in 4.4B). Additionally, CRP
binding sites for genes unique to Crp-1 are broadly distributed, while Crp-2-specific genes have
CRP binding sites more consistently at the Class II location (Fig. 4.4C). A steady-state biophys-
ical model, incorporating 10-fold different binding affinities for Class I and Class II binding sites,
produces a similar binding site occupancy relationship as observed between the Crp iModulon
activities (Fig. 4.4D). Based on this evidence, we propose that the Crp-1 and Crp-2 iModulons
correspond to Crp regulatory activity at Class I and Class II promoter genes, respectively. This

analysis underscores the capability of PRECISE-1K iModulons to capture multi-dimensional
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Figure 4.4: iModulons stratify existing regulons by mode of binding. A) Diagram of Class I
and Class II CRP promoters. Arrow indicates transcription start site. ¢ = RNA polymerase
(RNAP) sigma factor; onyc = sigma factor N- and C-terminal regions; Arl-3 = CRP activating
regions (RNAP interaction sites). B) iModulon phase plane between Crp-1 and Crp-2 iModulons.
Colored points from samples involving partial and total CRP deletions. Ar regions correspond
to panel A. Glyc = glycerol carbon source; fru = fructose; gle = glucose. C) Histogram of
CRP binding site locations for Crp-1 and Crp-2 iModulons. TSS = transcription start site of
transcription unit for each gene. Data from RegulonDB. D) Simulated binding curve for CRP
Class I and Class II promoters. Each point indicates a particular CRP concentration. Binding
modeled as 10x tighter at Class II vs Class I promoters.

regulatory effects within a single regulon.
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4.2.8 Incorporating 1,675 high-quality publicly-available transcriptomes into

the knowledgebase highlights method’s scalability and robustness

To further expand our dataset, we sourced all publicly-available RNA-seq data for F.
coli strain K-12 from NCBI’s Sequence Read Archive (SRA) [140]. From 3,230 K-12 samples,
our processing and quality control pipeline yielded 1,675 high-quality K-12 expression profiles.
We combined these samples with PRECISE-1K to yield the "K-12 Dataset,” a high-quality
transcriptomics dataset consisting of 2,710 expression profiles (Fig. 4.5A). These profiles come
from 134 different projects, including 15 K-12 substrains and 9 distinct temperatures and pHs.
ICA decomposition of the K-12 Dataset yields 194 iModulons.

The distribution of iModulons by category — both in number and by explained variance
— is broadly similar to that of PRECISE-1K. Regulatory iModulons account for 64% of the total
number, and 57% of the total variance in the dataset (Fig. 4.5B). Coverage of known regulatory
network interactions increases only minutely as compared with PRECISE-1K alone, despite the
more than doubling of the dataset’s size (Fig. 4.5C). Indeed, 89% of K-12’s explained variance
comes from 155 iModulons highly correlated with iModulons extracted from either PRECISE
or PRECISE-1K (Fig. 4.5D). In contrast, 45% of explained variance from PRECISE-1K comes
from 134 iModulons not present in PRECISE. Nonetheless, 67 iModulons captured in the orig-
inal PRECISE are retained in both PRECISE-1K and K-12, accounting for sizable fractions of
explained variance in each of the latter datasets. The iModulon structure remains largely consis-
tent as dataset scale is increased; in general, higher-variance signals discovered by smaller-scale
datasets are supplemented with new, more niche iModulons, rather than the entire iModulon
structure shifting with scale. iModulons can also explain a slightly larger fraction of variance

in PRECISE-1K than in the K-12 Dataset. iModulons extracted from just the 1,675 publicly-
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Figure 4.5: Adding public K-12 data to PRECISE-1K highlights P1K’s stability. A) K-12 is
a combined dataset with P1K (1035 samples) plus all publicly-available high-quality RNA-seq
data for E. coli K-12 (1675 samples). A) Growth of high-quality RNA-seq data for K-12. B)
K-12 iMs by their annotation category (see 4.2A legend). C) Comparison of regulators and
regulatory interactions recovered by K-12 and available in RegulonDB. All = all evidence levels;
Strong = strong evidence per RegulonDB; K-12+ = interactions for which regulator is captured
by K-12 i. P1K values from 4.2D included for comparison. D) Comparison of iMs from three
RNA-seq datasets: PRECISE [45]; P1K (this paper); and public K-12. Each small rectangle is an
iM. Pairwise Pearson correlations were performed between PRECISE and P1K iMs, and between
P1K and K-12 iMs; iMs with correlations over 0.3 were considered to be the same iM (median
PRECISE/P1K r is 0.68; P1K/K-12 0.70). Blue = all 3 datasets; pink = only PRECISE/P1K;
red = P1K/K-12 only; purple = unique to dataset. Explained variance within each dataset. iMs
ordered by which dataset(s) they appear in, and sorted in decreasing order of explained variance
within each dataset appearance category. E) Overlap between the CsrA regulon per RegulonDB
and the CsrA iM. F) Activity of the CsrA iM after arrest of transcription initiation via addition
of rifampicin (data from Potts et al [141]).
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available K-12 samples are similar to those extracted from the 2,710-sample compendium, albeit
with lower regulatory recovery (Fig. C.13). Taken together, these results suggest that PRECISE-
1K has sufficient scale and condition variety to represent the E. coli TRN, and additions of data
beyond this scale may provide diminishing returns.

However, specific conditions in the K-12 dataset enable regulatory discovery. For exam-
ple, 18 samples from a project exploring the post-transcriptional carbon storage regulator CsrA
regulon [141] enabled recovery of a CsrA iModulon that is unique to the K-12 dataset. The CsrA
iModulon is much larger than the known CsrA regulon: it contains 65 genes, of which 10 overlap
with the 21-gene CsrA regulon (Fig. 4.5E). Nonetheless, the enrichment of CsrA regulon genes
in the iModulon is significant (adjusted P = 6.7E —9), and the genes in both the iModulon and
regulon are particularly highly weighted in the iModulon. Moreover, the iModulon is much more
highly active in a CsrA deletion strain after arrest of transcription initiation than the wild-type
strain or other K-12 samples (Fig. 4.5F), indicating relief of CsrA repression. Thus, the genes

unique to the iModulon are candidates for expansion of the CsrA regulon.

4.2.9 Applying the knowledge base to new data: the anaerobic to aerobic

transition

This knowledge base enables the analysis of new E. coli RNA-seq datasets. To demon-
strate this capability, we utilized one project from the public K-12 Dataset called AAT (anaerobic-
aerobic transition). The AAT project captured six time-points in triplicate, ranging from 0 to 10
minutes after aeration of a previously anaerobic chemostat culture of E. coli K-12 W3110 [142].
By inferring PRECISE-1K iModulon activities for the AAT project, there was no need for full

re-processing through the entire workflow. This inferred information allowed us to analyze AAT’s
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samples both within the project and in the context of all PRECISE-1K’s samples. The code used
for this case study is available at https://github.com/SBRG/preciselk-analyze and can be
utilized for the analysis of any new data.

Our hypothesis was that certain iModulons would respond to the onset of aerobic growth
(Fig. 4.6A). For instance, the regulators Fnr and ArcA are both influenced by oxygen availability.
Fur is activated upon acquiring an iron-sulfur (4Fe-4S) cluster and dimerizing, while oxygen inac-
tivates Fnr by oxidizing the iron-sulfur cluster [143-146]. Fnr’s active state leads to the activation
of anaerobic metabolism genes and repression of aerobic metabolism genes [147]. On the other
hand, ArcA is the transcription factor component of a quinone-sensing two-component system.
During aerobic growth, quinols are oxidized to quinones as part of the electron transport chain,
which prevents the sensor kinase ArcB from phosphorylating and activating ArcA [148, 149].
ArcA predominantly represses aerobic metabolism genes while also activating a few fermentative
genes [150-152]. Additionally, several aerobic metabolism genes, especially those encoding oxi-
doreductases and electron transport chain components, require iron-sulfur clusters to function.
Consequently, the global iron regulator Fur, which represses iron acquisition genes when bound
to iron, is also involved in this transition [153,154]. Lastly, oxidative phosphorylation under
aerobic conditions generates reactive oxygen species (ROS), which triggers the SoxS and OxyR
responses [155,156].

Identifying the iModulons with divergent activities in AAT compared to the rest of
PRECISE-1K revealed several iModulons related to energy metabolism. For example, the for-
mate hydrogen lyase (FHL) iModulon displayed a maximum absolute activity in AAT that was
six standard deviations away from the PRECISE-1K median. FHL is known to be active under

anaerobic conditions during glucose fermentation [157].
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For further characterization of iModulon activity changes within AAT, DiIMA analysis
helped identify iModulons that changed significantly between any two sets of samples. Compar-
ing aeration onset to 10 minutes post-aeration highlighted the roles of key energy metabolism
global regulators in facilitating this transition (Fig. 4.6B). Fnr was more active at onset, while
ArcA and Fur exhibited significantly increased activity 10 minutes after aeration. Fnr’s activ-
ity decreased nonlinearly following aeration of the culture, reaching its aerobic growth reference
level within 5 minutes (Fig. 4.6C). Conversely, SoxS iModulon activity increased as aeration
proceeded. Activity clustering revealed increased activity of the anaerobic stimulon at aeration
onset, followed by increased activation of the iron stimulon 10 minutes post-aeration (Fig. C.14).

Activity phase planes, which compare two iModulons’ activities across conditions, proved
to be another valuable tool for analyzing new data. The dynamic transcriptomic changes in the
AAT project were particularly evident in the Fur-1/Fur-2 (Fig. 4.6D) and Fnr/ArcA (Fig. 4.6E)
phase planes. As aerobic metabolism took over, iron-related genes repressed by Fur during
anaerobiosis increased in activity as the demand for iron increased. Simultaneously, the activity
of the anaerobic regulator Fnr decreased as the aerobic regulator ArcA’s activity increased, and
both eventually reached activity levels similar to PRECISE-1K’s aerobic growth control condition
10 minutes after aeration.

Overall, these observations shed light on the essential systems-level changes in the tran-
scriptome composition during the anaerobic-aerobic transition and demonstrate the utility of
PRECISE-1K as an analysis resource. Furthermore, they showcase the comprehensive interpre-

tation of TRN functions accomplished through the use of iModulon activity phase planes.
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4.3 Discussion

This study establishes a multi-scale gene expression and regulation knowledge base for
E. coli. The expression component is PRECISE-1K, a single protocol, high quality RNA-seq
dataset containing 1,035 samples covering a wide range of growth conditions. PRECISE-1K
enables genome-wide categorization of genes based on expression level and expression variance
across conditions. Using machine learning, we recover 117 regulatory modules (iModulons) from
PRECISE-1K that reconstitute 8