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Abstract: Multi-spectral imaging using a camera with more than three channels is an efficient method
to acquire and reconstruct spectral data and is used extensively in tasks like object recognition,
relighted rendering, and color constancy. Recently developed methods are used to only guide
content-dependent filter selection where the set of spectral reflectances to be recovered are known
a priori. We present the first content-independent spectral imaging pipeline that allows optimal
selection of multiple channels. We also present algorithms for optimal placement of the channels in
the color filter array yielding an efficient demosaicing order resulting in accurate spectral recovery of
natural reflectance functions. These reflectance functions have the property that their power spectrum
statistically exhibits a power-law behavior. Using this property, we propose power-law based error
descriptors that are minimized to optimize the imaging pipeline. We extensively verify our models
and optimizations using large sets of commercially available wide-band filters to demonstrate the
greater accuracy and efficiency of our multi-spectral imaging pipeline over existing methods.

Keywords: multi-spectral imaging; content independent channel selection; multispectral filter array;
demosaicing

1. Introduction

Multi-channel spectral imaging using a single-camera is an efficient way to acquire spectral data.
Compared with multi-camera systems that use multiple cameras with modified camera sensitivity, it is
more compact and practical. Typically, the multiple different channels of the spectrum are captured
(a) over multiple shots using a different color filter in front of the camera sensor for each shot; or (b) in
a single shot using a mosaic of the multiple filters on the sensor forming a multiple spectral filter
array (MSFA).

Traditionally, narrow band filters are used to provide a large number of channels, thereby
providing higher spectral resolution assuring an accurate spectral recovery. However, this severely
compromises the acquisition rate in multi-shot capture and the spatial resolution in single shot capture.
Since spatial resolution is very important for most scenarios, commercially available multi-spectral
cameras are multi-shot. Narrow band filters also significantly compromise light efficiency and therefore
almost all multi-spectral cameras use longer exposures, thereby limiting its capture to only static
scenes. Recently, use of wide-band filters has been explored to alleviate these problems by reducing the
number of channels used [1]. However, the channels are usually chosen in an ad hoc manner, thereby
not assuring an accurate spectral recovery. Recently, a work showed that, with channel selection,
the spectral reconstruction accuracy could be improved by over 33% [2].
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Previous works have shown that both man-made and natural objects or phenomena
(like illumination) have smooth spectral power distribution. Statistically, their power spectrum
follows a strong power law [3,4]. We exploit this statistical property to carefully select a small number
of optimal wide band channels (usually 5–6) for multi-spectral imaging that can ensure an accurate
spectral reconstruction when used in an MSFA for a single shot capture. The main contributions of this
work are as follows.

• First, we design and develop a novel power-law prior based channel optimization method that
models the various errors associated with spectral reconstruction—namely error due to estimation
(reconstruction error), noise (imaging error) and demosaicing (demosaicing error). These errors
depend only on the camera parameters (e.g., spectral sensitivities of channels, the MSFA pattern,
the demosaicing order, and variance of the sensor noise) and not on the content. To the best of our
knowledge, this is the first model for defining all the different errors in a content-independent
multi-spectral imaging pipeline.

• Second, we construct an objective function that quantifies the total error using a combination of
the three above-mentioned errors. Next, we use a discrete particle swarm optimization method
to optimize the imaging pipeline by (1) selecting a few channels from a large set of candidate
channels; (2) constructing a conducive mosaic pattern with the chosen channels on the MSFA;
and (3) selecting a channel ordering during demosaicing that minimizes the objective function
and hence the total error in spectral reconstruction.

2. Related Works

Multispectral Imaging and Reconstruction: a large number of the existing imaging techniques
today are either bulky, or expensive and require professional calibration [5,6]. Our focus in this paper
are the alternate, more compact spectral imaging techniques that are popularly used for commodity
applications. There are two existing spectral imaging techniques that fit this bill—(a) compressive
spectral imaging and (b) multi-spectral filter array (MSFA) based spectral imaging.

Compressive computational imaging systems randomly encode captured spectra [7], and then
reconstruct multi-spectral images using compressive sensing reconstruction techniques [8–10]. Taking
full advantages of the sparseness of spectral image data, these reconstruction techniques can recover
multi-spectral images using fewer observations than conventionally needed. Furthermore, due to
the high light throughput (≈0.5 [9]) of these systems, the quality of reconstructed images is robust
to imaging noise. However, the sparse recovery process is time-consuming. For example, it can take
minutes or even hours to reconstruct a single 512× 512× 31 multi-spectral frame. Therefore, it is not
suitable for real-time applications, such as rendering relighted scenes, or object detection.

Contrary to compressive computational imaging, MSFA offers a very time efficient option for spectral
reconstruction. Recently, it has been shown that, when using wide-band filters, MSFA based methods
can be more accurate in the common case where the “photon to read noise ratios” (PRR) is not very
low [11]. Therefore, various multi-channel spectral imaging system with MSFA have been designed
recently. For example, Yasuma et al. [12] proposed a sub-micron pixel image sensor design with seven
colors and two exposures; Sajadi et al. [13] combined a red-green-blue Bayer color filter array (CFA)
with a cyan-magenta-yellow CFA in a layered CFA design to capture images with high color fidelity;
Monno et al. [14] presented a high-performance multi-spectral demosaicing algorithm and utilized a
single sensor with 5-channel MSFA to capture multi-spectral images. However, none of these single-shot
methods focus on optimizing image pipeline parameters (like the channels selected, spatial arrangement
of channels on the MSFA, demosaicing order) in a unified manner and hence cannot provide the desired
spatial and spectral precision with accuracy of reconstruction.

Channel Selection: references [15,16] optimize spectral sensitivity of channels with a regular
three-channel RGB Bayer color filter array (CFA) , while references [17,18] optimize channels to minimize
the error in spectral recovery, but only for spectral data that have strong priors like known distribution of
the captured spectral functions (e.g., daylight [19]). Such domain-specific priors yield content-dependent
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methods. More importantly, theoretically conducive spectral sensitivity of the channels are assumed
(e.g., radial basis function [20,21], Fourier basis function [22]). This yields poor results in practice due to a
large deviation of the sensitivities of commercially available filters from such well-behaved functions [23]
(Figure 1).
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Figure 1. Left: commercial filter set; right: radial basis function.

In contrast, we select filters from a set of commercially available wide-band filters to create a
practically feasible spectral imaging pipeline. A handful of earlier works take this route. Yasuma et al.
provided a cost function to describe spectral recovery error that is optimized to select filters for the
generalized assorted pixel (GAP) camera [12]. However, the design and spatial arrangement of the
GAP camera lacks freedom, while impacting the quality of spectral recovery significantly. Chi et al. [1]
heuristically minimize the condition number of spectral sensitivity of channels to make the spectral
recovery specifically robust to noise. Other work [24] optimizing spectral reflectance targets can also be
used to select channels. All these methods cannot guarantee spectral error minimization and therefore
optimal spectral reconstruction. Recently, Arad et al. [2] used different three-channel combinations to
reconstruct multispectral images and choose the best combination. However, it can not be extended
to multi-channel selection directly since it is too time-consuming and may depend on specific spectral
reconstruction method.

Demosaicing: demosaicing methods have been devised independent of the other elements of
a spectral imaging pipeline. Interestingly, it provides a diverse view of a conducive filter array
and demosaicing methods. While some prior works [25] emphasize that the spectral sensitivities of
neighboring pixels should be highly correlated to minimize inter-channel demosaicing error, other works
(e.g., [26]) demonstrate the benefits of completely independent demosaicing fostered by low correlation
between narrow band channels. Many works [21,27] treat the channel with highest sampling rate
and largest throughput as the dominant channel and complete missing values of other channels that
are considered dependent on the guide channel. In addition, a recent work uses a channel-dependent
demosaicing strategy for a non-channel-dominant narrow-band MSFA [28].

Comparison with Proposed Work: the aforementioned literature survey reveals that mutually
correlated problems of channel selection, filter array design, demosaicing methods and imaging noise
have always been addressed in exclusion and therefore failed to yield solutions that will be optimal in
terms of accuracy and efficiency for the final output of the entire spectral imaging pipeline. Therefore,
we attempt to address all these correlated issues in a unified manner and optimize them together.

3. Modeling Error in Spectral Recovery

Let the spectral power distribution (SPD) function of the spectrum at spatial coordinate (x, y)
be s(x, y, λ). Consider a multi-spectral camera with N channels (N > 3). Let channel i (1 ≤ i ≤ N)
have the spectral sensitivity function mi(λ) that can be obtained from specification sheets or measured
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using a broadband light source using some low-cost methods [29]. Let the response of channel i of the
camera to s(x, y, λ) be xi.

In a practical system, xi is comprised of ground truth, x̃i, and errors, εi. If the channel i at (x, y) is
interpolated during demosaicing, then εi = ζi + δi where ζi denotes error due to imaging noise and δi
denotes demosaicing error. For pixels where channel i is captured directly, δi = 0. Therefore,

xi = x̃i + εi =
∫ λ2

λ1

s(λ)mi(λ)dλ + εi

=
∫ λ2

λ1

s(λ)mi(λ)dλ + ζi + δi.
(1)

We can write the above equation using matrices considering all channels as

X = Ms + ε = Ms + ζ + δ, (2)

where [λ1, λ2] is the range of wavelength of visible light (e.g., 380–780 nm), M is a known matrix of
dimension N×K where each row of M denotes one of the channels at a spectral resolution of K, s is the
K× 1 SPD function to be recovered and X denotes the N× 1 known response vector and ε, ζ and δ are all
N× 1 error vectors.

Let us assume that the estimated spectrum ŝ is given by multiplying X with reconstruction
matrix W. Using a pseudo-inverse matrix W+ = MT(MMT)−1 or a Wiener pseudo inversion
W+ = CorrsMT(MCorrsMT)−1 [30] with an approximated autocorrelation matrix Corrs to represent the
reconstruction matrix, the recovered spectrum ŝ, is given by

ŝ = WX = W(Ms + ε) = WMs + Wε. (3)

We use the mean squared error (MSE) between the original and the recovered spectrum to
describe the average error in the estimation as

MSE = Tr
{

E[(s− ŝ)(s− ŝ)T ]
}

. (4)

Now, replacing Equation (3) in Equation (4), we get

MSE = Tr
{

E[(s−WMs−Wε)(s−WMs−Wε)T ]
}

= Tr
{

E[(Hs−Wε)(Hs−Wε)T ]
}

,
(5)

where E[.] is the expected values of a variable, H = (I −WM), and Tr {.} denotes the trace of a square
matrix defined as the sum of the elements on the main diagonal. Please note that pseudo-inverse
reconstruction method only provides a first approximation. Therefore, the MSE is not very accurate
and only gives an upper-bound of total errors. Since the errors ε are independent from the spectrum s,
E[sεT ] = 0 and E[εsT ] = 0. Therefore, MSE can be rewritten as

MSE = Tr
{

HCorrsHT
}
+ Tr

{
WCorrεWT

}
, (6)

where Corrs, Corrε are the autocorrelation matrices E[ssT ], E[εεT ], respectively. Interestingly, in the
above equation, the first term describes the error due to spectral recovery while the latter accounts
for the error due to imaging noise and demosaicing. Next, we analyze the statistical properties of the
natural multi-spectral images in order to model and approximate the correlation matrix Corrs and Corrε.
Finally, we also describe how MSFA patterns and demosaicing interpolation affect demosaicing error
and noise, respectively.
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3.1. Spectral Characteristics of Natural Images

In order to study this, we use three hyperspectral datasets—CAVE dataset, Harvard dataset,
and one that we ourselves capture using a Surface Optics SOC-730 (Surface Optics Corporation,
San Diego, CA, USA) camera with a 1024× 1024 spatial resolution and a 2 nm (400–1000 nm) spectral
resolution—this dataset contains 60 images of a sample, which is shown in Figure 2. Prior work has
shown that multi-spectral images can be decomposed into Cartesian products of spectral and spatial
components [31]. Therefore, we discuss them separately.

Figure 2. Several sample images of our natural multispectral images dataset. Each image was
captured using an SOC-730 hyperspectral camera with a spatial resolution of 600 × 800 and 31 spectral
measurements (400–700 nm) at each pixel.

Spectral components—prior works observe the following: (a) illumination and reflectance spectra of
natural or man-made objects and phenomena are relatively smooth [32] and therefore frequency-limit
functions can be used to approximate them [33]; (b) in addition to being smooth, these illumination
and reflectance spectra also show remarkably similar energy distribution in the frequency domain
(Figure 3). In fact, the surfaces formed by these distribution functions have a shape close to an
exponential function with an exponent of (−2). Therefore, they follow Steven’s power law of human
perception. Steven’s Law is the fundamental empirical law of human perception that most human
responses to input environmental stimuli is related by a power function [34].

We illustrate the aforementioned properties in Figure 3. To eliminate the effect of varying
illumination and brightness of the images, we first compute the difference spectrum ∆s = s − µ,
where µ is the mean value in spectral direction of multispectral images. For each ∆s, we compute

E[|∆sF (k)|2] ∝ 1/k2−β, (7)

where ∆sF (k) is the Fourier transform of difference spectrum ∆s(λ), k is the frequency of spectrum,
2− β is the frequency exponent, and β clusters around 0 for natural spectra.

Spatial components—it is well known that the RGB real-world images, including both natural
landscapes and man-made environments, also follow the Power Law [35,36] and tend to be scale
invariant. This property has already been widely used in many computer graphics applications [37],
e.g., exposing forgeries, imaging denoising. Interestingly, we also observe this property across different
bands of real-world multispectral images (Figure 3). As in spectral components, we can show for
spatial components as well that the difference band images, ∆I = I − µ, where µ is the mean of the
spectral band across space, exhibits the same property as:

E[|∆IF ( f , θ)|2] ∝ A(θ)/ f 2−α(θ), (8)
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where ∆IF is the 2D Fourier transform of difference band-images ∆I, ( f , θ) is the polar coordinates
of 2D frequency of band-images, A(θ) and 2 − α(θ) are the scaling function and the frequency
exponent function respectively for each orientation θ. Here, α(θ) clusters around 0 for natural images.
Furthermore, for natural objects, the scaling function A(θ) clusters around 1; while, for man-made
objects, the value of A(θ) for oblique orientation, θo, is much smaller than its value for horizontal
and vertical orientations, θh and θv, respectively. This is due to the fact that man-made objects usually
contain horizontal and vertical edges [35].

y = -2.0864x - 2.8062 
-10

-8

-6

-4

-2

0
0 0.5 1 1.5 2 2.5 3

Lo
g 

of
 P

ow
er

 S
pe

ct
ru

m
 

Log of frequency 

CAVE's Harvard's Ours 线性 (CAVE's) Linear Approximation 

(a)

Lo
g 

of
 P

ow
er

 
Sp

ec
tr

um
 

CAVE’s Harvard’s Ours 

(b)

Figure 3. Spectral reflectance in four different data sets (Harvard’s [31], CAVE [38], and our dataset)
have similar behavior after Fourier transform. (a) Log of power spectrum of spectral component in
four different data sets; (b) log of power spectrum of spatial component in four different data sets.

3.2. Modeling Recovery Error

The statistical fact that spatial and spectral components of multi-spectral images follow a power
law is not dependent on any particular data set. Therefore, this provides a prior that we use to
approximate recovery error Tr

{
HCorrsHT} in Equation (6). In order to achieve this, we approximate

Corrs by exploiting the content independent power law and the Wiener–Khinchin theorem. Here, every
spectral wavelength sample point si is treated the same. Mathematically, we assume si = ∆si + µ

(1 ≤ i ≤ K) have the same distribution with the mean value µ and the standard deviation σ; therefore,
E[s2

i ] = E[s2
j ] = µ2 + σ2 (1 ≤ i, j ≤ K).

We approximate Corrs(i, j) in matrix Corrs using the autocorrelation value Corrs(i, j) = µ2 +

η1Cs(∆λ), where ∆λ is the distance between spectral band i and j, and η1 is a scale factor. According
to the Wiener–Khinchin theorem, the autocorrelation of a signal could be represented by using the
inverse Fourier transform of power spectral function. Thus, a general form of autocorrelation value
Cs(∆λ) =

∫
∆s(λ)∆s(λ± ∆λ) dλ can be described as:

Cs = F−1{E[|∆sF (k)|2]}. (9)

Finally, our approximation of Corrs can be expressed as

Corrs = µ2 + η1


Cs(0) Cs(1) · · · Cs(n− 1)

Cs(1)
. . . Cs(n− 2)

...
. . .

...
Cs(n− 1) Cs(n− 2) · · · Cs(0)

 . (10)

Therefore, the final recovery error is estimated by Tr{HCorrsHT}. Compared with the methods
constructing the autocorrelation matrix derived from some datasets, we use this error model because it
only depends on the average intensity µ and the scale factor η1. The effectiveness of the model will be
verified in Section 5.1.
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3.3. Modeling Demosaicing Error and Imaging Noise

In addition to spectral recovery error, the demosaicing error and imaging noise considerably affect
the quality of the reconstruction. However, unlike the spectral recovery error, these errors are heavily
dependent on (1) the design of MSFA (multi-spectral filter array), which involves the distribution
and placement of the different channels in the filter array; and (2) the demosaicing technique that
decides the order of the demosaicing process based on the dependency between channels or lack thereof.

Design of MSFA: prior works [39,40] have shown that a good MSFA pattern should have the
following properties: (i) it should be spatially uniform to ensure robustness in the face of image
sensor imperfections; (ii) it should be periodic to ensure efficiency of image reconstruction; and (iii) it
should be neighbor consistent (each channel has the same neighbor channels) to ensure immunity to
optical/electrical cross talk between neighboring pixels. Reference [40] presents a binary tree based
MSFA design method that assures all the above properties and is elegant in design and implementation.
Therefore, we adapt this design and customize it to suit our needs.

In the binary tree based MSFA design [40], the generation of the MSFA is an iterative process of
binary splitting as illustrated in Figure 4a. A parent channel evenly divides into two children channels
in each splitting, increasing the number of channels by one while scaling down the sampling rate
of the children created by half. Reference [40] shows that, since the MSFA patterns satisfy the three
properties above, the sibling channels are exchangeable. We can use binary trees to represent such
MSFA patterns (Figure 4b) where a leaf node at level l has a sampling rate of 2−l . Figure 4c,d shows
that the patterns generated may not be unique. However, the binary tree for a particular sampling rate
combination is unique.
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Figure 4. (a) Generation of the MSFAs. (b) Generation of the binary trees. (c,d) Left: two patterns of
four channels MSFA; right: the binary trees of the four channels pattern have four leaves, each leaf
represents a spectral channel. The four leaf nodes correspond to the four spectral channels with (c)
sampling rate { 1

2 , 1
4 , 1

8 , 1
8 } and (d) sampling rate { 1

4 , 1
4 , 1

4 , 1
4 }.

Demosaicing strategy: channel-independent demosaicing completes an undemosaiced channel
at a subsampled resolution without dependence of other channels. On the contrary, channel-dependent
demosaicing completes an undemosaiced channel at a subsampled resolution using the content from
one of more different channels. The channel dependent methods are categorized as fully dependent
or partially dependent based on if they use all the channels or a subset thereof for demosaicing,
respectively.
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Our observation reveals that neither “one-to-many channel-dependent demosaicing” [21] nor
“all channel- independent demosaicing” [26] strategy are optimal (see Figure 5). Initially, we start with
full resolution mosaic of the most important channel (e.g., green), we use dashed arrows from channel a
to channel b to denote the demosaicing of the subsampled resolution channel b with the guidance of the
full resolution channel a: self loops indicate channel-independent demosaicing of channel b without
guidance while other arrows indicate channel-dependent demosaicing (Figure 5). It is important to
note that channel selection, channel spatial arrangement, demosaicing strategy and imaging noise
levels are mutually correlated. Therefore, we devise an adaptive demosaicing based on channels
and imaging noise levels. In the following sections, we will model and quantify channel-independent
demosaicing and channel-dependent demosaicing errors and use it for the design of the MSFA and the
demosaicing method.
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Figure 5. Reconstruction spectral errors of a multispectral image, and the reconstruction error
statistics (mean, maxinum, standard deviation) of 18 images caused by different demosaicing strategy,
the multispectral images are from CAVE dataset. Dashed arrows from channel a to channel b to
denote the demosaicing of the subsampled resolution channel b with the guidance of the full resolution
channel a (from left to right: “one-to-many channel-dependent demosaicing”; partial channel-dependent
demosaicing; “all channel-independent demosaicing”).

3.4. Channel-Independent Demosaicing Error

First, we consider channel-independent demosaicing for a sensor with resolution R. Let the
set of pixels’ measuring channel i (at level l in the binary tree) directly on the sensor be Ii. Let us
consider a pixel p and xi(p) denote the response of channel i (1 ≤ i ≤ m) at the pixel p. If pixel p ∈ Ii,
the response xi(p) is the addition of noise-free ground truth response x̃i(p) and imaging noise ζi(p).
If p 6∈ Ii, i.e., xi(p) is interpolated from other directly measured pixels during demosaicing, then xi(p)
is the sum of x̃i(p), ζi(p) and demosaicing error δi(p).

Therefore, the response xi at pixel p can be written as:

xi(p) = Bi(p) (x̃i(p) + ζi(p)) + B̄i(p) ∑
p′∈P

wli (p, p′)
(
x̃i(p′) + ζi(p′)

)
, (11)

where Bi(p) is a binary flag that 1 for p ∈ Ii and 0, otherwise, and wli (p, p′) are corresponding
interpolation weights, determined by both the level li and the Gaussian filter used. Combining
Equations (2) and (11), we find the demosaicing error and imaging noise of demosaiced pixel p as:
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ζi(p) = Bi(p)ζi(p) + B̄i(p)∑

p′∈P
wli (p, p′)ζi(p′),

δi(p) = B̄i(p)

x̃i(p)−∑
p′∈P

wli (p, p′)x̃i(p′)

 .
(12)

The noise of directly observed pixels come from measurement errors and quantization errors
resulting from analog to digital conversion and therefore spatially independent [41]. We use ζ̄2

i to
denote the average directly observed noise variance in Ii. Noise variance of channel i, E[ζ2

i ] is a
constant that can be estimated using previous method by Shimano [42] as:

E[ζ2
i ] =

1
R∑

p

Bi(p)ζ̄2
i + B̄i(p)∑

p′∈P
w2

li (p, p′)ζ̄2
i


=
(

2−li + (1− 2−li )ϕli

)
ζ̄2

i ,

(13)

where ϕli denotes ∑
p

∑p′∈Pw2
li
(p, p′) for abbreviation. Demosaicing error of channel i at pixel p is given

by the square of difference between ground truth response xi(p) and the interpolated value obtained
from the ground truth responses of the neighboring pixels. Let us now assume that, for each pixel p,
the square of ground truth response has the same distribution. Thus, for two pixels, p and q, p 6= q,
we have E[x̃2

i (p)] = E[x̃2
i (q)]. Therefore, demosaicing error variance E[δ2

i ] of channel i is given by the
average of the variance mean(δi(p)2) of all the pixels in the image and is derived from Equation (14) as:

E[δ2
i ] =

1
R∑

p
B̄i(p)

x̃i(p)−∑
p′∈P

wl(p, p′)x̃i(p′)

2

= αlE[x̃2
i ] +

p 6=q

∑
p,q

βl(p, q)E[x̃i(p)x̃i(q)],

(14)

where αl and βl(p, q) are coefficients of E[x̃2
i (p)] and E[x̃i(p)x̃i(q)], respectively, in the expansion

of Equation (14). We model E[x̃i(p)x̃i(q)] as MiE[ Ĩi(p) Ĩi(q)T ]MT
i , where Mi is the known spectral

sensitivity of i th channel. We assume a spatially independent autocorrelation matrix E[ Ĩi(p) Ĩi(p)T ]

that can be simplified to E[ Ĩi ĨT
i ]. Similar to spectral variable si, we assume the distribution of Ĩi

has the mean value µ and the the standard deviation σ, where Ĩi = µ + ∆ Ĩi. We use CI(∆u, ∆v) =∫∫
∆ Ĩ(u, v)∆ Ĩ(u± ∆u, v± ∆v) du dv to represent the ratio between correlation matrix E[ Ĩi(p) Ĩi(q)T ]

and E[ Ĩi ĨT
i ]:

E[ Ĩi(p) Ĩi(q)T ] =
µ2 + η2CI(∆u, ∆v)

µ2 + η2CI(0, 0)
E[ Ĩi ĨT

i ], (15)

where (∆u, ∆v) is given by the absolute value of vector difference between locations of pixel p and q,
and η2 is a scale factor. Similar to the approximation of spectral autocorrelation matrix, CI(∆u, ∆v) can
also be approximated using Wiener–Khinchin theorem as:

CI = F−1{E[|∆IF ( f , θ)|2]}. (16)

Since demosaicing error is independent from imaging noise, the variance E[ε2
j ] in correlation

matrix Corre is the sum of variance of demosaicing error and imaging noise: E[ε2
i ] = E[δ2

i ] + E[ζ2
i ].
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3.5. Channel-Dependent Demosaicing Error

In channel dependent demosaicing, we denote the guidance channel and the demosaiced
channel by g and r from an upper and lower level lg and lr respectively. Prior works show that
color-difference invariance in local regions is a reasonable assumption for chrominance (red/blue)
channel demosaicing [43] yielding low computational complexity [44]. This color-difference invariance
results in a linear demosaicing operation that is convenient for representation and computation.
Therefore, we construct a demosaicing error model using the same color-difference invariance
and express the response xr(p) of demosaiced channel r at position p as:

xr(p) =x̃g(p) + εg(p) + Br(p)
(
x̃r(p) + ζr(p)− x̃g(p)− εg(p)

)
+ B̄r(p)∑

p′∈P
wlr (p, p′)

(
x̃r(p′) + ζr(p′)− x̃g(p′)− εg(p′)

)
. (17)

From the above equation, demosaicing error variance can be transformed into a form like
Equation (14) as:

E[δ2
r ] = αlr E[(x̃r\g)

2] +
p 6=q

∑
p,q

βlr (p, q)E[(x̃r\g(p))(x̃r\g(q))], (18)

where x̃r\g denotes x̃r − x̃g. Here, the demosaicing error just contains the interpolation error caused in
this demosaicing. The imaging noise from demosaiced channel and accumulative errors from guide
channel are induced into the noise variance as:

E[ζ2
r ] =

1
R∑

p

[
Br(p)ζ̄2

r + B̄r(p) ∑
p′∈P

w2
lr
(p, p′)ζ̄2

r + B̄r(p)(1 + ∑
p′∈P

w2
lr
(p, p′))

E[ε2
g]− 2−lg ζ̄2

g

1− 2−lg

]

=
(

2−lr + (1− 2−lr )ϕlr

)
ζ̄2

r +
(1− 2−lr )(1 + ϕlr )(E[ε2

g]− 2−lg ζ̄2
g)

1− 2−lg
,

(19)

where E[ε2
g] denote the error variance of guide channel g. Note that, in Equation (19), the noise variance

of channel r consists of two components: (1) the imaging noise variance ζ2
r has the same form of

channel-independent demosacing (as in Equation (13)); (2) the error variance E[ε2
g] of guidance channel

with the coefficient decided by the level of the channel r and the filter used in the demosaicing algorithm.
Similar to the case of channel-independent demosaicing, the error variance of demosaiced channel r can
be calculated by E[ε2

r ] = E[δ2
r ] + E[ζ2

r ].
The relationship between channels in demosaicing can be represented using a Demosaicing Forest

as illustrated in Figure 6. In this forest, the channel demosaiced without guidance of other channels
is the root of a tree in the forest, and a pair of parent and child nodes in a tree represents a pair of
guidance and demosaiced channels in channel-dependent demosaicing. Hence, for each channel i,
there is a unique demosaicing chain containing all reachable nodes from the root to channel i, denoted by
DC(i). Intuitively, if two channels i and j come from different trees, i.e., DC(i) ∩ DC(j) = ∅, then the
two channels are independent; otherwise, the two channels would have a lowest common chain element
k, where the level of k, lk = max(level(DC(i) ∩ DC(j))). The errors of these two channels are then
partially correlated due to sharing of the same component from the error of channel k. Thus, for the
off-diagonal elements E[εiεj] (the correlation between the errors of channel i and j) in correlation Corre,
we have:

E[εiεj] =


0, if DC(i) ∩ DC(j) = ∅,
(1−2−li )

3
2 (1−2

−lj )
3
2 (E[ε2

k ]−2−lk n̄k
2)

∏
p
(1+ϕlp )

− 1
2 ∏

q
(1+ϕlq )

− 1
2 (1−2−lk )

, otherwise,

s.t. i 6= j, p ∈ DC(i)− DC(k), q ∈ DC(j)− DC(k).

(20)
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Therefore, the objective function MSE is built with a few parameters: the Gaussian filter we used
in demosaicing, scale factors η1

µ2 and η2
µ2 , and imaging noise ζ̄2

i of each channel.

1 

2 3 4 

(a) 
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level  2 

level  3 

5 6 level  4 
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3 4 

(b) 
Figure 6. (a) The binary tree of a MSFA pattern and the demosaicing order; (b) the corresponding
demosaicing forest.

4. Imaging Optimization Method

In this section, to optimize reconstruction accuracy, we will seek possible combinations of channels,
MSFA patterns, and demosaicing patterns that minimize the objective function (Equation (6)) with
specific parameters. We propose an optimization method that selects n channels from m candidate
channels (n � m) and determines the MSFA patterns and demosaicing orders to facilitate accurate
recovery of spectral reflectance of most natural and man-made objects.

Considering manufacturing complexity, we assume the number of channels, n, on MSFA to be
relatively small (n < 7). Using the binary-tree-based constraint, we know that the number of possible
patterns P with n channels are also small. For example, for n < 7, num (P) = 2, 3, 5 when n = 4, 5, 6.
Therefore, we can enumerate every possible pattern for a specific number of channels, and calculate
the optimal channel selection, the mosaic pattern, and demosaicing order for each pattern.

However, searching for an ordered subset of n channels from m candidates that would minimize
the objective function is NP hard. Therefore, an exhaustive search is time-consuming. For example,
with n = 6 and m = 100, we will need to evaluate P(100, 6) ≈ 1012 permutations. Therefore, we
apply a discrete particle swarm optimization (DPSO) method, detailed in Algorithm 1 to search for the
optimal imaging parameters.

Particle swarm optimization [45] is a global search method that operates on a population of
particles where each particle represents a candidate solution. The method moves these particles
around in the search-space and updates the position and velocity of each particle iteratively.

Algorithm 1 The Proposed DPSO Method

1: Input: Set of candidate channels: {Mj(λ)|j = 1, . . . , m}; Number of output channels: n; Pattern P .
2: Output: Selected ordered set of n channels; Decided demosaicing order O.
3: Initialization:
4: Generate population Xi and velocity Vi (1 ≤ i ≤ P)
5: [Xgb,Ogb] = f indbest(Xpb

i ,P)
6: for j = 1 ... G do

7: for i = 1 ... P do

8: Xpb
i = f (MXi ,P) < f (MXpb

i
,P)?Xi : Xpb

i
9: Vi = w(Vi−1 + c1r ∗ (Xpb

i 	 Xi) + c2r ∗ (Xgb 	 Xi))
10: V̄i = reducemat(Vi, p)
11: Xi = Xi ⊕ V̄i
12: end for
13: [Xgb,Ogb] = f indbest(Xpb

i ,P) (1 ≤ i ≤ P)
14: end for
15: return n ordered channels Xgb, demosaicing order Ogb;



Sensors 2018, 18, 1172 12 of 19

Let the number of particles be P and the number of iteration be G. Note that ith particle Xi denotes
ith candidate solution where each solution consists of n ordered channel selected from m candidate
channels, and therefore each particle Xi is a m× 1 integer vector. In vector Xi, the element with positive
value k indicates the channel is the k th selected channel in pattern P , while those with 0 value indicate the
channels that are not selected. The function f indbest() finds the global optimal tuple of ordered channels
Xgb and the optimal demosaicing order Ogb for the specific pattern P . The behavior of the algorithm
is adjusted using four parameters: c1, c2, w, and p. For each iteration j, the algorithm maintains the
global best solution Xgb and the local best solution Xpb

i of each particle. The objective function f (MXi ,P)
calculates the MSE of the imaging with selected channels Xi and specific pattern P for every possible
demosaicing orders and then return the minimum MSE.

Each iteration of particle i uses standard procedures in a basic particle swarm optimization but
with modified operations. We first calculate the velocity from Xi to Xpb

i and the velocity from Xi to
Xgb using the mutation operation 	. The velocity from vector A to B is defined as a differential matrix
of swapping pairs from A to B. Then, the algorithm updates the velocity Vi using weighted sum of
previous velocity Vi−1, Xpb

i 	 Xi, and Xgb 	 Xi; here, the weighted values indicate the possibility to
swapping pairs. Then, the algorithm uses the function reducemat() to retain the principal component
of velocity Vi by clipping the velocity with a threshold probability p; finally, it updates the solution
by adding clipped velocity V̄i to the current solution Xi. The adding operation Xi ⊕ V̄i is defined as
swapping the status(selected with index or unselected) of the xth channel and the yth channel in set
Xi, where (x, y) is a swapping pair in matrix V̄i [46].

5. Evaluation and Comparison

In this section, we evaluate our error and noise models in simulation using popular multi-spectral
image datasets. Next, we compare our optimization method with GAP camera design and Chi’s filter
selection method. Finally, we explore the optimal number of channels and how imaging noise level
affects MSFA design and demosaicing strategy. The candidate set of channels used in simulation is
constructed with spectral transmission data of 30 off-the-shelf coating color filters from http://www.
rosco.com/filters (see Figure 7).
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Figure 7. Four channels selected from a candidate set.

5.1. Error Models

We evaluate the estimated spectral recovery from our method and compare it with Chi’s [1]
and Shen’s method [18]. We randomly choose 100 different channel combinations from the candidate
set, each channel combination consisting of six different channels. Next, we calculate average estimated
spectral recovery error only (ignoring the error due to noise and demosaicing) for each channel
combination using different spectral dataset in [47], which contains natural spectral reflectances
in abundance.

Figure 8 shows the relationship between objective function values for different channel
combinations and the corresponding spectral recovery error on two different datasets for Chi’s,
Shen’s and our method. Note Chi’s method is content-independent, but Shen’s method uses a prior
based on a large generic spectral dataset [32]. Unlike other methods, our method shows a strong

http://www.rosco.com/filters
http://www.rosco.com/filters
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linear relationship between evaluated objective function and the estimated spectral recovery error,
confirming the higher accuracy of our objective function as a predictor for spectral recovery error.
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Figure 8. Relationship between spectral estimated error and objective function value of previous
methods and our method on “natural” (left) and “paper” (right) dataset in [47]. Note the scatters
of our method distribute along the black dashed line while the scatters of the previous method
distribute irregularly.

To evaluate our overall models, we consider three different random combination of channels,
MSFA patterns, and demosaicing orders as shown in Figure 9. We adopt the bilinear interpolation
method and the binary tree-based generic(BTG) demosaicing method [26] as the channel-independent
demosaicing, and adopt state-of-the-art guided filter (GF) method [48] and residual interpolation (RI)
method [49] as the channel-dependent demosaicing in reconstruction. In error estimation, we used
scale factor η1 = 0.025 and η2 = 0.15, and random Gaussian noise with SNR ≈ 50 db to the response
of camera. The values of the scale factors are directly obtained from the statistics of the multispectral
images in the used datasets.
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Figure 9. Three examples of combinations of different channels, MSFA patterns and demosaicing orders.
Note that the three examples have different numbers of channels (4, 5, 6). The combinations are set casually
to verify our overall model.

The comparison between estimated errors and actual reconstruction errors using different
demosaicing methods is shown in Figure 10. The actual errors are acquired by calculating the difference
between ground truth and reconstructed results. It is worth noting that impact of different combination
is much more than that of different demosaicing methods. Therefore, the combination is the primary
factor while the methods are secondary. Our estimated errors are close to the average actual errors
and illustrate the suitability of our model as a good descriptor for overall reconstruction error.
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Estimated Errors BTG+RI BTG+GF Bilinear+RI Bilinear+GF

Combination 1 Combination 2 Combination 3

Figure 10. Comparison between estimated errors and actual reconstruction errors using different
demosaicing methods (BTG + RI, BTG + GF, Bilinear + RI, Bilinear + GF) with the channels and patterns
shown in Figure 9. The estimated errors are scaled for comparison.

5.2. Comparison with Previous Methods

To verify the effectiveness of our optimization method, we select channels from candidate channel
set using our method, decide channel arrangement on MSFA pattern and demosaicing order using
three methods—GAP camera [12], Chi and Monno’s method [1,14], and our method—as shown in
Figure 11, and compare spectral reconstruction accuracy of our method with the other two methods on
three different datasets—’CAVE’ spectral dataset [38], Harvard’s spectral dataset [31], and our dataset.
Chi and Monno’s method is a combination of Chi’s channel selection method and Monno’s MSFA
design and demosaicing order.
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Figure 11. Selected channels, mosaic binary tree, and demosacking order of (a) GAP camera; (b) Chi
and Monno’s method; and (c) our method.

We used the demosaicing method in [26] and added random Gaussian noise to responses of
camera with SNR ≈ 50 db. To quantify the reconstruction accuracy of multispectral images, especially
on edges, we use relative error |∆s(λ)| defined as:

|∆s(λ)| =

√∫
(s(λ)− ŝ(λ))2dλ∫

s2(λ)dλ
. (21)
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Table 1 shows reconstruction error of the three optimized channel combinations in Figure 11 along
with the error statistics (mean, maxinum, standard deviation). The optimized channels of our method
show superior results to GAP camera’s and Chi and Monno’s results irrespective of the dataset used.

Table 1. Spectral reconstruction error of three optimized channels (see Figure 11) of GAP, Chi and
Monno’s method, and our method.

Methods
CAVE’s Dataset Harvard’s Dataset Our Dataset

Max Mean Std Max Mean Std Max Mean Std

GAP 0.4518 0.3231 0.0880 0.2849 0.0794 0.0854 0.2602 0.1964 0.0421
Chi and Monno’s 0.4381 0.2852 0.0867 0.2498 0.0744 0.0753 0.2231 0.1880 0.0428

Ours 0.4115 0.2775 0.0814 0.2196 0.0629 0.0679 0.1999 0.1586 0.0342

Figure 12 shows comparison of the three methods on two multi-spectral images. Since our method
takes into account the demosaicing error, our estimated spectral error near sharp edges in images is
significantly smaller than others.
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Figure 12. Reconstruction spectral error of multi-spectral images in our database (the 1st row), CAVE
spectral database (the 2nd row), and Harvard’s database (the 3th row) using a GAP camera, Chi and
Monno’s method and our mosaic camera (see Figure 11). Please zoom in and see sharp edges in
gray images.

6. Discussion

Optimal Number of Channels. In order to explore the best number of mosaiced channels on
MSFAs, in Figure 13, we plot the estimated error using our error model and optimization methods
against the different number of channels. Note that the recovery error decreases with an increase in
number of channels, while the errors caused by demosaicing and imaging noise increase with the
increasing number of channels. This is expected since more channels would result in more accurate
recovery while sacrificing spatial resolution for each channel. Therefore, the sweet spot is where the
sum of these two curves has a minima. In Figure 13, we see that, using our candidate channels, this is
around 5–6 channels.
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Figure 13. Our estimated error (spectral recovery error, demosaicing error and imaging noise) on
“CAVE” spectral dataset [38] with a different number of mosaiced channels. The errors reveal the
optimal number of channels to be around 5–6. Here, we use the MSFA and demosaicing method in [26].

Behavior of Imaging Noises. Adopting our model and optimization method, we can also explore
how imaging noise affects optimal channel selection, design of MSFA, and demosaicing strategy via
simulation. Figure 14 shows the optimized results under different imaging noise levels. It can be seen
that, under higher noise levels, the optimized channel combination would have higher light throughput
to preserve SNR of cameras (the observation is similar to previous works [13,20]). We also found that,
in the presence of higher noise, the MSFA pattern tends to be more uniform, that is, the binary tree is
more balanced. Furthermore, the demosaicing method tends to be more channel-independent. This is
expected since, under high noise levels, the magnitude of noise is much larger than the demosaicing
error, while channel-dependent demosaicing propagates noise between channels, although it can
reduce demosaicing error. These conclusions provide guidelines to effectively reduce the search space
in our optimization method.
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Figure 14. The optimized results under different noise levels (from left to right: SNR = 4, 16, 64 db).

7. Conclusions

In summary, we propose new error models for multi-spectral imaging and utilize the models to select
optimal channel combination, the pattern of MSFA, and demosaicing order for multi-spectral imaging.
We verified the effectiveness of our method and compared it with previous methods.

Our method can also be applied to other similar problems. For example, projection display is a dual
imaging system, and, therefore, selecting few efficient primaries for a spectrally accurate display is a dual
problem of our channel selection. In other areas, such as wireless sensor networking, where sensor or
observation selection [50] is critical, our optimization might provide an effective solution in acceptable time.
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In the future, we plan to apply our method to such varied domains, our immediate interest being
in multi-spectral display. Moreover, we plan to explore the relationship between spectral sensitivity of
tunable filter camera channels and accuracy of multi-spectral image registration.
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