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Genetics Selection Evolution

Interpreting single-step genomic evaluation 
as a neural network of three layers: pedigree, 
genotypes, and phenotypes
Tianjing Zhao1,2   and Hao Cheng1*   

Abstract 

The single-step approach has become the most widely-used methodology for genomic evaluations when only a 
subset of phenotyped individuals in the pedigree are genotyped, where the genotypes for non-genotyped individu-
als are imputed based on gene contents (i.e., genotypes) of genotyped individuals through their pedigree relation-
ships. We proposed a new method named single-step neural network with mixed models (NNMM) to represent 
single-step genomic evaluations as a neural network of three sequential layers: pedigree, genotypes, and pheno-
types. These three sequential layers of information create a unified network instead of two separate steps, allowing 
the unobserved gene contents of non-genotyped individuals to be sampled based on pedigree, observed genotypes 
of genotyped individuals, and phenotypes. In addition to imputation of genotypes using all three sources of informa-
tion, including phenotypes, genotypes, and pedigree, single-step NNMM provides a more flexible framework to allow 
nonlinear relationships between genotypes and phenotypes, and for individuals to be genotyped with different 
single-nucleotide polymorphism (SNP) panels. The single-step NNMM has been implemented in the software pack-
age “JWAS’.

Background
The single-step approach [1–3] has been successfully 
adopted in genomic evaluations when only a subset of 
phenotyped individuals in the pedigree are genotyped. 
The single-step approach uses information from geno-
typed and non-genotyped relatives in two equivalent 
ways: (a) calculating an improved relationship matrix 
from pedigree and observed genotypes of genotyped 
individuals to model the covariances of breeding values 
for all relatives [1]; or equivalently, (b) imputing geno-
types for non-genotyped individuals linearly based on 

gene contents (i.e., genotypes) of genotyped individu-
als and the pedigree, then propagating the uncertainty 
from the imputation by fitting additional random effects 
accounting for imputation errors in genomic evaluations 
[3] (see “Appendix”). In practice, the linear imputation in 
(b) can be obtained by modeling the gene content of each 
marker as a quantitative trait with a very high heritability 
and fitting the “expected” gene content as random effects 
based on covariances defined by the pedigree [4]. Thus, 
the latter interpretation (b) of the single-step approach, 
involves three sequential layers of information: pedigree, 
genotypes, and phenotypes. This leads to our new repre-
sentation of the single-step approach as a neural network 
of three fully-connected sequential layers of information: 
pedigree (input layer), genotypes (middle layer), and phe-
notypes (output layer), as demonstrated in Fig. 1.

In previous work, we have proposed a method named 
“NNMM” (neural network with mixed models) for quan-
titative genetics, to extend mixed models (“MM”) to 
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neural networks (“NN”) by adding intermediate layers 
of data (e.g., gene expression levels) between genotype 
and phenotype layers [5, 6]. Better prediction accuracies 
were observed when intermediate omics data were incor-
porated into genomic prediction using NNMM. In this 
paper, we show that NNMM can be adopted to incorpo-
rate pedigree, genotype, and phenotype information as a 
unified network named “single-step NNMM”, thus pro-
viding a new representation of the single-step approach, 
and yielding equivalent or higher prediction accuracies, 
due to the advantages described below.

Single-step NNMM has several advantages over the 
conventional single-step approach [1–3]. First, in the 
conventional single-step approach, gene contents of 
non-genotyped individuals are imputed based on the 
genotypes of genotyped individuals only through pedi-
gree relationships. This can be considered as pre-analysis 
processing using Gengler’s method [4], and phenotypes 
are not included in this pre-analysis. We will show that, 
in single-step NNMM, such pre-analysis is not needed, 
and gene contents of non-genotyped individuals can be 
“imputed” based on pedigree, genotypes, and phenotypes 
in the Bayesian neural networks using Markov chain 
Monte Carlo (MCMC). Second, in single-step NNMM, 
the relationships between genotypes and phenotypes can 
be approximated by nonlinear activation functions of the 
neural network to introduce non-linearity between geno-
types and phenotypes. Lastly, the conventional single-
step approach requires individuals to be genotyped using 
the same single nucleotide polymorphism (SNP) panel 

(i.e., same markers for all genotyped individuals), while 
single-step NNMM can include individuals genotyped 
by different SNP panels (i.e., different markers for geno-
typed individuals) without pre-analysis.

In this paper, we present single-step NNMM for 
genomic evaluation, study its performance, and com-
pare it to the conventional single-step approach [1–3]. 
Here, we focus on studying the effect of fitting pedigree, 
genotypes, and phenotypes jointly as three unified fully-
connected sequential layers, in which gene contents of 
non-genotyped individuals are sampled conditional on 
all three layers of data. The same assumptions of linear-
ity and of individuals being genotyped using the same 
SNP panel, as in the conventional single-step approach, 
were used in singe-step NNMM (i.e., a linear activation 
function, and individuals genotyped with the same SNP 
panel).

Methods
In single-step NNMM, three sequential layers of infor-
mation, i.e., pedigree, genotypes and phenotypes, form 
a unified neural network (instead of two separate steps) 
as demonstrated in Fig.  1. Mixed models were used to 
infer unknowns, including missing gene content of non-
genotyped individuals and marker effects. In detail, at 
each iteration of the MCMC, unknowns will be sampled 
using Gibbs sampling from their full conditional poste-
rior distributions at three levels: (1) from the input layer 
(pedigree) to the middle layer (gene contents): pedigree-
based best linear unbiased prediction (PBLUP); (2) from 
the middle layer (gene contents) to the output layer (phe-
notypes): genomic BLUP (GBLUP) or Bayesian Alphabet; 
and (3) sampling missing values in the middle layer (gen-
otypes for non-genotyped individuals) based on three 
layers of information, including pedigree, observed geno-
types of genotyped individuals, and phenotypes.

From input layer (pedigree) to middle layer (gene 
contents): Pedigree‑based BLUP
Assuming there are m markers (i.e., m nodes in the mid-
dle layer), for the jth marker, the observed gene content 
(i.e., genotypes) of genotyped individuals can be modeled 
as:

where zg ,j is a vector of observed gene contents (i.e., gen-
otypes coded as 0/1/2) of marker j for genotyped individ-
uals, and µj is its overall mean with a flat prior; uj is the 
vector of gene content deviations (i.e., centered geno-
types) for individuals in the pedigree with a prior 
uj ∼ MVN (0,Aσ 2

uj
) , where the covariance matrix is the 

numerator relationship matrix of individuals in the 

(1)zg ,j = 1µj +Wuj + εj ,

Fig. 1 Framework of single-step NNMM with three fully-connected 
sequential layers of data: pedigree, genotypes, and phenotypes. 
Between the layer of pedigree and the layer of genotypes, 
the gene content of each marker is treated as a quantitative trait, 
and the pedigree is used to define the random effects covariance 
matrix. Each node in the middle layer represents the gene content 
of one marker. “NA” denotes missing values. For example, the nodes 
in the middle layer may be 2,2,0,1,0 for a genotyped individual or all 
missing (“NA”) for a non-genotyped individual. For non-genotyped 
individuals, all gene contents are missing and will be sampled 
conditional on pedigree, genotypes, and phenotypes in MCMC
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pedigree ( A ), scaled by variance component σ 2
uj

 ; and W is 
the incidence matrix associating uj with zg ,j . The vector of 
random residuals, εj , is included to allow the use of 
mixed model equations, and to account for genotype or 
pedigree errors [4]. The prior of εj is εj ∼ N (0, Iσ 2

ǫj
) . In 

principle, the heritability of gene content of each SNP 
(

σ 2
uj

σ 2
uj
+σ 2

ǫj

)

 should be 1 if the genotypes and pedigree infor-

mation are perfectly correct and, thus, a small value of 
the estimated heritability indicates that there are errors 
in either genotypes or pedigree. Variance components 
are treated as unknowns in single-step NNMM, and 
scaled inverse chi-square distributions are assigned as 
prior distributions for variance components.

From middle layer (gene contents) to output layer 
(phenotypes): GBLUP or Bayesian Alphabet
The phenotypes can be modeled as:

where y is the vector of phenotypes, µ is the overall mean 
with a flat prior, zj is a vector of (observed and sampled) 
gene contents for the jth marker ( j = 1, . . . ,m ), and αj is 
the corresponding marker effect. Priors from GBLUP [7–
9] or the Bayesian Alphabet [10–18], such as BayesCπ , 
can be used for sampling marker effects or breeding val-
ues. The vector e represents the residuals of phenotypes, 
with prior e ∼ N (0, Iσ 2

e ) . The prior distribution of σ 2
e  

itself follows a scaled inverse chi-square distribution.

Sampling missing values in the middle layer (gene 
contents)
Here we label the matrices related to non-genotyped and 
genotyped individuals with subscripts “n” and “g”, respec-
tively. For the jth marker, the full conditional posterior 
distribution of the missing gene content is proportional 
to the product of its prior and the likelihood:

where ELSE includes µ , αj , σ 2
e  , µj , σ 2

uj
 , and σ 2

ǫj
 for j = 1,

. . . ,m , denoting the current values of all other unknowns 
except Zn = [zn,1, . . . , zn,m] and U = [u1, . . . ,um] . Detailed 
derivations are in “Appendix”.

When a nonlinear relationship is assumed between the 
middle layer (gene contents) and the output layer (phe-
notypes), Hamiltonian Monte Carlo (HMC) [19] may be 
employed for sampling missing genotypes. Note that if 

(2)y = 1µ+

m
∑

j=1

zjαj + e,

(3)
f (zn,j|Zn,−j ,Zg , y,A,U,ELSE)

∝ f (y|Zn,Zg ,ELSE)f (zn,j , zg ,j|uj ,A,ELSE),

a linear relationship is assumed, missing genotypes can 
be sampled directly from a normal distribution at each 
iteration.

Data analysis
Assuming linear relationships between genotypes (mid-
dle layer) and phenotypes (output layer), and that the 
same SNP panel is used for all genotyped individuals 
in the conventional single-step approach, we applied 
the same assumptions in the single-step NNMM (i.e., 
a linear activation function and individuals genotyped 
with the same SNP panel) to compare the prediction 
performance of these two methods. Thus, GBLUP was 
employed between the middle layer (gene contents) and 
the output layer (phenotypes) in the single-step NNMM 
(i.e., SS-NN-GBLUP), and its performance was compared 
to the conventional single-step GBLUP approach (i.e., 
SS-GBLUP).

The pig dataset from [20] was used, which includes 
3534 genotyped individuals, and a pedigree of 6473 indi-
viduals including parents and grandparents of the geno-
typed animals. Estimates of heritability of gene content 
for each marker were close to 1 [21]. In our analysis, we 
used 10,000 randomly-selected SNPs as the genotype 
data. A random sample of 0.5%, i.e. 50, of these mark-
ers was selected as quantitative trait loci (QTL), and they 
were included in the genotypes. Phenotypes were simu-
lated with a heritability of 0.7 and a phenotypic variance 
of 1. The 100 youngest individuals, whose genotypes were 
observed but phenotypes were unknown, were used for 
testing, while the remaining individuals (i.e., 3434 indi-
viduals) with known phenotypes were used for training.

To compare the single-step NNMM with the conven-
tional single-step method in this study, different propor-
tions of non-genotyped individuals in the training dataset 
were considered, including 30, 50, 70, and 90%, and there 
were 10 replicates for each scenario. For each replicate, 
individuals were randomly selected to be non-genotyped 
individuals. The prediction accuracy was calculated as 
the Pearson correlation between the true breeding val-
ues and the estimated breeding values for individuals in 
the testing dataset. In single-step NNMM, at least 2000 
MCMC iterations were applied to ensure convergence.

In single-step NNMM, the heritability ( h2 ) of gene 
content in Eq. 1 can be considered as known to be 1 or 
unknown. When the heritability is considered known, a 
value close to 1 (i.e., h2 = 0.999 ) is used to facilitate the 
use of mixed model equations. In single-step NNMM, 
two strategies were used to sample missing genotypes 
of non-genotyped individuals, i.e., missing genotypes 
were sampled conditionally on or unconditionally on 
phenotypes.
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Unlike the conventional single-step approach, which 
requires individuals to be genotyped using the same SNP 
panel (i.e., identical markers for all genotyped individu-
als), the single-step NNMM can accommodate individu-
als genotyped with different SNP panels (i.e., varying 
markers for genotyped individuals). Thus, we also tested 
scenarios where SNP sets differed among individuals.

Results
In single-step NNMM (SS-NN-GBLUP, i.e., single-step 
NNMM with GBLUP between middle and output layer), 
when the heritability ( h2 ) in Eq. 1 is considered unknown, 
the estimated heritability for each SNP was very close to 
1.0, and similar results for SS-NN-GBLUP were observed 
regardless of whether the heritability ( h2 ) in Eq.  1 was 
assumed known (i.e., h2 = 1 ) or unknown. Thus, only the 
results obtained with SS-NN-GBLUP with h2 = 1 in Eq. 1 
are presented. We compared the results of the conven-
tional single-step method (SS-GBLUP, i.e., conventional 
single-step GBULP) and single-step NNMM (SS-NN-
GBLUP) when missing genotypes of non-genotyped 
individuals were sampled conditionally on phenotypes, 
as described in Eq.  3. The results, presented in Table  1, 
demonstrate the prediction accuracy when various pro-
portions of phenotyped individuals were genotyped. 
In general, the prediction accuracy of both methods 
decreased as the proportion of non-genotyped individu-
als increased. Overall, the SS-NN-GBLUP displayed a 
similar prediction accuracy to the SS-GBLUP approach, 
with no significant differences observed (pairwise t-test 
at a significance level of p < 0.01). The correlation between 
estimated marker effects from these two methods was 
high. Both the conventional single-step approach and 
single-step NNMM had significantly higher prediction 
accuracies compared to GBLUP using genotyped individ-
uals only. The running time of SS-NN-GBLUP was less 
than 2 h using 20 central processing units (CPUs), while 
the conventional SS-GBLUP only took a few minutes (see 
“Discussion”). In addition, similar results were observed 
for SS-NN-GBLUP whether missing genotypes were 
sampled conditional on or unconditional on phenotypes.

We also tested scenarios where SNP sets differed 
among individuals, and the prediction accuracies aligned 
with our expectations. For example, when we randomly 
introduced 50% missing values in the genotype covariate 
matrix of the training dataset, the prediction accuracy 
was 0.767, with a standard deviation of 0.011 across 10 
replications. This result is reasonable when compared 
to our previous findings. Note that when all individuals 
were genotyped, the prediction accuracy of GBLUP was 
0.849.

Discussion
In this paper, we propose a new method named single-
step NNMM, which presents a novel framework for 
single-step methods by treating gene content (i.e., geno-
types) as a middle layer of data between pedigree and 
phenotypes. Single-step NNMM represents single-step 
genomic evaluations as a neural network of three sequen-
tial layers: pedigree, genotypes, and phenotypes. Single-
step NNMM is based on linear mixed models, i.e. PBLUP 
between the input layer (pedigree) and middle layer 
(gene content) and GBLUP/Bayesian Alphabet between 
the middle layer and the output layer (phenotype). This 
approach allows us to benefit from the implementation 
and optimization of well-studied linear mixed models for 
genomic prediction. Using the pedigree-based relation-
ship matrix as an input of a neural network is not new. 
Gianola et  al. [22] have shown that PBLUP is equiva-
lent to a single (middle) layer neural network with a 
linear activation function, when the input is a pedigree-
based relationship matrix. However, single-step NNMM 
extends conventional mixed models to a neural network 
with heterogeneous input data across multiple layers 
(more than two, i.e., pedigree, genotypes, phenotypes), 
whereas conventional mixed models or neural networks 
only consider two layers of data (input and output layers).

Compared to the conventional single-step method, 
the three sequential layers of information in single-step 
NNMM form a unified network, rather than two separate 
steps. Thus, the unobserved gene contents of non-gen-
otyped individuals can be sampled based on informa-
tion from all three layers: pedigree, observed genotypes 
of genotyped individuals, and phenotypes. Single-step 
NNMM offers a highly flexible framework for single-step 
methods, which allows nonlinear relationships between 
gene contents and phenotypes, as well as the genotyp-
ing of different individuals using distinct SNP panels (i.e., 
various patterns of missing genotypes). The single-step 
NNMM has been implemented in the software package 
“JWAS” [23, 24].

In our comparison, the same assumptions of linearity 
and identical SNP panels, as in conventional single-step 
approach, were used in singe-step NNMM. Overall, 

Table 1 Comparison of prediction performances between 
conventional single-step (SS-GBLUP) and single-step NNMM 
(SS-NN-GBLUP)

The average prediction accuracies from 10 replications with the standard 
deviation in brackets

Method % non-genotyped individuals

30% 50% 70% 90%

SS-GBLUP 0.808 (0.005) 0.757 (0.007) 0.694 (0.013) 0.558 (0.015)

SS-NN-GBLUP 0.810 (0.006) 0.754 (0.007) 0.691 (0.013) 0.559 (0.014)
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when some individuals were not genotyped, single-
step NNMM had similar prediction accuracy as the 
conventional single-step approach, and the correlation 
between estimated marker effects from these two meth-
ods was high. Both conventional single-step approach 
and single-step NNMM had significantly higher predic-
tion accuracies compared to GBLUP using genotyped 
individuals only.

As we have described, in addition to allowing non-
linearity and individuals being genotyped with different 
SNP panels, a difference between single-step NNMM 
and the conventional single-step approach is in geno-
type imputation. Besides genotypes and pedigree, phe-
notypic information can also be used in the sampling 
of missing genotypes for non-genotyped individuals in 
single-step NNMM. However, similar prediction accu-
racies were observed regardless of whether missing 
genotypes were sampled conditional on or uncondi-
tional on phenotypes in SS-NN-GBLUP. For polygenic 
traits, this observation may be attributed to at least two 
reasons. First, a single SNP contributes only a small 
proportion of heritability and the correlation between 
the gene content of one SNP and phenotypes is gener-
ally low. As a result, incorporating phenotypic infor-
mation into genotype imputation may introduce more 
noise than useful information. Second, phenotypes aid 
only in the imputation of causal variants, and variants 
in high linkage disequilibrium with causal variants. 
However, phenotypic information is employed in the 
imputation of all SNPs and can potentially introduce 
errors in marker imputation. However, when genotypes 
of relatives provide limited information (e.g., most indi-
viduals are not genotyped), the additional benefits in 
genotype imputation by including phenotypic informa-
tion may not be negligible.

To enhance the applicability of our method to more 
realistic datasets, we implemented parallel comput-
ing using Message Passing Interface (MPI) [25], taking 
advantage of multiple computer processors’ capabilities. 
Ideally, with a sufficient number of computer processors, 
the computation time from the input layer (pedigree) to 
the middle layer (gene content) would be equal to the 
time required for one PBLUP, which should be relatively 
fast. The speed improvement from parallel computing is 
limited, however, by the hardware used. In our analysis 
of the pig dataset (i.e., 6473 individuals in the pedigree, 
10,000 SNPs, and 3534 individuals with genotypes), run-
ning 2000 MCMC iterations on this dataset using 20 
central processing units (CPUs) took less than 2  h for 
single-step NNMM, while the conventional single-step 
approach only took a few minutes. In future research, 

we plan to explore the use of graphics processing units 
(GPUs), which are commonly employed in neural net-
works, and more advanced parallel computing strategies 
(e.g., [26, 27]).

Appendix
Conventional single-step approach as linear imputations
In a conventional single-step approach, a pre-analysis pro-
cessing is used to impute the gene contents of non-geno-
typed individuals from the genotypes of genotyped 
individuals through pedigree relationships. In detail, the cen-
tered gene content of each marker is treated as a normally-

distributed quantitative trait as 
[

zn,j
zg ,j

]

∼ MVN (0,A2pjqj) , 

where pj is the allele frequency and qj = 1− pj . Under 
Hardy–Weinberg equilibrium, the variance of marker is 
2pjqj . Thus, the distribution of zn,j conditional on zg ,j is a 
multivariate normal distribution:

This can be written as:

where ẑn,j = AngA
−1
gg zg ,j is the imputed genotypes for 

non-genotyped individuals, and rn,j is the imputation 
uncertainty with var(rn,j) = (Ann − AngA

−1
gg Agn)2pjqj . 

Extending the above equation to multiple markers, we 
have Ẑn = AngA

−1
gg Zg.

After the pre-analysis processing, both imputed and 
observed genotypes will be used for genomic evalu-
ation. An additional random effect will be used to 
account for the uncertainty from the genotype imputa-
tion. In detail, the phenotypes are written as:

where µ is the overall mean, Ẑn is a matrix of imputed 
genotypes for non-genotyped individuals, Zg is a matrix 
of observed genotypes for genotyped individuals, α is a 
vector of marker effects, and e is the vector of random 
residuals with e ∼ MVN (0, Iσ 2

e ) . r∗ =
∑m

j=1 rn,jαj is a 
random vector to account for the sum of weighted impu-
tation uncertainty across all markers with variance:

(4)
zn,j|zg ,j ∼ N (AngA

−1
gg zg ,j , (Ann − AngA

−1
gg Agn)2pjqj).

(5)zn,j = ẑn,j + rn,j ,

(6)

[

yn
yg

]

= 1µ+

[
∑m

j=1 zn,jαj
∑m

j=1 zg ,jαj

]

+ e

= 1µ+

[∑m
j=1(ẑn,jαj + rn,jαj)

Zgα

]

+ e

= 1µ+

[

Ẑn

Zg

]

α +

[

r∗

0

]

+ e,
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where σ 2
g =

∑m
j=1 2pjqjσ

2
α is the genetic variance of 

phenotypes.
The conventional single-step GBLUP approach has 

been extended for Bayesian regression models to accom-
modate more flexible assumptions of the marker effects 
[3]. It has been shown that the single-step Bayesian 
regression model with a normal prior for marker effects 

(7)

var(r∗) =

m
∑

j=1

var(rn,jαj)

= (Ann − AngA
−1
gg Agn)

m
∑

j=1

2pjqjσ
2
α

= (Ann − AngA
−1
gg Agn)σ

2
g ,

is equivalent to the single-step GBLUP approach in terms 
of predicting genetic values.

Sampling missing genotypes
Assuming a linear relationship between the middle layer 
(gene contents) and the output layer (phenotypes), the 
unobserved genotypes of non-genotyped individuals can 
be sampled from a normal distribution. Here we label the 
matrices related to non-genotyped and genotyped indi-
viduals with subscripts “n” and “g”, respectively.

For the jth marker ( j = 1, . . . ,m ), let nn denote the 
number of non-genotyped individuals. The full condi-
tional posterior distribution of unobserved genotypes for 
these non-genotyped individuals ( zn,j ) is as follows:

(8)

f (zn,j|Zn,−j ,Zg , y,A,U,ELSE)

∝ f (y|Zn,Zg ,ELSE)f (Zn,Zg ,A,U,ELSE)

∝ f (yn|Zn,ELSE)f (yg |Zg ,ELSE)·
m
�

j=1

f (zn,j , zg ,j|uj ,ELSE)f (uj|A,ELSE)

∝ f (yn|Zn,ELSE)f (zn,j , zg ,j|uj ,ELSE)f (uj|A,ELSE)

∝ f (yn|Zn,ELSE)f (zn,j|un,j ,ELSE)f (zg ,j|ug ,j ,ELSE)·

f (uj|A,ELSE)

∝ f (yn|Zn,ELSE)f (zn,j|un,j ,ELSE)

∝ (σ 2
e )

− nn
2 exp

�

[cn,j − zn,jαj]
T [cn,j − zn,jαj]

−2σ 2
e

�

.

(σ 2
ǫj
)−

nn
2 exp

�

[zn,j − dn,j]
T [zn,j − dn,j]

−2σ 2
ǫj

�

∝ exp

�

zTn,jzn,jα
2
j − 2zTn,jcn,jαj

−2σ 2
e

�

exp

�

zTn,jzn,j − 2zTn,jdn,j

−2σ 2
ǫj

�

= exp

�

zTn,jzn,jα
2
j σ

2
ǫj
− 2zTn,jcn,jαjσ

2
ǫj

−2σ 2
e σ

2
ǫj

�

exp

�

zTn,jzn,jσ
2
e − 2zTn,jdn,jσ

2
e

−2σ 2
ǫj
σ 2
e

�

= exp

�

zTn,jzn,j(α
2
j σ

2
ǫj
+ σ 2

e )− 2zTn,j(cn,jαjσ
2
ǫj
+ dn,jσ

2
e )

−2σ 2
e σ

2
ǫj

�

= exp



















zTn,jzn,j − 2zTn,j

�

cn,jαjσ
2
ǫj
+dn,jσ

2
e

α2j σ
2
ǫj
+σ 2

e

�

−2
σ 2
e σ

2
ǫj

α2j σ
2
ǫj
+σ 2

e



















= exp

�

zTn,jzn,j − 2zTn,jfn,j

−2s2j

�

∼ MVN (fn,j , Is
2
j ),
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where cn,j = yn − 1µ−
∑

j′ �=j zn,j′αj′ , dn,j = 1µj + un,j , 

fn,j =
cn,jαjσ

2
ǫj
+dn,jσ

2
e

α2j σ
2
ǫj
+σ 2

e
 , s2j =

σ 2
e σ

2
ǫj

α2j σ
2
ǫj
+σ 2

e
 . The term ELSE repre-

sents unknowns, excluding Zn = [zn,1, . . . , zn,m] and 
U = [u1, . . . ,um] . It includes µ , αj , σ 2

e  , µj , σ 2
uj

 , and σ 2
ǫj

 for 
j = 1, . . . ,m.

From the full conditional posterior distribution of zn,j , 
it is evident that elements within zn,j can be indepen-
dently sampled from a univariate normal distribution. 
However, the full conditional posterior distribution 
of zn,j is dependent on all other markers zn,j′ through 
the term cn,j = yn − 1µ−

∑

j′ �=j zn,j′αj′ . Consequently, 
missing genotypes for all markers cannot be sampled 
simultaneously.

Sampling missing genotypes (unconditional on 
phenotypes)
Our results have indicated that phenotypic infor-
mation provides limited improvement for genotype 
imputation. From a computational perspective, when 
sampling missing genotypes conditional on pheno-
types, the full conditional posterior distribution of zn,j 
depends on all other markers zn,j′ through the term 
yn − 1µ−

∑

j′ �=j zn,j′αj′ . This dependency makes the 
imputation of each marker dependent, which needs the 
use of approximations to enable parallel computing.

Therefore, below we present the sampling of miss-
ing gene content without conditioning on phenotypes. 
In this scenario, the single-step NNMM is identical to 
conventional single-step methods. The full conditional 
posterior distribution of zn,j is as follows:

where dn,j = 1µj + un,j.
The full conditional posterior distribution of zn,j is 

independent of zn,j′ , allowing for simultaneous sampling 
of missing genotypes (i.e., zn,1 , zn,2, . . . , zn,m).
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