
UCSF
UC San Francisco Electronic Theses and Dissertations

Title
Tools for the next generation of extracellular electrophysiology

Permalink
https://escholarship.org/uc/item/6360b95r

Author
Chung, Jason Ern Chi

Publication Date
2018
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6360b95r
https://escholarship.org
http://www.cdlib.org/


Tools for the next generation of extracellular physiology 

by 

Jason Ern-Chi Chung 

DISSERTATION 

Submitted in partial satisfaction of the requirements for the degree • 

DOCTOR OF PHILOSOPHY 

in 

Neuroscience 

in the 

GRADUATE DIVISION 

of the 

UNIVERSITY OF CALIFORNIA, SAN FRANCISCO 



 ii 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iii 

 

 

To my parents, Janette and Oscar Chung 

For the choices that gave me the freedom to find and pursue what I am meant to do 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 iv 

Acknowledgements 

All work described in this thesis was done with the support of a Ruth Kirchstein F30 

National Science Research Award Fellowship. I am also grateful for rich training environment 

that the UCSF Medical Scientist Training Program, UCSF Neuroscience graduate program, 

UCSF Department of Physiology, and greater UCSF community has fostered. 

First and foremost, I thank my thesis advisor Loren Frank who has provided me more 

opportunity and guidance than can be described here. I focus on three of Loren’s qualities which 

have made him a successful mentor. First is Loren’s generosity, especially with his time when 

providing support to his trainees. The first time I saw this firsthand was during a weekend of my 

rotation; he spent an hour on the phone to trouble-shoot data acquisition issues. Second, 

Loren’s optimism opened up tremendous opportunities for me, allowing me to pursue the work 

described in this thesis. Third, Loren’s patience has provided the time I required to develop the 

ideas and to collect and analyze the data.  

I am deeply grateful to my collaborator Jeremy Magland. Nearly all of the work described 

in Chapter 1, as well as the electrode drift correction work described in Chapter 2 was done in 

close collaboration. I also thank Alex Barnett and Leslie Greengard, who, together with Jeremy 

Magland, developed the core methodology and software of MountainSort. 

I give special thanks to my collaborators Vanessa Tolosa and Supin Chen, with whom all 

design of the polymer electrode arrays described in Chapter 2 was done. Together with my 

other collaborators at Lawrence Livermore National Laboratory, Angela Tooker, Sarah Felix, 

Razi Haque, Jeanine Pebbles, Kye Lee, and Kedar Shah, all polymer electrode arrays were 

fabricated. 

I thank my collaborators Mattias and Magnus Karlsson, together with whom all design of 

the data acquisition hardware described in Chapter 2 was done. I also thank Maxim Borius for 

assistance in fabrication of the acquisition hardware. 



 v 

I thank W. Hamish Mehaffey, who collected all the zebra finch data described in Chapter 

2 and has helped me better understand the songbird. 

I thank my laboratory colleagues, Margaret Larkin, Caleb Kamere, Shantanu Jadhav, 

Walter German, Gideon Rothschild, Jai Yu, Emily Anderson, Mari Sosa, Demetris Roumis, 

Anna Gillespie, Tom Davidson, David Kastner, Andrew Tritt, and Clay Smyth for the 

enlightening discussions and encouragement. I thank Anya Kiseleva, Sheri Harris, and Gomathi 

Ramakrishnan for ensuring a positive lab environment and their research support. I thank Viktor 

Kharzia for his histological work and guidance. 

I thank Jiang Lan Fan for collecting data from multiple animals with me. Together with 

Hannah Joo, we implanted many animals and developed two new behavioral tasks. I also thank 

Daniel Liu and Kenneth Kay for the countless discussions which helped shape the behaviors 

and deepen my understanding of hippocampal physiology. I thank Charlotte Geaghan-Breiner 

and Hexin Liang for all their hard work in collecting data. I thank Irene Grossrubatscher, with 

whom I collected data from the locus ceruleus. 

It has been a great privilege to learn from my thesis committee members Michael 

Stryker, Michael Brainard, and Karunesh Ganguly. Their insightful feedback has proven 

essential.  

 I thank my brother, Jonathan Chung, for being a source of inspiration throughout my life, 

and to my parents Oscar and Janette Chung for enabling me to pursue a career in science. 

Finally, I thank my wife, Katherine Wai, for her support, patience, and understanding 

throughout the long days and late nights that went into this work. 

  



 vi 

Chapter 1 was work done in collaboration with Jeremy Magland and is reprinted largely as it 

appears in:  

Chung, J.E.*, Magland, J.F.*, Barnett, A.H., Tolosa, V.M., Tooker, A.C., Lee, K.Y., Shah, K.G., 

Felix, S.H., Frank, L.M., Greengard, L.F. (2017). "A fully automated approach to spike sorting." 

Neuron. 95: 1381-1394. 

  



 vii 

Tools for the next generation of extracellular electrophysiology 

Jason Ern-Chi Chung 

Abstract  

 Complex animal behaviors are supported by computations made across large 

ensembles of neurons distributed among multiple brain regions. Our current understanding of 

how individual neurons and the circuits they are a part of represent and process information has 

depended upon the ability to observe the millisecond timescale dynamics of these neuronal 

networks. The multi-electrode array has been the principle tool utilized for the isolation of large 

numbers of simultaneously recorded neurons, though current approaches have required a 

tradeoff among resolution, spatial coverage, longevity, and stability. Alongside the recordings 

that these arrays are capable of producing, existing methods of assigning times and labels to 

the continuously sampled extracellular voltage trace (a process termed spike sorting) has 

required extensive manual input.  

 To address the shortcomings in the currently available tools, we developed a novel spike 

sorting software suite, MountainSort, and a new polymer probe-based, modular recording 

platform. In this thesis I describe, validate, and demonstrate the utility of these new tools in their 

ability to: (1) cluster neural events, (2) stratify the qualities of these clusters to identify putative 

single-units, (3) outperform other spike sorting methodologies, (4) record from hundreds of 

neurons distributed across multiple regions simultaneously, (5) record single-units for months, 

and (6) record from the same single-units for over a week. I propose that together, these tools 

enable the study of previously inaccessible questions. 
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Introduction 

 The computations underlying sensation, perception, cognition, and action take 

place in the brain, a massively interconnected neuronal network. Large ensembles of 

neurons are organized into specialized circuits, distributed across anatomically 

connected regions. Millisecond timescale interactions govern the action potentials or 

spikes of individual neurons and are considered the basic quanta of computation. 

Understanding behavior and the dynamics of neuronal networks which govern it 

therefore requires the simultaneous measurement of spike trains from hundreds of 

neurons across multiple regions in awake animals1. 

 Isolation of large numbers of simultaneously recorded neurons has been 

dependent upon two key technologies. The first is tightly packed multi-electrode arrays2-6 

which yield extracellular data comprised of multiple channels of continuously sampled 

extracellular voltages. Second is a technique which processes this data, detecting 

spiking events and assigning them to putative individual neurons. This process of 

clustering spiking events is commonly referred to as spike sorting7-10.  

 Multi-electrode arrays provide the millisecond timescale resolution required to 

study large ensembles of neurons, but because neural computations take place in 

distributed brain regions and over long timescales, however, existing extracellular 

recording techniques lack the spatial and/or temporal scales required for their study. 

Specifically, current electrophysiological technologies are limited in their ability to access 

(i) large numbers of neurons, (ii) across multiple brain regions, (iii) over extended time 

scales (weeks to months). Only an extracellular recording technology that overcomes all 

three fundamental limitations of scale will enable understanding of brain function overall. 

Arrays of single channels allow for small individual penetrations, allowing dense 

sampling of multiple adjacent regions simultaneously for long periods of time. However, 

the use of single channels makes the isolation of individual neurons more error prone11, 
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and use of more than two 96-site arrays has been typically restricted to superficial 

regions in non-human primates12-14. A recently developed single-shank silicon array with 

integrated active electronics, termed the neuropixel probe4, has had successes in many 

of these areas, but is only able to sample collinear regions. A complementary 

technology, using a movable 16 tetrode array, has demonstrated stability and 

compatibility with continuous recording and tracking individual neurons, but is unable to 

yield large numbers of simultaneous neurons15. Polymer arrays16-22 have shown promise 

for stable long-term interfaces with brain tissue capable of resolving single units, but 

have largely existed in the proof of concept stage where the potential for large spatial 

coverage and dense sampling have not been realized. As such, there remains a 

significant, unaddressed need in neuroscience for long-term, single unit recordings in 

distributed brain regions. 

 Typical spike sorting approaches have required some degree of manual 

intervention7-9, despite many previous attempts to automate sorting algorithms7,8,23-33. 

The need for manual intervention is due in large part to four challenges that make spike 

sorting more complex than clustering in other disciplines. First is the background signal 

which arises from combinations of multiple complex emissions, including small spikes 

from hundreds of distant neurons and dataset-specific electrical and movement-related 

noise, making it difficult to model. Second, the distribution of spike waveform shapes 

from a single neuron can be non-Gaussian and skewed, especially when bursting 

occurs34-36. Third, waveform variation can also arise from movement of the electrode 

array relative to the neural tissue, termed electrode drift23,37-39. Fourth, multiple neurons 

can fire simultaneously leading to overlapping spikes in the time domain, a problem that 

increases in frequency with large electrode arrays. This overlap can also occur in the 

spatial domain, on the same channels of an array25,26. An additional challenge of 
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computational and operator efficiency arises as datasets expand in both number of 

channels and length of acquisition time, making a fully-automated approach imperative. 

Chapter 1 addresses many of the issues raised immediately above with the 

development of a fully automated spike sorting algorithm and software suite termed 

MountainSort. Beyond achieving full automation, MountainSort is demonstrated to have 

error rates that are comparable to or lower than those of existing manual and semi-

manual approaches, and runtimes faster than acquisition times. This is shown on (1) 

simulated data where the ground truth is known and error rates can be quantified, (2) 

hippocampal CA1 tetrode data where bursting often occurs and cluster assignments can 

be validated using their place firing properties, and (3) 7-hour data from a 16-channel 

arrays where simultaneous spikes can occur on different channels. 

Chapter 2 focuses on a novel recording system and implantation platform meant 

to address the drawbacks in current chronic extracellular electrophysiology. The system 

consists of high density polymer probes integrated with a modular implantation platform. 

This system is demonstrated to (1) measure the activity of hundreds of single neurons 

across multiple, spatially distributed structures in freely-behaving animals, (2) yield 

single unit recordings for months, and (3) support continuous 24-hours a day, 7-days a 

week (24/7) recording. The MountainSort40 spike sorting software is also adapted to link 

clusters across time segments, and together with continuous 24/7 recording, 

demonstrate stable recordings from individual neurons for over a week. 
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Chapter 1  
 
A fully automated approach to spike sorting 
 
 
 
 
 
 
 
 
 

  



 8 

Summary 
Understanding the detailed dynamics of neuronal networks will require the 

simultaneous measurement of spike trains from hundreds of neurons (or more). 

Currently, approaches to extracting spike times and labels from raw data are time 

consuming, lack standardization and involve manual intervention, making it difficult to 

maintain data provenance and assess the quality of scientific results. Here, we describe 

an automated clustering approach and associated software package that addresses 

these problems and provides novel cluster quality metrics. We show that our approach 

has accuracy comparable to or exceeding that achieved using manual or semi-manual 

techniques with desktop CPU runtimes faster than acquisition time for up to hundreds of 

electrodes. Moreover, a single choice of parameters in the algorithm is effective for a 

variety of electrode geometries and across multiple brain regions. This algorithm has the 

potential to enable reproducible and automated spike sorting of larger scale recordings 

than is currently possible. 
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Introduction 
Advances in our understanding of how populations of neurons represent and 

process information has been enabled by tightly packed multi-electrode arrays that allow 

for isolation of large numbers of simultaneously recorded neurons1-4. Data collected from 

these devices comprise multiple channels of continuously sampled extracellular 

voltages. A key step in making these data interpretable is spike sorting, the process of 

detecting spiking events and assigning those events to single units corresponding to 

putative individual neurons5-9.  

A number of challenges make spike sorting more complex than clustering in 

many other disciplines. First, there is no simple noise model. The background signal 

arises from the combinations of multiple complex signals, including small spikes from 

hundreds of distant neurons, and can contain electrical noise mixed with true neural 

signals6. Second, variation in waveform shapes for a given cell can be highly non-

Gaussian and skewed, particularly when bursting occurs10-12 or when the cell positions 

drift over time relative to the physical electrode13-16. Multiple neurons may fire 

simultaneously, leading to time-overlapping spike signals, and while this may not occur 

frequently in some brain areas or with small electrode arrays, for large arrays sampling 

tens to hundreds of neurons, individual spikes will often time-overlap with other 

events17,18. 

The majority of spike sorting algorithms comprise a sequence of steps such as 

bandpass filtering, spatial whitening, detection of threshold-crossing events, and 

clustering based on voltage waveform shape in a suitable feature space; this generally 

involves one or more manual processing steps 5-7,19. At one extreme, the clustering itself 

is performed by a human operator, viewing the event features in two-dimensional 

projections, and drawing cluster boundaries with the assistance of specialized user 

interfaces (Xclust, M.A. Wilson; MClust, A.D. Redish; Offline Sorter, Plexon). In other 
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situations, clustering is automated, but the user must curate the results by selecting 

which clusters to reject, merge, or even split 20-22. There also exist post-processing steps 

that resolve overlapping spikes 18,23-25, and algorithms based on independent component 

analysis (ICA) that do not explicitly involve clustering 26. Presently, despite many 

available packages and proposed algorithms, no generally adopted software packages 

offer fully automated sorting that can take in the raw time series data and output spike 

times and identities without the expectation of further curation. 

From the standpoint of efficient and reproducible science, any human 

intervention has disadvantages. Manual sorting can have error rates in excess of 20% 27 

and there is substantial variability in labeling across different sorting sessions 20,28,29. 

Furthermore, the human spike sorter could never keep up with the increasing volume of 

data arising from increasingly large electrode arrays applied over increasingly long 

durations 4,30-34. 

Although fully-automated spike sorting has been of interest for many years 35, 

and despite prior efforts to automate sorting algorithms 5,6,16-19,21,23,25,36-40, the majority of 

laboratories still rely heavily on manual intervention. In this work, we set out to develop a 

fully automated spike sorting algorithm having error rates that are comparable to or 

lower than those of existing manual and semi-manual approaches, and with runtimes 

faster than acquisition times. We introduce MountainSort, a novel spike sorting algorithm 

and open-source software suite of processing, visualization, and curation tools. 

  



 11 

Results 

A central goal of our overall spike sorting strategy has been to develop a single 

algorithm that can be applied to data from different brain regions without the need for 

brain-region specific models or parameters. This requires that the procedure be 

insensitive to differences in dataset properties such as non-Gaussian cluster 

distributions, electrode densities, and firing rates. Further, selecting parameters such as 

thresholds and regularization constants is time-consuming and can call into question the 

objectivity of results. Therefore, our guiding philosophy is to minimize both the number of 

user-defined parameters and the number of modeling assumptions, while maintaining 

high spike sorting accuracy and efficiency. 

 To satisfy these requirements we developed the spike sorting pipeline shown in 

Fig. 1A. This involves preprocessing, sorting on electrode neighborhoods, consolidation 

across those neighborhoods, fitting, derivation of cluster metrics, and automated 

annotation based on those metrics. The last step replaces manual curation (deciding on 

which clusters to accept), but importantly does not involve corrections to clustering as 

with other approaches. Details of all processing steps are provided in Methods. Here we 

give an overview of the most critical steps. 

Clustering of neural events 

At the heart of our sorting pipeline is a new, efficient, nonparametric, density-

based clustering algorithm termed ISO-SPLIT (Fig. 1B), used to sort spike events based 

on their representations in a low-dimensional feature space. The algorithm makes only 

two general assumptions about cluster distributions in this space. First, we assume that 

each cluster arises from a density function which, when projected onto any line, is 

unimodal, having a single region of highest density. Second, we assume that any two 

distinct clusters may be separated by a hyperplane, in the neighborhood of which there 

is a relatively lower density. In our experience, the unimodality hypothesis appears to 
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hold for the large majority of neurons taken from a variety of brain areas — this 

assumption is also implicit in most neural clustering methods, even those that do not 

assume a Gaussian shape 36,41,42. In a minority of cases, we have observed a multimodal 

cluster distribution, reflecting more complex firing properties of a single neuron. Our 

strategy for handling this challenging scenario is discussed below. 

Technical details for ISO-SPLIT are provided in Methods. The algorithm 

comprises a series of nonparametric statistical tests for unimodality and makes no 

assumptions about the shapes of clusters aside from having unimodal one-dimensional 

projections. It therefore involves few adjustable parameters. Essentially one needs only 

to specify a statistical threshold for rejecting the null-hypothesis of unimodality; the 

clustering output is largely insensitive to this threshold due to the test being repeated at 

every iteration. The method is also insensitive to the initialization (see Methods). We use 

the same set of parameters for all examples in this study. Moreover, the algorithm needs 

no a priori information about the expected number of clusters nor the expected cluster 

densities. 

Sorting large electrode arrays 

 As indicated in Fig. 1, sorting is first performed independently on electrode 

neighborhoods (one neighborhood per electrode) based on the geometric layout of the 

array. Redundant clusters are then removed during the next phase entitled 

“consolidation across neighborhoods” (Fig. S1). There are a number of advantages of 

using such a consolidation approach rather than a more error-prone merging procedure 

(see Methods). Importantly, this approach allows scaling to very large electrode arrays 

as the neighborhood sizes will remain roughly constant. 

Identification of putative "single unit", "noise", "non-isolated", and “bursting” clusters 

As part of the overall automation, we developed metrics for determining which 

clusters are sufficiently isolated from noise and other clusters to be included in the final 
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output. In this way only sufficiently isolated clusters are selected for downstream 

analysis. Our quality assessment categorizes the clusters into three groups: "single unit", 

"noise", and "non-isolated". In addition, we automatically identify (based on timing 

information) clear cases where the events of a bursting unit are split into multiple 

unimodal clusters (see Methods). Such decisions have traditionally been handled via 

case-by-case curation by manual operators. In contrast, our strategy only requires the 

operator to set thresholds on cluster quality metrics, as defined below. These metrics 

can be adjusted based on the type of analysis that will be done. Furthermore, the 

metrics can also be exported alongside the event times and labels, allowing analyses 

sensitive to unit isolation and noise contamination to be repeated with different 

thresholds or weighting criteria. 

As stated, a central goal of our approach is to minimize the number of modeling 

assumptions. Currently available metrics 11,43,44, while useful, make assumptions about 

an underlying noise model. Here, we introduce two new metrics that make no such 

assumptions and are specifically suited to spike sorting: isolation and noise overlap. We 

also use a measure of cluster signal-to-noise (SNR) to exclude clusters contaminated by 

artifacts, and employ a timing criterion to flag bursting situations. 

Isolation. The isolation metric quantifies how well separated (in feature space) 

the cluster is from other nearby clusters. Clusters that are not well separated from others 

would be expected to have high false positive and false negative rates due to mixing 

with overlapping clusters. This quantity is calculated in a nonparametric way based on 

nearest-neighbor classification. 

Noise overlap. Noise overlap estimates the fraction of “noise events” in a 

cluster, i.e., above-threshold events not associated with true firings of this or any of the 

other clustered units. A large noise overlap implies a high false positive rate. The 

procedure first empirically computes the expected waveform shape for noise events that 
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have by chance crossed the detection threshold. It assesses the extent of feature space 

overlap between the cluster and a set of randomly selected noise clips after correcting 

for this expected noise waveform shape. 

The noise overlap and isolation metrics vary between 0 and 1, and in a sense, 

represent the fraction of points that overlap either with another cluster (isolation metric) 

or with the noise cluster (noise overlap metric). However, they should not be interpreted 

as a direct estimate of the misclassification rate, but should rather be considered to be 

predictive of this quantity. Indeed, due to the way they are computed, these values will 

depend on factors such as the dimensionality of the feature space and the noise 

properties of the underlying data. Therefore, the annotation thresholds should be chosen 

to suit the application. With that said, in this study we used the same sorting parameters 

and annotation thresholds for all analyses. 

Cluster SNR. Depending on the nature of signal contamination in the dataset, 

some clusters may consist primarily of high amplitude artefactual signals such as those 

that arise from movement, muscle, or other non-neural sources. In this case, the 

variation among event voltage clips will be large compared with clusters that correspond 

to neural units. To automatically exclude such clusters we compute cluster SNR, defined 

as the peak absolute amplitude of the average waveform divided by the peak standard 

deviation. The latter is defined as the standard deviation of the aligned clips in the 

cluster, taken at the channel and time sample where this quantity is largest. 

Bursting units. While events corresponding to a single unit almost always form 

a cluster that is well approximated by a unimodal distribution, there are instances where 

the underlying distribution is multimodal. From our data we see that this most often 

occurs when the first spike in a burst has a different shape and higher amplitude than 

subsequent spikes in the burst. Our sorting algorithm by design will separate these 

events into two or more clusters. Fortunately, such clusters can be readily identified 
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using event timing information, as the smaller spikes will always occur within a short time 

after the first spike in the burst. In the case of our hippocampal data this time window is 

on the order of 15 ms 11. In Methods, we describe the criteria used to label a cluster as 

having a “bursting parent” cluster.  

Comparison to manual clustering for a tetrode dataset 

If automated spike sorting is to be useful, it should provide cluster labels with 

accuracy comparable to or exceeding existing standards. We therefore began with a 

comparison of our automated approach to manual sorting for a dataset that poses 

serious spike sorting challenges: tetrode recordings from the CA1 region of rat 

hippocampus (Fig. 2A). The pyramidal cells in CA1 are densely packed, and thus large 

numbers of cells can be detected on the same electrode. Furthermore, extracellular 

recordings from single CA1 neurons show substantial waveform variability as a result of 

bursting and other history-dependent effects 11,12. We chose a dataset with some 

electrode drift (45-minute recording session) and some artifact contamination resulting 

from animal movement. The data were derived from a novel exposure to a spatial 

environment where we expected to see neurons changing their firing rates substantially 

over time 45,46. The standard in the field for such datasets is either fully manual 

clustering, or semi-automatic clustering where the algorithm over-clusters the data 

leaving the user to manually merge clusters or redraw cluster boundaries 20. 

Three different manual operators clustered the dataset using drawn polygons 

across several different 2D projections (see Methods). As expected 28, while there were 

clusters that all three operators identified, there was variability across operators, both in 

which clusters were sufficiently isolated to merit inclusion, as well as in the placement of 

the boundaries separating clusters, resulting in a range of unmatched events in each 

cluster (Fig. 2B). MountainSort was then run; results of the comparison are shown in the 

confusion matrices of Fig. 2C. A confusion matrix (or contingency table 47) summarizes 
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the consistency between two sortings of the same data by showing the pairwise counts 

(Fig. S2A). The entry aij represents the number of events that were classified as i in the 

first sorting and as j in the second. To handle the arbitrary ordering of labels, the rows 

and columns are permuted to maximize the sum of the diagonal entries 48. A purely 

diagonal matrix corresponds to perfect agreement. For compact visualization, 11 of the 

24 automatically sorted MountainSort clusters with the best match to the manual sorting 

results are shown. 

As shown in Fig. 2C, all 6 clusters that are identified in 2 or more manual 

clusterings are also identified by MountainSort (MountainSort labels 23, 15, 24, 5, 14/16, 

28). For example, MountainSort cluster 24 corresponds to clusters 3, 4, and 3 in the first, 

second and third manual sortings, respectively, with more than 97% of the manual 

events also detected by MountainSort. At the same time, MountainSort identifies a large 

number of events as part of these clusters that are not included in the manual sortings 

(Fig. 2C). That is not surprising given that our approach to manual clustering aims to 

minimize the mistaken inclusion of incorrect events at the expense of missing true 

events; this approach was chosen because false positives can lead to incorrect 

inferences about correlated activity 10.  

Are these additional events likely to be true spiking events associated with the 

cell? Ground truth is not available for this dataset, or for the vast majority of other 

datasets, but in this case we can take advantage of the well-known “place fields” of 

hippocampal neurons 49 to infer the accuracy of the sorting. We therefore examined the 

animal’s location at the times the spikes were detected. If the additional events are 

correctly classified, then they should congregate in the same location as the bulk of the 

events. This is indeed the case. As shown in Fig. 2D and S2B, events detected by 

MountainSort but not by manual operators have spatial distributions very similar to those 
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of the jointly detected or individually detected events, suggesting that these additional 

events are likely to be correctly assigned to this cluster.  

MountainSort also identifies a large number of clusters that were not identified by 

the manual sorters. For the tetrode data featured in Fig. 2 we used the following metric 

thresholds: noise overlap <0.03, isolation >0.95, firing rate >0.1 Hz, SNR >1.5, although 

identical classifications for this dataset would result from using only noise overlap and 

firing rate. After automated curation and one automated bursting-related cluster merge 

(below), this resulted in the identification of 24 putative single-units (Fig. 3A). 

Importantly, these isolated clusters have few, if any, refractory period violations even 

though MountainSort does not use time information for clustering decisions (Fig. 3B). 

Furthermore, 22 of the 24 putative single-units have spatially restricted firing properties, 

consistent with expected behavior from hippocampal CA1 principal cells (Fig. 3C). 

MountainSort clusters 12 and 21 do not have spatially restricted firing properties and are 

relatively low amplitude, however, both have few refractory period violations and also 

have noise overlap scores that are below threshold (0.01 and 0.02, respectively; noise 

overlap threshold = 0.03). Further, the high firing rates of these units suggest that they 

are likely to correspond to one of the subtypes of inhibitory interneurons that can be 

found near the CA1 cell layer 50. 

We further evaluated the quality of the isolation of these additional units by 

identifying the cluster pairs which had the most similar waveforms, as quantified by 

isolation score, and asking whether there was evidence of contamination or low-quality 

clustering in those pairs. In this dataset, clusters 7 and 9 have the lowest isolation score 

of 0.96, and clusters 6 and 4 have the next lowest, an isolation score of 0.97. Despite 

these lower isolation scores, both pairs of clusters have noticeable waveform 

differences, clear separation in the principal component space, and a difference in 
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spatial firing preferences (Fig. S3A, B). This suggests that these clusters all represent 

well isolated single units that likely correspond to single neurons.  

Overall, we found that an isolation score <0.99 could reflect either activity 

originating from at least two different neurons (Fig. S3A, B) or activity from a single, 

bursting neuron with substantial amplitude variation and a multimodal cluster distribution. 

One such bursting cluster pair was automatically identified in this dataset (Fig. S3C, D 

cluster labels 14, 16; isolation = 0.97). Examination of their respective waveforms 

shapes, spatial firing properties (Fig. S3C), and cross-correlation (Fig. S3D), suggests 

that the two clusters come from a bursting neuron, with the higher amplitude cluster 

often spiking before the lower-amplitude cluster. Indeed, after an automatic merge of 

MountainSort clusters 14 and 16 based on an identification of burst pairs (see Methods), 

we find strong similarity to manually identified clusters (Manual 1 cluster 5, manual 2 

cluster 2, manual 3 cluster 5, Fig. S2B). Here we note that automatically joining these 

two clusters required adding assumptions about relative spike timing and amplitudes into 

the post-clustering automated annotation stage. Nonetheless, while the merge is done in 

an automated fashion, the software maintains a record of that annotation alongside the 

original cluster assignments. This makes it straightforward for other scientists to assess 

all annotations made during sorting. 

Five clusters were tagged as overlapping with noise (using noise overlap > 0.03). 

Visual inspection of the events in these clusters revealed four of the five having of broad 

and symmetric waveforms (Fig. S3E), characteristic of what one might expect from the 

summation of activity from many distant neurons crossing the event detection threshold. 

Furthermore, all five of these clusters have events falling in the refractory period, 

suggesting that the noise overlap measure effectively identifies clusters with events that 

should indeed be considered noise (Fig. S3F). In summary, the findings above indicate 

that MountainSort can produce high quality automatic sorting of tetrode datasets. 
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Finally, it is worth noting that only one of the isolated units was able to be 

identified on the basis of the individual channel sorting. This was MountainSort cluster 

21. When using a single channel instead of all 4 channels, we found a noise overlap of 

0.052 vs. 0.021, Isolation 0.98 vs. 0.99, and SNR 5.05 vs. 3.40. Interestingly, this is an 

interneuron of relatively low amplitude (mean peak height of ~110 µv). This suggests 

that single channels are insufficient to isolate single neurons, at least in hippocampal 

area CA1. We believe this would be true for any sorting algorithm.  

Sorting of multi-contact electrode arrays 

While tetrodes remain in use across many laboratories, new, high-density 

multielectrode arrays offer the ability to record from much larger ensembles of neurons 

30,31,51. MountainSort has a number of features designed specifically for such arrays. To 

demonstrate and evaluate these features, we applied our algorithm to 7 hours of data 

from a 16-channel, polymer probe (Fig. 4A) 52,53 dataset with challenges similar to those 

of the tetrode dataset used in Figs. 2 and 3. Although this array was placed in a different 

brain region (prelimbic cortex), had four times as many channels as the tetrode 

recording shown above, and contained a full seven hours of continuous recording, we 

used identical parameters for the clustering pipeline and for the quality metric thresholds. 

Recall that MountainSort independently applies spike sorting on small electrode 

neighborhoods, and then consolidates across all channels. In the case of the 16-channel 

probe, each local neighborhood consisted of up to 7 electrodes. As a consequence, the 

feature space in which each electrode’s clustering was done was derived from a 

different, sometimes non-overlapping, set of electrodes. This is a notable difference with 

the tetrode dataset where every channel was included in every neighborhood.  

Applying MountainSort to this dataset resulted in the identification of 37 putative 

single-units (Fig. 4B). Importantly, as in Fig. 3, the putative single-units have few, if any, 

refractory period violations (Fig. 4C). Putative noise clusters (noise overlap > 0.03) are 
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shown in Fig. S4. After removing clusters with high noise overlap, there was only one 

cluster pair flagged as non-isolated (isolation < 0.95). This was the one identified 

bursting cell pair, MountainSort ID 32 and 33, 0.91 isolation (Fig. S4C). The cluster pair 

with the next highest overlap was cluster pair 30 and 31, 0.97 isolation, a pair identified 

as putative single-units during automated annotation (Fig. S4D). These results 

demonstrate that MountainSort can be applied to a range of datasets without the need 

for parameter adjustments.  

Comparison with other sorting algorithms 

MountainSort aims to provide a fully automated spike sorting pipeline in the 

sense that it takes as input a raw timeseries and generates a set of well isolated 

clusters. Most other software packages provide only a degree of automation by 

producing a set of clusters requiring further curation. This is oftentimes done using 

manual means: the expectation is that users will discard, merge, and sometimes even 

split clusters before using the results for downstream analyses. Setting aside the issue 

of human intervention, we compared MountainSort (MS) with two other spike sorting 

packages: KiloSort (KS) 24 and Spyking Circus (SC) 54. The three algorithms were 

applied to (a) real data from our laboratory (the tetrode dataset described above), (b) a 

publicly available extracellular dataset with known ground truth (128-channel silicon 

polytrode together with a juxtacellular ground-truth measurement) 55, and (c) simulated 

data obtained from superimposing synthetic waveforms on background signal taken from 

a real dataset. Each of the three software packages has parameters that can be 

modified to optimize performance for different applications. However, as our objective is 

to create a spike sorting environment that is well suited to a diverse set of problems 

without requiring parameter tuning, we used the recommended set of parameters in 

each of the three packages (i.e., default values or the settings used in the examples 
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distributed with the software). Importantly, for each algorithm we used the same 

parameters in all three experimental settings. 

Confusion matrices comparing MS with KS and SC on the hippocampal dataset 

are shown in Fig. 5. For visualization purposes, the obviously invalid clusters (based on 

autocorrelograms) were manually excluded from KS and SC prior to assembling the 

matrices. These matrices make it clear that the three algorithms find many of the same 

units, but also highlight a number of clusters where the algorithms produce different 

results. These include one cluster that MS identified but KS did not (MS 12), and 9 

clusters that MS identified but KS merged into other clusters (MS 18, 7, 23, 25, 29, 11, 

10, 27, 17), 7 clusters that MS identified but SC did not (MS 5, 27, 25, 12, 9, 8, 7), and 7 

clusters that MS identified but SC merged into other clusters (MS 10, 23, 18, 17, 16, 11, 

4). Taken together, neither KS nor SC identified MS 12, and both KS and SC merged 

MS 18, 17, 11, 10, and 23 into other clusters. The 7 clusters found by KS but not by MS 

(appearing on the right side of Fig. 5A) correspond to low amplitude clusters rejected in 

the automated annotation stage of MountainSort for having a high noise overlap score. 

Based on autocorrelograms and place maps, we believe the clusters found by 

MS and not by the other algorithms to be valid units, including MS12, a putative 

interneuron. Clusters in the KS or SC sorting which comprise events from multiple MS 

clusters (Fig. 5) could be the result of a MS false split or a KS or SC false merge. For 

simplicity, attention was focused on the cases where KS and SC had the same or 

overlapping MS cluster subsets (KS 48, SC 6; KS 8, SC 23; KS 2, SC 2). Despite KS 

and SC having a degree of agreement, the MS clusters showed appreciable differences 

in PCA projections, waveforms, and spatial firing properties (Fig. S5), suggesting that 

the MS clusters were more likely to correspond to well isolated single units.  

We then applied MS, KS, and SC to a publicly available 128-channel dataset with 

independent juxtacellular firing information for one of the cells 55. This dataset is one of 
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ten datasets in the repository exhibiting varying levels of sorting difficulty. We found that 

only one of these featured a (ground-truthed) cell with sufficiently high amplitude-to-

noise ratio to perform accurate sorting using any of the techniques. MountainSort 

identified this high amplitude unit with very high accuracy (>99%; 24 false positives and 

32 false negatives out of 4895 true events) and appropriately marked it as a bursting 

pair. KiloSort also split the unit into two pieces with >99% accuracy, but has no 

mechanism to report bursting pairs. Spyking Circus split the true cluster into two pieces, 

but the larger portion (60% of events) were merged with a low amplitude cluster that 

included many false positives. Instructions for running these algorithms on this publicly 

available dataset are provided in the software repository for MountainSort. 

In addition, we applied the algorithms to a publicly available tetrode recording 

from a rat hippocampus 28 with a juxtacellular ground truth channel. MountainSort found 

the unit with 10% false positives and 11% false negatives. Spyking Circus had only 6% 

false positives but 21% false negatives. KiloSort could not be run (in the current version 

of the software) because the channel count was too low. 

Fig. 6 shows that MountainSort has a consistently higher accuracy score than the 

other two algorithms, particularly when the number of detectable clusters is high (Fig. 

6C). We note, however, that because we chose the default/recommended parameters 

for the three algorithms, these results do not preclude the possibility that KS and SC 

could do better if parameters were adjusted. 

Assessment of computational efficiency 

MountainSort was also able to cluster all of these datasets much faster than real-

time. We carried out timing tests on a Linux workstation with 192 GB RAM and 20 

physical processors with hyper-threading capability (although not all cores were used in 

the experiments, as indicated). The 46-minute, 4-channel dataset used in Figs. 2 and 3 

had a total MountainSort runtime of 40 seconds (including 22 seconds preprocessing) 
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when run using 16 threads. This is around 70 times faster than real time. The 6.6-hour, 

16-channel dataset used in Fig. 4 involved over 7 million detected events and had a total 

MountainSort runtime of 805 seconds (including 336 seconds preprocessing) using 16 

threads. This is 30 times real time. The 128-channel publicly available dataset with 

juxtacellular ground truth 55 was sorted in 249 seconds (including 128 seconds 

preprocessing) using 40 threads. This represents 2.5 times real time. 

To assess how processing times scale with the duration of recording and number 

of events, we processed subsets of the 7-hour, 16-channel probe dataset which 

contained ~1.1 million events per hour. We found that processing times scaled roughly 

linearly with the data duration, with a preprocessing time of ~1 minute per hour of the 

recording and a sorting time of ~1.3 minutes per hour (Fig. 7A). We also wanted to 

assess the efficiency on machines with fewer processing cores. We varied the number 

of logical cores between 4 and 20 for processing a 4-hour subset of the same 16-

channel data. We note that even though the processing is fastest when using 16 or more 

threads, the processing speed is still much faster than real time when restricting to only 

4 logical cores. Taken together, and even assuming linear scaling with the number of 

electrodes (sublinear scaling is expected due to parallelization if we also increase the 

number of cores) our results suggest that 320 channels from the same electrode array 

could be sorted in real time on a single machine; this is on the order of the GPU rate 

reported in Pachitariu, et al. 24 for KiloSort. 
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Discussion 

The MountainSort software suite provides fully automated spike sorting from 

electrode arrays of varied sizes and geometries in multiple brain regions, with accuracies 

comparable to or exceeding existing standards, and computational times much faster 

than acquisition times on non-specialized hardware. Importantly, MountainSort is also a 

fully functional package providing an intuitive graphical user interface with the ability to 

visualize subsets of selected clusters and annotation tools for exporting the data (see 

the online source code repository for documentation and tutorials). This stands in 

contrast to many previously developed clustering algorithms, where it would be difficult 

for users to test out algorithms on their own data. Thus, it is relatively straight-forward to 

incorporate MountainSort into a laboratory’s data processing pipeline. 

To our knowledge, this is the first time that a fully-automated spike sorting 

approach has been demonstrated to have comparable error rates to existing manual and 

semi-manual standards. Moreover, MountainSort sorted a dataset from the 

hippocampus better than humans, despite the presence of both complex spike bursts 

and noise events that arise from muscle and movement-related artifacts. Indeed, 

MountainSort identified many more putative single units from a hippocampal CA1 tetrode 

than manual sorters (24 vs 5-10). We note here that there are principled reasons to 

expect that MountainSort would outperform manual sorting. Typical manual sorting, such 

as in this study, is done in a static feature space of 4 to 16 dimensions (such as 

amplitude on channel 1, peak-to-trough ratio on channel 3, etc.), computed from filtered 

waveforms. Moreover, manual sorting usually involves drawing polygons in two 

dimensional projections. In contrast, MountainSort operates in a 10-dimensional space 

corresponding to the first 10 principal components (PCs), computed from spatially-

whitened waveforms (effectively it is more than 10 dimensions when considering the 

branch method, see Methods). Moreover, each of the 10 dimensions does not 
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correspond to only one channel at a time, as with some other clustering approaches, but 

instead each is a PC across all of the channels of the neighborhood. Further aiding in 

separation is the recomputation of the PCs when doing cluster comparisons. Due to 

these differences, it is highly likely that MountainSort can more reliably separate clusters 

than could a human operator, the current gold standard for tetrode spike sorting. 

Comparison of MountainSort to two other recently released packages, KiloSort 

and Spyking Circus, suggests that MountainSort also performs better than these other 

packages. When applied to the hippocampal dataset, all three algorithms identified a 

subset of well isolated units, but MountainSort found units that were not identified by 

Spyking Circus, and both KiloSort and Spyking Circus merged units with distinct PCA 

features and spatial firing patterns that MountainSort separated. Comparisons on 

simulated data revealed the same trends: MountainSort consistently identified units with 

greater accuracy than the other algorithms. 

These comparisons highlight two other features of MountainSort. First, these 

comparisons were based on using the default parameter values for all three algorithms. 

While it is possible that different parameters could have improved the performance of 

KiloSort and Spyking Circus, one of our major goals was to develop an algorithm with 

essentially no free parameters, and our success in sorting data from multiple brain 

regions as well as multiple simulated dataset using the same parameters illustrates the 

power of this approach. Second, while these comparisons used the fully automated 

output from MoutainSort, manual curation remained necessary for both KiloSort and 

Spyking Circus. It is important to note that these algorithms were not designed to be fully 

automatic, so the need for manual curation is not surprising, but it remains the case that, 

at the time of this publication, only MountainSort is successful in a fully automated mode. 

Automation provides clear benefits for reproducibility among sortings of the same 

data and comparability across datasets. This is accomplished using novel isolation and 
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noise overlap metrics. By contrast, commonly used cluster metrics, such as isolation 

distance 11 and L-ratio 43,44, utilize Mahalanobis distance calculations, which are 

dependent upon the dimensionality of the selected feature space, making it difficult to 

compare cluster quality between datasets. Furthermore, the commonly-used L-ratio 

metric, among others 22, makes the assumption of a multivariate normal cluster 

distributions, which can be problematic because this is often not valid as in cases of 

burst firing or electrode drift. By taking into account dataset-specific noise and nearest 

neighbor distances, our noise overlap and isolation metrics provide a nonparametric 

means to compare cluster quality across datasets. 

This ability to compare quality across datasets allow these cluster quality metrics, 

combined with the annotation and provenance strategy built in to MountainSort, to be 

propagated to downstream analyses. Maintaining access to all clusters and their cluster 

quality metrics, including those that likely correspond to multiunit spiking, has a number 

of important advantages. First, thresholds could be established by examining how known 

properties of a given set of units (such as the number and size of hippocampal place 

fields) vary as a function of cluster quality 8. Second, simple changes in inclusion 

thresholds can be used for direct assessment of whether cluster quality influences a 

specific finding. Cluster quality could also be used to weight the contribution of each unit 

to a given analysis, thereby ensuring that the best isolated clusters have a proportionally 

greater influence on the findings. Third, there are cases where including multiunit spiking 

improves the quality of the results, as is the case for clusterless decoding of animal 

position from unsorted hippocampal spiking activity 56,57. Inclusion of all clusters 

regardless of quality, greatly simplifies the application of these techniques to the data. 

The combination of automation with a minimal set of parameters and model 

independence also has particular advantages. Existing spike sorting pipelines 20-22,24,54 

typically depend upon numerous adjustable parameters, operator judgment, and even 
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allow for cluster boundaries to be redrawn, significantly increasing potential inter-

operator variability. Automation that relies on a single, common set of parameters 

eliminates these issues. Further, our algorithm is also effectively model-free, making 

only the assumption that clusters have unimodal density projections. In contrast, existing 

sorting algorithms that rely on a template matching step 23,42,58 (i.e., minimizing the L2-

norm of the error for a given model) implicitly assume a multivariate Gaussian noise 

model, resulting in increased variability in output and operator curation when this 

assumption is not valid. MountainSort’s model independence offers versatility, allowing it 

to deal gracefully with non-Gaussian waveform variation and to be used across 

recording conditions and locations. 

While MountainSort’s assumption of unimodality works well even in the case of 

the hippocampal cells (with non-Gaussian cluster distributions) we applied it to, there are 

still cases where bursting results in multiple unimodal clusters that should be merged. 

MountainSort therefore involves a post-processing step for automatically detecting 

clusters that are bursting pairs. The software also provides annotation tools to allow the 

user to indicate that he or she believes that the clusters should be merged, but 

importantly the original automatic clustering is also preserved in the sorting output, 

allowing for identification of all user decisions. This occasional need for manual merging 

could be further mitigated by using additional post-clustering analyses beyond our 

current relatively simple automated bursting pair criteria 10-12. 

MountainSort also runs quickly, even on large datasets. Clustering is always 

performed on local electrode neighborhoods, so clustering time theoretically scales 

linearly with the number of channels. Importantly, the clustering stage, along with most 

other stages of the processing, are implemented as parallel computations that can be 

run simultaneously on multiple CPU cores. As a result, the total time required for sorting 

and metric computation was much shorter than the recording times for the same data on 
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standard computer hardware for both tetrodes (70x real-time) and a 16-channel polymer 

probe (30x real-time). These speed-ups are in line with other approaches 24,54 where 

strategies such as hardware acceleration have brought computational times down 

significantly. However, these alternative approaches lack an automated curation 

component. As computers become increasingly powerful, the time spent by manual 

operators remains the largest bottleneck to spike sorting. With the elimination of manual 

curation, total sorting time becomes faster than acquisition time, and we can explore 

further directions that would otherwise be infeasible. One is the ability to run the 

clustering algorithm multiple times, allowing for cross-validation in the absence of ground 

truth 59. Such stability metrics ensure that clustering results are not overly sensitive to 

realistic noise perturbations. 

While MountainSort offers substantial advantages over current manual and semi-

automatic clustering methods, additional work will be required to fully address two 

remaining challenges: overlapping spikes and drift. Currently, as with KlustaKwik 20,21, it 

has no problem with coincident spiking events where the two neurons are sufficiently 

separated in space (i.e., induce peak signal on different channels). However, neither 

package solves the harder problem of resolving spike waveforms that significantly 

overlap on the same electrode. Current solutions to that problem rely on model-based 

frameworks 17,18,24,25, which, as discussed, include strong noise model assumptions. 

These approaches have been shown to be successful when applied to in-vitro datasets, 

and it may be possible to adapt these approaches as a post-sorting step to identify 

events that are best explained as the superposition of two or more spikes. 

MountainSort naturally handles some level of drift, where there are systematic 

changes in waveforms thought to result from movement of electrodes relative to the 

tissue or perhaps due to glial cells migrating along electrode shanks 13-16. We expect that 

MountainSort will correctly identify cluster boundaries as long as the resultant time-



 29 

collapsed cluster is unimodal and does not overlap with another cluster. Errors are 

expected when these time-collapsed clusters overlap with one another, however. That 

said, because MountainSort can be run on overlapping sections of data, it is 

conceptually straightforward to include augmentations that link clusters across time 

slices using segmentation fusion based algorithms 33. Cases where clusters drift in and 

out of noise or other clusters are more problematic, both for MountainSort and for all 

other current approaches. Here the new cluster metrics we have developed can be 

helpful, as clusters that drift into other clusters or the noise will tend to have poor 

isolation and noise overlap scores, allowing identification of times the cluster is 

sufficiently uncontaminated. 

Taken together, our findings demonstrate that MountainSort is a sensible and 

efficient automated solution to the spike sorting problem. With a combination of minimal 

assumptions, fast run times, and a powerful graphical user interface, MountainSort can 

greatly shorten the time required for spike sorting while increasing the reproducibility and 

transparency of the process. With one electrode channel neighborhood allocated per 

available logical core, MountainSort is naturally extensible to distributed computing and 

large electrode arrays. Our approach is compatible with future refinements and 

extensions for resolving overlapping spikes and tracking units in the presence of drift. 
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EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Rat 

Both tetrode and 16-channel probe datasets were collected from a male long-

evans rat (RRID: RGD_2308852), roughly 2 months after implantation of tetrode 

microdrive and polymer multielectrode arrays. At the time of data collection, the rat was 

~8 months of age weighing ~525 g, and was fed standard rat chow (LabDiet 5001) in 

addition to sweetened evaporated milk for reward during behavioral performance. The 

rat was ordered from Charles River Laboratories at a weight of 350 g and ~3 months of 

age. 

 

METHOD DETAILS 

Throughout our sorting pipeline (Fig. S1A) we adhere to the objective of 

minimizing the number of parameters and the number of assumptions made. We also 

aim for full automation. 

For preprocessing we used a bandpass filter implemented via FFT convolution 

followed by a heuristic procedure for masking out high voltage artifacts: we simply 

removed chunks of data with amplitudes outside of the expected range by replacing 

these data by zeros. We then applied a (nonparametric) spatial whitening filter to the 

entire time series matrix (details below) which we found to be crucial for separating 

nearby clusters. Both procedures where parallelized by dividing the dataset into time 

chunks (overlapping chunks in the case of the bandpass filter). 

Sorting is initially performed separately on neighborhoods (one for each 

electrode channel) using information only from the central electrode and its neighbors 

(Fig. S1B). The neighborhood patch is determined by the geometric layout and a single 

user-specified distance parameter, an electrode adjacency radius. For the tetrode 

dataset, the neighborhood comprised all four channels, but the sorting was still 
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performed four times, with each channel being considered as the central channel on its 

respective local sorting. In other words, sorting was done four times in a feature space 

derived from all four channels, each time only with the events detected on one of the 

four channels. For the 16-channel probe, neighborhoods of size 6-7 were used for all but 

two channels. The feature space for each electrode’s sorting was derived from a 

different electrode neighborhood, an important difference from the tetrode dataset. The 

local sorting steps are event detection, clustering, and fitting as described below. In 

general, using larger electrode neighborhoods increases computation time, and we have 

observed that using more than 6-10 electrodes per neighborhood does not substantially 

influence sorting results for these examples. 

In a second pass, the local sorting results are consolidated across electrodes to 

resolve duplications. By removing redundancies rather than merging clusters, we avoid a 

host of problematic scenarios. This is described in more detail below. Finally, per-cluster 

metrics are computed and automated annotation is applied so that clusters are labeled 

as "single unit", "noise", and "non-isolated". 

Filtering and spatial whitening 

We bandpass filter (600 Hz to 6000 Hz) each channel in a standard fashion via 

the FFT applied to overlapping chunks of time. As the final stage of preprocessing, 

spatial whitening removes correlations among channels that are not due to the neuronal 

signals of interest. We have found this to be crucial in separating nearby clusters. Let Y 

be the M × N signal matrix. The whitened signal is given by 

𝑌" = 𝑈𝑉′ 

where 

𝑌 = 𝑈𝑆𝑉′ 
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is the singular value decomposition. This is sometimes known as ZCA (zero-phase 

component analysis) whitening. The new data has an identity covariance matrix and can 

be calculated by applying the following channel mixing matrix at each time sample: 

𝑊)*+*,- = 𝑈𝑆./𝑈′ 

This procedure is parallelized by splitting the dataset into time chunks and computing the 

covariance matrix in the first pass through the data and applying the mixing matrix in a 

second pass. 

Event detection 

As described above, event detection is performed independently on each 

electrode (as part of its local neighborhood sorting) using the preprocessed (whitened) 

data. With closely spaced electrodes, it is expected that the same event will be flagged 

multiple times on different channels, but the subsequent cluster consolidation and fitting 

stages resolve this redundancy. An event is flagged at time sample t0 whenever the 

following two criteria are met: 

|𝑌(𝑡3| > 𝜇 

|𝑌(𝑡3| > |𝑌(𝑡/|	𝑓𝑜𝑟	𝑎𝑙𝑙	|𝑡3 − 𝑡/| ≤ 𝜏 

where Y is the preprocessed signal, µ is a detection threshold in units of standard 

deviations away from the mean, and τ is a detection interval specifying the minimum 

allowable time difference (in samples) between two events on the same channel. For our 

datasets we used µ = 3 and τ = 10 which corresponds to 0.33 ms at our 30 kHz sampling 

rate. 

While the choice of these parameters is somewhat arbitrary, the detection 

threshold can be chosen to be quite low (in order to capture low amplitude firing events), 

with the caveat that the lower the threshold, the greater the computation time. Similarly, 

with low thresholds, the noise clusters (ultimately discarded) will be larger. Our 
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experience has been that the final sorting results are independent of this choice, 

provided that it is low enough. 

Feature extraction and the branch method 

Clustering is performed separately in each electrode neighborhood (typically 5-10 

electrodes are used, regardless of total array size). Event clips are extracted, PCA 

features are computed, and then ISO-SPLIT clustering (described below) is applied in n-

dimensional feature space, where n is typically 10. This has the potential to yield in an 

incorrect cluster merging due to the relatively low dimensionality of the feature space. 

Therefore, assuming that more than one cluster is found, we recompute the PCA 

features from the original clips for each initial cluster separately. Clustering is then 

applied to each of these and the procedure is repeated until no further cluster splitting 

occurs. In this way, we increase the sensitivity of distinguishing between distinct but 

nearby clusters. We call this the branch method. 

At each stage of the branch clustering we use principal component analysis 

(PCA) features. For each detected time sample t0, a M × T clip centered at t0 is extracted 

from the preprocessed data. Here M is the number of channels constituting the 

neighborhood of the electrode of interest, and T is the clip size in samples. We used T = 

50 throughout. These clips are considered as MT-dimensional vectors and are mapped 

into the n-dimensional feature space corresponding to the first n principal components. 

We used n = 10 throughout, regardless of the neighborhood size. Again, we note that 

the effective size of the feature space is larger due to the branch method in which event 

features are computed recursively. 

Clustering via ISO-SPLIT 

Clustering takes as input a set of points (n-component vectors) and assigns to 

each point an integer cluster label. Our efficient, nonparametric clustering method 

termed ISO-SPLIT is at the heart of the sorting pipeline. It is a density-based method 
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that does not require a tunable scale parameter, nor does it need an a priori estimate for 

the number of clusters. Instead a statistical test is applied on one-dimensional 

projections at each iteration 60. This crucial one-dimensional kernel operation (ISO-CUT) 

is described in a separate section below. 

The algorithm is initiated with a fine parcellation (over-clustering) and then the 

points are redistributed between clusters in successive iterations until convergence (Fig. 

1B). While in principle the results can depend on the initial parcellation (or clustering), in 

practice when the parcellation is fine enough, they do not. In fact, a deterministic (albeit 

more computationally intense) procedure would be obtained by initially assigning each 

point to its own cluster.  

Each iteration then involves pairwise comparisons of nearby clusters. Let A and 

B be two clusters to be compared. First the points of A∪B are projected onto a line of 

optimal discrimination between the two sets. A simple choice, although not always ideal, 

is to use the line connecting the centroids of A and B. In our implementation, we select 

an optimal line based on the centroids and the empirical covariance matrices of the sets. 

Next a statistical test is performed to determine whether this one-dimensional sample is 

unimodal, or alternatively has two or more modes. This is the ISO-CUT procedure 

described below. If the unimodality hypothesis is rejected, the data points are 

redistributed between A and B according to the optimal cut point as determined by ISO-

CUT. Otherwise, if unimodality is accepted, then the two clusters are merged. 

In order to avoid infinite loops, the algorithm keeps track of which cluster pairs 

have already been compared. Once all pairs of remaining clusters have been compared, 

the algorithm is deemed to have converged. 

ISO-CUT 
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The ISO-CUT algorithm (the kernel operation in ISO-SPLIT) is a non-parametric 

method for testing whether a one-dimensional sample arises from a unimodal 

distribution and for determining an optimal cut point for clustering. It is similar to the 

Hartigan dip test for unimodality 61 but there are important differences. First, Hartigan's 

test is only a criterion for accepting/rejecting the unimodality hypthosesis, whereas ISO-

CUT also returns an optimal cut point. Second, ISO-CUT uses a maximum-likelihood 

unimodal approximation to the data, which can be evaluated extremely efficiently using a 

modified version of isotonic regression. Third, ISO-CUT handles a crucial situation 

where the Hartigan test fails -- that is when a sparse cluster is adjacent to a very dense 

cluster. This situation arises often in spike sorting as cells can have vastly different firing 

rates. 

Here we present a higher-level description of the algorithm and refer the reader 

to the Fig. S1 and the open source MATLAB and C++ implementations contained in the 

software itself for the lower-level implementation details. The first step of ISO-CUT is to 

sort the (assumed distinct) one-dimensional data points so we have x1 < x2 < … <xn. 

Next the maximum-likelihood unimodal fit to the sample is computed. One can show that 

the density function for the fit is piecewise constant with endpoints at the data points, 

and that the sequence of values may be obtained using a modified version of isotonic 

regression, which we call up-down isotonic regression, applied to the reciprocal of the 

spacings 𝑠*./ = (𝑥*A/ − 𝑥*)./. A modified Kolmogorov-Smirnov (KS) statistic 62 is then 

computed to quantify the closeness of the empirical cumulative distribution function to 

the cumulative distribution function of the unimodal approximation (the modification is 

needed to handle the important case of sparse clusters on the periphery). If this unitless 

quantity is above the threshold (we used a value of 1 throughout) then unimodality is 

rejected. 
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In the case where the unimodality hypothesis is rejected, ISO-SPLIT returns a 

cut point, or an optimal cut point between two modes at a point of minimal density (note 

that the distribution may have more than two modes). Again, we aim to avoid density 

estimates in selecting such a cut point. Therefore, we employ the non-parametric 

isotonic regression once again by applying down-up isotonic regressions to the residuals 

𝑠*./ − 𝑡*./ where 𝑡* is the estimate of the spacings based on the unimodal approximation. 

The cut point is taken at the deepest minimum of this sequence within a range of 

interest. Thus, the optimal cut point is obtained in a non-parametric manner without any 

density estimates. 

Cluster consolidation across electrodes 

Just as ISO-SPLIT is at the heart of the local clustering, our cluster consolidation 

strategy (Fig. S1B) is the central step for handling the multi-electrode arrays in a 

nonparametric manner. Since spike sorting is applied separately on each electrode 

(along with its neighbors), the same neuron is likely to be identified multiple times. In 

fact, it is expected that the same neural unit will appear on several channels, depending 

on the density of the electrode array. It is therefore necessary to merge the results 

across all channels into a single sorting output. 

There are several problems with comparing pairs of clusters for potential 

merging. First, depending on the size and density of the electrode array, and the number 

of neurons detected on each channel, this could pose a computational challenge. 

Second, there is a problem with non-transitivity of merge decisions. For example, we 

could determine that clusters A and B (on different channels) should be merged, and 

that B and C should be merged, but that A and C should not be merged. 

No matter whether merge decisions are based on average waveform shape 

similarity, coincident firing times, or cluster overlap in feature space, there are other 

fundamental problems with making such pairwise merge decisions. Consider, for 
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example, the case where clustering on channel 1 is accurate, whereas on channel 2 

there is a false merge. Then the corresponding clusters may fail to match up, or the 

incorrect results of channel 2 may supersede the accuracy on channel 1. This can easily 

happen when neurons are closer to the first channel but still give a detectable, but small, 

signal on the second. A myriad of problematic situations like these can arise. 

We therefore propose a different approach – an alternative to merging – which 

we refer to as cluster consolidation. The assumption is that in the majority of cases, a 

neuron will fire with largest signal on a single primary channel, with the peak signal being 

lower on neighboring channels. Therefore we retain a cluster Cm,i (the ith cluster identified 

on channel m) if its peak average signal on channel m is sufficiently greater than its peak 

average signal on every other channel. Otherwise it is considered redundant and is 

discarded. More precisely, cluster Cm,i is retained if for every channel number m′ ≠ m, 

max
F
G𝑊),*(𝑚, 𝑡)G > 𝜂 Kmax

F
𝑊),*(𝑚L, 𝑡)K 

where Wm,i(m′,t) is the average spike waveform for cluster Cm,i on channel m′ and clip 

sample t, and η < 1 is a constant. The buffer parameter η (0.9 in this study) is included in 

order to minimize the chances that the same cluster is eliminated on every channel, and 

therefore excluded altogether. 

Ideally each cluster will be represented exactly once after consolidation. 

However, sometimes a neuron may yield a very similar peak signal on two adjacent 

electrodes and may therefore be retained in more than one neighborhood. While this 

depends on the choice of η and the density of the electrodes, this is a relatively rare 

occurrence for our datasets.  

The goal of the second pass is to remove redundant clusters that survived the 

first pass of the consolidation (Fig. S1). As stated, we need to be careful about non-

transitive merge criteria. To be clear, both passes involve only discarding rather than 
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merging redundant clusters. The first step of the second pass is to sort the clusters in 

order of absolute peak amplitude (of the average spike waveform); if two clusters are 

determined to be duplicates, then we discard the one with lower absolute peak 

amplitude. Moving through the sorted list, each cluster is compared with all preceding 

clusters. Simply, if it is determined that it matches a previous cluster, then it is discarded. 

The criteria for two clusters to match are three-fold: (a) they must have been 

detected on different channels, otherwise presumably they would not be separated by 

the clustering; (b) their peak amplitudes must be relatively close (within 30% for this 

paper), otherwise one would have been discarded in the first pass; (c) they must have a 

significant number of simultaneous (up to a time deviation threshold) firings (>50% 

coincident events for this paper). 

Eliminating redundant events via fitting 

While cluster consolidation removes redundant clusters, it can still happen that 

the same event may be redundantly flagged in more than one neighborhood. For 

example, if event a is correctly included in cluster A on channel neighborhood 1, but 

happens to be incorrectly assigned to cluster B on channel neighborhood 2, then, since 

A and B are not redundantly associated with the same unit, they will both survive the 

consolidation stage. However, it is important that each event be included exactly once in 

the final output. Therefore, the following procedure is used in a final pass to eliminate 

such redundant events. 

In this fitting stage (a multi-pass procedure) we consider each detected event as 

a candidate. We begin with an empty set of accepted events, and add candidates during 

multiple sweeps through the data according to whether they reduce the L2-norm of the 

residual signal. Let Y be the M × N signal matrix (recall M is the number of channels and 

N the number of time samples). On the jth pass, let Yj be the residual signal (initialized by 
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Y1 = Y). We first compute an L2-norm reduction score for each candidate event that has 

not yet been included as follows: 

𝑆M,* = 	N N O𝑌M P𝑚, 𝑡3 −
𝑇
2
+ 𝑡T −𝑊UV(𝑚, 𝑡)W

XY

)Z/

− 𝑌M(𝑚, 𝑡3 −
𝑇
2
+ 𝑡)X

[

FZ/

 

where (ti, ki) is the time sample and label for the ith candidate event, Wk(m,t) is the 

representative waveform for the kth cluster, and T is the clip size (assumed even). The ith 

event is then included if 

𝑆* 	> 	0	𝑎𝑛𝑑	𝑆* 	> 	𝑆M	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑗 ≠ 	𝑖, |𝑖 − 𝑗| ≤ 	 𝑇3	 

That is, the L2-norm is reduced by including the event, and the amount by which it is 

reduced is greater than that of any overlapping candidate event. The waveforms for the 

newly accepted events are then subtracted from Yj to obtain a new residual Yj+1 and the 

procedure is repeated until no further changes occur in a pass. To speed things up we 

keep track of which scores need to be recomputed on subsequent passes. 

Partially overlapping events are thus handled properly, assuming that they are at 

least somewhat separated in either time or space. Note also that the requirement for the 

score to be positive has the benefit of removing outliers to some extent. Crucially, in 

contrast to model-based approaches, 18,23-25 which use L2 fitting to update waveform 

shapes, firing times, and amplitudes, in our scheme L2 fitting is only used to eliminate 

duplicate events. In particular, this preserves labels chosen by our non-Gaussian 

clustering method. 

Isolation and noise overlap metrics 

Here we describe the post-processing step that classifies "single unit", "noise", 

and "non-isolated" clusters based on an objective set of criteria, as described above. We 

have elected not to use any firing time information (e.g., dips in cross-correlograms) to 

make these decisions, so as to leave such information as an independent validation 

metric. Adhering to our overall approach, we also do not want our metrics to depend on 
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additional assumptions about cluster distributions. Here we define the isolation and 

noise overlap methods which control automated cluster selection. 

First, we describe the isolation metric for assessing how well a cluster 

	𝐴 = {𝑎/, … , 𝑎,} 

is separated from the other clusters. Let A and B be two distinct clusters. For each x in 

A∪B, let n1(x), … , nk(x) be the k nearest neighbors of x in A∪B. Let ρ be the 

membership function so that ρ(A) = 1 and ρ(B) = 2. Then we define the k-nearest 

neighbor overlap between A and B to be 

 𝑚fghijkl(𝐴, 𝐵) =	
/
,
∑

#p+	∈	r	∪	t:	vw,x(+)y	Z	v(+)z

#(r	∪	t)
,
MZ/  

which is the fraction of the nearest neighbors that are classified consistently with their 

parent point†. The isolation metric is then given as 

 𝑚*{fjkF*f,(𝐴) = 1 −	 min
�j�{Fhi{	t

𝑚fghijkl(𝐴, 𝐵) 

where the minimum is taken over all other clusters. 

We take a somewhat different approach for noise overlap. We define the noise overlap 

of cluster A to be the overlap metric for A with a “fake” cluster 

 𝐵 = {𝑏/,… , 𝑏,} 

comprised of the same number of random noise events (clips extracted from the original 

data at purely random times). However, the difficulty in comparing these two clusters is 

that the event clips of A have a bias in that they were selected for being (perhaps by 

chance) super-threshold. Therefore, we need to first remove this bias by subtracting out 

a multiple of the expected noise waveform Z to obtain adjusted clips prior to computing 

the overlap. We use the following weighted average for the expected noise waveform: 
                                                
† Often the number of points in one cluster will be much larger than in the other. This can lead to 
an artificially high overlap metric because the likelihood of misclassification depends not only on 
the degree of separation but also on the relative sizes of the clusters. Therefore we only sample N 
random points from each of the two clusters where N is the minimum size of the two clusters. To 
reduce computation time we also require that N is at most 500. 
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 𝑍(𝑚, 𝑡) = ∑ �V()�,F�)�V(),F)�
V��
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here the weight bi(m0, t0) is the value of the spike at its central channel and central time 

sample. We then define the noise overlap to be the overlap metric applied to the sets of 

event clips after projecting out the dimension defined by the expected noise shape: 

𝑚,f*{h(𝐴) =	𝑚fghijkl(𝐴�, 𝐵") 

Automatic identification of bursting clusters 

We use two criteria (waveform similarity and relative timing) to flag a pair of 

clusters as belonging to the same unit, with one cluster A being labeled as the bursting 

parent of a second cluster B. First, the average spike waveforms must be similar to one 

another up to scaling. Here we require that the correlation across time and channels be 

greater than 0.8 (an adjustable threshold). Second, the cross-correlogram between 

clusters A and B must have a significant asymmetry within a chosen time window (±15 

ms in our analyses) with events in B tending to occur a short time after events in A. This 

was quantified by comparing nafter, the number of B events occurring within 15 ms after 

events in A, to nbefore, the number of B events occurring within 15 ms before events in A. 

If nafter is significantly greater than 2nbefore (p < 0.001, assuming a Poisson distribution), 

and the correlation criterion is met, then we flag (A,B) as a bursting pair. We note, 

however, that the output of MountainSort retains the identity of the individual clusters 

associated with each bursting pair. This maintains data provenance and allows for 

alternative criteria to be applied at a later date if so desired. 

Manual clustering: 

Data were bandpass filtered 600-6000 Hz and then thresholded at 60 µv for 

event detection. Individual units (putative single neurons) were identified by drawing 

cluster boundaries in two-dimensional projections of peak amplitude, the first two 

principal components of each channel, peak to trough ratio, or spike width as variables 
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(MatClust, M.P.K.). Only well-isolated neurons with stable spike waveform amplitudes 

were clustered. Clusters that were cut off at spike threshold were not selected. 

Simulations using synthetic data 

The datasets used in Fig. 6 were generated by superimposing synthetic 

waveforms on background signal taken from a real dataset. We wanted the background 

signal to include realistic noise, correlations between channels, and low-amplitude 

signals from distant neurons. We therefore started with the hippocampal dataset used in 

this paper, automatically removed time segments that included detectable (relatively 

high amplitude) spike events and then pieced together the remaining time segments 

using an overlap region and apodization (a filtering approach to smooth the signal) at the 

edges of the segments to avoid inflating the noise level on the overlaps. 

The shapes of the superimposed spike waveforms were not derived from the 

sorted dataset because we did not want to bias the results toward whichever sorting 

algorithm used to obtain those shapes. We also wanted to easily control the number of 

simulated units and the distribution of peak amplitudes and shapes. Therefore, we 

created a formula that generated realistic spike shapes dependent on a rise time, peak 

amplitude, decay time and recovery time on each of the four channels. We generated 

units with differing firing rates (randomly selected between 0.5 and 3 spikes per second), 

different spike waveform shapes, and peak amplitudes ranging from zero to a maximum 

of 20 standard deviations above the mean, with more units at lower amplitude as 

reflected in real data. 

In the first of the three simulated datasets, 15 units were simulated with around 8 

having high enough amplitude to be detected (Fig. 6A and 6D). For the second dataset 

(Fig. 6B), 30 units were simulated with around 15 detectable. For the third (Fig. 6C), 60 

units were simulated with around 30 detectable. The MATLAB scripts for generating 

these may be found in the source code repository. 
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Computational efficiency measurements 

We conducted all processing on a Dell Linux workstation with 192 GB RAM and 

40 logical processing cores (Intel Xeon processor 2.8 GHz), although not all cores were 

used in the experiments, as indicated in the text. All algorithms were implemented as 

custom C++ programs. 

In vivo datasets 

A total of four 16-channel polymer shanks were targeted to Prelimbic cortex (+ 

2.4 to 2.6 AP, ± 1.1 ML, DV -3.4, 7º from saggital). The tetrode was constructed from 

four 12.5 μm nichrome wires (California Fine Wire) spun together, with each of the four 

wires electroplated with gold to an impedance of ~250 kΩ at 1 kHz. The tetrode was one 

of sixteen in individual cannulae whose centroid was targeted -3.6 AP, ±2.4 ML, and 

then adjusted to CA1 cell layer based on LFP and spiking activity.  

For the tetrode dataset, the animal was run for 45-minutes on the first exposure 

to the W-track continuous spatial alternation behavior 63,64. 

The 16-channel polymer probe dataset was collected during a 7-hr period while 

the animal was in a 13’’ x 13’’ walled rest box. 

All data were sampled and saved at 30 KHz on a 320-channel modular 

headstage using Trodes software (SpikeGadgets llc.). 

DATA AND SOFTWARE AVAILABILITY 

The MountainSort clustering software, as well as the code used to generate the 

simulated datasets is publically available at: https://github.com/magland/mountainlab. 

The tetrode dataset is available at: http://dx.doi.org/10.17632/kmmndvycx8.1. The 

polymer probe dataset is available at: http://dx.doi.org/10.17632/j2mfvnsz2t.1 (part 1/3), 

http://dx.doi.org/10.17632/ssb8s4766s.1 (part 2/3), and 

http://dx.doi.org/10.17632/9mgpgn7fsw.1 (part 3 of 3). 
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Figure 1. Overview of the fully-automated MountainSort processing pipeline 
(A) Flow diagram. After preprocessing, sorting is performed on individual electrode 
neighborhoods. Clusters are then consolidated across neighborhoods (see also Fig. S1). 
Clusters are either accepted or rejected in the automatic annotation phase based on the 
computed cluster metrics. (B) Illustration of the final 6 iterations of the ISO-SPLIT 
clustering algorithm for a synthetically generated set of points. At each iteration, two 
clusters are compared using a one-dimensional projection of the union of the two 
clusters (shown in the histograms at each iteration). The ISO-CUT procedure is applied 
to the projected data to determine whether the two clusters should be merged (single 
color in the histogram) or whether the points should be redistributed according to an 
optimal cut point (two colors in the histogram).  
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Figure 2. Fully-automated MountainSort produces clusters comparable to manual 
operators 
(A) Two-dimensional peak amplitude projections of the data used for manual sorting. 
Axes show values between 0 and 500 μv. (B) Pairwise confusion matrices (fig. S2A) for 
the three manual sortings. For each matrix, the numbers in the leftmost column and 
bottommost row correspond to cluster ID number for the respective manual sorter. 
Shading corresponds to the proportion of each column-labeled cluster that is classified 
into each row-labeled cluster. For the top matrix, this is the proportion of events in each 
manual 2 cluster that match the corresponding manual 1 cluster. Each number within the 
matrix corresponds to the absolute number of matching events. The final column 
corresponds to the number of events found in the row-labeled clustering not found in the 
column-labeled clustering. For the top matrix, this corresponds to the events in manual 1 
clusters that are not found in any manual 2 clusters. Similarly, the second row from the 
bottom corresponds to the number of events found in the manual 2 clusters not found in 
any manual 1 clusters. (C) As in (B), except for purpose of compact visualization, only 
the MountainSort clusters which correspond to one or more manual clusters are shown. 
(D) Occupancy-normalized spatial firing rate color maps for three clusters corresponding 
across MountainSort (MS) and manual operators. See also Fig. S2. Track outline is 
shown in gray. Note that the track has no walls, and we used the animal’s head for 
position tracking. As the animal often looked out over the edge of the track, many of the 
positions shown are outside the track outline. Scalebar corresponds to 50 cm. Note that 
colorbar scale varies across clusters. 
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Figure 3. All MountainSort-identified putative single-unit clusters from the 
hippocampal CA1 tetrode dataset 
(A) Average waveforms (bandpass filtered 300 – 6000 Hz) for the putative single-unit 
clusters as determined using metric thresholds: noise overlap <0.03, isolation >0.95, 
firing rate >0.05 Hz. MountainSort cluster ID is inset. Scale corresponds to 250 μv and 1 
ms. (B) Autocorrelograms for the corresponding clusters; X-axis range is ±100 ms, 
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normalized Y-axis range. (C) Occupancy-normalized spatial firing rate maps for the inset 
MountainSort cluster ID. Track outline is shown in gray. Scalebar corresponds to 50 cm. 
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Figure 4. MountainSort identification of well-isolated units for 16-channel probe 
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(A) Geometric layout of polymer probe. Contact size 20 µm, horizontal contact edge-to-
edge 20 µm, vertical contact edge-to-edge 38 µm. (B) Average waveforms filtered 300 – 
6000 Hz, of putative single-units with waveforms organized according to (A), with cluster 
identification number inset. Scalebar corresponds to 100 µv and 2 ms. (C) 
Corresponding autocorrelograms. X-axis scale 100 ms, normalized Y-axis scale. 
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Figure 5. Confusion matrices comparing MountainSort with (A) Kilosort or (B) 
Spyking Circus applied to the hippocampal dataset of Fig. 3 
See Fig. S2 for details on interpreting confusion matrices. For readability, entries with 
fewer than 10 events are marked with a period. MountainSort is fully automated, 
whereas a number of obviously invalid clusters needed to be manually excluded from 
the KiloSort and Spyking Circus runs before assembling the confusion matrix. 
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Figure 6. Comparison among MountainSort, KiloSort, and Spyking Circus using 
three simulated datasets 
(A,B,C) Synthetically generated spike waveforms were superimposed at random times 
on background signal taken from a real dataset (see Methods). Accuracies for each 
simulated cluster (see Methods) are plotted against the peak amplitude of the waveform. 
Clusters not matching any true units are not shown. Clusters automatically accepted by 
MountainSort (using the isolation and noise overlap metrics) are marked using a filled-in 
blue circle. (D) Synthetic waveforms for the 8 clusters with largest peak amplitudes in the 
first of the three simulated datasets. 
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Figure 7. Computational efficiency by processing stage. All plots are from the 16-
channel polymer probe dataset from Fig. 4 
(A) Processing time versus acquisition time. Each hour of recording contains about 2 
million events. (B) Processing time versus number of logical cores used (i.e., processing 
threads). 
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Supplemental Figure 1 (related to Figure 1). ISO-CUT and neighborhood (nbhd) 
consolidation illustrations 
(A) Illustration of ISO-CUT procedure which is the one-dimensional kernel operation of 
the ISOSPLIT clustering algorithm. The top row shows 1200 points drawn from a mixture 
of two Gaussian distributions with increasing separations in the horizontal direction 
(separations in standard deviations are 2 through 5 in increments of 0.75). The second 
row from the top shows histograms of the same samples after projection onto the 
horizontal axis with the blue curve showing the best unimodal fit obtained using up-down 
isotonic regression. The corresponding empirical cumulative distributions and the best 
unimodal fits are shown in the third row from the top. The last three samples are 
considered by the test to be non-unimodal after projection, according to a dip score 
threshold of 1, as indicated by the red dashed lines at the cut points. (B) Illustration of 
the cluster consolidation stage of MountainSort where redundant clusters detected in 
different electrode neighborhoods are removed. The neighborhoods of electrodes A, B, 
and C are shown with the blue, red, and black diamonds, respectively. The illustrative 
units 1, 2, and 3 are detected redundantly on the channels, but only one copy of each is 
retained after the first and second passes of the procedure. Unit 1 is kept on channel A 
because its peak amplitude occurs on the channel on which it was detected. Similarly, 
unit 2 is kept on channel B. Unit 3 represents an ambiguous case that is handled in the 
second pass of the procedure. 
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Supplemental Figure 2 (related to Figure 2). Comparison among manual and 
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MountainSort sortings 
(A) Annotated manual 1 – manual 2 confusion matrix. Red boxes highlight manual 1 
cluster 3 and manual 2 cluster 4. (B) Occupancy-normalized spatial firing rate maps for 
all clusters found by at least one manual operator and MountainSort. Track outline is 
shown in gray. Scalebar corresponds to 50 cm. Also see Fig. 2C. 
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Supplemental Figure 3 (related to Figure 3). Evaluation of cluster isolation and 
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putative noise clusters 
(A) Top, clusters shown in a rotation of the top 3 principal component dimensions for the 
events from MountainSort clusters 7 and 9. Top left, normalized density heat map. Top 
right, labeled cluster identification. Middle, an overlapping subset of 500 event 
waveforms from each cluster. All waveforms are bandpass filtered 300 – 6000 Hz, and 
have a window size of 3.33 ms. Bottom, occupancy-normalized spatial firing rate maps. 
Track outline is shown in gray. Scalebar corresponds to 50 cm. (B, C) As in (A), but for 
(B) MountainSort clusters 4 and 6, or (C) MountainSort clusters 14 and 16. (D) Top, 
waveforms for MountainSort clusters 14 and 16, and cluster 14/16 after automated 
merge. Middle, autocorrelograms for MountainSort cluster 14 (left), 16 (right), or cross 
correlogram (center). Bottom, occupancy-normalized spatial firing rate map for merged 
cluster 14/16. Track outline is shown in gray. Scalebar corresponds to 50 cm. (E) 
Average waveforms (bandpass filtered 300 – 6000 Hz) for the putative single-unit 
clusters as determined using metric thresholds: noise overlap < 0.03, isolation > 0.95, 
and firing rate > 0.05. Scale corresponds to 40 μv and 1 ms. (F) Autocorrelograms for 
the corresponding clusters; X-axis range is ±100 ms, normalized Y-axis range. 
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Supplemental Figure 4 (related to Figure 4). MountainSort identification of noise, 
bursting, and isolated units for 16-channel probe 
(A) Units annotated as noise. Scalebar corresponds to 40 µv and 2 ms. Average 
waveforms filtered 300 – 6000 Hz and (B) autocorrelograms for putative noise clusters. 
(C) MoutainSortidentified bursting pair, clusters 32 and 33, having the lowest isolation 
score (0.91) of accepted clusters. Top, templates for bursting pair, scalebar corresponds 
to 100 µv and 2 ms. Below, clusters shown in a rotation of the top 3 principal component 
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dimensions for the events from MountainSort clusters 32 and 33, with left, normalized 
density heat map and right, labeled cluster identification. Below, an overlapping subset 
of 500 event waveforms from each cluster. All waveforms are bandpass filtered 300 – 
6000 Hz, and have a window size of 3.33 ms. Bottom, cross-correlograms with total time 
range of 200 ms. (D) Same as in (C), but for cluster pair 30 and 31, having second-
lowest isolation score (0.97) of accepted clusters. 
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Supplemental Figure 5 (related to Figure 5). Evaluation of cluster differences 
between MountainSort, Kilosort, and Spyking circus 
(A) Top, clusters shown in a rotation of the top 3 principal component dimensions for the 
events from MS 23 and 24, corresponding to KS 48 (failed to separate) and SC 6 (failed 
to separate). Top left, normalized density heat map. Top right, labeled cluster 
identification. Middle, an overlapping subset of 500 event waveforms from each cluster. 
All waveforms are bandpass filtered 300 – 6000 Hz, and have a window size of 3.33 ms. 
Bottom, occupancy-normalized spatial firing rate maps. Track outline is shown in gray. 
Scalebar corresponds to 50 cm. (B, C) As in (A), but for (B) MS 17 and 19, which form 
subsets of KS 8 (failed to separate) and SC 23 (failed to separate), or (C) MS 6 and 11, 
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corresponding to KS 2 (failed to separate) and forming a subset of SC 2 (failed to 
separate). 
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Chapter 2 
 
High-density, long-lasting, and multi-region electrophysiological 
recordings using polymer electrode arrays 
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Summary 
The brain is a massive neuronal network, organized into anatomically distributed 

sub-circuits, with functionally relevant activity occurring at timescales ranging from 

milliseconds to months. Current methods to monitor neural activity, however, lack the 

necessary conjunction of anatomical spatial coverage, temporal resolution, and long-

term stability to measure this distributed activity. Here we introduce a large-scale, multi-

site recording platform that integrates polymer electrodes with a modular stacking 

headstage design supporting up to 1024 recording channels in freely behaving rats. This 

system can support months-long recordings from hundreds of well-isolated units across 

multiple brain regions. Moreover, these recordings are stable enough to track 25% of 

single units for over a week. This platform enables large-scale electrophysiological 

interrogation of the fast dynamics and long-timescale evolution of anatomically 

distributed circuits, and thereby provides a new tool for understanding brain activity. 
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Introduction 

An ideal method to observe brain dynamics would monitor many neurons, have high 

spatial and temporal resolution, enable access to multiple distant brain regions, and be 

usable in awake, freely behaving subjects. Recent work illustrates the potential power of 

this approach in producing scientific insight: spiking activity from 100-250 simultaneously 

recorded units within one region can be used to discover single-event content and 

dynamics (Pfeiffer and Foster, 2013, 2015), activity structure that is not possible to 

resolve with fewer recorded neurons. Indeed, in the spatial domain, if it were possible to 

record from similarly high numbers of neurons from multiple brain regions, analogous 

discoveries in distributed neural computation and function are likely to follow. 

Furthermore, in the temporal domain, if it were possible not only to record at millisecond 

precision, but to do so continuously over the span of hours, days, and weeks, such 

access could yield transformative insight into neural dynamics. Here, too, previous 

experimental efforts suggest this possibility: recording small numbers of neurons over 

the span of days has revealed surprising long-timescale firing patterns with functional 

implications, particularly with respect to learning (Hengen et al., 2013; Hengen et al., 

2016).  

Most current approaches are optimized exclusively for either the spatial or 

temporal domain. For example, one- and two-photon imaging can provide long-lasting, 

cell-type specific, and stable sampling of neuronal populations, but are limited by the 

temporal resolution and signal to noise ratio of the indicators (Chen et al., 2013), making 

it difficult to infer the precise timing of single spikes in vivo. Further, these methods do 

not permit continuous (24 hours a day, 7 days a week) recordings of brain activity. In 

contrast, electrophysiological approaches provide excellent temporal resolution, but 

technologies available in awake, freely-behaving animals are generally limited in their 

unit yields, spatial coverage, signal longevity, signal stability, and/or adaptability across 
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species for continuous recording. For example, the recently developed Neuropixel probe 

(Jun et al., 2017) allows for recordings from 384 of 960 total sites, but recording sites 

must be collinear, and it remains to be established whether long-term tracking of 

individual neurons is possible. Conversely, long term, continuous recordings of small 

numbers of neurons were recently documented with a 64-channel tetrode-based system 

(Dhawale et al., 2017), but this approach does not provide a clear path to recordings 

from much larger ensembles.  

Here we introduce a polymer probe-based system that overcomes the limitations 

of currently available technologies. Polymer devices achieve the recording contact 

density of silicon devices with the modularity and longevity of microwires. Polymer arrays 

can also provide a neural interface that is biocompatible (Jeong et al., 2015; Kim et al., 

2013; Lee et al., 2017a; Luan et al., 2017) and flexible enough to counteract 

micromotions of the array relative to the brain (Gilletti and Muthuswamy, 2006). Until 

now, however, polymer arrays capable of resolving single neurons had not been 

developed past proof-of-concept (Kuo et al., 2013; Luan et al., 2017; Rodger et al., 

2008; Seo et al., 2015; Seo et al., 2016; Tooker et al., 2014; Xie et al., 2015). Our 

system makes it possible to measure the activity of hundreds of single neurons across 

multiple, anatomically distant structures in freely-behaving animals. The system 

furthermore supports continuous 24/7 recording and yields high quality, large-scale 

single unit recordings for at least five months. In conjunction with this recording system, 

we adapt the MountainSort (Chung et al., 2017) spike sorting system to link clustered 

units across time segments, demonstrating stable recordings from 25% of individual 

neurons for over a week. 
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Results 

Modular implantation platform 

 Simultaneous, large-scale single-unit recording in a distributed neural circuit 

requires that recording electrodes be flexibly distributed across the brain, and at high 

enough density to yield hundreds of putative single neurons. In the past this has 

necessitated a choice between a few high-density arrays with rigid geometries, or many 

lower-density arrays (or single channels) that can be arbitrarily and precisely distributed 

across the brain. Our approach, outlined in Fig. 1a, reduces the need for this tradeoff, 

allowing for high-resolution sampling across multiple targeted regions. 

Multishank polymer electrode arrays form the modular implantable unit. Each 32- 

or 64-channel polyimide array (Tooker et al., 2012a, b) consists of two or four shanks 

respectively, with 16 channels per shank. Each channel consists of a platinum electrode 

covered by electrically deposited PEDOT-PSS (Ludwig et al., 2006) (Fig. 1b). Each 32-

channel device has an attached 32-channel omnetics connector, two of which can be 

accommodated by the pair of mating connectors on each printed circuit board (PCB). 

The PCB is wire-bonded to a 64-channel amplifying, digitizing, and multiplexing chip 

(INTAN technologies). Each 64-channel device is directly wire-bonded to a similar PCB. 

The resulting modules (Fig. 1c) can be stacked using mezzanine connectors and 

connected to a field programmable gate array (FPGA, SpikeGadgets LLC) which 

supports up to two stacks of eight modules, for a total of 1024 channels (Fig 1d). The 

FPGA synchronizes the modules and converts the serial peripheral interface bus (SPI) 

signal from each module to high-definition multimedia interface (HDMI) format. The 1024 

channel, 30 KHz / channel data is streamed via a micro-HDMI cable through a low-

torque HDMI commutator (SpikeGadgets LLC) and data acquisition main control unit 

(MCU, SpikeGadgets LLC) to the data acquisition computer where it is visualized and 
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saved (Fig. 1e). Streaming high speed data through a commutator enables continuous 

recordings. 

The flexibility of polyimide arrays increases biocompatibility (Lee et al., 2017a) 

but presents a challenge to implantation. Here we employ our previously developed 

insertion system, which uses a detachable silicon stiffener. Stiffener-attached arrays are 

inserted serially into brain tissue (Felix et al., 2013) and subsequently tethered to a 

custom 3d-printed base piece, which is contoured and anchored to the skull 

(Supplemental Fig. 1; See Methods for detailed description of the implantation 

procedure). Serial insertion allows multiple arrays to be placed within a single brain 

region (<1 mm between inserted probes). The rest of the implant is then assembled; 

silicone gel is added to stabilize the brain, and silicone elastomer is added to protect the 

polymer arrays from damage and active electronic components from moisture. The 

entire system is then protected with a custom 3d-printed casing and passive aluminum 

heatsinks for impact resistance and heat dissipation (Supplemental Fig. 1). 

 

Recordings of hundreds of single units distributed across multiple regions 

Information processing in the brain is accomplished by the millisecond-timescale 

interactions of thousands of single neurons (or more) distributed across multiple regions. 

To demonstrate our platform’s ability to resolve network events spanning multiple 

regions, we examined data from an animal implanted with the full 16-module system. Of 

these, 8 modules were used for single-unit recording (see methods for more details). 

Data were collected during a rest period in a familiar environment. Spike sorting using 

MountainSort (Chung et al., 2017) on data from these 512 channels 45 days after 

implantation produced 1533 clusters with a continuum of qualities. Three-hundred and 

seventy-five of the 1533 clusters exceeded our previously established (Chung et al., 

2017) conservative cluster quality metric thresholds (isolation > 0.96, noise overlap < 
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0.03), and are henceforth considered single units (Fig 2a). The modules used for single 

unit recording were distributed among medial prefrontal cortex (mPFC, n = 2), 

orbitofrontal cortex (OFC, n = 4), and ventral striatum (VS, n = 2), and polymer probes 

designed for recording local field potentials (LFP) were targeted to the hippocampus 

(HPC, n = 2) (Fig 2b). 

 

Coordination across multiple regions during hippocampal sharp wave-ripples 

 The simultaneous recording of single units across multiple regions makes it 

possible to examine cross-area coordination. Here we focused on times when we 

detected hippocampal sharp wave-ripples (SWRs). The SWR (Buzsaki, 2015) is an 

event of synchronous hippocampal population firing known to influence activity across 

the majority of the brain (Logothetis et al., 2012). These earlier studies (Khodagholy et 

al., 2017; Logothetis et al., 2012) leveraged methods that had large spatial coverage but 

were lacking in single-unit resolution. In complement, studies utilizing dual-site 

recordings revealed that neurons across many cortical (Chrobak and Buzsaki, 1996; 

Isomura et al., 2006; Jadhav et al., 2016; Ji and Wilson, 2007; Sirota et al., 2003) and 

subcortical regions (Dragoi et al., 1999; Lansink et al., 2009; Pennartz et al., 2004) show 

changes in firing rates around the time of SWRs. As a result, it remains unknown if the 

firing rate changes are coordinated among regions. 

 Changes in activity across the population of 375 single units was evident during 

individual SWRs (Fig. 2c, d). Across all SWRs, these changes result in significant 

increases and decreases in firing of a subset of units in each region (Fig. 2e). We 

confirmed previous reports of mPFC and NAc modulation (Lansink et al., 2009; Tang et 

al., 2017; Wierzynski et al., 2009): 19 of 61 mPFC (13 positively, 6 negatively) (p < 1.0e-

4 as compared to expected proportion, z-test for proportions) and 27 of 118 NAc (24 

positively, 3 negatively) (p < 1.0e-4, z-test for proportions) showed SWR modulation 
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based on a p < 0.05 threshold (see methods).  We also found that 28 of 196 OFC units 

were SWR-modulated (18 positively, 10 negatively) (p < 1.0e-3 z-test for proportions), 

providing a further confirmation that SWR events engage activity across many cortical 

regions. 

 The large number of single units made it possible to show that spiking patterns 

are coordinated across multiple regions during SWRs. We used cross-validated 

generalized linear models (Rothschild et al., 2017) to determine whether ensemble firing 

patterns in mPFC, NAc, or OFC could significantly predict the firing rate of individual 

cells in the other regions at the times of SWRs (see Methods). This prediction was highly 

significant for all pairs of regions (prediction gains reported as mean ± standard error 

and p-values are from two-tailed Wilicoxon rank sum test: mPFC predicting NAc, 1.16 ± 

0.01, shuffle 1.00 ± 9.8e-5, p = 1.7e-74; mPFC predicting OFC, 1.09 ± 0.01, shuffle 1.00 

± 9.1e-5, p = 8.2e-116; NAc preding mPFC, 1.23 ± 0.02, shuffle 1.00 ± 7.7e-5, p = 1.5e-

38; NAc predicting OFC, 1.10 ± 0.01, shuffle 1.00 ± 1.1e-4, p = 2.1e-109; OFC predicting 

mPFC, 1.21 ± 0.02, shuffle 1.00 ± 3.2e-4, p = 9.8e-37; OFC predicting NAc, 1.15 ± 0.01, 

shuffle 1.01 ± 4.5e-4, p = 7.5e-54; Fig. 2e). Together, these findings illustrate the power 

of large-scale, distributed recordings and provide the first evidence of coordinated firing 

patterns across multiple regions during SWRs. 

 

Longevity of single-unit recording 

 While polymer devices have shown promise in achieving a long-term, 

biocompatible interface with neuronal tissue (Kuo et al., 2013; Luan et al., 2017; Rodger 

et al., 2008; Seo et al., 2015; Seo et al., 2016; Tooker et al., 2014; Xie et al., 2015), their 

benefits have not yet been combined in configurations and systems capable of sampling 

many neurons simultaneously. To evaluate the high yield single-unit recording 
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capabilities of polymer arrays in the long term, we implanted three rats with polymer 

probes into mPFC or OFC for 160 days or more (one 72-ch implant, one 128-ch implant, 

and one 288-ch implant, see Methods). 

 These implants yielded long-lasting, high-quality recordings (Fig. 3a), with some 

initial variability across a six-week timescale, consistent with the brain’s recovery from an 

acute injury and the transition to a stable, chronic response (Supplementary Fig. 2). 

Subsequently, recording yield was stable until the end of recording (experiments 

terminated at 160 days to ensure the availability of histology), yielding up to 45 total units 

on an individual shank and ~1 single-unit per contact on average (Fig. 3a). Importantly, 

even after 160 days, our system continued to yield well-isolated individual single units 

(Fig. 3b), and in one case we extended our recordings to 283 days with only minimal 

decline in the number of well-isolated units (from 27 single-units at day 45 post-implant 

to 16 single-units at 283 days post-implant; Supplemental Fig. 2c). 

 

Stability of recording 

 The ability to track individual neurons across days depends upon stable 

recordings and a clustering strategy that is robust to changes in waveform shape 

resulting from electrode movement relative to neural tissue. We implanted six 32-

channel probes, each with two 16-channel shanks (192 of 288 total implanted channels, 

see Methods) into each of three animals, and recorded continuously (with the exception 

of moving animal between rooms, see Methods) for 10 or 11 days (animal A, day 53 to 

63 post-implant, animal B, day 47 to 57 post-implant, animal C, day 42 to 53 post-

implant). Animals performed a spatial navigation task three to four times daily, running 

~250 meters during each session. Behavioral sessions were performed in two different 

rooms. Each 16-channel shank yielded ~1.6 Terabytes of data for that period, and these 

data were divided into 10 segments of 24-hr length and clustered using MountainSort 
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(Chung et al., 2017). Subsequently, clusters were linked across segments using a 

simple and conservative mutual nearest-neighbor rule (see Methods and validation in 

Supplementary Fig. 3a). 

This approach allowed us to continuously track a substantial fraction of units 

across many days, despite the expected waveform variation (Dhawale et al., 2017). An 

example of a unit that was tracked for the entire period is shown in Figure 4a-d, and on 

this shank, 24 of 41 clusters identified in the first 24-hour segment could be tracked for 

more than one week of recording (Fig. 4e). Across the ten shanks (4 from animal A, 2 

animal B, 4 animal C), 26% (187 / 707) of clusters could be tracked for 7 days of 

recording or more (Fig. 4f, Supplemental Fig. 3c), yielding a dataset from these three 

animals that permits an in-depth analysis of long-timescale changes in single unit 

activity.  

 

Firing rate stability in a well-learned task   

 In the absence of external perturbations, the majority of single-neurons show 

stable responses when measured intermittently across days (Dhawale et al., 2017; 

Greenberg and Wilson, 2004; McMahon et al., 2014; Rose et al., 2016). Similar 

observations have been made from daily recordings in rodent mPFC during spatial 

behaviors from 60 units across 2 days, and 8 units across 6 days (Powell and Redish, 

2014), suggesting that rodent mPFC units show stable firing properties in the context of 

well-learned behaviors. Our goal was therefore to validate our recording and automated 

drift tracking methods in comparison to previous findings for rodent mPFC, and to 

determine whether the observed stability could be confirmed with continuous recordings 

over longer timescales with a much larger dataset (187 units followed for a week or 

more).  
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 We focused on a simple measure of unit activity: mean firing rates. 

Unsurprisingly, units displayed a large range and diversity of firing rates throughout a 

day (Hromadka et al., 2008; Mizuseki and Buzsaki, 2013; O'Connor et al., 2010). We 

chose to focus on times where behavior was similar across days, and therefore chose 

periods when the subjects were performing a well-learned spatial behavior in a familiar 

environment. The behavioral states were further subdivided into times when the animal 

was at low (< 4.0 cm / s) and high (³ 4.0 cm / s) speeds, as these are known to 

correspond to different neural states (Kay et al., 2016; Yu et al., 2017). For each unit, 

firing rates were calculated during these times across all ten (n = 2) or eleven (n = 1) 

days of continuous recording. Importantly, given the large diversity of firing rates 

between neurons, observing stable single-unit firing rates could only occur if both single-

unit physiologic firing rates were stable and the method correctly identified individual 

cells across time (note here that our spike sorting methodology does not use rate or 

timing information). 

Our findings both validate our unit tracking and confirm that firing rates taken 

from similar behavioral epochs show remarkable degrees of stability across many days 

(see Supplemental Fig. 3d for one example animal). We quantified that stability using 

firing rate similarity (Dhawale et al., 2017) at increasing time lags. We compared the 

distribution of firing rate similarities of all units that could be tracked for multiple days to 

the distribution of firing rate similarities for every different cluster pair (i.e. cluster pairs 

with different cluster ID’s), recorded on the same shank, at the same time lag (see 

Supplemental Fig. 3e for firing rate similarities for one animal). These analyses 

confirmed that units’ firing rates were more similar within the same unit than between 

units across all days of recording for all 3 animals individually (all two-sided Wilcoxon 

rank sum p < 1.0e-8 low velocity; p<1.0e-5, high velocity), and together (Fig. 4 G, H, all 

two-sided Wilcoxon rank sum p < 1.0e-24, low velocity; p < 1.0e-27, high velocity).  
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Discussion 

Electrophysiological recordings provide millisecond resolution information about 

the activity of neurons, and our system makes it possible to access this information 

simultaneously across hundreds of neurons within a region, in multiple anatomically 

distant regions, and to do so for a time period spanning months. We demonstrate large-

scale recordings from neurons in three widely separated brain structures, the OFC, the 

mPFC, and the NAc, yielding a conservative total of 375 well-isolated neurons recorded 

simultaneously. These recordings allowed us to demonstrate widespread and 

coordinated activation of all three regions at the time of hippocampal SWR events. 

Moreover, high quality recordings could be obtained across many months. In addition, 

our system makes it possible to perform continuous 24/7 recording, and with a simple 

and conservative linking algorithm we track ~25% of single units across more than a 

week. 

Information processing in the brain is distributed, parallel, and dynamic. In 

contrast, current experiments often focus on a single region, record from small numbers 

of neurons, and average over many trials to estimate response functions. While these 

studies provide key insights into brain function, they cannot capture many of the most 

central elements of neural computation. Our system provides both high density and 

modularity to allow for recordings of many units across a set of structures of interest, and 

longevity and stability to study these units across behavioral states and as they evolve. 

Our approach is complementary to that of the recently reported Neuropixels probe (Jun 

et al., 2017), and the combination of features of our system – density, modularity, 

longevity, and stability, enables experimenters to address fundamental, long-standing 

questions of brain function. 
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Density and Modularity. Neural computations depend on local circuits, distributed 

circuits within a brain region, and widely distributed circuits located across regions. We 

therefore developed a technology platform designed to sample many neurons across 

spatial scales. Our individual polymer arrays consist of multiple shanks, each with 16 

closely spaced electrode contacts. This geometry allows us to leverage the single unit 

isolation achievable when multiple electrodes detect signals from the same neurons 

(Gray et al., 1995) while making it possible to record across multiple insertion sites in the 

same brain region. These densities resulted in recordings of up to 45 well isolated single 

units on a shank and on average one unit per recording electrode when devices were 

placed in neocortex, permitting study of local circuit dynamics in the neighborhood of a 

shank and, simultaneously, across shanks in the same brain region.  

We demonstrated these capabilities with recordings from 375 units distributed 

across mPFC, OFC and NAc, selected from 1533 identified clusters. The 4-shank, 64-

channel probes used here had a larger contact to edge-of-shank distance than the 2-

shank, 32-channel probes, which may have contributed to the higher yield per channel 

seen with the 2-shank versions (Lee et al., 2017b). These recordings allowed us to 

identify a subset of SWR-modulated OFC neurons and simultaneous modulations of 

brain activity during hippocampal SWRs across regions. Recordings from populations of 

this size make it possible to carry out a number of analyses that are either not possible 

or very difficult with lower unit counts, including simultaneous comparisons of activity 

patterns across regions. In this respect only the Neuropixels (Jun et al., 2017) probe 

offers similar recording densities, and in that case the linear arrangement of sites may 

limit the density of recordings within a single region. 

 Here we note that while it is tempting to compare recording yields across 

devices, these comparisons can only be done fairly if the same spike sorting approach is 

applied in both cases. We used our recently developed, fully automatic spike sorting 
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package MountainSort (Chung et al., 2017) and applied conservative cluster quality 

metrics to ensure that we were only including well isolated units. Nonetheless, these per-

channel yields are similar to those reported recently for an acute implantation of two 

Neuropixels probes, where ~370 units per probe were recorded from the 384 active 

sites. A direct comparison of the yields of chronically implanted Neuropixel probes is 

difficult because only one chronically implanted probe’s cell yield was reported, which 

was 127 units 49 days after implantation. 

 

Longevity and Stability. Experiences drive plasticity in neural circuits, thereby modifying 

the way they process information. Our system provides the capacity to observe how 

these changes manifest over the seconds to months during which the network reshapes. 

We maintained high quality recordings for 160 days across multiple devices and 

animals, and extended one set of recordings to 283 days with only a slight decline in 

recording quality. The consistent high-quality recordings for 160 days reported here also 

exceed those reported for the latest generations of imec devices (Mols et al., 2017), 

including the immobile, chronically-implanted Neuropixels device, where stable total 

firing rates and un-curated cluster numbers were reported for recordings spanning 56 

days (Jun et al., 2017), although those devices may yield longer recordings than 

reported. 

 Finally, we demonstrated stability of recordings that makes it possible to study 

the same units, 24 hours a day, across at least a week. Using a simple and fully 

automatic algorithm for matching clustered units across time segments, we could track 

~25% of units (187 / 707 from 10 shanks) for seven or more days. Moreover, these units’ 

firing rates were stable during performance of a well-trained behavior. We note here that 

our quantification and electrode-drift tracking method provides a conservative estimate 

of trackable units, and that given the simplicity of our algorithm, it is likely that a more 
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sophisticated approach would allow for even better results. The proportion of units we 

could track across more than a week is similar to that recently reported for a semi-

automatic method applied to data from a 64 channel, 16-tetrode based system, which 

yielded 19 units per day (Dhawale et al., 2017), less than half of our observed per-

channel yield. Paired with the ability to implant more channels in multiple regions, our 

system will enable the observation of experience- or time-driven changes across 

distributed neuronal populations. 

 

In summary, our system enables the use of large-scale polymer recording arrays 

in rats, supporting higher channel counts, cell yields, and longevities. In larger animals, 

where larger impact forces and brain pulsations are present, flexible polymer will likely 

match or exceed performance of existing chronic recording technologies. The full 22 mm 

x 22 mm x 25 mm 1024-ch system should fit into existing primate chambers, making its 

utilization relatively straightforward. 

The implantation platform will benefit from future silicon and polymer process 

advances, which will potentially enable higher channel counts, lower power 

consumption, and smaller implant sizes. Beyond pure recording applications, the 

modular design lends itself to integration with new elements that expand the 

functionality, such as other recording capabilities (Wassum et al., 2008), circuit 

manipulations (Tooker et al., 2013; Wu et al., 2015), and computational power for 

closed-loop applications. 
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EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Rat 

All experiments were conducted in accordance with University of California San 

Francisco Institutional Animal Care and Use Committee and US National Institutes of 

Health guidelines. Rat datasets were collected from male Long-Evans rats (RRID: 

RGD_2308852), 6-23 months of age, with weights ranging from 500-600 g. All rats were 

fed standard rat chow (LabDiet 5001) in addition to sweetened evaporated milk for 

reward during behavioral performance. Rats were ordered from Charles River 

Laboratories at weights of 300-400 g and 3-4 months of age. 

 

METHOD DETAILS 

Surgical procedure 

Male Long-Evans rats (RRID: RGD_2308852), were implanted with polymer 

probe(s) at 6-12 months of age. Polymer arrays were targeted to a variety of targets (all 

coordinates given in millimeters relative to bregma: medial prefrontal cortex (mPFC, 

including prelimbic and anterior cingulate cortices; ±1.2 ML, +1.5 to +4.5 AP, -2.0 to -4.0 

DV, 6-8° from saggital), ventral striatum (VS, primarily nucleus accumbens shell; ±0.7 to 

+1.9 ML, +0.8 to +1.9 AP, -7.2 DV), orbitofrontal cortex (OFC, primarily lateral 

orbitofrontal cortex; ±3.5 to 3.7 ML, +2.6 to +3.4 AP, -4.0 DV), dorsal hippocampus 

(dHPC, ±2.3 to 2.8 ML, -3.5 to -4.0 AP, -4.0 to -6.0 DV). For some subjects, stimulating 

electrodes and tetrode microdrives were also implanted at the same time, targeted to the 

ventral hippocampal commissure (vHC, ±1.0 ML, -1.2 or -2.0 AP) and dHPC. 

 Anesthesia was induced using ketamine, xylazine, atropine, and isoflurane. 

Every 4 hours, the animal received additional Ketamine, xylazine, and atropine. 

 The skull was cleaned, targets were marked, and all drilling was completed. 

Commercially-pure titanium (CpTi) 0-80 set screws (United Titanium, OH), selected for 
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their well-known ability to osseo-integrate (Le Guehennec et al., 2007), were then placed 

around the perimeter of the implant. Bone dust was cleared from the skull, and 

craniectomies and durectomies were completed. The skull was briefly allowed to dry and 

a custom 3d-printed base piece (RGD837 Stratasys, MN) was then fixed to the skull 

using 4-META/MMA-TBB (Matsumura and Nakabayashi, 1988) (C&B Metabond). This 

base piece serves a multitude of functions, including acting a reservoir for saline or 

silicone gel, an anchoring point for the polymer arrays, and a standardized interface from 

which the rest of the implant can be affixed and constructed during the implantation. 

Polymer probes attached to silicon stiffeners by polyethylene glycol (PEG) were 

then inserted to the brain (Felix et al., 2013) using custom 3d-printed pieces, avoiding 

surface vasculature. Polymer probes were then affixed via a piece of polyimide to the 

3d-printed base piece before PEG was dissolved using saline, and silicon stiffeners were 

retracted. Gentle bends were allowed to form below the anchoring points on the polymer 

arrays, acting as strain relief. Insertion was repeated for all targeted locations. 

 After all polymer probes were affixed, the saline filling the 3d-printed base piece 

was then removed and silicone gel (Dow-Corning 3-4680) was used to fill the 3d-printed 

base piece, providing a means to seal the durectomies and craniectomies, and also 

provide added support for the polymer arrays. Additional custom 3d-printed pieces were 

used to construct a protective case around the polymer devices and active electronic 

components of the implant. Silicone elastomer (Quik-sil, WPI) was then added to the 

remainder of the exposed polymer, with special attention to the soft polymer – rigid 

printed circuit board interface, and 3d-printed casing was affixed to the skull using dental 

acrylic. 

 

Reagents and data acquisition 

Polymer arrays 
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The polymer arrays were fabricated at the Lawrence Livermore National 

Laboratory nanofabrication facility as described previously (Tooker et al., 2012a, b). 

Briefly, devices have three trace metal layers and four polyimide layers with a total 

device thickness of 14 µm. 

 Devices with an LFP configuration had 20 µm contacts in a single-line with a 

center-to-center distance of 100 µm, tapered shank width of 61 µm to 80 µm, 21 or 22 

contacts per shank, and an edge-of-shank to edge-of-shank distance of 420 µm.  

Devices with a 4-shank, 64-channel single-unit configuration are diagrammed in 

Fig. 1, and had an edge-of-shank to edge-of-shank distance of 250 µm. This design was 

used in the 1024-channel rat implant, and one module was used in a 352-channel 

implant (one 4-shank 64-channel module alongside six 2-shank 32-channel arrays, and 

24 tetrodes). 

Devices with a 2-shank, 32-channel single unit configuration had an identical 

shank layout to the 4-shank configuration with the notable reduction in edge-of-contact 

to edge-of-shank distance from 12 µm (4-shank design) to 6 µm (2-shank design). This 

device design was used for the majority of the data shown, used in the 128-channel 

implant (data shown in Fig. 3), and all 288-channel implants (six, two-shank, 32-channel 

polymer arrays and 24 tetrodes). 

The device with a 2-shank, 36-channel single-unit configuration (featured in 

Supplemental Fig. 2) had a similar dual-line, staggered design to the other single-unit 

configurations with a few notable exceptions. The shank width was 100 µm, edge-of-

contact to edge-of-shank distance was 12 µm, and 3 of the 18 contacts were placed 

closer to the tip of the shank. 

 

16-module, 1024-channel implant 
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 The 16-modules were distributed equally across both hemispheres. Of the 16 

modules implanted, 2 were targeted to dHPC and of an LFP configuration. Of the 

remaining 14 modules, 4 were targeted to OFC, 4 were targeted to VS, and 6 were 

targeted to mPFC. There were device failures on 4/6 targeted to mPFC, and 2/4 targeted 

to VS.  

 

160 day periodic recordings  

 Polymer probes were targeted to mPFC or OFC. In one implant, two two-shank 

36-channel arrays were implanted into mPFC and recorded from for 263 days, the 

termination of the experiment due to animal approaching end of life expectancy. This 

animal was recorded from using the NSpike data acquisition system (L.M.F. and J. 

MacArthur, Harvard Instrumentation Design Laboratory) in a 13’’ x 13’’ rest box, and was 

returned to its home cage. The second implant consisted of four 2-shank 32-channel 

arrays, all targeted to OFC (128-channel implant). The third animal was implanted with 

six 2-shank 32-channel polymer arrays targeted to mPFC, alongside two stimulating 

electrodes targeted to vHC, and 24 tetrodes targeted to dHPC bilaterally, for a total of 

288-channels of recording. For the longevity analyses, the second and third animals 

were also recorded from in a 13’’ x 13’’ rest box, but on some unanalyzed days, 

recordings were also carried out while the animal ran in a spatial environment. 

 

10-day continuous recording in mPFC  

 Three animals were implanted with six, two-shank, 32-channel polymer arrays 

targeted to mPFC, alongside two stimulating electrodes targeted to vHC, and 24 

tetrodes targeted to dHPC bilaterally. One of the three animals also had one four-shank, 

64-channel polymer array targeted to right OFC. This same animal had a device failure 

resulting in two functional 32-channel polymer arrays in mPFC and one 64-channel 
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polymer array in OFC. Another animal had a commutator failure on day 4 of recording, 

causing intermittent data loss, and firing rates from this animal’s day of recording were 

not used for firing rate analyses. Recordings were carried out while animals were 

housed in their home cages and in alternating epochs of exposure to a familiar rest box 

and one of two spatial environments in different rooms. Data was not collected when the 

animal was being moved between rooms. Animals ran 600 – 1000 meters per day in 

these spatial environments and provided a challenging experimental setting in which to 

assess recording stability. 

 On the first day of continuous recording, animals stayed in one room, room A, 

where they had been performing the same spatial task for several weeks, and performed 

three behavioral sessions, each lasting 30 - 40 minutes. On the second day of recording, 

animals performed two 30 - 40 minute behavioral sessions in room B, their first time 

being exposed to that room, and then one in room A. On days three through eleven, 

animals performed two or three sessions of behavior in room B followed by one in room 

A. Recording was stopped half an hour after the animal finished the session of behavior 

in room A on day eleven (animals A and B), or day twelve (animal C). In animal C, a 

twelfth day of recording was carried out with all behavioral sessions occurring in room A. 

Animals had red/green tracking LED arrays attached to the implant, allowing their 

position to be extracted from video recorded by a camera mounted to the ceiling. 

 

Data processing and analysis 

 Data analysis was performed using custom software written in Python 3.6.3 

(Anaconda linux-64 v7.2.0 distribution, Anaconda Inc.) and Matlab 2015b (Mathworks). 

 

Spike sorting 
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 Clustering was done using MountainSort, using settings and thresholds as 

reported previously (Chung et al., 2017). Adjacency radius was set to 100 µm when 

sorting the 20 µm contact, 20 µm edge-to-edge dual-line designs, resulting in clustering 

neighborhoods of 5 to 9 electrodes. The event detection threshold was set to 3 SD. 

Putative single-units were identified using previously set thresholds (isolation > 0.96, 

noise overlap < 0.03) and an automatic merging procedure, reported previously (Chung 

et al., 2017), was used to identify pairs of clusters that corresponded to the higher and 

lower amplitude components of single units that fired in bursts with decrementing spike 

amplitudes. 

 For the 240-hr continuous recording datasets, filtering and spatial whitening was 

applied to the entire 240-hr recording, and then data was clustered in 24-hour segments. 

Automated curation and bursting-related merging was first completed independently for 

each segment. As a result, all clusters in all segments satisfied our criteria for well 

isolated units. Linking clusters between segments was done using a mutual nearest 

neighbor rule. For every cluster in the first segment, a 1.66 ms spatially-whitened 

waveform template was calculated from the last 100 events, using every channel on the 

shank. Similarly, for every cluster in the second segment, a waveform template was 

calculated from the first 100 events. Next, the L2 distance was calculated between every 

segment 1 and segment 2 pair of templates. If cluster A from segment 1 and cluster A’ 

from segment 2 were mutual nearest neighbors, then the segments were linked.  

 This approach is conservative as a result of three main features. First, it used 

only well isolated clusters from each segment, and only matched these well isolated 

clusters. Second, because the 24-hour segments were not aligned to specific events in 

the animals’ experience, the segments partitioned the spiking activity at points where 

large, sudden changes in spike amplitudes were very unlikely. Third, the distance 

calculation was based on whitened spike waveforms from the entire 16 electrode array, 



 93 

yielding unique templates for each unit. The mutual nearest neighbor calculation 

ensured that these templates matched across the segment boundaries, and we found 

that this linking algorithm yielded plots of spike amplitude over time that were continuous 

across the period where the unit could be tracked. 

 

SWR detection and modulation 

 SWRs were detected as previously described (Cheng and Frank, 2008). Briefly, 

LFPs from a contact near CA1 was filtered into the ripple band (150 – 250 Hz) and the 

envelope of band-passed LFPs was determined by Hilbert transform. SWR were initially 

detected when the envelope exceeded a threshold (mean + 3 SD) on the contact. SWR 

events were defined as times around the initially detected events during which the 

envelope exceeded the mean. For SWR-trigged firing rates, only SWRs separated by at 

least 500 ms were included. 

 SWR modulation analysis was carried out as described previously (Jadhav et al., 

2016). Briefly, spikes were aligned to SWR onset resulting in SWR-aligned rasters. Cells 

with less than 50 spikes in the SWR-aligned rasters were excluded from these analyses. 

To determine the significance of SWR modulation, we created 1,000 shuffled rasters by 

circularly shifting spikes with a random jitter around each SWR and defined a baseline 

response as the mean of all shuffled responses. We then compared the response in a 0-

200 ms window after SWR onset (SWR response) to the baseline. We considered a cell 

as SWR-modulated when the mean squared difference of its shuffled response from the 

baseline (i.e., p < 0.05). SWR-modulated neurons were further categorized as SWR-

excited or SWR-inhibited by comparing the rate in a 0-200 ms window after SWR onset, 

with the rate of the mean shuffled response in the same 0-200 ms window.  

 

Generalized linear models during SWRs 
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 Construction of generalized linear models (GLMs) was done as reported 

previously (Rothschild et al., 2017). Briefly, the GLMs were constructed with a log link 

function to predict spike counts of single units during SWRs in PFC, NAC, or OFC from 

ensemble spiking patterns in another region. The region’s SWR ensemble pattern was 

the vector of binned spiking responses across units recorded in that region during the 0-

200 ms window after SWR onset. 

 The ensemble patterns were used to predict single cell SWR responses. A single 

prediction model was generated using predictor data of the ensemble patterns across 

SWRs, and predicted data of the single-cell SWR responses across SWRs. Only cells 

that were active (> 0 spikes) in more than 10 SWRs were predicted. For each predictor 

ensemble and predicted cell, we performed five-fold cross validation. We randomly 

partitioned the SWRs into five equally sized sets, with the constraint that the number of 

nonzero values in the predicted vector must be approximately balanced across sets. For 

each fold, four of five folds was used to train the GLM, and the remaining fold to test. For 

the test phase, the model derived from the training phase was applied to the predictor 

ensemble data in the test set, yielding predictions for the predicted cell firing across 

SWRs. 

 Prediction error was defined as the mean absolute difference between the 

predicted spike counts and the real spike counts. For that same fold, we defined a 

baseline prediction error by performing 100 random shuffles of the predicted firing rates 

across SWRs in the test fold and taking the mean of the shuffled prediction errors. The 

real and shuffled prediction errors were then averaged across the five folds. Prediction 

gain for one predictor-ensemble-predicted-cell combination in one time window was 

defined as the shuffled prediction error divided by the real prediction error. 

 For comparison, we repeated the exact same procedure described above on 100 

random shuffles of the entire original dataset, where shuffling entailed random matching 
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of activity patterns in the predictor and predicted data (e.g., taking predictor data from 

one SWR and using it to predict firing rate for another SWR). To assess prediction 

significance for a pair of regions, we compared the distribution of real prediction gains to 

the shuffled prediction gains across all ensemble/cell combinations using a two-tailed 

nonparametric Wilcoxon rank sum test. 

 

Cluster linkage analysis 

 Quantification of the relative distances of successfully linked cluster pairs to the 

other possible linked clusters (Fig. 4F) was done as follows: if there was a successful 

link made between cluster A from segment 1 and cluster A’ from segment 2 (A to A’), 

then the L2 distances between cluster waveform templates (A and B’), (A and C’), … (B 

and A’), (C and A’), etc., were normalized to the L2 distance of (A to A’). These 

distances, for all successfully linked pairs across all electrode arrays, contributed to the 

histogram in Fig. 4F. 

 To quantify the distances of successfully linked cluster pairs and their distance to 

other possible linked clusters relative to the variability of the events within the 

successfully linked cluster, we normalized the same set of distances as above using the 

mean spike distance to its template. Specifically, if there was a successful link made 

between cluster A from segment 1 and cluster A’ from segment 2 (A to A’), the mean of 

the L2 distances between the 100 events and the template of A (calculated from the 

same 100 events) was used as the normalization factor for the L2 distance from (A to A’), 

and all other unlinked pairs, (A and B’), (A and C’), … (B and A’), (C and A’), etc. This 

mean of the L2 distances is referred to in the text as “event distance.” 

In Fig. 4G, the normalized distances of successful linkages, (A to A’), contributed 

to the histogram in red, while the normalized distances of all other unlinked pairs, (A and 

B’), (A and C’), … (B and A’), (C and A’), etc., contributed to the histogram in black. 
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Firing rate similarity during behavioral performance 

 Firing rates were calculated for when the animal was performing the spatial 

behavior in room A. This constituted ~90 minutes of time on day one (and day twelve in 

animal C), or ~30 minutes of time on days two through eleven. Roughly half of the time 

during behavioral performance was spent either at low (< 4.0 cm / s) or high (³ 4.0 cm / 

s) velocities.  

Firing rate similarity was calculated using the same formula as in (Dhawale et al., 

2017), where the similarity of two different firing rates, 𝐹𝑅* and 𝐹𝑅M was measured by the 

following formula: 

𝐹𝑅𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦*,M = 1 − 2	 O
𝑎𝑏𝑠�𝐹𝑅* − 𝐹𝑅M�
𝐹𝑅* + 𝐹𝑅M

W 

A firing rate similarity score of 1 occurs when 𝐹𝑅* and 𝐹𝑅M are identical, and a firing rate 

similarity score of -1 occurs when one firing rate is 0 (maximally dissimilar). As in 

(Dhawale et al., 2017), when comparing firing rates for the same unit across time, firing 

rate similarity was calculated for time lags ranging from 1 to 10 days (animals A and B), 

or 11 days (animal C, Supplemental Fig. 3). In other words, if a cell could be tracked for 

all 12 days of behavioral performance in room A, its 1-day time lag firing rate similarity 

was calculated 11 times (days 1-2, 2-3, …10-11, 11-12), or its 10-day time lag was 

calculated twice (days 1-11, 2-12). 

The distribution of within-unit time lagged similarities was compared to the 

distribution of all between-unit time lagged similarities, matched for both shank and time 

lag. This differs from the comparison done in (Dhawale et al., 2017), where time-lagged 

similarities were compared to the within-day across-unit distribution of firing rate 

similarities. 
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Figure 1. Modular 1024-channel implantation platform overview 
(A) Data path from electrode to computer, with box color corresponding to related 
components in following subfigures. (B) Polymer electrode array. Left, schematic of 16-
channel shank of polymer array designed for single-unit recording. Shank is 14 µm thick. 
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Middle-left, image of 16-ch shank. Middle-right, 4-shank (250 µm edge-to-edge spacing), 
64-channel array. Right, full polymer array, bond pads at top of array. (C) Left, view of 
individual 64-channel module with amplifying, digitizing, and multiplexing chip (Intan 
Technologies) wire-bonded onto board, and mezzanine-style connector attached at top 
of board. Right, two modules stacked together. (D) Full 1024-channel, 16-module, 
recording system stacked into FPGA headstage (SpikeGadgets llc) during implantation. 
(E) Raw 100 ms traces from one 16-ch shank. Scalebar corresponds to 1 mv. 
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Figure 2. Large-scale, distributed recording 
(A) Number of putative single-unit clusters from 512 channels (of the 1024-channel 
implant), stratified by quality metric thresholds. Automated curation using MountainSort 
(noise overlap 0.03, isolation 0.96, black box in upper right) resulted in the identification 
of 375 single units from the 512 channels. (B) Schematic of the rat brain with targeted 
regions highlighted. (C) Top, 5 second raw LFP trace from one of 128 channels 
implanted into Hippocampus, centered on a SWR. Middle, 150 – 250 Hz filtered trace. 
Bottom, spike rasters from 375 simultaneously recorded neurons from the same time 
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period, with colors corresponding to the highlighted region. Horizontal axis in ms. (D) As 
in (C), but for 1 second centered around the same event. (E) Averaged traces for 
average LFP (top), power (middle, 150 – 250 Hz). Bottom, normalized firing rate, peri-
SWR histograms for the significantly SWR-modulated neurons, separated by recording 
location, and ordered by time of trough or time of peak (calculated from 4,046 SWRs). 
(F) Prediction gain for each set of regions. Top, predictor region, with arrow to predicted 
region below. Mean prediction gain (horizontal line) ± standard error (vertical lines) for 
each predictor-predicted set of regions. Color of bar corresponds to each predicted 
region, as shown in (B). Shuffled prediction gains shown in black. 
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Figure 3. Single-unit recording yield of polymer probes over time 
(A) Single-unit yields for polymer probes per channel (left y-axis) or per 16-ch shank 
(right y-axis) over 160 days post-implantation (x-axis) in rats. Solid line is the mean cell 
yield across 8 shanks, dotted lines ± 1 SE. Individual time points per shank are shown 
as color-coded dots by region. (B) Waveforms for units clustered for data point with 
green arrowhead. Scale bar corresponds to 200 µv and 2 ms. 
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Figure 4. Tracking individual single-units over time 
(A-D) Example neuron tracked for 248 hours of continuous recording. (A) Geometric 
layout of recording channels, with 2 boxed channels on which the unit was clustered. (B) 
Average waveforms (bandpass filtered 300 – 6000 Hz) for the two channels indicated in 
(A), calculated for 1-hour time bins every 24 hours, except for the last bin, which 
corresponds to the last hour of recording (hour 247 to 248). Scale bar corresponds to 
400 µv and 1 ms. (C) Autocorrelogram for the unit, calculated over all 248 hours. X-axis 
corresponds to ± 50 ms in 0.5 ms bins, y-axis normalized to largest bin. (D) Spike 
amplitude (bandpass filtered 300 – 6000 Hz) over length of continuous recording, for all 
~700,000 events in the time period. Each event is shown as a black square, allowing all 
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outliers to be seen. Top, black lines correspond to the 1-hour bins from which average 
waveforms in (B) are calculated. Shading corresponds to spatial behavioral task 
performance either in room A (blue), or room B (red, see Methods for more details). 
Non-shaded times animal was either in rest box or home cage. (E) Period over which 
each cluster could be tracked for one shank. (See Supplemental Fig. 3 for all other 
shanks). (F) Proportion of clusters that could be tracked for a given length of time. Black 
is the total across ten shanks. Each point corresponds to an individual shank from 
animal A (blue), animal B (cyan), or animal C (red). (G, H) Firing rate similarity for all 3 
animals, calculated during behavioral task performance in room one for either (G) low 
velocity times (< 4 cm / s) or (H) high velocity times (³ 4 cm / s). 
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Supplemental Figure 1 (related to Figure 1). Surgical approach and implant 
construction 
(A, B) Top-down views of a rat skull with 3-D printed implant base attached (A) before 
polymer array insertion, and (B) after insertion of 7 polymer probes. (C) Magnified view 
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of polymer probes entering into brain. (D) Cross-sectional schematic of implant after 
arrays have been inserted and silicone gel has been added to the 3-D printed base, and 
(E) of the assembled implant, with silicone elastomer fill to protect soft passive electrical 
components and moisture-sensitive active electrical components, and to provide strain 
relief for their soft-hard interface. (F) 3-D model of active electronics (red) and casing 
(grey), which provide structural support and protection for the passive electrical 
connection from the implanted contacts to the active electronic components. (G) 3-D 
model of full implant with polymer probe (cyan), single 64-ch board module (green), 
active electronics and micro-HDMI cable (red). (H) Rat implanted with full system, 
including heat sinks (black) and silicone grommets for impact resistance (cyan). 
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Supplemental Figure 2 (corresponding to Figure 3). Histology 160 days after 
implantation 
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Histology shown corresponds to shank with green arrowhead in Fig 3A. (A) Merged 
image with glial fibrillary acidic protein (GFAP) stain in green, and NeuroTrace 
(ThermoFisher Scientific) in blue (B) As in (A), but for highlighted region. Left, merge, 
middle, GFAP, right, NeuroTrace. (C) Cell yields per channel (left y-axis) or per 18-ch 
shank (right y-axis) for a probe implanted for 283 days. Experiment was terminated due 
to animal approaching end of expected lifespan. 
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Supplemental Figure 3 (corresponding to Figure 4). Validation of cluster linkage 
and stability of single units 
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(A) If the clusters from each segment were drifting to a greater degree than the 
separation between clusters, the mutual nearest neighbor cluster pairs could occur in a 
crowded feature space, with unlinked clusters lying close to the linked cluster. This 
would generate an environment where erroneous linkages could be made, causing an 
overestimation of how stable clusters were. To validate that the linkages between 24-
hour segments were occurring in cases where the mutual nearest neighbors were 
unambiguous the distances between linked cluster template to all other possible linking 
cluster templates (n = 254,034), normalized by the distance between the two linked 
cluster templates (n = 2,962) were calculated. Shown is a histogram of these distances, 
where the vertical red line marks unity, the distance of all linked cluster templates. Over 
99% of all other possible linking templates lie to the right of the vertical black line (2.8 
times the distance to the linked template). (B) When a cluster is stable, the variability of 
the events should be larger than the change in the template over time. To confirm that 
the clusters being linked fell within the variability of events around the cluster, we 
normalized the cluster pair distances by the mean distance of the last 100 events in a 
cluster from its template (“event distance”, see Methods for more details). Shown is a 
histogram of distances as in (A), with distances between linked cluster templates (red, n 
= 2,962), and linked cluster to unlinked cluster templates (black, n = 254,034), but 
instead normalized by the average distance of the last 100 events from their template. 
Over 99% of all other possible linking templates lie to the right of the vertical dotted black 
line (0.16), while 97.5% of linkage distances lie to the left of the vertical dotted black line. 
The distance between all linked cluster templates was less than their respective within 
cluster event distances (all < 1). (C) Period over which each cluster could be tracked, 
separated by inset shank id. (D) Firing rates of all clusters from animal C while 
performing the spatial behavioral task in room A during either low velocity times (<4 cm / 
s, left) or high velocity times (³ 4 cm / s, right). (E) Firing similarities at different time 
lags, calculated from firings rates shown in (D), from animal C while performing the 
spatial behavioral task in room A during either low velocity times (<4 cm / s, left) or high 
velocity times (³ 4 cm / s, right). 
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Discussion 

 The work described in this dissertation was dedicated to expanding the data 

quantity, quality, and throughput of extracellular electrophysiology. Specifically, it 

focused on expanding single-unit recording in the spatial and temporal domains, 

enabling the simultaneous recording of hundreds of neurons distributed across multiple 

regions for months, and also fully-automating the spike sorting process thereby making 

processing such an increase in data possible. Beyond improving the power and 

reproducibility of existing studies, this is significant because it allows single-trial 

dynamics to be resolved in multiple regions simultaneously and for observation of how 

those dynamics change over long time periods. Questions about the detailed neural 

dynamics of the distributed circuits underlying complicated behaviors, such as 

multisensory integration, learning arbitrary associations, and decision making, can be 

answered with this technology. 

 This chapter focuses on three areas: (1) the specific contributions and 

significance made in this dissertation work, (2) remaining barriers to widespread use of 

the technologies, and (3) areas for future study to expand the developed techniques.  
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Significance 

Full automation of spike sorting 

Achieving full automation of spike sorting with comparable error rates to manual 

or semi-manual techniques eliminates the need for experimenters to evaluate the quality 

of the spike sorting directly. Despite many previous algorithms aspiring towards full 

automation1-13, this is the first to achieve it with acceptable error rates and subsequently 

become widely adopted. By removing manual input, clustering results are highly 

reproducible, especially given the deterministic nature of the algorithm described in 

Chapter 1. Furthermore, experimenter time is no longer a limiting factor, opening the 

door to processing arbitrarily large datasets.  

 

Modular and extendible platform for spike sorting 

 MountainSort was constructed as part of a larger software suite which also 

includes data visualization, curation, sharing, and critically, comparison tools. This is an 

important part not only of adoption, but to allow for the project to grow beyond a single 

algorithm. MountainSort provides a modular architecture where even the core algorithm 

can be changed while still maintaining all other features. This not only provides a 

platform for multiple algorithms to be compared as was done in Chapter 1 but allows the 

core algorithm to be replaced with one that improves upon the previous version. Also, 

different processing modules can be added, as was done in Chapter 2 to deal with the 

waveform changes assumed to be associated with electrode drift. With continued 

support from Jeremy Magland, Alex Barnett, Leslie Greengard, and the Flatiron institute, 

MountainSort has the potential to remain relevant throughout the lifespan of extracellular 

electrophysiology. 

 

Polymer probe viability for largescale chronic recording 
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 Despite evidence for flexible polymer arrays providing a biocompatible neural 

interface14-17 previous to this study, they had only been used in low channel-count 

implants17-25. This work is the first to overcome all difficulties associated with system 

integration: (1) large rodent implant construction, (2) insertions of up to 16 polymer 

devices in the same animal, with up to 3 at < 1 mm spacing, (3) heat management for 

1024 channels being sampled at 30 KHz, and (4) high-bandwidth data acquisition. This 

propels flexible polymer probe technologies from the stage of engineering 

demonstrations to application in scientific studies. 
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Remaining barriers to utilization 

While there are gains possible for existing experimental paradigms, barriers to making 

full use of the existing technology remain. 

 

Data storage 

 Sampling voltage at 30 KHz from 1024 channels at 16 bits, results in 61.44 MB / 

sec or 5.3 TB per 24-hour period. Assuming full utilization of a 1 gigabit Ethernet cable, 

this would take 12 hours to transfer. If any floating-point math is required, this at least 

doubles the space requirement. This makes storing data from continuous 24/7 recording 

experiments in multiple animals impossible without petabyte storage. Compression could 

reduce the required disk space but would first degrade the highest frequency 

components of interest: spikes. With full automation of spike sorting, experiments can 

now be run where the data is subsampled and changes in error rates can be evaluated.  

In the short term, there are four parameters that can be optimized to bring this 

storage requirement down by an order of magnitude. First is sampling rate. Most low-

pass filtering is done up to 6 – 8 KHz, and using the Nyquist frequency, the data could 

instead be sampled and saved at a rate of 15 to 20 KHz if there was no change in spike 

sorting accuracy. Second is data compression. There are multiple audio compression 

algorithms with extensive support and testing in the frequency ranges of interest26,27, 

with options of lossy and lossless audio compression. Beyond level of compression and 

changes in spike sorting accuracies, susceptibilities to data rot28 must also be taken into 

account. The third has to do with only saving the subsets of times and channels that 

have spiking data. Spike waveforms are usually below 1 ms in length, and depending on 

the recording, average spiking rate on a channel could be orders of magnitude below the 

sampling rate. Fourth is the bit depth or dynamic range. The vast majority of extracellular 

spikes are in the tens to hundreds of microvolts, while local field potentials are on the 
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range of millivolts. If these two types of electrophysiologic data were saved separately, 8 

to 12 bit integers may be sufficient to capture the dynamic range, assuming that spiking 

data is saved relative to a local (or equivalent) reference.  

 

Availability of polymer electrode arrays 

 The polymer probes are currently only fabricated at Lawrence Livermore National 

Laboratory (LLNL), where costs of fabrication are paid through grants. For this reason, 

the devices are not readily available to the public. All active electronic components are 

available from SpikeGadgets LLC. In order to make the electrode arrays widely 

available, the polymer arrays need to be commercialized. A suitable commercial partner 

has not been found, in part due to the multilayer polyimide process developed by 

LLNL24,29 being difficult to reproduce without in-house expertise in multilayer polyimide 

fabrication. If feature sizes could be shrunk, perhaps alongside a switch to a different 

insulating layer such as SU-8 where far smaller features sizes have been 

demonstrated17, the same density could be achieved with a single layer. 
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Topics for further study  

Spike sorting error rates, quality metrics, and cross validation 

 While the non-parametric nearest neighbor-based metrics of isolation and noise 

overlap discussed in Chapter 1 are practical tools for stratifying cluster quality, no direct 

relationship to estimated error rates have been established. Juxtacellular-recording 

based ground truth datasets from 128-channel arrays are being collected30. 

Unfortunately, these data will be limited for the foreseeable future, especially when there 

is only one ground truth cell per recording. The sparsity of data makes a direct 

measurement of error rates and the relationship to quality metrics difficult.  

Alternatively, with full automation of spike sorting possible, metrics’ relationship 

to error rates can be estimated using noise manipulations and multiple sortings of the 

same data31. In fact, if computational power were not a constraint, cross-validating 

sortings with or without noise manipulations is likely to provide useful estimates of error 

rates. In this way, cluster and dataset-specific manipulations can be used, avoiding 

problematic assumptions between datasets where noise characteristics, recording 

location, and hardware differences may differ. In any case, the validation of existing or 

development of new metrics would prove fruitful in the pursuit of reproducible science. 

 

Electrode drift 

 Electrode drift is typically thought of as the entire array moving relative to the 

neural tissue, a prominent feature of acute recordings. Strategies that model this drift32 

could have success in these recordings. Other forms of minutes to hours waveform 

variation associated with changes in the volume between the electrode and neuron itself, 

such as glial migration33 or changes in the extracellular space34. In these cases, an 

approach without an explicit model of coordinated changes between sites may find more 
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success, part of the motivation of the development of the approach described in Chapter 

2.  

The approach to electrode drift described in Chapter 2 can work for datasets with 

more severe drift or fewer clusters on an array, but parameters would have to be 

changed in a dataset-specific way. Tuning the parameters (1) segment size, (2) number 

of spikes going into the template calculation, and (3) distance between linked clusters is 

time consuming. The data shown in Chapter 2 is relatively insensitive to these 

parameters, though other tested datasets, especially those with far more electrode drift, 

show sensitivity to these parameters. It may be possible to quantify the amount of drift 

with cluster metric(s) and relate that to the best parameter choices. 

Cross-validation of clustering, where different events are withheld may give a 

great deal of insight into the relationship between a cluster’s firing rate and appropriate 

segment size. For neurons with particularly low firing rates relative to the segment size, 

subsampling is likely to cause instability in the event labels, where the low-rate cluster 

could be improperly merged with neighboring clusters with an insufficient numbers of 

events to reach significance for Hartigan’s dip test35. Similarly, cells with substantial 

waveform variation within a segment would likely show instability in the event labels with 

subsampling. For example, assume a smooth change in one dimension of feature 

space. Exclusion of events occurring somewhere in the middle of the segment could 

introduce a density dip, resulting in two clusters whose member events would change 

depending on which portion was excluded. In these cases, multiple sortings with various 

portions of the events withheld (selected to be adjacent in time in the case of electrode 

drift) has the potential to identify segment sizes long enough where low rate clusters are 

not lost and/or short enough such that the degree of electrode drift is not detrimental to 

the clusterings. Alternatively, a dynamic approach, such as one similar to what was 

implemented in Dhawale et al.36, where older events are removed as time goes on, has 
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the potential to deal with some cases of drift, assuming an appropriate re-seeding of 

clusters is done. 

The number of spikes used to generate the templates at the border between 

segments is currently specified. Similar to segment length, this could instead be 

determined based upon the drift and firing rate of a given cluster. An additional cluster-

specific measurement could be the variability of the spikes in the event. Using all three 

of these together would allow each cluster to use a different number of events for the 

template calculation, possibly reducing the template distances between segments and 

thereby increasing the reliability of the linking procedure. 

 In cases where there are relatively few clusters in feature space, the simple 

nearest neighbor linking rule could become more error-prone whenever a cluster is 

missing from a segment. The simplest solution to this would be to put a constraint on the 

maximum distance between templates. Similar to what is already described in Chapter 

2, the distance of the matching template could be compared relative to the mean 

distance to the events that made up that template. In other words, an estimate of the 

variability in events is used to normalize the distance between linked clusters. If the link 

distance is greater than this variability, the link could be thrown out. 

 A more sweeping change to the overall linking procedure could yield improved 

results, especially in the cases where segment sizes may be short enough such that 

clusters may lack any events. In this case, instead of restricting linkages to between two 

segments, an optimization could be made across all segment transitions. A choice to 

allow clusters to be linked in non-adjacent segments could be validated using a cross-

validation scheme similar to what is described above for segment length. In this way, a 

cluster present in 3 segments could be re-linked with middle segment’s data being 

withheld. This could also produce a method to validate linking clusters for intermittently 

collected data.  
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Spike collision 

 Spikes that overlap in time but not in space are successfully handled by sorting in 

neighborhoods (described in Chapter 1) in the current version of MountainSort. Cases 

where two units have events that overlap in time and space result in two different types 

of errors. First, if there is a fixed offset in firing between two units, this multi-peaked 

waveform will create its own cluster, well-isolated from all other clusters. Second, if there 

is a jittered offset through the entire duration of a spike clip, this will create a radially 

symmetric (and non-convex) cluster. When visualized in 3-dimensions, the cluster will 

appear as a solid torus. Due to ISO-SPLIT relying on 1-dimensional projections, the non-

convex nature of the shape will cause it to be split into multiple clusters. 

For cases where the two waveforms that are colliding originate from successfully 

clustered neurons, a condition we would expect in most cases with high enough firing 

rates relative to the recording length, a similar strategy to the one implemented in 

Ekanadam et al.4 is likely to succeed. Once waveforms of putative neurons are known, it 

can be tested how well an individual event could be explained as a linear combination of 

two clusters at a variety of offsets.  

 

Reference electrode selection 

 Current spike sorting packages32,37-40, including MountainSort, typically use data 

that is already referenced. Instead of selecting a single channel as a reference, the use 

of a common average reference41 can give better sorting results. Choosing a referencing 

could be done in an automated fashion, where the channel, common average reference, 

or even something more complicated could be used. Similar to what has been discussed 

above, a fully-automated system with multiple clustering runs using different referencing 
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options could be tested to see if there are changes to either juxtacellular ground truth30,42 

or simulated data7,43,44. 

 

Polymer array long-term stability and performance: design features and insertion 

strategy  

 The long-term stability and performance of any neural implant is determined by 

the tissue-device interface. Departures from normal neural tissue are caused by acute 

and chronic damage. This damage can have two principle sources, toxicity and physical 

trauma. Selection of non-toxic materials that can be exposed to neural tissue is critical, 

as the move toward devices with higher channel counts and larger spatial coverage 

continues. This need is driven by the corresponding increase in surface area and 

concordant increase in likelihood of a local failure in an encapsulation layer. There is a 

large body of work surrounding acceptable electrically insulating encapsulation layers45-

47, electrode surfaces48-50, and conductive substrates51. Materials selection is further 

restricted by the device fabrication methods and other desired properties (See Geddes 

and Roeder52, Fattahi et al.53, and Weltman et al.54 for reviews). In this section, I first 

cover the physical constraints applied by the neural recording application, and then 

revisit the selection of materials in this hypothetical device’s construction.  

The damage associated with trauma can occur acutely at device insertion55, or 

chronically due to micromotion of the device relative to neural tissue56. As expected, 

micromotions and resultant chronic damage is worse when the device is coupled to the 

skull57 as opposed to free floating in tissue. Together, this militates in favor of materials 

that are soft58,59 and flexible60 in order to construct a device that can move with the 

neural tissue. The physical properties of a device depend on the interplay between the 

materials and the geometry61-63, and devices with smaller cross-sectional areas result in 

less glial activation63-67, as well as a more compliant device. Designs which limit the 
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extent of planar surfaces – a physical barrier to diffusion, cell processes, and 

vasculature – seem to better integrate into neural tissue, and are referred to as devices 

with open architecture25,68-70 (mesh or lattice electrodes). It remains unclear to what 

degree the improved biocompatibility of open architecture devices can be attributed to 

their open design, mechanical properties, or relatively small cross-sectional areas, 

although all three are likely contributors. As a consequence, it appears that the smaller 

and softer a device, the higher the biocompatibility and resultant stability of the interface. 

Indeed, recent examples19,25,70-72 of smaller devices constructed from flexible polymers 

seem to drive reduced inflammatory responses relative to more rigid materials such as 

silicon66,73-75. One outstanding example of these principles is from Luan et al.76, where 

they implanted a SU-8 device with a cross-sectional profile of 10 µm x 1.5 µm and 

showed, using in vivo imaging, successful long-term integration with neural tissue with 

no detectable glial activation. In this case, the field finally has a data point for parameters 

for a device sufficiently diminutive, soft, and flexible to form a stable neural interface.  

While the fields of chronic recording and brain-computer interfaces seem to be 

converging on the long-term goal of flexible devices with cross-sectional areas <10 µm2, 

there is no consensus on the upper limits of suitable device parameters. It appears that 

significant strides forward can be made in the short term with larger devices. Rodent 

probe insertion site imaging studies76,77 seem to have a selection bias towards bloodless 

insertions that do not result in clouding of the imaging window, something that cannot be 

ignored when extrapolating to procedures with hundreds (or more) of penetrations. 

Nonetheless, even in similar surgical conditions, where imaging windows remained 

clear, there is an advantage to the soft polymer76 versus silicon77. However, even with 

silicon devices there appears to be a diversity in the longevity of recording, with some 

reports of long-term recording with larger devices77,78, and clear chronic capabilities in 
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the Neuropixel probe79, which has a cross-sectional profile of 70 µm x 20 µm. Given the 

similarity between Neuropixel’s chronic results and those described in Chapter 2 (the 

devices there have a cross-sectional profile of 68 µm – 80 µm x 14 µm), it seems that 

this profile can in some cases give stable chronic recordings. Even the long-used 

Blackrock Utah array (400 µm pitch, <100 µm diameter near tip) has given long-term 

recordings in both non-human primates and humans, especially with experienced 

surgeons. Further complicating this issue, chronic procedures with few insertion sites 

currently have an improved ability to avoid surface vasculature, and depending on the 

study, may be excluding cases where the surgical procedure was not ideal. Together, 

this seems to indicate that in ideal surgical conditions with no gross blood-brain barrier 

disruptions, devices with cross-sectional profiles around 70 µm x 20 µm seem to be 

capable of months-long recording, even in the presence of activated astrocytes. 

Multiple insertions and/or two- or three-dimensional devices are a necessity in 

studies that require multi-region scales of spatial coverage. One major drawback of 

multi-shanked devices is the inflexibility in the placement of each insertion, thereby 

limiting the ability to avoid surface vasculature – a difficult and understudied factor in 

establishing a long-term stable neural interface. When using devices with cross-sectional 

areas <10 µm2, tens to hundreds of insertions will be required to match the same spatial 

scales currently achievable with three-dimensional arrays80. Even with larger single 

penetration devices, such as the Neuropixel probe, increasing spatial coverage will 

require far more insertions than is done currently. In small animals such as mice and 

rats, devices that have sufficient rigidity to be inserted may have a relatively simple path 

forward in performing ten to twenty insertions either serially or in a customized array. 

However, these multiple-insertion strategies leave the additional problem of bundling the 

portion of the devices that is left out of the brain. This creates a choice between proximal 
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coupling to an amplifying, digitizing, and multiplexing chip, thereby reducing the number 

of traces, and being far enough away as to not cause thermal damage. As such, the use 

of flexible devices can have added benefits outside of the brain, allowing the location of 

any active electronics to be more flexibly distributed. 

Current insertion strategies for flexible devices depend upon a temporary 

stiffening of the substrate (see Weltman et al.54 for review). While the data is clear that 

an increase in cross-sectional area of an implanted device leads to increased chronic 

gliosis, this relationship is less clear for acute insertion damage. Specifically, the 

insertion cross-sectional area of an acute stab injury seems to only increase the acute 

neural tissue response, with the chronic response being no different or difficult to 

conclude81. Strategies that make use of materials that transition from rigid to compliant 

upon implantation82,83 require relatively large cross-sectional areas to achieve the 

stiffness required for insertion, making them a less appealing long-term solution. The 

use of removable supporting structure above the brain84 currently requires time-

consuming removal of scaffolding and requires rigidity of the device that far exceeds that 

of the neural tissue and thus larger cross-sectional area than would otherwise be 

necessary. The strategy of opening a hole for the more flexible probe to be inserted in 

afterward85 requires precise realignment or relatively large pre-penetration diameter, and 

again device rigidity that far exceeds that of neural tissue. Dissolvable coatings add 

significant cross-sectional area and acute damage upon insertion, even when special 

precautions are taken to preserve the sharp tip of a device86. Using a removable shuttle, 

while adding cross-sectional area to the acute insertion, allows for the use of the stiffest 

possible materials, and can therefore be the theoretical minimum size when inserting an 

arbitrarily flexible device. Thus, using a rigid shuttle seems to be the best option for 

inserting flexible devices. 
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There are two requirements of any insertion shuttle approach, a suitably stiff 

substrate and a way to couple the flexible device to the substrate. Stiffener materials are 

typically silicon87-89 (as used in Chapter 2), stainless steel72,76, or tungsten90,91, with stiffer 

materials allowing for smaller cross-sectional areas. These are typically affixed using an 

adhesive such as polyethylene glycol (PEG)72,76,87,88,90, electrostatic forces89, or direct 

physical coupling91. In all cases the challenges are the alignment and coupling of the 

electrode array and stiffener before insertion, and decoupling after insertion.  

Using an adhesive such as PEG provides the advantage of a roughly uniform 

distribution of strain across the array during insertion. Using an adhesive coupling 

mechanism introduces a challenge of the adhesive not dissolving before insertion, yet 

relatively quick dissolution once inserted into the brain, a problem accentuated by the 

humid surgical environment. Additionally, depending on the geometry of the inserted 

device and the stiffener, successful application can be difficult when trying to minimize 

the cross-sectional area. One such solution, effective with planar devices and used in 

Chapter 2, makes use of a channel etched into the stiffener thereby allowing the 

adhesive to flow into it. Both premature dissolution and minimal application of adhesive 

become increasingly difficult as devices reach sizes less than 10 µm. Adhesive-based 

approaches also require that the alignment and attachment of the array to the stiffener 

occur before the implantation procedure, making modifications necessitated by surface 

vasculature difficult for multi-shanked arrays. Nonetheless, adhesive shuttle-based 

methods remain a viable insertion strategy. 

Direct physical coupling of flexible array and stiffener introduces challenges to 

the design of the device and insertion needle. There needs to be reciprocal structure 

allowing for successful coupling before or during insertion, and decoupling upon 

retraction. The way that strain is distributed along the array during insertion will influence 

device design as well. If there is excessive linear strain, the metal layer traces can be 
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broken. If these challenges can be overcome, then direct physical coupling is an 

attractive alternative to adhesive-based coupling methods, especially for single insertion 

site designs.  

Before discussing specific materials and dimensions of devices, I will briefly 

discuss Euler’s buckling force calculation85: 

𝑃�i =
𝜋X𝐸𝑤𝑡�

5.88𝐿X
 

Where 𝑃�i is the critical load that induces buckling in a single beam, 𝐸 is the elastic 

modulus,	𝑤 is the beam width, 𝑡 is the beam thickness, and 𝐿 is the unsupported beam 

length. Note here that the Young’s modulus of polyimide is 2.5 GPa, silicon is 150 GPa, 

stainless steel is 200 GPa, tungsten is 400 GPa, and diamond is >1000 GPa. For 

reference, 0.85 ± 0.33 mN is the insertion force required for a blunt tungsten probe with 

50 µm diameter (cross-sectional area ~2000 µm2)92. As can be seen, the thickness 

(assuming thickness is less than the width) has a cubic relationship with the buckling 

force. It is worth noting here that sharper stiffener or probe tips will further reduce the 

required insertion force93. Also of note is the importance of the length of the beam – it 

should be as short as possible, meaning that an approach where the device is stabilized 

at the surface of the brain would allow for the smallest profile device to be inserted. 

There are two main paths in device design and geometry which necessitate 

subsequent choices in materials. The first is similar to what is described in Chapter 2, 

making use of a multi-shanked, ~70 µm x 20 µm cross-sectional profile per shank, two-

dimensional device inserted using an adhesive to couple with a rigid shuttle. Further 

advances here can be made relatively quickly with sharpened stiffeners and customized 

three-dimensional layouts which will allow for the devices to be arrayed. Arraying 

multiple devices will allow some degree of increasing scale, working against the 

minutes-long scale of insertion. These design constraints are discussed in Chapter 2, 
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but future development will be driven by denser packing on individual shanks while 

maintaining comparable cross-sectional areas – requiring the smaller feature sizes 

necessitated by the second approach. The second approach makes use of flexible 

electrode arrays with minimal cross-sectional area and a direct coupling approach for 

rapid and individually-targeted insertions. This should scale to large animals and even 

humans, as physically-coupled individual insertions can be made on the scale of 

seconds. 

The geometric constraints of a flexible device with cross-sectional area <10 µm2 

likewise constrains the choice of insulating layers. Polyimide, parylene C, and SU-8 are 

all suitable candidates94-98, with achievable thicknesses as low as 1 µm, Young’s 

modulus 2 - 8.5 GPa, and dielectric constants > 3. SU-8 has mild biological reactivity, 

and parylene C can have issues with degradation at temperatures exceeding 125° C. 

This can be problematic depending on metal deposition methods used. Given the 

corrosive environment of the body, conductive layer metals must be chosen among 

those that form stable oxide layers. Further constraining the choice of metals with high 

conductivity leaves gold, platinum, iridium, and titanium99. Titanium is typically used as 

an adhesion layer100,101 due to its ability to oxidize in saline, and the high melting 

temperature of iridium makes it largely incompatible with polyimide, paralene C, and SU-

819. This leaves a choice between gold and platinum for trace layers and the electrodes 

themselves. In either case, fabrication should be done in a manner that leaves the 

electrode flush with the insulating layer102 and compatible with an electrode surface 

coating103, thereby increasing the proximity and charge capacity for improved signal to 

noise of recordings. 
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