
UCLA
UCLA Electronic Theses and Dissertations

Title
Highly Efficient String Similarity Search and Join over Compressed Indexes

Permalink
https://escholarship.org/uc/item/62w4m38r

Author
Xiao, Guorui

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/62w4m38r
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Highly Efficient String Similarity Search and Join

over Compressed Indexes

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Computer Science

by

Guorui Xiao

2023

© Copyright by

Guorui Xiao

2023

ABSTRACT OF THE THESIS

Highly Efficient String Similarity Search and Join

over Compressed Indexes

by

Guorui Xiao

Master of Science in Computer Science

University of California, Los Angeles, 2023

Professor Carlo Zaniolo, Chair

String similarity search and string similarity join are essential operations in many fields.

Existing solutions adopt a filter-and-verification framework and build inverted indexes based

on generated signatures to prune dissimilar candidates. While existing solutions mainly

focus on improving the query processing performance, little attention is paid to reducing

the inverted indexes’ memory consumption. In cases where the index size is larger than the

memory, users must employ more expensive disk-based algorithms rather than in-memory

ones. In this thesis, we propose a flexible framework CSS to reduce the index size and keep

high query performance for string search and join applications. We give improved solutions

for offline inverted list construction and introduce a new approach for the online construction

of compressed inverted lists. Experimental results on large-scale datasets demonstrate that

CSS can reduce memory consumption up to 5 times while having similar, or even better,

query processing performance.

ii

The thesis of Guorui Xiao is approved.

George Varghese

Todd D. Millstein

Carlo Zaniolo, Committee Chair

University of California, Los Angeles

2023

iii

To my parents Li Cao, Xiangsheng Xiao, and my girlfriend Yaqi Zhan

who have always been there for me.

iv

TABLE OF CONTENTS

1 Introduction . 1

2 Preliminary . 5

2.1 String Similarity Search and Join . 5

2.2 Inverted List Compression . 6

3 A Unified Compression Framework . 9

3.1 Existing Filtering Techniques . 9

3.1.1 Count Filters . 9

3.1.2 Prefix Filters . 10

3.1.3 Position Filter . 12

3.1.4 Segment Filter . 12

3.2 Common Class of List Operations . 13

4 Index Compression Strategies . 14

5 Online Index Compression . 19

5.1 Challenges for String Similarity Join . 19

5.2 Extending Proposed Approaches . 21

5.3 Benefit Estimation Model based Algorithm 24

6 Discussion . 28

6.1 Extension for Offline Approaches . 28

6.2 Online Approaches . 28

v

6.2.1 Cache-aware design . 29

6.2.2 SIMD-aware design . 29

7 Evaluation . 31

7.1 Experiment Setup . 31

7.2 Effect of Compression Techniques . 32

7.3 End-to-end Query Time . 35

7.4 Scalability . 38

7.5 Case Study . 40

8 Related Work . 41

8.0.1 String Similarity Search and Join . 41

8.0.2 Data Compression . 41

9 Conclusion . 43

References . 44

vi

LIST OF FIGURES

2.1 Two-layer compression scheme . 7

2.2 Fix-length Compression in MILC . 8

4.1 Variable-length Compression (CSS) . 15

5.1 Examples for online fix-length compression (a) and online variable-length com-

pression (b) . 22

7.1 Index Time for Similarity Search . 33

7.2 Comparison of Execution Time: Similarity Search 36

7.3 Comparison of Execution Time: Similarity Join 37

7.4 Scalability: Index Size . 38

7.5 Scalability: Execution Time . 39

vii

LIST OF TABLES

7.1 Statistics of Datasets . 31

7.2 Index Size for Compression Schemes: Similarity Search (MB) 33

7.3 Index Size for Compression Schemes: Similarity Join (MB) 34

7.4 Index Size: Amazon Review . 40

viii

ACKNOWLEDGMENTS

This thesis is based on the existing work I authored [47] published in the 38th IEEE

International Conference on Data Engineering (ICDE 2022). I would like to thank Dr. Jin

Wang, Dr. Chunbin Lin, and Professor Carlo Zaniolo for their collaboration and contri-

butions to the project: they have provided insightful input and helped to refine the ideas.

Furthermore, Professor Carlo Zaniolo has provided the funding that made the publication

of this work possible.

Furthermore, I would like to express my deep appreciation once again to Dr. Jin Wang

for providing the initial support in the research process, Professor Carlo Zaniolo for his

constant guidance in numerous discussions throughout various projects, and Dr. Chunbin

Lin, Dr. Zhiyi Zhang, and Professor Lixia Zhang for their invaluable assistance in the

research endeavor. Their expertise and commitment have been instrumental in my research

journey, and I am deeply grateful for their help.

Finally, I would like to express my sincere gratitude to Professor Todd Millstein and

Professor George Varghese for taking the time out of their busy schedules to serve as my

committee members.

ix

CHAPTER 1

Introduction

String similarity searches and string similarity joins represent fundamental operations in

many real world applications, including information retrieval [6], data mining [33], entity

extraction [42], near duplicate detection [46], data cleaning [11] and integration [44]. Given

a query string and a data collection, similarity search aims at finding all strings from the

collection that are similar to the pattern specified by the query; given two string collections,

the similarity join operator aims at finding all similar string pairs in the two collections.

Two strings are similar to each other if their similarity exceeds a predefined threshold under

particular metrics, such as the token-based metrics of Jaccard, Cosine, and Dice, and the

character-based metrics of Edit Distance.

The field of data management has witnessed a substantial body of research aimed at

addressing the challenge of string similarity search and join [32]. Most of the existing so-

lutions employ a filter-and-verification framework [11, 7, 46, 18, 28, 37]. This framework

consists of a filtering phase and a verification phase. During the filtering phase, various

techniques are employed to generate signatures from the input strings and to construct an

inverted index based on these signatures. The inverted index is used to narrow down the

set of candidate strings by pruning out those that are dissimilar. Finally, in the verification

phase, the similarity values of the remaining candidates are computed to determine the final

answers.

Motivation for Compressed Indexes Past studies in the realm of string similarity

search and join have focused on the development of effective filtering methods to achieve

1

high pruning power, such as the count filter [21], prefix filter [11], position filter [46] and

segment filter [28, 18]. However, a significant limitation of these approaches is the memory

overhead imposed by the inverted indexes. As the size of the inverted index grows, the

list operations (e.g., intersection, union, insertion, existence checking) over the posting lists

become the performance bottleneck in the context of string similarity search and join. When

the inverted lists are too large to fit in memory, disk-based or distributed algorithms must

be employed, which incur significant additional costs associated with disk or network I/O.

To address the above challenges, in this thesis, we seek to speed up the performance over

inverted index in the presence of large datasets by implementing two main strategies: (i) uti-

lizing online compression algorithms to significantly reduce the space overhead of the inverted

index through compression and (ii) performing list operations directly on the compressed in-

dex without the need for decompression.

Limitation of Existing Compression Schemes Numerous compression techniques have

been introduced in the domains of Information Retrieval and Databases. However, they are

not well-suited for string similarity search and join operations. For instance, PforDelta [51]

and its variations [49, 48], which represent the most widely-used methods for compressing

inverted lists, require decompression to access elements from the compressed data. On the

other hand, while MILC [41] addresses the above limitations by supporting query processing

on compressed data, it is still not applicable for online index construction, which is crucial

in similarity join algorithms. Similar limitations hold for compression methods used in file

systems and databases, such as Bzip [1], Zlib [3], and LZO [2], which are highly efficient

and can significantly reduce I/O costs. Bitmap compression techniques utilized in databases

include WAH [25], PLWAH [17], CONCISE [14], and Roaring [10]. However, these techniques

cannot be used for online index compression as they cannot handle incremental updates

efficiently.

For efficient string similarity search and join operations using compressed inverted in-

dexes, a compression method is needed that satisfies the following requirements: (i) it mus

2

allow direct querying on compressed data without the need for decompression, (ii)it mus

facilitate online construction and efficient updating of the compressed index, and (iii) it

must provide lossless compression to ensure that accurate results are produced. Currently,

however, there is no compression method that satisfies all three requirements, and critical

research is needed to fill this gap.

Our Solution In this this thesis, we seek to fill this crucial gap by proposing a general com-

pression framework, named Compressed String Similarity (CSS), which supports a broad

spectrum of frameworks for string similarity search and join. We begin by summarizing exist-

ing filtering techniques and defining a set of list operations required for these techniques. We

then examine the state-of-the-art compression method MILC [41], which utilizes a two-layer

storage structure for compressed data, allowing for direct list operations without decom-

pression overhead. Building on such structure, we further design a more flexible scheme

CSS, which not only gives a higher compression ratio, but also supports online inverted-list

compression during string similarity joins. Additionally, CSS can reduce computational re-

dundancies, leading to query performance that is comparable to, or even faster than, those

obtained using uncompressed lists.

We start from the similarity search problem and utilize offline compression schemes to

partition and compress the lists into compressed blocks. However, these schemes can not be

directly applied to similarity joins, where inverted indexes are generated on-the-fly. There-

fore, we propose a buffer-based scheme to extend the offline compression schemes to online

scenarios. The fundamental concept involves dividing a list into compressed and uncom-

pressed segments, where the compression is performed based on the evaluation of predefined

predicates, with the corresponding benefit derived from such evaluation. In order to balance

the computation overhead and memory consumption effectively, a benefit model is introduced

to analyze the sequence of elements in the list, thus guiding the formation of compressed

blocks. As a result of the benefit model, this adaptive compression scheme demonstrates

3

remarkable compression capability with minimal computational overhead, thus obviatin the

need for hyperparameter tuning. Due to their efficient and lightweight structure, these

compression techniques can reduce memory overhead while producing query processing per-

formance that is comparable to that obtained by directly querying uncompressed lists.

To summarize, the main contributions we made with this work are as follows:

• To the best of our knowledge, CSS is the first work that systematically analyzes lossless

compression techniques seeking to reduce the memory footprints and the runtimes

spent in string similarity search and join applications.

• We conducted an extensive study of existing frameworks for string similarity search

and string similarity join. Furthermore, based on our study, we summarized a suite

of necessary operations over the compressed inverted index lists required by these

frameworks that CSS needs to support.

• We provided several compression schemes tailored to string similarity search and join.

Specifically, we proposed the first solution for inverted index compression in an on-

line manner to support similarity join and develop three efficient online compression

schemes based on a benefits model.

• We conducted an extensive set of experiments on several real-world datasets. The out-

comes demonstrate that CSS attains comparable, or even better, query performances

than its uncompressed counterparts, while achieving a substantial reduction in memory

usage.

The rest of the thesis is organized as follows: Chapter 2 introduces necessary background

knowledge. Chapter 3 summarizes existing filtering techniques for string similarity search,

and string similarity join to identify the common list operations among them. Chapter 4

and Chapter 5 propose the new compression scheme for offline and online index construction,

respectively. Chapter 6 addresses important considerations for the broader applications of

CSS. Chapter 7 reports the results of the evaluation. Chapter 8 surveys the related work.

Finally, Chapter 9 concludes the whole thesis.

4

CHAPTER 2

Preliminary

2.1 String Similarity Search and Join

We first formally define the problem of string similarity search and string similarity join.

Let R and S be two string collections, where r ∈ R and s ∈ S represent individual strings.

In order to use filter-and-verification techniques, it is necessary to convert the strings into

signatures, such as q-grams, and we use SIM(s, r) to represent the similarity between strings

r and s. The i-th character in r or s is denoted as r[i] or s[i], respectively.

The formal definitions of string similarity search and join are given in Definition 1 and

Definition 2, respectively 1.

For the purpose of this discussion, we will focus on similarity self-join. However, the

techniques presented can be easily extended to the case of a join between R and S.

Definition 1 (String similarity search (SSS)). Given a query r, a string collection S and a

threshold τ ,a string similarity search operation aims at finding all strings s ∈ S satisfying

SIM(r, s) ≥ τ .

Definition 2 (String similarity join (SSJ)). Given a string collection S and a threshold

τ , a string similarity join operation aims at finding all strings r, s ∈ S where s ̸= r and

SIM(r, s) ≥ τ .

1For edit distance, the condition of similar strings is that the value is no larger than the given threshold
τ .

5

The key distinction between similarity search and join are discussed next. In the case

of similarity search, the indexes, i.e., the inverted lists, are constructed in the offline step

without having prior knowledge of the threshold. Once the query string and threshold are

given, results are obtained by traversing the inverted lists. On the other hand, in the case of

similarity join, the index is constructed during the online step as part of the join process, as

it is dependent on the value of the threshold, which is only known at run-time. As a result,

the time required for index construction is considered part of the join time in similarity joins.

To accommodate these requirements, we need to apply different compression techniques for

offline and online index construction.

2.2 Inverted List Compression

To reduce memory consumption, we focus on compressing the size of inverted lists, which

represents the bottleneck in memory usage. Inverted lists in SSS and SSJ store the record

IDs (elements) of all records that contain a specific signature in their posting list. These

elements are represented by unique, sorted positive integers. Our goal is to store these

lists using as few bits as possible while still allowing for efficient query processing on the

compressed list. To better understand the compression mechanisms, we will first introduce

some fundamental concepts. The “compression ratio” used in this work is defined as r = U
C
,

where U represents the size of the original uncompressed data and C represents the size of

the compressed data. For instance, if a list consists of 10 integer elements, each using 32

bits, then U = 10 × 32 = 320. If a compression method compresses the list into 200 bits,

then the compression ratio of this method would be r = U
C

= 1.6. A higher compression

ratio means more memory space saved.

In this paper, we will employ the two-layer compression scheme proposed by MILC [41] as

the cornerstone of our proposed framework. The core benefit of this two-layer compression

scheme is that it supports efficient random access directly to compressed data without de-

6

Figure 2.1: Two-layer compression scheme

compression, which is a crucial requirement for the set of operations outlined in Section3.2.

A visual representation of the details can be seen in Figure 2.1. More precisely:

• Metadata Layer: This layer contains a list of metadata blocks, each of which corre-

sponds to a compressed data block in the data layer. Each metadata blockM = (b, o, n)

holds three elements: (i) the base value b, which represents the first element in the

corresponding data block; (ii) the offset bit o, which is the sum of the bits used by

the previous data blocks; and (iii) the number of bits n used by each element in the

corresponding data block. It is important to note that each M requires 69 bits to store,

with 32 bits for b, 32 bits for o, and 5 bits for n (as the maximum number of bits used

by an element in a data block is 32, which can be expressed in 5 bits).

• Data Layer: This layer contains a list of compressed data blocks B. The compressed

data blocks are organized into 32-bit words. Instead of storing the original value v,

we store v − b, which represents the difference between v and the base value b. Each

difference is stored using n bits within the block.

Based on the above settings, MILC then employs a fixed-length partitioning and com-

pression method. More specifically, MILC takes a sorted list L and the number of elements

m per block as inputs and partitions L into ⌈ |L|
m
⌉ blocks B1, ..., Bk. If v0, v1, ..., vm−1 is the

list of elements stored in block Bi, then v0 is designated as the base element and stored in

7

Figure 2.2: Fix-length Compression in MILC

the metadata block Mi, i.e., b = v0. While v0 is stored in the metadata block, the actual

values stored in B are the offsets (v1 − b), (v2 − b), ..., (vm−1 − b). Now, each offset value

takes n = ⌈log(vm−1 − b + 1)⌉ bits in the data block B. To enable random access to the

compressed list, n is also stored in metadata block Mi. Let oi−1 be the offset bit stored in the

previous metadata block Mi−1, then oi = oi−1 + n(m− 1) is stored in the current metadata

block Mi.

8

CHAPTER 3

A Unified Compression Framework

In this chapter, we discuss the requirements that a unified compression scheme must satisfy to

support string similarity search and string similarity joins efficiently. We first summarize the

existing filtering techniques in Section 3.1 and then, in Section 3.2, we discuss the operations

required for their efficient support on compressed inverted lists.

3.1 Existing Filtering Techniques

Most existing solutions employ a filter-and-verification framework for string similarity search

and similarity search join. More specifically, in the filter step, these solutions employ various

filtering techniques to reduce the number of candidates, which will be discussed later. For

clarity, here, we will use the Jaccard similarity metric to illustrate these techniques. How-

ever, our compression methods are not restricted to specific similarity metrics or filtering

techniques.

3.1.1 Count Filters

The core idea of Count Filters [21] is that two strings should be considered similar only when

they share a sufficient number of signatures. The filtering problem can then be transformed

into the problem of solving the T -Occurrence [21], where the value of T is determined based

on the chosen similarity metric. Given two strings r and s, with signature sets Sig(r) and

Sig(s), respectively, r is considered similar to s (i.e. JAC(r, s) ≥ τ) if:

9

Sig(r) ∩ Sig(s) ≥ τ(|Sig(r)|+ |Sig(s)|)
1 + τ

(3.1)

To reduce the cost of traversing the lists in the Count Filter, several list merging algo-

rithms were proposed in [26]. The most widely used of these is MergeSkip, which uses binary

search to avoid traversing the entire list.

The main idea behind MergeSkip is to skip lists that cannot contain any element in the

answer set of the query with threshold T . Thus, a heap is kept for the frontiers of these

lists, and all elements are popped which have the same value as the top element e in the

heap. If there are T such elements, e is added to the answer set; otherwise, e cannot be an

answer. Additionally, MergeSkip further pops some additional lists up to a threshold related

to T and performs binary searches over all popped lists to locate its smallest element emin

such that emin ≥ e′ and push emin into the heap, where e′ is the current top of the heap. In

this way, MergeSkip can skip over a lot of elements that are smaller than the emin values in

these lists, since these elements cannot produce answers to the query.

3.1.2 Prefix Filters

A Prefix Filter [11] improves the filtering power and reduces the filtering cost by focusing

on the prefix of all strings. It starts by establishing a global order O for all tokens in the

dataset. Then, for a string s, the tokens are sorted according to O and the τ -prefix of s is

represented as Ps
τ . In the case of Jaccard similarity, dissimilar strings can be filtered out

using Lemma 1.

Lemma 1 (Prefix Filter [11]). Given two strings s, r and a threshold τ , the length of Pr
τ

(Ps
τ) is ⌊(1− τ)|r|+ 1⌋ (⌊(1− τ)|s|+ 1⌋). If Pr

τ ∩ Ps
τ = ∅, then we have JAC(r, s) < τ .

The process of using the Prefix Filter to perform string similarity join is shown in Algo-

rithm 1. Thus, the algorithm first initializes the result set and the inverted lists set (line: 2),

and then, for each string in the collection, it generates the corresponding prefix according

10

to Lemma 1 (line: 4). The algorithm then traverses the inverted lists that correspond to

signatures in the prefix and retrieves the potential matches (line: 6). For all the potential

matches, a verification is performed to identify similar pairs (line: 8). After a string s is

processed, it is appended to the inverted lists associated with its prefix for further compar-

isons with subsequent strings (line: 11). Finally, the results are returned after all strings

have been processed (line: 12). Note that in this process, the inverted index is constructed

in an online manner. Furthermore, a similar approach can be used to perform other string

similarity joins, including those that use Position Filters and Segment Filters, which are

discussed next.

Algorithm 1: Index Construction(S, τ)
Input: S: The string collection; τ : The similarity threshold.

Output: A: set of pairs ⟨r, s⟩ s.t. r, s ∈ S, r ̸= s,JAC(r, s) ≥ τ

begin1

Initialize the result set A and the inverted lists L as ∅;2

for s ∈ S do3

foreach signature e ∈ Ps
τ do4

foreach r in L[e] do5

if r is not visited and pass the length filter then6

if JAC(s, r) ≥ τ then7

Add ⟨r, s⟩ into A;8

9

10

Append s into inverted list L[e];11

return A;12

end13

11

3.1.3 Position Filter

The Position Filter [46] builds on top of the Prefix Filter. The core idea is to check the

difference in position between the matched signatures after finding them in the prefix. Given

two strings r and s and a signature e that exists in the prefix of both r and s, with the position

of e in Pr
τ and Ps

τ represented as Pe[r] and Pe[s], respectively, if JAC(r, s) ≥ τ , then for any

e ∈ Pr
τ (Ps

τ), the following constraint must hold: |r| − Pe[r] + 1 ≥ τ(|Sig(r)|+|Sig(s)|)
1+τ

.

The filtering power of the Position Filter can be further enhanced by considering the

suffix of the strings. This filter can be integrated into Algorithm 1 by adding an additional

check before verifying the results.

3.1.4 Segment Filter

In contrast to the aforementioned filtering techniques, the Segment Filter splits all strings

into non-overlapping partitions, and two strings are considered similar only if they have at

least one common partition. The Segment Filter was first introduced for edit distance [28]

and later extended to support set-based similarity metrics, such as Jaccard, in [18].

For Jaccard similarity, the following condition applies. Given two strings r and s (|r| <

|s|) split into k non-overlapping partitions with the same partition scheme, where k =

⌈1−τ
τ

∗ |r|⌉ + 1, JAC(r, s) ≥ τ if the l-th partition of s and r is the same for some l in

the range of [i, k].

In the above filtering techniques, the Count Filter can be applied to both the similarity

search and similarity join problems, whereas other filtering techniques are designed for sting

similarity joins since they require a threshold τ to be specified as part of the input.

12

3.2 Common Class of List Operations

Based on the above analysis, we conclude that, in order to support common filtering tech-

niques, we should provide efficient implementations for the following operations on com-

pressed inverted lists:

• Verification: Check whether an element exists in one list.

• Intersection: Find common elements of multiple lists.

• Union: Find the union of all elements of multiple lists.

• Insert: Append one or many new elements to the end of a list.

Among the filtering methods, the Count Filter requires Verification and Intersection

operations, while the Prefix Filter, Position Filter, and Segment Filter all require Union

operations. For string similarity joins, all filtering methods require the insertion of elements

to build the inverted lists incrementally. Additionally, the Prefix and Position Filters re-

quire additional fields to store the position of signatures within each string. As outlined in

Section 2.2, current state-of-the-art methods face significant overhead in query processing

and are unable to build compressed indexes incrementally. In the following section, we will

present new compression schemes that can efficiently support these operations.

13

CHAPTER 4

Index Compression Strategies

In this chapter, we study the inverted list compression techniques under offline setting. As

introduced in Section 2.2, the state-of-the-art approachMILC employees a fix-length partition

scheme. Since MILC partitions data into equal-size blocks, it will achieve a high compression

ratio if data is (almost) evenly distributed. However, that is not always the case in real-life

applications, and in situations where there is skewness in the data distribution, MILC will

result in a significant waste of space.

Example 1. Given the list L1 with 21 elements shown in Figure 2.2, suppose MILC partitions

m = 8 elements into one block, then MILC evenly splits L1 into ⌈21
8
⌉ = 3 data blocks B1,

B2 and B3. Thus three corresponding metadata blocks M1, M2, and M3 are created. Each

metadata block occupies 69 bits, as we introduced before. The start values of B1, B2 and B3

are M1.b1 = 3, M2.b2 = 992 and M3.b3 = 8401, respectively. Since MILC stores the offset of

original values to the start value in each block, the actual values stored in blocks can be decided

accordingly. Take B1 as an example, its values can be calculated as {3, 8, 9, 10, 13, 986, 987}.

Therefore, the number of bits needed to represent the data in B1, B2 and B3 are B1.n1 =

⌈log(987 + 1)⌉ = 10, B2.n2 = ⌈log(7248 + 1)⌉ = 13 and B3.n3 = ⌈log(305 + 1)⌉ = 9. The

total number of bits of B1, B2 and B3 are 10 × 7 = 70, 13 × 7 = 91, and 9 × 4 = 36, while

M2.o2 = 70 1 and M3.o3 = 70 + 91 = 161. In total, MILC uses 69× 3 + 70 + 91 + 36 = 404

bits to represent the whole list while the original size is 32× 21 = 672 bits. The compression

ratio of MILC in this example is 672
404

= 1.66.

1M1.o1 is always 0.

14

Figure 4.1: Variable-length Compression (CSS)

In Example 1, it is clear that MILC produces sub-optimal partitions due to data skewness.

In fact, B1 will need 10 bits to store each element due to the existence of {986, 987}, which

are the direct result of the fix-length partition scheme of MILC.

To address the limitations of MILC and provide a more robust compression scheme, we

present a novel variable-length compression scheme, referred to as CSS. This scheme accom-

modates the capacity to allocate varying numbers of bits per element to different blocks,

thereby providing greater flexibility and robustness. To this end, we employ a dynamic

programming approach to identify the optimal partitioning positions to minimize the total

number of bits. By properly allocating elements into different blocks, we can significantly

reduce the space overhead. For example, as demonstrated in Figure 2.2 and Example 1, when

the elements 989 and 990 are placed into block B1, each element therein requires 10 bits to

store. On the other hand, if these elements were to be inserted into block B2, the number

of bits required for each element in B1 would be reduced to 4, resulting in a substantial

decrease in terms of space overhead.

Details of CSS.

To minimize the overall space overhead, we need to ensure that the memory space saved

through the creation of a new data block is greater than the overhead incurred by the

15

associated metadata block, which has a fixed size of 69 bits. To this end, we employ a

dynamic programming algorithm as the solution. The goal is to find a set of positions P in

L that decides the partitions, using the benefits we gain when CSS creates a new data block

as the decision criteria.

Let G[x, y] denote the space we can save once the sequence from x-th to y-th elements

on L is regarded as a block. If the number of bits an element in this block occupies is b,

then the number of saved bits G[x, y] can be calculated as (y − x) ∗ (32 − b) + 32 − 69. If

OPT [i] denotes the maximum saved space in the sub-list L[1...i], then we can calculate the

value of OPT [i] using the following Equation (4.1):

OPT [i] = max
0<j<i

G[j, i] +OPT [j] (4.1)

Algorithm 2 shows details of the Variable-length approach. The algorithm first initializes

the value of the benefit, which is negative with just one element in a block (line: 2) due to its

corresponding metadata block. Then it traverses each position in L and initializes the value

of the maximum benefit in the current sub-list (line: 4) and the partition positions (line: 5).

Then in the inner loop, it will calculate the maximum benefits as well as the corresponding

partition positions (line: 6-9). Finally, the set of partition positions P is returned, resulting

in the maximum space-saving, i.e., the minimum number of bits used in total. The two-level

block structure can be constructed according to the information contained in P .

The time complexity of Algorithm 2 is O(n2), where n is the length of L. However,

as this process occurs during the index construction phase in an offline setting, it does not

impact the performance of the string similarity search process. As shown by the experiments

reported in Figure 7.1, the overhead of this process is also reasonable. Additionally, we can

also add some constraints, e.g., the maximum size of a data block, to reduce the cost of this

process when necessary.

Example 2. Recall the inverted list in Figure 2.2, suppose CSS will split the list into three

16

Algorithm 2: Variable-length Partition (L, n)

Input: L: The inverted list; n: Cardinality of L; G: Pre-caculated benefit matrix

Output: P : set of positions to split L

begin1

Initial OPT[0] = 32− 69 = −37;2

for i = 1 to n do3

OPT[i] = G[0, i];4

P[i] = i;5

for j = 0 to i− 1 do6

if OPT[j] + G[j+1,i] > OPT[i] then7

OPT[i] = OPT[j] + G[j+1,i];8

P[i] = j;9

10

return P ;11

end12

blocks with starting values 3, 989, and 8015 respectively, as shown in Figure 4.1. Here it

creates three corresponding metadata blocks M1, M2, and M3. Each metadata block occupies

69 bits, as introduced before. The values stored in each block are computed in a similar way.

For example, we have B3 as {86, 90, 225, 386, 487, 607, 686, 691}. Therefore, the number of

bits needed to represent the data in B1, B2, and B3 are B1.n1 = ⌈log(13 + 1)⌉ = 4, B2.n2

= ⌈log(53 + 1)⌉ =6 and B3.n3 = ⌈log(691 + 1)⌉ = 10. The total number of bits for B1, B2

and B3 are 20, 30, and 80, respectively. In total, CSS uses 69× 3 + 20 + 30 + 80 = 337 bits

to represent the whole list while the original size is 672 bits. Meanwhile, we can see that the

compression ratio of CSS is 672
337

= 1.99.

Binary Search over Compressed List Another issue to resolve is how to quickly traverse

the compressed list. To this end, we employ a binary search algorithm described as follows:

17

1. Metadata lookup. Given a search key e, it first performs the binary search over the

metadata block by comparing with the base value M.b to find the data block Bi such

that Mi.bi ≤ e and Mi+1.bi+1 > e.

2. Data lookup. Then it uses e −Mi.bi as a new search key in data block Bi to perform

the binary search starting from address Mi.oi, where the t-th element in Bi is located

at the address of Mi.oi +Mi.ni × (t− 1).

An important observation to be made here is that the binary search is performed directly over

the compressed data without decompression, thus significantly reducing the query processing

overhead.

Example 3. Recall the list compressed in Figure 2.2 and a search key 8015. It first does

metadata lookup to find the block B2 since M2.b2 = 992 < 8015 and M3.b3 = 8401 > 8015.

Then it uses the new key 8015 − 992 = 7023 to do the binary search in Block B2 starting

from 70 bit, and the 4-th value is at address 70 + 13× (4− 1) = 109 bit, and the size is 13

bit. So we get the value of 7023, which matches the new search key.

With the ability to perform the binary search directly over compressed data, theMergeSkip

algorithm can be efficiently supported on the compressed inverted lists.

18

CHAPTER 5

Online Index Compression

In this chapter, we investigate compression techniques for string similarity joins, which re-

quire compressed indexes to be constructed on-the-fly during query processing. We first

describe the new challenges that need to be addressed in the online scenario in Section 5.1.

Next, we discuss how to extend the two offline compression methods (i.e., MILC and CSS)

proposed in Section 4 and propose their online versions in Section 5.2. Finally, in Section 5.3,

we propose a cost model to evaluate the trade-offs when doing online compression and devise

a new adaptive compression approach accordingly. Since all of the approaches discussed in

this section are based on our CSS framework, we will omit the prefix CSS when referring to

these approaches(e.g., we use the term Adapt when referring to CSSAdapt).

5.1 Challenges for String Similarity Join

While the compression techniques outlined in Section 4 are effective for addressing the prob-

lem of string similarity search, they do not support the applications of string similarity join

well. The reason for this limitation is that these techniques require the complete list as an

input, meaning that the compressed index is constructed in the offline stage. However, as

demonstrated in Algorithm 1, string similarity joins necessitate constructing the index in an

online fashion. Consequently, two new challenges must be addressed:

• Compression decision making. The compression techniques employed must deter-

mine whether to form a new data block as soon as an item arrives. Since the entire

19

list is still unavailable when making the decision, this will will inevitably result in a

reduction of the expected compression ratio.

• Supporting incremental update. The compressed index must be updated incre-

mentally as more records in the dataset are accessed. Given that the index construction

time is part of the overall time required for the string similarity join, it is necessary to

avoid reconstructing the compressed index during the entire process.

Nevertheless, the online compression scheme can be developed by extending the the fix-

length and variable-length approach we have proposed. To reach this goal, we should enable

the incremental maintenance on the two-level block structure. However, it is necessary

to identify the number of bits used to encode elements in each block before creating the

metadata blocks. Although this value can be easily determined by scanning the entire

list, it is not known ahead of time in online settings. A simple solution involves adjusting

the metadata and data blocks after each element arrives. However, this approach can be

prohibitively expensive as each data block i must be reorganized once the value of bi changes.

An additional detail that must be addressed is the need to store both ID and position

information in the inverted list for certain filtering techniques, such as the Prefix Filter

and the Position Filter. This issue can be resolved by storing these pieces of information

separately in two lists. The list of IDs can be stored using the compression techniques

described later in this thesis. However, since the list is unsorted, these techniques cannot be

applied to store the corresponding position information. Instead, a straightforward strategy

employing the same number of bits as the largest element in the list of positions will be

utilized.

20

5.2 Extending Proposed Approaches

To address the challenges created by the online settings, we next propose a lazy updated

block structure. Specifically, the inverted list is divided into two regions: the compressed

region and the uncompressed region. The compressed region is identical to that of the offline

setting, while the uncompressed region serves as a buffer for incoming elements. When a

new element arrives, we first check whether the uncompressed region is full. If so, a new data

block is created for all elements in the uncompressed region and moved to the compressed

region. Otherwise, the new element is simply added to the buffer.

During the processing of a string similarity join, elements in each list arrive in ascending

order, and the uncompressed region always contains elements with larger IDs. As a result,

random access to the list can still be supported by visiting the two regions separately.

Online Extension for MILC (Fix) It is rather straightforward to apply this idea to the

fix-length approach and extend it to the online setting. Since the size of all data blocks is

fixed at m, we can also set the cardinality of the uncompressed region to m. When a new

block needs to be created, the first element in the uncompressed region is regarded as the

base. Then offsets are calculated accordingly, and bi is assigned the value of the maximum

delta among them. Finally, the blocks are appended to the compressed region, and the

uncompressed one is clear.

Online variable-length compression (Vari). The variable-length approach can be adapted

to the online setting in a similar manner to the fix-length approach. However, a new challenge

arises in determining an appropriate value for the maximum cardinality of the uncompressed

region. If this value is too small, the optimal solution may be missed, while setting it too

high results in significant overhead in both memory usage and the execution of the dynamic

programming algorithm. To identify a proper uncompressed region size, we perform a de-

tailed analysis of the number of saved bits in the variable-length approach. The findings are

summarized by Theorem 1.

21

Figure 5.1: Examples for online fix-length compression (a) and online variable-length com-

pression (b)

Theorem 1. Let |M | be the total number of bits needed for a metadata block, then the lower

bound and upper bound of the size of a data block with the variable-length compression (CSS)

is ⌈ |M |
32

⌉ and 2× |M |, respectively.

Proof. We will prove that the lower bound is ⌈ |M |
32

⌉ by contradiction. Suppose that there is

an uncompressed region X with 2 elements, where G[0, 1] ≥ 0, and let Xi be the i-th element

of X. Then we have:

32× 2− ⌈log2(X1 −X0 + 1)⌉ × 2− 69 >= 0 (5.1)

Since each element must differ by at least 1, we know that ⌈log2(X1 −X0 + 1)⌉ > 0. Thus,

it is impossible for 32− ⌈log2(X1 −X0 + 1)⌉ ≥ 34.5 to be true. This implies that the lower

bound holds.

Next, we prove the upper bound is 2× |M |. Assuming there is an uncompressed region

X with size m > 138, where the i-th element in X is denoted by Xi.

If we were to compress the entire uncompressed region, we would have the following result:

G[0,m− 1] = 32×m− ⌈log2(Xm−1 −X0 + 1)⌉ ×m+ 69) (5.2)

22

Next, we partition this region into two blocks, with the dividing point being the middle

element Xk. The total gain from this partition would be:

G[0, k − 1] +G[k,m− 1] = 32×m− [⌈log2(Xm−1 −Xk + 1)⌉ × (m− k + 1)+

⌈log2(Xk−1 −X0 + 1)⌉ × (k) + 138] (5.3)

We then introduce a new gain, G′, which is always smaller than G[0, k − 1] +G[k,m− 1]:

G′ = 32×m− [⌈log2(Xm−1−Xk+1)⌉× (m/2)+⌈log2(Xk−1−X0+1)⌉× (m/2)+138] (5.4)

To show that the upper bound holds, we must prove thatG′ is always greater thanG[0,m−1].

By simplifying the equation, we get:

m[2×⌈log2(Xm−1−X0+1)⌉−⌈log2(Xm−1−Xk+1)⌉−⌈log2(Xk−1−X0+1)⌉] > 138 (5.5)

Since we have already assumed that m > 138, all that needs to be proven is that:

2× ⌈log2(Xm−1 −X0 + 1)⌉ − ⌈log2(Xm−1 −Xk + 1)⌉ − ⌈log2(Xk−1 −X0 + 1)⌉ >= 1 (5.6)

This equation can be simplified further to Xm−1−X0+1 < Xm−1−Xk +1+Xk−1−X0+1,

which leads to Xk − Xk−1 < 1. However, this is a contradiction, so the upper bound of

2× |M | holds.

Our proof is thus completed.

On the basis of the above findings, we establish the maximum number of bits occupied by

the uncompressed region as: 69∗2 = 138. When a new element arrives, and the uncompressed

region is full, a dynamic programming process similar to Algorithm 2 is applied to all elements

in the region. Unlike the offline algorithm, only one data block is created in the compressed

index each time. The remaining elements remain in the uncompressed region, awaiting the

next time the buffer reaches full capacity. As a result, the time complexity of the dynamic

programming process for each element is O(|M |).

23

Example 4. Figure 5.1 illustrates an example of the Vari method. The full sequence L

is {15, 17, 18, 19, 20, 23, 33, 37, 39, 40, 4058, 4152, 4156, 4230, 4235}. Assuming that the buffer

size is 12 and that 11 elements are already present in the buffer, when element 4152 arrives

and the buffer is full, a dynamic programming process is performed on the buffer, and the

first ten elements are compressed into a block. Elements {4058, 4152} are then appended to

the buffer and wait for the next compression operation. Finally, B1.n1 is calculated to be

⌈log(25 + 1)⌉ = 5, and B2.n2 is determined to be ⌈log(177 + 1)⌉ = 8. The total number

of bits in B1 and B2 are 5 × 9 = 45 and 8 × 4 = 32, respectively. Thus, Vari requires

69×2+45+32 = 215 bits to represent the entire list, while the original size is 32×15 = 480

bits. The compression ratio achieved by Vari in this example is 480
215

= 2.23. Note that, on the

other hand, the Fix approach needs 294 bits with a compression ratio of 1.63.

Note that the peak memory usage of the above methods is based on the size of the

uncompressed region and the size of the compressed index at that time point. As shown

above, the space overhead of the former one is rather limited. Therefore, the overhead

encountered by these two approaches to support the online index compression is rather

trivial.

5.3 Benefit Estimation Model based Algorithm

We observe that both the online version of fix-length and variable-length compression ap-

proaches have certain shortcomings. More precisely, the fix-length method is efficient but

has a limited compression ratio, whereas the variable-length method demonstrates signifi-

cant compression capabilities but incurs considerable time overhead during the compression

process. In addition, both approaches require users to manually identify the maximum car-

dinality of the uncompressed region, which can prove challenging to optimize for distinct

workloads and datasets and may even be unknown for previously unseen data.

To achieve a trade-off between them and avoid having to tune the hyper-parameter, we

24

propose and employ a new model that estimates the benefits of generating blocks.

The main idea is that the decision of whether to move elements from uncompressed

regions to compressed blocks should be based on the number of bits that we can expect to

save. In the online scenario, we do not know the whole sequence of incoming elements and,

therefore, we need to use a probabilistic model to predict it.

We treat the gaps between every two consecutive elements from the input sequence of

size M as a probability distribution 1.

In our specific context, we have employed Kernel Density Estimation [9] (KDE) to ap-

proximate the probability density function (PDF) f(x) of the inter-element gaps in the

buffer. To this end, we use a kernel function K(·)to determine the shape of the estimated

density function, and a smoothing parameter, or bandwidth, H(·), to control the degree of

smoothing in the estimated density function. We finally derive our estimated PDF as Equa-

tion (5.7). Note that following existing solutions such as [8], we could not only calculate our

PDF based on the already observed elements but also update our PDF incrementally upon

the arrival of new elements.

f(x) =
n−1∑
i=0

1

H(xi)
K(

x− xi

H(xi)
) (5.7)

where xi represents the gap between elements Zi and Zi+1; K(·) is a kernel function, and

the Epanechnikov Kernel is used here.

Based on the above PDF, the incoming sequences can then be predicted by estimating

the Cumulative Distribution Function (CDF) of the gap. This can be done by making an

Inverse Sampling on f(x) [19]: if currently there are k elements, the k+1-th element can be

computed iteratively with Equation (5.8).

Zk+1 = Zk +
⌈
[

∫ u

−∞
f(u)du]−1

⌉
(5.8)

1According to the findings in Theorem 1, the maximum number of M is 138.

25

where u is a random number from the standard uniform distribution in the interval [0, 1]

(e.g., from U ∼ Uniform[0, 1].)

Following this route, suppose the first element in current uncompressed region is Z0, the

benefit G(Zk) of compressing Z0 through Zk can be calculated as follows:

G(Zk) = Θk − (δ + bk ∗ k) (5.9)

where Θk is the size in bits of corresponding uncompressed block; δ is the overhead needed

save the necessary meta-data of a block (which as illustrated in Section 4 is equal to 69).

Finally, the goal of this benefit model is to find a position k in the estimated incoming

sequence where the benefit B(Zk) is maximized as shown by Equation (5.10):

B(Zk) =
1

M − n

M∑
k=n+1

G(Zk) (5.10)

Although the above model is theoretically sound, it still incurs considerable overhead

in maintaining the statistics. Thus we propose an adaptive compression approach, named

Adapt, also inspired by the high-level idea of estimating benefits. More specifically, we

make the decision based on ONE newly incoming element: when a new element arrives, it

compares the bits saved by compressing all elements in the uncompressed region U when the

new element is present and when it is not. Since the metadata of a new block requires 69

bits while including an additional uncompressed element requires 32 bits, the initial benefit

is −ρ = 37. We will use ρ as a predicate to make the decision in our model.

Suppose that there are x elements in U and the number of bits each delta occupies is b̄;

then, the saved number of bits b′ is calculated as (x− 1) ∗ (32− b̄)− ρ. Note that the time

complexity for Adapt for each element will be O(1) because the calculation time of expected

gains is constant. The process to deal with a new element is shown in Algorithm 3.

Example 5. Given the same list L above, suppose we already have elements {15, 17, 18,

19, 20, 23, 33, 37, 39, 40} in U and the benefit b′ is ((10−1)× (32−5)−37) = 206 because the

26

Algorithm 3: Adaptive Compression Approach

Input: e: The input element; U : The uncompressed region; I: The compression

region; ρ = 37: The initial gain

begin1

Calculate the expected benefits b′(b′′) using all existing elements from U without2

(with) e;

if b′ − b′′ > ρ then3

Compress all elements in U and create a new data block;4

Add the new data block into I and clear all elements in U ; Append e into U ;5

else6

Append e into U ;7

end8

max delta takes ⌈log(40−15+1)⌉ = 5 bits. For the Adapt algorithm, when 4058 comes in the

max delta takes ⌈log(4058− 15 + 1)⌉ = 12 bits, and thus Adapt decides to open a new block

because ((10− 1)× (32− 5)− 37)− ((11− 1)× (32− 12)− 37) > ρ, which means it no longer

benefits from appending 4058 to the same block in U , so we create a data block for the current

U and then empty it. The element 4058 is then appended to the U for the next compression.

When the last element 4235 arrives and we finish our string similarity join, we perform a

final compression over U and we have 2 data blocks B1 and B2, and thus two corresponding

metadata blocks M1 and M2. The start values B1 and B2 are 15 and 4058. The actual data

blocks are as follows: B1 = {2, 3, 4, 5, 8, 18, 22, 24, 25} and B2 = {94, 98, 172, 177}. Therefore

since B1.n1 = ⌈log(25+1)⌉ = 5 and B2.n2 = ⌈log(177+1)⌉ = 8, the total number of bits of B1

and B2 are 5×9 = 45 and 8×4 = 32, respectively. In total, Adapt uses 45+32+69+69 = 215

bits to represent the whole list while the original size is 480 bits. The compression ratio of

Adapt online is 480
215

= 2.23, i.e it achieves the same performance as Vari.

27

CHAPTER 6

Discussion

In this section, we investigate the potential benefits of using the algorithms proposed in CSS

in novel application scenarios created by emerging new hardware.

6.1 Extension for Offline Approaches

Firstly, we would like to show that the offline compression algorithm proposed in Section 4

could also be potentially applied to Solid State Drive (SSD) based settings. Compared with

hard disks, SSD has two unique characteristics: (i) its speed of random read is similar to

that of sequential read, and (ii) it supports parallel I/O operations. Therefore, unlike the

situation for hard disk, the two-layer index structure utilized by CSS dovetails with SSD.

Assuming that the compressed inverted lists are stored on SSD, then when we need to look

up a particular list, we can still use the binary search algorithm on both metadata and data

blocks in the same way we did with the in-memory setting. This is due to the fast speed

of random read operations on SSD. Moreover, as the index is constructed in the offline step

and dumped to SSD at once, this will not incur expensive random write operations. As a

result, the proposed algorithm can still be used on SSD without losing its main benefits.

6.2 Online Approaches

In this subsection, we discuss how to extend our online compression algorithms of CSS to

make it cache-aware (Section 6.2.1) and SIMD-aware (6.2.2) in order to further improve

28

performance.

6.2.1 Cache-aware design

Here we discuss how to extend our online compression algorithms to be cache-aware. The

goal is to maximize cache hits by ensuring that a cache line brought from memory to CPU

caches (i.e., L1/L2/L3 cache) is fully utilized before it is retired. When a CPU instruction

encounters a memory access, it first checks whether the accessed data is kept in caches. If

so, then then we have a cache-hit. Otherwise, a cache line (64 bytes) of data is loaded from

the main memory to caches. Loading data from main memory to caches decreases perfor-

mance. A cache-aware design seeks to maximize the cache-hit rate. To convert the online

compression algorithms to cache-aware design, the main idea is to organize the elements in

metadata blocks and data blocks into a B-tree structure with the node size being a CPU

cache line (64 bytes) [22, 41]. Instead of using tree pointers, the B-tree is materialized as an

array supporting a level-order traversal manner, whereby search can be done efficiently by

traversing the B-tree. One remaining challenge is that a number of elements is required to

form a perfect tree; in fact, 17i − 1 elements are needed to form a i-level perfect tree. To

reduce the space overhead, we can use optimizations that convert the array of the sorted

elements to a complete tree instead of a perfect tree [41].

6.2.2 SIMD-aware design

Here we discuss how to further improve the query processing performance by using SIMD

(i.e., Single instruction, multiple data) instructions. A SIMD instruction operates on an

r-bit register where r is 128 or 256, depending on different processors. The benefit of using

SIMD instructions is the ability of processing multiple elements at a time. To organize the

data elements in metadata blocks and data blocks into a SIMD-efficient structure, we need

to store the data as follows:

29

(i) The elements in metadata blocks are first stored as a sequence of cache lines. Then

elements in the same cache line are organized using k-ary method [38]. With this data

organization, a SIMD operation can be applied to find the right child node to access

in an efficient manner;

(ii) For the elements in data blocks, we just need to keep the same organization as that for

the cache-aware design above. A SIMD operation interacts with a r-bit SIMD register

as a vector of banks, where a bank is a continuous section of b bits. 1 Given a search key,

CSS first accesses the metadata layer in a SIMD-aware manner, as described in [38],

to (a) find the data block containing the key, and then (b look up the key within it.

1b can be 8 (in byte type), 16 (in short type), or 32 (int type).

30

CHAPTER 7

Evaluation

In this chapter, we conduct an extensive set of experiments to validate our proposed tech-

niques.

7.1 Experiment Setup

Table 7.1: Statistics of Datasets

Name Average Length Cardinality Size (MB)

DBLP 12.1 10 M 155

Tweet 21.6 2 M 203.3

DNA 103 1 M 269.9

AOL 20.9 1.2 M 27.6

We evaluate our proposed techniques on four real-world datasets which have been widely

used in previous studies about string similarity search and join. DBLP 1 is a computer-science

bibliographic dataset. We tokenize each record into a set of 3-grams. Tweet 2 consists of

posts on the Twitter website. We split each record into tokens using the space as thee

delimiter. DNA 3 is a dataset of DNA sequences. We tokenize each record into a set of

1http://dblp.uni-trier.de/

2https://twitter.com/

3https://www.ncbi.nlm.nih.gov/genome

31

6-grams. AOL 4 is a set of query logs. We use AOL for experiments with Edit Distance as

the similarity metrics while using the other three datasets for Jaccard.

Table 7.1 provides comprehensive statistics on all datasets. Notably, we employed distinct

length definitions for the AOL dataset and the other datasets. More specifically, for the AOL

dataset, length refers to the number of characters in each string, while for the other datasets,

length denotes the number of tokens.

To evaluate the generality of CSS, we test them on several different string similarity search

and string similarity join frameworks. For similarity search, we focus on the T -Occurrence

problem and evaluate the ScanCount and MergeSkip proposed in [26]. For similarity join, we

evaluate the Count Filter [21], the Prefix Filter [11] and the Position Filter [46] for Jaccard

similarity and the Segment Filter [28] for Edit Distance. Although there are also many

other filtering techniques [37, 40, 18, 45], we omit them in the experiments due to space

limitations. Since they are all variants of the above approaches, CSS can also be seamlessly

integrated into them. Our experimental focus primarily centers on evaluating the index size

of the proposed compressed index structures. Furthermore, we compare the query execution

time of all methods with those obtained using uncompressed inverted lists.

All experiments are conducted on a server with an Intel Xeon(R) CPU processor, 16 GB

RAM, running Ubuntu 14.04.1. For the fairness of comparing memory overhead, we imple-

ment all methods by ourselves. All the algorithms are implemented in C++ and compiled

with GCC 4.8.4.

7.2 Effect of Compression Techniques

We first look at the index size of each method. The results of the similarity search are detailed

in Table 7.2, wherein we implement four distinct approaches. Firstly, Uncomp represents the

method that utilizes the original inverted lists without any form of compression. Secondly,

4https://jeffhuang.com/search query logs.html

32

Table 7.2: Index Size for Compression Schemes: Similarity Search (MB)

Dataset Uncomp PForDelta MILC CSS

DBLP 992.68 496.45 229.26 200.10

Tweet 351.92 186.24 107.55 85.84

DNA 1812.76 1020.30 408.06 376.66

AOL 191.80 96.06 44.31 40.2

PForDelta [51] and MILC [41] represent state-of-the-art inverted list compression methods.

Thirdly, we present CSS as the variable-length approach in Section 4. Our results indicate

that, through the application of the compression scheme, CSS is able to significantly reduce

the memory space requirements for inverted lists. For instance, on the DNA dataset, the

compression ratios of MILC and CSS are 4.44 and 4.82, respectively. Moreover, we observe

that our proposed methods, compared to the existing compression scheme PForDelta, have

considerably lower memory consumption.

 0

 50

 100

 150

 200

 250

 300

 350

 400

DBLP TWEET DNA AOL

In
d

e
x
 T

im
e

(s
)

Dataset

Uncom
PForD
MILC
CSS

Index Time - Search

Figure 7.1: Index Time for Similarity Search

Figure 7.1 displays the index time of all the compression schemes under consideration.

Notably, we observe that the indexing time of MILC is similar to that of Uncomp. Although

the dynamic programming algorithm employed by CSS incurs an index construction over-

33

head, this overhead is acceptable since the compressed index is constructed in the offline

step.

Table 7.3: Index Size for Compression Schemes: Similarity Join (MB)

Dataset Uncomp Fix Vari Adapt

DBLP 992.68 361.48 201.45 225.36

Tweet 147.61 59.69 44.56 45.73

DNA 554.70 260.75 188.94 192.61

AOL 72.22 34.91 29.94 40.76

Due to space constraints, we report the results of only one existing filtering technique

for similarity join on a single dataset. However, we note that this technique exhibits similar

trends when evaluated on different combinations of filter and dataset. In particular, we

evaluate the Count Filter on the DBLP dataset, the Prefix Filter on the Tweet dataset, the

Position Filter on the DNA dataset, and the Segment Filter on the AOL dataset. Notably,

different thresholds in similarity join problems can result in varying index sizes. Thus, we

report our results for a Jaccard threshold of 0.6 on the first three datasets and an edit

distance threshold of 4 on the AOL dataset.

We implement the following four methods: Uncomp, which represents the original inverted

list; Fix and Vari, which are online algorithms extended from MILC and CSS, respectively;

and Adapt, which is the adaptive compression method introduced in Section 5.3. Based on

the results shown in Table 7.3, we make the following observations. Firstly, in the case of the

Count Filter on the same dataset DBLP, the compression ratio achieved is not as significant

as that of the corresponding offline compression schemes. This can be attributed to the

inability of online algorithms to use information from the entire list when making decisions on

compressed blocks. Nonetheless, the online algorithm still achieves a reasonable compression

ratio. For instance, on the DBLP dataset, the compression ratios of Fix, Vari, and Adapt are

2.75, 4.93, and 4.40, respectively. Secondly, Vari exhibits the highest compression ratio since

34

it performs dynamic programming on the subsequence obtained so far during compression.

However, Vari also suffers from additional overhead in execution time, as demonstrated in

the subsequent subsection. Thirdly, the compression ratio achieved by Adapt is very close

to that of Vari. For instance, on the Tweet dataset, the compression ratios of Vari and

Adapt are very similar, with values of 3.31 and 3.23, respectively. This demonstrates that

the approximation made in Adapt is reasonable and can provide a good trade-off to save

memory using the high-level idea inspiring our benefit model.

7.3 End-to-end Query Time

We can now examine the end-to-end query execution time of the above-mentioned ap-

proaches. For the string similarity search, we randomly select 10,000 strings from each

dataset as queries and report the average time per query. In particular, we utilize the Edit

Distance as the similarity metric for AOL, while employing Jaccard for the remaining three

datasets. We implement five methods, namely, the ScanCount (SC) algorithm performed

on Uncomp and PForDelta inverted lists, the MergeSkip (MS) algorithm performed on Un-

comp, MILC, and CSS inverted lists. The results are presented in Figure 7.2. However, since

PForDelta does not support random access to lists, the more efficient MergeSkip algorithm

cannot be performed on it. Therefore, the performance of similarity search on PForDelta is

impacted by the low efficiency of ScanCount. We observe that the performance of MergeSkip

on MILC and CSS is very similar to that of the uncompressed inverted lists. For instance,

for τ = 0.75 on the Tweet dataset, the average search time for MergeSkip on Uncomp, MILC,

and CSS is 24.6, 30, and 33.6 milliseconds, respectively. The reason that search on MILC

has better performance than CSS can be attributed to the fact CSS would use more blocks

in most cases. As a result, there will be more overhead for the binary search. This is more

obvious in Figure 7.2(c) and 7.2(c) as the skewness of token distribution is more obvious due

to the characteristics of datasets. As a result, there are longer inverted lists, and the extra

35

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0.75 0.8 0.85 0.9 0.95

T
im

e
 p

e
r

q
u

e
ry

(m
s
)

Threshold

Uncom(SC)
Uncom(MS)
PForD(SC)
MILC(MS)
CSS(MS)

Time - Search for DBLP

(a) DBLP

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0.75 0.8 0.85 0.9 0.95

T
im

e
 p

e
r

q
u

e
ry

(m
s
)

Threshold

Uncom(SC)
Uncom(MS)
PForD(SC)
MILC(MS)
CSS(MS)

Time - Search for TWEET

(b) Tweet

 500

 1000

 1500

 2000

 2500

 0.75 0.8 0.85 0.9 0.95

T
im

e
 p

e
r

q
u

e
ry

(m
s
)

Threshold

Uncom(SC)
Uncom(MS)
PForD(SC)
MILC(MS)
CSS(MS)

Time - Search for DNA

(c) DNA

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 3 4 5 6

T
im

e
 p

e
r

q
u

e
ry

(m
s
)

Threshold

Uncom(SC)
Uncom(MS)
PForD(SC)
MILC(MS)
CSS(MS)

Time - Search for AOL

(d) AOL

Figure 7.2: Comparison of Execution Time: Similarity Search

binary search operations on them can lead to more overhead in search time. Also note that

due to the attributes of AOL, when we relax the edit-distance threshold, the execution time

for all method, including Uncomp, grow faster due to the increasing search space.

The results of similarity join are presented in Figure 7.3. In most cases, the performance

on compressed inverted lists is very similar to that on uncompressed ones. For instance, for a

Jaccard threshold of τ = 0.8 on the DNA dataset, the join time of the Prefix Filter algorithm

on the uncompressed dataset is 180 seconds, while the time on Fix, Vari, and Adapt is 207,

249, and 197 seconds, respectively. We observe that Vari exhibits the worst performance

36

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0.75 0.8 0.85 0.9 0.95

T
im

e
(s

)

Threshold

Uncom
Fix

Vari
Adapt

Time - Join for DBLP-count filter

(a) DBLP

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0.75 0.8 0.85 0.9 0.95

T
im

e
(s

)

Threshold

Uncom
Fix

Vari
Adapt

Time - Join for TWEET-position filter

(b) Tweet

 0

 100

 200

 300

 400

 500

 600

 700

 0.75 0.8 0.85 0.9 0.95

T
im

e
(s

)

Threshold

Uncom
Fix

Vari
Adapt

Time - Join for DNA-prefix filter

(c) DNA

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1 2 3 4

T
im

e
(s

)

Threshold

Uncom
Fix

Vari
Adapt

Time - Join for AOL-segment filter

(d) AOL

Figure 7.3: Comparison of Execution Time: Similarity Join

under all settings due to the cost of the required dynamic programming calculations, which

is reasonable considering the high space efficiency delivered by this additional time overhead.

Meanwhile, the performance of Adapt is very similar to that of Uncomp, but it utilizes much

less memory space. Due to its fast bit operations, Adapt can even outperform Uncomp in

some cases. For instance, when τ = 0.8 on the Tweet dataset, the join time for the Position

Filter on Uncomp is 325 seconds, while the time on Adapt is 314 seconds. Hence, we can

conclude that Adapt represents an ideal choice for supporting similarity join applications.

37

 0

 500

 1000

 1500

 2000

 20 40 60 80 100

S
iz

e
(M

B
)

Percentage of Data Used

Uncom
PForD
MILC
CSS

Search Index Size - Scalability

(a) Similarity Search

 0

 1000

 2000

 3000

 4000

 5000

 20 40 60 80 100

S
iz

e
(M

B
)

Percentage of Data Used

Uncom
Fix

Vari
Adapt

Count Filter Index Size - Scalability

(b) Similarity Join: Count Filter

 0

 200

 400

 600

 800

 1000

 1200

 1400

 20 40 60 80 100

S
iz

e
(M

B
)

Percentage of Data Used

Uncom
Fix

Vari
Adapt

Position Filter Index Size - Scalability

(c) Similarity Join: Position Filter

Figure 7.4: Scalability: Index Size

7.4 Scalability

In addition, we evaluate the scalability of our proposed method. We use the generator

proposed in [34] to generate datasets for the experiment. Here we create two synthetic

datasets: the first dataset following the Zipf distribution has an average set size of 50 and a

universe size of 116346; the other dataset following the Uniform distribution has an average

set size of 25, and a universe size of 150. The cardinality of both datasets is 10 million. For

similarity search, we evaluate the four compression schemes on the Uniform synthetic data;

38

 0

 2000

 4000

 6000

 8000

 10000

 20 40 60 80 100

T
im

e
 p

e
r

q
u

e
ry

(m
s
)

Percentage of Data Used

t=0.95
t=0.9

t=0.85
t=0.8

t=0.75

Time - CSS(MS) Scalability

(a) Similarity Search

 0

 10000

 20000

 30000

 40000

 50000

 20 40 60 80 100

T
im

e
(s

)

Percentage of Data Used

t=0.95
t=0.9

t=0.85
t=0.8

Time - Adapt - Position Filter Scalability

(b) Similarity Join

Figure 7.5: Scalability: Execution Time

For similarity join, we evaluate the Position Filter and Count Filter performed on Adapt

compression scheme on the Zipf data.

The results of memory usage for datasets with different sizes are shown in Figure 7.4. We

can see that it achieves linear scalability for both similarity search and join algorithms. For

example, on Uniform synthetic data, when the size of dataset scales from 20% to 100%, the

corresponding index size for CSS is 45.78, 91.66, 137.57, 183.49, and 214.36 MB, respectively.

Additionally, we report the query execution time for our proposed methods. Specifically,

we utilize the MergeSkip algorithm on the CSS compression scheme for similarity search,

while we use the Position Filter on the Adapt compression scheme for similarity join. The

scalability results for both similarity search and similarity join are presented in Figure 7.5.

We observe that our methods exhibit good scalability for similarity search, while for similarity

join, the scalability is quadratic, consistent with the increasing search space.

39

Table 7.4: Index Size: Amazon Review

(a) Similarity Search

Schemes Size (GB)

Uncomp 39.4

PForDelta 18.7

MILC 8.7

CSS 7.9

(b) Similarity Join

Schemes Size (GB)

Uncomp 39.4

Fix 11.9

Vari 8.1

Adapt 8.9

7.5 Case Study

In order to demonstrate the benefits of the memory savings brought by our proposed meth-

ods, we conduct a case study utilizing a dataset Amazon Reviews dataset [35]. This is a

large-scale dataset that has been frequently used as a benchmark for big data systems [23].

As our work is focused on the environment of a single machine, we use the 5-core review

data set. The size of the raw review text data is approximately 7GB.

The results of index size for different compression mechanisms are presented in Table 7.4.

We observe that the index size of the uncompressed index and PForDelta for similarity search

is 39.4 GB and 18.7 GB, respectively, which exceeds the available memory size of 16 GB.

Consequently, it is necessary to process it with expensive disk-based algorithms. In con-

trast, the index size of our best compression mechanism, CSS, is just 7.9 GB. Therefore, we

can utilize an in-memory algorithm over compressed indexes. Similar trends also occur in

the application of similarity join. Consequently, our proposed algorithms can save signifi-

cant memory space in large-scale applications, avoiding the need for expensive disk-based

algorithms.

40

CHAPTER 8

Related Work

8.0.1 String Similarity Search and Join

String similarity search and string similarity join has been a hot topic in the database

community over the past decades. A mainstream of existing solutions is to develop different

filtering techniques to reduce the number of candidates to be verified. Gravano et al. [21]

proposed the Count Filter, where strings are regarded as candidates when they share enough

common signatures. Li et al. [26] devised several list merging algorithms to reduce the

filtering cost of Count Filter. Chaudhuri et al. [11], and Bayardo et al. [7] developed the

idea of the Prefix Filter: two strings are similar only when they share at least one common

signature in their prefixes. Xiao et al. [46] proposed the Position Filter based on the Prefix

Filter by taking the position of signatures into consideration when generating candidates.

Xiao et al. [45] and Qin et al. [37] followed this route to reduce the prefix length further

to improve the performance. The Segment Filter [18, 28] adopts the pigeonhole theory and

utilizes disjoint segments as signatures, which significantly improves the filter power.

8.0.2 Data Compression

Data compression techniques have been widely adopted in many data-management-related

studies, such as web search [49], machine learning [27], column database [4], time series

processing [29] and graph analysis [30].

The compression techniques in column databases can be classified into two categories:

41

heavy-weighted compression schemes and light-weighted compression schemes. Heavy-weighted

compression schemes [50, 13] have prohibitively expensive decompression costs. To access an

element, they need to decompress the whole compressed data. Light-weighted compression

schemes, e.g., Dictionary based Encoding methods [12, 43] and Run-length Encoding [30],

support directly querying over compressed data. The common design goal of the above

methods is to save space for duplicated elements. Since the inverted lists in string similarity

search and join have no duplicate elements, the above schemes cannot work well.

Compression techniques in Information Retrieval are designed to minimize the space

overhead of inverted lists. Most existing compression methods save space by leveraging the

deltas between elements. Examples include PForDelta [51] and its variants [49, 24], VB [15],

GroupVB [16], Simple8b [5] and PEF [36]. One problem is that they have to decompress the

whole list for query processing, and MILC [41] addresses this problem by using a two-level

storage structure. Since the above methods must construct the index in the offline step, they

cannot support string similarity join.

Time series compression schemes are usually lossy techniques, which cannot be applied

in our cases where lossless is a mandatory requirement. The most common approach is

to approximate the data as a sequence of low-order polynomials [20]. An alternative is to

discretize the time series using Symbolic Aggregate Approximation [31] or its variations [39].

42

CHAPTER 9

Conclusion

In this thesis, we propose a unified compression framework that is capable of supporting

a wide range of string similarity search and string similarity join frameworks. Thus, we

present a comprehensive set of fundamental list operations for string similarity search and

string similarity join that can be directly applied to compressed inverted lists and develop

effective compression techniques that are tailored to these operations.

To support similarity join, we introduce the first framework that can construct com-

pressed inverted lists under online settings and devise a benefit model to provide guidance

for compression strategies. Building on this, we further develop an adaptive approach that

aims to balance the time and space overhead.

Experimental results on real-world datasets demonstrate that our approach can signif-

icantly reduce memory consumption while achieving query performance similar to that of

existing techniques that use uncompressed indexes. It should be noted that our online com-

pression algorithms can be applied to other problems that require on-the-fly list construction

and list operations, such as time series matching and DNA sequence comparisons.

43

REFERENCES

[1] BZIP Compression. http://www.bzip2.org/.

[2] LZO Compression. http://www.oberhumer.com/opensource/lzo/.

[3] ZLIB Compression. http://www.zlib.net/.

[4] D. J. Abadi, S. Madden, and M. Ferreira. Integrating compression and execution in
column-oriented database systems. In SIGMOD, pages 671–682, 2006.

[5] V. N. Anh and A. Moffat. Index compression using 64-bit words. Softw. Pract. Exp.,
40(2):131–147, 2010.

[6] R. A. Baeza-Yates, C. Castillo, F. Junqueira, V. Plachouras, and F. Silvestri. Challenges
on distributed web retrieval. In ICDE, pages 6–20, 2007.

[7] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs similarity search. In WWW,
pages 131–140, 2007.

[8] A. P. Boedihardjo, C. Lu, and F. Chen. Fast adaptive kernel density estimator for data
streams. Knowl. Inf. Syst., 42(2):285–317, 2015.

[9] Z. Botev, J. F. Grotowski, and D. P. Kroese. Kernel density estimation via diffusion.
The annals of Statistics, 38(5):2916–2957, 2010.

[10] S. Chambi, D. Lemire, O. Kaser, and R. Godin. Better bitmap performance with roaring
bitmaps. Softw. Pract. Exp., 46(5):709–719, 2016.

[11] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for similarity joins in
data cleaning. In ICDE, page 5, 2006.

[12] Z. Chen, J. Gehrke, and F. Korn. Query optimization in compressed database systems.
In SIGMOD, pages 271–282. ACM, 2001.

[13] K. Chung and J. Wu. Level-compressed huffman decoding. IEEE Trans. Communica-
tions, 47(10):1455–1457, 1999.

[14] A. Colantonio and R. D. Pietro. Concise: Compressed ’n’ composable integer set. Inf.
Process. Lett., 110(16):644–650, 2010.

[15] D. R. Cutting and J. O. Pedersen. Optimizations for dynamic inverted index mainte-
nance. In SIGIR, pages 405–411. ACM, 1990.

[16] J. Dean. Challenges in building large-scale information retrieval systems: invited talk.
In WSDM, page 1. ACM, 2009.

44

[17] F. Deliège and T. B. Pedersen. Position list word aligned hybrid: optimizing space and
performance for compressed bitmaps. In EDBT, volume 426, pages 228–239, 2010.

[18] D. Deng, G. Li, H. Wen, and J. Feng. An efficient partition based method for exact set
similarity joins. PVLDB, 9(4):360–371, 2015.

[19] L. Devroye. Nonuniform random variate generation. Handbooks in operations research
and management science, 13:83–121, 2006.

[20] F. Eichinger, P. Efros, S. Karnouskos, and K. Böhm. A time-series compression tech-
nique and its application to the smart grid. VLDB J., 24(2):193–218, 2015.

[21] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan, and D. Sri-
vastava. Approximate string joins in a database (almost) for free. In VLDB, pages
491–500, 2001.

[22] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey, V. W. Lee,
S. A. Brandt, and P. Dubey. FAST: fast architecture sensitive tree search on modern
cpus and gpus. In SIGMOD, 2010.

[23] T. Kim, W. Li, A. Behm, I. Cetindil, R. Vernica, V. R. Borkar, M. J. Carey, and C. Li.
Supporting similarity queries in apache asterixdb. In EDBT, pages 528–539, 2018.

[24] D. Lemire and L. Boytsov. Decoding billions of integers per second through vectoriza-
tion. Softw. Pract. Exp., 45(1):1–29, 2015.

[25] D. Lemire, O. Kaser, and K. Aouiche. Sorting improves word-aligned bitmap indexes.
Data Knowl. Eng., 69(1):3–28, 2010.

[26] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering algorithms for approximate
string searches. In ICDE, pages 257–266, 2008.

[27] F. Li, L. Chen, Y. Zeng, A. Kumar, X. Wu, J. F. Naughton, and J. M. Patel. Tuple-
oriented compression for large-scale mini-batch stochastic gradient descent. In SIG-
MOD, pages 1517–1534, 2019.

[28] G. Li, D. Deng, J. Wang, and J. Feng. Pass-join: A partition-based method for similarity
joins. PVLDB, 5(3):253–264, 2011.

[29] C. Lin, E. Boursier, and Y. Papakonstantinou. Approximate analytics system over
compressed time series with tight deterministic error guarantees. PVLDB, 13(7):1105–
1118, 2020.

[30] C. Lin, B. Mandel, Y. Papakonstantinou, and M. Springer. Fast in-memory SQL ana-
lytics on typed graphs. PVLDB, 10(3):265–276, 2016.

45

[31] J. Lin, E. J. Keogh, S. Lonardi, and B. Y. Chiu. A symbolic representation of time
series, with implications for streaming algorithms. In DMKD@SIGMOD, pages 2–11.
ACM, 2003.

[32] J. Lu, C. Lin, J. Wang, and C. Li. Synergy of database techniques and machine learning
models for string similarity search and join. In CIKM, pages 2975–2976, 2019.

[33] J. Lu, C. Lin, W. Wang, C. Li, and H. Wang. String similarity measures and joins with
synonyms. In SIGMOD, pages 373–384, 2013.

[34] W. Mann, N. Augsten, and P. Bouros. An empirical evaluation of set similarity join
techniques. PVLDB, 9(9):636–647, 2016.

[35] J. J. McAuley, R. Pandey, and J. Leskovec. Inferring networks of substitutable and
complementary products. In ACM SIGKDD, pages 785–794, 2015.

[36] G. Ottaviano and R. Venturini. Partitioned elias-fano indexes. In SIGIR, pages 273–
282. ACM, 2014.

[37] J. Qin, W. Wang, Y. Lu, C. Xiao, and X. Lin. Efficient exact edit similarity query
processing with the asymmetric signature scheme. In SIGMOD, pages 1033–1044, 2011.

[38] B. Schlegel, R. Gemulla, andW. Lehner. k-ary search on modern processors. In DaMoN,
pages 52–60, 2009.

[39] J. Shieh and E. J. Keogh. isax: disk-aware mining and indexing of massive time series
datasets. DMKD, 19(1):24–57, 2009.

[40] J. Wang, G. Li, and J. Feng. Can we beat the prefix filtering?: an adaptive framework
for similarity join and search. In SIGMOD, pages 85–96, 2012.

[41] J. Wang, C. Lin, R. He, M. Chae, Y. Papakonstantinou, and S. Swanson. MILC:
inverted list compression in memory. PVLDB, 10(8):853–864, 2017.

[42] J. Wang, C. Lin, M. Li, and C. Zaniolo. An efficient sliding window approach for
approximate entity extraction with synonyms. In EDBT, pages 109–120, 2019.

[43] J. Wang, C. Lin, Y. Papakonstantinou, and S. Swanson. An experimental study of
bitmap compression vs. inverted list compression. In SIGMOD, pages 993–1008, 2017.

[44] J. Wang, C. Lin, and C. Zaniolo. Mf-join: Efficient fuzzy string similarity join with
multi-level filtering. In ICDE, pages 386–397, 2019.

[45] C. Xiao, W. Wang, and X. Lin. Ed-join: an efficient algorithm for similarity joins with
edit distance constraints. PVLDB, 1(1):933–944, 2008.

46

[46] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient similarity joins for near duplicate
detection. In WWW, pages 131–140, 2008.

[47] G. Xiao, J. Wang, C. Lin, and C. Zaniolo. Highly efficient string similarity search and
join over compressed indexes. In 2022 IEEE 38th International Conference on Data
Engineering (ICDE), pages 232–244, 2022.

[48] H. Yan, S. Ding, and T. Suel. Inverted index compression and query processing with
optimized document ordering. In WWW, pages 401–410, 2009.

[49] J. Zhang, X. Long, and T. Suel. Performance of compressed inverted list caching in
search engines. In WWW, pages 387–396. ACM, 2008.

[50] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theory, 23(3):337–343, 1977.

[51] M. Zukowski, S. Héman, N. Nes, and P. A. Boncz. Super-scalar RAM-CPU cache
compression. In ICDE, page 59, 2006.

47

