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Abstract

The Alzheimer's Disease Neuroimaging Initiative (ADNI) is an ongoing, longitudinal, multicenter

study designed to develop clinical, imaging, genetic, and biochemical biomarkers for the early

detection and tracking of Alzheimer's disease (AD). The study aimed to enroll 400 subjects with

early mild cognitive impairment (MCI), 200 subjects with early AD, and 200 normal control

subjects; $67 million funding was provided by both the public and private sectors, including the

National Institute on Aging, 13 pharmaceutical companies, and 2 foundations that provided

support through the Foundation for the National Institutes of Health. This article reviews all

papers published since the inception of the initiative and summarizes the results as of February

2011. The major accomplishments of ADNI have been as follows: (1) the development of

standardized methods for clinical tests, magnetic resonance imaging (MRI), positron emission

tomography (PET), and cerebrospinal fluid (CSF) biomarkers in a multicenter setting; (2)

elucidation of the patterns and rates of change of imaging and CSF biomarker measurements in

control subjects, MCI patients, and AD patients. CSF biomarkers are consistent with disease

trajectories predicted by β-amyloid cascade (Hardy, J Alzheimers Dis 2006;9(Suppl 3):151–3) and

tau-mediated neurodegeneration hypotheses for AD, whereas brain atrophy and hypometabolism

levels show predicted patterns but exhibit differing rates of change depending on region and

disease severity; (3) the assessment of alternative methods of diagnostic categorization. Currently,
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the best classifiers combine optimum features from multiple modalities, including MRI, [18F]-

fluorodeoxyglucose-PET, CSF biomarkers, and clinical tests; (4) the development of methods for

the early detection of AD. CSF biomarkers, β-amyloid 42 and tau, as well as amyloid PET may

reflect the earliest steps in AD pathology in mildly symptomatic or even nonsymptomatic subjects,

and are leading candidates for the detection of AD in its preclinical stages; (5) the improvement of

clinical trial efficiency through the identification of subjects most likely to undergo imminent

future clinical decline and the use of more sensitive outcome measures to reduce sample sizes.

Baseline cognitive and/or MRI measures generally predicted future decline better than other

modalities, whereas MRI measures of change were shown to be the most efficient outcome

measures; (6) the confirmation of the AD risk loci CLU, CR1, and PICALM and the identification

of novel candidate risk loci; (7) worldwide impact through the establishment of ADNI-like

programs in Europe, Asia, and Australia; (8) understanding the biology and pathobiology of

normal aging, MCI, and AD through integration of ADNI biomarker data with clinical data from

ADNI to stimulate research that will resolve controversies about competing hypotheses on the

etiopathogenesis of AD, thereby advancing efforts to find disease-modifying drugs for AD; and

(9) the establishment of infrastructure to allow sharing of all raw and processed data without

embargo to interested scientific investigators throughout the world. The ADNI study was extended

by a 2-year Grand Opportunities grant in 2009 and a renewal of ADNI (ADNI-2) in October 2010

through to 2016, with enrollment of an additional 550 participants.

Keywords

Alzheimer's disease; Mild cognitive impairment; Amyloid; Tau; Biomarker

1 Introduction to Alzheimer's Disease Neuroimaging Initiative: Goals,

history, and organization

1.1 Background

Alzheimer's disease (AD), the most common form of dementia, is a complex disease

characterized by an accumulation of β-amyloid (Aβ) plaques and neurofibrillary tangles

composed of tau amyloid fibrils [1] associated with synapse loss and neurodegeneration

leading to memory impairment and other cognitive problems. There is currently no known

treatment that slows the progression of this disorder. According to the 2010 World

Alzheimer report, there are an estimated 35.6 million people worldwide living with

dementia at a total cost of more than US$600 billion in 2010, and the incidence of AD

throughout the world is expected to double in the next 20 years. There is a pressing need to

find biomarkers to both predict future clinical decline and for use as outcome measures in

clinical trials of disease-modifying agents to facilitate phase II-III studies and foster the

development of innovative drugs [2]. To this end, Alzheimer's Disease Neuroimaging

Initiative (ADNI) was conceived at the beginning of the millennium and began as a North

American multicenter collaborative effort funded by public and private interests in October

2004. Although special issues focused on North American ADNI have been published in

Alzheimer's and Dementia [3] and Neurobiology of Aging [4] in addition to a number of

other review articles [5–12], the purpose of this review is to provide a detailed and
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comprehensive overview of the approximately 200 papers that have been published as a

direct result of ADNI in the first 6 years of its funding.

1.2 Disease model and progression

One approach toward a greater understanding of the events that occur in AD is the

formulation of a disease model [3,12–16]. According to the Aβ hypothesis, AD begins with

the abnormal processing of the transmembrane Aβ precursor protein. Proteolysis of

extracellular domains by sequential β and γ secretases result in a family of peptides that

form predominantly β-sheets, the β-amyloids (Aβ) (Fig. 1). The more insoluble of these

peptides, mostly Aβ42, have a propensity for self-aggregation into fibrils that form the senile

plaques characteristic of AD pathology. Subsequently, it is thought that the microtubule-

associated tau protein in neurons becomes abnormally hyperphosphorylated and forms

neurofibrillary tangles that disrupt neurons. However, although ADNI and other biomarker

data support this sequence of events, by direct examination of postmortem human brains,

Braak and Del Tredici have shown that tau pathology in the medial temporal limbic

isocortex precedes the development of Aβ deposits with advancing age in the human brain

[17]. Downstream processes such as oxidative and inflammatory stress contribute to loss of

synaptic and neuronal integrity, and eventually, neuron loss results in brain atrophy. Jack et

al [14,16] presented a hypothetical model for biomarker dynamics in AD pathogenesis. The

model begins with the abnormal deposition of Aβ fibrils, as evidenced by a corresponding

drop in the levels of soluble Aβ42 in cerebrospinal fluid (CSF) and increased retention of the

positron emission tomography (PET) radioactive tracer [11C]-labeled Pittsburgh compound

B (11C-PiB) in the cortex. Sometime later, neuronal damage begins to occur, as evidenced

by increased levels of CSF tau protein. Synaptic dysfunction follows, resulting in decreased

[18F]-fluorodeoxyglucose (FDG) uptake measured by PET. As neuronal degeneration

progresses, atrophy in certain areas typical of AD becomes detectable by magnetic

resonance imaging (MRI). The model provided by Jack et al [14] is highly relevant to many

papers reviewed in section 4 (Studies of the ADNI cohort), which often provide empirical

evidence to support it. An example of a model that proposes a series of pathological events

leading to cognitive impairment and dementia is summarized in Fig. 2.

1.3 Mild cognitive impairment

Similar to many disease processes that originate in microscopic environments and are

asymptomatic until the start of organ failure, the course of AD pathology is likely to be 20 to

30 years. It is now generally accepted that the initial AD pathology develops in situ while

the patient is cognitively normal, sometimes termed the “preclinical stage” [18,19]. At some

point in time, sufficient brain damage accumulates to result in cognitive symptoms and

impairment. Originally defined in 1999, this has been classified in a number of ways,

including as predementia AD or as mild cognitive impairment (MCI), a condition in which

subjects are usually only mildly impaired in memory with relative preservation of other

cognitive domains and functional activities and do not meet the criteria for dementia [5], or

as the prodromal state AD [18]. Epidemiological studies of participants aged 70 to 89 years

who were nondemented found the prevalence of MCI in this population to be approximately

15%, with an approximate 2:1 ratio of two identified phenotypes, amnestic and nonamnestic

[20,21]. Studies showed that MCI patients progressed to AD at a yearly rate of 10% to 15%,
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and that predictors of this conversion included whether the patient was a carrier of the ε4

allele of the apolipoprotein E (APOE) gene, clinical severity, brain atrophy, certain patterns

of CSF biomarkers and of cerebral glucose metabolism, and Aβ deposition [5].

1.4 History of biomarker development

Although the etiology of AD was not known, there was sufficient knowledge of the

mechanisms of AD pathology at the beginning of the past decade to allow the development

of new drugs. Once transgenic mice expressing Aβ in their brains were available [22],

development of treatments to slow the progression of AD began in earnest. Although

considerable work had been done to develop quantitative measurements of cognitive

function and activities of daily living for clinical trials of symptomatic treatments such as

acetylcholinesterase inhibitors, it was recognized that changes in cognition did not

necessarily signify “disease modification.” Therefore, investigators from academia and the

pharmaceutical industry became interested in how “disease modification” of AD could be

detected using a variety of biomarkers, including brain MRI scanning, and blood and CSF

analytes. This led to a decision by the National Institute on Aging (NIA) to fund the ADNI

and to structure it as a public–private partnership.

The development of AD biomarkers for clinical trials, both for use in subject selection and

as outcome measures, is paramount to the success of ADNI. During the genesis of the

initiative, Frank et al [23] described the importance of biomarkers to ADNI and to clinical

trials. In the first paper to come out of ADNI, Trojanowski [24] reviewed candidate AD

biofluid biomarkers thought to be most promising at the time, homocysteine, isoprostanes,

sulfatide, tau, and Aβ, and described how ADNI was poised, as a large public–private

collaboration, to identify and validate the best candidate AD biomarkers. Mueller et al [25]

reported on the scientific background at the beginning of ADNI and the limitations of the

clinical and neuropsychological tests available for monitoring disease progression at that

time. Principally, a definitive diagnosis of AD required severe cognitive deficits and autopsy

confirmation, whereas the clinical criteria for the detection of the MCI transitional phase

were much less certain. Accordingly, outcome measures for assessing the efficacy of new

drugs relied primarily on neurocognitive tests such as ADAS-cog (cognitive subscale of the

Alzheimer's Disease Assessment Scale), the efficacy of which was limited by substantial

ceiling effects and variability in subject performance over time. There was a clear need to

develop biomarkers, biological tools that “mark” the presence of pathology, for the early

diagnosis of AD and for measuring clinical drug trial outcomes [8].

Relatively early in the initiative, a major concern was developing an AD biomarker that

distinguished AD from other dementias, such as Lewy body dementia, frontotemporal

degeneration, and Parkinson disease with dementia [10]. Based on a model of AD

pathogenesis fundamentally similar to that described in the paper by Jack et al [14], Shaw et

al [10] reviewed a number of potential biomarkers, including some, such as isoprostanes and

total plasma homocysteine, that did not subsequently prove to be of use. Others, such as

levels of soluble Aβ42 or tau protein in CSF, reflected the increase in deposition of Aβ in

fibrillar plaques or the later release of tau protein as a result of neuronal damage. Neuronal

metabolism and neuronal degeneration could be measured using FDG-PET and by
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examining the concentrations of total tau protein (t-tau) and tau phosphorylated at serine 181

(p-tau181p) in CSF, respectively. Volumetric changes to brain structure could be assessed by

MRI of specific regions such as the hippocampus, entorhinal cortex, temporal and parietal

lobes, and ventricles. Additional potential risk biomarkers included genetic susceptibility

factors, such as the APOE genotype, plasma homocysteine levels, and isoprostanes as non-

AD-specific indicators of oxidative stress. By the following year, the wide range of potential

biomarkers had been substantially narrowed to include CSF Aβ42, t-tau and p-tau181p

hippocampal volume, voxel-based volumetry, deformation-based morphometry (DBM),

functional MRI, and FDG-PET [26]. In tandem with the development of these biomarkers, a

new imaging technology using 11C-PiB in PET scans was being developed [27,28], and the

possibility of a diagnostic approach predicated on the concept of certain combinations of

biomarkers providing complementary information was raised [8,26].

In 2008, twin reviews were published in Neurosignals [8,15] by members of the ADNI

Biomarker Core at the University of Pennsylvania. The first paper reviewed potential

biomarkers for the early detection of AD. In addition to the potential biomarkers described

previously, these included MRI T1ρ relaxation times to image neuritic plaques and single-

photon emission computed tomography (SPECT) using a 125I-labeled imidazole derivative

(6-iodo-2-(4′-dimethylamino-)phenyl-imidazo[1,2]pyridine) as an alternative approach to

amyloid PET imaging [29]. The second paper distinguished between diagnostic biomarkers

and risk biomarkers, such as the APOE ε4 allele and plasma total homocysteine levels,

suggesting that although they were not sufficiently sensitive for diagnostic purposes, they

were indicative of increased risk for AD and were predictive of disease progression. Finally,

in 2010, Hampel et al [7] presented a review that updated our current understanding of tau

and Aβ biomarkers, including levels of Aβ42 and activity of BACE1 (the major amyloid

precursor protein-cleaving β-secretase in the brain) in CSF, blood plasma levels of Aβ40 and

Aβ42, and human antibodies against Aβ-related proteins. Thus, the search for biomarkers to

fulfill a variety of niches is an ongoing quest and is without doubt set to evolve even further

as research progresses.

1.5 Goals of ADNI

A comprehensive description of the goals of ADNI is given in papers by Mueller et al [2]

and Weiner et al [3]. At initiation, ADNI had the overall objective of characterizing clinical,

genetic, imaging, and biochemical biomarkers of AD and identifying the relationships

between them over the course of disease progression from normal cognition to MCI to

dementia. Specific goals of ADNI included the development of optimized and standardized

methods for use across multiple centers, the enrollment of a large cohort (>800) of healthy

elderly subjects, MCI patients, and AD patients for baseline characterization and

longitudinal studies, and the establishment of repositories of data and biological samples,

both of which were to be accessible to the wider scientific community without embargo. A

specific prespecified goal was to identify those imaging (MRI and PET) and image analysis

techniques and blood/CSF biomarkers that had the highest statistical power to measure

change (defined as the sample size required to detect a 25% reduction of rate of change in 1

year) and thus, it was hoped, detect effects of treatments that would slow the progression of

AD. With these goals, ADNI hoped to identify a combination of biomarkers that could act as
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a signature for a more accurate and earlier diagnosis of AD, and that could be used to

monitor the effects of AD treatment [2,3].

When originally conceived, ADNI had not included aims around genetic or proteomic

analysis. Additional add-on studies supported the evolution of the Genetics Core (see later in

the text) and the study of protein changes in plasma and CSF. Plasma proteomic data from a

190-analyte multiplex panel have been posted to the ADNI Web site and are available for

additional data mining.

1.6 The evolution of an idea: ADNI-1, ADNI Grand Opportunities, and ADNI-2

Drs. Neil Buckholz and William Potter had discussed the overall concept of a large

biomarker project to study AD for many years. Dr. Buckholz convened an NIA meeting

focused on AD biomarkers in 2000. In 2001, Drs. Michael Weiner and Leon Thal (since

deceased) proposed a longitudinal MRI study of AD, MCI, and control subjects.

Subsequently, Dr. Buckholz brought together a number of investigators from the field of AD

as well as industry leaders, all of whom strongly supported the overall concept. The NIA

published a Request for Applications, and ADNI was funded in 2004. The initial ADNI was

projected to run for 5 years and to collect serial information, every 6 months, on cognitive

performance; brain structural and metabolic changes; and biochemical changes in blood,

CSF, and urine in a cohort of 200 elderly control subjects, 200 MCI patients, and 400 AD

patients [2–4]. It was funded as a public–private partnership, with $40 million from the NIA

and $27 million from 20 companies in the pharmaceutical industry and 2 foundations for a

total of $67 million, with the funds from private partners provided through the Foundation

for the National Institutes of Health. An interesting perspective of the process by which

potential competitors in the race to develop new drugs for AD were brought together in a

consortium under the auspices of the Foundation for the National Institutes of Health is

given in the paper by Schmidt et al [30], who emphasize the importance of the cooperative,

precompetitive nature of ADNI. When the ADNI grant was first submitted and funded, the

significance and impact of 11C-PiB [27,28] studies were not fully appreciated, and there was

no infrastructure to conduct multisite clinical trials with 11C-PiB. Therefore, Aβ imaging

with 11C-PiB was not included in the application. However, after the first year of funding,

Chet Mathis proposed adding an 11C-PiB substudy to ADNI, which was funded by the

Alzheimer's Association and General Electric. In addition, further industry and foundation

funding was secured to allow supplemental or “add-on” genome wide association studies

(GWAS), and for additional lumbar punctures to obtain CSF, as new technologies emerged

to make these studies feasible in a large-scale initiative such as ADNI.

In 2009, toward the end of the ADNI study, a Grand Opportunities grant, ADNI-GO, was

secured to extend the original ADNI-1 studies with both longitudinal studies of the existing

cohort and the enrollment of a new cohort of early MCI patients to investigate the

relationship between biomarkers at an earlier stage of disease progression. Technical

advances made it possible to add analyses of the new cohorts using AV45 (Florbetapir; Eli

Lilly, Indianapolis, IN) amyloid imaging. Additional experimental MRI sequences included

for evaluation of ADNI-GO and ADNI-2 are arterial spin labeling perfusion imaging and

diffusion tensor imaging. The development of the [18F]-labeled AV45 amyloid imaging
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agent with a substantially longer radioactive half-life than the 11C form made it practicable

to extend amyloid imaging studies to additional sites beyond those undertaken in ADNI-1

[7].

A competitive renewal of the ADNI-1 grant, ADNI-2, was awarded with total funding of

$69 million on October 1, 2010, together with funding from the pharmaceutical industry in a

cooperative agreement similar to the original initiative, to further extend these studies with

additional cohorts [3,4,31]. It is anticipated that the study of very mild MCI patients in

ADNI-GO and ADNI-2 will help identify subjects at risk who are candidates for

preventative therapy when they are mildly symptomatic or asymptomatic [30]. Table 1

summarizes details of the three initiatives.

1.7 Structure and organization of ADNI

A full description of ADNI structure is given in the paper by Weiner et al [3]. Briefly, ADNI

is governed by a Steering Committee that includes representatives from all funding sources

as well as principal investigators of the ADNI sites and is organized as eight cores, each

with different responsibilities, under the direction of an Administrative Core, led by Dr.

Weiner, as well as a Data and Publications Committee (DPC), led by Dr. Green (Fig. 3). The

eight cores comprise (1) the Clinical Core, led by Drs. Aisen and Petersen, responsible for

subject recruitment, collection and quality control of clinical and neuropsychological data,

testing clinical hypotheses, and maintaining databases; (2) the MRI and (3) PET Cores, led

by Drs. Jack and Jagust, respectively, responsible for developing imaging methods, ensuring

quality control between neuroimaging centers, and testing imaging hypotheses; (4) the

Biomarker Core, led by Drs. Shaw and Trojanowski, responsible for the receipt, storage, and

analysis of biological samples; (5) the Genetics Core, led by Dr. Saykin, responsible for

genetic characterization and analysis of participants as well as banking DNA, RNA, and

immortalized cell lines at the National Cell Repository for Alzheimer's Disease; (6) the

Neuropathology Core, led by Drs. Morris and Cairn, responsible for analyzing brain

pathology obtained at autopsies of ADNI participants; (7) the Biostatistics Core, led by Dr.

Beckett, responsible for statistical analyses of ADNI data; and (8) the Informatics Core, led

by Dr. Toga, responsible for managing data sharing functions [2,3]. Additionally, Dr. Robert

Green heads the ADNI Publications committee, and also directs a recently funded project

involving whole genome sequencing of ADNI DNA. A schematic of ADNI structure is

given in Fig. 3. In addition to the Core leaders, the NIA established a completely

independent committee, chaired by Tom Montine (U. Washington), to review and make

recommendations concerning requests for ADNI blood, CSF, or DNA samples. Instructions

concerning the preparation of requests for samples can be found at www.ADNIinfo.org.

Since the founding of ADNI in 2004, 11 batches of samples have been provided to

requestors. The results of all sample analyses can be found in the ADNI data base at UCLA/

LONI/ADNI.

1.8 Data sharing and informatics

An objective of ADNI, in addition to its scientific goals outlined in section 1.5, was to make

data available to the scientific community, without embargo. To this end, DPC, in

conjunction with the Bioinformatics Core of ADNI at the Laboratory of Neuroimaging
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(LONI) at UCLA, has developed policies and procedures for immediate, open-access data

sharing on a previously unprecedented scale. The principles for this data sharing were

developed in the initial months of the ADNI project by the DPC in consultation with the

Executive Committee and presented to the Steering Committee for adoption in the first year.

The infrastructure for implementing this policy is through the LONI data archive (LDA),

enabling the widespread sharing of imaging, clinical, genetics, and proteomic ADNI results,

while overcoming fundamental hurdles such as the question of ownership of the

disseminated scientific data, and the collection of data from multiple sites in a form that

supports data analysis [32]. Briefly, LONI has developed automated systems that deidentify

and upload data from the 57 ADNI sites, ensure quality control of images before removing

them from quarantine status and make them available for download, manage preprocessing

and postprocessing of images and their linkage to associated metadata, support search

functions, and manage user access and approval. Clinical data are collected by the

Alzheimer's Disease Cooperative Study through their online data capture system and

transferred to the ADNI repository at LONI through nightly data transfers. After these data

are received at LONI, portions of the clinical data are used to update data in the ADNI

repository to ensure consistency of demographic and examination data and to update the

status of image data based on quality assessment results. Additional nightly processes

integrate other clinical data elements, so they may be used in querying the data in the

repository. Any researcher who has been granted access to ADNI data is able to analyze any

part of the available data and can post results to LONI. In addition to ADNI data, LDA also

contains data from the parallel Australian Imaging Biomarkers and Lifestyle (AIBL)

Flagship Study of Ageing, which were collected using protocols comparable with those of

ADNI. To date, from 35 countries worldwide, more than 1300 investigators from academic

and governmental institutions, the pharmaceutical and biotechnology industries, and the

scanner manufacturing sector have accessed ADNI data through the LDA [32]. The number

of downloads of ADNI data has increased yearly since 2006, and in 2010, more than

400,000 images, 1416 sets of clinical data (including cognitive tests and levels of CSF

biomarkers), 781 numeric summary results for all analyses, and 33,620 genetic single-

nucleotide polymorphism (SNP) results were downloaded.

A considerable number of NIH grants have been funded to investigators not directly funded

by ADNI for analysis of ADNI data. A query of the NIH database indicates that a total of 23

separate NIH grants of this type have been funded.

To further enhance the utility of ADNI T1-weighted screening and baseline MR images to

the scientific community, Heckemann et al [226] automatically segmented images of 816

healthy elderly, MCI, and AD patients in the ADNI database. They used the MAPER

approach to generate WM, GM and CSF labels in 83 regions from the raw ADNI data with

the aim of reducing future computation times. The automatic segmentations were in strong

agreement with independent atlas-subset based segmentations of the target images, making

this work a highly significant contribution to the repository.

Although LONI acts as the ADNI data repository, the DPC is responsible for developing

policy around data access and publication, granting access to the data to investigators around

the world, and reviewing publications that result from this data use. Briefly, members of the
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scientific community can apply for access to ADNI data for either research or teaching

purposes and must submit a data use agreement (available at: http://adni.loni.ucla.edu/wp-

content/uploads/how_to_apply/ADNI_Data_Use_Agreement.pdf) for approval. As of April

2011, 1590 data applications from across the world had been approved, predominantly from

academia, but also from the biotechnology, pharmaceutical, and other industries. Part of the

data use agreement requires applicants to include certain language in manuscripts prepared

from ADNI data, including citing “for the Alzheimer's Disease Neuroimaging Initiative” as

an ADNI group acknowledgment, and the recognition of ADNI's role in data gathering in

the Methods section and of ADNI's funding in the Acknowledgments. Manuscripts must be

submitted for approval to the DPC before publication. The full publication policy can be

found at: http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/

ADNI_DSP_Policy.pdf. The role of the DPC in this step is primarily to check that

manuscripts are compliant with ADNI publication policy, and not to provide a scientific

peer review. Papers found to be noncompliant are returned to the authors for editing and can

subsequently be resubmitted for approval. This process is primarily designed to track,

tabulate, and standardize the publication of manuscripts using ADNI data.

1.9 The ADNI special issue of Alzheimer's and Dementia

Weiner et al [3] introduced the special ADNI issue of Alzheimer's and Dementia in 2010

with an overview of ADNI's background, rationale, goals, structure, methods, impact, and

future directions. A set of papers followed highlighting the achievements of individual

ADNI cores and perspectives of the Industry Scientific Advisory Board (or ISAB), which is

now referred to as the Private Partner Scientific Board (or PPSB). Jack et al [33] described

the achievements of the MRI Core of ADNI in areas ranging from the development of MRI

technology to the elucidation of AD biology, and concluded that this Core had succeeded in

demonstrating the feasibility of multicenter MRI studies in ADNI and validity of this

method as a biomarker in clinical trials. The progress of the PET Core of ADNI in

developing FDG-PET and 11C-PiB PET protocols, ensuring quality control, and acquiring

and analyzing longitudinal data was reviewed by Jagust et al [34], who similarly concluded

that the Core had successfully demonstrated both the feasibility of this technology in a

multicenter setting and the potential of FDG-PET to reduce sample sizes in clinical trials.

Trojanowski et al [12] reviewed progress by the Biomarker Core of ADNI in developing

profiles of CSF or plasma biomarkers that would act as a “signature” of mild AD or predict

future MCI to AD conversion. Moreover, the review described studies in support of a

temporal sequence of changes in individual biomarkers that reflected proposed trajectories

of Aβ deposition and the formation of neurofibrillary tangles in AD progression [14]. The

accomplishments of the Clinical Core of ADNI were reviewed by Aisen et al [35], who

reported that the Core had successfully recruited a cohort of >800 subjects, characterizing

them both clinically and cognitively at baseline and following them longitudinally over the

course of the study. As the Clinical Core provided data management support to ADNI, this

review also reported on the contribution of ADNI biomarker and MRI findings to improving

clinical trial design by determining the most powerful outcome measures and reducing

sample size using subject selection strategies. The contribution of the Genetics Core of

ADNI to untangling the apparently complex genetic contributions to AD was reviewed by

Saykin et al [6], who reported considerable progress in the identification of novel AD
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susceptibility loci and of candidate loci worthy of further investigation, often using AD

biomarkers as quantitative traits (QTs) in imaging genetics and GWAS. The role of the

Neuropathology Core in developing procedures to improve the autopsy rate of ADNI

patients and to standardize neuropathological assessment was reviewed by Cairns et al [36].

Finally, Schmidt et al [30] discussed the contributions of the Industry Scientific Advisory

Board, including acting as a conduit of information to and from sponsoring companies and

foundations, supporting add-on studies, and contributing to the scientific review of protocols

and procedures.

2 Development and assessment of treatments for AD: Perspectives of

academia and the pharmaceutical industry

Given that the ultimate goal of ADNI is to develop biomarkers to facilitate clinical trials of

AD therapeutics, it is germane to consider the perspective of investigators from academia

and the pharmaceutical industry on the development of these biomarkers. The aim of this

section is to review those papers that focus on this issue.

Although ADNI is a natural history study, and it is not known whether its biomarkers can

measure the effect of candidate treatments in drug trials, the primary focus of ADNI has

been the development of diagnostic biomarkers for the early detection of AD and

development of prognostic biomarkers that would be used to monitor disease progression

[37]. Mueller et al [38] and Weiner et al [3] reaffirmed the definition of an ideal biomarker

formulated at the first meeting of the NIA working group on AD biomarkers, which

proposed that an ideal AD biomarker should detect a fundamental feature of AD pathology;

be minimally invasive, simple to analyze, and inexpensive; and meet criteria with regard to

specificity and sensitivity outlined in Table 2. Prognostic biomarkers should be

representative of a stage of AD at which the treatment has maximal effect, and also be

representative of the proposed mechanism of action of the treatment [3,38].

Both diagnostic and prognostic biomarkers are required for clinical trials. To date, such

clinical trials have been frustratingly unsuccessful. It was thought that the failures of phase

III clinical trials of high-profile putative antiamyloid therapies, flurizan and Alzhemed, were

in part due to methodological difficulties, such as the initial subject selection, and the

statistical comparison of results from multiple centers [7,9,39]. In the case of the first

generation of clinical trials focusing on patients with MCI, there was a lack of consistency in

numbers of patients progressing to AD over a certain period, likely due to the heterogeneous

nature of MCI; it is possible that one-half of study participants did not have underlying AD

pathology [7,11,40]. Correctly distinguishing patients with AD pathology is critical,

especially considering the overlap that exists between various late-life neurodegenerative

pathologies. For example, the Lewy bodies that characterize Parkinson's disease are found in

>50% of patients with AD, in addition to neuritic plaques and tangles. Therefore, there is a

real need for biomarkers that reliably distinguish between different types of dementias

[8,10].

Diagnostic biomarkers that meet the criteria outlined previously are urgently needed for

subject selection, thereby allowing the stratification and enrichment of clinical trials. There
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is a need to select subjects at an early stage of the Alzheimer's continuum who are likely to

progress through MCI to dementia, and also to eliminate subjects with other pathologies. In

phase I, II, and III trials, biomarkers that detect the earliest indications of AD pathology, Aβ

deposition, such as CSF Aβ42, and 11C-PiB PET are most likely to be useful. FDG-PET as a

measure of metabolism could also have potential [41].

The biomarkers used in a clinical trial will differ depending on the mechanism of action of

the therapeutic, the goals of the trial, and questions at hand. In small, short phase I trials,

CSF and plasma measures can be used to monitor Aβ turnover in healthy subjects. In phase

II proof-of-principle or proof-of-concept trials, Aβ biomarkers in brain can be used to

confirm the mechanism of action of a new treatment and “target engagement.” For phase II

and III trials, CSF tau and phosphorylated tau, MRI, and Aβ PET can be used to determine

whether there is evidence of an effect of treatment on disease progression. Clinical MRI is

used routinely for subject selection, to exclude confounding medical conditions, and for

detection of vasogenic edema as a safety end point of “immune”-based treatments [41].

Finally, Aβ PET imaging, MRI, CSF and plasma biomarkers, and FDG-PET are candidates

as prognostic biomarkers in phase II trials for selection of nondemented subjects at risk for

developing AD to test whether treatments have the potential of preventing or delaying the

onset of AD. The predictive power of these biomarkers in isolation or in combination varies

and will need to be factored into consideration. None of the current generation of treatments

proposed to modify the progression of AD is free of safety concerns. Estimation of the

probability of developing AD will be required for assessing the risk versus possible benefit

of participating in research trials [41]. Figure 4 shows ADNI biomarkers that could be used

at different stages of the drug development process.

Looking at drug development as a whole, Cummings [37] saw a wide variety of roles for

biomarkers, from identifying disease pathology and tracking disease progression, to

demonstrating pharmacokinetic effects of the body on the drug, to facilitating proof-of-

principle and determining doses for subsequent trials, to determining drug efficacy, and,

finally, to contributing to corporate decision making, such as whether to proceed with riskier

and more expensive later-phase trials (Fig. 5). Fleisher et al [9] reviewed progress in

developing neuroimaging biomarkers, either alone or in conjunction with CSF biomarkers,

for subject selection, and in developing biomarkers functioning at later stages in disease,

such as MRI measures of brain atrophy or changes in cerebral glucose metabolism detected

by FDG-PET as outcome measures. This review also highlighted the need for biomarkers in

drug development and discussed the use of imaging biomarkers in replacing cognitive end

points in clinical trials.

Both common sense and regulatory policies of the Food and Drug Administration (FDA)

and regulators in other countries require that treatment trials need to demonstrate a

significant effect on cognition and function. Although effects on biomarkers would provide

additional evidence of treatment effect and evidence of disease modification, there are no

validated surrogates for AD trials, and such surrogates will take many years to develop.

Different biomarkers are likely to be effective over different phases of the disease [11,41].

To be used as surrogates for clinical measures, biomarkers would need to be validated as

reflecting clinical and/or pathological disease processes with a high degree of specificity and
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sensitivity. To qualify for validation as an outcome measure, the biomarker must be shown

to predict clinical outcome over several trials and several classes of relevant agents by

following subjects through disease progression and even possibly to autopsy [3,9,37]. This

validation process is likely to be aided by the contribution of ADNI to standardizing

procedures, particularly for imaging techniques, to reduce measurement errors in clinical

trials [42]. A review by Petersen and Jack [11] discussed neuroimaging and chemical

biomarkers, either alone or in combination, for the prediction of the development of

dementia in MCI patients. These authors provided an excellent and succinct summary of the

issues facing clinical trials for AD-modifying drugs and the role of both U.S. and worldwide

ADNI in developing biomarkers to facilitate these trials.

A detailed discussion of the position of the FDA on biomarker validation is given by

Carrillo et al [31], and it is likely that the process will require a wider population of well-

characterized subjects than is available through ADNI. To this end, and for the further study

of therapeutic interventions for AD, Petersen [40] proposed the establishment of a national

registry of aging. In their editorial in the Journal of the American Medical Association,

Petersen and Trojanowski [39] introduced a paper that reports on the evaluation of CSF

biomarkers in a large multicenter study. Placing this in the context of other work in the same

area, and in research undertaken as part of ADNI, they concluded that as biomarkers become

more sophisticated, they will play even greater roles in AD clinical trials, and may one day

be of use in clinical practice in a diagnostic capacity. Hill [41] concluded in his perspective

on neuroimaging and its role in assessing safety and efficacy of disease-modifying therapies

for AD: “….there is now sufficient experience of imaging for Alzheimer's disease in both

natural history and therapeutic trials for a clear recipe for success to be emerging.” Weiner

[43] concluded that the use of biomarkers to select cognitively normal subjects who have

AD-like pathology and as validated outcome measures in clinical trials “is the path to the

prevention of AD.”

ADNI has proven to be a rich data set for industry-sponsored research, including an

assessment of disease progression in the AD population [44]. ADNI data have been

combined with additional placebo data from clinical trials conducted in AD and are publicly

available on the Coalition Against Major Disease Web site (http://www.c-path.org/

CAMDcodr.cfm) for additional data mining [227]. Modeling efforts have highlighted the

importance of age, baseline cognitive status, and APOE status on disease progression rates; a

model is currently under qualification review through newly developed European Medicines

Agency (EMA) and FDA qualification procedures. These types of models will inform

clinical trial design and streamline analysis for drug studies conducted in mild-to-moderate

AD.

ADNI has also enabled clinical studies in predementia, and many have been posted to

www.clinicaltrials.gov, highlighting the use of CSF and amyloid PET biomarkers in

cognitively impaired subjects to enrich for predementia clinical trials. Application to

registration-level, phase III studies remains a challenge, as the biomarkers in ADNI have not

yet been qualified for use or received regulatory approval. To address some of the remaining

challenges, precompetitive and industry-sponsored initiatives were recently conducted to

qualify CSF Aβ-42 and t-tau as biomarkers for enrichment in predementia study with the
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EMA, and a positive qualification opinion was posted on the EMA site for these particular

biomarkers. Additional efforts are ongoing with the FDA. For the most part, industry has

been using the biomarkers as enrichment tools in predementia and mild-to-moderate AD

studies, and as secondary or exploratory efficacy measures to assess impact of exploratory

drugs on biomarker measures of disease progression.

3 Methods papers

A considerable proportion of papers published as a result of ADNI concerns the

development and testing of methods for use in ADNI, in the cohorts of other studies, or in

clinical trials. These run the gamut from papers examining the best way to reduce

differences between scanners in multicenter studies to those describing a new way to

discriminate between AD, MCI, and control subjects, to methods for enriching clinical trials

to reduce required sample sizes and therefore the associated cost, to new methods for

examining genotype–phenotype relationships in neuroimaging GWAS. This section presents

an overview of these papers.

3.1 Standardization of ADNI procedures

3.1.1 Magnetic resonance imaging

3.1.1.1 Assessment of scanner reliability: A key feature of assessing the reliability of

scanner hardware over longitudinal scans is the use of a high-resolution geometric

“phantom” that can detect linear and nonlinear spatial distortion, signal-to-noise ratio, and

image contrast, allowing these artifactual problems to be identified and subsequently

eliminated. Although these are commonly used for periodic adjustments to quality control,

they are scanned after every patient in the ADNI MRI protocol. Gunter et al [45] estimated

that these artifactual problems would contribute to >25% imprecision in the metric used, and

found that phantom analysis helped correct scanner scaling errors and/or miscalibration,

thereby increasing the potential statistical power of structural MRI for measuring rates of

change in brain structure in clinical trials of AD-modifying agents. The utility of a scanner

phantom was once again underscored by Kruggel et al [46], who examined the influence of

scanner hardware and imaging protocol on the variability of morphometric measures

longitudinally and also across scanners in the absence of a phantom in a large data set from

the ADNI cohort. Using different acquisition conditions on the same subject, the variance in

volumetric measures was up to 10 times higher than under the sample acquisition

conditions, which were found to be sufficient to track changes. Their results suggested that

the use of a phantom could reduce between-scanner imaging artifacts in longitudinal studies.

Kruggel et al [46] also investigated the effect of scanner strength and the type of coil used

on image quality and found that a 3.0-T array coil system was optimal in terms of image

quality and contrast between white matter (WM) and gray matter (GM). Ho et al [47]

similarly tested the ability of 3.0-T and 1.5-T scanners to track longitudinal atrophy in AD

and MCI patients using tensor-based morphometry (TBM). They saw no significant

difference on the ability of either scanner type to detect neurodegenerative changes over a

year, and found that TBM used at both field strengths gave excellent power to detect

temporal lobe atrophy longitudinally.
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While the scanning of a geometric phantom helps eliminate artifacts introduced by the

machine, Mortamet et al [48] described an automated method for accounting for patient

artifacts that can affect image quality, such as edge, flow, and aliasing artifacts. They

developed two quality indices and tested their ability to differentiate between high- and low-

quality scans, as assigned by an expert reader at the ADNI MRI center. Both indices

accurately predicted the “gold standard” quality ratings (sensitivity and specificity >85%),

and the authors proposed that this method could be integrated into a real-time or online MRI

scanning protocol to eliminate the need to rescan at a later date due to a poor-quality scan, in

keeping with the goal of placing as minimal burden on the patient as possible. Clarkson et al

[49] examined within-scanner geometric scaling drift over serial MRI scans, as assessed by

geometric phantoms, and developed a nine degrees-of-freedom registration algorithm to

correct these scaling errors in longitudinal brain scans of patients. They found that the nine

degrees-of-freedom registration was comparable with geometric phantom correction,

allowing atrophy to be measured accurately, and the authors suggest that this registration-

based scaling correction was the preferred method to correct for linear changes in gradient

scaling over time on a given scanner. This in turn could obviate the need for scanning a

phantom with every patient. Bauer et al [50] assessed the utility of collecting whole brain

quantitative T2 MRI from multiple scanners using fast spin echo (FSE)/dual spin echo

sequences, which have been shown to be useful in the early detection of AD pathology in

MCI patients. Although FSE–T2 relaxation properties were related to the global dementia

status, the authors concluded that the utility of the method was affected by the variability

between scanners. Several papers were aimed at reducing between-scanner effects, including

those by Gunter et al [45] and Clarkson et al [49]. Leung et al [51] presented a method

aimed at overcoming variability in serial MRI scans for the detection of longitudinal atrophy

by modifying the boundary shift integral (BSI) method of image analysis. Two

improvements to the BSI method were made: (1) tissue-specific normalization was

introduced to improve consistency over time, and (2) automated selection of BSI parameters

was based on image-specific brain boundary contrast. The modified method, termed KN-

BSI, had enhanced robustness and reproducibility and resulted in a reduction in the

estimated sample sizes, required to see a 25% reduction in atrophy in clinical trials of AD-

modifying drugs, from 120 to 81 AD patients (80% power, 5% significance).

3.1.1.2 Development of protocols: Jack et al [52] described the development of

standardized MRI procedures for use in the multiple ADNI centers, a process guided by the

principle of maximizing the scientific benefit of a scan while minimizing the burden on the

patient. Using technology widely available in 2004 to 2005, and limiting scanner platforms

to three vendors, they succeeded in developing a protocol that could be run in <30 minutes

and that included the use of a phantom scan to monitor scanner performance over time and

across different centers, back-to-back T1-weighted magnetization-prepared rapid gradient

echo scans to capture structural information while minimizing the need to rescan patients

due to technical difficulties, and T2-weighted dual-contrast FSE sequences for the detection

of pathologies. Postacquisition corrections were instituted to remove certain image artifacts.

Serial MRI scans, such as those used in ADNI, often suffer from problems associated with

the uniformity of signal intensity that introduce artifacts into the results. Boyes et al [53]

tested the ability of nonparametric nonuniform intensity normalization (N3) to eliminate
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these artifacts on higher-field 3-T scanners, which had a newer generation of receiver coils,

in serial 2-week scans of healthy elderly control subjects. They found that the robustness and

reliability of the N3 correction were highly dependent on the selection of the correct mask to

identify the region of the scan over which the N3 worked, and on the smoothing parameter

used for head scans at different pulse sequences. Leow et al [54] also used serial scans, 2

weeks apart, of healthy elderly control subjects to investigate the stability of different pulse

sequences. They used TBM to generate maps of computed changes that could be statistically

analyzed and to give information on MRI reliability, reproducibility, and variability. This

optimization of pulse sequences contributed to the design of the ADNI MRI protocol, and

authors concluded that TBM is a useful tool for the study of longitudinal changes in brain

structure.

3.1.2 Aβ- and FDG-PET—Variability across scanners is also a major factor in ADNI PET

studies, which are spread over 50 different centers and involve 15 different scanner/software

combinations. Joshi et al [55] tackled the problem of reducing between-scanner variability in

PET images that has been observed despite the use of standardized protocols. Major sources

of between-scanner variability are high-frequency differences, mostly related to image

resolution, and low-frequency differences, mostly related to image uniformity and also to

corrections for scatter and attenuation. Joshi et al [55] scanned a Hoffmann phantom at each

participating center, and by comparing the scans to the Hoffman “gold standard” digital

phantom, they developed corrections for both types of variability, which were tested on

scans from the ADNI cohort. They found that the high-frequency correction, by smoothing

all images to a common resolution, reduced interscanner variability by 20% to 50%, but that

the low-frequency correction was ineffective, perhaps due to differences in geometry

between the Hoffman phantom and the human brain. Jagust et al [34] reported the

development of a standardized protocol for the acquisition of FDG-PET and 11C-PiB PET

data that first granted approval to participating sites based on the results from a pair of

phantom scans on the three-dimensional (3-D) Hoffman brain phantom using defined

acquisition and reconstruction parameters. These were assessed for image resolution and

uniformity using a quality control process that used the digital gold standard phantom for

comparison. In this way, corrections were made for differences in PET images across sites.

3.1.3 Biomarkers—The measurement of CSF concentrations of Aβ-42, t-tau, and p-tau is

recognized to reflect early AD pathology. Within ADNI, levels of these analytes are

measured by flow cytometry using monoclonal antibodies provided in the INNO-BIA Alz

Bio3 immunoassay kit (Innogenetics, Ghent, Belgium) with xMAP technology (Luminex,

Austin, TX) [56,57]. The Biomarker Core of ADNI has worked to make this a standardized

procedure across multiple ADNI sites, and Shaw et al [56] presented an analysis of within-

site and intersite assay reliability across seven centers using aliquots of CSF from normal

control subjects and AD patients. Five CSF pools were tested, each pool made up of either

AD patients (n = 2) or controls (n = 3). Each center performed three analytical runs using

separate fresh aliquots of each CSF sample and data were analyzed using mixed-effects

modeling to determine assay precision. The coefficient of variation was 5.3% for Aβ-42,

6.7% for t-tau, and 10.8% for p-tau within center, and 17.9% for Aβ-42, 13.1% for t-tau, and

14.6% for p-tau between centers. The authors concluded that although they found good
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within-laboratory assay precision, the reason for the reduced interlaboratory precision is not

fully understood and may be caused by many sources of variability. As for any test method,

strict attention to the laboratory standard operating procedures, inclusion of CSF quality

control specimens in each analytical run, and following the manufacturer's guidance for test

performance are essential to assure best performance of this immunoassay test system [228].

3.2 Methods for MRI image preparation and processing

A large portion of ADNI research relies on the extraction of information from MRI images;

therefore, the development of automated methods to reliably and robustly process thousands

of scans from multiple centers is vital to the project. Processing steps include whole brain

extraction, image registration, intensity normalization, tissue classification (segmentation),

cortical thickness estimation, and brain atrophy estimation [58].

3.2.1 Whole brain extraction—The separation of brain from nonbrain voxels in

neuroimaging data, known as whole brain extraction or “skull-stripping,” is an important

initial step in image analysis. Inaccuracies at this step can lead to the introduction of artifacts

adversely affecting further analysis; therefore, a robust and accurate automated method for

this step is highly desirable. To this end, Leung et al [58] compared the accuracy of a

technique, multiatlas propagation and segmentation (MAPS), previously developed for

hippocampal segmentation ([59]; see later section), with three other widely used automated

brain extraction methods: brain extraction tool, hybrid watershed algorithm, and brain

surface extractor. They found that compared with the semiautomated “gold standard”

segmentation, MAPS was more accurate and reliable than the other methods and that its

accuracy approached that of the gold standard, with a mean Jaccard index of 0.981 using

1.5-T scans and 0.980 using 3-T scans of control, MCI, and AD subjects.

3.2.2 Automated registration and segmentation—As manual registration and

segmentation of images into WM, GM, and CSF is time-consuming, rater-dependent, and

infeasible for a large study because of its often prohibitive cost, a number of studies have

focused on developing automated registration and segmentation methods.

3.2.2.1 Atlas-based registration: Wolz et al [60] offered a solution in which atlases are

automatically propagated to a large population of subjects using a manifold learned from a

coordinate embedding system that selects similar images and reduces the potentially large

deformation between dissimilar images, thereby reducing registration errors. This learning

embeddings for atlas propagation method resulted in a more accurate segmentation of the

hippocampus compared with other multiatlas methods [60].

The use of more than one atlas on which to register brain images has been recognized as a

powerful way to increase accuracy of the automatic segmentation of T1-weighted MRI

images, as it addresses the problem of brain variability. The steps of the process have been

described by Lotjonen et al [61] and are presented in Fig. 6. Initially, multiple atlases are

nonrigidly registered to the patient image, after which majority voting is applied to produce

class labels for all voxels. Then, postprocessing by a variety of algorithms takes into account

intensity distributions of different structures.
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The addition of atlases has been found to increase segmentation accuracy in a logarithmic

manner, that is, rapidly at first, but eventually slowing toward a maximum. This increased

accuracy must be balanced by the increased computation time required for each additional

atlas [61]. Lotjonen et al [61] obtained the best segmentation accuracy with relatively few

(8–15) atlases, and, additionally, found that postprocessing using either the graph cuts or

expectation maximization algorithms contributed to an optimized multiatlas segmentation

method that balanced accuracy and computation times. They also found that the use of

normalized intensity differences in the nonrigid registration step produced segmentation

accuracy similar to that found using the more computationally intensive normalized mutual

information method.

The selection of the atlases is a critical step. Heckeman et al [62] described the case in

which the use of atlases based on the brains of young people resulted in occasional gross

segmentation failures due to ventricular expansion in the older AD subjects. To overcome

this problem, they modified a hierarchical registration approach by changing the first three

levels to a tissue classification algorithm, instead of using native magnetic resonance (MR)

intensity data. This multiatlas propagation with enhanced registration approach was found to

create accurate atlas-based segmentations and was more robust in the presence of pathology

than previous approaches. Li et al [229] presented another approach to account for

ventricular expansion and other variations in tissue composition that occur in older subjects,

such as WM hyper- and hypo-intensities, and changes in subcortical shape and cortical

thickness. They employed a deformable registration algorithm that embeds 3D images in

surfaces in a 4D Reimannian space to topological changes caused by false deformation. The

method compared favorably with other registration methods employing diffeomorphic

demons when tested on MR images with lesions from the ADNI data set.

Leung et al [58] generated multiple segmentations using nonlinear registration to best-

matched manually segmented library templates and combined them using a simultaneous

truth and performance level estimation algorithm. MAPS was then used to measure volume

change over 12 months by applying the BSI. The accuracy of MAPS was found to compare

favorably to manual segmentation, with a mean difference between automated and manual

volumes of approximately 1% and a Dice score of 0.89 compared with other methods

developed by ADNI (0.86: Morra et al [63]; 0.85: Wolz et al [64]; and 0.89: Lotjonen et al

[61]).

3.2.2.2 Other registration methods: In addition to registration of images to one or more

atlases, segmentation of images may use image statistics to assign labels for each tissue or

use geometric information such as deformable models or active contours [65]. A method

that combines elements of these two approaches was described by Huang et al [65], who

used an edge-based geodesic active contour. They found that this method segmented a range

of images more accurately and robustly than those using individual statistical or geometric

features only.

Calvini et al [66] developed software for the automatic analysis of the hippocampus and

surrounding medial temporal lobe (MTL) and the calculation of a novel statistical indicator,

the κ-box, computed on intensities of the automatically extracted regions Their method did
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not directly segment the hippocampus, relying instead on the use of the κ-box to assess

intensities after a manual extraction step.

A computational processing application to measure subtle longitudinal changes using

nonlinear registration to the baseline image was described by Holland and Dale [67]. This

method, called quantitative anatomicalregional change (QUARC), used nonrigid 12-

parameter affine registration, image smoothing minimization, normalization of local

intensity nonuniformity, direct calculation of the displacement field of the region of interest

(ROI) rather than the Jacobian field, and bias correction. When QUARC was compared with

four other common registration methods used on ADNI data, it produced significantly larger

Cohen d effect sizes in several ROIs than FreeSurfer v4.3 (Athinoula A. Martinos Center for

Biomedical Imaging, Massachusetts General Hospital, Boston, MA; http://

surfer.nmr.mgh.harvard.edu/), voxel-based morphometry, and TBM, and a similar whole

brain effect size to the standard KNBSI method. Although, unlike the other methods, the

signal-to-noise ratio of the raw images obtained using QUARC was enhanced by back-to-

back repeat scans, the authors concluded that QUARC is a powerful method for detecting

longitudinal brain morphometric changes in levels varying from the whole brain to cortical

areas to subcortical ROIs [230].

3.2.3 Automated temporal lobe and hippocampal segmentation

3.2.3.1 Temporal lobe and hippocampus: In AD, atrophy in MTL and, in particular, the

hippocampus is associated with declining cognitive function. It is not surprising, then, that a

substantial body of work has been published on the subject of analyzing structural MRI T1-

weighted measurements of this region. Chupin et al [68] developed a fully automated

method for hippocampal segmentation based on probabilistic information derived from an

atlas built from the manually segmented hippocampi of 16 young subjects and anatomical

information derived from stable anatomical patterns. Wolz et al [64] used a fully automated

four-dimensional (4-D) graph-cut approach to hippocampal segmentation that segmented

serial scans of the same patient. Power analysis of the method revealed that a clinical trial

for an AD-modifying drug would require 67 AD or 206 MCI patients to detect a 25%

change in volume loss (80% power and 5% significance). Morra et al [69] developed the

auto context model (ACM), a fully automated method to segment the hippocampus, based

on the machine learning approach, AdaBoost. After training the classifier on a training set,

ACM was able to discriminate between AD, MCI, and control groups, suggesting that the

automatic segmentation is sufficiently sensitive to detect changes in hippocampal volume

over the course of disease progression. This method was compared with manual and other

automated methods for hippocampal segmentation, and also with TBM, which was used to

assess whole brain atrophy in an earlier paper by the same group [63]. These authors found

that ACM compared well with hand-labeled segmentation and that the volume atrophy over

clinical groups and correlation with clinical measures with ACM were comparable with that

found with other automated methods and better than TBM, suggesting that the latter method

may not be optimal for assessing hippocampal atrophy.

Lotjonen et al [231] developed an automatic hippocampal segmentation method using an

intermediate template space between unseen data and atlas spaces to increase processing
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speed and partial volume modeling to increase classification accuracy. The authors reported

that this method more than halved the processing time on a standard laptop computer and

resulted in a Dice overlap compared to manual segmentation of 0.869, in the range of

previously reported accuracies (0.85 [63] and 0.93 [59]), supporting the feasibility of the

method for clinical use.

Automatic image segmentation is prone to systematic errors, which are introduced when

these mostly knowledge-based protocols mistranslate manual segmentation protocols into

the automatic format. Wang et al [70] presented a wrapper algorithm that can be used in

conjunction with automatic segmentation methods to correct such consistent bias. The

algorithm uses machine learning methods to first learn the pattern of consistent

segmentation errors and then applies a bias correction to the mislabeled voxels detected in

the initial step. When the algorithm was applied to four different segmentation methods, it

decreased the number of mislabeled voxels by 14% (multiatlas hippocampal segmentation)

to 72% (FreeSurfer hippocampal segmentation) and resulted in a higher Dice overlap than

other hippocampal segmentation methods, including some of those by Leung et al, Chupin et

al, and Morra et al, described in this review [59,68,69].

3.2.3.2 Cortical thickness segmentation and estimation: Cortical thickness, which is

correlated with disease progression, offers an alternative approach to ROIs to assessing

disease progression. Consequently, the development of automated methods to analyze this

region is an important step in monitoring disease progression [232]. Cardoso et al [233]

presented a new method of post-processing for accurate segmentation of cortical thickness

that reduced bias towards anatomical priors, explicitly models partial volume effects and

improved the modeling of sulci and gyri using a locally varying Markov Random Field

model. When the algorithm was tested on ADNI data, the authors reported an improvement

in accuracy over established methods.

Segmentation bias can also be introduced when one baseline image is used as a reference in

the comparison of multi-time point longitudinal images to estimate brain atrophy from

changes in cortical thickness. Leung et al [230] developed a method based on BSI that

utilized affine registration, differential bias correction and symmetrical global registration

for multiple time points through the concept of a geometric mean to overcome this

asymmetry. They found that this locally adaptive cortical segmentation algorithm (LoAD)

consistently reduced bias and increased cortical thickness estimation accuracy compared to

established methods when tested on the ADNI data set.

3.2.4 TBM and DBM—Bossa et al [72] used the method of TBM, which examines the

deformation fields generated when an image is registered to a template. Previous work used

large deformation algorithms for the nonrigid registration step, as they have the flexibility to

characterize anatomical variability in cross-sectional studies. These algorithms are, however,

computationally intensive, and the authors proposed a simplified version of the large

deformation algorithms, stationary velocity field diffeomorphic registration. When the

method was evaluated using ADNI subjects, it provided brain atrophy maps at high spatial

resolution with lower computational requirements. Hua et al [73] examined two methods of

image registration in TBM and found that the method in which each image is aligned to a
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single template was a more effective measure of brain deterioration. They also found TBM

to be better suited to analyzing morphometric changes over larger areas, such as the entire

temporal lobe, rather than specific ROIs, such as the hippocampus, and that atrophic

changes detected by their method correlated well with clinical measures of brain

deterioration (Mini-Mental State Examination [MMSE] and clinical dementia rating [CDR]

scores). The use of multi-template registration was investigated by Koikkalainen et al [234],

who developed and compared the classification accuracy of four methods with a single

template registration method. They found that all four multi-template methods improved

classification accuracy and resulted in smaller sample size estimates.

Yushkevich et al [74] examined the use of DBM, a technique closely related to TBM in

estimating longitudinal hippocampal atrophy in the ADNI cohort. They found that without a

correction for asymmetry that arises during longitudinal image registration, substantial bias

can result in the overestimation of the rate of change of hippocampal atrophy. Park and Seo

[75] tackled the problem of accurate registration algorithms required in DBM to compute the

displacement field. They proposed a method that uses multidimensional scaling to improve

the robustness of the registration step, and found that this method improves the ability of

DBM to detect shape differences between patients.

3.2.5 Quantification of brain morphometric changes—Several papers have focused

on the development of methods for quantifying structural changes across the whole brain

from structural MRI scans. Chen et al [76] developed a semiquantitative brain and lesion

index based on T1- and T2-weighted imaging. They found that both the T1-based and T2-

based scores correlated with age and cognitive performance and differentiated between

control, MCI, and AD subjects. Acosta et al [77] presented a new accurate and

computationally efficient voxel-based method for 3-D cortical measurement. The method,

which uses an initial Lagrangian step to initialize boundaries using partial volume

information and a subsequent Eulerian step to compute the final cortical thickness, offered

higher statistical power to detect differences between clinical groups with a slight increase in

computational time compared with methods using only the Eulerian step. The authors

proposed that the increased accuracy and precision are attributable to the Lagrangian step,

which effectively achieves subvoxel accuracy.

The reliability of two common algorithms, Siena and Siena X, used for measuring changes

in whole brain volume cross-sectionally and longitudinally in MRI studies, was assessed by

Cover et al [235] using ADNI data. They found that Siena was more reproducible than Siena

X, that both algorithms gave estimates of atrophy rates in the ADNI cohort in line with

atrophy rates reported in other cohorts, and that the distribution of atrophy in the ADNI

cohort appeared to have a non-Gaussian distribution. The study demonstrated the utility of

ADNI data as a benchmark for assessing the reliability of future algorithms for measuring

brain atrophy.

3.2.6 Fractal analysis—A different approach for detecting atrophy in disease progression

based on fractal analysis has been described by King et al [78]. Recognizing that the

cerebral cortex has fractal properties, such as being statistically self-similar, this group

investigated the effect of AD on gyrification using fractal analysis. They found that fractal
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analysis of cortical ribbons was able to discriminate between AD and control subjects in all

of the seven regions tested, apart from the hippocampus, and suggested that this method may

play a complementary role to ROI approaches, especially at earlier stages of disease

progression. In a subsequent work, King et al [79] presented a new method for fractal

dimension analysis of the cortical ribbon that also measured cortical thickness. When this

method was compared with gray/white and pial surface cortical models, they found that it

was the only measurement to have a significant correlation with cortical thickness and

ADAS-cog scores, and that it best discriminated between control subjects and AD patients.

The authors concluded that the fractal dimension of the cortical ribbon has strong potential

as a quantitative marker of cerebral cortex atrophy in AD. Li et al [80] presented a method

to reliably measure cortical thickness for longitudinal studies by incorporating 4-D

information from successive scans directly into processing steps. In the absence of a gold

standard against which to test their method, they used power analysis of the correlation

between cortical thickness and the MMSE to show that this method improved longitudinal

stability compared with 3-D methods that do not take the temporal factor into account.

3.2.7 Other MRI methods—Risser et al [81] presented a new method to compare imaged

shapes, either longitudinally or against an atlas, on several different scales simultaneously,

and to quantify the deformations on a single scale using large-scale deformation

diffeomorphic mapping. When the method was applied to examine hippocampal atrophy in

ADNI patients using baseline and 24-month scans, it was found to be able to extract

information at the desired scale among all the scales.

A modification of the voxel-based analysis and statistical parametric mapping method for

the detailed spatial analysis of image data without a priori defined ROIs was proposed by

Zhang and Davatzikos [82]. Their method, optimally discriminative voxel-based analysis,

uses non-negative discriminative projection applied to the spatial neighborhood around each

voxel to find the optimally discriminative direction between two groups, determines a

statistic for each group, and obtains a statistical parametric map of group differences.

Optimally discriminative voxel-based analysis was found to perform well compared with

traditional statistical parametric mapping using an ADNI data set.

Beyond volumetric analysis of ROIs, recent research has focused on extracting more

meaningful information from the shape of brain structures, but most studies have not

considered the pose, or location and orientation, of the structure. Bossa et al [71] presented a

method for the statistical analysis of the relative pose of subcortical nuclei. The framework

of the analysis was a variety of approaches based on similarity transformations with

Reimannian metrics. Significant group differences were found between control subjects,

MCI patients who did or did not subsequently convert to AD (MCI-c and MCI-nc,

respectively) and AD patients, and the authors suggested that the method may be

particularly useful as an AD biomarker in conjunction with shape analysis, as both

approaches leverage complementary information.

Weiner et al. Page 22

Alzheimers Dement. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



3.3 Methods for AD classification from imaging data

The development of automatic methods for the accurate classification of patients into

clinical groups from imaging data has been the aim of multiple ADNI studies. Many of these

classification methods are based on support vector machines (SVMs), a set of algorithms

that uses supervised learning of pattern recognition in a training set to build a classifier to

predict the category to which a new example belongs. Some methods condense imaging data

into one score that is reflective of brain abnormalities associated with AD to allow the direct

comparison of patients, thereby facilitating their classification into patient group [83–85],

whereas others examine which combination of imaging, CSF biomarkers, genetics, and

other factors results in the most accurate classifiers [86,87], or formulate novel approaches

for identifying AD-like patterns [87–90]. Other methods leverage the changes in spatial

connectivity between different areas of the brain that most likely occur, as functional

connectivity becomes affected during disease progression [65,83]. Finally, some methods

[91,92] use an alternative approach to machine learning, a relevance vector machine (RVM),

which, unlike the binary SVM, is a probabilistic machine learning algorithm. A brief

description of these methods is given later in the text, and their results are presented and

compared with existing methods of classification in section 5.4.1.

3.3.1 Magnetic resonance imaging—Fan et al [83] used an SVM to construct a

classifier based on patterns of spatial distribution of brain tissue from T1-weighted MRI

scans of control subjects and AD patients and applied this classifier to scans of MCI

patients. The classifier, which acts as an indicator of how the structural profile of an

individual fits that of AD or control subjects, also produced a structural phenotypic score

(SPS) that allowed direct comparison of patients. This approach differs from ROI or voxel-

based analyses, as it examines spatial patterns of atrophy rather than individual brain

regions, and is also able to examine functional connectivity. Shen et al [89] also developed a

method that integrated feature selection into the learning process, but used sparse Bayesian

learning methods instead of an SVM. They reported that their automatic relevance

determination and predictive automatic relevance determination, in general, outperformed

the SVM used for comparison and classified patients more accurately than the method of

Hinrichs et al [88]. Stonnington et al [91] used regression analysis based on an RVM to

analyze T1-weighted MRI data and predict clinical scores, whereas Franke et al [92] used an

RVM combined with an automatic preprocessing step and dimension reduction using

principal component analysis to estimate the age of healthy subjects from T1-weighted MRI

data, and found the method to be reliable, efficient, and scanner independent. In contrast to

the supervised SVMs used in the aforementioned studies, Filipovych and Davatzikos [93]

used a semisupervised SVM to classify MCI-c and MCI-nc patients. In the supervised

approach, there is an assumption that patterns in a heterogeneous construct like MCI are

known, but in a semisupervised approach, only some of the data, in this instance, baseline

MRIs from AD patients and control subjects, are labeled, whereas scans of MCI patients are

left unlabeled. Using a leave-one-out approach, scans were then classified as having a

degree of AD-like or normal-like anatomic features, as defined by Fan et al [83].

A more data-driven approach for patient classification that circumvents the need for a priori

defined ROIs by using an initial independent component analysis (ICA) step was proposed
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by Yang et al [94]. Their preliminary study combined the ICA step to extract defining

neuroimaging features with a subsequent SVM for classification of scans into AD, MCI, and

control subjects, and the resulting method was tested on two cohorts, including ADNI.

Pelaez-Coca et al [95] compared ability of anatomical versus statistically defined ROIs to

discriminate between control and AD subjects. Using a variety of classifiers, they sought to

restrict the number of features using principal component analysis and found that a higher

number of features did not necessarily correspond with higher classification accuracy. When

generalizability of the algorithm was tested by analyzing classification performance of 20

different experiments in which different subsets of the cohort were used as training and

testing sets, they found that the resulting variability was larger than within the different

classifiers used. Finally, they found that statistically defined ROIs representing voxels with

the largest significance difference in a group comparison with an unbiased atlas (belonging

to voxels in the hippocampi and amygdalae) resulted in better classification accuracy than

anatomically predefined ROIs in the hippocampi, lateral ventricles, and amygdalae.

Shen et al [236] described a method to leverage differences in hippocampal shape for the

discrimination of AD from control patients. The approach selected a subset of landmarks by

using shape descriptors from statistical shape models that were further selected by statistical

means for direct involvement in AD-specific neurodegeneration. Selected landmarks,

including the CA1 subfield and the subiculum, were then used in a principal component

analysis with SVMs for classification and their targeted use resulted in an increase in the

discriminatory power of statistical shape models.

An alternative to a priori defined ROIs in AD classification is the use of cortical thickness

estimates. Pachauri et al [232] used a topology-based kernel construction algorithm to

measure cortical thickness. They suggested that this automated method can leverage

discriminative information found on cortical surfaces that can be included in multi-modal or

multi-variate models to boost the signal of interest. Cho et al [237] employed an incremental

learning method that represented cortical thickness data using the manifold harmonic

transform to overcome problems of noise sensitivity in vertex based methods and the lack of

detailed spatial variation of cortical thickness of region-wise methods. They found that this

method was more robust than traditional methods and resulted in high classification

accuracy.

ADNI acquires MRI data across multiple centers and scanner types. Abdulkadir et al. [238]

investigated the effects of hardware heterogeneity on the classification accuracy of fully

automated machine learning methods using an SVM classifier. They found that the negative

effects of differences in scanner strength (1.5 T versus 3.0 T) on accuracy were offset by the

gain made from the larger data sets available from multiple sites. A maximum accuracy of

87% in the classification of AD patients from controls was reported using data acquired with

heterogeneous scanner settings.

Selection of MR features representative of change to a more AD-like morphometry has

allowed the development of models that predicts future clinical decline from MR data.

Zhang et al [239] targeted the use of both baseline and longitudinal data in a method that

uses a longitudinal feature selection approach developed from a sparse linear regression
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model of each time point and which finally extracts a set of most relevant features

longitudinally for input into a multi-kernel SVM. They found that the addition of

longitudinal data substantially increased prediction accuracy. Aksu et al [240] used an

approach intermediate between supervised and unsupervised machine learning to construct

an automatic prognosticator of MCI to AD conversion and to define a conversion point

between the two disease states. When an MCI patient showed any region of the brain as

being “AD-like”, they were classified as converters which resulted in a higher prognostic

accuracy than a CDR-based method.

Most classification methods are based on SVM and kernel approaches which, in the process

of dimension reduction, may discard useful information contained in the images. An

alternative approach that operates directly in the voxel space was proposed by Casanova et

al [241] who used penalized logistic regression and coordinate-wise descent optimization to

overcome these problems of large scale classification.

3.3.2 [18F]-fluorodeoxyglucose-positron emission tomography—Haense et al

[84] also used a discrimination procedure, developed by the European Network for

Standardization of Dementia Diagnosis, which generates a measure reflective of scan

abnormality from FDG-PET data. This measure, AD t-sum, is calculated from the sum of

abnormal t-values in voxels known to be affected by AD, and was used for discrimination of

clinical groups. A similar approach was used by Chen et al [85], who developed an

automatically generated hypometabolic convergence index (HCI) reflective of the degree to

which the patient's pattern and magnitude of cerebral hypometabolism corresponded to that

of probable AD patients. Huang et al [65] identified changes in spatial connectivity patterns

based on sparse inverse covariance estimation using FDG-PET data. Salas-Gonsalez et al

[90] developed an automated procedure to classify AD patients from FDG-PET data using a

t test to select voxels of interest and factor analysis to reduce feature dimension. The

resulting factor loadings were tested on three different classifiers, two Gaussian mixture

models with either linear or quadratic discriminant functions and an SVM. Lemoine et al

[87] used a combination of feature selection and data fusion to construct SVMs from both

FDG-PET and clinical data. To extract the most meaningful features from FDG-PET scans,

they used an evolutionary algorithm in which each feature corresponded to one gene, the

number of features was arbitrarily selected to be 30, and which was complete when an area

under the curve (AUC) of 0.98 was achieved on the training data set. SVMs were also

constructed for a range of clinical features, and the results of these and the FDGPET

classifiers were weighted and data finally fused to create a final classifier. An alternative

method for scoring brain images based on the principles of information retrieval, a computer

science technique often used in Internet search engines, was described by Clark et al [242].

In this method, PET scores were arranges in a vector space with one dimension per voxel

and orthogonal vectors were subtracted to refine queries. Cosine similarity between vectors

was used between residual vectors to score the PET scan relevance to a diagnostic query.

The resulting cosine similarity scores were used to construct classifiers.

The large, heterogeneous ADNI data set proved an ideal testing ground for assessing the

efficacy of a previously described classification method [243] which included principal

component analysis and Fisher discriminant analysis. Markiewicz et al [244] successfully
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verified their multivariate approach and found that the highest accuracy for the whole

sample verification was achieved using 4 principal components.

One of the issues with the use of FDG-PET data the selection of an appropriate reference

region for either longitudinal or group comparison studies that measure changes in brain

metabolism that can be leveraged for classification purposes. The method described by

Rasmussen et al [245] sought to improve this critical step by the selection of candidate

reference regions based on heat maps of coefficients of variation of FDG ratios over time.

They found that intensity normalization systematically isolated the superior portion of the

cerebellum as the test reference region for detecting rates of decline and baseline deficits in

AD patients.

3.3.3 Cognitive methods—Llano et al [96] developed a cognitive test based on ADAS-

cog as an alternative to imaging or CSF biomarkers for use as an outcome measure or for

subject enrichment in clinical trials. The ADAS.Tree composite was derived by weighting

test components of ADAS-cog based on their ability to discriminate between control, MCI,

and AD subjects of the ADNI cohort using a Random Forests tree-based algorithm.

ADAS.Tree discriminated between patient groups as well as, or better than, the best imaging

or CSF biomarkers or cognitive tests. Optimal sets of markers for the prediction of 12-month

decline were then determined using machine learning algorithms, and performance of the

derived cognitive marker was found to be comparable with, or better than, other individual

or composite baseline CSF or neuroimaging biomarkers. The authors suggest that the

ADAS.Tree might prove more widely applicable than expensive and/or invasive imaging or

CSF biomarkers.

Tractenberg et al [246] presented an alternative method for quantitating neuropsychological

decline using inter-individual variability in cognitive testing. They found that this approach

resulted in similar effect sizes to the total scores of MMSE and Clock Drawing test for

discriminating between both controls and AD, and MCI and AD patients. The authors

suggested that this may be a useful addition for measuring neuropsychological performance

that is reflective of underlying neurobiology.

3.3.4 Combined modalities—The new machine learning algorithm of Hinrichs et al

[88], which uses data from both MR and FDG-PET images, integrates a spatial

discrimination step to identify AD-related patterns in different brain regions, rather than

assessing these relationships at the pre- or postprocessing steps.

The development of a panoply of multimodal classifiers that leverage information from

imaging, biological and neuropsychological sources has been a major focus of ADNI papers

published in 2011-2012. Likewise, the selection of features that are most ‘AD-like’ across

multiple modalities is a critical step in constructing an accurate classifier and new

approaches to this step have been reported in a number of papers. Hinrichs et al. [247]

developed a method based on the Multi-Kernel Learning framework to produce a classifier

that, in addition to classifying control and AD patients, also produced a Multi-Modality

Disease Marker (MMDM) that could be used for the prediction of MCI to AD conversion.

The method leveraged information from FDG-PET and MR scans and the authors reported
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that this method consistently outperformed a similarly trained SVM using the ADNI data

set. An alternative method for AD classification that uses a non-negative matrix

factorization for feature selection in combination with SVMs with bounds of confidence for

classification was reported by Padilla et al [248]. The authors found that this method was an

accurate tool for classifying AD patients from a combination of SPECT and PET data.

Zhang et al [249] reported the first work to combine not only imaging but also biological

data in the form of levels of CSF biomarkers into multi-modal classifier. They used a linear

SVM with an intrinsic feature selection mechanism to rank top features of 93 ROIs (MR or

FDG-PET) and CSF biomarkers were added directly as features. This method achieved high

classification accuracy.

The next step in utilizing these classifiers is to determine their effectiveness in the prediction

of future cognitive decline in addition to classification problems. Combining MR, FDG-PET

and CSF data is again the focus of a later paper by Zhang et al [250] who presented a

method, multi-modal multi-task (M3T), that uses this disparate data to estimate both

continuous variables, such as scores on neuropsychological tests (MMSE, ADAS-cog), by

regression and a categorical variable (classification class). M3T combines a multi-task

feature selection with a multi-modal SVM that fuses selected features for regression and

classification. They found that M3T was more effective than a concatenation method of

combining features in both classification and prediction of future clinical scores and

comparable to other reported prediction methods such as that described by Misra et al [118].

To account for the fact that brain structures in imaging data are interconnected, Wang et al

[251] proposed the Sparse Multi-task Regression and Feature Selection (SMART) method

that jointly analyzed all imaging and clinical data using a single regression model with

sparse multi-task learning, and found that this method was an improvement on multi-variate

regression when used to predict decline in AVLT scores.

For methods based on combined modalities to ultimately be useful in a clinical setting, they

must present patient data clearly to aid in the physician's diagnosis and ideally help reduce

diagnostic errors. Mattila et al [252] and Soininen [253] created a diagnostic decision

support system by representing cognitive, imaging, biological and genetic data in a graphical

form termed a Disease State Fingerprint (DSF), as well as statistically distilling a score, the

Disease State Index (DSI), that reflects the likelihood of a patient having AD (Fig. 22). The

DSI can be used for both diagnostic classification and prediction of future decline.

3.5.5 Blood-based biomarkers—The identification of a blood-based biomarker for AD

has been the goal of researchers for many years [254] and ADNI's extensive collection of

biological specimens provides an ideal testing ground for new methods developed to this

end [255]. The improved precision performance of a robotized version of the multiplex

xMAP INNO-BIA plasma Aβ immunoassay for measurement of Aβ1-40 and Aβ1-42 in a

longitudinal study of ADNI study subjects was described by Figurski et al [256]. Using this

method in a longitudinal study of complementary measures of Aβ pathology (PiB, CSF and

plasma Aβ) and other biomarkers in the ADNI cohort, Toledo et al [257] correlated baseline

Aβ1-40 and Aβ1-42 plasma measurements in 205 cognitively normal subjects (CN), 348

patients with MCI and 162 with AD with PiB PET, MRI, and CSF tau and Aβ1-42

measures. Plasma Aβ1-42 levels were mildly correlated with other biomarkers of Aβ
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pathology and were associated with infarctions in MRI. They were also related to baseline

and longitudinal diagnoses in addition to a number of health conditions. Longitudinal

measurement of Aβ1-40 and Aβ1-42 plasma levels showed modest value as a prognostic

factor for clinical progression, suggesting that plasma Aβ measurements have limited value

for disease classification and prediction over the three year follow-up. However, with longer

follow-up, within subject plasma Aβ measurements could be used as a simple and minimally

invasive screen to identify those at increased risk for AD. This study and a recent review

[258] emphasized the need for a better understanding of the biology and dynamics of plasma

Aβ as well as for longer term studies to determine the clinical utility of measuring plasma

Aβ. Finally, Soares et al [259] recently reported a study conducted in collaboration with

Biomarkers Consortium Alzheimer's Disease Plasma Proteomics Project that sought to

develop a blood-based test as a screen for AD for early intervention. A multiplex

immunoassay panel was used to identify plasma biomarkers of AD using ADNI plasma

samples at baseline and at 1 year. These were analyzed from 396 (345 at 1 year) patients

with MCI, 112 (97 at 1 year) patients with AD, and 58 (54 at 1 year) healthy control

subjects. Multivariate and univariate statistical analyses across diagnostic groups and

relative to the APOE genotype revealed increased levels of eotaxin 3, pancreatic

polypeptide, and N-terminal protein B-type brain natriuretic peptide in MCI and AD

patients, paralleling changes reported in CSF samples. Increases in tenascin C levels and

decreases in IgM and ApoE levels were also observed. All participants with APOE ε3/ε4 or

ε4/ε4 alleles showed a distinct biochemical profile characterized by low C-reactive protein

and ApoE levels and by high cortisol, interleukin 13, apolipoprotein B, and gamma

interferon levels. The use of plasma biomarkers improved specificity in differentiating

patients with AD from controls, supporting the potential usefulness of these analytes as a

screening tool. These studies have been extended by comparing the ADNI dataset with

similar data obtained from ADNI independent cohorts followed at the University of

Pennsylvania and Washington University as described by Hu et al [260]. This study used the

same targeted proteomic approach described above and measured levels of 190 plasma

proteins and peptides in 600 participants from two independent. 17 analytes were identified

as being associated with the diagnosis of very mild dementia/MCI or AD. Four analytes

(ApoE, B-type natriuretic peptide, C-reactive protein, pancreatic polypeptide) were also

found to be altered in clinical MCI/AD in the ADNI cohort (n=566). Regression analysis

showed CSF Aβ42 levels and t-Tau/Aβ42 ratios to correlate with the number of APOE ε/4

alleles and plasma levels of B-type natriuretic peptide and pancreatic polypeptide. Notably,

4 plasma analytes were consistently associated with the diagnosis of very mild

dementia/MCI/AD in these 3 independent clinical cohorts, but further studies are need to

determine if these plasma biomarkers may predict underlying AD through their association

with CSF AD biomarkers.

Most studies have examined either serum or plasma for potential biomarkers, but not both.

O'Bryant et al [255] sought to identify blood-based markers that were highly correlated

across both plasma and serum and to construct a classifier using them. They found 11

suitable proteins, including C-reactive protein, factor VIII, fatty acid binding protein and

adiponectin, and tested the classifier using ADNI biological samples.
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3.4 Other imaging methods

Rousseau [97] presented a method for generating a high-resolution image from a low-

resolution input, using jointly one low-resolution image and intermodality priors from

another high-resolution image to create a super-resolution framework, for instance, a high-

resolution T1-weighted image and a low-resolution T2-weighted image from the same

patient. The method, when tested on clinical images from ADNI data, automatically

generated high-resolution images from low-resolution input, and the authors suggest that

this method may permit the investigation of multimodal imaging at high resolution.

The problem of representing a high dimensionality of brain images amassed in common

neuroimaging applications was tackled by Gerber et al [98], who proposed that these images

can be approximated by a low-dimensional, nonlinear manifold representative of variability

in brain anatomy. They constructed a generative manifold model through kernel regression

and tested this using ADNI data, and their finding was that important clinical trends were

captured by this manifold when learned manifold coordinates and clinical parameters were

subjected to analysis by linear regression.

3.5 Statistical methods

Interpretation of imaging data is a key facet in the process of extracting meaningful

information from these scans. As the volume of neuroimaging data generated by ADNI

studies burgeons, there is an obvious need for more sophisticated analysis techniques.

Habeck and Stern [99] reviewed advances in multivariate analysis techniques that are being

developed to supersede the more commonly used univariate, voxel-by-voxel analysis of

imaging data. By evaluating the correlation or covariance of activation across brain regions,

these multivariate techniques produce results that can be interpreted as neural networks,

thereby addressing brain functional connectivity. Habeck and Stern [99] directed this review

specifically at neuroscientists to explain the “bewildering variety of (multivariate)

approaches …presented…typically by people with mathematics backgrounds.” In an effort

to further spread the word to neuroscientists about this technique, a video article is also

available [100].

Wu et al [101] presented a method to assess the reliability of hypometabolic voxels during

the statistical inference stage of analysis. The aim of this method was to incorporate the

differential involvement of each voxel into the multiple comparison correction, as opposed

to current methods in which each location is treated equally. They used statistical parametric

mapping and bootstrap resampling to create a bootstrap-based reliability index and

compared this approach with the commonly used type I error approach, and found a strong,

but nonlinear, association between the two methods. The authors suggest that this approach

could have utility in both cross-sectional and longitudinal studies, in the early detection of

AD, and in tracking disease progression in clinical trials.

A method to control for the effects of confounding variables was described by Dukart et al

[261] and applied to the problem of controlling for the effects of age in group comparisons.

Using a linear detrending model in terms of the general linear model, the method is able to

control for the effects of age between groups of subjects. The application of this correction
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to either SVM classification or to the detection of disease-related GM using VBM in AD

patients who differed in age from control subjects resulted in substantial gains in accuracy.

Singh et al [102] presented a new method to relate complex anatomical changes observed in

AD patients with changes in cognition based on a statistical analysis of large deformation

diffeomorphic metric mapping. In this method, the diffeomorphic transformations were

analyzed using a multivariate and partial least squares approach without segmentation or the

use of a priori defined ROIs. They found that this approach associated ventricular expansion,

cortical thinning, and hippocampal atrophy with worsening scores on neuropsychological

variables such as ADAS-cog, Rey Auditory Verbal Learning Test (AVLT), and clinical

dementia rating-sum of boxes (CDR-SB), confirming that this data-driven approach was

able to reach similar conclusions as other studies based on predefined ROIs [261,262].

3.6 Genetics methods

Genetic contributions to AD are being revealed by GWAS that search for associations

between QTs in the form of imaging or biomarker data and genetic loci. The standard

approach (mass univariate linear modeling), which compares each phenotype–genetic loci

pair individually and then ranks the association in terms of significance, is extremely

computing-intensive and can miss information from areas surrounding a particular

association. Vounou et al [103] proposed a new method, sparse reduced rank regression,

which overcomes these problems by enforcing sparsity of regression. They found sparse

reduced rank regression to be less computing-intensive and to have better power to detect

deleterious genetic variants than mass univariate linear modeling. An alternative approach to

reducing computational requirements, while retaining a high degree of significance to AD,

has been presented by Chen et al [104], who used each of 142 preselected imaging ROIs as

QTs in a GWAS. Heat maps and hierarchical mapping were then used to organize and

visualize results and to select target SNPs, QTs, or associations for further analysis.

Meda et al [263] presented a method for multivariate analysis of GWAS data based on the

premise that genetic determinants are not randomly distributed throughout the genome, but

tend to cluster in specific biological processes related to AD. Their method used a parallel

ICA and a hypothesis-free, data-driven statistical technique to simultaneously examine

multiple modalities. They found that the parallel ICA was effective on the large sample,

sizes in ADNI and that it identified clusters of SNPs potentially related in different

metabolic pathways associated with AD. Similarly, to address the issue of underlying

interactions between SNPs and QTs such as imaging data, Wang et al [264] developed a

novel method, Group-Sparse Multi-task Regression and Feature selection (G-SMuRFS) that

is built on multivariate regression analysis with a new form of regularization. Application of

the method using the ADNI data-set demonstrated its ability to predict continuous responses

of brain imaging measures and to select relevant SNPs in a more efficient manner than

conventional multivariate linear regression.

In addition to computational challenges, imaging genetics studies with multiple testing are

also prone to false-positive results, and both familywise error and false discovery rate

corrections are used to adjust significance thresholds across multiple voxels. Silver et al

[105] measured false-positive rates using VBM to investigate the effect of 700 null SNPs on
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GM volume in the ADNI cohort. They found that although false-positive rates were

generally found to be well controlled, under certain conditions, such as under low cluster-

forming thresholds, the false-positive rates were substantially elevated. Consequently, they

proposed the use of parametric random field theory cluster size inference and alternative

nonparametric methods under different circumstances.

3.7 Methods for Clinical Trials

ADNI data has recently been utilized to test methods for improving clinical trials of

compounds with the potential to attenuate the progression of AD. These are commonly

designed as long-term, randomized, placebo-controlled trials (RPCTs), which present the

problem of whether the exposure of pre-symptomatic AD patients to placebos long term is

ethical. Spiegel et al [265] proposed a method to overcome this ethical dilemma with a

placebo group simulation approach (PGSA) which involved construction of univariate and

multivariate models based on baseline data of MCI patients in ADNI. Gender, obesity,

Functional Activities Questionnaire (FAQ), MMSE, ADAS-cog and Neuropsychological

Battery scores were used to predict ADAScog scores after 24 months and models

corresponded closely to real observed values (R2 = .63, residual S.D = 0.67). These results

suggest that the PGSA approach has the potential to complement future RCPTs for AD

drugs. Another issue with RCPTs is the selection of a primary end-point, which is often

either time-to-event (for example, progression to dementia) or a continuous measure of

disease severity such as ADAS-cog to assess the effect of the treatment. Donohue et al [266]

compared the power to detect an effect of these two methods by using Cox proportional

hazard models to estimate time-to endpoint, and linear mixed models to estimate continuous

variables and found that linear models consistently demonstrated greater power than Cox

proportional hazard models when tested on the ADNI data-set (Fig. 27). The authors

concluded that linear models may be more robust and appropriate for the detection of MCI

to AD progression in clinical trials of MCI patients.

3.8 Methods papers: Summary and conclusions

Papers focused on method development have been instrumental in facilitating ADNI

research thus far and promise to deliver improvements in reliability, efficiency, and

effectiveness in ADNI-GO and ADNI-2. The establishment of standardized protocols that

account for problems of variability, both across the multicenter setting of ADNI and

longitudinally, has been a primary accomplishment. Likewise, the development of methods

for automatic tissue registration and segmentation that avoid the necessity of time-

consuming and costly manual segmentation is critical for the analysis of ADNI data. The

majority of these approaches are atlas-based, although statistically based registration has

also been proposed. Automatic segmentation of the hippocampus, a prominent AD

biomarker, poses particular challenges because of its size and location, and several studies

have made contributions to the analysis of its volume, shape, and pose. TBM and DBM

methods and fractal approaches offer an alternative to volumetric ROI analysis. Methods to

allow the classification of patients according to disease status have primarily been based on

SVMs and the related RVMs, which are used to build classifiers that can include MRI,

FDG-PET, biomarker, APOE ε4, and cognitive data. Finally, statistical methods have been
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developed to deal with the complexities of the volume and diverse types of data generated

by ADNI studies.

In the 2011 – 2012 year, focus has shifted from the establishment of standardized protocols

and methods for automatic segmentation and registration of the hippocampus to other areas

including extracting information from cortical thickness data and developing increasingly

sophisticated and powerful classification methods that select and combine AD-like features

from multiple modalities. Methods to predict future clinical decline have appeared,

sometimes in conjunction with classifiers – ‘multi-tasking’ is a recent area of interest in

methods development. Another trend has been the use of the ADNI data set, either images or

biological materials, as a test set for approaches beyond the bounds of the original ADNI

objectives, such as the development of blood-based biomarkers for AD. The importance of

GWAS studies in unraveling the genetic contribution to AD is reflected in the publication of

methods that capitalize on the underlying interconnectedness of genes with quantitative

traits. Finally, finding solutions to ethical problems associated with RCPTs and increasing

clinical trial efficiency have been the focus of two reports.

4 Studies of the ADNI cohort

4.1 Clinical characterization

Central to achieving the goals of ADNI was the recruitment of a study population that

mirrors cohorts used in MCI and mild AD trials. Petersen et al [106] presented a baseline

and 12-month longitudinal clinical characterization of the ADNI cohort, comprising 229

normal control subjects, 398 subjects with MCI, and 192 subjects with mild AD, and

provided clear support for the success of ADNI in this regard. The demographic

characteristics of the participant groups, given in Table 3, indicate that the cohort was

mostly white and well educated, and that there were a high proportion of APOE ε4 carriers,

consistent with populations recruited for clinical trials. At baseline, each study group

differed significantly in a range of cognitive measures, with the MCI group intermediate

between the control and AD groups in measures of memory impairment and in levels of CSF

biomarkers (Table 4). In contrast to AD subjects who were impaired in virtually all

cognitive measures, MCI subjects were only mildly impaired in nonmemory cognitive

measures. After 12 months, 16.5% of MCI subjects had converted to AD, and a greater

increase in the ADAS-cog was seen in the AD group compared with the MCI group. Little

change was observed in control subjects. The study also found that baseline Aβ-42 levels

were predictive of the progression of clinical measures over 12 months.

4.2 Medication use

Medication use among the ADNI cohort was investigated by Epstein et al [107]. They found

a high rate of polypharmacy, with 85% of participants taking more than four medications,

the average being eight (SD = 4). Moreover, 22% of participants reported taking one or

more Beers list medications deemed to be potentially dangerous in the elderly population.

The most common medications for symptomatic treatment of AD or MCI were the

cholinesterase inhibitor donepezil and the N-methyl-D-aspartate partial receptor agonist

memantine, which were frequently taken as a combination therapy. Despite the lack of FDA
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approval for use of these drugs to treat MCI, donepezil, memantine, and other

cholinesterases were commonly used by MCI patients. Women, less educated, and more

elderly participants were less likely to receive treatment. Schneider et al [108] focused on

the use of cholinesterase inhibitors and memantine in the ADNI cohort. They found that

44% of MCI patients and 85% of mild AD patients were treated with cholinesterase

inhibitors, and that 11% of MCI patients and 46% of mild AD patients were treated with

memantine. In both patient groups, use of these medications was associated with increased

cognitive impairment at baseline, a higher rate of clinical decline over 2 years, and a more

rapid progression to dementia in MCI patients. Cholinesterase inhibitors and memantine

appeared to be more frequently prescribed to patients diagnosed as having MCI due to AD,

despite a lack of evidence from clinical trials and lack of FDA approval for this treatment.

The authors suggested that use of these medications may affect the interpretation of clinical

trial outcomes.

4.3 Baseline and longitudinal studies of biomarker changes during disease progression

ADNI has afforded a unique opportunity to examine biomarker changes that occur during

disease progression in a large, well-defined cohort. Using MRI, CSF, 11C-PiB PET, and

FDG-PET data, cross-sectional and longitudinal studies focused either on evaluating spatial

pattern and regional rates of atrophy or on characterizing biomarkers for varying disease

stages have together resulted in a more detailed and coherent picture of this complex

process.

4.3.1 Magnetic resonance imaging—A cross-sectional study by Fennema-Notestine et

al [109] examined the feasibility of high-throughput image analysis to detect subtle brain

structural changes in the early stages of AD. They further divided the MCI group, based on

neuropsychological performance, into single-domain and multidomain groups, which they

proposed represented earlier and later stages in disease progression, respectively. Using

comparisons of cortical thickness, they found a pattern of progressive atrophy from normal

control subjects to single-domain MCI subjects, to multidomain MCI subjects, and finally to

subjects with AD (Fig. 7). When ROIs were examined, they found that the regions that

differed between the control group and the single-domain MCI group included not only the

hippocampus and entorhinal cortex, which had the largest effect sizes, but also other

temporal regions, the temporal horn of the lateral ventricle, rostral posterior cingulate, and

several parietal and frontal regions. Relative to control subjects, multidomain MCI patients

had greater differences in the same regions as well as in the lateral inferior, middle, and

superior temporal gyri and fusiform cortices. Additional atrophy was seen in AD patients

relative to control subjects in the inferior parietal, banks of the superior temporal sulcus,

retrosplenial, and some frontal regions. Similar results were reported in a cross-sectional

study by Karow et al [110], who found a pattern of atrophy spreading from the mesial

temporal lobe in MCI patients to widespread areas in AD patients patients and by Asku et al

[240] who differentiated between MCI converters and non-converters and found the most

active areas of degeneration in converters tended to lie in the parietal and temporal cortex,

whereas those areas discriminating between AD and control patients included occipital and

frontal regions. Fennema-Notestine et al [109] also explored the trajectories of change of

ROIs over the course of the disease and found that although some regions, such as mesial
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temporal regions, exhibited a linear rate of atrophy through both MCI stages to AD, other

regions, such as the lateral temporal middle gyrus, retrosplenial cortex, inferior parietal

cortex, and rostral middle frontal cortex, exhibited accelerated atrophy later in the disease.

The idea that rates of change of atrophy are not uniform but vary by disease stage is

supported by several studies. When MCI groups were classified according to subsequent

clinical outcome, Leung et al [59] found higher rates of hippocampal atrophy in MCI-c than

MCI-nc patients. McDonald et al [111] examined regional rates of neocortical atrophy in the

ADNI cohort, dividing MCI subjects into two groups by their CDR-SB scores. The less

impaired MCI group had CDR-SB scores of between 0.5 and 1.0, whereas the more

impaired group had CDR-SB scores of between 1.5 and 2.5 (AD subjects had CDR-SB

scores of >2.5). They found that over the course of disease progression, atrophy changed

from the medial and inferior lateral temporal, inferior parietal, and posterior cingulate

cortices initially, to the superior parietal, prefrontal, and lateral occipital cortices, and finally

to the anterior cingulate cortex (Fig. 8). Moreover, the rates of change differed among the

three groups. The least impaired MCI patients showed the greatest rates of atrophy in the

medial temporal cortex, whereas later in disease progression, rates of atrophy were higher in

the prefrontal, parietal, and anterior regions. Similar patterns were found by several other

groups using a range of MRI methods. Hua et al [112] and Leow et al [113] both used TBM

to create 3-D maps of structural changes over 12 months. Risacher et al [114,115] examined

a variety of structural MRI markers for their sensitivity to longitudinal change and clinical

status using multiple methods, including VBM and ROIs, whereas Schuff et al [116] focused

on changes in hippocampal volume, and McEvoy et al [117] calculated an atrophy score

based on ROIs most associated with AD atrophy. Collectively, these studies showed atrophy

spreading from the MTL to the parietal, occipital, and frontal lobes over the course of the

disease, with MCI patients, in general, having a more anatomically restricted AD-like

pattern of change. MCI subjects who converted to AD within the time frame of the study

(MCI-c) had a more AD-like pattern of atrophy, and nonconverters (MCI-nc) had a pattern

more intermediate between control and AD subjects (Fig. 9). Several studies

[114,115,118,119] divided the MCI group into those patients who converted to AD within a

year and those who remained stable. Each group had distinct profiles when assessed using a

score derived from patterns of structural abnormality, the future converters having mostly

positive scores that reflected a largely AD-like pattern of brain atrophy. Conversely, the

distribution of abnormality scores in the MCI-nc group was bimodal, reflecting the

heterogeneity of this group that appears to contain some members who, with abnormality

scores close to those of AD patients, are likely to convert in the near future.

The highest rates of change occurred in AD subjects and MCI-c patients in measures of

hippocampal volume and entorhinal cortex thickness [115,120]. Schuff et al [121] found that

atrophy was detectable at 6 months and accelerated with time to 12 months in MCI and AD

subjects, with the highest rates of atrophy seen in AD patients (Fig. 10). Hua et al [120] used

TBM to examine the effects of age and sex on atrophic rates and found that the atrophic

rates of women were 1% to 1.5% higher than for men. They also observed a 1% increase in

atrophic rate and a 2% increase in ventricular expansion for every 10-year decrease in age,

with correlations strongest in the temporal lobe.
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A different data-driven approach to determining the time course of brain volume changes in

healthy elderly, MCI, and AD subjects without using a priori models was taken by Schuff et

al [116]. Using generalized additive models to analyze serial MRI scans over 30 months,

they found that atrophy rates varied nonlinearly with age and cognitive status, most

noticeably in temporal regions, and that atrophy tended to level off in control and MCI-nc

subjects, but decline further in MCI-c and AD patients. The authors suggest that these

differences are a reflection of the different processes involved in healthy versus disease-

related neurodegeneration. The regions with the greatest effect sizes between young control

and AD subjects were the entorhinal cortex, the hippocampus, and the lateral ventricles,

suggesting that rates of change in these regions have potential as biomarkers for the early

detection of AD.

Beyond simple volumetric analysis, one approach to analyzing brain morphometric changes

in greater detail has been to assess changes in shape of ROIs. Qiu et al [122] used large

deformation diffeomorphic metric mapping to reveal that the anterior of the hippocampus

and the basolateral complex of the amygdala had the most surface inward deformation in

MCI and AD patients, whereas the most surface outward deformation was found in the

lateral ventricles (Fig. 11). These results are in agreement with the volumetric findings of

Apostolova et al [123] and also with many findings documenting the enlargement of the

lateral ventricles with disease progression. Greene et al [267] examined atrophy of sub-

regions of the hippocampus over time and found that the head appears to be initially affected

followed by the body and tail of the structure.

Disease progression appears to be influenced by other factors such as genotype, gender and

age differences. The influence of the APOE ε4 allele on GM loss in MCI patients was

investigated by Spampinato et al [268] who found greater atrophy in a variety of regions

including the hippocampus, temporal and parietal lobes and insulae in MCI converters who

were carriers compared to non-converter carriers. GM loss was greatest in the first 12

months, supporting the idea of non-linearity of atrophy throughout disease progression.

Furthermore, they found no difference in cognitive decline between carriers and non-carriers

of the APOE ε4 allele, suggesting that accelerated hippocampal and neocortical atrophy did

not completely account for the cognitive deterioration in this study. Skup et al [269]

examined longitudinal atrophy in selected ROIs to look for sex-specific patterns of atrophy.

They found that female MCI and AD patients differed from controls in right caudate nucleus

atrophy, that between MCI and AD patients, there were female-specific differences in insula

and amygdala atrophy and male specific differences in the atrophy of the left precuneus, and

that sex differences tended to be bilateral in MCI patients and side-specific in those with

AD. These results suggest that disease progression has gender differences that may be more

widespread during the MCI stage. The question of whether disease progression is a set

process over a range of ages was examined by Stricker et al [270] who compared changes in

cognition and brain morphometry in the young old (ages 60-75) and the very old (ages >80

years) compared to age-matched controls. In the very old group, there was comparatively

less atrophy in a number of regions and less impairment in a number of cognitive domains

than in the young-old group, likely a reflection of normal age-related changes in the control
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group. Conversely, atrophy of the hippocampus and MTL substantially eclipsed these age-

related changes and remained salient markers of AD, regardless of age.

4.4 Associations between characteristics of the ADNI cohort

A major area of focus in research using ADNI data has been the elucidation, both at baseline

and longitudinally, of associations between various imaging, CSF, genetic, and clinical

correlates in different clinical groups to gain a better understanding of the interplay of

biomarkers throughout disease progression.

4.4.1 Magnetic resonance imaging

4.4.1.1 Temporal lobe: Structures within the temporal lobe have long been associated with

AD decline because of their critical role in the formation of long-term memory, one of the

first functions to be affected in disease progression. Leow et al [113] found temporal lobe

atrophy to be associated with increased cognitive impairment in MCI patients, as indicated

by changes in CDR, MMSE scores, and the AVLT (Fig. 12). Among the structures of the

temporal lobe, hippocampal atrophy is the best studied structural biomarker, as it is one of

the earliest structures to degenerate in AD. In a small initial study, Morra et al [63] found

that bilateral hippocampal atrophy at baseline was strongly correlated with both MMSE and

CDR-SB (Table 5). A further larger study by the same group [124] examined rates of

hippocampal atrophy over 12 months and found that these correlated with both baseline

cognitive scores on MMSE and global and sum of boxes CDR and with longitudinal change

in these measures (Table 5). Wolz et al [64] also revealed significant correlations between

rates of hippocampal atrophy and both baseline MMSE and CDR, and changes in these

measures over 12 months (Table 5). Additionally, a study by Schuff et al [121] found that

rates of change of MMSE and ADAS-cog were associated with rates of hippocampal

atrophy (Table 5). Using TBM, Hua et al [73] found that baseline temporal lobe atrophy was

associated with both baseline and change in the CDR-SB in MCI and AD patients, but with

change in the MMSE only in the AD group, providing further evidence for the acceleration

of atrophic change with disease progression.

The relationships between hippocampal volume and memory retention were examined by

Apostolova et al [123], who found that MCI patients had bilateral associations between

hippocampal volume and radial distance and three tests of delayed recall (DR): ADAS-cog-

DR, AVLT-DR, and the Wechsler Logical Memory Test II-DR, whereas associations

between these tests in AD patients were stronger in the left hippocampus both at baseline

and at the 12-month follow-up (Table 5). In addition, they found highly significant regional

associations for memory performance, especially in the CA-1 subregion and the subiculum

on the anterior hippocampal surface. Greene et al [267] examined the relationship between

subregions of the hippocampus and neuropsychological measures and atrophy in other

regions. Most cognitive decline measures were correlated most strongly with the

hippocampal head, a subregion that includes the histologically defined CA1 and CA3

subfields (Table 5). With both cognitive and volumetric measures, the strength of

association diminished from the head to the body to the tail of the hippocampus (Table 5).

Associations between temporal lobe degeneration and memory performance (Wechsler
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Memory Scale-Revised—Logical Memory, immediate recall and DR) were also found by

Hua et al [73].

Along with hippocampal atrophy, ventricular expansion is a hallmark of brain morphometric

changes that occur during AD progression and has great potential as a structural biomarker,

as the lateral ventricles are comparatively easy to measure, because of their high contrast

under MRI, and are highly sensitive to disease progression. Evans et al [125] found that

ventricular expansion differentiated between patient groups was associated with ADAS-cog

scores in AD patients, and that MCI-c patients had higher rates of ventricular expansion than

MCI-nc patients. Chou et al [126] automatically mapped ventricular geometry and examined

correlations between surface morphology, clinical decline, and CSF biomarkers. They found

that ventricular enlargement at baseline correlated with diagnostic group, depression

severity, both baseline and rates of change of cognitive function (MMSE and CDR-SB), and

lower CSF Aβ-42. In a subsequent study by the same group [127] using automated radial

mapping to generate statistical maps, ventricular enlargement was found to correlate with a

large number of measures of clinical decline as well as with lower levels of CSF Aβ-42 and

the APOE ε4 allele (Fig. 13). Chou et al [126] also noted expansion of the posterior regions

of the ventricles in MCI patients and in the frontal regions of the superior horns in AD

patients compared with control subjects, suggesting a topographic sequence of

morphometric change throughout disease progression.

The relationship between hippocampal atrophy and regional neocortical thinning was

investigated by Desikan et al [163] who sought to determine whether disruptions to the

medial temporal lobe and heteromodal association areas, shown to preferentially accumulate

amyloid plaques and neurofibrillary tangles, contribute to a functional isolation of the

hippocampus. In all patients, the strongest associations with hippocampal atrophy were with

thinning of regions in the temporal lobe. However, additional associations were identified in

control and MCI, but not AD patients within the occipital, frontal and parietal cortices.

The studies of Morra et al [124], Wolz et al [64], Hua et al [112], and Risacher et al [115] all

found that carriers of the APOE ε4 allele had higher rates of hippocampal atrophy than

noncarriers. In contrast, Schuff et al [121] found that increased rates of hippocampal atrophy

were associated with APOE ε4 in the AD, but not MCI or control, group. Using Structural

Abnormality Index (STAND) scores to reflect the overall level of AD-like anatomic

features, Vemuri et al [128] also found that the APOE ε4 allele contributed to MRI atrophy.

Hua et al [112] found that the APOE ε4 allele had a dose-dependent detrimental risk with

greater atrophy in the hippocampus and temporal lobe in homozygotes than heterozygotes in

MCI and AD groups (Fig. 13). The recently identified AD risk allele GRIN2b was

associated with higher rates of temporal lobe atrophy in the pooled group, but more weakly

than APOE ε4 [120]. Other thus far unidentified genetic risk factors likely contribute to AD,

with epidemiological studies suggesting maternal history of the disease increases the risk of

developing AD. Andrawis et al [129] examined the influence of maternal history of

dementia on hippocampal atrophy and found smaller baseline and 12-month follow-up

hippocampal volumes in MCI patients with maternal, but not paternal, history. APOE ε4-

positive patients also had decreased hippocampal volumes, regardless of parental history.

These results suggest the involvement of maternally inherited genetic material, encoded on

Weiner et al. Page 37

Alzheimers Dement. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



either the X chromosome or mitochondrial genome. The latter may be more likely, given

that decline in mitochondrial function has been found to lead to increased generation of

reactive oxygen species, enhanced apoptosis, cell loss, and brain atrophy [129].

4.4.1.2 Other ROIs: Although the caudate has not been the subject of intensive AD

research, it plays a crucial role in the formation of new associations required for the

acquisition of explicit memories. Madsen et al [130] found that baseline caudate atrophy

was associated with a number of clinical and biochemical measures, including, most

strongly, body mass index (BMI), in the AD group alone and in the pooled sample, and

CDR-SB and MMSE scores at baseline (Table 5). There appeared to be preferential right

caudate atrophy in AD patients, and the authors proposed that caudate atrophy might

function as a complementary biomarker to other structural measures. The inferior parietal

lobe (IPL) is involved in sensory and motor association and possibly comprises part of the

memory circuitry. Greene and Killiany [131] examined the associations between subregions

of the IPL (gyrus, banks, and fundus) and cognitive measures in control, MCI, and AD

subjects. They found that compared with control subjects, MCI patients differed only in the

thickness of the banks of the left IPL, a change that correlated with decreased scores in the

AVLT-DR, whereas AD patients had significant morphometric changes in all subregions of

the right IPL. These results suggest a temporal sequence of changes during disease

progression, with atrophy beginning in the left IPL and spreading to the right.

Like the IPL and caudate, the role of the amygdala in AD has received comparatively little

attention despite post-mortem evidence to suggest that atrophy is similar to that observed in

the hippocampus. Poulin et al [271] found a similar degree of atrophy in both structures in

patients with early AD. They also found that amydalal atrophy had a comparable association

with decline in the MMSE but a weaker association with decline in the CDR-SB than

hippocampal atrophy (Table 5), suggesting that cognitive changes in mild AD may be

caused by atrophy of both these MTL structures.

4.4.1.3 Multiple ROIs and whole brain studies: Other MRI studies have used approaches

based on the whole brain or multiple ROIs, rather than specific ROIs. Evans et al [125]

examined brain atrophy rates using the brain BSI technique and found atrophy to be

associated with MMSE and ADAS-cog scores in MCI and AD patients. Within the MCI

group, they found greater rates of change, in a range similar to that observed in the AD

group, in subjects who converted to AD within the time frame of the study. Stonnington et al

[91] found that whole brain GM at baseline predicted baseline scores on the ADAS-cog and,

MMSE, but not on the AVLT (Table 5). Similarly, Zhang et al [272] used the Brain and

Lexion Index (BALI), a score summarizing brain structural changes in aging, to assess

changes in cognition throughout disease progression and found that it correlated

significantly with baseline MMSE (β = −0.310, P = .008) and 2 year follow-up MMSE (β =

−0.725, P = .0010 and ADAScog scores at baseline (β = 0.612, P = .013) and at follow-up (β

= 0.126, P = .003).The latter is a more specific test of memory, and the authors suggest that

whole brain methods may be preferentially more highly sensitive to tests, unlike the AVLT,

that involve diverse brain regions. Vemuri et al [132] used STAND scores as a measure of

the degree of AD-like anatomic features to assess correlations between brain morphometric
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changes and cognitive scores, and found that STAND scores were highly correlated with

CDR-SB and MMSE scores in individual groups and the pooled sample (Table 5). These

studies lend support for atrophy of the whole brain or multiple ROIs as biomarkers, based on

their ability to differentiate between patient groups and healthy control subjects, and to track

disease progression and clinical decline.

A measure derived from a multidimensional scaling method for quantifying shape

differences using DBM [75] had a strong inverse correlation with the MMSE (r = −0.53),

although the findings were limited by small sample size. Using the related method of TBM,

Ho et al [133] created regional maps of changes in brain tissue and used the resulting

Jacobian values to represent brain tissue excess or deficit relative to a template. They found

that lower brain volume in the frontal, parietal, occipital, and temporal lobes was associated

with higher BMI in MCI and AD patients, and that ventricular expansion correlated with

higher BMI in AD, but not MCI, patients (Fig. 14). Every unit increase in BMI was

associated with a 0.5% to 1.5% decrease in brain volume in patients of the ADNI cohort.

Elevated levels of homocysteine, a risk factor for AD, are associated with cortical and sub-

cortical atrophy and may promote the magnitude of atrophy in the brain. Rajagopalan et al

[273] found that elevated homocysteine levels (>14μM) was significantly associated with

atrophy in frontal, parietal and occipital WM irrespective of disease status and in the MCI

group alone, suggesting that Vitamin B supplements such as folate that reduce homocysteine

concentrations may help prevent AD.

4.4.2 [18F]-fluorodeoxyglucose-positron emission tomography—FDG-PET has

been used by several groups to investigate relationships between cerebral glucose

hypometabolism and other factors, including cognitive measures and CSF biomarkers.

Several papers confirmed that there is a characteristic regional pattern of hypometabolism in

MCI and AD patients. Wu et al [101] found that hypometabolic voxels were associated with

the posterior cingulate/precuneus and parietotemporal regions. Lower bilateral cerebral

metabolic rate for glucose (CMRgl) at baseline in these regions and in the frontal cortex was

associated with higher CDR-SB and lower MMSE scores in MCI and AD groups [134]

(Table 5). Although the pattern of hypometabolism was similar in the two groups, the

magnitude and spatial extent were greater with increasing disease severity. In the AD group

alone, however, lower MMSE correlated with lower left frontal and temporal CMRgl,

suggesting that the characteristic pattern of baseline reductions in glucose metabolism shifts

to the frontal cortex after the onset of dementia. Chen et al [104] investigated declines in

CMRgl in statistically predefined ROIs associated with AD over 12 months in the ADNI

cohort and found significant changes in MCI and AD groups compared with control subjects

bilaterally in the posterior cingulate, medial and lateral parietal, medial and lateral temporal,

frontal, and occipital cortices. These changes correlated with CDR-SB, but not ADAS-cog,

scores in both groups, and with MMSE scores in the MCI group (Table 5). Landau et al

[135] found a greater decline in CMRgl in all a priori defined ROIs in AD patients and in a

composite score of ROIs in MCI patients compared with control subjects. Longitudinal

glucose decline was associated with concurrent ADAS-cog scores and decline on the

Functional Activities Questionnaire (FAQ), validating the relevance of longitudinal

measures of glucose metabolism to both cognitive and functional decline. The annual
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decline in the ADAS-cog and FAQ was greatest in AD patients, followed by the MCI and

control groups, in accordance with an acceleration of the disease process over time (Table

5). The hypometabolism index reported by Chen et al [85] correlated with cognitive

measures of disease severity, hippocampal volume, and CSF biomarkers (Table 5). These

papers support the use of glucose metabolism as a sensitive measure of cognition in AD.

4.4.3 Cognitive

4.4.3.1 Association with imaging or CSF biomarkers: A number of studies have focused

on the relationship between cognitive function and imaging or CSF biomarkers. Atrophic

changes in the episodic memory network (Fig. 15), which is composed of MTL structures,

medial and lateral parietal cortical areas, and prefrontal cortical areas and is involved in the

formation of new episodic memories, are presumed to underliongoing memory loss in AD.

Walhovd et al [136] studied how baseline brain morphometry and metabolism within the

episodic memory network and APOE genotype predicted memory, as assessed by the

AVLT. They found that in the total sample of the ADNI cohort, hippocampal volume and

metabolism, parahippocampal thickness, and APOE genotype predicted recognition,

whereas hippocampal volume and metabolism, cortical thickness of the precuneus, and

inferior parietal metabolism predicted learning, suggesting that MTL structures are related to

learning, recall, and recognition, whereas parietal structures are involved solely in learning

(Table 5). The authors concluded that MRI and FDG-PET imaging have differential

sensitivity to memory in AD and thus provide complementary information. Episodic

memory likely involves a number of different cognitive processes, such as initial encoding,

learning on repeated exposure, and DR, which may be subserved by disparate components

of the episodic memory network. Wolk and Dickerson [137] investigated whether verbal

episodic memory could be fractionated into dissociable anatomic regions in mild AD

patients, using cortical thickness of predefined “AD signature” ROIs and hippocampal

volume as structural measures and different stages of the AVLT as a verbal memory

measure. They found that initial immediate recall trials were most significantly associated

with the temporal pole region, but that regions in the MTL became more significantly

associated in later trials. In tests of DR, only the hippocampus correlated with performance,

whereas the perirhinal/entorhinal cortex was most strongly associated with delayed

recognition discrimination. The authors concluded that their results lend support to models

hypothesizing that dissociable brain regions are involved in differential episodic memory

processes. Associations between memory learning and brain morphometry in the MTL were

found in a study by Chang et al [138]. MCI patients were differentiated into learning-deficit

and retention-deficit subgroups using the AVLT. Low memory retention was associated

with changes in the medial temporal regions, particularly the hippocampus and entorhinal

cortex, whereas low memory learning correlated with a more widespread pattern of

morphometric changes beyond the temporal lobe, including areas of the frontal and parietal

lobes (Table 5). While memory loss is a hallmark of AD, a subset of MCI patients is

impaired primarily in their executive function. Dickerson and Wolk [139] identified

dysexecutive and amnestic phenotypes in patients with MCI or very mild AD based on

performance on the Trail Making Test and ADAS-cog subscale: Word recognition. They

found that the memory-impaired group had a more frequent occurrence of the APOE ε4

allele status than the dysexecutive group, and that patients with low executive function had
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thinner frontoparietal cortical regions and were more impaired in daily life than those with

predominantly memory impairment. A further study by Chang et al [140] found that MCI

patients with high executive function performed better on tests of verbal memory than those

with low executive function, and that morphometric measures of the two groups differed

primarily in the dorsolateral prefrontal and posterior cingulate cortices, where more thinning

was evident in low executive function patients (Table 5). Results from both studies suggest

that the dysexecutive phenotype may reflect differences in underlying pathology in brain

regions beyond the MTL.

4.4.3.2 Neuroanatomic regions and cognition: The ideas that different brains regions

subserve different cognitive functions and that MCI is a heterogeneous construct led Wolk et

al [141] to examine the influence of APOE genotype on memory and executive function in

AD. When cortical thickness in predefined ROIs was examined in carriers and noncarriers

of the APOE ε4 allele who had a CSF biomarker profile consistent with AD, carriers were

more impaired in measures of memory retention and had greater atrophy in medial temporal

regions, whereas noncarriers were more impaired in tests of executive function, working

memory, and lexical access and had greater frontoparietal atrophy. The finding that

neuroanatomic regions thought to subserve different cognitive processes are differentially

affected by APOE ε4 allele status supports the hypothesis that this allele exerts its effect on

AD by influencing different large-scale brain networks.

The question of whether domain-specific cognitive deficits in MCI are caused by global

atrophy or progressive atrophy within specific regions was studied by McDonald et al [142],

who examined 2-year regional atrophy rates in MCI patients. Stepwise regression models

revealed that left entorhinal atrophy, left lateral lobe thinning, left temporal lobe atrophy,

left frontal lobe atrophy rate, and the right MTL atrophy rate were associated with memory

decline (Logical Memory II), naming decline (Boston Naming Test), semantic fluency

decline (Category Fluency Test), executive function (Trail Making Test B; TMT-B), and

clinical decline (CDR-SB), respectively (Table 5). This study affords a glimpse into the

specific structure–function relationships that occur early in disease progression and

enhances our understanding of the neural basis of cognitive impairments.

4.4.3.3 Functional decline: Although studies, such as those described previously, have

focused on the relationship between brain atrophy, APOE ε4 status, and cognitive decline,

relatively little is known about the biomarkers of functional decline, a hallmark of AD.

Impairment of instrumental activities of daily living (IADL) such as driving, handling

finances or preparing meals, leads to a greater burden on care-givers and institutionalization

as the patient loses independence. A number of papers have focused on the prevalence of

functional impairment, its rate of decline and its association with cerebral atrophy, other

cognitive measures and biological biomarkers. Brown et al [274] examined IADL in MCI

and AD patients and found that, despite a definition that does not include substantial

impairment of daily function, MCI was associated with a high prevalence of IADLs; nearly

three-quarters of MCI patients reported deficits in some items of the FAQ, a measure of the

ability of patients to maintain daily function, compared to 97.4% of patients with AD and

7.9% of cognitively normal controls. Functional impairment was also associated with

Weiner et al. Page 41

Alzheimers Dement. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



deficits in memory, processing speed and atrophy of the hippocampus and entorhinal cortex.

The rate of decline in the FAQ, a measure of the ability of patients to maintain daily

function, and how it is affected by cerebral atrophy and APOE ε4 allele status, was studied

by Okonkwo et al [143]. They found that AD patients had a higher rate of functional decline

than control subjects, with the rate of MCI patients intermediate between the two. Moreover,

MCI patients who subsequently progressed to dementia had higher rates of decline on the

FAQ than stable MCI patients. Increasing ventricle-to-brain ratio, the measure of

neurodegeneration chosen for the study, correlated with increased functional impairment in

MCI patients. Those patients who were both APOE ε4-positive and had elevated ventricle-

to-brain ratio were the most functionally impaired. These results have shown

neurodegeneration and APOE ε4 status to be associated with cognitive decline. Whereas the

APOE ε4 allele is detrimental to disease progression, the APOE ε4 allele may have a

protective effect. Bonner-Jackson et al [275] found that at 24 months, carriers of the APOE

ε4 allele showed significantly less functional decline that non-carriers in the pooled ADNI

cohort and that individual groups showed the same trend. This allele was also associated

with better scores in composite measures of memory and executive function in the pooled

sample, suggesting that the APOE ε4 allele may slow the rate of functional decline as well

as positively influence neurocognition.

Okonkwo et al [144] investigated the relationships between CSF biomarkers and everyday

function, as assessed by the FAQ. They found that biomarkers were more sensitive to

functional decline in control subjects and MCI patients than in AD patients, and that in the

latter group, scores on the ADAS-cog were more highly correlated with functional activity.

Combinations of tau and Aβ-42 abnormalities had the steepest rates of functional decline

across clinical groups. The authors suggested that the effect of CSF abnormalities on

functional decline is partially mediated by their effect on cognitive status. The relationship

between functional impairment and amyloid burden as assessed by 11C-PiB PET imaging

was subsequently investigated by Marshall et al [276] in control and MCI patients of the

ADNI cohort. They found that increased cortical PiB retention was associated with greater

IADL impairment in the pooled sample (r2 = 0.40, P = .0002) and in the MCI group (r2 =

0.28, P = .003) and that poorer performance on FAQ was also associated with poorer

performance in the AVLT and MMSE in all subjects. A companion paper by the same group

[277] examined the relationship between functional impairment and executive function in a

longitudinal study of the ADNI cohort. Executive dysfunction was strongly correlated with

IADL impairment across all subjects (r2 = 0.60, P < .0001). MCI patients with impaired

executive function also had greater impairment of IADL than patients with no executive

dysfunction, possibly representing a portion of the heterogeneous MCI construct more likely

to progress to AD.

4.4.3.4 Association of cognition with body mass index: In elderly populations, in addition

to brain atrophy or genetic studies, BMI has been associated with cognitive decline. Cronk

et al [145] examined the relationship between BMI and cognition in MCI patients and found

that lower BMI at baseline was associated with a decline in the MMSE, ADAS-cog, and a

global composite of the ADNI neuropsychological battery, but not with CDR-SB scores or

conversion to AD. The causal relationships between BMI and cognitive decline in MCI
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remain to be elucidated, but the authors suggest either that low BMI is a result of factors

associated with MCI or that MCI patients with low BMI are predisposed to more rapid

disease progression.

4.4.3.5 Cognitive reserve: The concept of the cognitive reserve describes the mind's

resilience to neuropathological changes in the brain and may account for the observed

dissociation between AD pathology and cognition. Vemuri et al [278] investigated whether a

measure of cognitive reserve, the American National Adult Reading Test (AMNART)

modified the relationship between biomarkers of pathology and cognition in AD. In

cognitively normal patients, they observed that the AMNART, but not CSF biomarkers or

STAND scores correlated with cognitive measures (MMSE, ADAS-cog, AVLT-memory,

Trails B and Boston Naming tests) whereas in MCI patients, all three were associated with

cognitive performance in an additive manner. The authors propose a model (Fig. 28) in

which cognitive reserve acts to shift curves of cognitive decline relative to biomarker

trajectories over time; high cognitive reserve delays cognitive decline whereas low cognitive

reserve results in an earlier cognitive decline. This evidence is consistent with the early

increase in Aβ levels and subsequent later increase in cerebral atrophy in the disease

progression model of Jack et al [14]

4.4.4 CSF biomarkers—The relationship between CSF biomarkers and neuronal

degeneration has been investigated by a number of groups within and outside ADNI

following the seminal publication by Shaw et al [57], which defined cut points for CSF tau

and Aβ-42 based on an ADNI-independent cohort of autopsy-confirmed AD patients as well

as normal control subjects and then applied these cut points successfully to the ADNI

cohort. Follow-up studies went on to test the hypothesis that changes in levels of biomarkers

occur early in disease and thus are likely predictive of future brain atrophy, if not directly

associated with all parts of the degenerative process. For example, Tosun et al [146]

examined how rates of regional brain trophy were related to levels of CSF biomarkers in

MCI patients and healthy elderly control subjects. They found that lower CSF Aβ-42 levels

and higher tau levels were associated with increased atrophy in numerous brain regions,

beginning primarily in the temporal and parietal cortices in MCI patients and extending to

regions not normally associated with amyloid pathology, such as the caudate and accumbens

areas, in Apatients. Schuff et al [121] also found that increased rates of hippocampal atrophy

were associated with lower levels of Aβ-42 in the MCI, but not AD or control, group. Leow

et al [113] used TBM to examine rates of atrophy and found that lower CSF Aβ-42 levels,

higher tau levels, and a higher p-tau/Aβ-42 ratio were significantly associated with temporal

lobe atrophy in the pooled group, and, additionally, that within the AD group, levels of CSF

p-tau and the p-tau/Aβ-42 ratio were also significantly associated. Fjell et al [147]

investigated whether baseline levels of CSF biomarkers were associated with baseline brain

morphometric differences between control, MCI, and AD subjects, as measured by cortical

thickness in a number of ROIs. They found that although CSF biomarkers levels could not

account for baseline differences, they were moderately associated with longitudinal change

in multiple areas, including medial temporal regions and beyond.
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A second focus of research into CSF biomarkers has been how they are modulated by APOE

genotype and their association with cognitive measures. Shaw et al [57] reported that Aβ-42

concentrations were dose dependent on the number of APOE ε4 alleles, with the highest

concentrations found in homozygotes. Vemuri et al [128] found that Aβ-42 is more closely

associated with APOE genotype than cognitive function (MMSE, CDR-SB), but that APOE

genotype had no significant effect on levels of t-tau (Fig. 16). An earlier study by the same

group [132] investigated the relationship between CSF biomarkers and cognitive function

(MMSE and CDR-SB), and found that the CSF biomarkers Aβ-42, t-tau, and p-tau181p were

only significantly correlated with cognitive function in the pooled sample (Table 5). Ott et al

[148] studied the relationship between CSF biomarkers and ventricular expansion with the

hypothesis that ventricular dilation may reflect faulty CSF clearance mechanisms resulting

in reduced levels of Aβ. They found that ventricular expansion was associated with reduced

CSF Aβ levels in normal elderly carriers of APOE ε4, but that in APOE ε4-positive AD

patients, ventricular expansion was associated with increased levels of tau and not Aβ. The

authors suggested that the APOE ε4 allele may exert its effect through modulation of CSF–

blood–brain barrier function.

The results from these studies support a model in which changes in the levels of CSF

biomarkers are an early step in the course of the disease that reflects the degree of AD

pathology, and in which Aβ-42 is modulated by the APOE ε4 allele, which functions in the

early stages of pathology by reducing the efficiency of Aβ-42 clearance. As described in the

Genetics section 5.3, Kim et al [149] performed a genomewide search for markers

associated with CSF analyte levels in the ADNI cohort. Overall, CSF Aβ-42 and tau, in

conjunction with imaging measures of atrophy, are promising biomarkers for early detection

of AD.

Two recent studies by Ewers et al [279] and Vidoni et al [280] investigated the relationship

between markers of early AD and BMI, which appears to have a paradoxical association

with the disease; high BMI in mid-life increases the risk of the disease whereas it appears to

be protective in later life [279, 280]. Vidoni et al found that the association between amyloid

burden (measured by both CSF Aβ levels and global PiB uptake) and low BMI was

strongest in MCI patients and cognitively normal controls (Table 6). Ewers et al found that

BMI was significantly lower in patents with levels of CSF Aβ and t-tau above a pre-defined

cut-point (F=27.7, df = 746, P < .001), regardless of diagnosis. These results provide further

evidence that AD pathology is present before the disease becomes a clinically evident and

suggest that low BMI may either be a systemic response due to the presence of this

pathology, or constitute a trait that predisposes an individual to its development.

4.4.5 11C-PiB PET imaging—A complementary method for assessing amyloid

deposition is 11C-PiB PET imaging. Jack et al [16] investigated the relationship between

amyloid deposition and ventricular expansion in the ADNI cohort by examining serial 11C-

PiB PET and MRI scans. They found no difference in the rate of global PiB retention

between clinical groups, and changes in global PiB retention only weakly correlated with

concurrent decline on MMSE and CDR-SB. In contrast, ventricular expansion increased

from control subjects to MCI to AD groups and correlated strongly with concurrent

cognitive decline (Table 5). The relationship between PET and CSF biomarkers and
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cognitive measures in the ADNI cohort at baseline was investigated by Jagust et al [150].

CSF Aβ-42 and 11C-PiB PET were found to be in substantial agreement as measures of

amyloid deposition, and neither measure correlated with MMSE scores. In contrast, FDG-

PET, as a measure of cerebral glucose metabolism, was strongly correlated with MMSE

scores, but much less so with CSF biomarkers (Table 6). Apostolova et al [151] also

examined associations between hippocampal atrophy, CSF biomarkers, and average cortical,

precuneal, and parietal uptake of 11C-PiB. They found that although all CSF biomarkers

were associated with hippocampal atrophy, the strongest correlations were with p-tau181p

and the weakest with Aβ-42. Precuneal 11C-PiB uptake was most strongly associated with

hippocampal atrophy. Jack et al [152] examined the relationship between log relative hazard

of progressing from MCI to AD and both hippocampal atrophy and amyloid load, measured

as a composite of 11C-PiB PET and CSF Aβ-42 data. They found that although the risk

profile was linear throughout the range of hippocampal atrophy, amyloid load reached a

ceiling at a certain concentration earlier in disease progression. These papers support a

disease model in which initial amyloid deposition occurs in the early stages and does not

correlate with cognitive decline, but stabilizes later in disease, and in which

neurodegeneration accelerates with disease progression with concomitant cognitive decline.

4.4.6 Combined modalities—The dynamics of CSF, MRI, and FDG-PET biomarkers in

the ADNI cohort were studied by Caroli and Frisoni [153] in an effort to understand how

they change over the course of the disease. Each biomarker differed between clinical groups

after post hoc analysis, and the authors found that these measures of disease progression fit

better in sigmoidal, rather than linear, models, suggesting that individual biomarkers vary in

their rate of change during disease progression. Aβ-42 imaging signals increased early in

disease progression and then plateaued, whereas CSF Aβ-42 declined early and then

plateaued, and hippocampal volume followed a similar trajectory, with volumes increasing

later in disease progression. In contrast, FDG-PET measures of glucose metabolism and

CSF tau began to increase early in disease progression and only stabilized at later stages of

disease, suggesting that there is an ongoing reduction in glucose metabolism and tau-

mediated neurodegeneration throughout the early stages of AD (blue line in Figs. 2 and 17).

Carriers of the APOE ε4 allele had earlier hippocampal atrophy. A similar study by Beckett

et al [154] also found that measures associated with early disease, such as Aβ-42, had

greater changes in MCI patients than in AD patients, and that those associated with later

changes, such as those in FDG-PET ROIs, were more evident in AD patients (Table 7). The

authors hypothesized that changes in biomarkers may not be linear and that for each

biomarker, there may be steeper rates of change in some stages of disease progression than

others. An extension of this study examined trajectories of CSF Aβ42, FDG uptake and

hippocampal volume loss and the influence of the APOE ε4 allele study up to 36 months

from the original 12 months [281]. Aβ42 levels declined most rapidly in cognitively normal

participants, glucose metabolism declined most rapidly in AD patients and hippocampal

atrophy accelerated with disease progression. Presence of the APOE ε4 allele acted

primarily to accelerate hippocampal atrophy in MCI and AD patients. These results are in

keeping with the model of Jack et al [14], which was subsequently empirically tested in a

further paper by the same group [282]. Using cut-points demarcating normal from abnormal

levels of CSF Aβ42 and t-tau, and of hippocampal volume, Jack et al examined the
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distribution of these biomarkers in control, MCI and AD patients at baseline and 12 months

using ADNI cohort data. They found support for the model in that the percentage of

abnormal biomarker findings increased with disease severity as assessed by clinical status

and MMSE score, and in the temporal progression of the appearance of biomarker

abnormalities: Aβ42 first followed by t-tau and lastly by hippocampal volume (Fig. 29).

In seeking an optimum combination of imaging and CSF biomarkers to predict normal

control/AD classification, Walhovd et al [155] examined the relationships between the best

predictive biomarkers and changes in cognitive scores in the MCI group. They found that

changes in MMSE scores correlated with retrosplenial volume and metabolism as well as

entorhinal volume, but that only hippocampal volume was associated with the Logical

Memory II-DR, and only retrosplenial volume was associated with changes in CDR-SB. No

CSF biomarkers were significantly associated with cognitive scores in this clinical group

(Table 5). Once again, these results are consistent with the disease progression model in that

earlier changes that are reflected in CSF biomarkers do not correlate with clinical measures,

whereas changes in brain metabolism and morphometry occur at later stages of the disease

and therefore correlate better with cognitive measures. Further support for this model comes

from the study of the annual change in MRI and CSF biomarkers and how these are

influenced by APOE genotype in control, MCI, and AD subjects [156]. Levels of neither

Aβ-42 nor t-tau changed significantly over 12 months in any clinical group, but annual

changes in ventricular volume increased with disease severity and were correlated with

worsening cognitive and functional indices. APOE ε4 carriers had higher rates of change in

ventricular volume, but not in levels of CSF biomarkers, consistent with the model in which

levels of Aβ and tau plateau as neurodegeneration becomes detectable by MR measures.

The question of whether structural or metabolic measures are the most sensitive biomarkers

of changes associated with early stages of AD was investigated by Karow et al [110].

Directly comparing the ability of MR and FDG-PET measures in prespecified ROIs to detect

such changes by quantifying and comparing their effect sizes (Cohen d), they found that

largest morphometric effect size (hippocampal volume: 1.92) was significantly greater than

the largest metabolic effect size (entorhinal metabolism: 1.43). Both measures were

significantly associated with ADAS-cog and AVLT scores in AD patients, but in MCI

patients, the relationship was only maintained with hippocampal volume (Table 5). The

authors concluded that for the detection of early AD, MRI may be preferable to FDG-PET,

as it is more sensitive, more widely available, less invasive, and less costly.

4.4.7 Summary and conclusions of papers concerning associations of the
ADNI cohort—ADNI has succeeded in recruiting a cohort of MCI and mild AD patients

that mirrors populations used for clinical trials of AD therapies. A number of cross-sectional

and longitudinal studies have lent support to a model of disease progression in which the

earliest indications of neurodegeneration occur within the MTL, particularly the

hippocampus, and atrophy becomes more widespread in later stages, ultimately

encompassing areas of the parietal, occipital, and frontal lobes. Rates of atrophy are initially

fastest in the temporal lobe, but accelerate in other regions as the disease progresses.

Cortical atrophy and that of specific regions identified in the model of disease progression as

well as ventricular enlargement have been correlated with measures of clinical severity.
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Structure–function relationships within the brain are being elucidated with findings that

atrophy in dissociable anatomic regions, especially within the episodic memory network, is

associated with different cognitive functions. Patterns of glucose hypometabolism associated

with AD have been identified, with the precuneus and posterior cingulate typically

displaying the most reduced CMRgl and with reduced metabolism in these key areas being

associated with lower scores on cognitive tests. The differential effects of an SNP in brain-

derived neurotrophic factor suggest that genetics may modulate glucose metabolism. Levels

of CSF biomarkers, particularly Aβ and tau, have been associated with earlier stages of

neurodegeneration. 11C-PiB PET Aβ imaging has largely confirmed that decreased levels of

CSF Aβ and increasing 11C-PiB PET represent an early event in disease progression, and

neither amyloid imaging nor studies of CSF biomarkers have found that levels of these

biochemicals are strongly associated with cognitive decline. Levels of CSF biomarkers have

been found to be abnormal (i.e., decreased CSF Aβ and increased CSF tau) early in disease

and then plateau with little detectable change, whereas glucose metabolism remains

relatively stable until the latest stages of disease progression. Presence of the APOE ε4 allele

has been shown to enhance neurodegeneration and to modulate levels of CSF biomarkers,

but the exact mechanism by which it exerts its effect remains unclear. Likewise, the role of

BMI has been the subject of contradictory reports, and it is unknown whether changes in

BMI influence disease development or occur as a result of the disease.

In 2011-2012, evidence accumulated supporting the disease model of Jack et al [14], and

detailing how hippocampal atrophy is associated with neocortical atrophy or

neuropsychological measurements. The relationship between amygdalal atrophy and

cognitive decline revealed parallels with the hippocampal atrophy – cognitive decline

relationship, suggesting that this structure warrants further investigation. There was further

development of the use of summary scores based on MRI data reflecting the degree of AD-

like neuroanatomical changes as an indicator of disease status. The importance of functional

decline, in addition to decline in the traditional cognitive domains was reflected in a group

of studies highlighting the associations between difficulties in performing daily living

activities and various biomarkers. The association of the cognitive reserve with cognition

and biomarkers was reported and provided evidence for a model in which the degree of

cognitive reserve affects curves of CSF biomarkers throughout disease progression. Finally,

studies provided insight into possible mechanisms by which the known AD risk factors,

BMI and high homocysteine levels may act by investigating their associations with AD

biomarkers.

4.5 Diagnostic classification of study participants

The ability to accurately diagnose to which clinical group a subject belongs is a crucial one

in the clinical trial design. To this end, some researchers have investigated the ability of

individual MRI, FDG-PET, and CSF biomarkers to discriminate between ADNI AD

participants and ADNI control subjects, and between MCI-c and MCI-nc subjects. Others

have tried to determine the optimum combination of these biomarkers for ADNI participant

classification, with many studies leveraging knowledge of associations between various

structural and fluid biomarkers and the sequence of brain morphometric change over the

course of disease to guide development of marker combinations. Discrimination between the
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clinically distinct ADNI participant groups offers an important first step in identifying

biomarker diagnostic tools that can be validated in representative population-based studies

before clinical use.

4.5.1 Magnetic resonance imaging

4.5.1.1 Temporal lobe structures: Atrophy of the hippocampus, the best studied structure

affected by AD, has been used in patient classification by a number of groups. Chupin et al

[68] correctly distinguished AD patients from control subjects 76% of the time, and MCI

patients who would convert within 18 months from control subjects 71% of the time (Table

8). Karow et al [110] found that hippocampal volume discriminated between control

subjects and AD patients with an AUC of 0.90, and between control subjects and MCI

patients with an AUC of 0.75 (Table 8). The discriminative ability of the rate of

hippocampal atrophy was investigated by Wolz et al [64], who found that their method

correctly classified 75% to 82% of AD patients and 70% of MCI patients who converted to

AD over 12 months. Their method was also able to discriminate between MCIc and MCI-nc

patients at a rate of 64% (Table 8). Lotjonen et al [231] compared Wolz's method to their

own automatic hippocampal extraction method using the same data and found that it resulted

in significantly more accurate classification of both AD patients from controls and MCI

converters from non-converters (Table 8). The division of the hippocampus into head, body

and tail subregions extracted further information from this structure for use in diagnostic

classification. Greene et al [267] found that the combined left and right hippocampal head

produced the most accurate classifications of any hippocampal subregions, but that the best

accuracy was attained by a combination of left hippocampal body, right hippocampal tail,

AVLT and Digit Symbol which classified controls, MCI and AD patients with accuracies of

95.5%, 82.4% and 78.9%, respectively. Calvini et al [66] derived a statistical indicator from

the hippocampus and other MTL structures and were able to discriminate between AD and

control groups, and between MCI and control groups, with AUCs of 0.863 and 0.746,

respectively (Table 8). The classification index of Chincarini et al [283] used seven

maximally discriminative small volumes in the medial temporal lobe to distinguish between

AD and control groups, MCI and control groups and MCI converters from non-converters

with AUCs of 0.97, 0.92 and 0.74, respectively (Table 8).

4.5.1.2 Multiple ROIs and whole brain: Other methods have focused on many ROIs

across the brain, using the degree of association with AD to construct a score reflective of

the anatomic profile of AD. These include temporal, cingulate, and orbitofrontal regions.

The classifier developed by Fan et al [83] produced an SPS that allowed direct comparison

of patients and was able to discriminate between AD and control subjects, between MCI and

control subjects, and between AD and MCI subjects with AUCs of 0.965, 0.846, and 0.750,

respectively (Table 8). Similarly, Misra et al [118] extracted an abnormality score that

discriminated MCI-c patients from MCI-nc patients with a classification accuracy of 81.5

and an AUC of 0.77 (Table 8). Using a semisupervised SVM, Filipovych and Davatzikos

[93] discriminated between MCI-c and MCI-nc patients with an AUC of 0.69, comparing

favorably with fully supervised SVM methods (Table 8). They also found that 79.4% of all

converters were classified as AD-like (the remainder being classified as normal-like). In

addition, 51.7% of nonconverters were classified as normal-like and the remainder as AD-
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like, perhaps representing a proportion of MCI patients who would convert to AD further in

the future. The authors also found that semisupervised SVM performed better than a fully

supervised SVM in instances when there were a small number of labeled images. The

classifier developed by Yang et al [94], which relied on image features defined by ICA,

discriminated between control and AD subjects with an accuracy of 80.7%, a sensitivity of

81.9%, and a specificity of 79.5%, and between control and MCI subjects with an accuracy

of 71.1%, a sensitivity of 73.2%, and a specificity of 68.6%, based on GM images and a

training set-to-test set ratio of 90%:10% (Table 8).

McEvoy et al [117] presented data from their fully cross-validated linear discriminant model

compared with partially cross-validated models, and found that the fully cross-validated

model discriminated between AD and control subjects with an accuracy of 89%, a

sensitivity of 83%, a specificity of 93%, and an AUC of 0.915 (Table 8). They noted that

these numbers were lower than those obtained using the partially cross-validated model,

suggesting that numbers presented by other studies using partially cross-validated models

may be artificially high. Hinrichs et al [88] used a classifier based on GM probability maps

and found that it discriminated between AD and control subjects with a sensitivity of 85%

and a specificity of 80%. Park and Seo [75] tested their method of multidimensional scaling

(MDS) of DBM and compared it with the ability of hippocampal volume to discriminate

between AD and control subjects. They found that their MDS method outperformed

hippocampal volume, yielding accuracies of 86.3% and 75.0%, respectively (Table 8).

Further details of classifier construction using SVMs are given in the Methods section 3.3.

Longitudinal measurements of cortical thickness were the focus of a classifier constructed

by Li et al [157]. They found that although the pattern of cortical thinning was similar in all

patient groups, the rate of thinning and ratio of follow-up to baseline measures provided a

better tool for distinguishing between MCI-c and MCI-nc patients. An additional

complementary component in the form of a brain network feature computed from the

correlations of cortical thickness changes with ROIs further improved classification

accuracy. The final classifier, comprising static, dynamic, and network measures,

discriminated between normal control subjects and AD patients with an accuracy of 96.1%,

and between MCI-c and MCI-nc patients with an accuracy of 81.7% (Table 8). Noise

sensitivity and spatial variation problems of other cortical thickness estimation methods

were overcome by more robust method of Cho et al [237] which discriminated successfully

between control and AD patients or MCI converters, or between MCI converters and non-

converters (Table 8). An automated method developed by Pachauri et al [232] to leverage

information found in cortical surface topology boosted the classification accuracy of

hippocampal volume in discriminating between AD and control patients by 4% and of other

ROIs by around 3%.

The penalized logistic regression approach of Casanova et al [241] to the high dimensional

classification of patients from MRI data discriminated between AD patients and controls

with accuracies, specificities and sensitivities of 85.7%, 90% and 82.9%, respectively, using

GM and 81.1%, 82.5% and 80.6%, respectively, using WM. The effect of registration to

multiple templates on classification accuracy of TBM was investigated by Koikkalainen et

al [234] who found that all 4 multi-template methods investigated resulted in better
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discrimination of both AD from controls patients and MCI converters from non-converters

(Table 8).

Applying a correction to account for age-related atrophy in controls was shown by Franke et

al [92] to increase the accuracy of classification of AD patients from controls from 83% to

85%, indicating that controlling for the effects of such confounding variables as age is

critical to achieving clinically useful classification accuracies with MR data.

4.5.1.3 Comparison of MRI methods: Cuingnet et al [158] directly compared 10 methods

for the automatic classification of AD patients from anatomical MR data using the ADNI

database. Five voxel-based approaches, three cortical approaches, and two methods based on

hippocampal shape and volume were tested for their ability to discriminate between control,

MCI-c, MCI-nc, and AD subjects. They found that voxel- or cortical thickness-based whole

brain methods yielded highest sensitivities for AD versus control subjects (maximum of

81%), but that sensitivities were substantially lower for discriminating between MCI-c and

MCI-nc subjects (maximum of 70%).

Combining automatically estimated features from different structural MRI analysis

techniques augmented classification accuracy in a study by Wolz et al [284]. When TBM,

hippocampal volume, cortical thickness and a manifold-based learning framework were

combined, they improved classification accuracy over single features using both a SVM and

linear discriminant analysis (Table 8).

4.5.2 [18F]-fluorodeoxyglucose-positron emission tomography—As AD affects

not only morphology but also metabolism in the brain, Haense et al [84] used the AD t-sum

measure of scan abnormality from FDG-PET data to discriminate between AD and control

subjects with a sensitivity of 83% and a specificity of 78% (Table 8). The HCI of Chen et al

[85], which also capitalized on hypometabolism data across the entire brain, was

significantly different in control, MCI-nc, MCI-c, and AD subject groups. The method of

Hinrichs et al [88], described in the MRI section, was also used with FDG-PET data and was

able to discriminate between AD and control subjects with a sensitivity of 78% and a

specificity of 78% (Table 8). Huang et al [65] used FDG-PET data to examine functional

connectivity between brain regions and then leveraged the patterns they found to be typical

of AD for classification purposes. They found that compared with control subjects, AD

patients had decreased temporal lobe inter-regional connectivity, especially in the

hippocampus, and weaker between-lobe and between-hemisphere connectivity. In contrast,

MCI patients had increased connectivity between occipital and frontal lobes compared with

control subjects, illustrating the uniqueness of this condition. This method discriminated

between AD and control subjects with a specificity of 88% and a sensitivity of 88% (Table

8). Using their method based on feature selection using factor analysis and an SVM, Salas-

Gonzalez et al [90] discriminated between AD and control subjects with sensitivity,

specificity, and accuracy of 98.1%, 92.5%, and 95.2%, respectively, and between MCI and

control subjects with sensitivity, specificity, and accuracy of 92.1%, 80.8%, and 88.0%,

respectively (Table 8).). The classifier constructed by Clark et al [242] based on information

retrieval techniques was able to discriminate between control and AD patients with a

sensitivity, specificity and accuracy of 94.4%, 92.5% and 93.6%, respectively and between
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MCI converters and non-converters with a sensitivity, specificity and accuracy of 89.7%,

62.9% and 76.5%, respectively when the model include FAQ scores (Table 8). An

alternative approach using nonnegative matrix factorization was described by Padilla et al

[248] and achieved an accuracy of 86.6%, a sensitivity of 87.5% and a specificity of 85.4%

in the classification of AD patients from controls (Table 8). Having identified entorhinal

metabolism as the FDG-PET measure with the largest effect size for the detection of early

AD, Karow et al [110] found that this measure discriminated between control and AD

subjects with an AUC of 0.71, and between control and MCI subjects with an AUC of 0.63

(Table 8). Mormino et al used 11C-PiB PET imaging to deduce a cutoff point to optimally

separate PiB-positive from PiB-negative MCI patients, and found that PiB-positive MCI

patients had lower hippocampal volumes and greater episodic memory loss compared with

MCI patients with 11C-PiB levels below the cutoff point of 1.465. The addition of

longitudinal data to baseline data to improve classification accuracy from anatomically

selected features of FDG-PET scans was the approach taken by Gray et al [285]. Across all

categories, improved classification accuracies were reported, ranging from 65% in the MCI

converter versus non-converter classification to 88% in discriminating between control and

AD patients (Table 8).

4.5.3 CSF biomarkers—Shaw et al [57] examined CSF biomarkers in the ADNI cohort

as well as in a cohort of nonADNI autopsy-confirmed AD patients, with the goal of

developing a “biomarker signature” best able to predict AD and to classify patients

correctly. Like many smaller studies, they found that t-tau and p-tau181p, as well as the t-

tau/Aβ-42 and p-tau181p/Aβ-42 ratios, all increased in MCI patients compared with control

subjects, whereas CSF Aβ-42 decreased. The best single measure for discriminating between

AD and control subjects was CSF Aβ-42, which had an AUC of 0.913, a sensitivity of

96.4%, a specificity of 76.0%, and an accuracy of 87% (Table 8). Linear regression analyses

determined which variables, including APOE genotype, contributed most to the

discrimination, and a final linear regression model, which included Aβ-42, APOE ε4

carriers, and t-tau (LRTAA model), resulted in enhanced discrimination over individual

factors (Table 8). De Meyer et al [159] used an unsupervised learning method that did not

presuppose clinical diagnosis to identify biomarkers of AD. A mixture modeling approach

derived a signature, consisting of both Aβ-42 and t-tau concentrations, which had a

sensitivity of 94% in autopsy-confirmed AD patients from an independent cohort and was

present in 90%, 72%, and 36% of patients with AD, MCI, and no cognitive impairment,

respectively (Fig. 18). APOE ε4 carriers were over-represented in those patients with the AD

biomarker signature by a factor of 6.88:1. Interestingly, when modeling single biomarkers,

the cutoff concentration of Aβ-42 that optimally delineated AD patients from healthy elderly

subjects was found to be 188 pg/mL, close to that found by Shaw et al [57] and Schott et al

[160]. Moreover, the proportion of healthy elderly subjects with an identifying AD CSF

biomarker signature was similar to that found by Schott et al [160], and likely reflects a

proportion of cognitively normal elderly subjects who will progress to MCI and AD in the

future. Further, De Meyer et al [159] examined another data set with MCI patients (n = 57)

followed up for 5 years, and they showed that their model had a sensitivity of 100% in

patients progressing to AD. The finding that AD pathology is detectable in significant

numbers of healthy elderly control subjects has important implications for future clinical
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trials and suggests the possibility of presymptomatic treatment studies of potential AD-

preventive compounds.

4.5.4 Clinical—Llano et al [96] compared the ADAS-cog and MMSE tests with a new

form of ADAS-cog in which the subscores were given weights using a Random Forests tree

algorithm, thereby resulting in a new metric, the composite ADAS.Tree. Therefore,

ADAS.Tree represents a multivariate model in which subscales have been weighted

according to their importance in discriminating between AD and control subjects. When the

ability of ADAS.Tree to classify control, MCI, and AD subjects was compared with that of

ADAS-cog and MMSE, the composite model generated a numerically highest test statistic.

The authors suggest that this derivative of an internationally recognized and easily

administered test may offer a more widely useful and less expensive approach to other

imaging and CSF biomarkers that can be invasive and/or expensive.

Another cognitive test that may have utility in diagnosing MCI is the FAQ. Brown et al

[274] identified two items of the FAQ, the ability to keep business papers organized and the

ability to remember important dates and occasions, that effectively differentiated between

control and MCI patients.

4.5.5 Blood based biomarkers—A new direction of research in 2011-2012 has been the

development of blood-based biomarkers for diagnostic classification as a potentially more

clinically feasible alternative to more costly or invasive modalities as a first line screening

method for the disease. O'Bryant et al [255] constructed a classifier from blood based

markers that were highly correlated across both serum and plasma. These 11 proteins were

comparable to CSF biomarkers in their ability to discriminate AD patients from cognitively

normal controls, but the addition of demographic data (age, sex, education, APOE status)

resulted in a model with similar classification accuracies to the best CSF-based models

(Table 8). A study of potential plasma based markers by Johnstone et al [286] identified 11

analytes that were maximally discriminative between controls and MCI converters. Once

again, APOE status increased classification accuracy (Table 8). The refinement of the model

by the addition of ‘metafeatures’, able to identify and leverage information from potentially

biologically linked features, further enhanced accuracy (Table 8).

4.5.6 Combined modalities—The approach of Kohannim et al [86] combined multiple

factors, including MRI and FDGPET measures, CSF biomarkers, APOE genotype, age, sex,

and BMI, to enhance machine learning methods for AD diagnosis. They found that the

optimum combination of factors to discriminate between AD and control subjects—

hippocampal volume, ventricular expansion, APOE genotype, and age—yielded an AUC of

0.945 with an accuracy of 82%, whereas to detect MCI patients, the optimum combination

of hippocampal volume, ventricular expansion, and age yielded an AUC of 0.860 and an

accuracy of 71% (Table 8). Walhovd et al [155] likewise sought the optimum discriminatory

combination of biomarkers. They found that the best MRI combination to discriminate

between AD and control subjects consisted of hippocampal volume, entorhinal thickness,

and retrosplenial thickness (85% accuracy); the best FDG-PET combination was entorhinal,

retrosplenial, and orbitofrontal metabolism (82.5% accuracy); and the best CSF combination

was t-tau/Aβ-42 (81.2% accuracy). Using stepwise linear regression, they developed a final

Weiner et al. Page 52

Alzheimers Dement. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



model that included retrosplenial thickness and the t-tau/Aβ-42 ratio as predictors and which

achieved 88.8% accuracy in the classification of AD versus control subjects. For the

discrimination of MCI from control subjects, the optimum combination of factors was found

to be hippocampal volume and the t-tau/Aβ-42 ratio, with an accuracy of 79.1 % (Table 8).

Ewers et al [161] tested a variety of cross-validated models of single or multiple predictors

for their ability to discriminate between control and AD subjects. They found that the

addition of neuropsychological tests, specifically the AVLT immediate free recall and DR

and the TMT-B, to models that included only CSF and/or genetic biomarkers and imaging

measures resulted in increased overall classification accuracy. The best model, which

included CSF t-tau/Aβ-42, the number of APOE ε4 alleles (the previously described LRTAA

model [57]), left entorhinal volume, and hippocampal volume, in addition to the

aforementioned neuropsychological tests, resulted in an accuracy of 95.2%, a sensitivity of

92.2%, and a specificity of 97.5% (Table 8). Van Gils et al [162] also demonstrated that

cognitive tests such as the CDR, MMSE, and the neuropsychological battery comprised the

most important feature category of all classifiers designed to discriminate between different

patient groups. The classifier constructed by Lemoine et al [87] from data fusion of both

FDG-PET and clinical data discriminated between control and AD subjects with an AUC of

0.97, an improvement over the best single FDG-PET classifier (AUC = 0.94) or the best

clinical classifier (derived from ADAS-cog data: AUC = 0.93) (Table 8). Vemuri et al [132]

compared STAND score measures from MRI with CSF and concluded that CSF and MRI

biomarkers independently contribute to intergroup diagnostic discrimination, and the

combination of CSF and MRI provides better prediction than either source of data alone.

The multi-kernel learning framework developed by Hinrichs et al [247] combined multiple

modalities for classification of AD patients. They found that while the classifier based on all

modalities performed best overall, cognitive scores alone separated AD patients from

controls to almost the same level of accuracy (Table 8). Similarly, two studies by Zhang et

al [249] focused on combining MR, FDG-PET and CSF biomarker data using different

methods (multi-modal multi-task [250], and kernel combination [249]). They found that

combination of different modalities outperformed single modalities in classification

accuracy [250] (Table 8) and that the kernel combination method correctly identified 91.5%

of MCI converters and 73.4% of MCI non-converters. Using an automatic data-driven

method for the selection of multi-modal features and SVM trained on AD and control

patients, Cui et al [287] also found that combined optimal MR, CSF and neuropsychological

features outperformed any single modality in the classification of MCI converters versus

non-converters. From baseline features, they predicted conversion of MCI to AD within 24

months with an accuracy of 67.1%, a sensitivity of 96.4%, a specificity of 48.3% and an

AUC of 0.796 (Table 8).

The possibility that different modalities may not be equally useful in classification of

patients of different ages was explored by Schmand et al [288] who analyzed the efficacy of

neuropyschological measures, CSF biomarkers and FDG-PET and MRI measures in

classifying two age-stratified groups (younger and older than 75 years) within the ADNI

cohort. They found that, regardless of age, neuropsychological and MRI measures resulted

in the most accurate classification. Classifications based on CSF biomarkers were more

accurate in those aged younger than 75 but neither FDG-PET nor CSF data augmented
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accuracy in older individuals (Table 8). Once again, combined features resulted in the most

accurate discrimination of the cognitively impaired (AD and MCI) from the cognitively

normal.

4.5.7 Summary and conclusions of diagnostic classification papers—A variety

of approaches have been used to diagnose MCI and AD, some based on single measures,

others on composite scores of a single modality, and still others on a combination of factors

from different modalities. It should be emphasized that ADNI was not designed as a

diagnostic classification study; none of the imaging methods used in ADNI is as accurate as

a clinical diagnosis, and the enrolled cohort represents typical cases rather than the types of

difficult diagnostic problems that clinicians often confront. However, a number of

conclusions can be drawn from the results of these studies. Single features, such as

hippocampal volume, are not as accurate as multiple features, such as whole brain or cortical

thickness measurements. The best classifiers combine optimum features from different

modalities, including CSF biomarkers, MRI, FDG-PET, and cognitive measures, as well as

factors such as age and APOE ε4 allele status. The most discriminative measures include

hippocampal volume, entorhinal cortical thickness, entorhinal metabolism, the t-tau/Aβ-42

ratio, and ADAS-cog scores. In some of these models, FDG-PET measures appear to lose

significance to cognitive and MRI measures; however, glucose hypometabolism alone has

been shown to have high classification accuracy. ADAS-cog scores, either used directly or

in a model using weighted components, appear to be an excellent diagnostic tool, although

the highest accuracies were found with the addition of MRI measures. Although most

classifiers used baseline measurements, there is some evidence to suggest that longitudinal

data may provide even more accurate diagnoses, but it remains to be seen whether this

approach is more generally applicable to other modalities. Currently, the best classifiers are

able to discriminate between control and AD subjects with accuracies in the mid-90% range,

but have considerably lower accuracies when discriminating between control and MCI

subjects or between MCI-nc and MCI-c subjects, although data for the latter diagnoses,

arguably the more important distinction to make, are far less reported. It is as yet unknown

whether the application of some of the promising classifiers to these problems will result in

increased diagnostic accuracy. Another key question is how methods that perform well in

ADNI, with its sharply delineated diagnostic groups and exclusion of mixed dementias and

borderline cases, will translate to the community or general clinic setting for wider

diagnostic use. Validation studies in population-based samples will be required to address

this issue.

Studies published in 2011-2012 continued to seek ways to improve classification accuracy

within the ADNI cohort. Some works detailed approaches to leveraging more information

from the hippocampus, from cortical thickness and topology and from maximally

discriminative volumes by deriving statistical indicators. Others dealt with improving

classification through methodological improvements such as registration to multiple

templates and by accounting for age-related cognitive decline in control groups. While

2011-2012 studies did not improve on the best classification accuracies of previous studies,

they became consistently more accurate, and were able to discriminate between controls and

MCI or AD patients with accuracies in the mid-90s and mid-80s, respectively. Classification
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of MCI converters and non-converters reached accuracies in the low 80s. The most accurate

classification methods were generally longitudinal and combined multiple modalities and

multiple features within each modality. The first reports of blood based biomarkers appeared

and, despite being exploratory and preliminary, showed great promise for future clinical

diagnosis. Classification methods developed in ADNI still remain to be validated in

independent, population based cohorts.

4.6 Improvement of clinical trial efficiency

One of the primary goals of ADNI is to improve the efficiency of clinical trials of AD-

modifying treatments. Selection of the study population and development of more sensitive

outcome measures are two approaches to increasing the power of clinical trials and therefore

reducing the number of participants required, the length of time required before a disease-

modifying effect is observed, and therefore the overall cost. This section details the results

of studies examining the use of structural, fluid, and genetic biomarkers in the improvement

of clinical trial efficiency.

4.6.1 Prediction of cognitive decline—Beyond the simple classification of clinical trial

participants, an important strategy for increasing clinical trial efficiency is the enrichment of

clinical trial populations, normally MCI patients, with participants who are likely to progress

to AD within a short time frame. In particular, the early and reliable detection of MCI

subjects who convert early to AD could support clinical decisions for or against therapy with

disease-modifying drugs. Many studies have therefore focused on identifying baseline

predictors of future decline, with “future decline” meaning both decline in clinical measures

such as the MMSE, ADAS-cog, and CDR-SB, and conversion of MCI to AD status.

However it is measured, it is desirable for appreciable decline to occur over a relatively

short time frame, typically 12 months. Imaging measures, CSF biomarkers, and APOE ε4

allele status, in combination or alone, have been identified as baseline future predictors, and

several studies have focused on determining the optimum combination of all modalities that

results in the most power for clinical trials.

4.6.1.1 Magnetic resonance imaging

4.6.1.1.1 Temporal lobe: Hua et al [112] used TBM to create Jacobian maps of temporal

lobe atrophy at baseline and examined the relationship between the maps and cognitive

decline over the following year, as assessed by both the CDR-SB and the MMSE. They

found that baseline temporal lobe atrophy predicted decline in the MMSE in AD patients

and also predicted the conversion of MCI to AD over 12 months (Fig. 19; Table 9). Baseline

atrophy of MTL structures was also found to best predict the progression of MCI patients to

AD in a study by Desikan et al [163]. These measures, including the volumes of the

hippocampus and amygdala and the thickness of the entorhinal cortex, temporal lobe, and

parahippocampal gyrus, were found to be better predictors of clinical decline than levels of

CSF Aβ-42 or FDG-PET ROIs. The combination of CSF biomarkers and FDG-PET ROIs

predicted time to progression of MCI to AD with an AUC of 0.70, a sensitivity of 93%, and

a specificity of 48% compared with MRI temporal lobe factors, which had an AUC of 0.83,

a sensitivity of 87%, and a specificity of 66%. The addition of CSF or FDG-PET measures

to the combined Cox proportional hazards model did not significantly increase prediction
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accuracy, with the combined model predicting conversion with an AUC of 0.83, a sensitivity

of 90%, and a specificity of 69% (Table 9). Similar structures were found to predict future

decline in cognitive status by Kovacevic et al [164], who used high-throughput volumetry to

segment ROIs in control, MCI, and AD subjects. They found that after adjusting for age,

education, and APOE genotype, smaller baseline volumes of the hippocampus and the

amygdala and larger temporal horn volume predicted 6-month decline in both the MMSE (β

[P] = 0.14 [.04], 0.18 [.004], and −0.2 [.003], respectively) and CDR-SB (β [P] = −0.19 [.

005], −0.12 [.06], and 0.2 [.005], respectively) in all groups (Table 9). Risacher et al [114]

also found atrophy of structures within the MTL to be the best antecedent of imminent

conversion of MCI to AD. The largest effect sizes were for hippocampal and amygdalar

volume and cortical thickness of the entorhinal cortex and inferior, middle, and superior gyri

(Fig. 20; Table 9).

If hippocampal atrophy is predictive of future cognitive decline, what biomarkers are then

predictive of hippocampal atrophy itself? Answering this question has clear implications for

powering early intervention CTs for AD in which the ability to predict cognitive decline

from an even earlier time point in the disease is crucial. Desikan et al [163] examined

whether factors such as CSF biomarkers and measures of cortical thinning were able to

predict hippocampal atrophy. They found that hippocampal atrophy was significantly

predicted by decreased levels of Aβ and increased levels of tau in MCI and AD patients and

by the baseline thickness of the entorhinal cortex and inferior temporal gyrus Aβ and tau

positive individuals.

4.6.1.1.2 Ventricles: Baseline ventricular morphology has been shown to predict future

clinical decline in studies of the ADNI cohort. Chou et al [126] found that this measure

predicted decline in MMSE, global CDR, and CDR-SB over 12 months (Fig. 21; Table 9).

These findings were confirmed in a subsequent larger study by the same group [127], and

further extended by examining additional cognitive criteria. Only right ventricular baseline

anatomy was correlated with future decline in DR memory scores, but there was no

correlation between ventricular anatomy and changes in depression scores, despite a

baseline association between these measures (Table 9).

4.6.1.1.3 Other regions: Targeting the caudate, a region not traditionally associated with

AD, Madsen et al [130] found that baseline atrophy in the right caudate predicted both the

conversion of MCI patients to AD and cognitive decline of this group, as assessed by the

MMSE (Fig. 22; Table 9). Querbes et al [165] created a normalized thickness index, which

was derived from the cortical thicknesses of regions most likely to show atrophy in AD and

to distinguish between MCI-c and MCI-nc patients, primarily the left lateral temporal, right

medial temporal, and right posterior cingulate. They found that the normalized thickness

index predicted conversion of MCI patients to AD with 76% accuracy compared with

accuracies ranging from 63% to 72% by cognitive scores (Table 9). The additional

dimension of time increased the ability of cortical thickness measurements to predict the

conversion of MCI to AD in a study by Li et al [157]. By incorporating both static baseline

and follow-up measures, dynamic measures of thinning speed, the ratio of follow-up to

baseline thicknesses in ROIs, and a network feature that examined correlations between

Weiner et al. Page 56

Alzheimers Dement. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



longitudinal thickness change in different ROIs, Li et al constructed a classifier that

correctly identified 81.7% of MCI-c patients 6 months ahead of their conversion (Table 9).

White matter hyperintensities (WMH) may represent an accrual of nonspecific neuronal

injury over a lifetime. Carmichael et al [166] investigated the relationship between WM

disease and cognition over a year, and found that both baseline and longitudinal change in

WMH were associated with worsening of ADAS-cog and MMSE scores over 12 months

(Table 5), raising the possibility of the use of WMH as a biomarker and highlighting its

ability to predict future clinical decline (Table 9).

A number of studies have leveraged information on atrophy from multiple brain regions to

distill a number or a score that is more predictive of future clinical decline than single

regions alone. McEvoy et al [117] found that an atrophy score derived from mesial and

lateral temporal, isthmus cingulate, and orbitofrontal areas was predictive of 1-year decline

in MMSE scores and progression of MCI patients to AD. They found that the atrophy score

was a better predictor than right or left hippocampal volume or the thickness of the left or

right entorhinal cortex (Table 9). Similarly, a structural abnormality score extracted from

baseline MRI data by Misra et al [118] was higher in MCI patients who converted to AD

over the following year than stable MCI patients, and an SPS derived by Fan et al [83] from

a complex pattern of spatial atrophy predicted decline in MMSE scores within a year from

baseline (Table 9). Vemuri et al [167] found that STAND scores that reflected greater

baseline atrophy in regions associated with AD predicted greater subsequent decline on the

CDR-SB and also a shorter time to conversion for MCI patients than CSF analytes (Table

9). Davatzikos et al [119] focused on structural changes occurring at the early stages of AD

and derived SPARE-AD scores (Spatial Pattern of Abnormalities for Recognition of Early

AD) largely from changes in the temporal regions, posterior cingulate cortex, precuneus, and

orbitofrontal cortex. They found that higher SPARE-AD scores predicted conversion of

MCI to AD (Table 9).

Prediction of future cognitive decline in cognitively normal individuals has been an

increasingly important focus in ADNI studies in 2011 -2012. Dickerson et al [289] used a

predefined cortical thickness measure as an MRI biomarker suggestive of early AD

neurodegeneration to examine this group over 3 years. They found that cognitively normal

individuals with the low cortical thickness signature were at increased risk of cognitive

decline (CDR-SB, AVLT and TMT) and were more likely to have Aβ42 levels below the

192 pg/ml cut-point designating AD-like higher risk (Fig. 30). Chiang et al [290] identified

8 baseline MRI ROIs from predominantly the temporal lobe that predicted 12 month

cognitive decline of greater than one standard deviation from the mean with an accuracy of

79% in cognitively normal individuals. These results suggest that these MRI biomarkers

may have utility in identifying individuals harboring AD pathology with a greater likelihood

of imminent cognitive decline emblematic of AD.

McEvoy et al [168] also investigated enrichment strategies for constraining recruitment into

clinical trials by selecting MCI patients most likely to progress. Their first strategy, which

selected MCI patients with an APOE ε4 allele, reduced sample sizes by an estimated 10% to

40%, but this was discounted because of the possibility that restricting patient genotype may
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invalidate trial findings. Their second strategy, based on baseline MRI atrophy in regions

previously shown to be predictive of disease progression, resulted in an estimated sample

size reduction of 43% to 60% (Table 11).

4.6.1.2 [18F]-fluorodeoxyglucose-positron emission tomography: Chen et al [85] reported

that their HCI outperformed other measures such as hippocampal volume, cognitive scores,

APOE genotype, and CSF biomarkers in the prediction of conversion of MCI patients to

AD. In a univariate model, patients with an HCI above a predefined cutoff had an average

Cox proportional hazards ratio for the estimated risk of conversion to probable AD within

18 months of 7.38 compared with 6.34 for hippocampal volume, 4.94 for p-tau181p, an3.91

for ADAS-cog, the most significant of the other measures tested. Moreover, patients with a

combination of both high HCI score and hippocampal volume below a similarly defined

threshold value had a Cox proportional hazards ratio of 36.72 (Table 9). This study suggests

that data from FDG-PET analyses represent a powerful tool for the prediction of future

decline in AD that is complementary to MRI data. Herholz et al [291] assessed the utility of

an alternative composite score in predicting MCI to AD conversion within 24 months from

baseline data and found that their PET score predicted disease progression with a sensitivity

of 57%, a specificity of 67% and a AUC of 0.75, compared to AUCs of 0.68 and 0.66 for

ADAS-cog and MMSE scores, respectively (Table 9). The PET score appeared to be

reflective of AD pathology and highlighted the heterogeneous nature of both MCI and

control groups, especially evident after 24 months (Fig. 31).

4.6.1.3 CSF biomarkers: Vemuri et al [167] examined the ability of CSF biomarkers to

predict decline in CDR-SB and MMSE scores over 2 years and the time to conversion from

MCI to AD. Although all CSF biomarkers were predictive of future decline, the best

predictor was log (t-tau/Aβ-42), which was comparable with the MRI-derived STAND

scores. In contrast, Aβ-42 alone was only weakly predictive of conversion to AD, reflecting

its status as a marker of early AD pathology. Used in combination with STAND scores, only

log (t-tau/Aβ-42) improved the predictive ability of the MRI measure (Table 9). Jack et al

[152] compared the ability of amyloid load, measured either by levels of CSF Aβ-42 or

by 11C-PiB PET imaging, and hippocampal volume to predict MCI to AD progression.

Using a new method to pool CSF and 11C-PiB PET data [169] and to extract a score

representative of Aβ load from the pooled information, they found that the group of MCI

patients classified as being Aβ positive had higher frequencies of the APOE ε4 allele and

smaller baseline hippocampal volumes and a threefold higher chance of progressing to AD

within 3 years than the Aβ-negative group (Fig. 23; Table 9). Thus, both baseline

hippocampal atrophy and Aβ load were significant predictors of future decline. Interestingly,

when risk profiles were constructed from the log relative hazard of progressing and degree

of hippocampal atrophy or Aβ load, the relationship was linear for hippocampal atrophy, but

plateaued at higher Aβ loads, consistent with a model in which Aβ deposition is an early

event in AD progression, whereas neurodegeneration, as evidenced by hippocampal atrophy,

occurs later and is thus a better indicator of progression toward dementia.

Using the ADNI database, Schneider et al [170] empirically tested the recommendation that

low Aβ-42 and a high t-tau/Aβ-42 ratio can help select those MCI patients most likely to

Weiner et al. Page 58

Alzheimers Dement. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



progress to AD throughout the course of a clinical trial. After statistically simulating a

number of different clinical trial scenarios with MCI patients with or without biomarker

enrichment, they found that selection with either of the biomarker criteria resulted in only

minor increases in power for the trial, and concluded that the use of these criteria would

likely not result in more efficient clinical trials. In contrast, Beckett et al [154] calculated

that restricting a trial population to MCI subjects with CSF Aβ-42 levels of <192 pg/mL

would reduce the sample size required from 375 to 226 subjects per arm to detect a 25%

change using ADAS-cog as an outcome measure, demonstrating a clear beneficial use of

CSF biomarkers in clinical trial population selection (Table 10). Schott et al [160] tested the

use of the same cutoff point of CSF Aβ-42 levels in cognitively normal elderly subjects as a

selection tool for presymptomatic treatment studies in AD. Those participants with CSF

Aβ-42 levels of <192 pg/mL had higher levels of t-tau and p-tau and higher ratios of

tau/CSF Aβ-42 and p-tau/CSF Aβ-42, were more likely to be carriers of the APOE ε4 allele,

and had significantly higher whole brain atrophy, ventricular expansion, and hippocampal

atrophy over 1 year than participants with higher CSF Aβ-42 levels. Of the six participants

who later converted to MCI or AD, five had low or borderline baseline CSF Aβ-42 levels,

suggesting that the roughly one-third of healthy elderly subjects with a CSF profile

consistent with AD were at greater risk for development of the disease. When sample sizes

for clinical trials were calculated for both CSF Aβ-42 levels and APOE ε4 genotype as

selection criteria and using whole brain atrophy, ventricular expansion, or hippocampal

atrophy as the outcome measure, the smallest size per arm [140] was calculated using

selection by CSF Aβ-42 levels and whole brain atrophy as an outcome measure (Table 10).

4.6.1.4 Cognitive: Ito et al [171] evaluated disease progression in clinical studies and drug

trials performed between 1990 and 2008 by using a model to assess the effect of

cholinesterase inhibitors and placebos on longitudinal ADAS-cog scores in mild-to-

moderate AD patients. They found no significant differences in the rate of disease

progression between patients taking the placebo versus patients receiving cholinesterase

treatment. The only significant covariate in disease progression was baseline ADAS-cog

score, suggesting that those patients with a higher (worse) ADAS-cog score at baseline had a

significantly worse prognosis and higher rates of cognitive deterioration than those with

lower (better) baseline scores (Table 9). In a further work by the same group [44],

longitudinal ADAS-cog data from ADNI was used to construct a model that included

baseline severity, APOE status, age and gender identified as covariates to predict a

curvilinear rate of disease progression. Samtani et al [262] also used longitudinal changes in

ADAS-cog scores and developed a non-linear mixed effects model for disease progression

in AD. They found that years since disease onset and hippocampal and ventricular volume

were the primary covariates affecting baseline disease status, whereas age, total cholesterol,

APOE status, and cognitive scores (TMT-B and ADAS-cog) most influenced the rate of

disease progression in the model.

Llano et al [96] used a new Random Forests tree-based multivariate model of ADAS-cog in

which the subscores had been weighted according to their contribution to patient

discrimination. This model, ADAS.Tree, predicted conversion of MCI to AD more

accurately than baseline MMSE or ADAS-cog and, in addition, was a better predictor of
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conversion than the best single imaging (left inferior temporal cortex), metabolism (left

precuneus), or CSF (p-tau181p/Aβ-42) biomarkers. The significance of association varied by

several orders of magnitude, with the ADAS.Tree four orders of magnitude higher than the

next MRI marker, and FDG-PET and CSF biomarkers several orders of magnitude lower

than the MRI marker. Moreover, the addition of these markers to the ADAS.Tree model did

not result in substantial improvement, providing support for this modified form of ADAS-

cog as a useful and effective predictor of future decline (Table 9).

As depression is a recognized risk factor for AD, there has been some interest in depression

as a symptom of prodromal AD and therefore as a surrogate clinical marker. Mackin et al

[292] investigated whether subsyndromal symptoms of depression (SSD), with a prevalence

of up to 70% in MCI patients may be associated with conversion to AD and thus may

predict future cognitive decline. They found that increased endorsement of only one

symptom – memory problems – longitudinally, predicted MCI to AD conversion. Lee et al

[293] used TBM to compare patterns of brain atrophy over 2 years in MCI patients with or

without depressive symptoms. They detected greater frontal (P = .024), parietal (P = .030)

and temporal (P = .038) WM atrophy, and larger cognitive deficits in a range of

neuropsychological tests in subjects with depression and found that 62% of those with stable

depressive symptoms converted to AD within the time of the study compared to 27% of

asymptomatic individuals. These studies suggest that depression and its related syndromes

may have potential as clinical markers for the identification of patients likely to progress.

4.6.1.5 Combined modalities: As in diagnostic classification, combinations of different

modalities are proving to be powerful tools in the prediction of future cognitive decline

[239,247,251,252]. Lorenzi et al [172] tested two strategies for the enrichment of MCI

patients in clinical trials using changes in brain structure or metabolism, or changes in CSF

biomarkers well known to herald future disease progression. They used hippocampal

atrophy (MRI); temporoparietal hypometabolism (FDGPET); CSF Aβ-42, t-tau, and p-tau;

and cortical amyloid deposition (11C-PiB PET) as biomarkers to either screen in MCI-c or

screen out MCI-nc. Although both strategies substantially reduced the estimated sample

sizes required, the authors found that there was a trade-off between the high proportion of

converters screened out in the first strategy and the decreased power and increased estimated

sample sizes using the second strategy (Table 10). Kohannim et al [86] investigated the

utility of their machine learning classifier, based on MRI hippocampal and ventricular

summaries, APOE genotype, and age as features, in subject stratification and found that it

reduced the numbers of AD and MCI patients required to detect a 25% slowing of temporal

lobe atrophy with 80% power to fewer than 40, a substantial reduction over other methods

(Table 10). Walhovd et al [155] examined baseline MRI, FDG-PET, and CSF biomarker

data to determine the optimum combination of these biomarkers for the prediction of decline

over 2 years. They found that in MCI patients, retrosplenial and cortical thickness predicted

decline on the CDR-SB, retrosplenial and entorhinal metabolism predicted decline on the

MMSE, and hippocampal volume predicted decline in delayed logical memory. The tau/

Aβ-42 ratio also predicted decline in the CDR-SB and MMSE, but less significantly than the

MRI and FDG-PET measures (Table 9). Beckett et al [154] found that in MCI and AD

patients, baseline glucose metabolism in a range of ROIs predicted cognitive decline, as

Weiner et al. Page 60

Alzheimers Dement. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



measured by ADAS-cog in a multivariate model. In univariate models, hippocampal and

ventricular volume, Aβ-42, and tau also predicted cognitive decline in MCI patients (Table

9). Both papers support the idea that reduced metabolism and greater brain atrophy at

baseline are associated with more rapid cognitive decline, and that CSF biomarkers are less

useful indicators of future change. A degree of agreement with these results was found by

Landau et al [173], who studied a range of predictors of conversion to AD and cognitive

decline, including FDG-PET measures, CSF biomarkers, APOE ε4 status, and hippocampal

atrophy, that were defined dichotomously according to their ability to separate AD and

control subjects. Although all biomarkers were predictive of decline in univariate models,

only reduced glucose metabolism and episodic memory (measured by the AVLT) predicted

conversion to AD and, in contrast to the studies by Beckett et al [154] and Walhovd et al

[155], only p-tau181p/Aβ-42 predicted decline in ADAS-cog scores in multivariate models

(Table 9). Ewers et al [161] compared the effectiveness of single variables and multiple

variables in predicting the conversion of MCI to AD. They found that these best single

predictors (right entorhinal cortex and the TMTB) were comparable in accuracy with the

best multiple predictor models, which included right hippocampal volume, CSF p-tau181p/

Aβ-42, TMT-B, and age (Table 9). Examining MR, CSF, cognitive and demographic data,

Gomar et al [294] found that their most predictive model included 2 measures of episodic

memory (AVLT-delayed memory and Logical memory delayed total) and one MR measure

(left middle temporal lobe thickness) (Table 9).

In 2011-2012, the emphasis of these studies has shifted toward using methods that

automatically combine and leverage the most pertinent information from a range of

modalities and away from the construction and comparison of individual linear regression

models. The multi-modal multi-task learning method of Zhang et al [239] was able to

combine most predictive features from MRI, FDG-PET and CSF data and predict 2 year

changes in both MMSE (r = 0.511) and ADAS-cog (r = 0.511) scores in MCI patients (Table

9). A subsequent paper by Zhang et al [239] used both baseline and longitudinal data to

achieve even higher prediction accuracies. Their best predictions of 2 year changes in both

MMSE (r = 0.786) and ADAS-cog (r = 0.777) scores used baseline, 6, 12 and 18 month

data. The conversion to AD from MCI within the same time frame was predicted with

accuracy of 78.4%, a sensitivity of 79%, a specificity of 78% and an AUC of 0.768 (Table

9). Similarly, the Multi-Modality Disease marker developed by Hinrichs et al [118] used

longitudinal data to predict conversion more accurately than baseline data alone and found

that combined biological, imaging and neuropsychological data outperformed single

modalities (Table 9). Another method recently developed by Wang et al [251], SMART,

which takes into account the interconnectedness of brain structures and other measures,

consistently resulted in better prediction of AVLT scores in control, MCI and AD patients.

The disease state index of Mattila et al [252], which included demographic and genetic

information as well as imaging data and cognitive scores, was able to predict the conversion

of MCI to AD with an AUC of 0.752 (Table 9). Soininen et al [253] used the same tool and

found that it could discriminate between MCI converters and stable MCI patients with an

accuracy of 68.6%, but that when patients were assigned to categories of risk for AD based

on threshold values, the prediction accuracy increased to 84.4% for those having strong

evidence and to 93.7% for those with very strong evidence of AD pathology (Table 9).
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While the above papers developed a range of automatic multi-modal methods of the

prediction of disease progression, Heister et al [295] asked whether MCI to AD conversion

can be predicted using clinically available biomarker systems (commercially available

software for fully automated volumetric MRI and commercial CSF analysis). They stratified

the MCI cohort by degree of MR atrophy, CSF biomarker levels or the degree of learning

impairment on AVLT. Cox proportional hazard models were used to assess the contribution

of each factor to MCI to AD conversion. They found that a single risk factor resulted in a

1.8 to 4.1 fold risk of converting to AD within 3 years and that more than one risk factor was

associated with a greater risk of conversion. Patients with both learning impairment and

increased MR atrophy were at the highest risk with a HR of 29.0 for conversion. This study

supports the use of commercially available CSF and MRI biomarkers in combination with

neuropsychological tests in predicting the risk of MCI to AD conversion.

The degree to which prediction models developed in one cohort are generalizable to

different settings was investigated by Devanand et al [296]. They developed a variety of

models that included different combinations of imaging, cognitive and demographic data in

the Questionable Dementia study and tested these in the ADNI cohort. Prediction accuracy

of the MCI to AD conversion was consistently lower by a similar degree in the ADNI

setting, suggesting that these models are portable and robust in clinical settings.

4.6.2 Adjustments for normal aging and baseline characteristics—McEvoy et al

[168] also examined the effect of normal aging on the detection of longitudinal change and

found that although this did not affect clinical outcome measures such as ADAS-cog and

CDR-SB, neuroimaging outcome measures were far more sensitive to atrophy associated

with normal aging. They suggested that larger sample sizes are required in clinical trials to

account for this effect, and that clinical trials run the risk of being severely underpowered if

normal aging is not taken into account. Schott et al [174] proposed an alternative method for

increasing the statistical power of clinical trials without resorting to subject selection

procedures that can potentially limit the applicability of studies. They found that by

statistically adjusting for a range of baseline characteristics that might account for

interindividual differences, and also for normal aging, sample sizes were reduced by 15% to

30% in AD subjects and by 10% to 30% in MCI subjects (Table 10). The importance of

appropriate controls in AD disease-modifying clinical trials was studied by Holland et al

[297] who estimated required sample sizes using either absolute change relative to baseline,

change relative to controls or change relative to healthy controls who tested negative for Aβ.

While their calculations suggested that larger sample sizes were required for measures

relative to Aβ negative controls, the authors felt that this approach would most accurately

reflect the actual effect of a drug on AD pathology. The study compared 5 publically

available methododologies to measure structural changes in neuroanatomical subregions and

smallest sample sizes were calculated using the QUARC approach to quantify the entorhinal

cortex (Table 10).

4.6.3 Development of outcome measures—A number of studies have focused on

determining the effectiveness of different biomarkers as outcomes in clinical trials by

calculating sample size estimates for a hypothetical clinical trial, per arm at either 90%
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(N90) or 80% (N80) power to detect a 25% improvement in annual rate of decline. Schuff et

al [121] used hippocampal volume loss over time, assessed by MRI, as an outcome measure

and found that the greatest reductions in sample size were achieved when three serial scans

(0, 6, and 12 months) were combined with APOE ε4 data using Markov chain analysis to

exploit correlations between observations (Table 11). The inclusion of Aβ-42 level data did

not further reduce sample size. All MRI hippocampal measures were substantially better

than cognitive measures (ADAS-cog and MMSE) as outcome measures. Wolz et al [64]

used a 4-D graph cut method to segment the hippocampus and subsequently calculated N80s

in the same range as the best combinations of Schuff et al [121] (Table 11). Nestor et al

[175] investigated the use of ventricular expansion as an outcome measure and found that

ventricular expansion over 6 months was sufficiently sensitive to produce N80s for a

hypothetical trial at least an order of magnitude lower than clinical scores (MMSE and

ADAS-cog). Moreover, sample sizes were further reduced when the trial population of AD

subjects was restricted to carriers of the APOε4 allele (Table 11). Holland et al [176]

examined the utility of longitudinal volumetric change in a variety of ROIs as an outcome

measure with which to measure putative disease-modifying medications for AD and MCI.

ROIs, including temporal lobe structures and ventricles, and whole brain atrophy were

compared with clinical measures in two separate models, one in which the putative drug was

presumed to affect both disease and aging-related changes (model T for “total”), and one in

which the drug putatively affected only disease-specific changes (model D for “disease-

specific”). They found that although imaging measures generally resulted in smaller sample

sizes than cognitive measures in both models, model T was the more conservative model for

cognitive measures, whereas model D was more conservative for imaging measures. The

authors emphasized the importance of comparing both models when comparing across

imaging and cognitive outcome measures (Table 11).

Hua et al [177] compared a variety of nonlinear registration methods used in TBM with

standard clinical outcome measures and found that a substantial reduction in sample size at

80% power (N80s) was achieved over clinical measures using all TBM methods, with the

best TBM measure presenting an eightfold improvement over the best clinical measure

(CDR-SB) (Table 11). The same group [120] subsequently compared the use of TBM to

measure GM of the entire brain and WM atrophy in the temporal lobe with 1-year changes

in CSF biomarkers as outcome measures in a hypothetical clinical trial. The N80s for CSF

biomarkers were much larger than those from neuroimaging measures, reflecting their

poorer reproducibility, especially in later stages of the disease process (Table 11). Ho et al

[47] compared 3.0-T and 1.5-T MRI for tracking disease progression using TBM and an

alternative method for measuring the overall percentage brain volume change, Structural

Image Evaluation, using Normalization, of Atrophy. The lowest calculated N80 resulted

from using TBM on a 1.5-T MRI scanner to detect changes in brain atrophy as an outcome

measure (Table 11). Leung et al [51] estimated N80s for both the classic brain BSI MRI

technique and their improvement on this, the KN-BSI method, and found that the improved

method resulted in lower N80s (Table 11). More recently, using a newly revised TBM

method that enforces inverse consistency, Hua et al [178] reported that to demonstrate a

25% slowing of atrophic rates with 80% power, 62 AD and 129 MCI subjects would be

required for a 2-year trial and 91 AD and 192 MCI subjects for a 1-year trial.
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Beckett et al [154] compared a number of promising MRI and FDG-PET outcome measures.

They calculated the sample size that would be required in a two-arm, 1-year clinical trial

with 80% power to detect a 25% effect, and found that MRI measures of overall brain

change, using either ROIs or BSI techniques, or hippocampal volume required fewest

subjects. Brain metabolism measures were generally less effective, requiring substantially

larger sample sizes, although the best FDG-PET measure, a data-driven functional ROI, was

comparable with many of the MRI measures (Table 11). In contrast, Herholz et al [291]

found their composite PET score, based on FDG-PET data, to be a better outcome measure

than ADAS-cog scores due mostly to its higher test-retest reliability which resulted in

smaller required sample sizes. Relative to a sample size of 100 required at 12 months with

ADAS-cog as an outcome measure, the PET score outcome measure required a sample size

of 28. At 6 and 24 months, the PET and ADAScog sample sizes were 120 and 397, and 13

and 35, respectively. The PET score was linearly associated with ADAS-cog scores,

emphasizing its validity as a measure of cognitive impairment.

The accepted standard outcome measure in AD disease modifying clinical trials is the

ADAS-cog. Schrag et al [298] empirically determined the minimum clinically relevant

change in ADAS-cog and compared it to the current standard of expert consensus. Using

MMSE, CDR and FAQ scores, they ascertained that a 3 point decline in ADAS-cog over 6

months was clinically relevant, a point less than the consensus FDA recommendation,

suggesting that the FDA standard may be too stringent and may consequently miss an

important drug effect.

4.6.5 Other improvements to clinical trials—Clinical trials for AD modifying

treatments require special considerations due to the advanced age of the participants and

their high rates of medical co-morbidities. Hendley et al [299] studied patients taking

placebo in recent AD clinical trials and ADNI control participants to determine the rates of

adverse events, serious adverse events, discontinuation from trials and frequencies of death.

The authors hoped that the accumulated reference data would aid in the design of future long

term AD studies. Thompson et al [300] reviewed methodologies for characterizing disease

trajectories over a lifespan using ADNI as an illustration of a longitudinal unstructured

multi-cohort study. They reported that, while this study design is superior to a cross-

sectional design in terms of eliminating a number of confounding factors, it is still

susceptible to age cohort effects due to the randomness of participant ages (ranging from 55

to 90). They suggest an improved structured longitudinal model in which age cohorts would

be tiered but overlapping.

4.6.6 Summary and conclusions of papers focused on the improvement of
clinical trial efficiency—Strategies for the reduction of sample sizes in clinical trials by

the selection of subjects with a significantly worse prognosis and through the use of more

effective outcome measures have been developed over the course of ADNI. Studies have

found that baseline MRI measures, particularly of hippocampal volume and of whole brain

atrophy, outperform measures of glucose hypometabolism or CSF biomarkers in the

prediction of future decline. In one instance, a score derived from AD-like patterns of

hypometabolism outperformed other single MRI, cognitive, or CSF biomarker measures, but
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this too was enhanced by the addition of MRI measures. Of the CSF biomarkers, the t-tau/

Aβ-42 ratio and the use of a cutoff value of approximately 192 pg/mL Aβ-42 have been

shown to best predict future decline. In a manner similar to classification of AD subjects, the

use of multiple modalities appears to enhance the prediction of future decline. Interestingly,

a weighted version of the ADAS-cog [96] has been shown to outperform any single MRI

measure tested as a predictor of future change and was not improved by the addition of any

MRI measure tested. In contrast, MRI and FDG-PET, which have strikingly better signal-to-

noise ratios, clearly outperformed cognitive tests as outcome measures of rates of change.

Calculated sample sizes for clinical trials required to see a 25% effect at 80% power were

lowest for MRI measures of overall morphometric change or of hippocampal volume,

followed by those for hypometabolism ROIs and cognitive scores. CSF biomarkers were the

least effective outcome measures by several orders of magnitude. Finally, it also will be

necessary to study the comparative effectiveness and cost-effectiveness of the AD

biomarkers studied in ADNI to determine the optimal way to make use of these biomarkers

in the diverse applications needed in AD research. For example, based on the recent studies

of Wiegand et al [169], it is possible to impute Aβ measures determined by Aβ imaging

using far less expensive measures of CSF Aβ-42 levels. Additional similar studies as well as

others focused on the economics of the use of biomarkers in clinical trials and clinical

practice are needed.

A major emphasis in papers published in 2011-2012 is the prediction of future decline at an

even earlier stage, with some works focusing on identifying cognitively normal individuals

at high risk of disease development. Both levels of CSF biomarkers and volumetric MRI

were successfully used in this application, in agreement with the Jack model for disease

progression [14]. As in classification, the prediction of MCI to AD conversion was most

accurate when longitudinal data and/or combined modalities were used, and a number of

papers focused on the use of automated methods to select the most pertinent information

from multiple modalities. Depression was identified as a novel predictor. From a

methodological standpoint, the use of an Aβ negative control group in clinical trials was

recommended to reflect the largest drug effect, and the minimum significant change in

ADAS-cog scores was calculated to be lower than the FDA-recommended change. Both

methods reduced sample sizes.

5 Identification of genetic risk factors for AD

The influence of genetics on the dynamic trajectory of brain development and aging is well

established, if not well understood. Studies of twins have estimated the heritability of AD to

be between approximately 60% and 80% [179], and until recently the only established

genetic risk factor for AD was the APOE ε4 allele, which accounts for approximately 50%

of AD heritability [180]. The question of accounting for the up to 30% of heritability

remaining has only begun to be addressed, and although there have been a number of

candidate genes proposed, the majority of them await independent confirmation. ADNI is in

the unique position of providing a large cohort with genotype information in addition to

imaging and biochemical data that can be leveraged as QTs in uncovering new genetic

associations, and as such plays an increasingly important role in the discovery and

confirmation of novel genetic risk alleles.
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Three main approaches have been taken to investigating the genetic basis of AD. Case–

control studies that search for loci with differential frequency between patient groups have

identified a number of candidate genes. Typically, markers are used to tag susceptibility

loci, usually in 10-kb to 20-kb regions in the genome, that are rarely found to be causal.

Using this method, the association of APOE ε4 allele with AD has been confirmed, and

three new risk loci, CLU, PICALM, and CR1, have been identified and confirmed [181–

183]. Further studies have focused on examining relationships between SNPs in a limited

number of genes of interest and quantifiable phenotypic characteristics or QTs, such as

imaging data or levels of CSF biomarkers. GWAS evaluate a large and dense set of SNP

markers distributed throughout the genome, providing an unbiased search for the discovery

of new candidate genes. With more than 500,000 markers typically included in a GWAS, a

stringent correction for multiple testing is required with typical thresholds of P < 10−8 used

to reduce false detections. These stringent corrections also greatly reduce power and require

extremely large sample sizes to achieve significance in case– control designs. However, the

use of quantitative phenotypes such as cognitive, imaging, and fluid biomarker measures can

greatly increase the power to detect associations. Where a binary case–control design might

require many thousands of samples to detect a gene effect, samples on the scale of ADNI are

sufficient for detecting associations with quantitative phenotypes [184]. The emerging field

of imaging genetics, which uses imaging data as QTs in GWAS, promises the power to

reveal patterns of genetic associations throughout the brain, but is hampered by the

computational load required for such high-dimensional studies. Further development of this

field, including improvement of existing GWAS methods, is a major goal of the Genetics

Core of ADNI [6].

5.1 Case–control studies

Jun et al [185] conducted a meta-analysis case–control study of AD patients and healthy

elderly control subjects from 12 different studies, including ADNI, to examine the

association of APOE ε4, CLU, PICALM, and CR1 with AD. They found that CLU,

PICALM, and CR1 were significantly associated with AD only in Caucasian populations. In

contrast, APOE ε4 was significantly associated with AD in all ethnic groups and with

PICALM in white populations, suggesting that APOE ε4 and PICALM act synergistically

and may participate in a common pathological pathway (Table 12). Two of the largest case–

control GWAS studies of AD were recently published as companion reports in Nature

Genetics [186,187]. Both reports included the ADNI-1 data in their analyses (Table 12).

These multistage meta-analytic reports included discovery and replication data sets and

confirmed each other. These new results bring the total set of confirmed and replicated

candidate genes to 10 (APOE/TOMM40, ABCA7, BIN1, CD2AP, CD33, CLU, CR1, EPHA1,

MS4A4/MS4A6A, PICALM).

Mitochondrial genes are also of great interest in AD, and Lakatos et al [188] studied the

incidence of AD in patients belonging to different subgroups (HV, JT, UK, and IWX) of

mitochondrial haplogroup N in the ADNI cohort. They found that haplogroup UK had the

strongest association with AD, and that this relationship remained significant after adjusting

for APOE ε4 allele dose. Additionally, they identified five mitochondrial SNPs that were

associated with increased risk of AD and suggested that, given the vital role of mitochondria
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in maintaining cellular energy balance, dysfunctional mitochondria may contribute to AD by

causing neuronal oxidative damage. In another case–control design, Kauwe et al. [189]

attempted to replicate a study that found that epistatic linkage between two SNPs in the

transferrin and hemochromatosis genes was associated with AD risk, suggesting a role for

iron in AD pathology. Using synergy factor analysis, they found significant association

between bicarriers of the minor alleles of both SNPs and risk for AD in several U.S. and

European study populations, including ADNI, providing support for the iron hypothesis

(Table 12). Erten-Lyons et al [301] investigated the association between microencephaly

genes, responsible for regulating brain growth in utero, and AD in two cohorts including

ADNI, but were unable to detect any increase risk associated with common variants of these

genes.

5.2 Studies of limited loci using quantitative phenotypes

Several studies have used knowledge of the model for AD progression by testing the

associations between genes potentially involved in AD pathology and CSF biomarkers.

Cruchaga et al [190] examined associations between SNPs in 35 genes putatively involved

in tau posttranslational modification and CSF levels of p-tau181p. They found that SNPs in

the gene for protein phosphatase B were associated with higher levels of p-tau181p, and that

an SNP in the regulatory subunit of protein phosphatase B was more highly expressed in AD

patients compared with control subjects (Table 12). These results suggest that genetic

variants that alter the activity of protein phosphatase B could contribute to AD pathology by

affecting tau phosphorylation. A further study by the same group [191] found that the SNP

in the regulatory subunit of protein phosphatase B was associated with the rate of disease

progression, and not with the age of onset or risk of AD. In contrast, APOE ε4 was

associated with lower levels of CSF Aβ-42, increased disease risk, and lower age of onset,

providing support for a model in which amyloid deposition is an early event in disease

progression and accumulation of hyperphosphorylated tau occurs at a later stage (Table 12).

Kauwe et al [192] also used levels of CSF biomarkers as a QT to investigate the predicted

biological effects of SNPs in three genes associated with AD. They found that a

nonsynonymous coding substitution in the gene for calcium homeostasis modulator 1

(CAHLM1), proposed to affect levels of Aβ by modulating intracellular calcium levels, was

associated with increased CSF levels of Aβ-42 (Table 12). Associations between levels of

CSF biomarkers and SNPs in the two other genes for growth factor receptor-bound protein-

associated binding protein 2 (GAB2; proposed to influence tau phosphorylation) and sortilin-

related receptor (SORL1; an apoE receptor proposed to bind Aβ) were not found, perhaps

because of power limitations of the study.

Using six imaging measures reflective of AD pathology as QTs, Biffi et al [193] searched

for associations between these and SNPs in a range of established and candidate genes for

AD risk. They first sought to confirm associations of APOE, PICALM, CLU, and CR1 with

AD, and found that although APOE had a strong association with diagnosis, of the

remaining identified risk alleles, only CR1 was associated with AD in the ADNI cohort,

possibly reflecting sample size limitations for case–control studies. Two novel loci, CNTN5

and BIN1, were also found to have significant association with AD (Table 12). When the

relationship of APOE ε4, CR1, CNTN5, and BIN1 with imaging measures was examined, it
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appeared that APOE ε4 was associated with virtually all brain regions, whereas the other

loci had a more limited pattern of association, consistent with APOE ε4 being the primary

AD genetic risk factor and other loci making more modest contributions to the disease.

While the APOE ε4 allele remains the major risk allele for AD, the question of its influence

on other alleles remains to be clarified. Murphy et al [302] investigated the effect of APOE

status on 2 alleles of the cholesteryl ester transfer protein (CETP) and their relationship with

brain atrophy in the ADNI control, MCI and AD patients. Using atrophy of the

hippocampus, entorhinal cortex and parahippocampal gyrus as a QT, they found that the V

and A alleles of I405V and C629A, which decrease CETP activity and therefore increase

high density lipoproteins, had differential effects depending on APOE status. In carriers of

the APOE ε4 allele, the V and A alleles were associated with less atrophy whereas results

were reversed in non-carriers, suggesting that CETP polymorphisms may influence

neurodegenerative disease susceptibility in an APOE-dependent manner.

Given that glucose metabolism reflects cognition, the effect of genetic risk factors for AD

that influence brain atrophy and subsequently cognition may be reflected in altered cerebral

metabolism. Xu et al [303] investigated the influence of one genetic factor, the V66M

polymorphism of brain-derived neurotrophic factor (BDNF), essential for neuron survival,

on brain glucose metabolism and identified patterns of changed metabolism in carriers of the

V66M polymorphism compared to non-carriers in the ADNI cohort. The regions affected by

this polymorphism changed with disease severity, with MCI carriers exhibiting alterations in

regions affected in both cognitively normal carriers (parahippocampal gyrus and temporal

cortex) and those with AD (bilateral insula), providing further support for polymorphisms in

BDNF as a genetic risk factor for AD.

5.3 GWAS of quantitative phenotypes

In the first ADNI GWAS using the ADNI AD cases and control subjects, Potkin et al [184]

confirmed the association of APOE with AD and identified a novel AD risk gene, TOMM40,

encoding a regulatory subunit of a protein translocase in the outer mitochondrial membrane,

as being significantly associated with AD. A further GWAS using VBM-derived estimates

of hippocampal volume as a QT identified 21 loci with significant association with

hippocampal volume including, in addition to APOE ε4, genes involved in hippocampal

development (EFA5), ubiquination (MAGI2, CAND1), apoptosis (PRUNE2, CAND1),

necrosis (ARSB), and dementia (MAGI2, ARBS) (Table 12). The involvement of TOMM40 in

numerous brain regions of AD patients was confirmed by Shen et al [194]. This study used a

novel whole brain set of ROIs from both VBM and FreeSurfer parcellation as QTs in a

GWAS. Of the three SNPs additionally identified as significantly associated with brain

volumetric changes, only one, proximal to the NXPH1 gene encoding neurexophilin (known

to promote adhesion between dendrites and axons), had a bilateral pattern of association and

was chosen for further study (Table 12). AD patients homozygous for the T allele at this

locus displayed reduced GM most significantly in hallmark regions of AD atrophy, such as

the hippocampus. This study illustrates the potential power of imaging genetics to identify

novel candidate genes that warrant further investigation as AD candidates.

Weiner et al. Page 68

Alzheimers Dement. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



While Shen et al [194] used ROIs covering the brain, Stein et al [195] further extended the

dimensionality of imaging genetics studies by carrying out a voxelwise GWAS, which

explored associations between hundreds of thousands of SNPs and each of the nearly 32,000

voxels of the entire brain. Although no SNP was found significant at the stringent criteria

used in the study, a number of SNPs of interest were identified in or near genes known to

have functions relating to brain structure, such as monoamine uptake in neurons (CAPDS2),

psychiatric illness (CSMD2 and CAPDS2), and neurite growth (SHB and ARP1) (Table 12).

In a second GWAS of a targeted region of TBM-derived structural brain degeneration on

MRI, Stein et al [196] identified an SNP located in the gene encoding N-methyl-D-aspartate

receptor NR2B subunit (GRIN2B) that was significantly associated with lower volumes in

the temporal lobe bilaterally. Risk alleles at this locus were more prevalent in AD patients of

the AD cohort than in healthy elderly control subjects and were additionally associated with

decreased MMSE scores (Table 12).

Furney et al [197] also used targeted imaging measures (entorhinal cortex thickness and

volume, hippocampal volume, whole brain volume, and ventricular volume) as QTs in a

large GWAS involving two cohorts (AddNeuroMed and ADNI). In addition to confirming a

role of PICALM as a susceptibility gene for AD and as related to entorhinal thickness, they

identified two other loci, ZNF292 and ARPP-21, as potential candidate genes based on

associations of flanking SNPs with entorhinal cortex thickness and volume (Table 12).

Most imaging GWAS reports have addressed baseline ADNI data; however, genetic variants

predicting rate of progression are of great interest. Saykin et al [6] reported an initial

longitudinal analysis of hippocampal volume and GM density using baseline and 12-month

scans. In a candidate gene analysis [198], five AD genes from the AlzGene database (http://

alzgene.org) were found to have significant SNPs associated with hippocampal volume or

GM density changes, after accounting for APOE, baseline diagnosis, and other factors

(NEDD9, SORL1, DAPK1, IL1B, and SORCS1). Next, a longitudinal GWAS was performed

on hippocampal volume and GM density, using the MRI measures reported in the paper by

Risacher et al [115]. A number of interesting potential candidate genes were identified by

this GWAS. In addition to APOE and TOMM40, an SNP (rs12449237) located at 16q22.1

between CDH8 (cadherin 8, type II) and LOC390735 was strongly associated with change in

hippocampal volume. CDH8 codes for a calcium-dependent cell adhesion protein related to

synaptic integrity (neuronal adhesion anaxonal growth and guidance). Although the cadherin

protein has been implicated in AD and is known to interact with presenilin, this was the first

indication that genetic variation in CDH8 may be associated with rate of neurodegenerative

changes in the hippocampus. Several other markers did not reach genomewide significance

but also showed association signals worthy of follow-up (for volume change: SLC6A13; for

GM density change: MAD2L2, LOC728574, QPCT, and GRB2).

In a QT GWAS of CSF biomarker levels instead of imaging variables, Kim et al [149]

examined levels of Aβ-42, t-tau, and p-tau181p and the ratios of p-tau181p/Aβ-42 and t-tau/

Aβ-42 in the ADNI cohort. They found five SNPs that reached genomewide significance for

associations with one or more biomarkers, including the known candidates (APOE and

TOMM40) as well as one hypothetical gene (LOC10012950) that partially overlaps APOE.

Most interestingly, several SNPs in the vicinity of the novel gene EPC2 (enhancer of
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polycomb homolog 2) were associated with t-tau levels. EPC2 is involved in chromatin

remodeling and has not been previously associated with AD, yet this gene may be causally

associated with mental retardation in a microdeletion syndrome. Along with EPC2, SNPs

near CCDC134, ABCG2, SREBF2, and NFATC4 approached significance (P < 105) in their

association with CSF biomarkers and can be considered potential candidate genes for future

studies (Table 12). Han et al [199] also used levels of CSF biomarkers as QTs in a GWAS of

the ADNI cohort. They found that increasing APOE ε4 allele dose was associated with

lowered Aβ-42 and elevated t-tau and p-tau181p levels. After adjusting for age and APOE

genotype, several SNPs were found to be significantly associated with increased Aβ-42

levels in normal subjects, the most strongly associated being within or proximal to the

TOMM40, NCAM2, and CYP19A1 genes (Table 12). NCAM2 encodes neural adhesion

molecule 2, a poorly characterized protein implicated in neuronal adhesion and fasciculation

of neurons, whereas CYP19A1 encodes cytochrome P450 aromatase, an enzyme that

catalyzes the conversion of androgens to estrogens.

In addition to risk for AD itself, age at onset (AAO) of the disease has an estimated

heritability of 42%, some of it accounted for by APOE. Kamboh et al [307] conducted a

GWAS of AAO data from 3 cohorts including ADNI to identify additional loci involved in

AAO. They confirmed the involvement of APOE and neighboring loci (TOMM40 and

APOC1) but no other SNPs reached significance. However, SNPs in 11 loci approached

significance and as they lie in or near genes expressed in the brain, the authors suggested

that they may be worthy candidates for further investigation.

GWAS appear to be a powerful tool for detecting associations between genes and

phenotypes, but they are limited by the large sample sizes (typically thousands) required to

gain sufficient statistical power to find these links and may also fail to detect connectivities

between genetic loci by considering all SNPs separately. Imaging GWAS are also

particularly extremely computationally intensive. In 2011-2012, various studies have

focused on approaches to overcome these difficulties [305]. Schott et al [309] reported a

method to increase the power of GWAS by defining cases and controls more accurately to

reflect the presence of AD pathology rather than on the basis of clinical diagnosis. To this

end, they divided the ADNI cohort into CSF positive and CSF negative groups based on

previously established cut-points for Aβ42 and ptau181 and examined minor allele

frequencies for 7 SNPs in previously identified AD risk genes. They found significant

associations between the CSF negative group and SNPs in CR1, PICALM, TOMM40 and

APOE using only slightly more than 300 subjects, an order of magnitude fewer than

generally required to detect associations in GWAS. An alternative approach to reducing

sample sizes and to leveraging information from potentially linked genes, was taken by

Swaminathan et al [310] who used SNPs in 15 amyloid pathway associated genes and PiB

uptake in 4 regions affected by AD to study genetic associations in 103 ADNI AD patients.

This approach identified a minor allele (A) of an SNP in the DHCR24 gene that confers a

protective effect and in a subsequent whole brain analysis, they found they found a higher

mean PiB uptake for the major allele in frontal regions. Hu et al [308] also used a pathway

approach, investigating multiple SNPs in canonical AD pathways, and identified SNPs in

the Gleevec pathway, a cancer drug shown to modulate APP cleavage by γ-secretase, as
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being involved in AD. This targeted pathway-based approach may be more effective in

identifying genes involved in AD pathology than traditional GWAS. The issue of reducing

dimensionality was tackled by Hibar et al [305], who proposed that condensing the number

of SNPs (around 400,000) to genes (slightly over 18,000) would avoid having to restrict

phenotypes to a priori defined ROIs to enable a practical computational burden. They used

principal components regression to test for gene association at each voxel and identify the

most significant gene on a voxel basis. Although no genes identified remained significant

after correction for multiple comparisons, many top genes, including GAB2, an established

AD risk gene, had been previously identified as being associated with brain diseases,

suggesting that this multivariate gene-based approach holds promise for future

investigations.

5.4 Replication studies and meta-analyses

In 2011-2012, genetic data from the ADNI cohort have been used in a number of studies

both confirming candidate AD risk genes, by attempting to replicate results in different

cohorts, or by conducting meta-analyses of previously published work, and providing more

detailed mapping of candidate genes. An independent confirmation of the involvement of

CR1 in AD was reported by Antunez et al [309], who found a trend supporting association in

a Spanish cohort of approximately 3500 and a stronger association in a meta-analysis of

over 30,000 individuals. Further confirmation for CR1 as an AD risk gene came from Hu et

al who conducted a GWAS on combined cohorts including ADNI. They also replicated the

BIN locus by testing top SNPs from the GWAS in an independent cohort, and used

haplotype conditional analysis to show that multiple variants at the BIN locus had

conditionally independent associations with AD. PICALM variants were also replicated, but

their association with AD was attenuated by APOE status. Cruchaga et al [310] focused on

replicating the association between APOE3-TOMM40 haplotypes and AD as well as age of

onset of the disease. They found it difficult to identify the genetic variant driving the

association of the genes because of extensive linkage disequilibrium around TOMM40 and

APOE and possibly an insufficient sample size. Consequently, they were not able to

replicate results, identifying instead a polymorphism of TOMM40 associated with decreased

risk of AD. An additional study by Antunez et al [311] independently identified the MSA4A

gene cluster as being associated with AD after a meta-analysis of 4 public GWAS sets

including ADNI, and a new Spanish cohort. This gene cluster was previously identified by

Naj et al [186], and the use of a combined total of over 10,000 cases and over 14,000

controls in this study underscores the importance of combining cohorts to increase power to

detect genetic associations that may have small effect sizes. Kauwe et al [312] investigated

whether common variants of BIN1, CLU, CR1 and PICALM were associated with Aβ42 and

p-tau181. No associations between these SNPs and CSF biomarkers were found in two

cohorts including ADNI, suggesting that these candidate genes may affect risk for AD via

other mechanisms than a direct effect on AD pathology. CSF biomarkers were also used as a

QT in a study by Alexopoulos et al [313], who investigated the association between SORL1

(neuronal sortilin-related receptor with A-type repeats), likely involved in sorting of APP in

the Golgi, and levels of Aβ42, ptau181 and t-tau. They found that Aβ42 was significantly

associated with the A allele for SORL1 SNP233 in the AD group and marginally associated
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with T allele of SNP24. Levels of some SNPs in SORL1 were modulated by the APOE ε4

allele.

5.5 Genomic copy number analysis

One method of genetic analysis not extensively used in the field of AD research is that of

copy number variation analysis. Copy number variants (CNVs) are sequence alterations

involving differences in gene copy numbers usually cause by deletions or duplications of

genomic sequences. Swaminathan et al [314] used this technique to analyze the ADNI

cohort and compared CNV calls generated in AD and MCI cases to those in controls using

whole genome and candidate gene association approaches. While no excess CNV burden

was observed in cases versus controls, a number of genes already implicated in AD were

identified (CHRFAM7A, NRXN1), in addition to some novel loci (CSMD1, HNRNPCL1,

SLC35F2, ERBB4) (Table 12). Of these candidate genes, three (CHRFAM7A, NRXN1,

ERBB4) were replicated in an analysis of a different cohort by the same group [310,318].

This analysis also identified other loci previously identified as possible AD candidate genes

(ATXN1, HLA-DPB1, RELN, DOPEY2, GSTT1) in addition to a novel candidate gene,

IMMP2L which codes for a mitochondrial enzyme and may play a role in AD susceptibility

through influencing oxidative damage (Table 12).

5.6 Other genetic studies using ADNI data

Like other fields discussed in this review, studies have recently emerged that utilize ADNI

genetic and/or imaging data for uses not directly related to AD research. Stein et al [316]

conducted a GWAS investigating genetic influences in caudate volume, a structure involved

in many disorders including depression and schizophrenia as well as in AD. While no SNPs

reached genome-wide significance, loci involved in dopaminergic neuron development and

with links to schizophrenia were identified suggesting that MRI phenotypes may be

powerful phenotypes when searching for genetic associations. The ADNI cohort was also

used in 2 GWAS, one identifying SNPs associated with variability in the surface of the

visual cortex [317] and the other determining that circadian clock SNPs are not associated

with the breakdown of sleep-wake consolidation observed in AD [318].

5.7 Summary and conclusions of genetic risk factor studies

Genetic studies of the ADNI cohort have confirmed that the APOE ε4 allele is the major

genetic risk factor for late-onset AD and that it is associated with atrophy in widespread

areas of the brain. Case–control GWAS that have included ADNI data have also confirmed

CLU, CRI, and PICALM as AD risk loci and identified a number of other candidate genes.

QT GWAS using ADNI phenotypes such as Aβ-42 and tau or imaging measures of brain

atrophy have detected genes implicated in the modification or modulation of Aβ or tau

proteins, mitochondrial oxidative pathways, iron metabolism, neural adhesion and growth,

synaptic plasticity, epigenetic processes, and memory function. A particular contribution of

ADNI imaging genetic studies has been to develop methods to expand the dimensionality of

GWAS studies to include all regions or voxels of an imaging scan, significantly expanding

the potential of the field of imaging genetics to pinpoint specific brain regions influenced by
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different loci. Although candidate genes await confirmation by independent studies, they

promise to unveil biological mechanisms underlying AD pathology.

Publications of genetic findings using ADNI data have continued to increase in 2011 and

2012. From only 1 paper published in 2009 [184] and 19 in 2010

[6,103,128,141,146,184,188,189,191-193,303,194-196,199,208-210], 2011 saw 20 new

publications [105,139,149,186,187,194,197,305,308-311,314,316,318-323] and the first

three-quarters of 2012 saw 32 new publications

[262-264,302,304,306,307,315,317,324-346]. This significant expansion in number has been

matched by an equally impressive expansion in scope. While new candidate risk loci

continue to be reported, the focus of many studies has been to replicate previous work,

sometimes using meta-analysis of combined cohorts, to independently confirm candidate

genes. These studies have demonstrated that the increased power resulting from the larger

sample sizes is critical to success in this endeavor. Other approaches to increasing power to

identify candidate genetic loci have been reported, such as targeting SNPs in selected

pathways rather than using a genome-wide approach or using genes instead of SNPs in a

genome wide search, and defining controls and cases on the basis of pathological rather than

clinical criteria. The analysis of copy number variations in AD has been reported and

appears to be an important additional tool for untangling the contributions of AD

susceptibility loci to the disease. Finally, ADNI genetics data have been used in fields

outside of Alzheimer's research, demonstrating a pleasing contribution of the project to the

greater scientific community.

6 Studies of normal control subjects

With the realization that AD pathology most likely begins to accumulate years in advance of

any detectable cognitive effect, a major issue has been determining the proportion of

apparently normal control subjects who harbor preclinical AD. As more sensitive

biomarkers have been developed, studies have emerged with the goals of ascertaining the

utility of these biomarkers in healthy elderly subjects and determining the earliest stage at

which incipient AD pathology can be detected. This clearly has implications for

development of AD therapies: if AD pathology can be reliably detected at such an early

stage, then would existing or novel AD-modifying treatments be more effective when used

before clinical symptoms become evident? In tandem with these studies, ADNI's cohort of

well-characterized normal control subjects has been used to investigate processes occurring

in the brain during healthy aging when there are no clinically detectable underlying

pathologies. These two thrusts are often interwoven within the same study, as it becomes

more obvious that healthy elderly subjects, although cognitively normal, are in fact a

heterogeneous group when examined by other means.

6.1 MRI studies

The question of whether atrophy observed in normal aging is due primarily to normal aging

processes or to the development of underlying pathologies is the subject of much debate.

Fjell et al [200] presented the first detailed longitudinal study of brain atrophy in healthy

elderly subjects aimed at understanding age-related changes in cognitive function. When

volume changes in multiple ROIs and across the entire cortex were compared in healthy
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elderly subjects and AD patients, these authors found that the healthy elderly subjects had an

atrophy rate of about 0.5% per year and that volume loss was widely distributed across the

brain and included both regions typical of AD-associated atrophy and areas not typically

associated with AD, such as the inferior, superior, and middle frontal cortices. The rate of

change accelerated with age, especially in those regions associated with AD, possibly

because of the existence of preclinical AD pathology superimposed on normal aging

processes. The authors believe, however, that the majority of volumetric changes observed

in healthy aging are not related to those caused by degenerative diseases. Davatzikos et al

[119] used the SPARE-AD index (see section 4.4.2.1. for further description) to examine the

degree of AD pathology in healthy elderly subjects and its association with cognitive decline

in ADNI and another cohort with longitudinal data available. They found that SPARE-AD

scores increased with age, as did the rate of change of the SPARE-AD score. When healthy

elderly subjects were divided into groups of high versus low SPARE-AD score, the majority

had negative scores. However, a small group with positive scores had significantly lower

MMSE scores at baseline, suggesting that a subset of cognitively normal elderly subjects

harbored underlying AD preclinical pathology.

In response to a paper by Burgmans et al [201] suggesting that underlying preclinical

disorders may lead to the overestimation of GM atrophy in normal aging studies, Fjell et al

[202] conducted a meta-analysis of a number of cross-sectional studies. They found that

atrophy correlated with age in virtually all ROIs studied, even at younger ages, suggesting a

linear trajectory of brain atrophy over time. When 2-year follow-up cognitive data of healthy

elderly subjects from the ADNI cohort were used to exclude participants with any indication

of cognitive decline, significant atrophy in all ROIs was still found in the remaining “super-

stable” cohort. These results support the view that brain atrophy is part of normal aging and

not necessarily caused by underlying neuropathological processes. To detect unusually fast

atrophy in cognitively normal healthy elderly subjects, Franke et al [92] developed a model

of healthy aging by estimating age from MRI scans of normal brain anatomy. Their method

(described in more detail in section 3.7) accurately estimated the age of healthy subjects (r =

0.92 between real and calculated ages). Using the same method, they also estimated ages of

patients with early AD and found that the predicted ages were an average of 10 years higher

than the actual ages, implying that the pattern of AD atrophy does accelerate relative to

healthy elderly control subjects.

Murphy et al [203] used an automated method to examine volume changes in 14 cortical and

subcortical regions over 6 months in an effort to determine whether atrophy was detectable

over the short period in healthy elderly subjects and whether this atrophy was related to 2-

year declines in memory-specific neuropsychological tests. They found that volume changes

in these regions could be measured and that they were predictive of future clinical decline.

The most significant associations were found in the MTL, suggesting that this atrophy could

represent the earliest stages of AD and that MRI may be a useful tool in complementing

neuropsychological tests in the early detection of those at risk for subsequent cognitive

decline.

Furthermore, cognitively normal individuals who were amyloid positive had greater thinning

of the medial portion of the orbital frontal cortex than amyloid negative patients, and those
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who were tau-positive were distinguished from tau-negative individuals by greater thinning

of the entorhinal cortex. These results suggest that in asymptomatic individuals, Aβ and tau

pathology affects GM thinning in select neocortical regions that potentially influence

hippocampal atrophy at a later stage of the disease [163].

6.2 Studies of CSF biomarkers and amyloid deposition (11C-PiB PET)

In a manner similar to the examination of MRI markers of AD pathology, there has been

interest in assessing the utility of CSF biomarkers in healthy elderly subjects on the basis

that an “earlier biomarker horizon” [204] would have great clinical significance.

Nettiksimmons et al [204] examined healthy elderly subjects in the ADNI cohort and found

three clusters of participants when 11 biomarker and imaging measures were subjected to

unsupervised cluster analysis. The first, compact cluster had the most “normal” CSF and

MRI measures, whereas the measures of the third, more dispersed group more closely

resembled those of MCI patients included in the study for comparison (the second cluster

was placed in an intermediate position).

The third cluster had a significantly higher proportion of APOE ε4 carriers and scored worse

on tests of cognition (ADAS-cog, AVLT), suggesting that this group may harbor the earliest

manifestations of AD symptoms. These results provide support for the notion that

cognitively normal elderly subjects are in fact a heterogeneous group, a portion of which

may progress to MCI in the future. In a study of the relationship between levels of CSF

biomarkers and 1-year atrophy in 15 subcortical and 33 cortical ROIs in healthy elderly

subjects, Fjell et al [205] reached similar conclusions. They found that levels of CSF

biomarkers, especially Aβ-42, correlated with atrophy in many of the regions tested and that

atrophy was not restricted to regions most typically associated with AD. When Aβ-42

concentration was plotted against the percentage of annual change in ROIs, there was an

inflection point at approximately 175 pg/mL, below which participants had larger brain

volume changes over a year, suggesting that Aβ-42 may play a role in changes in brain

volume observed in healthy elderly subjects below a certain threshold level. De Meyer et al

[159] found that when a biomarker “signature” for AD using levels of Aβ-42, t-tau, and p-

tau181p was tested in healthy elderly subjects, there was a bimodal distribution of Aβ-42

levels with a separation point at 188 pg/mL. Although it was unknown whether those

participants with low levels of Aβ-42 in these two studies would develop AD pathology,

they once again highlighted the heterogeneity of the cognitively normal healthy elderly

group.

In the current model of AD pathogenesis, it is well established that deposition of amyloid

plaques is an early event that, in conjunction with tau pathology, causes neuronal damage

typically beginning in the hippocampus and resulting in the first clinical manifestations of

the disease in the form of episodic memory deficits. Mormino et al [206] investigated the

relationship between Aβ deposition, as measured by 11C-PiB PET uptake, hippocampal

atrophy, and episodic memory loss in cognitively normal healthy elderly subjects. They

found an inverse relationship between 11C-PiB uptake and hippocampal volume and that

episodic memory loss was predicted by hippocampal volume, but not by 11C-PiB uptake.

The results suggest that low levels of CSF Aβ-42 42 (high levels of brain accumulation) in
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healthy elderly subjects may reflect early stages of AD pathogenesis and may subsequently

mediate dementia through an effect on hippocampal volume and the resulting declines in

episodic memory. These findings warrant further investigation.

6.3 Genetic studies of normal control subjects

Although the APOE ε4 allele has been clearly identified as an AD risk allele, the question of

whether a second variant in the APOE gene, the ε2 allele, confers a protective effect has

been less well studied. Evidence for the protective effect of the APOE ε2 allele came from a

study by Hua et al [120], who found reduced CSF volume in the ventricular system of

healthy elderly subjects who had the highest frequency of this allele compared with MCI

and AD patients. Chiang et al [207] sought to determine the effect of APOE ε2 allele on

hippocampal volume and levels of CSF biomarkers in healthy elderly subjects. They found

that carriers of the APOE ε2 genotype, constituting approximately 5% of the population, had

lower rates of hippocampal atrophy and higher Aβ-42 and lower t-tau and p-tau181p levels

compared with the more common (∼70% of population) APOE ε3/ε3 homozygotes,

suggesting that lower rates of atrophy could be related to decreased underlying AD

pathology and may explain the lower rates of AD among carriers of this allele. A similar

finding was reported by Fan et al [208], who examined the relationship between cortical

thickness at multiple regions across the brain and APOE genotype in healthy elderly subjects

who were grouped as ε2 carriers, ε3 homozygotes, and ε4 carriers. After adjusting for

multiple comparisons, they found greater thickness in the superior temporal cortex in ε2

carriers compared with ε3 homozygotes, and in the dorsolateral prefrontal cortex in ε2

compared with ε4 carriers. Moreover, CSF concentrations of Aβ-42, t-tau, and p-tau181p

wersignificantly different in all groups (Fig. 24), although no differences were found in the

MMSE between groups. The results of these two studies provided support for the

differential effect of APOE alleles on brain structure and on CSF biomarkers.

In addition to risk factors like age and APOE genotype, increased BMI has been associated

with frontal, temporal, and subcortical atrophy and may increase susceptibility to AD.

Recent studies identified a novel obesity genetic risk factor, a variant of the fat mass and

obesity associated (FTO) gene, carried by almost one-half of Western Europeans. Ho et al

[209] examined the effect of the FTO risk allele on brain volumes in healthy elderly subjects

and compared its effects on brain structure with that of increased BMI. They found that

carriers of the FTO risk allele had an 8% to 12% deficit in a subset of areas affected by

BMI, predominantly in the frontal and occipital lobes, compared with noncarriers,

suggesting that the FTO risk allele contributes to, but does not fully account for, the effect of

increasing BMI on brain atrophy. Bertam and Heekeren [198] discussed the findings of the

study and the need for corroborating the results to determine the influence of genetics on

normal brain structure and function.

The idea that common variance in brain structure may be primarily controlled not by

polymorphisms resulting in altered protein structure, but by changes in regulatory elements

found support in a study by Rimol et al [210]. Using the ADNI cohort, they found that two

SNPs located in nonexonic regions of genes for primary microencephaly were correlated

with reduced cortical surface in males only, regardless of disease status, and suggested that

Weiner et al. Page 76

Alzheimers Dement. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



these polymorphisms may affect gene regulation and result in gross abnormalities in brain

structure observed in this disease. More data on the role of common genetic sequence

variations in accounting for commonly occurring brain structure variations came from a

study by the same group [211] on associations between a common haplotype of the MECP2

gene and brain structure. Mutations in MECP2, encoding methyl-CpG binding protein 2,

cause microencephalopathy and are associated with other severe neurodevelopmental

disorders, but Joyner et al [211] found that common sequence variations in this region

correlated with reduced cortical surface area in males only of the ADNI cohort. As MECP2

is thought to transcriptionally activate or repress thousands of genes, studies of the influence

of such common sequence variations may reveal profound insights into brain structure and

development.

Hypothesizing that multiple brain pathologies may share common pathways such as

inflammation, protein misfolding and mitochondrial dynamics, De Jager et al [326] searched

for genetic variants affected the rate of age-related cognitive decline. In addition to

identifying the APOE locus, they found an SNP close to PDE7A and MTFR1, genes

potentially involved in inflammation and oxidative injury, respectively.

6.4 Summary and conclusions of papers focusing on normal control subjects

Heterogeneity of cognitively normal healthy elderly subjects seems to be well supported by

these studies, with a number suggesting the existence of a subset of cognitively normal

elderly subjects that bears the hallmarks of early AD pathogenesis in terms of changes in

brain volume and levels of CSF biomarkers. The extent to which these changes are separate

from those of normal aging remains to be fully elucidated. Fjell et al [202] concluded, “We

need more knowledge about which factors mediate brain atrophy in healthy elderly and what

consequences the changes have for cognitive function.” Likewise, several intriguing studies

have pointed to the role of genetics in healthy aging, and suggest a protective effect of the

APOE ε2 allele and increased susceptibility to brain atrophy and perhaps AD conferred by a

risk allele at the novel FTO locus. Clearly, studies of the healthy elderly control subjects are

revealing information not only about the processes of healthy aging but also the initial

development of preclinical AD pathology. In 2011-2012 there has been a further shift

toward considering cognitively normal elders as a heterogeneous population, some of whom

harbor the earliest pathological manifestations of AD and are therefore part of the disease

continuum. Many papers studying this group have therefore been included in other more

relevant sections of this review.

7 Worldwide ADNI

Since the inception of ADNI in North America in 2004, there has been worldwide interest in

creating programs that are at least partially modeled on the ADNI platform, and that use

protocols developed by ADNI for at least part of their studies. Combined, the initiatives

represent a concerted effort toward globalization of this concept. Society may well reap the

rewards of having not just a well-characterized North American cohort for the development

of AD biomarkers but also similarly characterized cohorts globally that may represent

diverse ethnic groups, important for determining the applicability of ADNI findings to the

world population. Like ADNI, these initiatives from Europe, Japan, and Australia are
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predicated on the sharing of data, and infrastructure is beginning to be developed to allow

full transparency of global results. Future ADNIs are expected to begin in Argentina and

China and have recently begun in Korea and Taiwan. All worldwide ADNIs share common

goals of increasing understanding of AD onset and progression, both cognitively and

physically, establishing globally recognized standards for diagnosis, and ultimately

developing methods to allow more efficient clinical trials.

7.1 European ADNI

Frisoni [212] provides an overview of all programs, either completed or underway, in

Europe that are in some way related to ADNI. The ADNI platform was first introduced into

Europe in the form of a small cross-sectional pilot study, E-ADNI, which aimed to assess

the feasibility of importing ADNI procedures to a European multicenter multicountry setting

[213]. E-ADNI was initiated under the auspices of the Alzheimer's Association through the

generosity of the HEDCO Foundation and enrolled 49 control, MCI, and AD participants

over seven sites in seven countries. The pilot study used all ADNI protocols, with the

exception of PET imaging, the feasibility of which had been previously demonstrated, and

MRI sequences for the detection of cerebral small vessel damage, a slightly different

emphasis of the study. Buerger et al [214] conducted a multicenter feasibility study within

E-ADNI and found that the use of fresh, rather than frozen, biological samples increased

diagnostic accuracy. Overall, the study demonstrated that apart from age and education, the

enrolled cohort was similar to the ADNI cohort in MRI and CSF measures and that

implementation of the ADNI platform in Europe was feasible [213].

Other data collection programs in Europe include (1) AddNeuroMed, a public–private

initiative with a cohort of 700 control, MCI, and AD subjects across Europe that used ADNI

protocols for structural MRI; (2) Pharma-cog, which overlaps to the greatest extent with

ADNI and which aims to predict cognitive properties of new drug candidates for

neurodegenerative diseases; (3) Swedish ADNI, a small-scale initiative funded by the

Alzheimer's Association that used ADNI protocol and which has merged into the larger

Swedish BrainPower initiative; and (4) Italian ADNI, a larger project with 480 patients

enrolled. These initiatives vary in the size and composition of enrolled cohorts, the length of

study, and the frequency and type of data collection. However, they all have the use of

standardized ADNI protocols in common for at least some of their data collection [212].

Two additional European programs funded by the Alzheimer's Association focused on

harmonization of measurements of both CSF biomarkers [215] and hippocampal volume

[216], aiming to create worldwide protocols for standardized hippocampal segmentation and

measurement of CSF biomarker concentrations to allow the direct comparison of results

generated globally. Westman et al [347] investigated whether, based on shared MRI data

acquisition methodologies, it was possible to combine data from AddNeuroNet and ADNI to

produce a combined cohort more representative of the general public that could be analyzed

for classification and disease prediction purposes. They demonstrated that the 2 cohorts

showed similar patterns of atrophy and that data from the 2 programs produced similar

classification accuracies and concluded that the combination of large data sets such as these

was feasible and could improve overall knowledge of the disease.
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Finally, initiatives inspired by ADNI to build infrastructure including a central repository of

all data, like that developed at LONI, have been implemented in Europe. NeuGRID is being

developed at the European equivalent of LONI, and outGRID aims to synergize neuGRID,

LONI, and the Canadian repository CBRAIN and to develop full interoperability. CATI

(Centre pour l’Acquisition et le Traitement de l’Image) is the French repository for data sets

within that country.

ADNI-related programs and initiatives in Europe are summarized in Table 13.

7.2 AIBL study: The Australian ADNI

Often termed the “Australian ADNI,” the AIBL has similar goals to ADNI, namely, to better

understand disease pathogenesis and to develop tests for an earlier diagnosis of AD, and, to

this end, uses ADNI protocols for its imaging studies [217]. Some methodological

differences between the two studies include the omission of FDG-PET metabolic

investigations and the comparison of amyloid pathology using 11C-PiB PET and Aβ-42

levels in blood plasma instead of from CSF on the basis that obtaining blood plasma is both

less expensive and less invasive than lumbar punctures. Perhaps the greatest difference

between AIBL and ADNI lies in the approach AIBL is taking to investigating lifestyle

factors involved in AD. By collecting extensive neuropsychological and lifestyle data, the

study aims to understand which health and lifestyle factors protect or contribute to AD. Like

ADNI, however, all data are made available through LONI and are funded by the

Alzheimer's Association. Ellis et al [217] reported that one recent finding from the study

found that hippocampal atrophy was regionally associated with 11C-PiB retention only in the

inferior lobe, leading to a new hypothesis of how Aβ accumulation could disrupt

connections between the hippocampus through accumulation in this area (Bourgeat et al.,

Beta-amyloid burden in the temporal neocortex is related to elderly subjects without

dementia. Neurology 2010:74:121–7; see Appendix).

Rowe et al [218] reported on the progress of the neuroimaging arm of the AIBL in

characterizing a cohort of 177 healthy elderly subjects, 57 MCI patients, and 53 AD patients.

The patient groups had increasing numbers of APOE ε4 carriers, increased hippocampal

atrophy, and increased cognitive impairment with disease progression. The distribution

of 11C-PiB binding in control subjects did not follow a normal distribution, and cluster

analysis determined a separation point between low and high 11C-PiB binding groups at a

neocortical standardized uptake value threshold of 1.5. This bimodal distribution in normal

healthy elderly subjects again echoes the idea of heterogeneity within this group and the

existence of a subset of patients with the first manifestations of AD pathogenesis well in

advance of any effects on cognition. 11C-PiB binding may therefore play a role in

populating and monitoring clinical trials of antiamyloid therapies. Rowe et al [218] also

used 11C-PiB PET imaging for diagnosis and found that 11C-PiB scans discriminated

between AD and control subjects with an accuracy of 73%, a sensitivity of 98%, and a

specificity of 63%, comparable with results obtained using hippocampal volume (accuracy =

73%, specificity = 80%, sensitivity = 78%).
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7.3 Japanese ADNI

The need for a Japanese ADNI (J-ADNI) was realized in 2006 when ADNI was beginning

in North America and at the end of the Japanese study J-COSMIC (Japan Cooperative

SPECT Study on Assessment of Mild Impairment of Cognitive Function) [219,221].

Iwatsubo [220] reported that J-ADNI was needed not only to meet requirements for global

clinical trials of AD drugs about to begin in Japan and to develop the necessary

infrastructure for these trials, but was also motivated by the desire of Japanese researchers to

improve their clinical science through international collaboration. A special issue of Rinsho

Shinkeigaku near the inception of J-ADNI in 2007 reported on ADNI and the need for the

establishment of a Japanese version [221], the goals of early detection of AD and biomarker

development [222], the methods used by ADNI and adopted by J-ADNI for achieving these

goals [219], and the use of ADNI approaches for detecting MCI in neuropathological studies

[223]. Funding for J-ADNI was sought and received from both the public and private sector,

including Japanese and international companies, to a total of approximately ¥300 million per

year [220]. The study began in 2008 and aimed to recruit 300 amnestic MCI patients, 150

patients with early AD, and 150 healthy elderly control subjects from 30 centers across

Japan by the end of 2010; participants would then be followed until 2013 using a research

protocol designed to maximize compatibility with ADNI [220,224]. Compatibility with

ADNI protocols was designed to allow sharing and direct comparison of data and as a way

to contribute to global standardization of protocols. Arai et al [224] reported that initial

results from ADNI supporting the use of biomarkers in clinical trials contributed to a

paradigm shift in Japanese geriatric medicine from defining AD solely by cognitive

measures to considering the information available from biomarkers.

7.4 Worldwide ADNI future directions

The establishment of Worldwide ADNI, an umbrella organization of global ADNI efforts, is

coordinated by the Alzheimer's Association and is a direct result of ADNI. Information on

the countries that have established or plan to establish ADNI sties in their countries can be

found at http://www.alz.org/research/funding/partnerships/WW-ADNI_overview.asp. (Fig.

25). Using standardized protocols developed by ADNI, these programs collectively aim to

help define the rate of progression of MCI and AD, and to develop improved methods for

identifying the appropriate patient populations to participate in clinical trials. It is anticipated

that data generated by these global initiatives will ultimately be shared through a common

infrastructure with international researchers. It is clear that ADNI has had and will continue

to have a profound and far-reaching impact on the development of methods for the

prediction and monitoring of the onset and progression of AD and in gaining a worldwide

picture of the physical changes that lead to AD.

8 Other papers using ADNI data

In addition to generating numerous papers related to its primary goals, ADNI is becoming a

source of data for other fields of study in which a well-characterized cohort is desirable.

Papers published from these studies may have some connection to AD, or may be

completely unrelated.

Weiner et al. Page 80

Alzheimers Dement. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.alz.org/research/funding/partnerships/WW-ADNI_overview.asp


Cuingnet et al [348] presented an improved method for the detection of regional changes in

apparent diffusion coefficients (ADCs) that are indicative of irreversible ischemic damage in

stroke victims. MR images of ADNI participants were used to test the method, based on a

SVM in which spatial consistency is enforced by Laplacian regularization and then followed

by statistical analysis to detect group differences in brain images, they found that the method

was able to detect ADC changes that were not detected by standard univariate approaches.

Hypertension is a risk factor for AD and is associated with brain atrophy. Jennings et al

[349] used longitudinal MR scans of ADNI controls as a normotensive control group in an

investigation of whether hypertensive medication remediated the reduction in grey matter

volume observed in hypertensive individuals over a year. They found that successful

treatment of hypertension did not prevent brain atrophy in regions especially vulnerable to

negative modification by hypertension.

Bakken et al [319] used ADNI MRI and genetic data to investigate the relationship between

skull and brain morphology and European geography. They found a significant gradient of

skull shape, predominantly in the frontotemporal cortical areas that extends across Europe in

a NW-SE direction, supporting previous studies of European gene flow. This represents an

intriguing contribution of ADNI to unlocking the mysteries of historical population

movements.
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Appendix

1 Publications arising from AIBL

1.1 AIBL Publication list

2009–present

1.1.1 2009—[09.03] Bourgeat P, Chetelat G, Villemagne VL, Fripp J, Raniga P, Acosta O,

et al. Bamyloid burden in the temporal neocortex is related to hippocampal atrophy in

elderly subjects without dementia. Neurology 2010;74:121–7.

[09.04] Ellis KA, Bush AI, Darby D, De Fazio D, Foster J, Hudson P, et al. The Australian

Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline

characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer's disease.

Int Psychogeriatr 2009;21:672–87.

[09.05] Fodero-Tavoletti MT, Cappai R, McLean CA, Pike KE, Adlard PA, Cowie T, et al.

Amyloid imaging in Alzheimer's disease and other dementias. Brain Imaging Behav

2009;3:246–61.

[09.06] Fodero-Tavoletti MT, Rowe CC, McLean CA, Leone L, Li QX, Masters CL, Cappai

R, Villemagne VL. Characterization of PiB binding to white matter in AD and other

dementias. J Nucl Med 2009;50:198–204.

[09.07] Fodero-Tavoletti MT, Mulligan RS, Okamura N, Furumoto S, Rowe CC, Kudo Y, et

al. In vitro characterisation of BF227 binding to α-synuclein/Lewy Bodies. Eur J Pharmacol

2009;617:54–8.

[09.08] Villemagne VL, McLean CA, Reardon K, Boyd A, Lewis V, Klug G, et al. 11CPiB

PET studies in typical sporadic Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiatr

2009;80:998–1001.

[09.09] Villemagne VL, Ataka S, Mizuno T, Brooks WS, Wada Y, Kondo M, et al. High

striatal amyloid β-peptide deposition across different autosomal Alzheimer's disease

mutation types. Arch Neurol 2009;66:1537–44.

[09.10] Okamura N, Fodero-Tavoletti MT, Kudo Y, Rowe CC, Furumoto S, Arai H, Masters

CL, Yanai K, Villemagne VL. Advances in molecular imaging for the diagnosis of

dementia. Expert Opin Med Diagn 2009;3:705–16.

[09.11] Acosta O, Bourgeat P, Fripp J, Zuluaga MA, Fripp J, Salvado O, Ourselin S.

Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian-

Eulerian PDE approach using partial volume maps. Med Image Anal 2009;13:730–43.

1.1.2 2010—[10.01] Bourgeat P, Chételat G, Villemagne VL, Fripp J, Raniga P, Pike K, et

al. β-amyloid burden in the temporal neocortex is related to hippocampal atrophy in elderly

subjects without dementia. Neurology 2010;74:121–7.
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[10.02] Ellis KA, Rowe CC, Villemagne VL, Martins RN, Masters CL, Salvado O, Szoeke

C, Ames D; the AIBL Research Group. Addressing population aging and Alzheimer's

disease through the Australian imaging biomarkers and lifestyle study: collaboration with

the Alzheimer's Disease Neuroimaging Initiative. Alzheimers Dement 2010;6:291–6.

[10.03] Villemagne VL, Perez KA, Pike KE, Kok WM, Rowe CC, White AR, et al. Blood

borne amyloid-β dimer correlates with clinical markers of Alzheimer's disease. J Neurosci

2010;30:6315–22.

[10.04] Chételat G, Villemagne VL, Bourgeat P, Pike KE, Jones G, Ames D, et al.

Relationship between atrophy and β-amyloid deposition in Alzheimer disease. Ann Neurol

2010;67:317–24. [See also editorial: Rabinovici GD, Roberson ED. Beyond diagnosis: what

biomarkers are teaching us about the “bio”logy of Alzheimer disease. Ann Neurol

2010;67:283–5.]

[10.05] Villemagne VL, Pike K, Pejoska S, Boyd A, Power M, Jones G, Masters CL, Rowe

CC. 11C-PiB PET ABri imaging in Worster-Drought syndrome (Familial British Dementia):

a case report. J Alzheimers Dis 2010;19:423–8.

[10.06] Lui JK, Laws SM, Li QX, Villemagne VL, Ames D, Brown B, et al. Plasma

amyloid-β as a biomarker in Alzheimer's disease: the AIBL Study of Aging. J Alzheimers

Dis 2010;20;1233–42.

[10.07] Rowe CC, Ellis KA, Rimajova M, Bourgeat P, Pike KE, Jones G, et al. Amyloid

imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of

aging. Neurobiol Aging 2010:31;1275–83.

[10.08] Chételat G, Villemagne VL, Pike KE, Baron JC, Bourgeat P, Jones G, et al. Larger

temporal volume in elderly with high versus low beta-amyloid deposition. Brain

2010;133:3349–58.

[10.09] Rueda A, Acosta O, Couprie M, Bourgeat P, Fripp J, Dowson N, Romero E, Salvado

O. Topology-corrected segmentation and local intensity estimates for improved partial

volume classification of brain cortex in MRI. J Neurosci Methods 2010;188:305–15.

1.1.3 2011

1.1.3.1 Published: [11.01] Villemagne VL, Pike KE, Chételat G, Ellis KA, Mulligan R,

Bourgeat P, et al. Longitudinal assessment of Aβ burden and cognition in aging and

Alzheimer's disease. Ann Neurol 2011;69:181–92.

[11.02] Ellis KA, Rowe CC, Szoeke C, Villemagne VL, Ames D, Chételat G, et al.

Advances in structural and molecular neuroimaging in Alzheimer's disease. Med J Aust

2011;194:S20–3.

[11.03] Bahar-Fuchs A, Moss S, Pike KE, Villemagne VL, Masters CL, Rowe C, Savage G.

Olfactory deficits and Aβ burden in AD, MCI and healthy ageing: a PiB PET Study. J

Alzheimers Dis 2010;22:1081–7.
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[11.04] Gupta VB, Laws SM, Villemagne VL, Ames D, Bush AI, Ellis KA, et al. Plasma

Apolipoprotein E and Alzheimer's disease risk: the AIBL study of ageing. Neurology

2011;76:1091–8.

[11.05] Sittironnait G, Ames D, Bush AI, Faux N, Flicker L, Foster J, et al. Effects of

anticholinergic drugs on cognitive function in older Australians: results from the AIBL

Study. Dement Geriatr Cogn Disord (Special ASIA issue). 2011;31:173–8.

[11.06] McBride S, Good N, Szoeke C, Ames D, Martins R, Masters C, et al. A web-based

normative data tool for assessing cognitive performance in healthy older Australians. Med J

Aust 2011;194:S12–14.

[11.07] Chételat G, Villemagne VL, Pike KE, Ellis KA, Bourgeat P, Jones G, et al. Research

Group. Independent contribution of temporal Aβ deposition to memory decline in the

predementia phase of Alzheimer's disease. Brain 2011;134(Pt 3):798– 807

[11.08] Watt AD, Perez KA, Faux NG, Pike KE, Rowe CC, Bourgeat P, et al. Increasing the

predictive accuracy of beta-amyloid blood-borne biomarkers in Alzheimer's disease. J

Alzheimers Dis 2011;24:47–59.

[11.09] Villemagne VL, Okamura N, Pejoska S, Drago J, Mulligan RS, Chételat G, et al. In

vivo assessment of vesicular monoamine transporter type 2 in dementia with Lewy bodies

and Alzheimer's disease. Arch Neurol 2011;68:905–12.
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Fig. 1.
Generation of soluble β-amyloid (Aβ) fragments from amyloid precursor protein.

Reproduced with permission from Ref [7].
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Fig. 2.
Model for Alzheimer's disease (AD) progression.

Reproduced with permission from Ref [14].
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Fig. 3.
Alzheimer's Disease Neuroimaging Initiative (ADNI) structure and organization.
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Fig. 4.
AD drug development. Black arrows show the phases of drug development; the brick-

colored arrows show the ADNI biomarkers that could be used in that stage.

Reproduced with permission from Ref [37].
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Fig. 5.
Roles of biomarkers in AD drug development. Abbreviations: ADMET, absorption,

distribution, metabolism, excretion, toxicity; BBB, blood–brain barrier; POP, proof of

principle.

Reproduced with permission from Ref [37].
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Fig. 6.
Steps of multiatlas segmentation. (I) nonrigid registration used to register all atlases to

patient data, (II) classifier fusion using majority voting for producing class labels for all

voxels, and (III) postprocessing of multiatlas segmentation result by various algorithms,

taking into account intensity distributions of different structures.

Reproduced with permission from Ref [61].
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Fig. 7.
Group differences in average thickness (mm) for left hemisphere. Top row: NC vs. SMCI;

middle row: normal controls (NC) vs. MMCI; bottom row: NC vs. AD. Left mesial views,

right lateral views. The scale ranges from < −0.3 (yellow) to > +0.3 (cyan) mm thickness.

Areas on the red-yellow spectrum indicate regions of thinning with disease: approximate

color scale in mm is −0.05 to −0.15 dark red, −0.20 bright red, −0.25 orange, and < −0.30

yellow. For thicker regions: +0.05 to +0.15 blue. Any differences smaller than ± 0.05 mm

are gray.

Reproduced with permission from Ref [109].
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Fig. 8.
Annual atrophy rates as a function of degree of clinical impairment. Clinical impairment

measured using baseline clinical dementia rating-sum of boxes (CDR-SB) scores. Mean

atrophy rates are represented as a percent change in neocortical volume and mapped onto the

lateral (left), ventral (middle), and medial (right) pial surface of the left hemisphere. These

data demonstrate that atrophy rates are most prominent in posterior brain regions early in the

course of disease, spreading to anterior regions as the level of impairment increases, with

relative sparing of sensorimotor regions.

Reproduced with permission from Ref [111].
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Fig. 9.
Distribution of atrophy scores used to classify subjects with MCI. MCI atrophy score was

derived from LONI data archive trained on data from all control subjects and subjects with

AD. Discriminant model assumed equal prior group probabilities. Individuals were

classified as having control phenotype if their scores were above –0.33. Cutoff score was

chosen to maximize overall accuracy of classifying control subjects and subjects with AD on

whom this model was trained. Average atrophy score for subjects with MCI was –0.50.

Atrophy score is not normally distributed (Kolmogorov–Smirnov test = 0.73, df = 175, P = .

025) but shows evidence of bimodal distribution.

Reproduced with permission from Ref [117].
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Fig. 10.
Individual trajectories of hippocampal volume change. Thick black lines indicate the mean

trajectory change of each group.

Reproduced with permission from Ref [121].
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Fig. 11.
Group differences in regional shape deformations. Abbreviations: Am, amygdala; Hp,

hippocampus; V, ventricles; iLV, inferior lateral ventricles; Cd, caudate; Pu, putamen; Pa,

globus pallidus; Th, thalamus.

Reproduced with permission from Ref [122].
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Fig. 12.
Cumulative distribution function (CDF) plots for voxelwise correlation of progressive

temporal lobe tissue loss in MCI, AD, and pooled groups. (A) Correlations with various

biomarker indices, including Aβ-42 (AB142), tau protein (TAU), phosphorylated-tau 181

(PTAU), tau/Aβ-42 ratio (TAUAB), and p-tau/Aβ-42 ratio (PTAUAB), and (B) correlations

with various clinical measures.

Reproduced with permission from Ref [113].
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Fig. 13.
Apolipoprotein E (APOE) gene effects on regional brain volumes. Maps show the mean

percent differences in regional brain volumes for four different group comparisons. Percent

differences are displayed on models of the regions implicated: (A) ventricular cerebrospinal

fluid (CSF), (B) sulcal CSF, (C) hippocampi, and (D) temporal lobes; dotted lines show the

boundary of the hippocampus.

Reproduced with permission from Ref [112].
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Fig. 14.
Association of regional brain tissue volumes with body mass index. These represent the

estimated degree of tissue excess or deficit at each voxel, as a percentage, for every unit

increase in body mass index, after statistically controlling for the effects of age, sex, and

education on brain structure. Images are in radiological convention (left side of the brain

shown on the right) and are displayed on a specially constructed average brain template

created from the subjects within each cohort (mean deformation template).

Reproduced with permission from Ref [133].
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Fig. 15.
The episodic memory network. Along with the hippocampal formation, the cortical areas

shown here are part of the episodic memory network. Shown here are pial cortical

representations of selected parcellations in the left hemisphere. From left to right: medial,

ventral, and lateral views.

Reproduced with permission from Ref [136].
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Fig. 16.
Correlations between biomarker levels, structural abnormalities, and cognitivperformance in

APOE ε4 carriers and noncarriers. Smoothed biomarker (A and B) or STAND (C) z score

curves plotted as a function of cognitive performance (Mini-Mental State Examination,

MMSE). Abbreviation: STAND, Structural Abnormality Index.

Reproduced with permission from Ref [128].
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Fig. 17.
Biomarker trajectories through disease progression. For each biomarker, individual z scores

are plotted against ADAS-cog (cognitive subscale of the Alzheimer's Disease Assessment

Scale) scores, and the fitted sigmoid curve is displayed. Full circles denote healthy control

subjects, full squares MCI patients converted to AD, empty circles early AD, and full

triangles late AD patients. Sigmoid fitting was better than linear fitting for tau, Aβ-42, and

hippocampus (for the latter: sigmoid nonsignificantly better than linear); linear fitting was

better for [18F]-fluorodeoxyglucose-positron emission tomography (FDG-PET).

Reproduced with permission from Ref [153].
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Fig. 18.
Separation of control, MCI, and AD subjects using a CSF Aβ-42/t-tau mixed model

signature. A combined CSF Aβ-42/t-tau mixed model was applied to the subject groups.

Densities of each signature are represented with confidence ellipses, and signature

membership of the subject based on the mixture is indicated with the corresponding color

(signature 1 is the AD signature [red]; signature 2 is the healthy signature [green]).

Reproduced with permission from Ref [159].
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Fig. 19.
Association between temporal lobe atrophy and conversion to AD. Subjects who converted

from MCI to AD over a period of 1 year after their first scan were coded as “1”;

nonconverters were coded as “0.” A negative correlation suggests that temporal lobe

degeneration predicts future conversion to AD.

Reproduced with permission from Ref [112].
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Fig. 20.
Effect size of imaging biomarkers for MCI converters versus MCI nonconverters. Effect

sizes (Cohen d) of the comparison between MCI stable (MCI nonconverter) and MCI

converter groups evaluated for selected imaging biomarkers.

Reproduced with permission from Ref [114].

Weiner et al. Page 124

Alzheimers Dement. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 21.
Significance maps of correlation between ventricular shape and cognitive decline.

Significance maps correlate baseline ventricular shape with subsequent decline, over the

following year, in three commonly used clinical scores.

Reproduced with permission from Ref [126].
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Fig. 22.
Maps of associations with MMSE scores at baseline and 1 year later, MCI-to-AD

conversion, and CSF concentrations of tau. Three-dimensional maps show areas of

significant associations between local volumetric atrophy in the caudate and MMSE scores

at baseline and after a 1-year follow-up interval, with P values color-coded at each surface

voxel.

Reproduced with permission from Ref [130].
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Fig. 23.
Pittsburgh compound B-positron emission tomography (PiB-PET) and magnetic resonance

imaging (MRI) comparisons of MCI converters versus MCI nonconverters. Left: MCI

progressor. Top: positive PiB-PET. Bottom: MRI illustrating atrophic hippocampi and

ventricular enlargement. Right: MCI nonprogressor. Top: negative PiB-PET with

nonspecific white matter retention but no cortical retention. Bottom: MRI illustrating normal

hippocampi and no ventricular enlargement.

Reproduced with permission from Ref [152].
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Fig. 24.
Mean biomarker levels (t-tau, p-tau, and Aβ-42) for the APOE genotype groups. The APOE

ε2 carriers are represented in black, the ε3 homozygotes in gray, and the ε4 carriers in white.

The CSF Aβ-42 levels show a significant stepwise trend downward, from APOE ε2 carriers

to ε3 homozygotes to ε4 carriers, whereas the t-tau and the p-tau levels show the opposite

trend.

Reproduced with permission from Ref [208].
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Fig. 25.
Worldwide ADNI sites. Abbreviations: NA-ADNI, North American ADNI; ArgADNI,

Argentinean ADNI; E-ADNI, European ADNI; C-ADNI, Chinese ADNI; K-ADNI, Korean

ADNI; J-ADNI, Japanese ADNI; T-ADNI, Taiwanese ADNI; A-ADNI, Australian ADNI.
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Fig. 26.
Disease State Index values of a patient with subtle indication of AD (total DSI value = 0.56).

The name of the test and DSI value is shown next to each node. Larger nodes discriminate

better between healthy and diseased patients (visualization of relevance). ‘Hot’, i.e., red,

nodes highlights patient data that fits AD profile (visualization of DSI). Here, ADAS and

MRI contribute most to the AD DSI, indicated by the largest node size. MRI variables,

especially hippocampal volume, whose computation is depicted on the right hand side, push

the total DSI value towards AD population.

Reproduced with permission from Ref [252].
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Fig. 27.
Simulated power for studies in MCI and MCI with amyloid dysregulation (MCI-Aβ) versus

total sample size, n. Lines represent LOESS smooths. Abbreviation: PH, proportional

hazard.

Reproduced with permission from Ref [266].
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Fig. 28.
Model illustrating the independent effect of cognitive reserve on the relationship between

biomarkers of pathology and cognition in subjects with (A) low, (B), average and (C) high

cognitive reserve. In (A) and (C), the levels of Aβ are indicated by a square and the levels of

atrophy are indicated by a circle at the point where cognitively normal subjects progress to

MCI. This illustrates that at an equivalent clinical diagnostic threshold, subjects with high

cognitive reserve have greater biomarker abnormalities than those with low cognitive

reserve.

Reproduced with permission from Ref [278].
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Fig. 29.
Box plots and superimposed data points showing the distribution of AD biomarkers by

baseline diagnosis and visit. The dotted horizontal line extending across all box plots

represents the cut point delineating normal from abnormal for each biomarker.

Reproduced with permission from Ref [282].
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Fig. 30.
A) Expression of cortical signature of Alzheimer's disease is associated with future cogntive

decline. B) Expression of cortical signature of Alzheimer's disease is associated with AD-

like spinal fluid.

Reproduced with permission from Ref [139].
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Fig. 31.
Box plot of baseline PET AD scores for diagnostic groups. AD patients and MCI patients

progressing to AD have significantly higher scores than stable subjects (arrows in top insert,

P < .05 in Tukey multiple comparisons). Abbreviation: C, control.

Reproduced with permission from Ref [291].
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Table 1
Comparison of ADNI-1, ADNI-GO, and ADNI-2

Study characteristics ADNI-1 ADNI-GO ADNI-2

Primary goal Develop CSF/blood and
imaging biomarkers as
outcome measures

Act as bridging grant between
ADNI-1 and ADNI-2,
examine biomarkers in earlier
stage of disease progression

Develop CSF/blood and
imaging biomarkers as
predictors of cognitive decline,
and as outcome measures

Funding $40 million federal (NIA),
$20 million industry and
foundation, $7 million
industry for supplemental
studies

$24 million American
Recovery Act funds (stimulus
finds)

$40 million federal (NIA), $27
million expected industry and
foundation

Duration/start date 5 years/October 2004 2 years/September 2009 5 years/September 2011

Cohort 200 elderly control
subjects200 MCI400 AD

Existing ADNI-1 cohort plus:
200 EMCI

Existing ADNI-1 and ADNI-
GO cohort plus:150 elderly
control subjects100 EMCI150
MCI150 AD

Study techniques

MRI X X X

fMRI X X

FLAIR (microhemorrhage detection) X X

T2* GRE (microhemorrhage detection) X X

Vendor-specific protocols (1) resting state
(task-free) fMRI to Phillips systems, (2)
perfusion imaging (ASL) to Siemens, and
(3) DTI to General Electric

X X

FDG-PET X X X

AV45 X X

Biosamples X X X

“Add-on” studies GWAS, PiB-PET, lumbar
puncture

Abbreviations: ADNI, Alzheimer's Disease Neuroimaging Initiative; ADNI-GO, Grand Opportunities grant; CSF, cerebrospinal fluid; NIA,
National Institute on Aging; MCI, mild cognitive impairment; AD, Alzheimer's disease; EMCI, early mild cognitive impairment; MRI, magnetic
resonance imaging; fMRI, functional magnetic resonance imaging; FLAIR, fluid attentuated inversion recovery; T2* GRE, T2* gradient echo;

ASL, arterial spin labeling; DTI, diffusion tensor imaging; FDG-PET, [18F]-fluorodeoxyglucose-positron emission tomography; GWAS,
genomewide association studies; PiB-PET, Pittsburgh compound B-positron emission tomography.
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Table 2
Characteristics of an ideal biomarker

Note. Adapted from Refs [7] and [10].

Characteristic Ideal

Sensitivity: % of patients correctly identified as having AD >80%–85%

Specificity: % of patients correctly identified as not having AD. >80%

Positive predictive value: % of patients who are positive for biomarker and have definite AD pathology at autopsy >80%

Negative predictive value: % of patients who, at autopsy, prove not to have the disease >80%
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Table 11
Comparison of outcome measure methods in clinical trials: sample size estimates per arm
required to detect a 25% reduction in atrophy with 80% power, 5% significance

Outcome measure Method tested Sample size AD Sample size MCI Reference

Hippocampus Two scans, 0–6 months 462 949 [121]

Three scans, 0–6–12 months 255 673

Three scans + Markov Chain + APOE ε4 86 341

Clinical ADAS-cog two tests, 0–6 months 745 4663

ADAS-cog three tests, 0–6–12 months 569 8354

MMSE two tests, 0–6 months 1280 6300

MMSE three tests, 0–6–12 months 780 3353

Hippocampal atrophy 12-(24)-month 67 (46) 206 (121) [64]

Hippocampal atrophy 12-month 78 285 [59]

Ventricular expansion 6-month change 342 1180 [175]

Clinical MMSE 7056 7712

ADAS-cog 1607 >20,000

MRI (Model T/Model D) Entorhinal 45/65 135/241 [176]

Inferior temporal 79/117 199/449

Fusiform 72/114 185/485

Mid temporal 83/122 229/501

Hippocampus 67/118 179/510

Inferior lateral ventricle 76/157 160/550

Whole brain 101/189 158/541

Ventricles 86/240 189/1141

Clinical (Model T/Model D) CDR-SB 226/236 490/551

ADAS-cog 324/283 1232/804

MMSE 482/494 1214/1304

Whole brain atrophy KN-BSI 81 NA [51]

Classic-BSI 120 NA

TBM 1.5-T MRI/3.0-T MRI 37/48 107/159 [47]

SIENA* 1.5-T MRI/3.0-T MRI 116/92 207/265

TBM sKL-MI S6L8† 48 88 [177]

Clinical ADAS-cog 619 6797

MMSE 1078 3275

CDR-SB 408 796

TBM Gray matter atrophy 43 86 [120]

Temporal lobe atrophy 43 82

CSF biomarkers Aβ–42 5,721,531 75,816

t-tau 81,292 19,098
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Outcome measure Method tested Sample size AD Sample size MCI Reference

t-tau/Aβ–42 66,293 533,091

PET ROI-avg‡ 4605 [154]

logSumZ2PNS§ 2176

logSumZ2PR§ 1629

DD-fROI¶ 249

MRI VBSI** 284

Ventricles†† 277

Hippocampus†† 202

BSI‡‡ 177

DD-ROI† 73

*
Structural Image Evaluation, using Normalization, of Atrophy (SIENA). See text for more details.

†
A nonlinear registration algorithm driven by mutual information cost function and with a regularizing term based on the symmetric Kullback–

Leibler (sKL) distance.

‡
Jagust laboratory method.

§
Foster laboratory method, measures of glucose hypometabolism, log transformed.

¶
Reiman laboratory method, data-driven summaries applied to independent test set.

**
Fox laboratory method, ventricular boundary shift interval as a percentage of baseline brain volume.

††
Schuff laboratory method (FreeSurfer).

‡‡
Fox laboratory method, brain shift interval.
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Table 12
AD susceptibility and quantitative trait loci identified by genetic studies of ADNI cohort

CONFIRMED AD RISK LOCI IDENTIFIED USING ADNI DATA

Gene Protein Putative protein function Reference

TOMM40 Translocase of outer mitochondrial membrane Protein transport across mitochondrial
membrane

[184] [199] [194]
[149] [152] [313]

CLU Clusterin Clearance of Aβ [185]

CR1 Complement component[3b/4b] receptor Clearance of Aβ [185] [193]

PICALM Phosphatidylinositol-binding clathrin assembly
protein

Synaptic vesicle cycling and/or affects APP
processing via endocytic pathways

[185] [193] [197]

BIN1 Myc box-dependent-interacting protein 1 Synaptic vesicle endocytosis [193]

CD2AP CD2-associated protein Regulation of receptor-mediated
endocytosis

[186]

CD33 Siglec-3 Clathrin-independent endocytosis [186]

MSA4 Membrane Spanning 4 Domains Subfamily A gen
cluster

Cell surface protein – receptor? [187] [186]

ATP-binding cassette sub-family A member 7 Membrane transporter highly expressed in
brain

[187]

EFHA1 EF-hand domain family member A1 Regulation of cell morphology and motility
in epithelial tissues

[181]

CANDIDATE AD RISK LOCI IDENTIFIED USING ADNI DATA

Gene Protein Putative protein function Reference

ARSB Arylsulfatase b Oxidative necrosis, dementia [184]

ATXN1 Ataxin-1 Upregulates Aβ [350]

CADPS2 Calcium-dependent secretion activator 2 Synaptic vesicle priming [195]

CAND1 Cullin-associated and neddylation-associated 1 Ubiquination, apoptosis [184]

CDH8 cadherin 8, type 2 calcium-dependent cell adhesion protein
implicated in synaptic adhesion; interacts
with presenilin

[6]

CHRFAM7A Cholinergic receptor, nicotinic alpha7/FAM 7A unknown [350] [317]

CNTN5 Contactin-5 Neurite growth [301]

CSMD1 CUB and sushi domain-containing protein 1 Central nervous system regulator [314]

CSMD2 CUB and sushi domain-containing protein 2 Oligodendroglioma suppressor ? [195]

CYP19A1 Cytochrome P450, family 19, subunit a, polypeptide
1

Conversion of androgens to estrogens [199]

DOPEY Dopey family member 2 Down syndrome candidate gene [350]

EFNA5 Ephrin-A5 Hippocampal development [184]

EPC2 Enhancer of polycomb homolog 2 Formation of heterochromatin [149]

EPHA4 EPH receptor A4 Synapse morphology [194]

ERBB4 v-erb-a erythroblastic leukemia viral oncogene
homolog 4

Brain tyrosine kinase [350]

GRINB N-methyl-D-aspartate glutamate receptor Learning, memory,excitotoxic cell death [196]

GSTT1 Glutathione S-synthetase Oxidative stress [350]

HFE Hemochromatosis Increases redox-active iron and oxidative
stress

[189]
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CONFIRMED AD RISK LOCI IDENTIFIED USING ADNI DATA

Gene Protein Putative protein function Reference

HLA-DPB1 Major histocompatibility complex, class II Immune system [350]

LOC10012 Unknown function, overlaps with APOE Unknown [149]

IMMPL2 Inner mitochondrial protein peptidase-like Mitochondrial function – oxidative stress [350]

MAGI2 Membrane associated guanylate kinase Ubiquination, dementia [184]

NCAM2 Neural cell adhesion molecule 2 Neural adhesion, fasciculation of neurons [199]

NRXN1 Neurexin 1 Synaptic contacts [350]

NXPH1 Neurexophilin 1 Dendrite-axon adhesion [194]

PPP3CA Protein phosphatase B Affects tau phosphorylation [190]

PPP3R1 Protein phosphatase B Affects tau phosphorylation [190]

PPP3R1 Protein phosphatase B Affects tau phosphorylation [191]

PRUNE2 Prune homolog 2 Apoptosis [184]

RELN Reelin Neuronal migration [350]

TF Transferrin Increased redox-active iron + oxidative
stress

[189]

TP63 Tumor protein 63 Unknown [194]

ZNF292 zinc finger protein 292 Expressed in brain [197]
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Table 13
European initiatives related to ADNI

Note. Reproduced with permission from Ref [212].

Purpose Program name Funding agency Time frame Countries

Data collection Pilot E-ADNI Alzheimer's Association 2006–2007 IT, FR, GE, NL,
SW, DE

AddNeuroMed EC Ongoing, 40 months FI, PL, UK, IT,
GR, FR

Pharma-Cog
WorkPackage 5 (E-
ADNI)

EC IMI Ongoing 5 years SP, IT, GE, FR

Swedish ADNI Alzheimer's Association 2007–2009 SW

Italian ADNI NHS 2009–2011 IT

SOP development International
harmonization of CSF
Aβ42, t-tau, and p-tau

Alzheimer's Association 2009–2013 40 laboratories
(EU, US, Japan,
Australia, Brazil)

EADC-ADNI
harmonization of
hippocampal volume

Alzheimer's Association Lily-Wyeth 2010–2012 24 centers in EU,
US, Canada,
Australia

Infrastructure development NeuGRID FP7 2008–2011 IT, FR, SP, CH,
UK, SW

OutGRID FP7 2009–2011 IT, FR, UK, US,
CD

Centre pour
l'Acquisition et le
Traitement de l'Image
(CATI)

French National Foundation on AD
and RD

2010–2013 FR

Abbreviations: ADNI, Alzheimer's Disease Neuroimaging Initiative; EC, European Commission; IMI, Innovative Medicines Initiatives; NHS,
National Health System; EADC, European Alzheimer's Disease Consortium; FP7, 7th Framework Programme; AD and RD, Alzheimer's disease
and related diseases; DE, Denmark; CD, Canada; CH, Switzerland; FI, Finland; FR, France; GE, Germany; GR, Greece; IT, Italy; NL, Netherlands;
PL, Poland; SP, Spain; SW, Sweden; UK, United Kingdom; US, United States.
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