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Abstract

Efficient solvers for the implicit time integration of matrix-free high-order methods

by

Michael Franco

Doctor of Philosophy in Applied Mathematics

and the Designated Emphasis in

Computational and Data Science and Engineering

University of California, Berkeley

Professor Per-Olof Persson, Chair

In this thesis, we develop and study efficient solvers for high-order Galerkin methods applied
to fluid flow problems. Many flow problems necessitate implicit time-integration schemes
in order to be practical. Implicit-in-time discretizations require the solution of nonlinear
algebraic systems each time step, which are often in-turn solved by linear solvers. Therefore,
the performance of implicit-in-time solvers is largely determined by the performance of the
underlying linear solvers.

One approach to create efficient methods is to work with matrix-free operators. Because
assembling the underlying discretization matrix can be prohibitively expensive in terms of
computational complexity and memory, matrix-free operators are an attractive alternative.
These operators replace the matrix-vector products with on-the-fly sum-factorization evalua-
tions of the discretized differential operators instead. Indeed, their high arithmetic intensity
makes these operators particularly well suited for modern graphics processing units (GPU)
and GPU-accelerated architectures.

These matrix-free operators are particularly challenging to precondition, however, because
they by design do not allow access to the underlying matrix entries. We create a suite of
efficient matrix-free preconditioners for a range of fluid flow problems that are robust with
respect to polynomial degree and mesh size. The main building block solver extends sparse,
low-order refined preconditioners with parallel subspace corrections. This work tackles Pois-
son problems, saddle-point Stokes systems, and the incompressible Navier-Stokes equations
in two and three spatial dimensions.

A different set of problems exhibit geometrically localized stiffness, where convergence rates
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are degraded in a localized subregion of the mesh. Generic preconditioners do not perform
well across the entire domain because of mesh size, mesh anisotropy, highly variable coef-
ficients, or more challenging physics in the subregion. Therefore, we seek to save costs by
utilizing cheap preconditioners for most of the mesh and only focus our effort on the less ex-
pensive subregion problem. Our iterative subregion correction preconditioners correct naive
preconditioners with an adaptive inner subregion iteration to reduce the number of costly
global iterations. This work demonstrates performance on basic convection-diffusion prob-
lems, high Reynolds number compressible flow problems, and a 30◦ angle of attack problem
with massively separated flow.
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Chapter 1

Introduction

Computational fluid dynamics (CFD) is a branch of fluid mechanics that models and ana-
lyzes fluid flows on a computer. CFD is applied to a wide range of research and engineering
problems including aerodynamics and aerospace analysis [66, 5], hypersonics [27], weather
simulation [82, 57], engine and combustion analysis [84, 87], hemodynamics [79], and visual
effects for film and video games [124]. CFD problems are mathematically based upon the
Navier-Stokes equations or simplifications of these equations. In particular, turbulent flows
are intrinsically unsteady, span multiple scales, and may be anisotropic [129, 16], requiring
high resolution to accurately model. Yet direct numerical simulation of the Navier-Stokes
equations is typically prohibitively expensive due to the Kolmogorov scale [123], and tra-
ditional approaches like Reynolds-averaged Navier-Stokes do not accurately capture certain
flow transitions [15]. Therefore, large eddy simulation (LES) has proven to be a compu-
tationally tractable alternative to offer significantly higher accuracy for certain flows [16,
113].

The spatial discretization of the underlying equations governs the necessary degrees of free-
dom for an accurate solution. Thus, high-order finite element methods have been developed
with the potential to attain higher accuracy per degree of freedom than low-order alterna-
tives [45, 132]. Due to these potential computational savings, many high-order methods
have been developed to solve a diverse range of CFD problems [37, 9, 99]. Moreover, the
high arithmetic intensity of these algorithms makes them a prime target for use on graphics
processing units (GPUs) and GPU-accelerated architectures of current and future supercom-
puters [74, 131, 25].

The discontinuous Galerkin (DG) method is a particular high-order finite element method
originally introduced in 1973 by Reed and Hill to solve the neutron transport equation [108].
In the early 1990s, Cockburn, Shu, and others extended the DG method to general systems
of hyperbolic conservation laws with a method of lines approach [36, 121, 40, 37, 35]. Using
the DG method as the spatial discretization and explicit Runge-Kutta (RK) schemes as
the temporal discretization allowed time-dependent problems involving discontinuities to
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be solved efficiently. Extensions to elliptic and parabolic systems were developed around
the turn of the century [9, 10, 20, 38, 4]. The main benefits of DG are inherited from
its generalization of both finite volume and finite element methods. In particular, it is
high-order accurate, highly parallelizable, well suited to complicated geometries, and can
accurately model physically relevant discontinuities [36]. Since its development, DG has
been applied to a wide range of fields, including CFD [92, 99], atmospheric modeling [90],
magnetohydrodynamics [134], elastic wave propagation [26, 6], and more.

The RKDG methods developed in [121, 40, 37, 35] were designed to use explicit RK time
integration schemes. Explicit integration allows for cheap and highly parallelizable time
steps, which only require residual evaluations [59]. However, a major drawback of explicit
methods is that they are limited by the Courant–Friedrichs–Lewy (CFL) condition [41,
80]. For many CFD problems, this condition on the allowable time step is too restrictive,
necessitating implicit time integration schemes for DG discretizations be used instead [7, 8].
Implicit-in-time discretizations require the solution of nonlinear algebraic systems each time
step, which are often in-turn solved by linear iterative solvers. Therefore, the performance of
implicit-in-time fluid flow solvers is largely determined by the performance of the underlying
linear solvers.

Unfortunately, the widespread of adoption of high-order implicit-in-time methods is currently
limited by their relatively expensive computational cost [132, 133]. Therefore, work must
be done to speed up the fundamental building block of the methods, the underlying linear
solver. Targeted performance improvements for iterative methods for linear systems typically
fall under two categories: those that minimize the cost of a single iteration, and those that
minimize the total number of iterations. Recent progress in the former has been accomplished
by implementing faster matrix-vector kernels, replacing matrix-vector products with on-the-
fly evaluations of the discretized differential operators in a matrix-free manner, and utilizing
massive throughput capabilities of GPUs [74, 125, 78]. Progress in the latter has been
accomplished by better preconditioning of these linear systems [102, 53, 105]. The topic of
this thesis is the development and analysis of efficient solvers and preconditioners designed
for implicit time integration of high-order methods. Indeed, our work on GPU acceleration
and matrix-free operators falls under the first category, and work on robust matrix-free
preconditioners and iterative subregion correction preconditioners falls under the second.

The structure of this thesis is as follows. Chapter 2 will formulate the DG method for systems
of second-order parabolic equations. Implicit RK schemes will be introduced to solve the
semi-discrete equations, ultimately leading to a fundamental linear system for which perfor-
mance is critical. Chapter 3 will describe matrix-free high-order methods for incompressible
fluid flow. Particular emphasis will be on the GPU implementation and performance. Next,
we will detail our matrix-free preconditioning techniques for incompressible flow in Chap-
ter 4. Chapter 5 will introduce the concept of geometrically localized stiffness and develop
a class of efficient preconditioners to handle flow problems with this property. Finally, we
apply these techniques to challenging large eddy simulations of turbulent flow in Chapter 6
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in order to illustrate the main properties of our methods.
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Chapter 2

Governing equations, discretizations,
and other preliminaries

2.1 Governing equations

Throughout this thesis, we will solve several sets of governing equations. For reference, we
list these partial differential equations (PDE) below. Note that they all are defined for a
domain Ω ⊂ Rd in dimension d. The PDE is well-defined once coupled with appropriate
boundary conditions on ∂Ω.

2.1.1 System of conservation laws

There is a general PDE of which many of the following equations are examples. A general
system of conservation laws takes the form

∂u

∂t
+∇ · Fc(u)−∇ · Fd (u,∇u) = 0, (2.1)

where u : Ω → Rnc is a vector of unknowns with nc components, Fc : Ω → Rnc×d are the
convective fluxes, Fd : Ω→ Rnc×d are the diffusive fluxes. If Fd = 0, then (2.1) simplifies to
a general system of hyperbolic conservation flaws, a first-order PDE.
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2.1.2 Compressible Navier-Stokes

A broad spectrum of fluid dynamics falls under the mathematical umbrella of the unsteady
compressible Navier-Stokes equations,

∂ρ

∂t
+∇ · (ρu) = 0

∂ (ρu)

∂t
+∇ ·

(
ρu⊗ uT + pId − τ

)
= 0

∂ (ρE)

∂t
+∇ · ((ρE + p)u+ q − τu) = 0,

(2.2)

where ρ is the fluid density, u : Ω→ Rd is the fluid velocity for dimension d = 2, 3, E is the
total energy, p is the pressure, and Id is the d× d identity tensor. The viscous stress tensor
τ and heat flux q are given by

τ := µ

(
∇u+ (∇u)T − 2

3
(∇ · u) Id

)
, q := − µ

Pr
∇
(
E +

p

ρ
− 1

2
∥u∥22

)
, (2.3)

respectively, where µ is the viscosity coefficient and Pr = 0.72 is the Prandtl number, which
we assume to be constant. For an ideal gas, the pressure satisfies

p = (γ − 1)ρ

(
E − 1

2
∥u∥22

)
, (2.4)

where γ = 1.4 is the adiabatic gas constant.

We can explicitly rewrite (2.2) in the form of (2.1) with the definitions

u :=



ρ
ρu
ρE


 , Fc :=




ρu
ρu⊗ uT + pId

ρHu


 , Fd :=




0
τ

τu− q


 , (2.5)

where H = E + p/ρ is the stagnation enthalpy. Thus u is a vector with d+ 2 unknowns.

The Reynolds number is defined as

Re =
ρuL

µ
, (2.6)

where u is the flow speed and L is the characteristic linear dimension. L is a dimensionless
number determining the characteristic length of a given fluid, and so is 1 for a nondimen-
sionalized problem. Low Reynolds number flows are dominated by laminar effects, while
high Reynolds number flows transition to turbulence since smaller and smaller scales of the
flow are visible.
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The Mach number is defined as

M =
u

c
, (2.7)

where c is the speed of sound, or 340.3 m/s under normal conditions. M is a dimensionless
number determining the speed of a flow relative to the local speed of sound. The freestream
mach number M∞ defines the relative speed of the problem far away from any fixed body,
such as an airfoil.

In some cases, we modify (2.2) by introducing an isentropic assumption. Since the entropy
remains constant, the flow is adiabatic and reversible. For a perfect gas, the entropy satisfies

s = p/ργ, (2.8)

as described in [70]. Favorably, this equation allows us to relate pressure and density, thereby
making the energy equation in (2.2) redundant. This assumption reduces the number of
components of the PDE from d+2 to d+1. This simplification is an artificial compressibility
model for incompressible flows and allows us to solve nearly incompressible flows without
the specialized solvers required by the incompressible Navier-Stokes equations that we will
discuss next.

2.1.3 Incompressible Navier-Stokes

We also consider the unsteady incompressible Navier-Stokes equations in d spatial dimen-
sions. By assuming uniform density and viscosity across the domain, valid in the limit as
M → 0, (2.2) simplifies to

∂u

∂t
+ (u · ∇)u−

(
µ

ρ

)
∆u+∇p = f

∇ · u = 0.

(2.9)

The right-hand side f is a known forcing term that may or may not be 0 across the domain.
We define the kinematic viscosity ν = µ/ρ. Now we can explicitly rewrite the first equation
in the form of (2.1), yielding

∂u

∂t
+∇ ·

(
u⊗ uT + pId − ν∇u

)
= f

∇ · u = 0.

(2.10)

This formulation requires the solution of a system of conservation laws with d+1 unknowns,
coupled with the incompressibility constraint.

We also consider the steady version of (2.10),

∇ ·
(
u⊗ uT + pId − ν∇u

)
= f

∇ · u = 0.
(2.11)
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2.1.4 Stokes

In the low Reynolds number limit, we can neglect the nonlinear convective term from (2.10),
leading to the unsteady Stokes equations,

∂u

∂t
− ν∆u+∇p = f ,

∇ · u = 0.
(2.12)

Importantly, this is now a linear system of equations, greatly simplifying its solution.

We also consider the steady version of (2.12),

−ν∆u+∇p = f ,

∇ · u = 0.
(2.13)

2.1.5 Convection-diffusion

We also consider the convection-diffusion equation,

∂tu+∇ · (vu)−∇ · (ε(x)∇u) = 0, (2.14)

where v is a fixed velocity field, and ε is a variable diffusion coefficient. This equation is
a simplified model for the more complicated dynamics of fluid flow. If ∥v∥ ≪ ε, then the
equation is mostly diffusive and has properties similar to the heat equation. If ∥v∥ ≫ ε,
then the equation is mostly convective and has properties similar to the advection equation.
In particular, the Péclet number Pe = ∥v∥L/ε, where L is the characteristic length, can be
used to classify the equation as either convection-dominated or diffusion-dominated.

2.2 Discontinuous Galerkin method

In this section, we formulate the discontinuous Galerkin (DG) method when applied to
a system of conservation laws (2.1). In particular, we follow the compact discontinuous
Galerkin (CDG) method [103] for handling diffusive fluxes in a compact manner. Throughout
this chapter, we use the method of lines approach, where first we spatially discretize the PDE
to create a semi-discrete system of equations, before applying a temporal discretization that
yields a linear system to be solved at discrete time steps.

2.2.1 Function spaces

The spatial domain is denoted Ω ⊂ Rd for d = 2, 3. In order to formulate the method, the
spatial domain Ω is discretized using an unstructured mesh

Th = {Ki : ∪nk
i=1Ki = Ω} , (2.15)
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where each of the nk elements has no overlap with any other. Each element Ki could
be a simplex or tensor-product element, although our matrix-free operators introduced in
Chapter 3 require tensor-product elements (quadrilaterals in 2D and hexahedra in 3D). For
simplicity, we only consider tensor-product elements with d = 3 throughout this section.
We take each element to be the image of Ti, an invertible transformation mapping from
the reference element R to each element Ki. In the case of tensor-product elements, the
reference element R would be the cube [−1, 1]d.
We consider the space of polynomials of degree at most p in each variable,

Qp (R) =
{
q : R → R, q(x) =

p∑

i,j,k=0

cix
icjx

jckx
k

}
, (2.16)

noting this space has dimension (p + 1)d. We define a nodal 1D basis as the Chebyshev
points or p + 1 Legendre-Gauss-Lobatto points defined on the unit interval [64]. Either
of these choices has a slowly growing Lebesque constant, reflecting the fact that functions
interpolated on these points are accurately approximated by polynomials even as p increases,
a necessary requirement of high-order methods. Tensor-product elements allow us to define
the d-dimensional nodes as simply a tensor-product of 1D nodes. We will explore this tensor-
product structure in greater detail in Chapter 3.

Now, with the fixed polynomial degree p, we define the function space

Vh(R) = Qp (R) , (2.17)

which induces a function space local to each element

Vh(Ki) =
{
v : Ki → R : v(x) = q

(
T−1
i (x)

)
, p ∈ Vh(R)

}
. (2.18)

Therefore, for each basis function ϕ̃j of Vh(R), we have the transformed basis function ϕj of
Vh(Ki) defined by

ϕj (x) = ϕ̃j

(
T−1
i (x)

)
. (2.19)

Likewise, nodes on the reference element map to nodes on each element according to Ti.

Now we can introduce the broken finite element space

Vh = {v : Ω→ R : v|Ki
∈ Vh(Ki) ∀Ki ∈ Th} . (2.20)

This translates to each v restricted to each element of the mesh existing in the corresponding
local function space. Note that there is no continuity enforced between elements, leading to
the descriptor “discontinuous” in discontinuous Galerkin method. We also define the same
space for vector-valued functions. Taking nc to be the number of components of the vector,

[Vh]
nc = {v = (v1, v2, . . . , vnc) : Ω→ Rnc , vi ∈ Vh ∀1 ≤ i ≤ nc} . (2.21)
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Figure 2.1: High-order p = 7 mesh accurately modeling a triple-point shock interaction [2]

The only requirement imposed on Ti so far has been that each mapping is invertible. For this
thesis, we now choose the element mappings to be isoparametric, meaning that Ti ∈ [Vh (R)]d.
Since any function in this space can be fully defined by its values on the nodal basis points,
the mapping is also defined by the location of the nodes on each element Ki. High-order
elements allow for high-order mappings, leading to impressively complex meshes, such as
the mesh in Figure 2.1, even with this mapping requirement. This isoparametric mesh is
generated by a Lagrangian method at p = 8 propagating shock waves over multi-material
regions leading to a so-called triple-point shock [2].

2.2.2 Weak formulation

We can now formulate the spatial discretization, noting that our specific treatment of the
second-order terms follows the compact discontinuous Galerkin (CDG) method [103]. As a
representative problem, we consider the discretization of a scalar conservation law (2.1) with
n = 1 and appropriate boundary conditions enforced on ∂Ω. Specifically, u = ūD on ∂ΩD

and ∂nu = ūN on ∂ΩN , with the boundary ∂Ω = ∂ΩD ∪ ∂ΩN . Furthermore, we require the
length of ∂ΩD to be nonzero.

We introduce the additional variable q = ∇u, and rewrite the conservation law as a system
of first-order equations,

∇u = q

∂u

∂t
+∇ · Fc(u)−∇ · Fd (u, q) = 0

(2.22)

We look for numerical solutions (uh, qh) ∈ (Vh, [Vh]
d), multiply (2.22) by test functions
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(v, r) ∈ (Vh, [Vh]
d), and integrate over Ω to obtain

∫

Ω

qh · r dx = −
∫

Ω

∇uh · r dx ∀r ∈ [Vh]
d,

∫

Ω

∂tuhv dx+

∫

Ω

∇ · Fc(u)v dx =

∫

Ω

∇ · Fd (uh, qh)v dx ∀v ∈ Vh.
(2.23)

Integrating by parts over each element, we derive the local weak formulation of (2.22):

∫

Ki

qh · r dx = −
∫

K

uh∇ · r dx+
∫

∂Ki

ûhr · n ds,

∫

Ki

∂tuhv dx =

∫

Ki

Fc(uh) · ∇v dx−
∫

∂Ki

vF̂c · n ds

−
∫

Ki

Fd(uh, qh) · ∇v dx+
∫

∂Ki

vF̂d · n ds.

(2.24)

Since uh is discontinuous across element interfaces, the flux functions Fc and Fd are undefined
on ∂Ki. Therefore, uh, Fc, and Fd on ∂Ki must be replaced with numerical fluxes ûh, F̂c

and F̂d, respectively, that depend on the trace of uh and qh on both sides of ∂Ki, which are
well-defined. The CDG formulation is only complete once we specify these numerical fluxes.

For two neighboring elements K+ and K− of Th, we denote their common face e = ∂K+ ∩
∂K−. In particular, we adopt the notation that the normal unit vector n− points outward
from the element associated to the values (·)−. We denote the unit normals to ∂K± as n±

at any point on face e. The average and jump operators of v are given as

{v} =
(
v+ + v−

)
/2, [v] = v+n+ + v−n−. (2.25)

Similarly, the average and jump operators of the vector-valued function r are given as

{r} =
(
r+ + r−) /2, [r] = r+ · n+ + r− · n−. (2.26)

Note that this defines the jump of a scalar quantity as a vector and the jump of a vector
quantity as a scalar. We define Γ to be the union of all interior faces of the triangulation Th.
Then we obtain the following global weak formulation: find (uh, qh) ∈ (Vh, [Vh]

d) such that,

∫

Ω

qh · r dx = −
∫

Ω

uh∇h · r dx+
∫

Γ

ûh[r] ds+

∫

∂Ω

ûhr · n ds,
∫

Ω

∂tuhv dx =

∫

Ω

Fc(uh) · ∇hv dx−
∫

Γ

F̂c

(
u−h , u

+
h

)
· [v] ds−

∫

∂Ω

vF̂c · n ds

−
∫

Ω

Fd (uh, qh) · ∇hv dx+

∫

Γ

F̂d

(
u−h , u

+
h , q

−
h , q

+
h

)
· [v] ds+

∫

∂Ω

vF̂d · n ds,

(2.27)
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for all r ∈ [Vh]
d and v ∈ Vh. Here, we introduce ∇h as the broken gradient operator, or

the gradient operator computed element-wise, noting that it is only well-defined within each
element and not on the element boundaries.

The convective flux function F̂c(u
−
h , u

+
h ) couples neighboring elements and is chosen to sta-

bilize the discontinuities inherent to the DG method. On the boundary, F̂c weakly enforces
the Dirichlet boundary condition on ∂ΩD and is equal to 0 on ∂ΩN . Internally on Γ, F̂c must
be consistent, F̂c(u, u) = u, ensuring the amount of u flowing out of one element equals the
amount of u flowing into the other element. To stabilize the DG method, F̂c is obtained by
finding an exact or approximate solution to the one-dimensional Riemann problem in the
normal direction of the face, with discontinuous initial data given by u−h and u+h .

A simple choice of numerical flux function is the local Lax-Friedrichs flux [81], given by

F̂c(u
−
h , u

+
h ) = {Fc(uh)}+

α

2
[uh] , (2.28)

where α is the maximum absolute eigenvalue of the two Jacobian matrices B(u−h ) and B(u+h ),
for

B(u) =
∂Fc(u)

∂u
· n. (2.29)

Thus, α is equivalent to the maximum speed achieved by the flow at this interface.

A more sophisticated numerical flux function uses the Roe approximate Reimann solver [110,
111]. This numerical flux function is valid for the Navier-Stokes equations (2.2), exactly
solving the linearized Riemann problem around the Roe averaged state given by

ûh =

√
ρ−hu

−
h +

√
ρ+hu

+
h√

ρ−h +
√
ρ+h

,

Ĥh =

√
ρ−hH

−
h +

√
ρ+hH

+
h√

ρ−h +
√
ρ+h

.

(2.30)

This linear approximation u∗ is an efficient approximation to the solution of the nonlinear,
true Riemann problem. The Roe numerical flux function is then given by F̂c(u

∗).

2.2.3 CDG fluxes

Much research has been done to define specific flux choices for elliptic and parabolic equa-
tions, including the interior penalty method [47], first and second methods of Bassi and
Rebay [9, 10], local DG method [39], and compact DG method [103]. While a comprehen-
sive study is presented in [4], here we continue our presentation of CDG and only briefly
note some of the important properties of this choice.
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We first seek to eliminate the auxiliary variable qh using the integration by parts formula,

−
∫

Ω

v∇h · r dx =

∫

Ω

r · ∇hv dx−
∫

Γ

([v] · {r}+ {v} [r]) ds−
∫

∂Ω

vr · n ds, (2.31)

which is valid for all r ∈ [Vh]
d and v ∈ Vh. Plugging (2.31) in for the first term on the

right-hand side of the first equation of (2.27) yields,
∫

Ω

qh·r dx =

∫

Ω

r·∇huh dx−
∫

Γ

([uh] · {r} − {ûh − uh} [r]) ds+
∫

∂Ω

(ûh−uh)r·n ds. (2.32)

Next we define the face-wise lifting operators ℓer : [L2(e)]
d → [Vh]

d, ℓev : L2(e) → [Vh]
d, and

ℓeD : L2(e)→ [Vh]
d as ∫

Ω

ℓer(q) · r = −
∫

e

q · {r} ds,
∫

Ω

ℓev(v) · r = −
∫

e

v [r] ds,
∫

Ω

ℓeD(v) · r = −
∫

e

vr · n ds.

(2.33)

Summing over all relevant faces yields the element-wise lifting operators ℓr : [L2(Γ)]
d → [Vh]

d,
ℓv : L

2(Γ)→ [Vh]
d, ℓD : L2(∂ΩD)→ [Vh]

d, simply defined as

ℓr(q) =
∑

e∈Γ

ℓer(q),

ℓv(v) =
∑

e∈Γ

ℓev(v),

ℓD(v) =
∑

e∈∂ΩD

ℓeD(v).

(2.34)

With this machinery in place, we can explicitly define qh from (2.32) as

qh = ∇huh + ℓr ([uh]) + ℓv ({uh − ûh}) + ℓD (uh − ûh) . (2.35)

We now define the numerical inter-element flux ûh so that qh can be fully eliminated. Both
LDG and CDG define ûh as

ûh = {uh} −C12 · [uh] on Γ,

ûh = ūD on ∂ΩD,

ûh = uh on ∂ΩN .

(2.36)

C12 is a vector which is determined for each interior face according to

C12 =
1

2

(
SK−

K+n+ + SK+

K−n−
)
. (2.37)
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SK−

K+ ∈ {0, 1} is a switch which is defined for each element face, satisfying

SK−

K+ + SK+

K− = 1. (2.38)

In particular, this means that ûh simplifies to either u+h or u−h , depending on the particular
switch defined on the face between K+ and K−.

The key development of CDG is the careful choice of F̂d. CDG defines F̂d as

F̂d

(
u−h , u

+
h , q

−
h , q

+
h

)
= Fd

(
u−h , {qe

h} − C11 [uh] +C12 [q
e
h]
)

on Γ,

F̂d = Fd (uh, q
e
h − C11(uh − ūD))n on ∂ΩD,

F̂d = Fd (uh, ūN)n on ∂ΩN .

(2.39)

The parameter C11 ≥ 0 is chosen to stabilize the method, and can be thought of as adding
artificial viscosity. The face-wise choice of auxiliary variable for the numerical flux function
is defined as

qe
h = ∇huh + ℓer ([uh]) + ℓev (C12 · [uh])− ℓeD (ūD − uh) . (2.40)

First we note that the auxiliary variable used in F̂d

(
u−h , u

+
h , q

−
h , q

+
h

)
is chosen to be exactly

the opposite of the switch used to compute ûh in (2.36). Importantly, we also note that the
support of qe

h is localized to the current element and the element neighboring face e. Thus,
the stencil of the CDG operator is compact, in that the residual corresponding to a test
function whose support lies entirely in a given element depends only on the value of the trial
function in the immediately adjacent elements. This compactness property is crucial for the
preconditioners developed in Chapter 5.

This specific choice of fluxes particularizes (2.35) to

qh = ∇huh + ℓr ([uh]) + ℓv (C12 · [uh])− ℓD (ūD − uh) , (2.41)

and allows us to fully compute qh locally from uh. Thus, our global weak formulation (2.27)
is reduced to just the second equation combined with a local solve of qh.

2.2.4 Semi-discrete system

After applying our DG discretization, we obtain a system of equations for uh (2.27). Let
N = (p+1)dnk denote the dimension of the space Vh. Any function uh ∈ Vh can be expanded
in terms of the basis functions {ϕi}Ni=1. By construction of Vh, these ϕi have compact support
on one element Ki, satisfying ϕi(xj) = δij at the nodal points xj of Ki, and 0 outside of Ki.
These ϕi at various p are presented for the reference element in Figure 2.2. Therefore,

uh(x, t) =
N∑

j=1

uj(t)ϕj(x) (2.42)
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Figure 2.2: Basis functions {ϕi}p+1
i=1 for p ∈ {1, 2, 3} on the 1D reference element R = [−1, 1].

where we abuse notation by re-using uj to refer to the coefficients of this expansion as well
as the function itself evaluated at the nodal point xj since u(xj) = uj. Now that ϕi form a
basis of Vh, ensuring (2.27) holds for all v ∈ Vh is equivalent to ensuring it holds for each ϕi.
Thus, for all 1 ≤ i ≤ N ,

N∑

j=1

∂tuj

∫

Ω

ϕjϕi dx =

∫

Ω

Fc

(
N∑

j=1

ujϕj

)
· ∇hϕi dx−

∫

Γ

F̂c · [ϕi] ds−
∫

∂Ω

ϕiF̂c · n ds

−
∫

Ω

Fd

(
N∑

j=1

ujϕj, qh

)
· ∇hv dx+

∫

Γ

F̂d · [ϕi] ds+

∫

∂Ω

ϕiF̂d · n ds.

(2.43)
Defining M ∈ RN×N to be the mass matrix,

Mij =

∫

Ω

ϕiϕj dx, (2.44)
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and r : RN → RN to be the residual vector,

(r(u))i =

∫

Ω

Fc

(
N∑

j=1

ujϕj

)
· ∇hϕi dx−

∫

Γ

F̂c · [ϕi] ds−
∫

∂Ω

ϕiF̂c · n ds

−
∫

Ω

Fd

(
N∑

j=1

ujϕj, qh

)
· ∇hv dx+

∫

Γ

F̂d · [ϕi] ds+

∫

∂Ω

ϕiF̂d · n ds,

(2.45)

we obtain a system of coupled ordinary differential equations (ODEs) of the form

M u̇ = r (u) . (2.46)

This system of ODEs is known as the semi-discrete system of equations corresponding to
the DG formulation. This is because u(t) is a vector of time-dependent degrees of freedom
associated with the nodal basis representation of uh.

Our mass matrix is by construction symmetric positive definite. By the element-wise compact
support of each ϕi, M furthermore has an element-wise block-diagonal structure. Thus,
matrix-multiplication by M and its inverse are both element-wise local and computationally
efficient.

2.3 Implicit time integration

We solve the semi-discrete system (2.46) using implicit time integration techniques. In par-
ticular, we focus on diagonally implicit Runge-Kutta (DIRK) schemes [104, 1, 68], although
we will also briefly utilize backward differentiation formulae (BDF) [62, 42, 68] in Chapter 4.
Both of these methods require the solution of s nonlinear systems of equations of size N .

2.3.1 Diagonally implicit Runge-Kutta schemes

We consider the well-posed initial value problem defined by (2.46) and an appropriate initial
condition u(0) = u0.

Let un denote the known solution at time tn. A general s-stage Runge-Kutta scheme to
approximate the solution at time tn+1 = tn +∆t can be written as

Mkn
i = r

(
tn +∆tci,u

n +∆t
s∑

j=1

aijk
n
j

)
,

un+1 = un +∆t
s∑

i=1

bik
n
i ,

(2.47)
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where the coefficients aij, bi, and ci can be expressed compactly in the form of the Butcher
tableau,

c1 a11 · · · a1s
...

...
. . .

...
cs as1 · · · ass

b1 · · · bs

=
c A

bT
. (2.48)

A Runge-Kutta scheme is diagonally implicit if its Butcher matrix A is lower triangular,
allowing for the solution of the system of equations (2.47) through a forward-substitution
procedure. For each stage 1 ≤ i ≤ s, kn

i is implicitly defined in a DIRK scheme by

Mkn
i − r

(
tn +∆tci,u

n +∆t

(
i−1∑

j=1

aijk
n
j + aiik

n
i

))
= 0. (2.49)

Each stage therefore requires the solution of a backward Euler-type system. Thus, rather
than solve one s × N system of nonlinear equations, DIRK schemes require the solution of
s nonlinear systems of equations. Each stage is solved by applying Newton’s method [72] to
this nonlinear system. The Newton update ∆x ∈ RN defined by ∆x = x(k+1) − x(k) is the
solution of the linear system,

∂N
(
x(k)

)

∂x
∆x = −N

(
x(k)

)
, (2.50)

forN defined as the left hand side of (2.49) as a function of kn
i . It is well known that that the

Newton approximation x(k) converges to the true kn
i quadratically. We choose x(0) = kn

i−1

as the initial guess. Thus, (2.50) expands to

(M − aii∆tJ)∆x =Mx(k) − r

(
tn +∆tci,u

n +∆t

(
i−1∑

j=1

aijk
n
j + aiix

(k)

))
, (2.51)

where J is the N ×N Jacobian matrix,

J =
∂r

∂u

(
tn +∆tci,u

n +∆t

(
i−1∑

j=1

aijk
n
j + aiix

(k)

))
. (2.52)

This formulation shows how fundamental (2.51) is to the overall solution of the original PDE.
If the assembly and solution of this linear system is performant, then Newton’s method is
performant, the DIRK scheme is performant, and ultimately the time to solution is mini-
mized. Throughout this thesis, we will focus on solving this linear system (2.51) efficiently,
so we simplify it to

Ax = (M −∆tJ)x = b. (2.53)
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That is, we define x and b appropriately and without loss of generality take aii = 1 by
scaling ∆t by this positive constant when necessary. We use A to denote the linear operator
in (2.53).

The specific DIRK schemes that we use in this thesis are provided in Appendix A.1. Of
particular interest are the so-called singly DIRK schemes, which use identical diagonal co-
efficients aii. These schemes allow for reuse of preconditioners, since each stage requires the
solution of a backward Euler system with the same time step.

Finally, we note that the application of DIRK schemes to the incompressible systems (2.10)
and (2.12) is complicated by the fact that there is no temporal evolution equation correspond-
ing to the pressure. We will further discuss their temporal discretization in combination with
specific solvers in Chaper 4.

2.4 Krylov subspace solvers

In order to solve the linear systems described above, we make use of preconditioned Krylov
subspace methods, such as the conjugate gradient (CG) and generalized minimal residual
(GMRES) methods [116]. Beyond being prevalent for their robustness, these iterative solvers
are also a natural choice for matrix-free solvers, since they only require the action of the
operator, which we compute using the matrix-free algorithms we will describe in Chapter 3,
and the evaluation of a preconditioner.

We briefly describe these well-known Krylov subspace methods here, following their con-
struction from [116]. Suppose we wish to solve the N ×N linear system,

Ax = b. (2.54)

We consider x0 as the initial guess for the true solution x∗ and define the initial residual
r0 = b − Ax0. Krylov subspace methods are constructed as an iterative process whose jth

iterate xj satisfies
xj ∈ x0 +Kj(A, r0), (2.55)

where Kj(A, r0) is the j
th Krylov subspace generated by A and r0 for all 1 ≤ j ≤ N , defined

by
Kj(A, r0) = span

{
r0, Ar0, A

2r0, . . . , A
j−1r0

}
. (2.56)

2.4.1 Conjugate gradient method

The conjugate gradient (CG) method is one of the best known iterative techniques for solving
sparse symmetric positive-definite linear systems [63, 120]. Each iteration, CG orthogonally
projects onto the Krylov subspace Kj(A, r0), providing the approximation xj that minimizes
the A-norm of the error within this subspace, all while taking advantage of the symmetry
inherent in A. We present the CG method in Algorithm 1.
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Algorithm 1 Conjugate gradient method

function CG(A, b, x0)
r0 ← b− Ax0

p0 ← r0
for j ← 0, 1, . . . do

αj ←
(rj, rj)

(Apj,pj)
xj+1 ← xj + αjpj

rj+1 ← rj − αjApj

βj ←
(rj+1, rj+1)

(rj, rj)
pj+1 ← rj+1 + βjpj

end for
return xj+1

end function

It can be shown that the approximation xm generated by CG after m iterations satisfies

∥x∗ − xm∥A ≤ 2

(√
κ− 1√
κ+ 1

)m

∥x∗ − x0∥A , (2.57)

where κ is the spectral condition number of A,

κ = λmax/λmin. (2.58)

2.4.2 Generalized minimal residual method

The generalized minimum residual (GMRES) method is an iterative method for solving
indefinite nonsymmetric linear systems [115]. Each iteration, GMRES approximates the
solution by the vector in the Krylov subspace Kj(A, r0) with minimum residual. We present
the GMRES method in Algorithm 2.

One can show that hj+1,j = 0 if and only if the approximate solution xj is exact. Thus, one
can stop GMRES early if hj+1,j = 0. In general, the residual of the jth iteration is bounded
by

∥rj∥2 ≤ min
q∈Pj

1

∥q(A)∥2 ∥r0∥2 , (2.59)

where Pj
1 is the set of polynomials of at most degree j for which q(0) = 1. Thus, the

convergence of GMRES is guided by the eigenvalues of the underlying matrix A. Indeed,
the existence of clustered eigenvalues speeds up the convergence of the method [14].

Moreover, GMRES has been extended to create flexible GMRES (FGMRES) [114]. This
iterative method allows for the use of different preconditioners throughout the iterations.
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Algorithm 2 Generalized minimum residual method

function GMRES(A, b, x0)
r0 ← b− Ax0

β ← ∥r0∥2
v1 ← r0/β
for j ← 1, 2, . . . ,m do

wj ← Avj

for i← 1, 2, . . . , j do
hij ← (wj,vi)
wj ← wj − hijvi

end for
hj+1,j ← ∥wj∥2
vj+1 ← wj/hj+1,j

end for
ym ← argminy ∥βe1 −Hmy∥2
xm ← x0 + Vmym

return xm
end function

We will use FGMRES when our desired preconditioners are themselves iterative methods,
such as CG or GMRES. In particular, the iterative subregion correction preconditioners
developed in Chapter 5 are iterative methods, and therefore can only be used in conjunction
with FGMRES.

2.4.3 Preconditioning

Since the convergence rates of these Krylov subspace methods are governed by the eigenvalues
of the underlying linear operator, it is often beneficial to transform the original system (2.54)
to achieve more favorable convergence rates. Rather than solve the original system, we
instead consider the left-preconditioned system

P−1Ax = P−1b, (2.60)

or right-preconditioned system
AP−1y = b,

x = P−1y.
(2.61)

For these transformed systems, the convergence of the Krylov subspace methods is instead
controlled by the eigenvalues of P−1A or AP−1. Thus, a good preconditioner P−1 approx-
imates A−1, so that the transformed eigenvalues are clustered around 1. However, since
the application of the preconditioner must be applied at each iteration of the solver, it also
must be cheap. Moreover, in the case of the matrix-free solvers we develop in Chapter 4,
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the A matrix is not explicitly assembled, so we must also create a preconditioner without
access to these underlying entries. Throughout this thesis, we will develop novel, efficient
preconditioners with the goal of minimizing the total number of iterations required by Krylov
subspace methods to converge to a specified tolerance.
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Chapter 3

Matrix-free high-order operators with
GPU acceleration

The high-order methods we described in Chapter 2 ultimately require the efficient construc-
tion and solution of the linear system (2.53). Therefore, the matrix-vector products Ax and
those composing b are important computational kernels to efficiently implement. Further-
more, a key benefit of high-order methods is their high arithmetic intensity, or operations
per memory access, which is particularly relevant to the matrix-vector product kernel. Pro-
grams run on graphics processing units (GPUs) must minimize memory movement to reap
the benefits of the GPU architecture, so arithmetic intensity is a key concern [74, 131, 25]. In
this chapter, we propose an efficient implementation of these high-order methods on GPUs
and GPU-accelerated architectures of current and future supercomputers.

Unfortunately, the benefits of high-order methods do not immediately imply that running
increasingly higher order simulations for a fixed problem size will result in more efficient
simulations. In general, Galerkin finite element methods (FEM) couple all degrees of freedom
(DoFs) within each mesh element. Therefore, the memory required to store the resulting
system matrices grows quadratically with the number of DoFs per element (i.e. O(p2d) in
d spatial dimensions, where p is the polynomial degree). Furthermore, the naive assembly
of the system matrix requires O(p3d) operations, although we will present sum-factorization
techniques that lower this to O(p2d+1) [78, 73]. Thus, traditional matrix-based approaches
are impractical for use with high polynomial degrees, both in terms of computational cost
and memory requirements.

Instead, matrix-vector products can be replaced with on-the-fly evaluations of the discretized
differential operators in a matrix-free manner. Combined with sum-factorization techniques
on tensor-product elements originally developed in the spectral element community [94,
96], evaluation of these matrix-free operators can be performed in O(pd+1) operations and
O(pd) memory [100]. Matrix-free evaluations with sum factorization have been shown to
outperform sparse matrix-vector products with p ≥ 2 due to bandwidth bounds on modern
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architectures [77]. Furthermore, optimized implementations of these operators achieve near
peak performance on modern GPUs [25, 125], making matrix-free high-order operators a
desirable choice for performant implementations. In this chapter, we explore and define
these sum-factorization techniques.

3.1 Towards element-wise kernels

By the definition of Vh for DG methods in (2.20), the basis functions {ϕi}Ni=1 spanning
Vh each have compact support on one element. Therefore, the mass matrix (2.44) and
system matrices composing the residual (2.45) naturally have an element-wise block-diagonal
structure. In particular, this means that an efficient implementation of these methods can
directly focus on element-wise local matrix multiplications instead.

High-order FEM, however, does not share this direct connection to local matrices. For
this chapter, we consider the equations governing incompressible fluid flow, although these
concepts directly apply to compressible flow as well. That is, we consider the steady (2.11)
and unsteady incompressible Navier-Stokes equations (2.10), as well as the steady (2.13) and
unsteady Stokes equations (2.12), all with Dirichlet boundary conditions.

We define the following finite element function spaces on our mesh Th:

Vp =
{
v ∈

(
H1(Ω)

)d | v(Ki) ∈ (Qp(Ki))
d ∀K ∈ Th

}

Pq =
{
s ∈ H1(Ω) | s(Ki) ∈ Qp(Ki) ∀Ki ∈ Th

} (3.1)

We again use the Legendre-Gauss-Lobatto tensor-product nodal points and form bases
on each of the spaces Vp and Pq. The high-order finite element formulation for unsteady
Stokes (2.12) is: find a velocity-pressure pair (u, p) ∈ (Vp, Pq) such that

(
∂u

∂t
,v

)
+ (ν∇u,∇v) + (∇p,v) = (f ,v) ∀v ∈ Vp,

− (∇ · u, s) = 0 ∀s ∈ Pq.

(3.2)

Expanding out u, v, p, and s in terms of the bases for their respective spaces, we obtain the
semi-discrete Stokes problem:

Mu̇+Lu+Gp = f ,

−Du = 0,
(3.3)

where u and p are now reused to represent the vectors of coefficients of the high-order
polynomial basis functions approximating their continuous counterparts. M is the vector
mass matrix, L is the vector stiffness matrix, G is the gradient operator, and D is the
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divergence operator with the following definitions:

Mij =

∫

Ω

ϕiϕj dx, (3.4)

Lij =

∫

Ω

ν∇ϕi · ∇ϕj dx, (3.5)

Gij =

∫

Ω

ϕi · ∇ψj dx, (3.6)

Dij =

∫

Ω

ψi∇ · ϕj dx. (3.7)

The bases {ϕi}nv

i=1 and {ψj}np

j=1 span the velocity space Vp and pressure space Pq, respectively.
In the steady Stokes problem we take u̇ = 0, so (3.3) reduces to the linear system

[
L G
−D 0

] [
u
p

]
=

[
f
0

]
. (3.8)

A similar treatment of the incompressible Navier-Stokes equations (2.10) yields the semi-
discrete problem:

Mu̇+Lu+N (u) +Gp = f ,

−Du = 0,
(3.9)

where N (u) is the discretized nonlinear vector-convection term defined by

N (u)i =

∫

Ω

uT (Φ · ∇)Φuϕi dx. (3.10)

Equation (3.10) uses the notation Φ to represent the tensor of all ϕi, so that (Φ · ∇)Φ can
be viewed as a matrix of size nv × nv where each entry is the vector

[(Φ · ∇)Φ]ij = (ϕi · ∇)ϕj. (3.11)

When solving the steady (3.8) and unsteady Stokes (3.3) problems, we use the Taylor-Hood
finite element space, (u, p) ∈ (Vp, Pp−1), which achieves optimal convergence rates and is
stable for orders p ≥ 2 [21]. When solving the incompressible Navier-Stokes problem (2.10),
we use the so-called PNPN space, (u, p) ∈ (Vp, Pp) [61].

Note that, unlike the DG formulation, these matrices are not element-wise block diagonal.
In fact, the support of these bases is local for only those i, j contained fully within one high-
order element, and extends across two neighboring elements for those i, j on the element
boundaries.

As a representative example, take the assembly of L. Consider a single element Kk and
its local basis functions ϕk

i , given by the restriction of the global basis functions ϕi to this
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element. There is a global-to-local mapping Ek for element Kk that relates the global indices
to the corresponding local basis indices. Thus, we can define a local matrix Lk by considering
only the contribution from element Kk to the global L as

Lk
ij =

∫

Kk

ϕk
iϕ

k
j dx. (3.12)

The global matrix is then assembled by adding up all the local contributions,

L =

nk∑

k=1

ETk Lk
ij. (3.13)

In this manner, both the DG and FEM system matrices reduce to element-wise local oper-
ations instead.

3.2 Sum-factorization techniques

A traditional assembly of the local matrices would require evaluating all nc(p+1)d×nc(p+1)d

entries by integrating the two functions across a set of (p+1)d quadrature nodes. Storing the
matrices would therefore require O(p2d) memory. Moreover, this naive assembly typically
costs O(p3d) operations. When running simulations at high polynomial degrees, these costs
can be prohibitive. This is particularly true on GPUs, where the system matrices may be
too large to fit in device memory. Therefore, we turn to sum-factorization techniques to
replace our matrix-vector products with on-the-fly evaluations of the integrals [125, 100].

For the purposes of illustration, let us consider a matrix-free implementation of the local
scalar stiffness matrix L on a hexahedral (d = 3) element K:

LK
ij =

∫

K

ν∇ϕi · ∇ϕj dx. (3.14)

We assume our isoparametric mapping TK : R → K has Jacobian JK . Mapping to the
reference cube, we have

LK
ij =

∫

R
ν∇ϕT

i

(
JK
)−T ∣∣JK

∣∣ (JK
)−1∇ϕj dξ, (3.15)

where now the ∇ operators and basis functions {ϕi}nv

i=1 are understood to be in the reference
space, parameterized by ξ ∈ Rd. Choosing our bases to be the tensor product of 1D Lagrange
interpolating polynomials defined on the p+ 1 Legendre-Gauss-Lobatto points, we have

ϕijk(ξ) = ϕi(ξ1)ϕj(ξ2)ϕk(ξ3), (3.16)

for all 0 ≤ i, j, k ≤ p. Choosing nd
q tensor-product quadrature points to evaluate the in-

tegrals in (3.15), we can also denote the quadrature nodes and weights using this same
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multi-index notation. That is, the quadrature weights and points are
{
wiqjqkq

}nq

iq ,jq ,kq=1
and{

ξiqjqkq
}nq

iq ,jq ,kq=1
, respectively. Thus, (3.15) becomes

LK
ij =

nq∑

iq ,jq ,kq=1

νwiqjqkq∇ϕT
i

(
ξiqjqkq

) (
JK(ξiqjqkq)

)−T

∣∣JK(ξiqjqkq)
∣∣ (JK(ξiqjqkq)

)−1∇ϕj

(
ξiqjqkq

)
. (3.17)

As an aside, the solution u evaluated at a quadrature point is

u
(
ξiqjqkq

)
=

p∑

i,j,k=0

uijkϕijk

(
ξiqjqkq

)
(3.18)

=

p∑

k=0

ϕk(ξkq)

p∑

j=0

ϕj(ξjq)

p∑

i=0

uijkϕi(ξiq). (3.19)

We immediately notice that the number of operations required to evaluate a function at each
of the quadrature points is O(p4), or O(pd+1) in general.

Kronecker products allow us to simplify notation. First, we define the one-dimensional Gauss
point evaluation matrix as the nq×(p+1) Vandermonde-type matrix obtained by evaluating
each of the one-dimensional basis functions at all of the quadrature points:

Biq ,j = ϕj(ξiq). (3.20)

With this notation, (3.19) is equivalent to the computation of the Kronecker product

u (ξ) = (B ⊗B ⊗B)u. (3.21)

Likewise, we define the 1D Gauss point differentiation matrix as

Diq ,j =
dϕj

dξ

(
ξiq
)
. (3.22)

Returning to (3.17), we are now ready to recast the operator as a Kronecker product of local
1D matrices. First, we precompute the tensor W ∈ Rnd

q×nd
q×d×d, which is diagonal in its first

two dimensions and is defined by

Wiqjqkq ,iqjqkq = νwiqjqkq

(
JK(ξiqjqkq)

)−T ∣∣JK(ξiqjqkq)
∣∣ (JK(ξiqjqkq)

)−1
. (3.23)

Next, we recognize that evaluating ∇Φ at all the quadrature points means contracting with
the tensor Gϕ ∈ Rnd

q×(p+1)d×d defined by

Gϕ =



B ⊗B ⊗D
B ⊗D ⊗B
D ⊗B ⊗B


 . (3.24)
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Therefore, the local operator (3.17) is equivalent to

LK = GT
ϕWGϕ, (3.25)

where the transpose is taken only over the first two dimensions of Gϕ. A major benefit of
reformulating the local operator into this form is that it is no longer necessary to form a
global matrix. Instead, the action of this operator can be recreated using the 1D matrices
B and D and the precomputed tensor W . Precomputing W requires O(pd) operations and
O(pd) memory. Applying the operator Gϕ and its transpose requires O(pd+1) operations and
O(pd) memory.

IfW is computed by interpolating from the nodal points using sum-factorization techniques,
then the setup costs would increase to O(pd+1). To achieve our leading-order costs, we
assume that J (and therefore W ) can be computed or is available at quadrature points in
O(1) time. Indeed, our implementation stores J at quadrature points.

Using these sum-factorization techniques, we can also derive matrix-free implementations of
M , G, D, and N (u) from their definitions. Each operator has comparable computational
cost and memory requirements as in the case of this scalar diffusion operator.
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Figure 3.1: Run time comparison of standard matrix-based and sum-factorized matrix-free
operator setup and evaluation for scalar Laplacian in 2D and 3D. Standard (naive) matrix
assembly scales like O(p3d) and matrix-based operator evaluation scales like O(p2d), while
matrix-free setup scales like O(pd) and matrix-free operator evaluation scales like O(pd+1).

Figure 3.1 shows run times for sum-factorized matrix-free operator setup and evaluation
compared with standard matrix assembly and matrix-based operator evaluation for poly-
nomial degrees between 2 and 16. We notice that matrix assembly is the most expensive
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operation for all the cases tested, usually taking about two orders of magnitude more time
than operator evaluation. In 2D, our implementation of matrix-free operator evaluation is
more efficient than matrix-based operator evaluation for polynomial degrees greater than 5.
In 3D, the matrix-free sum-factorized operator evaluation is more efficient for polynomial
degrees greater than 2. In the matrix-free context, the setup and precomputations typically
represent a negligible portion of the overall cost of using these operators.

3.3 Proposed matrix-free operator decomposition

Figure 3.2: Decomposition of a high-order operator into efficient sub-operators.

Following the CEED framework [46], we now fully describe matrix-free operator evaluation
for an arbitrary Galerkin operator, as shown in Figure 3.2. In particular, we write

y = Ax = PTETBTDBEPx, (3.26)

for an operator that maps a vector of true DoFs in the trial space, x, to a vector of true DoFs
in the test space, y. The operator first maps to local processors through the P restriction
operator, then map to element-wise local operations through the E restriction operator,
then map to quadrature points through the B operator. At each quadrature point, point-
wise local operations are performed composing the underlying mathematics of the specific
operator. Finally, the operator maps back to the test space true DoFs by applying the
transpose of the previous sequence of restriction operators.

The only communication across processors occurs in the evaluation of the P and PT opera-
tors. Since our implementation is designed for GPUs, on which communication overheads are
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expensive, this step should be avoided whenever possible to minimize communication. A per-
formant implementation should therefore store the evaluation of the operator in device-local
DoFs for instance when the program is run on only one GPU to avoid triggering the evalua-
tion of P or PT . Moreover, these operators could be combined with communication-avoiding
algorithms [65, 89] to minimize costly transfers to and from the device during higher-level
algorithms.

As discussed previously, DG operators are naturally element-wise diagonal, so E = I for
a general DG operator. On the other hand, FEM operators require the cheap reduction
operation shown in (3.13). More advanced methods involving adaptive mesh refinement [32]
would enhance this restriction operator with further interpolation, but that is beyond the
scope of this thesis.

Section 3.2 fully explores how to efficiently implement the remaining element-wise local
operations. In particular, sum-factorization reduces the cost of the libCEED B operator to
O(pd+1) operations, as described by (3.24). In the case of different test and trial spaces,
such as the discrete divergence operator (3.7), the specific operators mapping to and from
the quadrature values are different. Regardless, we again utilize sum-factorization techniques
to achieve the same leading-order costs, up to a constant factor.

3.4 GPU implementation

We have implemented the numerical algorithms described above in the framework of the
MFEM finite element library [2, 86]. These algorithms take the form of single-source com-
pute kernels that can target several different backends, including OpenMP on traditional
CPUs as well as CUDA for use on the GPU. To utilize this functionality in MFEM yourself,
simply set the “assembly level” of the bilinear form of most Galerkin operators to “par-
tial.” In this section, we describe practical details that were required to obtain performant
implementations for these algorithms.

As previously mentioned, minimizing memory movement between the CPU and GPU is cru-
cial. Modern GPU architectures have limited memory and cache sizes compared to their
CPU counterparts, but can reach higher peak performance in terms of floating point opera-
tions. This combination means that performance is only achievable if algorithms reach higher
arithmetic intensities [78], thus motivating high-order matrix-free operators and solvers that
have this potential.

We have found that using loop bounds known at compile time drastically improves perfor-
mance. In p-dependent compute kernels, these compile-time constants permit shared memory
access within an element, thus reducing memory allocations and movement. Figure 3.3 shows
the benefits of utilizing shared memory for the intra-element operations. We see that the
shared-memory implementation outperforms the naive implementation by a factor of 4-8. In
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Figure 3.3: Throughput for nonlinear vector convection evaluation N (u) in 3D for several
polynomial degrees on the GPU. Left: Initial implementation. Right: Element-wise shared-
memory implementation. Efficiently reusing shared memory increases throughput by a factor
of between 4 and 8 and also allows for the solution of larger problems.

practice, just-in-time compilation or explicit template instantiation can be used to allow for
arbitrary-order simulations.

Figure 3.4 shows the throughput plots of our optimized implementations of the matrix-free
linear operator evaluations in 3D. These results were performed on a single Nvidia V100
GPU, showing the throughput achieved for various problem sizes and polynomial degrees.
Similar benchmark problems were used to assess kernel and backend performance in the
context of the CEED project [46].

We believe that our implementation can be improved by better taking advantage of the
GPU’s shared memory. First of all, symmetries exist in the 1D interpolation and differentia-
tion matrices (3.20) and (3.22) since the Legendre-Gauss-Lobatto nodes are symmetric about
the origin. Taking advantage of these symmetries would approximately halve shared memory
usage and simultaneously increase the arithmetic intensity of all operator evaluations. In
some sense, this improvement can be viewed as an extension of the original sum-factorization
techniques, which use inherent operator symmetries to avoid extra memory storage. More-
over, we see from Figure 3.4 that our implementation achieves lower throughput at lower
orders. It may be possible to address this issue by combining several low-order elements per
thread block to yield higher throughput. Unfortunately, the shared-memory requirements
of our approach increase with order p and dimension d, so exhausting the shared memory is
inevitable with very high order simulations. If necessary, one could compensate by storing



CHAPTER 3. MATRIX-FREE HIGH-ORDER OPERATORS 30

102 103 104 105 106 107 108
0

1

2

3
×109

Degrees of freedom

T
hr

ou
gh

pu
t(

D
oF

s
pe

rs
ec

on
d)

Vector mass

p = 2
p = 3
p = 4
p = 5
p = 6

102 103 104 105 106 107 108
0

0.5

1

1.5

2
×109

Degrees of freedom

T
hr

ou
gh

pu
t(

D
oF

s
pe

rs
ec

on
d)

Vector diffusion

p = 2
p = 3
p = 4
p = 5
p = 6

102 103 104 105 106 107 108
0

1

2

3

4
×109

Degrees of freedom

T
hr

ou
gh

pu
t(

D
oF

s
pe

rs
ec

on
d)

Divergence

p = 2
p = 3
p = 4
p = 5
p = 6

102 103 104 105 106 107 108
0

1

2

3

4

5
×109

Degrees of freedom

T
hr

ou
gh

pu
t(

D
oF

s
pe

rs
ec

on
d)

Gradient

p = 2
p = 3
p = 4
p = 5
p = 6

Figure 3.4: Throughput for linear operator evaluation kernels M , L, D, G in 3D for orders
p = 2 to 6 on the GPU. Maximum throughput is achieved for higher orders (p > 3) and
larger problems (more than 106 DoFs).
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Figure 3.5: Performance of unsteady Stokes operator in 3D. Our implementation achieves
expected rates of O(pd) and O(pd+1) for matrix-free setup and evaluation of the block oper-
ator, respectively. Shared-memory GPU implementation of operator evaluation outperforms
20-core CPU implementation by a factor of 6 at p = 2 and a factor of 11 at p = 6.

B and D in the GPU’s global memory to allow for even higher order simulations.

3.4.1 Unsteady Stokes flow

We next evaluate the performance of our GPU implementation of the block, unsteady Stokes
operator. Figure 3.5 presents the 3D operator setup and evaluation times under p-refinement
for a fixed mesh with 32,768 hexahedral elements. The GPU results were computed using one
Nvidia V100 GPU, while the CPU results used 20 POWER8 cores on one node of Lawrence
Livermore National Laboratory’s Ray supercomputer. Our implementation achieves the ex-
pected rates of O(pd) and O(pd+1) for matrix-free setup and evaluation, respectively. More-
over, we can see the computational benefits of high-order simulations on the GPU, as our
optimized GPU kernels outperform the 20-core CPU implementation by a factor of 6 at
p = 2 and a factor of 11 at p = 6.

Figure 3.5 also shows the performance under h-refinement, fixing the polynomial degree at
p = 6. We see that for fixed p, the wall-clock time scales linearly with DoFs. Empirically, we
see that this linear scaling occurs for problems with more than O(106) DoFs, while sublinear
scaling occurs for problems with less than O(106) DoFs. This probably occurs because
larger problems better saturate the GPU, thus attaining larger throughput. Once the device
is saturated, the operator evaluation is accelerated by a factor of about 11 relative to the
20-core CPU evaluation.
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3.5 Summary

In this chapter, we have described a high-order finite element method for incompressible
flow problems with a matrix-free implementation that efficiently utilizes the high perfor-
mance and memory bandwidth of modern graphics processing units. The resulting finite
element operators used sum-factorization algorithms and optimized GPU kernels to obtain
throughput of over a billion degrees of freedom per second on a single Nvidia V100 GPU.
These same techniques were shown to immediately apply to discontinuous Galerkin opera-
tors as well. These and several other high-order Galerkin operators have been implemented
in the open source MFEM library [86].
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Chapter 4

Matrix-free preconditioning of
incompressible flow with low-order
refined preconditioners

Utilizing the matrix-free operators described in Chapter 3 allows us to compose the vector
b and matrix-vector product Ax from (2.53) efficiently. And indeed, for compressible flow
problems where explicit time stepping can be employed, these are already the main challenges
to overcome for matrix-free operators implemented on the GPU to be used effectively [73,
131]. However, most incompressible flow solvers require the solution of large, sparse linear
systems [45], thus motivating the development of matrix-free solvers. Krylov subspace meth-
ods are a natural choice for matrix-free solvers, but they require effective preconditioners in
order to obtain good performance [14]. Therefore, in this chapter we develop matrix-free pre-
conditioners to solve the linear systems arising from high-order tensor-product finite element
discretizations of the steady Stokes (2.13), unsteady Stokes (2.12), and unsteady incompress-
ible Navier-Stokes equations (2.10). Particular emphasis is placed on solver robustness with
respect to discretization and mesh parameters.

In recent years, there has been much work on the topic of matrix-free preconditioning for
high-order discretizations. Matrix-free multigrid methods using point Jacobi and Chebyshev
smoothing were considered in [112] and [78]. Matrix-free tensor-product approximations
to block Jacobi preconditioners for discontinuous Galerkin discretizations were constructed
in [100] and [101]. A number of other matrix-free methodologies for high-order discontinu-
ous Galerkin flow solvers have been proposed, using techniques such as multigrid and block
preconditioning [11, 56, 51]. In this chapter, we define sparse, low-order refined precondi-
tioners [94, 44, 30] with parallel subspace corrections for diffusion problems [98]. Then we
extend them to create a suite of incompressible flow preconditioners that are robust in both
the mesh size and polynomial degree.
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4.1 Revisiting temporal discretization

As opposed to the time-dependent conservation laws for which implicit methods ultimately
yield a backward Euler-type system (2.53), incompressible flow is complicated by the fact
that there is no temporal evolution equation corresponding to the pressure. Indeed, after
spatial discretization of the time-dependent problems (2.10) and (2.12), we obtain (3.9) and
(3.3), which are systems of differential-algebraic equations (DAEs) [69, 107]. We discretize
these DAEs in time by split (i.e. projection or fractional step) or unsplit methods. For the
unsplit methods, we use the method of lines to first discretize in space and then temporally
discretize the resulting system of ordinary differential equations (3.3) and (3.9). Here, we
again use DIRK schemes as our time-integration method [1]. On the other hand, split
methods such as projection-type methods can be developed in order to decouple the solution
of the velocity and pressure components. As a result, these methods can be computationally
efficient, at the cost of incurring splitting and other approximation errors. Each of these
methods is discussed in greater detail in the following sections.

4.1.1 DIRK schemes for DAEs

First, we reformulate the DIRK method in a manner suitable for solving DAEs [62, 19]. For
this reformulation, we require that the DIRK scheme be stiffly accurate, i.e. that asi = bi
and cs = 1. Then, considering the general differential-algebraic system

M ẏ = r(t,y, z),

0 = g(t,y),
(4.1)

we define the approximate solution to the differential variable y at the ith stage by

yn
i = yn +∆t

i∑

j=1

aijk
n
j . (4.2)

Analogously to (2.47), the stage derivatives kn
i are given by

Mkn
i = r(tn +∆tci,y

n
i , z

n
i ), (4.3)

Multiplying (4.2) by the mass matrix M and inserting (4.3), we obtain

Myn
i =Myn +∆t

i∑

j=1

aijr(t
n +∆tcj,y

n
j , z

n
j ), (4.4)

which, when augmented with the constraint

0 = g(t,yi), (4.5)
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results in a system of equations for the ith stage approximations for the differential and
algebraic variables yi and zi. Because the DIRK schemes under consideration are stiffly
accurate, the values at the next time step are given by the final stage approximations,

yn+1 = yn
s , zn+1 = zn

s . (4.6)

Just as in Section 2.3, we apply Newton’s method to this potentially nonlinear system of
equations to arrive at a set of linear systems we must solve efficiently. Applying this method
to the semi-discrete Stokes problem (3.3) ultimately requires the solution to the linear system,

[
1

α∆t
M +L G
−D 0

] [
un

i

pni

]
=

[
Fi

0

]
, (4.7)

every Runge-Kutta stage, with the right-hand side Fi given by

Fi =
Mun

α∆t
+ fi +

1

α

i−1∑

j=1

aij(fj −Lun
j −Gpnj ). (4.8)

This fully discrete linear system (4.7) and its steady state counterpart (3.8) are saddle
point problems [14]. We present robust matrix-free solvers for such saddle point systems in
Section 4.2.4.

4.1.2 Projection methods

Projection methods, first introduced by Chorin in 1967, are a class of split methods for the
temporal integration of the incompressible Navier-Stokes equations [33, 34]. These methods
have the attractive feature that they only require the solution to uncoupled, positive-definite
problems, instead of the coupled, saddle-point type problems that are required by the DIRK
schemes described above. For this reason, projection and fractional-step methods have be-
come extensively used for incompressible flow problems [45, 106]. Chorin’s original method
has since been modified and extended to a wide range of variants [12, 24, 71, 127, 95]. See [61]
for a full review and analysis of a selection of these variants.

Following the method presented in [127], we use equal order polynomial degrees for velocity
and pressure, often known as a PNPN formulation. This method uses an implicit-explicit
time-integration scheme for the viscous and convective terms respectively, thereby avoiding
the need to solve a nonlinear system of equations at every time step. We use a backward
differentiation formula (BDF) of order k for the implicit terms and an extrapolation method
of order k for the explicit terms with corresponding coefficients bj and aj [127, 95, 62]. First,
we introduce the linear term L(u) = ν∆u and nonlinear term N(u) = −(u · ∇)u as well as
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their time-extrapolated versions,

L∗(un+1) =
k∑

j=1

ajL(u
n+1−j), (4.9)

N∗(un+1) =
k∑

j=1

ajN(un+1−j). (4.10)

Directly applying a k-step BDF method to (2.10) yields

k∑

j=0

bj
∆t

un+1−j = −∇pn+1 + L(un+1) +N∗(un+1) + fn+1, (4.11)

where fn+1 is assumed to be known a priori. Introducing F ∗(un) to represent all known
terms at a given time step,

F ∗(un) = −
k∑

j=1

bj
∆t

un+1−j +N∗(un+1) + fn+1, (4.12)

we can simplify (4.11) to

b0
∆t

un+1 = −∇pn+1 + L(un+1) + F ∗(un). (4.13)

Unfortunately, despite using a k > 1 order time-integration scheme, this method yields at
most first-order convergence in time for velocity, as shown in [71] and later proved by [61].
This is caused by splitting errors and large divergence errors on the boundary of the domain.
Therefore we use the velocity-correction formulation presented in [71], where the linear term
L(u) is instead expressed as

L×(u) = ν∇(∇ · u)− ν∇×∇× u, (4.14)

using well-known vector calculus identities. This alternative form of the linear term imposes
the incompressibility constraint from (2.10) weakly, by setting the first term in (4.14) equal
to zero.

In order to solve for pressure, we first rearrange (4.13) and take the divergence of both sides
in order to get

∇pn+1 = − b0
∆t

un+1 + L∗
×(u

n+1) + F ∗(un+1)︸ ︷︷ ︸
F̃ ∗(un+1)

, (4.15)

=⇒ ∆pn+1 = ∇ · F̃ ∗(un+1). (4.16)
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Notice how the first right-hand side term of (4.15) vanishes due to the incompressibility
constraint. Equation 4.16 is closed by the boundary condition,

∇pn+1 · n = − b0
∆t

un+1 · n+ F̃ ∗(un+1) · n on ∂Ω, (4.17)

where n is the outward pointing normal vector. We use the known Dirichlet boundary
condition un+1 · n = gn+1

D · n to evaluate (4.17). In the case of a pure Neumann boundary
condition, we close the system with a mean-zero condition on pressure:

∫

Ω

p dx = 0. (4.18)

Therefore, this projection method computes un+1 in three steps. First, the extrapolated
contributions from the nonlinear and forcing terms are combined to compute F ∗(un) via
(4.12). Second, we solve for pn+1 in the pressure-Poisson problem (4.16), closed with (4.17)
and (4.18). Finally, we return to (4.13) and solve for un+1 in the following Helmholtz
problem:

b0
∆t

un+1 − L(un+1) = −∇pn+1 + F ∗(un+1) in Ω, (4.19)

un+1 = gn+1
D on ∂Ω. (4.20)

This projection method is kth order in time for velocity (up to k = 3) [61]. As previously
mentioned, a major benefit of this method is its computational efficiency. Each time step
requires only one new nonlinear evaluation, one Poisson solve, and one Helmholtz solve. We
will discuss the matrix-free solvers that we use for these sub-problems in Section 4.2.3.

4.2 Matrix-free preconditioners

The numerical methods described above require solving large, sparse linear systems. The
fully discrete, steady Stokes equation requires solving the saddle-point linear system (3.8).
The time discretization of the unsteady Stokes equation (2.12) by a DIRK method results
in a sequence of saddle point problems (4.7). The velocity-correction schemes require the
solution of a Poisson problem (4.16) for the pressure and a Helmholtz equation (4.19) for
the velocity. Additionally, the nonlinear extrapolation requires the inversion of the velocity
mass matrix.

The main challenge associated with the matrix-free solution of high-order flow problems is
constructing efficient preconditioners that result in iteration counts that are independent of
the discretization parameters h, p, and ∆t. In this section, we describe the construction of
robust preconditioners that do not require the assembly of the high-order system matrices.
We begin by describing our preconditioning strategy for the relatively simpler sub-problems,
which can then be combined to create effective preconditioners for the more challenging,
coupled problems.



CHAPTER 4. MATRIX-FREE PRECONDITIONING 38

4.2.1 Collocated mass preconditioning

In order to precondition the mass matrix, we make use of a diagonal preconditioner based
on collocated quadrature [49, 58]. Note that for the one-dimensional mass matrix,

Mij =

∫

R
ϕiϕj dx, (4.21)

the integrand is a polynomial of degree 2p + 2. Therefore, mapping from the nodes to the
(p + 1)-point Gaussian quadrature points, one can exactly integrate this expression and
evaluate the mass entries (and its inverse). However, the exact mass matrix and its inverse
in general are full, so inverting this matrix is not practical. Because we use a nodal Legendre-
Gauss-Lobatto (LGL) basis for the finite element spaces, we instead seek to integrate at this
same set of quadrature points. The immediate benefit of this decision is that the resulting
mass matrix M̃ is by construction diagonal:

Mij =

p+1∑

k=1

wkϕi(ξk)ϕj(ξk) ≈
p+1∑

k=1

wkδikδjk = wiδij = M̃ij. (4.22)

This diagonal matrix is efficiently constructed and inverted in constant time and memory
per degree of freedom. However, integrating an integrand of degree 2p + 2 with a rule that
exactly integrates polynomials up to degree 2p + 1 introduces an under-integration error.
Conveniently, this error converges away spectrally fast for smooth problems as we increase
p [126]. Therefore, M̃ is spectrally equivalent to the fully-integrated mass matrix, with
constants of equivalence independent of h and p. Thus, the number of M̃ -preconditioned
solver iterations remains uniformly bounded with respect to the mesh size and polynomial
degree.

4.2.2 Low-order refined preconditioners for Poisson and
Helmholtz problems

Matrix-free preconditioners for the symmetric positive-definite Poisson and Helmholtz prob-
lems form the fundamental building blocks for our robust fluid solvers. These precondition-
ers are described in detail in [98], and are based on the spectral equivalence between the
high-order finite element discretization, and a low-order (plow = 1) finite element discretiza-
tion on an LGL-refined mesh. This equivalence is often referred to as the finite element
method–spectral element method (FEM-SEM) equivalence [31]. The low-order finite ele-
ment discretization results in a sparse matrix with O(1) nonzeros per row independent of
p, the polynomial degree of the original high-order discretization. Therefore, the memory
requirements and computational cost to assemble the low-order matrix are both optimal,
scaling linearly in the number of degrees of freedom.

Consider a scalar Poisson or Helmholtz problem

Au = b, (4.23)
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Figure 4.1: Illustration of the low-order refined methodology with p = 10, showing high
aspect ratio elements near the coarse element interfaces. Left: original high-order mesh Th.
Right: Legendre-Gauss-Lobatto refined mesh TLOR.

for A = cM + L, where c is a non-negative (but possibly zero) constant. We begin by
constructing a low-order refined (LOR) operator,

ALOR = cMLOR + LLOR. (4.24)

The LOR operators are obtained by a standard piecewise linear finite element discretization
on a refined mesh TLOR. This mesh is obtained by subdividing each element Ki ∈ Th into
the parallelepipeds defined by the Cartesian product of the p + 1 one-dimensional LGL
points. Figure 4.1 illustrates one such low-order refined mesh. That is, one follows the same
discretization presented in Section 3.1 for mesh TLOR, but sets pLOR = 1. We use the identity
operator to map DoFs from the high-order finite element LGL space to the low-order refined
space. It can be shown that the low-order refined mass matrices and stiffness matricesMLOR

and LLOR are spectrally equivalent to their high-order counterparts, M and L [28, 31, 29].
This equivalence directly follows from the one dimensional equivalences in the L2 norm and
H1 seminorm:

Proposition 4.2.1. There exists constants c and c′ independent of p such that

1

c
∥ϕp∥L2([0,1]) ≤∥ϕLOR∥L2([0,1]) ≤ c ∥ϕp∥L2([0,1]) , (4.25)

1

c′
∥∥ϕ′

p

∥∥
L2([0,1])

≤∥ϕ′
LOR∥L2([0,1]) ≤ c′

∥∥ϕ′
p

∥∥
L2([0,1])

. (4.26)
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Therefore, ALOR is spectrally-equivalent to A, and a robust preconditioner for ALOR is, in
turn, a robust preconditioner for the original high-order matrix A. The advantage of the
matrix ALOR over A is its greatly increased sparsity, requiring onlyO(1) nonzeros per row. As
a consequence, this matrix can be explicitly assembled and stored, as opposed to the original
operator A implemented in a matrix-free manner. Having access to the actual entries of
ALOR allows for the construction of sophisticated preconditioners.

Note that each coarse element Ki ∈ Th can be alternatively decomposed into a simplicial
sub-mesh using the LGL points. It has been shown that preconditioners resulting from finite
element discretizations using simplicial decompositions can result in improved convergence
when compared with the tensor-product decomposition used in this chapter [54, 29]. Fur-
thermore, several new configurations defining the low-order mesh were considered in [13],
potentially improving convergence rates as well. However, the tensor-product decomposition
we have presented has the advantage that the discretization primitives can be reused across
both the high-order and low-order methods, greatly simplifying the implementation.

The main challenge associated with constructing effective preconditioners for ALOR is the
high aspect ratio associated with the low-order refined mesh TLOR [83]. Because the LGL
points are clustered near the endpoints of the interval, the resulting Cartesian product mesh
consists of parallelepipeds with aspect ratios that scale like p [23]. As a result, the mesh
TLOR is not shape-regular with respect to p, and standard multigrid-type methods will not
result in uniform convergence under p-refinement.

In order to address this issue, we make use of a structured geometric multigrid V-cycle with
ordered ILU smoothing to treat the anisotropy of the problem, within a broader additive
Schwarz framework. The additive Schwarz domain decomposition framework [128, 97] first
decomposes the finite element space Vh into a sum of subspaces,

Vh = V0 +
J∑

j=1

Vj. (4.27)

On each subspace Vj, we let Aj be the restriction of Ah to Vj. Then the subspace operator
Aj : Vj → Vj, elliptic projection Pj : Vh → Vj, and L

2 projection Qj : Vh → Vj satisfy the
useful identity

AjPj = QjAh, (4.28)

and so Pj = A−1
j QjAh. While inverting the subspace operator exactly is often not possible, an

approximate local solver R−1
j ≈ A−1

j allows us to define the additive Schwarz preconditioner
B−1 by

B−1 =
J∑

j=0

R−1
j Qj. (4.29)

Each of the local approximate solvers R−1
j may be applied in parallel. Thus, this method is

often referred to as the method of parallel subspace corrections [136].
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For our problem, we choose V0 to be the coarse, low-order subspace defined on our original
mesh Th,

V0 =
{
v ∈ H1(Ω) | v(Ki) ∈ Q1(Ki) ∀Ki ∈ Th

}
. (4.30)

For the high-order methods we have developed on Th, the dimension of V0 is much smaller
than Vh, and indeed is independent of the polynomial degree p. Regardless, we are unable
to use direct solvers on this space, so we choose the coarse solver R−1

0 to be one V-cycle of
the algebraic multigrid method BoomerAMG [137] implemented in [50].

The spaces V1, . . . , VJ are defined in terms of overlapping, unstructured patches of vertices
from the original mesh Th. The vertices are partitioned into J disjoint sets E1, . . . , EJ . We
associate a subdomain Ωj ⊆ Ω obtained by taking the union of all coarse elements K ∈ Th
containing any vertex xk ∈ Ej. Thus, the subdomains overlap by a layer of elements only
one element thick, although multiple subdomains may share the same overlap region.

For these local patches, we define R−1
j to be an element-structured geometric multigrid V-

cycle [22] as follows. Each level of the hierarchy is constructed from the previous level by
removing half of the interior LGL points within each element, resulting in O(log p) levels.
This can be accomplished for instance by deleting every other interior one-dimensional LGL
point within the elements composing Ωj. Thus, the last level corresponds with the base
p = 1 elements from Th. Importantly, we only use the low-order refined operators defined on
these levels, ensuring operator memory and costs are independent of p.

At each level of the multigrid hierarchy, we perform one presmoothing and one postsmoothing
step based on incomplete LU (ILU) smoothing. Since the effectiveness of an ILU solver
strongly depends upon the ordering of the degrees of freedom, we choose our ordering based
on the minimum discarded fill algorithm applied to unstructured meshes [43, 105]. This
ordering ensures the number of multigrid iterations is independent of h and p [98]. Taking
advantage of the additive Schwarz framework, the multigrid algorithm with ILU smoothing
described above is applied in parallel to each of the subdomains independently, leading to
an efficient and robust preconditioner.

4.2.2.1 Relationship to other Schwarz-based solvers

A number of other matrix-free solvers based on a Schwarz methodology have been proposed
for the solution of the high-order Poisson problem, and by extension the incompressible
Navier-Stokes equations. Closely related to the methods presented in this chapter, multigrid
solvers with matrix-free Schwarz-based smoothers for the spectral element method were
constructed in [83]. These methods were later extended in [55] to solve the unsteady Navier-
Stokes equations, and were shown to perform efficiently on several large-scale tensor-product
meshes. The additive Schwarz smoothers used in [83] and [55] are constructed using tensor-
product subdomains corresponding to the spectral elements of the high-order discretization.
Because each of the subdomains possesses a tensor-product geometry, the fast diagonalization
method may be used to efficiently solve the local problems [135, 119].
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In this chapter, however, we make use of subdomains defined by fully unstructured vertex
patches, which in general do not possess a tensor-product structure. The application of fast
diagonalization methods to such geometries is non-trivial [100]. For this reason, instead
of using fast diagonalization to solve the local problems, we opt to solve the local low-
order refined problems using the element-structured geometric multigrid V-cycle with ILU
smoothing defined above.

4.2.3 Application to the projection method

The projection method described in Section 4.1.2 requires solvers for the vector mass matrix,
the pressure Poisson problem (4.16) and the Helmholtz problem (4.19). Each of these prob-
lems is symmetric positive-definite, and so we can use a preconditioned conjugate gradient
solver with the preconditioners described in Section 4.2.1 and Section 4.2.2. Because the
pressure Poisson problem (4.16) with pure Neumann conditions has a null space consisting
of constant functions, care must be taken to ensure that the right-hand side is orthogonal
to the null space. Therefore, each application of the preconditioner is augmented with an
orthogonalization step to ensure convergence.

4.2.4 Block preconditioners for Stokes

In order to solve the coupled Stokes problems (3.8) and (4.7), we make use of block-
preconditioning techniques, allowing us to reuse the preconditioners for the Poisson and
Helmholtz problems. Consider the representative saddle point system,

[
A G
D 0

] [
u
p

]
=

[
f
0

]
. (4.31)

We define the block triangular preconditioner

Pt =

[
A 0
D S

]
, (4.32)

where S = −DA−1G is the Schur complement. If we can afford the exact inversion of P−1
t ,

then it can be shown that the spectrum of the preconditioned system P−1
t A consists only of a

single eigenvalue, and hence GMRES will converge in at most two iterations [14]. Applying
this preconditioner requires solving linear systems with the matrices A and S. However,
forming and inverting these systems is impractical, so in this section we provide matrix-free
operators to approximate the action of A−1 and S−1.

We replace the action of A−1 with the application of several uniformly-preconditioned con-
jugate gradient iterations on A. For the steady Stokes system, A = L, so we can use
the matrix-free low-order refined preconditioner defined in Section 4.2.2. Likewise, for the
unsteady Stokes system, A = 1

α∆t
M + L, so we can use the previously-defined Helmholtz
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preconditioner. While these are vector linear systems, both A operators decouple the di-
mensions. Therefore, applying the scalar preconditioners d times (once in each dimension)
directly provides a preconditioner for these vector linear systems. Since the CG iterations
do not correspond to a fixed linear operator, it is important that we make use of flexible
GMRES as the outer iterative method to solve the preconditioned system [114]. This sub-
problem need not be solved exactly, and empirically two or three CG iterations are sufficient
to provide an effective preconditioner.

The Schur complement S is in general dense, and so now we focus on creating S̃−1 to
approximate the action of S−1. For the steady Stokes system, S = −DL−1G. Before creating
an approximate solver for S, we notice that L = −νDM−1G by construction. To construct
the approximate solver S̃−1, we make use of the standard commutativity approximation [14]:

LM−1G ≈ GM−1L. (4.33)

Note that this approximation is, in fact, exact when the operators L and G commute, such
as in the case of periodic boundary conditions. From (4.33), we have

M−1GL−1M ≈ L−1G, (4.34)

and so

S = −DL−1G ≈ −DM−1GL−1M =
1

ν
LL−1M =

1

ν
M. (4.35)

That is, the mass matrixM provides an approximation to S. Therefore, we define the action
of the approximate solver S̃−1 by the diagonal mass preconditioner described in Section 4.2.1.
In practice, approximating the action of S−1 by the action of S̃−1 doubles to triples the
iterations of the iterative solver. However, inverting S is infeasible, whereas applying S̃−1 is
efficiently performed in O(pd) time.

Likewise, for the unsteady Stokes system, the Schur complement is given by

S = −D
(

1

α∆t
M +L

)−1

G. (4.36)

Using the same commutativity approximation (4.33), we obtain

M−1G

(
1

α∆t
M + L

)−1

M ≈
(

1

α∆t
M +L

)−1

G. (4.37)

Thus,

S ≈ −DM−1G

(
1

α∆t
M + L

)−1

M =
1

ν
L

(
1

α∆t
M + L

)−1

M. (4.38)

Therefore, for the unsteady Stokes system, we define

S̃−1 =
ν

α∆t
L̃−1 + νM̃−1. (4.39)

From (4.39), we can apply the action of S̃−1 in a matrix-free manner by once again reusing
the Poisson solver from Section 4.2.2 and the diagonal M̃−1 from Section 4.2.1.
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Figure 4.2: Iteration counts for sub-problem solvers under p- and h-refinement. For the case
of h-refinement, we use a fixed polynomial degree of p = 7.

4.3 Numerical results

4.3.1 Sub-problem solver performance

We first assess the performance of the matrix-free sub-problem preconditioners by measur-
ing the number of Krylov iterations required to converge to a fixed tolerance under h- and
p-refinement. We solve the linear system Ax = b, where A is either the mass matrix, Lapla-
cian operator, or positive-definite Helmholtz operator. We write the Helmholtz operator as
M/∆t + L, and choose two representative time steps: ∆t = 10−1 and ∆t = 10−3. For each
of the problems considered, we use a preconditioned conjugate gradient iteration to solve
the problem, with a relative residual tolerance of 10−8 as a stopping criterion. The right
hand side b is taken to be a random vector. For the mass matrix, the preconditioner is
the collocated diagonal preconditioner described in Section 4.2.1, and for the Helmholtz and
Poisson solvers, we use the low-order refined parallel subspace correction procedure described
in Section 4.2.2.

To perform the p-refinement study, we use a fixed Cartesian grid with 64 elements in two
dimensions, and polynomial degrees from p = 2 to p = 20. The number of iterations
required to converge to tolerance is shown in Figure 4.2. We note that the number of
iterations remains bounded for all problems and for all polynomial degrees. We observe a
slight pre-asymptotic increase in the number of iterations for the Poisson and Helmholtz
problems, but the iteration counts remain below 20 for all cases. As expected, the number
of iterations required for the mass solve decreases with increasing polynomial degree. This
result corroborates eigenvalue analysis of the preconditioned system, which shows decreasing



CHAPTER 4. MATRIX-FREE PRECONDITIONING 45

1 2 4 8
10−16

10−12

10−8

10−4

100

Solver tolerance = 10−14

1
4

1

8

1

12

1

16

1

20

1/h

L
2

ve
lo

ci
ty

er
ro

r

Figure 4.3: L2 velocity error showing high-order spatial convergence for steady-state Stokes.
Polynomial degrees 3, 7, 11, 15, and 19 are used for the velocity finite element space.

condition number with increasing polynomial degree [58].

For the case of h-refinement, we fix the polynomial degree to be p = 7, and perform a sequence
of uniform refinements. The initial mesh is a 4×4 Cartesian grid with 841 DoFs. We perform
five refinements, so that the finest mesh is 128 × 128 with 804,609 DoFs. The number
of iterations required to converge to tolerance is shown in Figure 4.2. Here, we observe
approximately constant iterations, independent of the mesh refinement. These examples
verify the robustness of the sub-problem preconditioners with respect to the mesh size and
polynomial degree.

4.3.2 Steady-state Stokes flow

To verify the high-order accuracy of the spatial discretization, and to test the convergence
properties of the solver, we solve the steady Stokes equations with a smooth solution in two
spatial dimensions. Setting ν = 1, we choose the right-hand side to be

f1(x, y) = π cos(πy)
(
4π2(1− 2 cos(2πx)) sin(πy)− sin(πx)

)
,

f2(x, y) = 2π3 sin(2πx)(2 cos(2πy)− 1)− π cos(πx) sin(πy).

The exact solution is then given by

u1(x, y) = 2π sin2(πx) sin(πy) cos(πy),

u2(x, y) = −2π sin(πx) cos(πx) sin2(πy),

p(x, y) = cos(πx) cos(πy).
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Table 4.1: Error and convergence results for steady Stokes equation, showing L2 error norms
for velocity and pressure, and number of FGMRES iterations required to reduce the residual
by a factor of 1014.

p = 7

1/h ∥uh − u∥2 Rate ∥ph − p∥2 Rate Its.

1 4.25× 10−1 — 1.61× 10−1 — 31
4 3.36× 10−3 6.99 3.33× 10−3 5.60 41
16 2.55× 10−5 7.04 7.58× 10−5 5.46 43
64 8.63× 10−8 8.21 2.41× 10−7 8.30 46

p = 11

1/h ∥uh − u∥2 Rate ∥ph − p∥2 Rate Its.

1 4.46× 10−3 — 1.72× 10−2 — 35
4 1.74× 10−6 11.32 1.33× 10−6 13.66 42
16 8.05× 10−10 11.08 2.57× 10−9 9.01 47
64 1.68× 10−13 12.23 6.76× 10−13 11.89 49

p = 15

1/h ∥uh − u∥2 Rate ∥ph − p∥2 Rate Its.

1 1.12× 10−5 — 1.05× 10−2 — 39
4 2.44× 10−10 15.48 1.46× 10−10 26.10 45
16 2.01× 10−14 13.57 5.30× 10−13 8.11 52
64 2.73× 10−14 -0.44 7.43× 10−13 -0.49 53

p = 19

1/h ∥uh − u∥2 Rate ∥ph − p∥2 Rate Its.

1 1.00× 10−8 — 7.24× 10−3 — 41
4 4.34× 10−14 17.82 3.22× 10−13 34.39 47
16 1.82× 10−14 1.25 7.48× 10−13 -1.21 52
64 2.29× 10−14 -0.33 8.69× 10−13 -0.22 55

The exact solution is imposed as a Dirichlet boundary condition for velocity on all domain
boundaries using the method of manufactured solutions. We run this case with polynomial
degrees from p = 3 to p = 19 on a sequence of uniformly refined Cartesian meshes. We solve
the resulting linear system using FGMRES with the matrix-free block triangular precondi-
tioners described in Section 4.2.4. The stopping criterion for the iterative solver is a relative
residual norm of 10−14. The spatial convergence is shown in Figure 4.3. The expected p+ 1
order of accuracy was observed in all cases, verifying the high-order spatial accuracy of the
underlying matrix-free discretization. In Table 4.1, we show the L2 error for velocity and
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Figure 4.4: Two-dimensional Kovasznay flow, showing contours of velocity magnitude com-
puted using a coarse mesh with degree 11 polynomials.

pressure for cases considered, together with the number of FGMRES iterations required to
converge the solution. The number of iterations shows a slight pre-asymptotic increase, but
remains bounded with respect to both h and p.

4.3.3 Incompressible Navier-Stokes: Kovasznay flow

In 1948, Kovasznay presented an analytical solution to the stationary Navier-Stokes equa-
tions (2.11) in two spatial dimensions [76]. This solution may be used to represent the wake
behind a periodic array of cylinders in the y-direction. The solution is given by

λ =
Re

2
−
√

Re2

4
+ 4π2,

u1(x, y) = 1− exp (λx) cos (2πy),

u2(x, y) =
λ

2π
sin (2πx),

p(x, y) = −1

2
exp(2λx),
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Figure 4.5: Two-dimensional Kovasznay flow. L2 velocity error using polynomial degrees
p = 3, 5, 7, 9.

where Re is the Reynolds number for the flow. In our example we define the problem in
the rectangular domain [−1/2, 1]× [−1/2, 3/2] with Re = 40. Velocity magnitude contours
of the solution are shown in Figure 4.4. We use pseudo-time integration in order to apply
the projection method described in Section 4.1.2 with BDF2 to the steady-state problem.
The pseudo-time step is chosen to be ∆t = 10−3 on the coarsest mesh, and is reduced by a
factor of two with each refinement. The exact solution is enforced as a Dirichlet boundary
condition on all boundaries of the domain. The equations are integrated until a final time
of t = 8 to allow for the errors to propagate out of the domain.

To investigate spatial convergence we compute the solution with increasing polynomial degree
and uniform spatial refinement. The L2 errors for the velocity are shown in Figure 4.5. We
observe the desired order of accuracy for all of the cases considered.

4.4 Summary

In this chapter, we have developed a suite of matrix-free linear solvers of high-order meth-
ods for incompressible flow. The foundational sub-problem solvers of the mass, Poisson,
and Helmholtz systems do not require the costly assembly of high-order system matrices.
Their memory usage is optimal, requiring only constant memory per degree of freedom.
Furthermore, the number of operations required to apply the preconditioners scales linearly
with the number of degrees of freedom, which is the same as the operator evaluation. The
robustness of preconditioners with respect to the mesh size, polynomial degree, and time
step was demonstrated on a range of test problems. Moreover, we considered a variety of
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incompressible problems, verifying the high-order accuracy and efficiency of the underlying
method.
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Chapter 5

Iterative subregion correction
preconditioners with adaptive
tolerance for problems with
geometrically localized stiffness

In this chapter, we consider a particular class of problems exhibiting geometrically localized
stiffness, defined by convergence rates of iterative methods degrading in a localized subregion
of the mesh. On meshes with highly anisotropic elements, for instance those required by
wall-resolved LES (WRLES), generic preconditioners can perform poorly on our Galerkin-
discretized linear systems (2.53) [105]. We shall fully explore this breakdown for a block
Jacobi stationary iterative method in the beginning of Section 5.6, but suffice to say the
anisotropic elements converge slower than isotropic elements. A similar degradation in solver
performance can be seen when solving a convection-diffusion problem with a local spike in
diffusion. On the elements with large diffusion, the problem is stiffer than on the rest of the
mesh, leading to slow iterative solver convergence rates. Likewise, radiative transfer through
media with different material properties may introduce regions through which numerical
methods suffer [88].

One option to avoid geometrically localized stiffness for a WRLES is to refine the mesh with
a strategy that enforces a maximum allowable element aspect ratio [91]. While this strategy
improves the performance of a preconditioner, it can also dramatically increase the total
number of elements required to resolve the boundary layer, leading to costly solves. Another
option to tackle geometrically localized stiffness is to develop more advanced preconditioners
that robustly handle both diffusion-dominated and convection-dominated problems. A good
solver should be robust with respect to anisotropic discretization, mesh parameters, and
variable diffusivity. One approach was an aggregation-based algebraic multigrid method
(AMG) [93] introduced into the AGMG software. A more recent approach was ℓAIR [85],
which locally approximates the ideal restriction operator of AMG. However, both of these
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methods by design treat the entire domain simultaneously, leading to unnecessarily expensive
iterations in the case of a small subregion of elements causing localized stiffness. Moreover,
they both require access to the underlying matrix entries, so neither is applicable to matrix-
free methods.

In this chapter, we derive a novel class of preconditioners that combines a domain decom-
position methodology with the flexibility of choosing effective preconditioners for the overall
problem and subregion problem. Specifically, we correct a globally preconditioned vector
by the subregion-local error to ensure the resulting preconditioned vector is independent of
the subregion stiffness. The subregion error equation is approximately solved by a precondi-
tioned iterative method only to the same precision as the globally preconditioned vector to
adaptively minimize subregion-local computations. Thus, subregion-local work is minimized
while guaranteeing convergence rates. This strategy means that domain-specific knowledge
can be leveraged to create an iterative subregion correction preconditioner that is robust and
performant both across the overall domain and in the subregion. Moreover, we can combine
matrix-free sub-preconditioners to create iterative subregion correction preconditioners for
matrix-free methods.

5.1 Exact subregion correction preconditioner

We first motivate our preconditioners by presenting an exact subregion correction precondi-
tioner. Consider the mesh partition,

T = Tsr ∪ Tc, (5.1)

where Tsr is the subregion containing geometrically localized stiffness and Tc is its comple-
ment. On this partition, our discretization matrix is expanded as

A =

(
Asr,sr Asr,c

Ac,sr Ac,c

)
. (5.2)

Throughout this chapter, we subscript all vectors and matrices corresponding to the elements
in the subregion and its complement with sr and c, respectively. So xsr is the restriction of
x to the subregion, an operation alternatively described as applying a rectangular restriction
matrix to the global vector in domain decomposition literature [128].

Take P−1 to be a global preconditioner that does not couple degrees of freedom across
elements. This property is satisfied for instance by one iteration of the block Jacobi method.
While P−1 may perform well in the complement, the geometrically localized stiffness in
the subregion prevents an overall good convergence rate. We define the exact subregion
correction preconditioner as the block Gauss-Seidel type preconditioner,

(
Asr,sr Asr,c

0 Pc,c

)(
xsr
xc

)
=

(
bsr
bc

)
, (5.3)
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where b is the input vector, and x = (xsr, xc)
T is the final preconditioned vector. Defining

the preliminary solution x̃ = P−1b, and noting that P−1 is element-wise block-diagonal, we
can see that

x̃c =
(
P−1b

)
c
= P−1

c,c bc = xc. (5.4)

Therefore, by construction, (5.3) does not correct the preliminary solution in the complement
of the subregion.

Moreover, the corrected solution given by (5.3), restricted to the subregion, is exactly

xsr = A−1
sr,sr (bsr − Asr,cx̃c)

= x̃sr + A−1
sr,sr (bsr − Asr,srx̃sr − Asr,cx̃c)

= x̃sr + A−1
sr,sr (b− Ax̃)sr .

(5.5)

This rewriting provides an algorithm for directly computing the exact subregion correction
preconditioner, presented as Algorithm 3.

Algorithm 3 Exact subregion correction preconditioner

Inputs: b is the input vector, ksr is the list of elements in subregion
function ExactPrecond(b, ksr)

x̃← P−1b
r ← b− Ax̃
rsr ← ExtractSubvector(r, ksr)
esr ← A−1

sr,srrsr
e← PadSubvector(esr, ksr)
x← x̃+ e
return x

end function

The first step is to apply a global preconditioner to the original right-hand side vector to
create a preliminary solution x̃. After computing the global residual, r, the next step is to
extract the residual corresponding to the elements in the subregion, rsr. Next, the subregion
error equation Asr,sresr = rsr is exactly solved for esr. This subregion error esr is padded
with zeros outside the subregion to yield a global update e. Finally, the preliminary solution
x̃ is corrected by e to yield the final preconditioned vector x.

This basic preconditioner has an attractive convergence property. If we assume that the
subregion is decoupled from the rest of the mesh, then there is no interaction between
the elements inside and outside the subregion. Therefore, matrix-vector multiplication and
restriction to a sub-vector are commutative:

(Ax)sr = Asr,srxsr. (5.6)
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If this assumption is true, then our preconditioned vector satisfies

xsr = x̃sr + A−1
sr,sr (b− Ax̃)sr

= x̃sr + A−1
sr,srbsr − x̃sr

= A−1
sr,srbsr,

(5.7)

within the subregion. That is, a solver built around this preconditioner will have convergence
properties independent of the subregion. However, since assumption (5.6) does not hold in
general, we revisit this convergence property in detail in Section 5.4. We also note that this
exact preconditioner (5.3) can be considered a multiplicative Schwarz preconditioner, so the
convergence properties of subspace-correction methods [60] apply.

It is also interesting to compare Algorithm 3 to the two-level multigrid method [22] used
as a preconditioner [75]. Designed to solve linear systems from problems with frequency-
localized stiffness, the two-level method works on a coarse grid in order to more efficiently
solve the original, fine-grid problem. Not only does the exact subregion correction precon-
ditioner visually appear similar to the two-level method without post-relaxation, but they
are motivated similarly as well. By spending more effort on the cheaper problem, we seek
to avoid spending more iterations on the expensive, full domain.

5.2 Iterative subregion correction preconditioner

We now describe the general iterative subregion correction preconditioner in Algorithm 4.

Algorithm 4 Iterative subregion correction preconditioner

Inputs: b is the input vector, ksr is the list of elements in subregion
function ApplyPrecond(b, ksr)

x̃← P−1b
r ← b− Ax̃
rsr ← ExtractSubvector(r, ksr)
tol← AdaptiveTolerance(r, ksr)
esr ← GMRES(Asr,sr, rsr, tol) ▷ Solve subregion error equation Asr,sresr = rsr
e← PadSubvector(esr, ksr)
x← x̃+ e
return x

end function

The only difference between this preconditioner and the exact version previously presented in
Section 5.1 is its treatment of the subregion error equation. The subregion error equation is
now only approximately solved by an inner iterative method to a requested tolerance. With
a loose required inner tolerance, the approximate subregion solve could be much cheaper
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than any exact solve. Section 5.3 will show how we use r to adaptively compute a loose
tolerance for the subregion-local solve.

This preconditioner has several attractive properties. First of all, it inherits the crucial
subregion-independent convergence property from the exact subregion correction precondi-
tioner as tol→ 0. We will further analyze this convergence for inexact solves in Section 5.4.

The first step of this algorithm is to apply a global preconditioner to the original right-hand
side vector to create a preliminary solution x̃. In principle, this could be any precondi-
tioner, allowing one to leverage domain knowledge and use an effective preconditioner for
the underlying problem that does not exhibit geometrically localized stiffness. Likewise, the
subregion-local solve should be preconditioned as well, and a different preconditioner may
prove to be better suited to the subregion problem. In practice, we have tested a block Jacobi
method [116], a block incomplete LU (ILU) factorization method with no-fill [117, 105], and
an algebraic multigrid (AMG) preconditioner [50, 137], all showing similar properties.

This preconditioner also has the attractive property that it requires only one global matrix-
vector product beyond any generic preconditioner. All other work is local to the sub-operator
and sub-vectors corresponding to the subregion. Therefore, for problems with a small number
of elements in the subregion relative to the total number of elements in the overall mesh, this
preconditioner is cheap. Indeed, this element fraction is a crucial factor in understanding
the performance of our preconditioner, and we will explore its effects on performance for test
problems in Section 5.6 and practical problems in Chapter 6.

Lastly, the only information this preconditioner requires beyond any generic preconditioner
is the ability to extract a sub-vector from the global vector and vice-versa. This can be
implemented simply by slicing vectors according to the list of elements composing the subre-
gion: ksr. Indeed, we shall show in Section 5.5 how this overall preconditioner is matrix-free
if the global preconditioner and subregion-local preconditioner are matrix-free.

5.3 Adaptive tolerance selection

As described so far, the cost of the iterative subregion correction preconditioner is highly
dependant on the cost of solving the subregion error equation Asr,sresr = rsr. However,
because the error correction in Algorithm 4 is local to the subregion, this local error equation
does not call for an exact solution. In fact, we should optimally solve this local error equation
only to the same precision that the global preconditioner “solved” the original problem
outside the subregion in x̃. This idea forms the basis of the adaptive tolerance,

tol = Λ
maxk ̸∈ksr ∥rk∥2
maxk∈ksr ∥rk∥2

, (5.8)

where rk refers to the element-wise residual (or sub-vector containing only the degrees of
freedom corresponding to element k), and Λ is a scaling factor that approximately transforms
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operations on r to operations on M−1r. In particular, we consider

Λ←
∥∥M−1

c,c

∥∥
2∥∥M−1

sr,sr

∥∥
2

. (5.9)

In practice, this constant should be computed in a pre-processing step only once. Moreover,
each 2-norm can be efficiently computed with 10 inverse iterations on Msr,sr and Mc,c, the
restriction of the mass matrix to the subregion and its complement, respectively. Thus, the
pre-processing required to compute this adaptive tolerance is cheap and element-wise local.

This adaptive tolerance is chosen to be the ratio of the maximum error found in the com-
plement of the subregion and the maximum error found in the subregion. Therefore, the
relative tolerance is the amount that the worst element inside the subregion must improve
in order to catch up to the accuracy of the worst element outside the subregion. Since (5.8)
only depends upon the residual r, which is already computed, this adaptive tolerance seam-
lessly integrates into the larger iterative subregion correction preconditioner. Consequently,
solving the subregion error equation with an inner iterative method to this relative tolerance
minimizes the cost of the overall preconditioner.

Residual vectors contain mesh mapping dependant scaling. The point of multiplying by
this scaling factor Λ is to cheaply eliminate this mesh scaling, without having to compute a
mass-inverse each outer iteration. Since M−1r does not contain these mesh scaling factors,
we can use it as a scaled form of error. On meshes containing highly anisotropic elements
within the subregion, the element-wise errors can be orders of magnitude larger than the
element-wise residuals, necessitating errors be used.

This scaling factor Λ is intentionally chosen to be pessimistic, so that we can guaran-
tee subregion-independent convergence of the overall preconditioner, as shown in Propo-
sition 5.4.5. We have experimentally found that a more performant scaling factor is

Λ← min

{
1,

∥∥M−1
ic,ic

∥∥
2∥∥M−1

isr,isr

∥∥
2

}
, (5.10)

where isr and ic are the elements inside the subregion and its complement at which the
maxima computed in (5.8) are achieved. This choice results in a looser tolerance for the
inner iterative solver, thus reducing the number of inner iterations required to solve the
subregion error equation. However, the convergence analysis we develop in Section 5.4 does
not directly apply to this choice of scaling factor, and so we do not present a guarantee that
the overall solver will converge at a subregion-independent rate. However, this can be a
worthwhile trade-off; we shall show in Section 5.6.1 that this adaptive tolerance reduces the
required number of inner GMRES iterations considerably, resulting in overall computational
savings. This performant scaling factor (5.10) depends on r and so now must be computed
each outer iteration. In our implementation, we precompute all

∥∥M−1
k,k

∥∥
2
, reducing the on-

line computation each iteration to a scalar division. We present our performant adaptive
tolerance selection as Algorithm 5.
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Algorithm 5 Adaptive tolerance selection

Inputs: r is the global residual, ksr is the list of elements in subregion
function AdaptiveTolerance(r, ksr)

(isr, emax sr)← max
k∈ksr

∥rk∥2
(ic, emax c)← max

k ̸∈ksr
∥rk∥2

Λ←
∥∥M−1

ic,ic

∥∥
2
/
∥∥M−1

isr,isr

∥∥
2

▷ Scaling factor from residual to error
tol← Λ (emax c/emax sr) ▷ Ratio of errors outside vs inside the subregion
return tol

end function

If desired, both of these scaling factors can be computed in a matrix-free manner. Since
M is an element-wise block-diagonal matrix, the 2-norm decomposes into element-wise 2-
norms. Each of these element-wise 2-norms can be computed with inverse iterations, the
crucial step of which is the computation M−1

k,kb. Using the matrix-free mass preconditioner
developed in Section 4.2.1, these element-wise inverses can be computed efficiently. Thus,
the pre-processing of all

∥∥M−1
k,k

∥∥
2
is matrix-free, and so (5.9) or (5.10) is too.

Finally, we note that the scaling factor is only important if the mesh elements are highly
graded. If the elements across the mesh are mostly the same size, this step is irrelevant, and
we could use element-wise residuals directly instead by choosing Λ← 1.

5.4 Convergence analysis

Let us return to the basic convergence analysis presented in (5.7) for the exact subregion
correction preconditioner. We now consider the general case, where assumption (5.6) does
not hold. We are interested in quantifying the error of our preconditioner, defined as

∆ = x∗ − x, (5.11)

where x∗ is the true solution, satisfying Ax∗ = b. The preliminary error, defined as

∆̃ = x∗ − x̃, (5.12)

is useful in this analysis, where x̃ is the preliminary solution.

Proposition 5.4.1. The error of our preconditioner inside the subregion relates to the pre-
liminary error outside the subregion according to

∆sr = −A−1
sr,srAsr,c∆̃c. (5.13)
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Overlap

Outer Region

Inner Region

Figure 5.1: Schematic image of a mesh partitioned into an outer region, inner region, and
overlapping region of elements. The geometrically localized stiffness is contained within the
inner region, so the subregion is made up of elements in the inner region and overlap.

Proof. The true solution satisfies Ax∗ = b. Therefore, expanding according to (5.2), the true
solution restricted to the subregion satisfies

x∗sr = A−1
sr,sr (bsr − Asr,cx

∗
c) . (5.14)

Subtracting (5.5) from (5.14), we have

∆sr = A−1
sr,srAsr,c (x̃c − x∗c) = −A−1

sr,srAsr,c∆̃c (5.15)

Remark. This result establishes that the error inside the subregion ∆sr is directly related to
the preliminary error outside the subregion ∆̃c. The remainder of this analysis is devoted to
finding bounds on these scaling matrices and the preliminary error.

Now consider a mesh T3 partitioned into three regions: an inner region that demonstrates
geometrically localized stiffness, an outer region free from this stiffness, and a third region
between the two regions that is one element thick. We write this partition as

T3 = Tin ∪ Tover ∪ Tout, (5.16)

and present an example in Figure 5.1. Region Tin has a stiffness parameter ε (larger ε is
stiffer), which generally could represent diffusion coefficient, reciprocal mesh size, etc. How-
ever, regions Tover and Tout locally do not depend on ε, for instance by having a fixed diffusion
coefficient much smaller than ε. We must determine how to choose Tsr from these regions
such that ∆sr is ε-independent, so that a solver preconditioned with iterative subregion
correction should have a ε-independent convergence rate.
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Proposition 5.4.2. Let A be the matrix associated with our discretization on this mesh T3.
Then the blocks of the partitioned A corresponding to Tout are independent of this stiffness
parameter ε.

Proof. Because our underlying spatial discretization (2.27) is compact, only the degrees of
freedom belonging to neighboring elements are connected by the discretization. Therefore
the degrees of freedom in the inner region are not connected to those of the outer region,
resulting in zero blocks in the matrix expansion below.

A =



Ain,in Ain,over 0
Aover,in Aover,over Aover,out

0 Aout,over Aout,out


 . (5.17)

From (5.17), the block rows Aout,j and columns Ai,out only relate Tover and Tout and thus have
no dependence on ε.

Remark. An important conclusion of this proposition is that Tout is completely independent
of ε. The same cannot be said about the region Tover because the compact discretization
couples Tover with Tin, so both Ain,over and Aover,in depend on ε.

Remark. Technically, this result does not require a compact discretization. This argument
only relies upon the discretization matrix not coupling ε-dependence across non-neighboring
elements.

Therefore, we should define the subregion as

Tsr := Tin ∪ Tover. (5.18)

It should now be clear why we label this third region an “overlap”—it has the properties of
the outer region but is part of our subregion. With this choice of subregion, Proposition 5.4.2
shows that a block Jacobi method applied to Tout will result in a preliminary error that is
ε-independent. All that remains is to show the scaling matrices in (5.13) do not introduce
any ε-dependence. However, to show this, we first make the following assumption:

∥∥M−1
sr,srAsr,sr

∥∥ ≥ C1, (5.19)

where M−1
sr,sr is the inverse mass matrix restricted to the subregion, and C1 is independent

of ε.

We note that in the case of increasing diffusivity, this is a reasonable assumption since
∥Asr,sr∥ remains uniformly bounded from below; only the upper bound increases. However,
this lower bound is not uniform when ε relates to decreasing mesh size. Because the elemental
volume integrals have a scaling of hd, the lower bound for ∥Asr,sr∥ decreases with decreasing
h (increasing ε). The scaled matrix M−1

sr,srAsr,sr on the other hand has a uniform bound,



CHAPTER 5. ITERATIVE SUBREGION CORRECTION PRECONDITIONERS 59

independent of mesh size [3]. Therefore, (5.19) is a reasonable additional assumption to
require for the following proposition.

Moreover, we are focused on the solution of time-dependent problems yielding linear systems
(2.53). For any positive-definite matrix J , the matrix

M−1A =M−1(M −∆tJ) = I −∆tM−1J (5.20)

naturally has a minimum eigenvalue of 1. Therefore, (5.19) is especially natural for the time-
dependent problems we are solving, even though our analysis considers the more general case
of indefinite J .

Proposition 5.4.3. Let ∆sr and ∆̃c be the error inside the subregion and the preliminary
error outside the subregion, respectively. Choosing the subregion on mesh T3 according to
(5.18) and assuming (5.19), we have

∥∆sr∥ ≤ C
∥∥∥∆̃c

∥∥∥ , (5.21)

for C independent of ε.

Proof. From our discretization on T3 we have

Asr,c =

(
Ain,out

Aover,out

)
=

(
0

Aover,out

)
. (5.22)

Because Aover,out is independent of ε by construction, so is Asr,c. We therefore also have
∥∥M−1

sr,srAsr,c

∥∥ ≤ C2, (5.23)

for C2, a constant independent of ε. From Proposition 5.4.1, we have

∥∆sr∥ =
∥∥∥A−1

sr,srAsr,c∆̃c

∥∥∥

=
∥∥∥A−1

sr,srMsr,srM
−1
sr,srAsr,c∆̃c

∥∥∥

=
∥∥∥
(
M−1

sr,srAsr,sr

)−1 (
M−1

sr,srAsr,c

)
∆̃c

∥∥∥ .

(5.24)

Our assumption (5.19) provides a lower bound on
∥∥M−1

sr,srAsr,sr

∥∥, so the inverse is bounded
above: ∥∥∥

(
M−1

sr,srAsr,sr

)−1
∥∥∥ ≤ C1. (5.25)

Combining (5.25) and (5.23), we can estimate ∥∆sr∥.

∥∆sr∥ ≤
∥∥∥
(
M−1

sr,srAsr,sr

)−1
∥∥∥
∥∥M−1

sr,srAsr,c

∥∥
∥∥∥∆̃c

∥∥∥ ≤ C
∥∥∥∆̃c

∥∥∥ , (5.26)

for C = C1C2 independent of ε.
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Remark. This key result, combined with our previous conclusion from Proposition 5.4.2
shows that under a few reasonable assumptions, the convergence rate of a solver precondi-
tioned with iterative subregion correction is expected to be independent of ε.

We will confirm that this ε-independence convergence holds in practice for the test problems
we model in Section 5.6, where each subregion is composed of contiguous elements containing
the geometrically localized stiffness and at least one further element in each direction, exactly
like T3.
If we were to not include the overlap region as part of the subregion and instead choose
Tsr := Tin, we would lose this key ε-independence. This is because Tover is coupled to Tin,
and so the error in Tover after one application of block Jacobi iteration would increase as ε
increases. Since a subset of ∆̃c is ε-dependent, we should expect ε-dependent convergence
rates by Proposition 5.4.3.

Finally, we can incorporate the adaptive tolerance defined by (5.8) and (5.9) to analyze
convergence of the iterative subregion correction preconditioners.

Proposition 5.4.4. When only solving to the tolerance chosen by (5.8) and (5.9), the er-
ror of our preconditioner inside the subregion relates to the preliminary error outside the
subregion according to

∆sr = A−1
sr,sr

(
Msr,srwsr + Asr,c∆̃c

)
, (5.27)

where ∥wsr∥2 ≤ C3

∥∥M−1
c,c

∥∥
2
∥rc∥2 for a constant C3.

Proof. For a solver converging to the adaptive tolerance chosen by (5.8), we have

∥rsr − Asr,sresr∥2 ≤ tol ∥rsr∥2 . (5.28)

We note that the mass matrix is block-diagonal, where one block corresponds to one element.
Therefore, the inverse mass matrix is likewise block-diagonal, with no communication across
elements. Breaking apart (5.28) into the local element-wise ℓ2-norms, we have

∥∥(rsr − Asr,sresr)k
∥∥
2
≤ tol ∥rk∥2 ∀k ∈ ksr. (5.29)

We again subscript a vector by k to denote that the sub-vector contains only the degrees of
freedom corresponding to element k. For Λ defined by (5.9), (5.29) expands to

∥∥(rsr − Asr,sresr)k
∥∥
2
≤ max

k ̸∈ksr
∥rk∥2

( ∥∥M−1
c,c

∥∥
2∥∥M−1

sr,sr

∥∥
2

)
∀k ∈ ksr. (5.30)

Recombining these sub-vectors yields

∥rsr − Asr,sresr∥2 ≤ C3

( ∥∥M−1
c,c

∥∥
2∥∥M−1

sr,sr

∥∥
2

)
∥rc∥2 , (5.31)
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where this constant C3 is loosely bounded for instance by the number of elements in the
mesh. Expressing (5.31) another way, there exists a vector vsr ∈ R|ksr| such that

rsr = Asr,sresr + vsr, (5.32)

where

∥vsr∥2 ≤ C3

( ∥∥M−1
c,c

∥∥
2∥∥M−1

sr,sr

∥∥
2

)
∥rc∥2 . (5.33)

Choose wsr =M−1
sr,srvsr. Returning to the preconditioner analysis in (5.5), we now have

xsr = x̃sr + A−1
sr,sr ((b− Ax̃)sr −Msr,srwsr)

= x̃sr + A−1
sr,sr (bsr − Asr,srx̃sr − Asr,cx̃c −Msr,srwsr)

= A−1
sr,sr (bsr − Asr,cx̃c −Msr,srwsr) .

(5.34)

Subtracting (5.34) from (5.14), we arrive at (5.27).

Remark. The only difference between this result and Proposition 5.4.1 is this extra wsr error
term. But since this term is small, we can now prove a similar result to Proposition 5.4.3.

Proposition 5.4.5. Let ∆sr and ∆̃c be the error inside the subregion and the preliminary
error outside the subregion when only solving to the adaptive tolerance chosen by (5.8) and
(5.9), respectively. Choosing the subregion on mesh T3 according to (5.18) and assuming
(5.19), we have

∥∆sr∥ ≤ C4 ∥δc∥+ C
∥∥∥∆̃c

∥∥∥ , (5.35)

for C4, C constants independent of ε and ∥δc∥ =
∥∥M−1

c,c

∥∥ ∥rc∥.

Proof. From Proposition 5.4.4, we can use the triangle inequality to get

∥∆sr∥ =
∥∥∥A−1

sr,sr

(
Msr,srwsr + Asr,c∆̃c

)∥∥∥

≤
∥∥A−1

sr,srMsr,srwsr

∥∥+
∥∥∥A−1

sr,srAsr,c∆̃c

∥∥∥ .
(5.36)

We reuse assumption (5.19) to provide the upper bound
∥∥∥
(
M−1

sr,srAsr,sr

)−1
∥∥∥ ≤ C1. (5.37)

Therefore the first term of (5.36) can be bounded by

∥∥A−1
sr,srMsr,srwsr

∥∥ ≤
∥∥∥
(
M−1

sr,srAsr,sr

)−1
∥∥∥
∥∥M−1

sr,sr

∥∥ ∥vsr∥
≤ C1C3

∥∥M−1
c,c

∥∥ ∥rc∥
= C4 ∥δc∥ .

(5.38)
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Here we have introduced the constant C4 = C1C3 and a form of scaled error ∥δc∥ =∥∥M−1
c,c

∥∥ ∥rc∥. The second term of (5.36) is bounded by C
∥∥∥∆̃c

∥∥∥ as shown in (5.26). Combining

these two bounds results in (5.35).

Remark. This result is similar to Proposition 5.4.3 except with an extra error term. How-
ever, this extra error is bounded by an ε-independent quantity if we choose Tsr := Tin ∪ Tover
as before. This is because for this choice of subregion, ∥δc∥ is approximately the size of

∥∥∥∆̃c

∥∥∥
and is in particular ε-independent. Therefore, for this choice of adaptive tolerance, we still
recover the desired ε-independent convergence rate.

We do not show a full convergence analysis for the more performant scaling factor Λ presented
in (5.10) because this looser tolerance for the subregion error equation iterative solver can
in fact result in slightly ε-dependent convergence rates. Specifically, this degradation occurs
when the element in the subregion with the largest local residual is not the element in the
subregion corresponding to the largest mesh mapping. For outer iterations when this is the
case, the first term of (5.36) will not be bounded by C4 ∥δc∥, but instead be bounded by

C4

∥∥M−1
sr,sr

∥∥
∥∥M−1

isr,isr

∥∥ ∥δc∥ , (5.39)

a mesh-dependent bound. However, we have experimentally found that the drastic reduc-
tion in necessary inner iterations more than compensates for the slight increase in outer
iterations, as show in Section 5.6.1. We reiterate that this concern is not relevant to mostly
isotropic meshes where the geometrically localized stiffness is caused by a locally large dif-
fusion coefficient ε.

5.5 Choice of subregion preconditioners

Algorithm 4 describes a preconditioner that depends upon a global (or outer) preconditioner
and subregion-local (or inner) preconditioner. Indeed, this forms a class of preconditioners
with performance dependant on the specific sub-preconditioners used to solve the original
problem (2.53). As we shall see in Section 5.6, this flexibility allows one to leverage domain-
specific knowledge of a given problem to create a specific iterative subregion correction
preconditioner that is robust and performant globally and locally. We note that while the
specific choice of sub-preconditioners should depend on the specific problem, the number of
outer iterations will be independent of the number of inner iterations for any combination
of preconditioners.

Unlike the exact subregion correction preconditioner, specific instances of iterative subregion
correction preconditioners are nonlinear and therefore should be coupled with a flexible outer
iterative method such as FGMRES [114]. Throughout Section 5.6, we will explore a few
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choices of outer and inner preconditioner such as block Jacobi [116], block ILU [117, 105],
and AMG [50, 137].

Finally, we consider these preconditioners in the broader context of the matrix-free operators
developed in Chapter 3. Every step described in Algorithm 4 is immediately matrix-free with
the exception of applying the outer and inner preconditioners, and extracting Asr,sr from A.
We could directly represent

Asr,sr = RTAR, (5.40)

where R is the restriction matrix from the global domain to the subregion. While this
construction is non-invasive, it has the disadvantage that computing the subregion-local
matrix operations requires the full domain matrix. Therefore, we return to the CEED
operator defined by (3.26). We define the invasive construction

Asr,sr = PTETsrBTDBEsrP , (5.41)

where the submatrix extraction is implemented by modifying the E operator to Esr. This
construction exclusively extracts elements in the subregion, thus allowing for matrix-free
subregion-local operations.

To create a fully matrix-free iterative subregion preconditioner, we require the outer and inner
preconditioners to also be matrix-free preconditioners, such as those presented in Chapter 4.
Furthermore, block Jacobi can be implemented as a matrix-free preconditioner [116]. One
could also use more advanced matrix-free preconditioners [11, 56, 51], although we shall see
that using more expensive preconditioners does not guarantee performance savings.

5.6 Numerical results

Now we explore convergence and performance results of several instances of our iterative
subregion correction preconditioners applied to different problems. Throughout this section,
we couple our adaptive tolerance with a fixed maximum number of inner iterations of 100.
Moreover, we enforce that the absolute tolerance for the inner iterative method is no smaller
than the tolerance from the outer iteration to avoid unnecessary inner iterations. To this
end, we also do not run any inner iterations if the adaptive tolerance is greater than 1. While
it is possible to choose different inner solver parameters that will outperform this selection of
parameters depending on the specifics of a mesh or problem, we have found that our choices
result in a performant solver that is robust across a wide array of problems.

The spatial discretizations used in this section were implemented with in-house software as
well as MFEM [2]. The sub-preconditioners were implemented in-house as well, except for
BoomerAMG which is implemented in hypre [50].
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Figure 5.2: Steady state solution of convection-diffusion problem on a mesh containing
anisotropic elements. The largest element aspect ratio is approximately 150 : 1.

5.6.1 Convection-diffusion, anisotropic mesh

In this section, we explore our solver’s properties when applied to a problem with mesh-
dependent geometrically localized stiffness. Specifically, we solve the 2D convection-diffusion
equation (2.14), where v is a fixed velocity field (1, 1)T and ε = 10−3 is a constant diffusion
coefficient across the entire domain. This problem is solved on a mesh with highly anisotropic
elements in the center of the mesh. The largest element aspect ratio is approximately 150 : 1.
The steady state solution is overlaid on this mesh in Figure 5.2.

Choosing ∆t = 10−3, we can run a few experiments with this problem. First we run a
stationary iteration preconditioned with block Jacobi on the trivial system Ax = 0. As de-
scribed in Section 5.4, we have a mesh T3 partitioned into three regions: an inner region that
demonstrates geometrically localized stiffness, an outer region free from this stiffness, and
the overlap region between the two regions that is one element thick. The ℓ∞ errors restricted
to each of the three regions are plotted against iterations in the left half of Figure 5.3.

We note that the convergence rate in Tover is not independent of ε ∼ 1/h, even in the first
iteration. Because Tover and Tin are coupled, this is expected and matches our conclusions
from Proposition 5.4.2. Meanwhile, the convergence rate in Tout is initially independent of
ε, but the asymptotic rate of convergence lowers to that of Tin. Because this problem is
globally coupled, the asymptotic convergence rate is determined by the slow convergence in
Tin. As the mesh becomes increasingly anisotropic, the convergence rate will degrade in the
entire mesh, including in the isotropic region Tout.
The fact that regions Tin and Tout have the same asymptotic convergence rate but signifi-
cantly different initial convergence rates is precisely the motivation for the iterative subregion
correction preconditioners. We now repeat this experiment but apply a stationary iteration
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Figure 5.3: Comparison of local errors of block Jacobi and iterative subregion correction
applied to convection-diffusion problem on an anisotropic mesh. The asymptotic rates of
convergence for block Jacobi are the same as that of the inner region. In contrast, the
asymptotic rates of convergence for iterative subregion correction are the same as that of
the outer region in agreement with our conclusions from Proposition 5.4.3.

using the exact subregion correction method. The ℓ∞ norms are shown in the right panel of
Figure 5.3. Because the subregion operator is solved exactly, and in accordance with Propo-
sition 5.4.3, the convergence rates in all regions are determined by the initial convergence
rate in the isotropic region Tout, which is independent of the mesh anisotropy. By performing
extra work in the subregion, the errors in Tin and Tover now converge at the much faster rate
of Tout, and the solver achieves overall convergence independent of ε.

Next we analyze the cost of this preconditioner. However, because the overall cost of this
class of preconditioners varies widely depending on implementation details of the various
components of the algorithm, we introduce a performance model to compare the performance
of different runs. The cost of the algorithm is dominated by the matrix-vector products
(matvecs) performed in the outer and inner iterative methods. Therefore, a reasonable
performance model counts the number of equivalent global matrix-vector products performed
by the algorithm. Using FMGRES preconditioned by Algorithm 4, we see the method
requires two global matrix-vector products per outer iteration, one application of the global
preconditioner, and a subregion solve. Therefore, we define our performance model as

cost = (2 + γp outer)nouter + (1 + γp inner)
nsr

nk

ninner, (5.42)

where nsr = |ksr| is the number of elements in the subregion and nk is the number of ele-
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Figure 5.4: Effective global matrix-vector products required by FGMRES with three differ-
ent preconditioners to converge to a tolerance of 10−8 for the convection-diffusion problem.
Performance savings are more substantial as the outer region grows. For the 3/4 outer region
problem, both iterative subregion correction preconditioners require only 6 outer iterations
to converge, while block Jacobi requires 99 iterations.

ments across the domain. γp outer and γp inner are the weighting factors scaling from the cost
of a matrix-vector product to the approximate cost of the outer and inner preconditioner,
respectively. One application of the block Jacobi and block ILU preconditioners costs ap-
proximately 1/4 and 1 times the cost of a matrix-vector product, respectively. Empirically,
we have found that AMG costs approximately 2 times the cost of a matrix-vector product.
nouter and ninner are the number of inner and outer iterations, respectively.

To explore the performance of our preconditioner, we solve this same convection-diffusion
problem to a relative outer tolerance of 10−8, but on several domains of increasing size.
Specifically, each successively larger problem adds elements to extend the domain (and outer
region) but does not modify the inner or overlap regions. This experiment allows us to
measure the performance of our method against the fraction of elements in the mesh that
belong to the outer region,

outer region fraction =

(
1− nsr

nk

)
. (5.43)

Figure 5.4 shows the performance model results using adaptive tolerance iterative subre-
gion correction with the more performant scaling factor (5.10), adaptive tolerance iterative
subregion correction with the provable scaling factor (5.9), and block Jacobi.

First of all, we see that iterative subregion correction results in computational savings com-
pared to block Jacobi over all domains with more than 1/2 of the domain outside the subre-
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gion. Moreover, as expected, performance savings are more substantial as the outer region
grows, with a 4.15× improvement reported for the 87/100 outer region fraction problem.
This downward trend should only continue as the subregion fraction decreases further until
the cost of the inner iterations at the subregion level is immaterial relative to the cost of the
outer iterations. In this experiment, that horizontal asymptote occurs at 13.5 effective global
matrix-vector products, which would be an approximate 16× improvement over pure block
Jacobi. For all the runs with our iterative subregion correction preconditioner, FGMRES
converges in exactly 6 iterations, again showing that our solver is ε-independent. Because
the more performant scaling factor Λ from (5.10) needs less inner iterations to achieve the
same overall accuracy, for this problem it is a strict improvement over the original scaling
factor (5.9). Meanwhile, FGMRES converges in anywhere between 96 and 102 iterations
when preconditioned with block Jacobi.

5.6.2 Convection-diffusion, variable diffusion coefficient

In this section, we explore the properties of a solver based on the iterative subregion cor-
rection preconditioner for a test problem for which the geometrically localized stiffness is
not mesh-dependent. Again, we solve the 2D convection-diffusion equation (2.14), but now
with a variable ε(x) controlling the stiffness of the derived linear system. The background
ε = εout is fixed, and a subregion of the domain has a much larger diffusion coefficient at
ε = εin ≫ εout. This problem setup produces the steady-state solution shown in Figure 5.5.

For this problem, at ∆t = 10−3, an ILU preconditioner would be efficient across most of
the domain (an advection-dominated problem), but GMRES preconditioned with a naive
ILU preconditioner performs poorly because the elements with εin create a locally diffusion-
dominated problem. We explore the performance of block ILU with no fill (BILU) to solve
this problem, as well as two iterative subregion correction preconditioners: a global block ILU
method subregion-corrected by a block Jacobi-preconditioned GMRES method (BILU+BJ),
and a global block ILU method subregion-corrected by an BoomerAMG-preconditioned GM-
RES method (BILU+AMG).

First we confirm that the iterative subregion correction preconditioners achieve εin-independent
convergence rates, by running a suite of problems sweeping over a broad range of εin, but
keeping εout = 10−3 fixed. The outer iteration counts to achieve a tolerance of 10−8 are pre-
sented in Figure 5.5. As expected, BILU breaks down as εin increases, and the global problem
becomes diffusion dominated. Moreover, the iterative subregion correction preconditioners
converge in a fixed 4-5 iterations, confirming the predicted εin-independent convergence rates.
This result provides experimental evidence suggesting Proposition 5.4.3 may still hold in the
case of global preconditioners such as BILU that couple neighboring elements.

Next we analyze the performance of these preconditioners by sweeping over domains of
increasing size, but fixing εout = 10−2 and εin = 102 fixed for each problem. As before,
we add elements to extend the domain (and outer region), but do not modify the inner or
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Figure 5.5: Left: Steady state solution of the variable diffusion coefficient convection-
diffusion problem on a mesh containing isotropic elements. There is a thin layer of elements
for which the diffusion coefficient is 102, a factor of 104 larger than the background diffusion
coefficient. Right: Outer iteration counts over a sweep of εin convection-diffusion problems.
The iterative subregion correction preconditioners converge in 4-5 iterations, confirming the
predicted εin-independent convergence rates.
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Figure 5.6: Effective global matrix-vector products required by FGMRES with three dif-
ferent preconditioners to converge to a tolerance of 10−8 for the variable diffusion coeffi-
cient convection-diffusion problem. The table presents underlying iteration counts for the
61/64 ≈ 95% outer region problem.
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overlap regions, in order to measure the performance of our method against the outer region
fraction (5.43). We solve to a tolerance of 10−8, and now exclusively use the performant
scaling factor from (5.10), although Λ ≈ 1 for these problems because the mesh elements are
mostly isotropic.

The performance model (5.42) results are shown in Figure 5.6. While BILU requires approx-
imately 54 iterations to converge across all problems, it only takes 5-7 subregion-corrected
iterations to achieve the same accuracy. Both iterative subregion correction preconditioners
outperform BILU for all test problems. Again, performance savings are more substantial
as the outer region grows (and so nsr/nk decreases), with a maximum 9.3× improvement
reported for the 98/100 outer region fraction problem. Moreover, BILU+AMG outperforms
BILU+BJ across all problems, but in particular is much more efficient when the subregion
is a relatively larger fraction of the overall domain. Applying the domain knowledge that
this subregion creates a locally diffusion-dominated problem, we can understand why AMG
would outperform block Jacobi—this is exactly the type of problem that AMG was origi-
nally designed to solve efficiently. For outer regions taking up more than 31/32 ≈ 97% of
the domain, the difference in performance between the two preconditioners vanishes because
the impressive performance savings of the overall subregion correction method eclipse any
performance savings gained from choosing a more efficient inner iterative method.

5.7 Summary

In this chapter, we have developed a new class of preconditioners for efficiently solving
problems with geometrically localized stiffness. The preconditioners achieve ε-independent
convergence rates, and are thus robust with respect to the subregion-localized stiffness. A
cheap adaptive tolerance selection algorithm has been provided to minimize the cost of solv-
ing the subregion error equation. We have both theoretically analyzed and experimentally
studied the convergence rates of our preconditioners with and without this adaptive tolerance
selection.

Empirically, we reported significantly smaller outer iteration counts than naive precondition-
ers’ across a wide array of problems. Moreover, we have highlighted in which regimes our
solvers perform best: stiffer subregions whose size is relatively small compared to the global
problem. On certain convection-diffusion problems, targeted iterative subregion correction
preconditioners performed 10-17× faster than generic preconditioners.
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Chapter 6

Case studies

In this chapter, we consider challenging case studies to illustrate some of the main properties
of the methods described in the preceding chapters. We seek to demonstrate the application
of these techniques to large eddy simulation (LES) of turbulent flow problems modeled by the
Navier-Stokes equations. The incompressible flow problem will be solved utilizing the matrix-
free solvers developed in Chapter 4. The compressible flow problems possess geometrically
localized stiffness in the boundary layer, and therefore will be solved utilizing the iterative
subregion correction preconditioners developed in Chapter 5.

6.1 Incompressible flow: Taylor-Green vortex

We first consider the incompressible Taylor-Green vortex, which is a standard benchmark
case often used to assess the accuracy of high-order methods [18, 17]. This problem represents
a simple model for the development of turbulence and resulting cascade of energy from large
to small scales [122]. We use the problem configuration as defined in the first international
workshop on high-order CFD methods [132].

We solve the 3D incompressible Navier-Stokes equations (2.10) with our matrix-free operators
over the fully periodic cube Ω = [−π, π]3. The initial state is set to

u1(x, y, z) = sin (x) cos (y) sin (z),

u2(x, y, z) = − cos (x) sin (y) sin (z),

u3(x, y, z) = 0,

p(x, y, z) = p0 +
p0 ∥u0∥22
16RT0

(cos (2x) + cos (2y)) (cos (2z) + 2) .

The Reynolds number is chosen to be Re = 1600, initial temperature T0 is assumed uniform,
and R is the universal gas constant. The equations are integrated with BDF3 until a final
time of t = 20 using a time step of ∆t = 2.5 × 10−3. We consider the following three mesh
configurations:
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• p = 3, 24× 24× 24 grid, 439,276 DoFs per component.

• p = 7, 12× 12× 12 grid, 650,701 DoFs per component.

• p = 11, 6× 6× 6 grid, 346,969 DoFs per component.

In Figure 6.1, we display the time evolution of Q-criterion isosurfaces, colored by velocity
magnitude. The quantity Q is defined by

Q =
1

2

3∑

i,j=1

∂uj

∂xi

∂ui

∂xj
, (6.1)

and is commonly used for vortex identification [67, 48]. These isosurfaces clearly display the
evolution from smooth, large-scale structures to small-scale turbulent structures.

We compare the results obtained using the present high-order finite element flow solver with
reference data obtained using a de-aliased pseudo-spectral method [109]. The quantities of
interest for this comparison are the total kinetic energy

Ek =
1

|Ω|

∫

Ω

uTu

2
dx (6.2)

and the kinetic energy dissipation rate

ϵ = −dEk

dt
. (6.3)

The time evolution of these quantities is shown in Figure 6.2. All of the configurations con-
sidered result in good agreement with the reference data. The lowest order case (polynomial
degree p = 3) is the most dissipative, slightly under-predicting the total kinetic energy after
about t = 10. The highest order case we considered (polynomial degree p = 11) gives results
of comparable accuracy to the p = 7 case, with roughly half as many degrees of freedom.

6.2 High Reynolds number compressible flow

Next we explore the performance of our iterative subregion correction preconditioners on
a fluid flow problem with mesh-dependent geometrically localized stiffness. Specifically,
we solve the 2D compressible Navier-Stokes equations (2.2), at Re ≈ 2.25 × 106 around
the NACA 0012 airfoil. M∞ = 0.25 is the far-field Mach number. The chord length is
normalized to be 1, and unstructured quadrilateral meshes are generated for the domains
[−R, 2R]×[−R,R], with R ∈ {5, 10, 20, 30, 40}. For each mesh, the leading edge of the airfoil
is placed at the origin. Thus, all domain boundaries are at least 5 chord lengths from the
airfoil, and the wake region has a minimum length of 10 chord lengths. Far-field conditions
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Figure 6.1: Time evolution of the incompressible Taylor-Green vortex, showing Q = 0.1
isosurfaces colored by velocity magnitude.

are enforced at domain boundaries, and a no-slip wall condition is enforced at the surface of
the airfoil.

We run a wall-resolved implicit large eddy simulation (WRILES), which uses natural dissipa-
tion from the high-order (p = 3) DG method as a subgrid closure model [130, 52]. Resolving
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Figure 6.2: Time evolution of total kinetic energy and kinetic energy dissipation rate for the
incompressible Taylor-Green vortex. Comparison with reference data from a fully-resolved
pseudo-spectral method with 5123 degrees of freedom per component.

the boundary layer near the wall requires y+ < 1 for the entire length of the boundary layer.
With such a high Reynolds number, y+ = 1 corresponds to a distance of about 4 × 10−6

units from the surface of the airfoil. Therefore, we perform 12 structured refinements in
the transverse direction around the airfoil, resulting in highly anisotropic elements in the
boundary layer, with the largest element aspect ratio approximately 4096:1. Our mesh is
shown in Figure 6.3. This refinement causes a geometrically localized stiffness in the bound-
ary layer. So we choose our subregion to be exactly those elements that are created by the
refinement. This choice of 778 elements for the subregion naturally contains overlap elements
as well—the mesh-induced ε of elements with an aspect ratio of 2:1 furthest from the airfoil
are orders of magnitude smaller than the ε of elements on the wall.

We repeat our experiment from Section 5.6.1, testing the performance of different instances
from our class of iterative subregion correction preconditioners for this problem. Specif-
ically, we solve the linearized problem (2.53) around a fully formed flow at t = 4 with
∆t = 10−3 for the five different domains defined by R ∈ {5, 10, 20, 30, 40} to a relative tol-
erance of 10−8. We test FGMRES preconditioned by block Jacobi (BJ), block ILU (BILU),
a global block Jacobi method subregion-corrected by a block Jacobi-preconditioned GM-
RES method (BJ+BJ), and a global block Jacobi method subregion-corrected by a block
ILU-preconditioned GMRES method (BJ+BILU). The performance model (5.42) results are
shown in Figure 6.4.
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Figure 6.3: Two-dimensional mesh used for the Re = 2.25 × 106 flow over the NACA 0012
airfoil. The right hand side zoom-in shows elements with aspect ratios greater than 4000:1.
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Figure 6.4: Effective global matrix-vector products required by FGMRES with four different
preconditioners to converge to a tolerance of 10−8 for the unsteady Navier-Stokes problem
with Re = 2.25× 106 and ∆t = 10−3. The table presents underlying iteration counts for the
7/8 outer region problem.

As before, we see that the performance savings of the iterative subregion correction pre-
conditioners improve as the outer region increases, with a 5.3× and 14.8× improvement
over the block Jacobi method reported for the 7/8 outer region fraction problem. In the
limit as the cost of the inner iterations at the subregion vanishes relative to the cost of the
outer iterations, the horizontal asymptote for this problem will occur at 36 effective global
matvecs, which would be a 17× improvement over pure block Jacobi and 1.5× improvement
over block ILU.

These results corroborate previous findings that block ILU is an effective preconditioner for
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Figure 6.5: Density plot around the NACA 0012 airfoil, showing massive separation of the
flow at Re = 106 and a 30◦ angle of attack.

this problem [105], but furthermore highlight that the reason for this efficiency is found
in the boundary layer elements. Indeed, block ILU converges in one tenth as many inner
iterations as block Jacobi. By element-wise decoupling the system, block Jacobi fails to
effectively precondition the boundary layer elements in both the global solver and subregion
solver. However, Figure 6.4 shows that block Jacobi is a cheap and efficient preconditioner
in the far-field elements, and so the block Jacobi method subregion-corrected by an inner
block ILU preconditioner is the most efficient preconditioner across all tested domain sizes.

We note that that our BJ+BJ iterative subregion correction preconditioner is fully matrix-
free, allowing it to be used effectively for matrix-free methods we developed in Chapter 3.
While its performance is not as impressive as the BJ+BILU solver for relatively smaller
outer region fractions, it still converges to the 17× improvement over pure block Jacobi as
the outer region fraction converges to 1.

6.3 Compressible flow with massive separation

Next, we explore performance of our iterative subregion correction preconditioners on a
practical example: LES of massively separated turbulent flow. Specifically, we again solve
the 2D compressible Navier-Stokes equations (2.2) over the NACA 0012 airfoil with Re = 106,
and a 30◦ angle of attack. We assume isentropic flow, so that entropy satisfies (2.8), and we
can model one fewer component. The chord length is normalized to be 1, and an unstructured
quadrilateral mesh is generated for the domain [−10, 20] × [−10, 10]. The leading edge of
the airfoil is placed at the origin. The mesh is structurally refined 7 times in the transverse
direction around the airfoil to adequately mesh the boundary layer, with the largest element
aspect ratio approximately 128 : 1. To a lesser extent, the mesh is refined in the wake region
where the eddies separate. The density of the flow is shown in Figure 6.5.
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Solver configuration nouter ninner
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Figure 6.6: Effective global matrix-vector products required by BJ and BJ+BILU to solve
the linearized LES of massively separated flow problem to a tolerance of 10−8. The iterative
subregion correction preconditioner costs 25%-60% less than block Jacobi across all ∆t. The
table presents underlying iteration counts for the ∆t = 4× 104 problem.

As shown by the previous example, the boundary layer elements of this WRILES create a
stiffer problem than the rest of the mesh. Therefore, we choose our subregion to be those
3102 elements created by the refinement, resulting in 7/10 of the elements belonging to
the outer region. Moreover, the previous example highlighted how BJ+BILU was the most
performant solver for a similar flow problem. So on this massively separated flow problem,
we explore the robustness of this solver with respect to nondimensionalized time step ∆t.
Figure 6.6 shows the performance results.

First of all we note that the iterative subregion correction preconditioner costs less than
block Jacobi across all ∆t in this experiment. Also, savings are more substantial (up to
60%) for 4×10−5 ≤ ∆t ≤ 10−3, a range of ∆t with which practical time-implicit simulations
are typically run [99, 105, 118]. As ∆t → 0, the problem approaches the explicit regime
and block Jacobi already performs well across the entire domain, requiring less than 10
iterations to converge. There is little room for performance savings at this extreme with
the boundary layer problem so simple that a naive block Jacobi method already performs
well. Moreover, as ∆t → 1, the stiffness in the outer region increases, so that block Jacobi
requires more than 200 iterations to converge. No matter the subregion solver performance,
an iterative subregion correction preconditioner does not improve convergence in the outer
region, and so relatively less impressive performance savings are expected. If the boundary
layer was more refined, thereby increasing the geometrically localized stiffness, savings would
be larger. Regardless, across the broad spectrum of stiffness induced by different ∆t, the
iterative subregion correction preconditioner provides moderate computational savings.
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Chapter 7

Conclusions

High-order methods continue to be a promising area of research, particularly in the field
of computational fluid dynamics. High-order discontinuous Galerkin methods in particular
have demonstrated highly accurate solutions with less degrees of freedom than low-order
alternative methods. Moreover, implementations of these methods on modern high perfor-
mance computing architectures have been performant at scale, with low memory and storage
costs.

The matrix-free methods we presented utilize sum-factorization techniques to achieve optimal
memory usage and operation counts. Optimized GPU kernels obtained a throughput of over
a billion degrees of freedom per second on a single Nvidia V100 GPU. Moreover, we showcased
the computational benefits of high-order simulations on the GPU, as our optimized GPU
kernels outperformed the 20-core CPU implementation by more than a factor of 10.

We developed a suite of matrix-free linear solvers for incompressible flow. Our mass, Poisson,
and Helmholtz sub-problem solvers do not require the costly assembly of high-order system
matrices, and instead achieve optimal linear scaling of memory and operation counts with
the number of degrees of freedom. The preconditioners we developed were shown to be
robust with respect to mesh size, polynomial degree, and time step on a range of two and
three dimensional test problems.

We also developed iterative subregion correction preconditioners for different problems ex-
hibiting geometrically localized stiffness. We proved and empirically showed that this class
of preconditioners is robust with respect to the subregion-localized stiffness. Moreover, these
preconditioners perform relatively better as the subregion-localized stiffness and outer re-
gion fraction increase. The flexibility of choosing effective sub-preconditioners allows one to
leverage domain-specific knowledge of a given problem to create a robust and performant
iterative subregion correction preconditioner. On certain convection-diffusion problems, tar-
geted iterative subregion correction preconditioners performed 10-17× faster than generic
preconditioners. On the massively separated flow problem, which is more challenging for our
approach, we still obtained up to 60% performance savings.
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Future work can be done on several of these topics. Firstly, optimizing the matrix-free pre-
conditioners so that they too can be used efficiently on the GPU is an important step towards
removing unnecessary memory transfers to and from the device during an iterative method.
While the methods we have developed are optimal in memory usage, the memory access
patterns are currently not well suited for GPU-accelerated architectures, leaving room for
improvement. Likewise, parallelization of the iterative subregion correction preconditioners
should be further explored. The subregion iterations may dominate overall performance, but
the subregion may be much smaller than the overall domain, so robust parallelization of the
subregion work is paramount to scalable simulations. Finally, because the performance of
these preconditioners depends so heavily upon the size of the subregion, optimal subregion
selection algorithms should be explored.
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Appendix A

Time integration schemes

We present the specific time integration schemes used throughout this thesis.

A.1 Diagonally implicit Runge-Kutta schemes

We use the two-stage, second-order DIRK22 scheme and three-stage, third-order DIRK33
schemes derived by [1]. These schemes are A-stable and S-stable, and thus well suited to
stiff system of ODE. They are also singly DIRK schemes, in that all diagonal coefficients
aii are identical, allowing for the efficient re-use of preconditioners. The DIRK22 Butcher
tableau is presented in Table A.1. The DIRK33 Butcher tableau is presented in Table A.2.

1 +
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1 +
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2
2
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Table A.1: DIRK22 scheme

A.2 Backward differentiation formulae

We use the two-step BDF method BDF2 [68], defined as

un+2 −
4

3
un+1 +

1

3
un =

2

3
∆tf (tn+2,un+2) . (A.1)

BDF2 is A-stable and second-order accurate.
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α α 0 0
1+α
2

1−α
2

α 0
1 b1 b2 α

b1 b2 α

Table A.2: DIRK33 scheme

α = 1 +

√
6

2
sin

(
1

3
arctan

(√
2

4

))
−
√
2

2
cos

(
1

3
arctan

(√
2

4

))

b1 = −
1

4

(
6α2 − 16α + 1

)

b2 =
1

4

(
6α2 − 20α + 5

)

We also use the three-step BDF method BDF3 [68], defined as

un+3 −
18

11
un+2 +

9

11
un+1 −

2

11
un =

6

11
∆tf (tn+3,un+3) . (A.2)

BDF3 is third-order accurate, A(α)-stable for α = 86.03◦.
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