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Abstract

We have updated and applied a convolutional neural network (CNN) machine-learning model to discover and
characterize damped Lyα systems (DLAs) based on Dark Energy Spectroscopic Instrument (DESI) mock spectra.
We have optimized the training process and constructed a CNN model that yields a DLA classification accuracy
above 99% for spectra that have signal-to-noise ratios (S/N) above 5 per pixel. The classification accuracy is the
rate of correct classifications. This accuracy remains above 97% for lower S/N ≈1 spectra. This CNN model
provides estimations for redshift and H I column density with standard deviations of 0.002 and 0.17 dex for spectra
with S/N above 3 pixel−1. Also, this DLA finder is able to identify overlapping DLAs and sub-DLAs. Further, the
impact of different DLA catalogs on the measurement of baryon acoustic oscillations (BAO) is investigated. The
cosmological fitting parameter result for BAO has less than 0.61% difference compared to analysis of the mock
results with perfect knowledge of DLAs. This difference is lower than the statistical error for the first year
estimated from the mock spectra: above 1.7%. We also compared the performances of the CNN and Gaussian
Process (GP) models. Our improved CNN model has moderately 14% higher purity and 7% higher completeness
than an older version of the GP code, for S/N > 3. Both codes provide good DLA redshift estimates, but the GP
produces a better column density estimate by 24% less standard deviation. A credible DLA catalog for the DESI
main survey can be provided by combining these two algorithms.

Unified Astronomy Thesaurus concepts: Quasar absorption line spectroscopy (1317); Surveys (1671); Astronomy
data analysis (1858)

1. Introduction

The absorption systems in the spectra of quasi-stellar objects
(QSOs) are widely used to probe the properties of the early
universe (e.g., Wolfe et al. 1986; Rauch 1998). Using QSO
absorption line systems (e.g., Lyα and metal lines), one can
probe a wide range of scales, including the gas properties inside
and around galaxies (e.g., Fumagalli et al. 2011). Further, the
QSO absorption line systems are used to reconstruct the cosmic
web on a few tens of megaparsecs (e.g., McDonald 2003; Lee
et al. 2014; Cai et al. 2016, 2017; Li et al. 2021), and test
cosmological models on the cosmological scale of hundreds of
megaparsecs (e.g., Pérez-Ràfols et al. 2018). Among the

absorption systems, damped Lyα systems (DLAs) are a
population of strong absorbers with integrated neutral hydrogen
(H I) column densities NH I > 2× 1020 cm−2 (e.g., Wolfe et al.
2005). DLAs serve as the dominant reservoirs of atomic
hydrogen in the universe and offer a unique opportunity to
probe the early universe (e.g., Prochaska & Wolfe 1997; Zafar
et al. 2013). Their absorption can be described using the Voigt
profile, which fits the damping wings driven by the natural
broadening of the Lyα transition (e.g., Lee et al. 2020).
Recently, DLAs are widely used to probe the circumgalactic
medium (CGM) around galaxies, especially high-redshift
galaxies at z> 2 (e.g., Gardner et al. 1997; Noterdaeme et al.
2019). Simulations show that the majority of gas that gives rise
to DLAs is associated with galaxies (e.g., Rahmati et al. 2014;
Bird et al. 2014; Grudić et al. 2021). A complete understanding
of galaxy evolution is based on the analysis for the properties
of neutral gas (e.g., Krogager et al. 2020). Besides, a large
sample of QSOs and DLAs can be used for measuring a variety
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of cross correlations and autocorrelations, and this could help
to fit the baryon acoustic oscillations (BAO) at z> 2.

Previously, with the help from visual inspection, Prochaska
& Herbert-Fort (2004) and Prochaska et al. (2005) searched for
DLA candidates in Sloan Digital Sky Survey (SDSS) spectra
by running a window along the spectra to identify the DLA as a
region where the signal-to-noise ratio (S/N) is significantly
lower than the characteristic S/N in the vicinity. Later, by
utilizing a fully automatic procedure based on classical
statistics, Noterdaeme et al. (2009, 2012a) identified DLAs in
SDSS Data Release (DR) 7 and the SDSS-III Baryon
Oscillation Spectroscopic Survey (BOSS). Further, with the
rapid increase in the spectral data in the era of Extended Baryon
Oscillation Spectroscopic Survey (eBOSS) and future surveys,
the efficient and accurate detection of DLAs from low S/N
spectra is becoming a technical challenge. An automated
technique using Gaussian Process (GP) is applied to detect
DLAs along QSO sightlines (Garnett et al. 2017; Ho et al.
2020). Recently, in Parks et al. (2018), a convolutional neural
network (CNN) model was designed to detect and characterize
DLAs in the QSO spectra of the SDSS and BOSS. This
algorithm yields a classification accuracy of 99% on spectra
with S/N above 5. The classification accuracy is defined as the
proportion of results with correct predictions. The estimation
for column densities and redshifts both have median values
consistent with the ground truth, with a scattering of standard
deviation of column density of Nlog HIs ( ) = 0.15 and redshift
of σ(z)= 0.002, respectively. This CNN model is also applied
to the SDSS DR16 and a DLA catalog is generated by this
algorithm (Chabanier et al. 2022).

The Dark Energy Spectroscopic Instrument (DESI) is a stage
IV spectroscopic survey project, and it is a 5 yr survey for
galaxies, QSOs, and Milky Way stars, covering 14,000 deg2

(DESI Collaboration et al. 2016a). The highest redshift
coverage of DESI comes from QSOs. At higher redshift, DESI
will use QSOs as backlights to measure clustering in the Lyα
forest, the series of H I absorption lines in the spectra of distant
QSOs. These absorption lines are produced by the Lyα electron
transition of the neutral hydrogen (Liske et al. 1998). About 2.4
million QSO spectra are expected to be produced (Yèche et al.
2020), tracing the 3D distribution of the intergalactic gas at
z 2 with a survey volume of 3 Gpc3. Comparing with the
SDSS survey, it increases the Lyα forest survey volume by 1
order of magnitude. The Lyα forest is now used to provide the
BAO measurement at z 2. du Mas des Bourboux et al. (2020)
showed that the forest with identified DLAs has to be specially
treated when BAO analysis is conducted. DLAs will reduce the
flux transmission field for the correlation estimate. The spectra
pixels where a DLA reduces the transmission by more than
20% should not be used because these pixels will cause a bias
in the final BAO measurement. That makes a DLA catalog
indispensable for precise and accurate BAO-fitting analysis.

Our paper aims to develop a DLA finder for the DESI
survey. The method adopted is based on a CNN model (Parks
et al. 2018), and we improve the CNN model using DESI mock
spectra. Different DESI mock spectra were chosen to make this
algorithm available for a wide range of S/N levels. The
minimum S/N of the mock spectra that we used is 0.31. We
have updated the framework to TensorFlow2.0. Our neural
network was trained on a server with two NVIDIA Tesla V100
GPUs. After developing the CNN model, we used it to get the
DLA catalog for the DESI mock spectra. We have also

conducted BAO analysis tests to examine the effects of
different DLA catalogs with different definitions.
This paper is organized as follows. In Section 2, we

introduce the basic physical features of damping wings and the
mock spectra for this paper. In Section 3, the description of the
training process is presented, including the data set generation,
label setting, and training process. The model validation is
discussed in Section 4. The comparison of the CNN model and
the GP model (Ho et al. 2020) on detecting DLAs is discussed
in Section 5. In Section 6, the DLA catalog is generated.
Further, the comparison of the BAO-fitting results using our
DLA catalog and mock catalog is quantified. All related codes
are available at https://github.com/cosmodesi/desi-dlas.

2. DLA Survey

2.1. Basic Terminology of DLA

Among all the Lyα absorbers, DLAs have the highest H I
column densities of NH I� 2× 1020 cm−2. At lower column
densities, we designate absorption systems with 1017cm−2�
NH I� 2× 1020 cm−2 as Lyα limit systems (LLSs) including
sub-DLAs with 1019cm−2�NH I� 2× 1020 cm−2 or the so-
called super Lyman limit systems (SLLSs; e.g., Péroux et al.
2003; Prochaska et al. 2015). At even lower column densities,
these systems are called Lyα forest absorbers with NH I� 1017

cm−2, corresponding to the intergalactic hydrogen “clouds”
along the QSO sightline (e.g., McQuinn 2016). The fundamental
difference between DLAs and other Lyα absorbers is that
hydrogen is mainly neutral in DLAs, while in all other
absorption systems it is ionized (e.g., Wolfe et al. 2005).
DLAs can be fitted by the Voigt profile, which is the

convolution of a Lorentz profile and a Gaussian profile
(Draine 2011). According to the Uncertainty Principle, the
energy level of an electron has a finite width. Therefore, when
an electron transitions between different energy levels, the
corresponding frequency also has a certain range of distribu-
tion. This broadening is called natural broadening, and it can be
described by a Lorentz profile. Meanwhile, the Doppler effect
causes Doppler broadening, which is fitted by a Gaussian
profile when the gas satisfies a Maxwellian velocity distribu-
tion. The broadening of Lyα absorption lines is mainly caused
by natural broadening and Doppler broadening (e.g., Lee et al.
2020).
At higher column densities, absorbers become optically

thicker, and the Voigt profile can be characterized by a dark
trough and the Lorentz damping wing, making it possible to
identify individual absorbers from even a moderate S/N
spectrum.

2.2. DESI Mock Spectra

2.2.1. Data Sample

The DESI mock spectra are representative of the data quality
(e.g., S/N, resolution) of DESI real data. The location of DLAs
and their column density are known in mock spectra, so the
mock spectra can be used to train the CNN model and evaluate
its performance. We choose four mock spectral database
(mocks) from LyaCoLoRe mocks generated by the DESI Lyα
Forest Working Group (Farr et al. 2020). To add DLAs in the
mock spectra, the location of DLAs can be derived by a
Gaussian field, which is used to compute the density and
velocities in the spectra (Font-Ribera & Miralda-Escudé 2012).
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Then a column density is allocated to each DLA following the
observed column density distribution from pyigm17, and the
absorption profile is calculated using a Voigt template. After
these steps are done in the LyaCoLoRe mock production stage
(Farr et al. 2020), DLAs can be inserted into the final synthetic
spectra. Table 1 lists the information of the four mock
databases we used.

The first three mocks have the same QSO catalog with
different exposure times. The redshift of QSOs in the mock
catalog is from 1.8 to 3.8. The continuum of these QSOs is
generated using the publicly available package simqso as
implemented in the desisim code.18 The basic procedure is to
generate an unabsorbed continuum for each QSO by adding a
set of emission lines on top of a broken power-law continuum
model. The simqso is based on McGreer et al. (2013); however,
for these DESI mocks, the emission lines had been tuned to
provide a similar mean continuum, in the Lyα and Lyβ forest
region, to that observed in eBOSS DR16 (du Mas des
Bourboux et al. 2020). A wider description of the desisim
implementation to generate the continuum, as well as the full
synthetic spectra production itself, including the DLA inser-
tion, will be presented in detail in A. Gonzalez-Morales &
DESI Lyman α Working Group (2022, in preparation); it is
worth noticing that eBOSS DR16 used a quite similar mock
set. There are many different versions of mock spectra in DESI;
we choose some versions for which the mock spectra are
inserted with DLAs to do the training. For the spectra we used,
the marked number “0.2”19 means that these spectra are
inserted with DLAs. The last marked number (such as “100”,
“4”, “1”) stands for the exposure time these mock spectra have.
The mock spectra “desi-0.2-100” have S/N levels equal to the
that of the spectra with exposure time 105 s. This is the most
noise-free sample in our paper. For the “desi-0.2-1” and “desi-
0.2-4” mocks, the simulated QSO spectra have a fixed S/N
level similar to that of the DESI spectra observed for one or
four DESI effective times, 1000 s and 4000 s, respectively.

The last mock, DesiY1-0.2-DLA is more realistic of what we
would expect from the DESI first-year observations, as those
were constructed using a survey simulation to determine what
region of the DESI footprint (Dey et al. 2019) would be
covered during DESI’s first year, given a random realization of
observing conditions. Such survey simulation also includes
similar target-selection criteria as the main DESI survey and a
simplified fiber assign procedure to reflect that high-redshift
QSOs can be observed up to four times (of 1000 s each), as
opposed to most targets that are observed only once, depending
on what other targets are available to be observed and whether
we know the QSO redshift with high significance. This
procedure results in a mock spectra sample of low-redshift
and high-redshift QSOs, which have a distribution of exposure
times ranging from 1000 s to 4000 s, i.e, a more realistic
S/N distribution. These simulations were performed using
several pieces of desicode20 and were presented in Herrera-
Alcantar (2020).
The broad absorption lines (BALs) have similar profiles to

DLAs. We do not simulate the BAL features in all the mock we
used. This is to avoid confusion during training and reducing
the false-positive predictions of the model.

2.2.2. Data Structure of DESI Spectra

The DESI spectrometer uses three cameras to measure the
flux in different wavelength channels. Every spectrum in the
same camera shares the same wavelength array. The three
channels are given in Table 2.
We used a class named DesiMock to store the various

information of every spectrum. As shown in Figure 1, using the
spectrum TARGETID as the index, each spectrum contains the
flux, error array, celestial coordinates, QSO redshift, S/N, and
DLA information, which contains the DLA ID, DLA central
wavelength, and neutral hydrogen column density (NH I). We
read the spectral data from this DesiMock class.

Table 1
Information of Four DESI Mock Databases

Namea Exposure Time DLAs Metals BALs
(1000 s)

desi-0.2-100 100 Y Y N
desi-0.2-4 4 Y Y N
desi-0.2-1 1 Y Y N
desiY1-0.2-DLA multiple Y N N

Note.
a These mocks are named: name-ver-nexp, where name is a short name to
differentiate between different sets of runs, ver determines what version of
systematics have been used, and nexp determines the number of exposures.

Table 2
Value of Resolution for Three Channels

Channel Blue Channel Red Channel Z Channel

Wavelength (Å) 3570–5950 5625–7740 7435–9833
Δv (km s−1) 63.0 44.9 34.7 Figure 1. In the data structure of the DESIMOCK class, the wavelength array

and the information of every spectrum are stored separately, including
TARGETID, RA, DEC, etc.

17 Publicly available at https://github.com/pyigm/pyigm.
18 https://github.com/desihub/desisim
19 0.0 no extra systems. 0.2 with DLAs. 20 https://github.com/desihub/
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2.2.3. S/N Definition

Figure 2 shows three spectra with different S/N of the same
QSO (Mock spectrum ID: 170257611) with emission redshift
zem≈ 3.395. The S/N of the spectra in Figure 2 is estimated
from the median flux of the data to the error array. Note the
QSO rest frame 1420–1480Å does not have strong line
features, and thus, we define the S/N of each mock spectrum as
follows:

S N median
flux

error
, 1420 1480 . 1sightline

l
l

l= = -⎜ ⎟
⎛
⎝

⎞
⎠

( )
( )

Å ( )

The S/N definition is per pixel. The following S/N values in
this paper are all per pixel. Note that the S/N of the Ly α forest
is much lower than the S/N defined here. For example, for a
spectrum with S/N= 3, the typical S/N in the forest region
could be lower than unity.

Figure 3 displays the S/N distribution of the four mock data
sets. The spectra used for training and prediction should have

similar S/N ratios. Therefore, we used the first three mocks to
train models for each mock, respectively, as described in
Section 3. The last mock, desiY1-0.2-DLA, is used to validate
the three models, as described in Section 4.

3. Training

3.1. Preprocessing

3.1.1. Rebin

Spectral rebinning consists of changing the size of the
spectral bins of each spectra depending on the width of the line
(Jolly et al. 2020). The dispersion Δλ of the DESI mock
spectra is ≈0.8Å per pixel, and hence the resolution is not
constant along the spectrum R = l

lD( ). The instruments of
DESI cover a wavelength range from 360–980 nm with
resolution R= 2000–5500 depending on the wavelength (DESI
Collaboration et al. 2016b). This means that, in the DESI
spectra, the number of pixels that span a DLA feature with a

Figure 2. The three mock spectra of a QSO at zem ≈ 3.395, which exhibits two DLAs at zabs ≈ 2.733, 3.330 with NH I ≈ 1020.69 cm−2, 1020.23 cm−2 that can be seen
on the graph at wavelengths λabs ≈ 4538 Å, 5142 Å, respectively. The S/N is shown at the upper left of each panel. The black line is the flux, and the red dashed line
is the error.
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given NH I is proportional to the redshift. A DLA at higher
redshift has more pixel numbers than a DLA with the same
column density but lower redshift. This will affect the model
estimation of the H I column density. To correct this effect, we
have to make sure the pixel size is constant in the velocity
space. Thus, we set:

v

c
ln 1 , 2

l
l
D

= +
D⎛

⎝
⎞
⎠

( )

where Δλ represents the dispersion per pixel, and Δv
represents the median pixel size in velocity. Then, we
interpolate the original grid to the rebinned new grid with the
pixel size equal to Δv/c. As seen in Table 2, we set the pixel
size as the median velocity value in each channel.

3.1.2. Generating Data Sets for Training and Validation

Previous DLA surveys (Noterdaeme et al. 2009) first
estimate the QSO continua and then normalize the flux.
Nevertheless, Parks et al. (2018) claimed that the CNN learned
to account for the continuum during the training. The CNN
model could potentially detect DLAs without modeling the
QSO continuum. Thus, we only use the median flux in the
interval of 1420–1480Å to do the normalization. Then, we
construct the appropriate flux data set for training and
validation. The sightlines are processed in the following
paragraphs. Similar treatment can be found in Parks et al.
(2018).

1. We only use a fixed range of the sightline ranging from
900 to 1346Å in the QSO rest frame. The lower bound
ensures that intervening optically thick H I gas below
900Å does not affect the identification of DLAs, and the
upper bound ensures that DLAs on or near the QSO Lyα
emission can be recovered. The purpose of choosing
1346 as an upper limit is to avoid missing some high-
column-density (HCD)-associated DLAs, which can

block the broad-line-region emission from the QSOs
(Finley et al. 2013; for example, DLAs with NH I> 1022

and less than 1500 km s−1 from the QSOs redshift).
Among more than 40000 DLA candidates detected by
CNN in desiY1-0.2-DLA mock spectra, only 79 DLAs
are located above the rest frame 1216Å, and they can be
excluded using the redshift cut.

2. Each spectrum contains more than 2000 pixels. Inputting
the whole sightline directly into the model leads to
difficulties in discriminating multiple DLAs. Thus, we
input a sliding window of a fixed pixel region centered on
each pixel into the model. The choice of the window size
and the hyperparameter selection process are discussed in
detail in Section 3.3.

3. As there are far more regions without DLAs than regions
with DLAs, our training sets maintain a 50/50 balance
between training on positive and negative regions. This
means the training data sets have half regions with DLAs
and half regions without DLAs. This can help to train the
CNN model on both positive and negative samples.

4. Some regions of spectra are not included in the data sets.
In the training set, we exclude the fixed pixel regions
centered on the DLA boundary and Lyβ absorption
regions. 60 pixels on the DLA boundary are avoided in
the training set. We mask the 15Å region around the Lyβ
absorption. When we label the data set, the classification
value changes abruptly from 1 to 0 on the DLA
boundary, which confuses the model. The Lyβ absorption
lines corresponding to DLAs may be incorrectly detected
as DLAs coming from the lower redshift.

5. Flatten the column density distribution of SLLSs and
DLAs. The dashed line in Figure 4 shows the NH I

distribution of the mixed mock spectra. The mixed
spectral database is combined with different DESI mock
catalogs, including desi-0.2-100, desi-0.2-4, and desi-0.2-
1. There are far more low NH I DLAs than high NH I

DLAs, which would induce bias toward the lower value

Figure 3. S/N distribution of four mocks. The three different mocks, desi-0.2-100, desi-0.2-4, and desi-0.2-1, are used to train the CNN model at different S/N. It can
be seen that the mock desiY1-0.2-DLA has more spectra with S/N < 1.
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when estimating the column density in the algorithm.
Thus, we manually inserted DLAs and super-Lyman-
limit systems (SLLSs) into sightlines without HCD
systems, following the method described in Section 4.2
of Parks et al. (2018). The redshift distribution for the
inserted DLAs is uniformed to avoid bias in training. The
final NH I distribution of our training sets is uniform with
log NH I ranging from 19.3 to 22.5 for multiple exposure
time mocks (desi-0.2-100 and desi-0.2-4) and from 20.0
to 22.5 for a single-exposure-time mock (desi-0.2-1),
shown in the solid line of Figure 4. If we do not make the
log NH I uniformed, the CNN model will perform a bias
for the NH I estimate. The NH I distribution for training is
uniformed to avoid the bias.

Following these procedures, we generate DLA training
samples.

In Table 3, we list the number of sightlines containing
different absorbers for the training sets. With the same
distribution as the training sets, we generated the validation
sets for Section 4 (see Table 4).

3.1.3. Improvement on Low S/N Spectra

More than 70% of the mock spectra have S/N< 3. The
classification accuracy for these low S/N spectra is only 93%
using the initial model. To improve the accuracy, we used the
median smoothing method to optimize the preprocessing.
Smoothing the spectra reduces the resolution but improves the
S/N level. Accordingly, for dealing with low S/N spectra, we
set the training data as a two-dimensional array (600× 4). The
first row is the original flux. The other three rows are the
median smoothing results for 3, 7, and 15 pixels. The CNN

Figure 4. NH I distribution of mock spectra and training sets. There are more DLAs with low-column density in the mock data, which follows the empirically
measured distribution. The distribution of the column density in the training data is uniformed to reduce the bias of the model to lower NH I values.

Table 3
Information of Training Sets

S/N Level DLAs High NH I DLAs
a Total Number of Sightlines Total Number of Absorbers Mock Name

S/N 1–3 50,893 34,128 45,748 57,970 desi-0.2-1
S/N 3–6 48,068 17,099 100,000 127,347 desi-0.2-4
S/N >6 58,453 39,453 65,369 85,436 desi-0.2-100

Note.
a Here we point out high NH I DLAs with logNH I > 21.0.

Table 4
Information of Validation Sets

S/N Level DLAs High NH I DLAs
a Total Number of Sightlines Total Number of Absorbers Mock Name

S/N 1–3 5366 3657 4938 6040 desi-0.2-1
S/N 3–6 20,365 7267 43,224 55,166 desi-0.2-4
S/N >6 6539 1360 47,424 19,917 desi-0.2-100

Note.
a Here we point out high NH I DLAs with logNH I > 21.0.
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model is adjusted according to the new training data. The
smoothing process and result are shown in Figure 5.

3.2. CNN Structure and Model Training

We followed the standard CNN architecture constructed in
Parks et al. (2018). As shown in Figure 6, this model has three
convolutional layers, each with a max pooling layer, following
a fully connected layer and the last layer containing three
separate fully connected sublayers.

We trained our model for 106 iterations each time. During
the training process, we recorded the training accuracy every
200 steps and testing accuracy every 5000 steps. The
classification accuracy improves more than 90% at the first
105 steps. However, it achieves the best accuracy of 99% (for
S/N > 5 spectra; spectra with different S/N levels have
different best accuracy) at about 8× 105 steps. Then, the
accuracy improves less than 0.001% for the rest of the steps.
Thus, 106 iterations are enough for this training. The final
classification accuracy for different S/N spectra are shown in

Table 5. The training accuracy is the classification accuracy
during training, and the definition of testing accuracy is similar.
After the smoothing adjustments, the classification accuracy
rises from 93% to 97% for spectra with S/N< 3.
The definition of the classification accuracy is based on the

confusion matrix in Table 6. The label in this confusion matrix
is the “pred” label, as described in Section 3.2. The
classification accuracy is defined as follows:

Accuracy
TP TN

TP FP TN FN
. 3=

+
+ + +

( )

This model yields four outputs for every window of the
spectrum, three labels from the full connected layers, as shown
in Figure 6, and the confidence level:

1. “Prediction”, labeled as “pred” in the code. This is the
classification of the DLA. The value of this label is 0.0 or
1.0. 1.0 stands for that the model detects a DLA in this
window, and 0.0 means no detection.

Figure 5. Smoothing result for the spectra. The blue dashed line stands for the center of DLAs. The red dashed line is the error for the spectra. The upper panel is the
original flux. The lower three panels show the flux after median smoothing for 3, 7, and 15 pixels.
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2. “Offset”, labeled as “offset” in the code. This is similar to
the generated label. It stands for the distance between the
DLA center and the spectra window center. The value of
this output is in the range [−60, +60]. If there is no DLA
in this window, this label will be 0.

3. “Column Density”, labeled as “coldensity” in the code.
This is the predicted column density of DLAs. This label
is 0 if the model predicts that no DLA lies in this window.

4. “Confidence Level”, labeled as “conf” in the code. This
output is not from the fully connected sublayers. It is not
necessary for the prediction but will be helpful for the
analysis. It is the confidence level for each prediction. It
represents the possibility that one DLA is located in this
window (Parks et al. 2018). There are similar concepts in
Noterdaeme et al. (2012a, 2012b). The value of label
“pred” (0 or 1) is determined by this “conf” label. Cmin is
defined as the minimum of the confidence level of a

DLA. In the original set, if label “conf” is above Cmin,
then the label “pred” will be 1. The critical value of Cmin

is set as 0.5. Please note that this critical value is
adjustable. By changing this critical value, we can
optimize the model prediction, especially for low S/N
spectra.

These four different output labels are also shown in Figure 7.

3.3. Hyperparameter Search

There are 26 parameters for this CNN model that determine
the size of each layer. We have conducted a hyperparameter
search for these parameters. As we optimize the hyperpara-
meters for the DESI mock spectra, our best combination of the
hyperparameters is different from that of Parks et al. (2018),
which is optimized for SDSS spectra.
A normal important parameter in this algorithm is the input

size of the spectral window. In Parks et al. (2018), each QSO
spectrum was cut into windows with the size of 400 pixels, and
the classification accuracy depends on the size of the window.
We have measured the classification accuracy by changing the
window size from 300 to 700 pixels, with a step of 100 pixels.
We find that a window size of 600 pixels, combined with the
hyperparameters determined above, gives the best accuracy.

4. Validation

4.1. Purity and Completeness

Beside the classification accuracy, the purity and complete-
ness are also important results for the CNN model. Purity and
completeness are both for DLAs because TN samples are
excluded. The confusion matrix definition is similar to Table 6
but without TN samples. GroundTruth stands for the label of
DLAs in the mock spectra, and the prediction is the DLA label
from our CNN. A DLA in mock spectra will have a

Figure 6. The standard CNN architecture we used, casting DLAs as a 1D image problem. There are three convolutional layers, three pooling layers, one fully
connected layer, and three subfully connected layers. We have reset two parameters variable. One is n, it stands for how many pixels one window contains; it could be
400 or 600. The other one is m, and it stands for the dimensions of the input data; the value of it is 1 or 4 (median smoothing for low S/N spectra). The three subfully
connected layers are correspond to three labels: classification, offset, and column density.

Table 5
Training and Testing Accuracy

S/N Level Training Accuracy Testing Accuracy

S/N > 6 99% 99%
S/N 3–6 98% 97%
S/N 1–3 94% 93%
S/N 1–3 (smooth) 97% 97%

Table 6
Confusion Matrix

Label GroundTruth 0 GroundTruth 1

Prediction 0 True Negative (TN) False Negative (FN)
Prediction 1 False Positive (FP) True Positive (TP)
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GroundTruth value of 1. Similarly, a prediction of 1 means that
a DLA is detected by the CNN model. If our CNN misses one
DLA, then an FN sample is produced (GroundTruth is 1 but
prediction is 0). After the prediction, two DLA catalogs are
generated. One is produced by the CNN model, and another
one is the mock DLA catalog. For each DLA in the mock
catalog, we search DLAs in the same sightline among the
predicted DLA catalog and then compare the distance between
the center of these two DLAs. If the distance is less than 10Å,

this is a true-positive prediction, and these two DLAs will be
both marked as TP. We choose 10Å as the critical value to
make the redshift estimate for TP DLAs less than 0.008. This
difference in the redshift estimate is acceptable. This critical
value can make the CNN model provide an accurate redshift
estimate (<0.008) and high classification accuracy (>97%)
when comparing the result to the mock spectra. If the distance
is above 10Å, this is a false-negative prediction, and the DLA
in the mock catalog will be marked as an FN. After that, DLAs

Figure 7. Four outputs for every window: “pred”, “offset”, “coldensity”, and “conf”. The red line is “pred”; the value for 120 pixels near the center of a DLA is 1 and
for other pixels is 0. The green line is the “offset”; it shows the distance between every pixel and the center pixel of a DLA. The value of the offset is close to 0 for the
pixels without a DLA. The blue line is the column density. The last gray line is the confidence level. This is an example with high confidence level; the confidence
value for pixels with a DLA is above 0.9.
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in the predicted catalog without a TP label will be considered
as a FP sample. The purity and completeness are defined as

Purity
TP

TP FP
, 4=

+
( )

Completeness
TP

TP FN
. 5=

+
( )

By changing the critical value of Cmin, we obtain different
DLA catalogs. The default critical value is 0.5, as introduced in
Section 3.2. Changing this critical value changes the FP rate
and FN rate, and yields different DLA catalogs. The higher
critical values improve the purity but reduce the completeness.
To balance the purity and completeness, this value is still set as
0.5 in our model.

We have calculated the purity and completeness for different
S/N and column densities. The results are shown in Figures 8
and 9. For DLAs in spectra with S/N > 3, our model can
achieve both purity and completeness more than 90% for
almost all column density levels. Although efforts have been
made to optimize the DLA identification accuracy, FN and FP
cases are inevitable. The majority of these occur in spectra with
low S/N (<3). As shown in Figure 10, these are examples that
are difficult to classify even for an expert.

We also test our model on the desiY1-0.14 mock spectra. This
mock spectra contains both DLAs and BALs. We show the
purity and completeness in Appendix B. The completeness is
still as good as the results for desiY1-0.2-DLA mock spectra.

The purity drops about 10% to 20% in different bins. This is
because some BALs are identified as DLAs. Nevertheless, the
DESI has a formal BAL catalog, which will get rid of more than
98.6% BALs (Guo & Martini 2019) from the catalog. Then, we
can run the DLA finder on the BAL-removed spectra. Therefore,
we think that the purity result shown in Figure 8 is still valid.

4.2. Redshift Estimation

According to the offset label predicted by the CNN model,
we locate the central wavelength of DLAs. This can be used to
estimate the redshift of DLAs. The direct result for our model is
the DLA location in every window. We need to transfer this
result to the location in the sightline. This procedure is similar
in Parks et al. (2018). We make the histogram of all the offset
values, and a cluster of values at the center of a true DLA is
expected. A confidence parameter for the whole spectra is
further defined as the sum of the histogram over the nearest five
pixels. After normalizing by the 9 pixel median filter, the
maximum limit is set to one. Every detection with this
confidence parameter above the critical value is considered as a
DLA. Then we can calculate the redshift of DLAs according to
the central wavelength.
The difference in the redshift estimation compared to the true

value (value in the mock spectra) is shown in Figure 11. This
result is for the “desi-0.2-100” mock spectra. The mean value
of the difference is −0.00012, and the standard deviation σ(z)
is 0.002.

Figure 8. Purity results for different S/N levels and column densities using the desi-Y1 mock spectra. This is the result choosing the critical value of Cmin as 0.5.
Some bins on the top have a value of 1; this is because there are few DLAs with logNH I above 22 from the Y1 mock. For example, there are just two DLAs in the bin
with S/N 4 to 5 and logNH I above 22. The DLA finder detects them both and no FP samples, so the purity goes to 1. There are just five DLAs in the bin with S/N 3 to
4 and logNH I above 22. The DLA finder detects three of them and produces two FP samples, so the purity goes down to 0.6. That is why the purity for HCD DLAs
changes a lot in different bins.
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4.3. Column-density Estimation

Our model can also give the estimation for the column
density of DLAs. For every window of the spectra, we can get
an estimated value of the column density. After locating the
central wavelength of a DLA, we can get the NH I estimation
results for the 40 pixels near the center and take the average
value of these 40 NH I estimates as the final estimate. The
difference in the column density estimation compared to the
true value is shown in Figure 12. This result is for the “desi-
0.2-100” mock spectra. The mean value of the difference is
−0.007, and the standard deviation σ(logNH I) is 0.17.

5. Comparison with the GP Model

Recent advances in the GP model facilitated the invest-
igation of detecting DLAs from the SDSS (Garnett et al. 2017;
Ho et al. 2020, 2021). Ho et al. (2021) presented a DLA catalog
from SDSS DR16Q, with an improved GP model. Currently, it
might be the most solid approach to compare the performance
between the CNN model and the GP model using DESI mock
spectra with a given DLA catalog.

Here we briefly introduce the GP model based on the
Bayesian model selection in Ho et al. (2020). A set of models

i are developed, including the model without DLAs ( DLA ),
the models with four DLAs (

iDLA i 1
4
= ( ) ), and the model with

sub-DLAs ( sub ). These models use the GP to describe the
QSO emission function, a QSOʼs true emission spectrum f (λ).

Then they add the instrumental noise and absorption due to the
intervening intergalactic medium (IGM) to obtain the observed
flux as a function y(λ). With a given spectroscopic sightline ,
they can evaluate the posterior probability of these model based
on Bayesʼs rule:

p

p
Pr

Pr

Pr
, 6

i i i
=

å


 

 
( ∣ ) ( ∣ ) ( )

( ∣ ) ( )
( )

where p ( ∣ ) is the model evidence of the QSO spectrum 
given model, Pr ( ) is the prior probability of model,
and the denominator on the right-hand side is the sum of
posterior probabilities of all models in consideration.
Following the pipeline described in Ho et al. (2020), we first

retrained the null modelMDLA using 70,255 spectra without DLAs
in the “desiY1-0.2-DLA” mock. Then we extended the null model
M DLA to a model with k intervening DLAs, DLA k ( )(k up to 4).
The model prior and model evidence for these models are
approximated by using the “desiY1-0.2-DLA”mock DLA catalog.
Applying the new GP model, we obtain a DLA catalog of 248,512
sightlines in the “desiY1-0.2-DLA” mock. Note that the default
Voigt profile used in Ho et al. (2020) includes Lyα, Lyβ, and Lyγ
absorption, but we set the number of absorption lines num_lines to
one as this mock only contains Lyα absorption lines.21 Also we

Figure 9. Completeness results for different S/N levels and column densities using the desi-Y1 mock spectra. This is the result choosing the critical value of Cmin as
0.5. Some bins on the top have a value of 1; this is because there are few DLAs with logNH I above 22 from the Y1 mock. For example, there are just two DLAs in the
bin with S/N 4 to 5 and logNH I above 22. The DLA finder detects them both, so the purity goes to 1. There are just five DLAs in the bin with S/N 3 to 4 and logNH I

above 22. The DLA finder detects four of them and misses one DLA, so the purity goes down to 0.8. That is why the completeness for HCD DLAs changes a lot in
different bins.

21 Note that the modification of this parameter may limit the performance of
the GP model; Ho et al. (2021) claimed that the GP model performs better in
the Lyβ forest than the CNN model, but this is not discussed in this article.
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modify the parameters about the minimum distance between
DLAs min_z_separation to zero since we want to identify very
close overlapping DLAs. All codes related to the GP are
available at https://github.com/zoujiaqi99/GP_DLA_DESI.

With S/N> 3 and log(NH I)> 20.0, there are 18,613 real
DLAs in the mock DLA catalog. 17,571 DLAs are predicted by
the CNN model while 23,212 DLAs are predicted by the GP

model. As discussed in Section 4, we also present the purity
and completeness for the S/N and column density level, as
shown in Figures 13 and 14. For the GP model, completeness
and purity are both greater than 88% for S/N> 3. Note that our
CNN model can measure the redshift and column density with
log(NH I)> 19.3. The GP model we used provides the model
posterior probability of whether the sightline containing

Figure 10. Validation samples: red lines are the DLAs detected by our CNN model, and blues lines are the DLAs in mock spectra. (a),(b) TP case: our model can
detect DLAs with different column density levels. Even sub-DLAs can be characterized. (c) FP case: the DLA finder identifies a DLA in this window, but there is no
such DLA in the mock catalog. In the lower panel of (c) is the same spectra as in the upper panel but with a higher S/N. It is clear that there is no DLA if we check the
high S/N spectra. However, this is very difficult to identify even for the human being in the upper panel of panel (c) because of the low S/N. (d) FN sample: the DLA
finder misses a sub-DLA in this wavelength range. In the lower panel of (d) is the same spectra as in the upper panel but with higher S/N. This shows a missing sub-
DLA with low S/N(<2). The flux range for the lower and upper panels of (c) and (d) is quite different because of the random array as the noise is inserted to get a
lower S/N.
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absorbers with log(NHI) < 20.0 but does not save the exact
redshifts or column densities. This is due to the difference in
the training sets between the CNN and GP methods. We fairly
compare the two models under the same conditions in this
article. However, the DESI mock spectra allow us to build data
sets with low NH I absorbers to retrain the GP model in order to
decrease its minimum to log(NH I)= 19.3.

Figures 15 and 16 show histograms of the offsets in redshift
and NH I between the GP modelʼs predictions and real values in
the mock catalog. The mean redshift offset is 0.00001 with a
standard deviation of 0.0016. The mean log column density

offset is Δlog(NH I)= 0.005 with a standard deviation of
0.13 dex.
We also present the column density distribution function

(CDDF) in Figure 17. This figure contains both the CNN DLA
catalog and GP DLA catalog in comparison to the real mock
DLA catalog with z< 3.8. The distribution of both models does
not significantly differ from that of the real catalog. Due to the
more accurate NH I estimation, the GP model is in better
agreement with the real catalog except for the Monte Carlo
sampling boundary (log(NH I)= 20.0), which induces the
overdetection of absorbers with log(NH I)< 20.0. Ho et al.
(2020) showed the CDDF and concluded that the previous
CNN model (Parks et al. 2018) fails to detect >60% of DLAs
with log(NH I)> 21. This problem does not exist in our results.
The lack of HCD absorbers in the Parks catalog may be due to
a lack of HCD systems in their training set.

Figure 11. Redshift estimation for the DLAs matched between the CNN model
and the true value in mock spectra with S/N > 3 and log(NH I) > 20.0.

Figure 12. The column density estimation for the DLAs matched between the
CNN model and the true value in mock spectra with S/N > 3 and log
(NH I) > 20.0.

Figure 13. GP purity results for different S/N levels and column densities
using the desi-Y1 mock spectra. Here we only select absorbers with
NH I > 20.0 to provide a simple comparison because the current GP model is
well developed only using NH I > 20.0 absorbers.

Figure 14. GP completeness results for different S/N levels and column
densities using the desi-Y1 mock spectra. Here we only select absorbers with
NH I > 20.0 to provide a simple comparison because the current GP model is
well developed only using NH I > 20.0 absorbers.
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Comparing the performance of the same mock, we find that
the CNN model performs better in purity and completeness
while the GP model has a more accurate estimation of the
column density. In terms of the BAO measurement using the
DESI Y1 mock, the CNN model is more effective, as described
in Section 6. Besides, the GP model takes 8 to 10 times longer
than the CNN model to predict the same data set. Conse-
quently, a combined DLA catalog that takes the best of both
models might be a better choice for the DESI real data. CNNs
can be mainly used to detect DLAs and estimate the redshift
because of the higher completeness and purity. The GP can be
applied to further improve the column density estimate. The
DLAs detected by the GP are an important part in completing

the DLA catalog. Besides, we can also provide a DLA catalog
that only contains DLAs detected by both CNN and GP. The
DLAs detected by both algorithms may be a smaller sample but
with high confidence.

6. BAO-fitting Analysis

6.1. BAO-fitting Procedure

After the DLA catalogs are generated, we tested the
influence of different DLA catalogs on the measurement of
BAO fitting. Two different DLAs catalogs are generated. One
catalog contains all the DLAs in the mock spectra; we will take
this catalog as the real DLA catalog. Another catalog only
contains the DLAs detected by our CNN model. The BAO
fitting is conducted using the Lyα-QSO cross correlation and
Lyα–Lyα autocorrelation. According to the definition of du
Mas des Bourboux et al. (2020), the flux-transmission field is

f

F C
1, 7q

q

q
d l

l

l l
= -( )

( )
( ) ( )

( )

where fq(λ) is the observed flux, and F(λ)Cq(λ) is the mean
expected flux. The BAO-fitting procedure is followed by the
pipeline in du Mas des Bourboux et al. (2020). For the Lyα–
QSO cross correlation and Lyα–Lyα autocorrelation, the first
step is to perform the continuum fitting. In this step, we obtain
the flux-transmission field from the observed flux and the mean
expected flux. DLAs should be masked in this step.
The next steps and the meaning of parameters are described

in detail in du Mas des Bourboux et al. (2020). The pipeline we
use for these steps is called PICCA,22 which was developed by
the eBOSS Lyα working group (du Mas des Bourboux et al.
2020). This pipeline can mask DLAs for the BAO fitting if we
provide a DLA catalog as an input.

Figure 15. The redshift estimation for the DLAs matched between the GP
model and the true value in mock spectra with S/N > 3 and logNH I > 20.0

Figure 16. The column density estimation for the DLAs matched between the
GP model and the true value in mock spectra with S/N > 3 and logNH I > 20.0

Figure 17. The CDDF from both the CNN DLA catalog and GP DLA catalog
in comparison to the real mock DLA catalog with z < 3.8. The error bars in the
y-axis represent the 68% confidence limits.

22 https://github.com/igmhub/picca
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In this fitting, we have set the following parameters in
PICCA as free parameters to fit. HCD systems are also
considered in the fitting:

1. α ∥ , α⊥: BAO-peak position parameters.
2. bLyα, βLyα: bias parameters for Lyα absorption.
3. bHCD, βHCD: bias parameters for HCD systems.

Other parameters in PICCA has been set as fixed parameter.

6.2. BAO-fitting Results

We have used the “desiY1-0.2-DLA” mock spectra to do the
BAO-fitting analysis. These mock spectra contain DLAs and
HCDs but do not have metal components.

These mock spectra contain 212,238 sightlines with 36,212
DLAs and 43,909 sub-DLAs. Our CNN model has detected
43,530 DLA candidates and 19,687 sub-DLAs. 38,410 DLA
candidates are detected by GP. The sub-DLAs in the mock
catalog are added to the GP catalog when we do the BAO
fitting. FP and FN samples are inevitable for the lower S/N
spectra (<3). We have conducted the Lyα–QSO cross
correlation and Lyα–Lyα autocorrelation by masking these
two different DLA catalogs. We also plot the fitting result if we

do not mask any DLAs and mask the DLA catalog generated
by the GP. which is described in Section 5. The results are
shown in Figure 18.
After masking DLAs, the reduced χ2 of the fitting decreases

from 1.136 to 1.081. The impact of DLAs on BAO fitting is
obvious in the autocorrelation fitting. The BAO-fitting result
from the mock DLAs catalog was set as the ground truth. The
two parameters describing the position of the BAO peak
(Busca et al. 2013), α∥ and α⊥ are estimated to quantify the
fitting results. The best-fit parameters are shown in Table 7.
This table also contains the standard deviation for α∥, α⊥, and
the reduced χ2 in two different fittings. The difference of the
results can be quantified by the following equations:
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where a∥(mock) is the fitting result of the α∥ parameter by
using the mock DLA catalog, and a∥(pred) stands for the result
using our DLA catalog. Similarly, a⊥(mock) and a⊥(pred) are
the fitting values of the α⊥ parameter using the mock DLA
catalog and our DLA catalog. We also define the ratio of
difference and error as follows:
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The difference between these two fitting results is less than
0.61%. This difference is lower than the statistical error using
the DESI first-year mock spectra (above 1.7%; shown in
Table 7). The statistical error will be reduced in the next 4 yr
DESI survey. With increasing S/N in the next few years, the

Figure 18. BAO-fitting result: (a) QSO–Lya cross correlation and (b) Lya–Lya autocorrelation. The red line is the best-fit model by masking the DLAs in the mock
catalog. The black dashed line is the best-fit model by masking DLAs detected by our CNN model. The blue dashed line is the best-fit model if we do not mask any
DLA. The yellow dashed line is the best-fit model by masking DLAs detected by the GP. The gray points are the data points from the analyze by masking the DLAs in
the mock spectra.

Table 7
Best Fitting Parameters

Parameters DLA Mock DLA CNN DLA GP No Mask

α∥ 0.981 0.983 0.977 0.992
σ 0.0173 0.0174 0.0195 0.0212
da 0.16% 0.41% 1.12%

ratio 0.116 0.209 0.636
α⊥ 1.019 1.025 1.025 1.028
σ 0.0172 0.0177 0.0194 0.0227
difference 0.61% 0.61% 0.94%
ratio 0.349 0.304 0.523
χ2/DOF 1.081 1.091 1.098 1.136
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DLA finder can give a better detection than that in the first year,
and this difference can be further reduced. The DLA catalog
generated by our CNN model can be used for the BAO-fitting
analysis.

We also compare the performance on correlation fitting
using the DLA catalog generated by the GP. The difference in
the best-fit parameters between the GP and the mock shown in
Table 7 is about 0.25% larger than the difference between the
CNN and the mock, but this difference is still less than the
statistical error. So the BAO-fitting result for the mock spectra
is not affected much in any of the analyses presented. The CNN
DLA catalog can give a better BAO analysis support because
of the higher completeness. The difference in the fitting is clear
when checking the difference in the best-fit parameter values.
We have also plotted the result in Figure 19. Details about more
parameters are shown in Table 8. This BAO analysis result is
based on the mock spectra for DESI’s first-year survey. We

plan to use different mock spectra to do the fitting comparison
in the future.

7. Conclusion

In this article, we have applied deep-learning techniques on
QSO spectra to classify and characterize DLAs. We improved
the CNN model created by Parks et al. (2018) using DESI
mock spectra to make it work successfully on the DESI spectra.
We optimized the preprocess, training procedure, parameter
selection, and performance on low S/N and HCD DLAs. Our
model can give effective and accurate estimation of the redshift
and column density. We also improved the performance of the
CNN on low S/N spectra by smoothing the input flux; this
method may also be used to other algorithms for low S/N
signals. This CNN model can detect DLAs even when the S/N
of DLAs is only about 1. We believe that there is still room to
further improve this algorithm.
Besides, our DLA catalog can also help perform BAO

analysis. When we want to use correlation to perform BAO
fitting, a DLA catalog is necessary. The results produced by our
DLA catalog are very close to the real mock results, within a
difference of about 0.61% for the best-fit parameters.
Finally, we compare our CNN DLA finder with the GP

model from Ho et al. (2020) based on DESI mock spectra. Note
that it may not be possible to show all the advantages and
disadvantages of the two models due to the limitation of the
mock. However, it is sufficient to see the differences between
the two models by comparing their predictions with the mock
truths. The CNN model has a higher completeness and purity
on detecting DLAs. The fitting differences using the CNN and
GP DLA catalogs are less than the statistical error on BAO
fitting using the Y1 mock spectra. The CNN results yield a
systematic uncertainty of 0.25%, less than that of GP. The
BAO-fitting result is not affected much by using either DLA
finders. Both algorithms can estimate the redshift of DLAs well
while the GP model has more accurate column density
estimation. Combining the catalogs given by the two models,

Figure 19. The value and error bar for three different fittings: masking DLAs in the mock catalog, masking DLAs detected by the CNN, and masking DLAs detected
by the GP. It is clear that the result from masking the GP DLA catalog has larger difference from that of the mock DLA catalog. The gray line is the theoretical value
for these two parameters.

Table 8
Best-fit Parameters

Parameters DLA Mock DLA CNN DLA GP No Mask

α∥ 0.981 0.983 0.977 0.992
σ 0.0173 0.0174 0.0195 0.0212
α⊥ 1.019 1.025 1.025 1.028
σ 0.0172 0.0177 0.0194 0.0227
betaLYA 1.5603 1.5515 1.6684 1.4066
σ 0.0259 0.0265 0.0584 0.0214
biasLYA −0.1359 −0.1391 −0.0755 −0.1581
σ 0.0013 0.0014 0.0018 0.0015
biaseta(LYA) −0.2186 −0.2224 −0.2077 −0.2292
σ 0.0021 0.0022 0.0028 0.0021
betaHCD 0.8237 0.8703 0.8710 0.8891
σ 0.0689 0.0685 0.0850 0.0657
biasHCD −0.0591 −0.0621 −0.0701 −0.0795
σ 0.0022 0.0022 0.0022 0.0028
χ2/DOF 1.081 1.091 1.098 1.136
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we can obtain a credible DLA catalog that can be widely used
for real DESI spectra release.
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Appendix A
BAO Combined Fitting Parameters

The details of BAO-fitting parameters are shown in Table 8.

Appendix B
Purity and Completeness for the desiY1-0.14 Mock Spectra

The purity and completeness for the mock spectra including
both DLAs and BALs are shown in Figure 20.

Figure 20. We have applied our CNN model on the desiY1-0.14 mock spectra. These mock spectra contain both DLAs and BALs. The purity and completeness are
shown in (a) and (b). The minimum S/N for this mock is 1.0, and thus the left panel (S/N < 0) is blank. The completeness is still above 96% for S/N > 3 spectra. The
purity drops about 10%–20% in different bins. Nevertheless, the DESI has a formal BAL catalog, which will get rid of more than 98.6% BALs from the catalog. Then,
we can run the DLA finder on the BAL-removed spectra. Therefore, we think that the purity result shown in Figure 8 is still valid.
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Appendix C
DLA Detection in SDSS Spectra

In Ho et al. (2021), the author mentioned that the previous
version of the CNN DLA finder (Parks et al. 2018) missed
HCD DLAs in two SDSS spectra. We test our model on these
two spectra; both the DLAs and sub-DLAs can be detected, as
shown in Figure 21.
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