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Abstract of the Dissertation

On Interactive Computation over a Noisy Channel

by

Ran Gelles

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2014

Professor Amit Sahai, Co-chair

Professor Rafail Ostrovsky, Co-chair

When two remote parties wish to perform some computation given that their communication

channel may be noisy, sophisticated coding schemes must be employed in order to resist a

constant fraction of noise while increasing the communication by only a constant factor. The

ultimate goal is to find computationally efficient schemes that resist the maximal possible

amount of noise while transmitting as few bits as possible.

In this work we examine two properties of such interactive schemes: their computational

efficiency and their noise resilience. First, we show how to obtain an efficient scheme that is

resilient to random errors (where each bit is flipped with constant probability). Next, we

consider the case of adversarial noise (where we only limit the total amount of flipped bits)

and obtain a scheme that is resilient to noise rates up to 1/2, given simple setup assumptions.

All our schemes feature constant communication overhead.

Similar techniques can also be applied to the problem of communicating a data stream

over a noisy channel, for which we achieve an optimal and efficient scheme that resists noise

rates less than one.
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CHAPTER 1

Introduction

Suppose Alice and Bob wish to communicate some information, however, their communication

channel may be noisy. Shannon [Sha48], in a seminal paper, laid the mathematical foundations

for analyzing communication of information over noisy channels, and initiated the study

of coding schemes and error-correcting codes. The setting considered by Shannon (and

generally, by most error-correcting codes) can be summarized in the following way: Alice

holds a message x that she wishes to send to Bob. The message x is selected from a message

space M according to some distribution p(x). To overcome the channel noise, Alice first

encodes her message using an error-correction code, and obtains a codeword c = ECC(x).

The codeword is then communicated over the noisy channel, so that Bob receives c̃, a noisy

version of the codeword. Bob decodes his received codeword and obtains x̃ = ECC−1(c̃). The

goal is to find an error-correction code with “good properties”: e.g., efficient encoding and

decoding procedures; small codeword size (as a function of the size of the message space);

high success probability, Pr[x̃ = x], etc.

In this work we consider two extensions of the above model. First, we consider coding in

the interactive communication model. Here, rather than having one party who sends the

information and other party who receives it, the communication is bi-directional. Specifically,

we consider the case where Alice holds some input x, Bob holds an input y, and their desire

is to jointly compute a function f(x, y). To that end, they run a protocol which defines the

messages they send to each other at each round. As before, the communication channel (in

both direction) may be noisy.

Noise can have two flavors: it can be random, where each bit is flipped with some constant

probability; or it can be adversarial where the only limit is on the total amount of bits that
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can be flipped. In both noise models, the goal is to find noise-resilient protocols with “good

properties”: e.g., low communication overhead (with respect to the noiseless protocol); high

success probability, etc.

The second way we extend the standard “single message transfer” model is by considering

the data stream model. Here only Alice has information to communicate to Bob, however

instead of a single (finite) message, Alice holds a data stream—an infinite sequence of symbols

{x1, x2, . . .} such that Alice learns (or generates) xi only at time i. The goal is to devise a

coding scheme that allows Bob to eventually learn each element xi of the data stream. As

above, an important desire is to keep the communication overhead small.

We now expand about each of the two directions, and state our main results.

1.1 Interactive Coding Schemes

At a first look, it seems that the question of interactive communication can easily be solved

using (standard) error-correction codes: the parties can simply compute the function f(x, y)

by running any protocol π that computes f , where each message sent by π is encoded by

an error correction code prior to its transmission. However, this intuition is wrong. When

each message is encoded separately, there is some (tiny) probability that the decoding will

fail. However, the protocol for computing f(x, y) may be very long, that is, communicate

many messages. In this case, with a high probability at least one message will be decoded

incorrectly, and the output of the protocol will be incorrect. To avoid this issue, one must

use a very strong error-correcting code, in which the success-probability of the code depends

on the length of the protocol π. Yet, roughly speaking, such codes will have a large codeword

size, and the communication overhead of the noise-resilient protocol will be high.

The question of interactive communication was first considered by Schulman, in a

breakthrough sequence of papers published in 1992 and 1993 [Sch92, Sch93, Sch96]. Schulman

gave a general method to emulate any two-party interactive protocol such that: (1) the

emulation protocol only takes a constant-factor longer than the original protocol, and (2) if

2



the emulation protocol is executed over a noisy (memoryless) channel, then the probability

that the emulation protocol fails to return the same answer as the original protocol is

exponentially small in the total length of the protocol.

Unfortunately, Schulman’s 1992 emulation procedure [Sch92] either assumed the parties

already share a large amount of randomness before they communicate, where the length

of the shared random string is quadratic in the length of the protocol to be emulated or

required inefficient encoding and decoding. On the other hand, Schulman’s 1993 emulation

procedure [Sch93, Sch96] relies on the existence of tree codes, a complex data-structure of

which no efficient construction is known.

Efficient schemes for random noise. We revisit the problem of reliable interactive

communication and give the first fully efficient emulation procedure for reliable interactive

communication over noisy channels with a constant rate1. Our results hold for any discrete

memoryless channel with constant capacity (including the binary symmetric channel), and

our protocol achieves failure probability that is exponentially small in the length of the

original communication protocol. To obtain this result, we do the following:

• We introduce a new relaxed notion for a tree code, namely, a potent tree code.

• We show that a randomly generated tree code (with suitable constant alphabet size)

is a potent tree code with overwhelming probability. Furthermore, we show that a

randomly generated tree code (when combined with a good ordinary error-correcting

code) can be efficiently decoded with respect to any discrete memoryless channel with

constant capacity with overwhelming probability.

• We prove the correctness of an efficient emulation procedure based on any potent tree

code. (This replaces the need for (standard) tree codes in the work of Schulman [Sch96].)

1Constant rate emulation means that the communication of the noise-resilient protocol is at most constant
times more than the communication of the noiseless protocol. See Section 2.3 for a definition.
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• Finally, we are able to partially de-randomize the above result by means of epsilon-

biased distributions. Specifically, using element-wise efficient2 constructions of small

bias sample spaces [AGHP92], we give a description of what we call small bias tree

codes of depth N using only O(N) random bits. We show that such small bias tree

codes are not only potent with overwhelming probability, but that the efficient decoding

procedure above still works for any discrete memoryless channel with constant capacity.

This immediately yields our first result,

Theorem 1.1. For any two-party protocol π with communication T bits assuming a noiseless

channel, there exists an efficient protocol Π with communication O(T ) bits, that emulates π

assuming each message is sent over a memoryless noisy-channel. The emulation succeeds

with probability 1− 2−Ω(T ).

We also extend our result to the case of any number m of parties. This is done in a

similar fashion to the above. We build on a an m-party emulation scheme by Rajagopalan

and Schulman [RS94] which uses tree-codes. We replace the (non element-wise efficient) tree

codes with a potent tree code, to obtain an efficient scheme,

Theorem 1.2. For any m-party protocol π of T rounds in which the maximum connectivity

is r, there exists an efficient protocol Π with O(T ) rounds and a slowdown of O(log(r + 1))

over π’s communication (that is, the communication is higher by a factor of O(log(r + 1)),

and Π emulates π over a memoryless noisy channel with probability at least 1− 2−Ω(T/m)

Resilient schemes for adversarial noise, assuming shared randomness. Next, we

consider interactive communication when the noise may be adversarial rather than random.

Schulman [Sch96] showed a constant-rate encoding scheme that copes with a noise rate of up

to 1/240 of the transmitted bits. Later, Braverman and Rao [BR11] showed how to deal with

noise rates less than 1/4. In addition, Braverman and Rao showed that 1/4 is the highest

error rate any interactive protocol can withstand, as long as the protocol defines whose turn

2By an “element-wise efficient” object, we mean that the i-th bit of the object should be computable in
time polylogarithmic in the size of the object.
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it is to speak at every round regardless of the observed noise. The fascinating open question

left by the work of Braverman and Rao is whether other methods could circumvent the 1/4

bound.

We improve the bound obtained by [BR11] by allowing the parties to pre-share a random

string unknown to the adversarial channel. Specifically, we show how to convert any interactive

protocol (for noiseless channel) into a constant-rate protocol that withstands any adversarial

noise level smaller than 1/2, given pre-shared randomness. We also show that for higher

noise rates, no constant-rate interactive protocol exists for tasks that depend on inputs of

both parties.

Theorem 1.3. For any constant ε > 0 and for any function f and inputs x, y, there exists

an interactive protocol with constant rate in the shared-randomness model, such that if the

adversarial corruption rate is at most 1
2
− ε, both parties output f(x, y) with overwhelming

probability over the shared random string.

We further observe that if communication is performed over an erasure channel, we can

resist erasure rate of up to 1/2− ε with constant dilation and without the need for a shared

randomness. This is obtained by employing our analysis directly on the scheme of Braverman

and Rao [BR11]. Our analysis thus implies that the scheme of [BR11] is optimal for the

erasure channel model, since with erasure rate 1/2, the adversary can completely delete the

outgoing communication of a single party.

Theorem 1.4. For any constant ε > 0 and for any function f , there exists an interactive

protocol over an erasure channel, that has a constant rate and resists adversarial erasure rate

of up to 1
2
− ε.

1.2 Coding Schemes for Data Streams

We then turn to investigate the question of transmitting data streams over an adversarially

noisy channel. Within this framework we consider two related questions, namely, error-

correction and authentication of data streams. Loosely speaking, in error-correction schemes,

5



the receiver decodes the correct message as long as the noise level is below some threshold

(but possibly outputs a wrong message if the noise exceeds that threshold). In authentication

schemes, the receiver’s task is to indicate whether or not the received (decoded) message

is indeed the one sent to him. To see the relation between these two tasks note that if

the corruption level of an adversary is guaranteed to be lower than the threshold, any

error-correction scheme guarantees that the receiver decodes the original message. However,

while no constant-rate error-correction scheme can withstand a noise level higher than 1/2,

this is not the case for authentication schemes that are capable of indicating a change in

the message even when the adversary has a full control of the channel. On the other hand

for the task of authentication, it is generally assumed that the parties pre-share a secret key.

Standard error-correction and authentication methods do not apply directly to the model

of data streams. The straightforward method to perform error-correction (or authentication)

of a data stream is to cut the stream into chunks and separately encode each chunk. The

problem now is that while the adversary is limited to some global noise rate, there is no

restriction on the noise level of any local part of the stream. Specifically, the adversary can

corrupt a single chunk in its entirety (while not exceeding the global amount of allowed

noise), and cause Bob to decode this chunk in a wrong way. Even if this event is noticed

by Bob since the chunk fails the authentication, the information carried within this chunk

is lost unless Bob requests a retransmission of that chunk, i.e., unless the communication

is interactive. The same problem exists (with high probability) when the noise is random

rather than adversarial, given that the stream is long enough or infinite.

A possible mitigation to the above is to increase the chunks’ size. This, however, has

an undesirable side effect—Bob needs to wait until receiving a complete chunk in order to

decode and authenticate it. This means that the information received in the very recent

bits is inaccessible until the chunk is completely received. Our goal is thus, to construct a

constant-rate scheme that can withstand a constant fraction of errors (globally) and still

guarantee the correct decoding and authenticity of the information received so far.

We begin by constructing a constant-rate coding scheme for data streams that withstands

noise rates of less than 1/2. Informally, as long as the global noise rate up to some time n

6



does not exceed some parameter c < 1/2, a fraction of 1− 2c of the stream sent up to time n

can be recovered. For constant-rate schemes, it is clear that c < 1/2 is a hard limit and no

scheme can succeed when the noise is higher. In order to achieve schemes that withstand

higher noise rates we must relax the model and give the users more resources. Indeed, with

the use of shared randomness (i.e., a shared secret key) we can break the c = 1/2 barrier. To

emphasize the fact that the parties are allowed to share a secret key, we refer schemes in this

model as authentication schemes rather than error-correction schemes, based on the relation

of these two tasks mentioned above.

Our main result for this part is constructing a constant-rate authentication scheme for

data streams over a noisy (adversarial) channel. For any constant fraction of noise c less

than 1, our scheme succeeds in decoding at least a (1− c)-fraction of the stream so far, with

high probability. The decoded part is always the prefix of the stream. The decoded prefix is

authenticated, meaning that there is only a negligible probability that the scheme outputs a

wrong string. Furthermore, our scheme is efficient.

Theorem 1.5. For any noise rate 0 ≤ c < 1 and small constant ε > 0, there exists an

efficient constant-rate coding scheme for data streams in the shared-randomness model that,

at any time n, the receiver decodes with high probability a prefix of length at least (1−c)n−εn

of the stream sent so far.

Our scheme does not make any (cryptographic) assumptions, other than pre-sharing a

secret random string. The amount of randomness utilized by the scheme grows with the

message length, and can be unbounded if the data stream is infinite.

In addition, we show that our scheme is optimal with regard to the length of the decoded

prefix:

Theorem 1.6. For any noise rate 0 ≤ c < 1 and ε > 0, Assume that the receiver at time n

decodes a prefix of length (1− c)n+ εn, then the decoding succeeds with probability at most

2−Ω(εn) in the worst case.
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1.3 Related Work

Interactive Communication. As mentioned above, the question of performing interactive

computation over a disturbed channel was initiated by Schulman [Sch92, Sch93, Sch96] who

gave a scheme that can deal both with random and adversarial noise. For the random noise

case, Schulman’s scheme is efficient up to the construction of the tree code.

For adversarial noise, the Schulman’s scheme was shown to resist a noise fraction of up to

1/240, yet this cannot be done efficiently. The work of Braverman and Rao [BR11] improves

the noise resiliency to 1/4, which is the maximal possible in this setting. Braverman and

Efremenko [BE14] further analyze the noise resilience of interactive schemes, and determine,

for any noise rate (α, β) where α is the amount of noise in the channel from Alice to Bob

and β is the noise in the other direction, whether or not interactive communication (with

constant rate) is possible. Furthermore, they show a region of noise in which one can

only achieve a list-decoding notion of interactive communication; that is, the parties will

conclude the computation with a short list of possible outputs, rather than a single (unique)

output. The notion of list decoding in interactive communication was also considered by

Ghaffari, Haeupler, and Sudan [GHS13, GH13] who also show that a list-decoding notion for

interactive-communication could resist noise rate up to 1/2.

As for efficiency in the case of adversarial noise, Brakerski and Kalai [BK12] give the

first efficient scheme for interactive communication, which resists noise rate of up to 1/16.

Brakerski and Naor [BN13] further improve the efficiency and obtain a quasi-linear scheme.

With the help of list-decoding Ghaffari and Haeupler [GH13] achieve an efficient, constant

rate3 scheme that resists the maximal noise rate of 1/4.

The question of interactive communication was also examined in other models and settings.

Brassard, Tapp, and Touchette [BTT13] examine interactive communication in the quantum

setting and achieve a scheme that resists noise rate of up to 1/2. Another model that was

considered is that of adaptive protocols. In those protocols, the parties may determine who is

3In fact, [GH13] gets only quasi-constant rate, but this could be turned into constant rate [Hae14],
combining with the result of [BE14].
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the next person to send a message in an online and independent manner, possibly according

to the noise observed. Ghaffari, Haeupler and Sudan [GHS13] consider such a model and

show that adaptivity allows resisting more noise. Specifically, they give a scheme with

constant rate that resists 2/7, which is the maximal noise in their model. If the parties are to

preshare a random string, the bound of 1/2 we present in this work can be improved to 2/3.

Adaptive protocols were also considered by Agrawal, Gelles, and Sahai [AGS13], yet in a

different model. E.g., while in [GHS13] the protocol have a constant length, in [AGS13] the

length of the protocol is also adaptively determined according to noise. They consider several

variants of adaptive models, and show that such adaptive protocols can resist noise rate up to

2/3 in a model where parties are allowed to “remain silent”, and the noise is relative to the

communication of the specific instance. They also analyze a model in which the adaptivity

comes from changing the length of the protocol according to the observed noise. A different

variant in [AGS13] considers interactive communication over erasure channels for which a

protocol with constant rate that resists noise rate up to 1− ε is given.

Another line of research considers performing interactive communication with the ad-

ditional requirement of privacy, where the protocol doesn’t leak more than the necessary

information. Chung, Pass, and Telang [CPT13] considered protocols that leak exactly the

same information as the noiseless protocol. They prove that there is no compiler that takes

a protocol and generates a noise-resilient protocol with good parameters (i.e., constant rate)

such that the compiled version exactly imitates the information revelation of the original

protocol. Their work extends also to the computational setting where they show an interesting

tradeoff between the noise susceptibility and the rate of any possible scheme. Gelles, Sahai

and Wadia [GSW14] also consider the privacy of interactive communication schemes, and

prove a strong impossibility result for performing information-theoretically private interactive

communication, even when the fraction of noise is exponentially small.

Kol and Raz [KR13] analyze the capacity of binary symmetric channels in the interactive

setting. They show that when the noise probability ε approaches zero, the capacity of the chan-

nel behaves like 1−Θ
(√

H(ε)
)

. This implies a difference between the interactive and non-

interactive case, as the latter has capacity 1−H(ε), where H is the binary entropy function.
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Tree Codes. See Section 3.1.

Coding in the shared-randomness model Coding schemes that assume the parties

pre-share some randomness (also known as Private Codes [Lan04]) first appeared in [Sha58],

and were greatly analyzed since. The main advantage of such codes is that they can deal

with adversarial noise, rather than a random noise. Langberg [Lan04] considers private

codes for adversarial channels that approach Shannon’s bound and require only O(log n)

randomness for block size n, as well as an Ω(log n) lower bound for the needed randomness.

The construction of Langberg also implies an efficient code with O(n log n) randomness. This

result was improved to n+ o(n) randomness by Smith [Smi07]. Explicit constructions with

o(n) randomness are yet unknown (see [Smi07]).

Coding for Data Streams. There has been quite a lot of work on coding scheme for data

stream, however most previous works assume an erasure channel [MS02, THYJ12, LH12,

BKTA13] and do not apply to the more general case of arbitrary noise.

The works of Even, Goldreich and Micali [EGM90] and Gennaro and Rohatgi [GR97]

consider authentication of data streams, however the focus of these schemes is not only

to authenticate the message but also to prevent the sender from denying having signed

the information. These constructions rely on cryptographic primitives such as one-time

signatures. Another related line of research [PCTS00, MS01, GM01] pursues authentication

of streams over lossy channels, usually in the multicast setting.

Gelles, Ostrovsky and Roytman [GOR14] extend the question of communicating a data

stream over a noisy channel to the sliding window model, in which the receiver needs to be

able to decode only the last “window” (last N symbols), rather than the entire stream.
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CHAPTER 2

Preliminaries

2.1 Notations

We begin with several notations we use throughout. We denote the set {1, 2, . . . , n} by [n],

and for a finite set Σ we denote by Σ≤n the set ∪nk=1Σk. The Hamming distance ∆(x, y) of two

strings x, y ∈ Σn is the number of indices i for which xi 6= yi. Throughout this manuscript

log() denotes the binary logarithm (base 2) and ln() denotes the natural logarithm (base e).

2.2 Interactive Communication Protocols

We begin by defining the notion of an interactive-communication protocol that computs

some function f , assuming an ideal (noiseless) communication channel. Such a protocol is

usually referred to as the noiseless protocol.

Let X ,Y, and Z be some finite sets. Consider a distributed computation of a fixed

function f : X ×Y → Z, performed by two users, Alice and Bob (A and B for short), where

Alice holds the input x ∈ X and Bob holds the input y ∈ Y .

Definition 2.1. A two-party protocol π is two probabilistic algorithms, πA, πB run by party

A,B, respectively. The protocol runs for T rounds (also called the length of the protocol). At

each round i = 1, . . . , T , both A and B send a single message to each other, denoted ai, bi ∈ Σ,

where Σ is a finite set. Each such message is a function of the party’s input and all the

messages the party received so far. The protocol π is said to (perfectly) compute f : X×Y → Z

if for any pair of inputs x ∈ X , y ∈ Y, both parties output f(x, y).
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For simplicity, we will assume the protocol π is deterministic.

Definition 2.2. The transcript of π on x, y, transπ(x, y), is all the messages exchanged

during a run of π on inputs x, y.

Definition 2.3. The communication complexity of a protocol π, CC(π), is the (maximal)

amount of bits communicated during an instance of π.

Note that the protocol communicates the same amount of bits/symbols for any pair of

inputs. We can assume that Σ is a power of two, thus

CC(π) = 2T · log |Σ|.

Definition 2.4. The communication complexity of a function f , CC(f), is the minimal

communication complexity of a protocol π that computes f ,

CC(f) = min
π computes f

CC(π)

An alternative definition for interactive protocols assumes that the parties exchange

messages in an alternating manner, that is, Alice sends a message in odd rounds, and Bob

in even rounds. For such protocols, CC(π) = T log |Σ|. It is clear that the two models are

equivalent, maybe up to a factor two in the communication complexity f .

2.3 Channels and Noise Models

In a more realistic model, the channel between A and B may be noisy. We model the i-th

instantiation of the the channel as the distribution

CH(outi | ini, (in, out)i−1, . . . , (in, out)1, x, y)

where inj ∈ Σ is the input to the channel at the j-th channel’s instantiation, outj ∈ Σ is the

corresponding output symbol, and x, y are the inputs of the parties. As mentioned above,

we consider two types of noisy channels: random and adversarial.
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2.3.1 Random Noise Channels

Generally, we say that the noise model is random if the channel is memoryless, that is, the

noise is independent of previous transmissions.

Definition 2.5. A discrete memory-less channel over alphabet Σ, is a channel that given

input x ∈ Σ, outputs y ∈ Σ according to a given transition probability p(y | x). The channel

is memory-less if the probability distribution p() is independent of previous input symbols.

A representative example of a channel with random noise is the binary symmetric channel :

Definition 2.6. A binary symmetric channel (BSC) with error probability pBSC is a binary

channel CHBSC : {0, 1} → {0, 1} such that each input bit is independently flipped with

probability pBSC. (I.e., for b ∈ {0, 1}, p(b | 1− b) = pBSC and p(b | b) = 1− pBSC.)

The BSC channel is memoryless because conditioned on any bit in the input stream, the

corresponding output bit is independent of all other bits in the input.

Definition 2.7. The capacity of a discrete memoryless channel is

C = max
X

I(X;Y )

where X is the random variable describing the distribution of the input x, Y is the distribution

of the output y, and the maximum is taken over all possible input distributions p(x). I(X;Y ) =∑
x∈X,y∈Y p(x, y) log p(x,y)

p(x)p(y)
is the mutual information of X and Y .

The capacity of the BSC channel is given by CBSC = 1−H(pBSC), obtained when the

input is uniform over {0, 1}. H(x) = x log 1
x

+ (1− x) log 1
1−x is the binary entropy function.

A main ingredient for communication over noisy channels is Shannon’s Coding Theo-

rem [Sha48] that shows that an exponentially small decoding error in the length of the

message |m| can be achieved if the message is encoded into a codeword of length c|m|, for

some constant c > 1 determined by the channel’s capacity.
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Lemma 2.1 (Shannon Coding Theorem [Sha48]). For any discrete memoryless channel CH

with capacity C, any message space S and any ξ > 1, there exists a code enc : S → {0, 1}n

and dec : {0, 1}n → S with n = O( 1
C
ξ log |S|) such that for any m ∈ S,

Pr [dec(CH(enc(m))) 6= m] < 2−Ω(ξ log |S|).

That is, for random noise it is possible to encode a single message by increasing its

length by a constant, and ensuring that the decoder will obtain the correct message with

overwhelming probability.

2.3.2 Adversarial Noise Channels

While the above random noise model captures a very realistic (and simple) type of disturbed

channels, the adversarial noise model captures, in some sense, the worst case scenario. In

this model, there are no limitations about the channel, besides the total number of flipped

bits (or the number of corrupted symbols).

Definition 2.8. The noise rate η induced by a channel CH : Σ → Σ, is the fraction of

channel instantiations for which the output symbol differs from the input symbol.

We usually think of such a channel as an all-knowledgeable adversary Eve that corrupts

exactly those transmissions that will cause the most damage. Eve is assumed to know the

protocol and the inputs of the parties, and is bounded only by the amount of symbols she is

allowed to corrupt.

2.3.3 Erasure Channels

The erasure channel CH : Σ → Σ ∪ {⊥} captures a model in which transmissions may be

dropped by the network, in that case the receiver gets an erasure mark ⊥. However, when

the transmission is not erased it is guaranteed that σ = CH(σ). In other words, the receiver

either gets the correct symbol, or an erasure mark ⊥. Erasure channels can have random

erasures (e.g., each transmission is erased with constant probability) or adversarial erasures

for which only the total amount of erasures is bounded.
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2.4 Emulation Schemes

The protocol π of Definition 2.1 is guaranteed to work if the channel is noiseless, however its

output over a noisy channel is not necessarily correct. The goal of an emulation is to “run”

π over a noisy channel. That is,we wish to obtain transπ(x, y) and recreate the transcript

of π on inputs x, y.

Definition 2.9. Let π be a two party protocol that assumes a noiseless channel. An emulation

of π over a noisy channel CH with success probability 1− δ, is a two-party protocol Π such

that if each message is sent over CH, then for any input x, y,

Pr [Π(x, y) 6= transπ(x, y)] < δ.

We can define the rate of an emulation as the fraction of the noiseless communication

from the noise-resilience emulation. Formally,

Definition 2.10. The rate of an emulation Π of a noiseless protocol π is,

rate =
CC(π)

CC(Π)
.

Equivalently, the slowdown or the dilation of an emulation is 1/rate.

The desired property of the emulation is to succeed with high probability, while keeping

their communication complexity linear in the communication of the noiseless protocol, that

is, to have a constant rate.

Definition 2.11. A good emulation of π over a channel CH, is a protocol Π with rate = O(1),

such that if each message of Π is sent over CH, the success probability is 1− 2−Ω(T ).

Assume π runs T rounds and Π runs N rounds. In cases where each message of the

protocol comes from a finite alphabet Σ (which is always the case for our protocols), then

the communication complexity and the round complexity differ only by a constant. Thus,

T/N = O(1) implies a constant rate. A good emulation is thus a protocol Π with with a

constant slowdown N = O(T ), and exponentially small failure probability, δ = 2−Ω(N).
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2.5 The Shared Randomness Model

Some of our schemes assume the following shared-randomness model. The legitimate users

(Alice and Bob) have access to a random string R of unbounded length, which is unknown

to the adversary (Eve). Protocols in this model are thus probabilistic, and are required to

succeed with high probability over the choice of R. We assume that all the randomness

comes from R and that for a fixed R the protocols are deterministic.
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CHAPTER 3

Potent Tree Codes

A tree code is simply any deterministic on-line encoding procedure in which each symbol

from the input alphabet Σ is (immediately) encoded with a single symbol from the output

alphabet S, but the encoding of future input symbols can depend on all the input symbols

seen so far. As such, any such deterministic encoding can be seen as a complete |Σ|-ary tree

with each edge labeled with a single symbol of the output alphabet S.

In this chapter we introduce our notion of potent tree codes, and show a construction of

potent tree codes of depth N such that the description of the entire tree takes O(N) bits,

and each label in the tree can be constructed in time poly(N).

We begin in Section 3.1 with the definition of a (standard) tree code as originally defined

by Schulman [Sch96]. In Section 3.2 we discuss the properties a tree code needs to have in

order to be useful for interactive communication, and define our relaxed notion of potent

tree codes. In Section 3.3 we consider trees that are uniformly sampled out of the entire

space of possible trees. We show that such trees are potent with high probability. This

construction, although efficient and very simple, yields trees whose description is very long,

namely O(exp(N)). This motivates our second construction, which is based on sampling from

a small-biased space. We prove that such a tree is potent with high probability and show

that its description is succinct (Section 3.4). In Section 3.5 we construct a stronger potent

tree, which will be very useful for interactive communication in the multi-party setting.

The results of this chapter are based on [GMS11, GMS14].
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3.1 (Schulman’s) Tree Codes

A d-ary tree code [Sch96] over alphabet Σ is a rooted d-regular tree of arbitrary depth N

whose edges are labeled with elements of Σ. For any string x ∈ [d]≤N , a d-ary tree code T

implies an encoding of x, TCencT (x) = w1w2..w|x| with wi ∈ Σ, defined by concatenating the

labels along the path defined by x, i.e., the path that begins at the root and whose i-th node

is the xi-th child of the (i− 1)-th node. We sometimes identify the string x with the node in

the tree defined by the above path, and use these two notions interchangeably. We usually

omit the subscript T when the tree is clear from the context. Note that tree code encoding

is online: for σ ∈ [d], in order to communicate TCenc(xσ) given that TCenc(x) was already

communicated, we only need to send one symbol of Σ. Hence, if |Σ| = O(1) the encoding

scheme has a constant rate.

For any two paths (strings) x, y ∈ [d]≤N of the same length n, let ` be the longest common

prefix of both x and y. Denote by anc(x, y) = n− |`| the distance from the n-th level to the

least common ancestor of paths x and y.

Definition 3.1. A tree code is said to have a distance α if for any k ∈ [N ] and any distinct

x, y ∈ [d]k, the Hamming distance of their encodings satisfies

∆(TCenc(x),TCenc(y)) ≥ α · anc(x, y).

For a string w ∈ Σn, decoding w using the tree code T means returning the string x ∈ [d]n

whose encoding minimizes the Hamming distance to the received word, namely,

TCdecT (w) = argmin
x∈[d]n

∆(TCencT (x), w).

Applications that transmit N symbols via a tree code require a tree of depth N (and

size exp(N)). In order for such applications to be efficient, it is required that a encoding of

strings of length N could be done in time poly(N). Indeed, constructing the entire tree still

takes exponential time, yet the application uses only polynomial fraction of the tree and can

be efficient. We say that such constructions, in which the time for retrieving a single element

is polynomial in its depth, are element-wise efficient.

18



Tree Code Constructions. Although tree codes (of unbounded depth N and constant-

size alphabet) are known to exist [Sch96], finding a deterministic element-wise efficient

construction remains an open question.

Peczarski [Pec06] provides a randomized way for constructing absolute tree codes. The

construction succeeds with probability 1− ε using alphabet of size O(exp(
√

log ε−1)). There-

fore, if we use Peczarski’s method to construct a tree code with exponentially small failure

probability ε, encoding a string yields super-logarithmic slowdown if ε is negligible (in the

length of the string to be encoded).

Braverman [Bra12] defines a “product” operator, which takes two trees and yields a deeper

tree with essentially the same distance parameter α. By repeatedly performing products of

short trees, one can obtain a tree code of depth N in sub-exponential time in N .

Other methods for constructing a tree code are reported by Schulman [Sch03], yet they

require polynomial-size alphabet (in the depth of the tree), resulting in a logarithmic slowdown

using Schulman’s emulation [Sch96]. Schulman [Sch03] also provides methods for constructing

tree codes with weaker properties such as satisfying the Hamming distance property for only

a logarithmic depth (which yields a failure probability that is inverse-polynomial).

Moore and Schulman [MS14] provide a first candidate for efficient deterministic construc-

tion of tree codes, yet their construction is based on a strong assumption regarding sums of

exponents.

3.2 Potent Tree Codes

3.2.1 Relaxing the Tree Code Notion

We ask the question: what properties does a tree code need in order to be useful for

emulating protocols over noisy channels? (Without loss of generality, assume that protocols

only exchange one bit at a time from each party.) The usefulness of some kind of tree code

for protocol emulation seems immediate, since each party must encode the bit it needs to

send before knowing what other bits it needs to send later (which it will not know until

19



it receives messages from the other party). We formally describe the emulation process in

Chapter 4, but for the meantime assume that each party decides on the next message to

send by some function of its input and the messages received so far. This message is encoded

by the tree-code as explained above, and sent over the noise channel to the other side. On

the receiving side, each party takes all the (tree code encoded) symbols received so far and

decodes via the tree code all the messages sent by the other party so far. Then, the receiving

party can send a new message according to this transcript and its input. Very informally,

the emulation advances correctly as long as both parties decode the correct information.

However, when errors occur and the parties decode wrong messages the emulation may

temporarily advance incorrectly. Nevertheless, if the number of errors is small, the tree code

will eventually decode the correct path and put the emulation back on track. That is, in

order to succeed, the parties need to be “on the right track” for enough rounds to complete

the emulation correctly.

P

V

P’

Figure 3.1: A very bad tree code with two long paths that violate the Hamming distance

condition.

At first glance, it may appear that all we need from the tree code is for “long-enough”

divergent paths to have large relative Hamming distance. That is, suppose that the tree

code illustrated in Figure 3.1 has the property that the relative Hamming distance between

the path from node V to P and the path from node V to P’ is very small, even though each

of those paths is long. This would certainly be problematic since the protocol execution

corresponding to each path could be confused for the other. As long as all long divergent

paths had high Hamming distance, however, it seems plausible that eventually the protocol

emulation should be able to avoid the wrong paths. Also, it is important to note that with
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suitable parameters, a randomly generated tree code would guarantee that all long divergent

paths have high relative Hamming distance with overwhelming probability.

However, this intuition does not seem to suffice, because while the protocol emulation

is proceeding down an incorrect path, one party is sending the wrong messages – based on

wrong interpretations of the other party’s communication. After a party realizes that it has

made a mistake, it must then be able to “backtrack” and correct the record going forward.

The problem is that even short divergent paths with small relative Hamming distance can

cause problems.

1

2

3
A

B
C

A’

B’

Figure 3.2: A bad tree code with multiple short paths that violate the Hamming distance.

Consider the tree code illustrated in Figure 3.2. In this figure suppose the path along the

nodes 1, 2, and 3 is the “correct” path, but that the short divergent paths from 1 to A, 2 to

B, and 3 to C all have small relative Hamming distance to the corresponding portions of

the correct path. Then in the protocol emulation, because of the bad Hamming distance

properties, the emulation may initially incorrectly proceed to node A, and then realize it

made a mistake. But instead of correcting to a node on the correct path, it might correct

to the node A’ and proceed down the path to B. Then it may correct to B’, and so on.

Because the protocol emulation keeps making mistakes, it may never make progress towards

emulating the original protocol.

Schulman [Sch93] dealt with this problem by simply insisting that all divergent paths

have large relative Hamming distance in his definition of a tree code (Definition 3.1). This

would prevent all such problems, and guarantee that any errors in emulation could be blamed
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on channel errors. The downside of this approach is that randomly generated tree codes

would have short divergent paths with small (even zero) relative Hamming distance with

overwhelming probability, and thus would not satisfy the tree code property.

Our main observation is that this requirement goes too far. If a tree code has the property

that for every path from root to leaf, there are only a few small divergent branches with

low relative Hamming distance (as illustrated in Figure 3.3), then the emulation protocol

will be able to recover from these few errors without any problems. We call such tree codes

potent tree codes since they are sufficiently powerful to enable efficient and reliable interactive

communication over a noisy channel.

Figure 3.3: A potent tree code with small number of bad paths.

3.2.2 Potent Tree Codes: Definition

We now formally define the set of potent tree codes and its complement, the set of bad trees.

The latter contains trees that are not useful for our purpose: at least one of their paths

is composed of “too many” sub-paths that do not satisfy the distance condition, i.e., the

total length of these sub-paths is at least ε fraction of the tree depth N , for some fixed

constant ε > 0.

Roughly speaking, let ε and α be two parameters from the interval [0, 1]. Define a path

from node u to a descendant node v (of length `) to be α-bad if there exists a path from u

to another descendant node w (also of length `) such that u is the first common ancestor of

v and w, and the Hamming distance between the u-v path and the u-w path is less than α`.
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(Note that the u-v path and the u-w path must diverge at u, since u is the first common

ancestor of v and w.) Then an (ε, α)-potent tree code of depth N is one for which in every

path Q from root to leaf, the number of nodes in the union of all α-bad paths contained in Q

is at most εN . Formally,

Definition 3.2. Let u, v be nodes at the same depth h of a tree code, and let w be their

least common ancestor, located at depth h − `. We call the nodes u and v α-bad nodes

(of length `) if ∆(TCenc(u),TCenc(v)) < α`. Also, we call the path (of length `) between

w and u an α-bad path (similarly, the path between w and v would also be a bad path).

Additionally, we call the interval [h− `, h] an α-bad interval (of length `).

Definition 3.3. An (ε, α)-bad tree is a tree of depth N that has a path Q for which the

union of α-bad intervals corresponding to the α-bad subpaths of Q has total length at least εN .

If the tree is not an (ε, α)-bad tree, then we will call it an (ε, α)-potent tree code.

We stress that a bad tree is not necessarily bad in all of its paths, since the existence of a

single bad path is sufficient.

3.3 Random Tree Codes as Potent Trees

Suppose any label in a tree code is chosen, randomly and independently, out of an alphabet S

and call such a tree a Random Tree Code (RTC). An RTC is a potent tree except with

probability exponentially small in the depth of the tree.

Theorem 3.1. Suppose ε, α ∈ (0, 1). Except with probability 2−Ω(N), a RTC with alphabet

|S| > (2d)(1+2/ε)/(1−α) is (ε, α)-potent.

Proof. We begin by some technical lemmas.

Lemma 3.2. Fix a d-ary RTC over S, and let v1 and v2 be any two nodes at some common

depth h, with least common ancestor at depth h− l, then for every 0 ≤ α ≤ 1,

Pr [∆(TCenc(v1),TCenc(v2)) ≤ αl] ≤
( 2

|S|1−α
)l
.
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Proof. We sum the probability for any possible Hamming distance i = 0, 1, . . . , αl. A direct

calculation gives

Pr[∆(TCenc(v1),TCenc(v2)) ≤ αl] ≤
αl∑
i=0

(
l

l − i

)(
1

|S|

)l−i( |S| − 1

|S|

)i
≤ 2l

|S|l(1−α)
.

Next we show that the set of all (ε, α)-bad RTC for constants ε, α ∈ (0, 1), is exponentially

small.

Proposition 3.3. Suppose ε, α ∈ (0, 1). The probability for a RTC of depth N with alphabet

|S| > (2d)(1+2/ε)/(1−α) to be (ε, α)-bad, is at most 2−Ω(N)

Proof. We begin by fixing a leaf z, and later we use a union bound to bound the probability

over the entire tree. Assume that there exist bad intervals of total length at least εN , then

there must exist disjoint bad intervals of total length at least εN/2, as stated by the following

lemma [Sch96].

Lemma 3.4 ([Sch96]). Let `1, `2, . . . , `n be intervals on N, of total length X. Then there

exists a set of indices I ⊆ {1, 2, . . . , n} such that the intervals indexed by I are disjoint, and

their total length is at least X/2. That is, for any i, j ∈ I, `i ∩ `j = ∅, and
∑

i∈I |`i| ≥ X/2.

The proof is given in [Sch96].

There are at most
∑N

j=εN/2

(
N
j

)
≤ 2N ways to distribute these disjoint intervals along the

path from the RTC’s root to z. Using Lemma 3.2 and a union bound we are assured that

the probability of having a bad interval of length ` is less than (2d/|S|1−α)`. The probability

for a specific pattern of disjoint bad intervals to jointly occur is the multiplication of the

probability for each interval to occur (the intervals are independent since they are disjoint).

According to the above, for large enough S, the probability for a RTC to be (ε, α)-bad is
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bounded by

Pr[ RTC is (ε, α)-bad ] ≤
∑
z

∑
`1,`2,... disjoint,

of length≥εN/2

∏
i

(2d/|S|1−α)`i

≤ dN · 2N · (2d/|S|1−α)
∑
i `i ≤ (2d)N(2d/|S|1−α)εN/2

which is exponentially small in N for |S| > (2d · (2d)2/ε)1/(1−α).

This completes the proof of Theorem 3.1.

The drawback of such a construction is that its description is exponential. However,

we observe that requiring the entire tree to be random can be replaced with requiring any

two paths along the tree to be independent.1 Using a method of Alon, Goldreich, H̊astad

and Peralta [AGHP92] we are able to construct a tree in which any two paths are almost

independent – and we call such a code a Small-Biased Tree Code (SBTC). Moreover, such a

tree has an efficient description, and the randomness required to seed the construction is

proportional to the depth of the tree.

3.4 Small-Biased Random Trees as Potent Trees

In order to agree on an RTC with alphabet S, the users need to communicate (or pre-share)

O(dN log |S|) random bits. Surprisingly, we can reduce the description size to O(N log |S|)

and still have a potent code with overwhelming probability. To accomplish this, we make

use of Alon et al.’s construction of a sample space with an efficient description that is

ε-biased [AGHP92].

Definition 3.4 (ε-biased sample space [NN90, AGHP92]). A sample space X on n bits is

said to be ε-biased with respect to linear tests if for every sample x1 · · ·xn and every string

α1 · · ·αn ∈ {0, 1}n \ {0}n, the random variable y =
∑n

i=1 αixi mod 2 satisfies

|Pr[y = 0]− Pr[y = 1]| ≤ ε.

1This is similar to the case of random codes, see e.g., [Gal68].
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We use [AGHP92, Construction 2] to achieve a sample space Bn on n bits which is ε-biased

with respect to linear tests. Let p be an odd prime such that p > (n/ε)2, and let χp(x) be

the quadratic character of x (mod p). Let Bn be the sample space described by the following

construction. A point in the sample space is described by a number x ∈ [0, 1, . . . , p − 1],

which corresponds to the n-bit string r(x) = r0(x)r1(x) · · · rn−1(x) where ri(x) = 1−χp(x+i)

2
.

Proposition 3.5 ([AGHP92], Proposition 2). The sample space Bn is n−1√
p

+ n
p
-biased with

respect to linear tests.

A proof appears in [AGHP92].

The above is used to construct a d-ary tree code of depth N with labels over an alphabet S.

Without loss of generality we assume that |S| is a power of 2. We describe the tree as the

dN log |S|-bit string obtained by concatenating all the tree’s labels in some fixed ordering.

Since each n-bit sample describes a tree-code, we are sometimes negligent with the distinction

between these two objects.

Definition 3.5. A d-ary Small-Biased Tree Code (SBTC) of depth N , is a tree described

by a sample from the ε-biased sample space Bn with n = dN log |S|, ε = 2−cN log |S| for some

constant c which we choose later.

We note that small-bias trees have several properties which are very useful for our needs.

Specifically, every set of labels are almost independent.

Definition 3.6 (almost k-wise independence [AGHP92]). A sample space on n bits is

(ε, k)-independent if for any k positions i1 < i2 < · · · < ik and k-bit string ξ,

|Pr[xi1xi2 · · ·xik = ξ]− 2−k| ≤ ε

Due to a lemma by Vazirani [Vaz86] (see also Corollary 1 in [AGHP92]), if a sample space

is ε-biased with respect to linear tests, then for every k the sample space is ((1−2−k)ε, k)-

independent. Thus, Bn is (ε, k)-independent for any k.
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Corollary 3.6. Let T be a d-ary SBTC of depth N , then any 1 ≤ k ≤ dN labels of T

are almost independent, that is, any k log |S| bits of T ’s description are (2−cN log |S|, k)-

independent.

Finally, let us argue that such a construction is element-wise efficient. Let p = O((n/ε)2)

and assume a constant alphabet |S| = O(1). Each sample x takes log p = O(N) bits, and

each ri(x) can be computed by poly(N) operations.

We now prove a main property about SBTCs: except with negligible probability, a SBTC

is potent.

Theorem 3.7. Suppose ε, α ∈ (0, 1). A d-ary SBTC of depth N over alphabet |S| >

(2d)(2+2/ε)/(1−α) is (ε, α)-potent with probability 1− 2−Ω(N).

Proof. We show that the probability of a d-ary SBTC of depth N to be (ε, α)-bad is

exponentially small for a sufficiently large constant size alphabet S. The technique is similar

to the proof of Theorem 3.1 for the case of RTC.

For a fixed node v, we bound the probability that v is α-bad of length l, i.e., the probability

that there exists a node u at the same depth as v that forms a bad interval of length l. Denote

by TCencl(u) the last l labels of TCenc(u). Since the tree is (2−cN log |S|, 2l log |S|)-independent,

then TCencl(u) and TCencl(v) are almost independent.

Lemma 3.8. For any two nodes v, u in a SBTC that are at the same depth and have a

common ancestor l levels away,

Pr[∆(TCenc(u),TCenc(v)) = j] ≤
(

l

l − j

)(
1

|S|

)l−j
+ 2−Ω(N).

Proof. Note that TCenc(u) and TCenc(v) are identical except for the last l labels. As noted

in Corollary 3.6, the labels are almost independent (Definition 3.6) and we can bound the
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probability Pr[∆(TCenc(u),TCenc(v)) = j] by

∑
ξu,ξv

Pr[TCencl(u) = ξu,TCencl(v) = ξv]

× Pr[∆(TCencl(u),TCencl(v)) = j | TCencl(u) = ξu,TCencl(v) = ξv]

≤ (2−2l log |S| + 2−cN log |S|)22l log |S|
(

l

l − j

)(
1

|S|

)l−j ( |S| − 1

|S|

)j
.

For the ease of notation, in the following we use 2
(
l
l−j

) (
1
|S|

)l−j
as an upper bound of the

above probability, which holds for any c > 2 since l ≤ N .

The above lemma leads to the following bound on the probability that two (fixed) nodes

at the same depth are α-bad.

Corollary 3.9.

Pr[∆(TCenc(v),TCenc(u)) ≤ αl] ≤ 2
2l

|S|(1−α)l
.

For a fixed node v, the probability that there exists a node u 6= v with least common

ancestor l level away such that v and u do not satisfy the distance requirement, is bounded

by
∑

u 2 2l

|S|(1−α)l ≤ 2(2d/|S|1−α)l, using a union bound.

Assume that the tree is bad, that is, there exists a path from the root to some node z

with bad intervals of total length εN . Due to Lemma 3.4, there must exist disjoint bad

intervals of total length at least εN/2. Note that there are at most
∑N

j=εN/2

(
N
j

)
≤ 2N ways

to distribute these disjoint intervals along the path from root to z.

Consider again the path from root to z, and the disjoint bad intervals of total length at

least εN/2 along it. There are at most 2N labels involved (along both the path to z and

the colliding paths). Since the intervals are disjoint, their probabilities to occur are almost

independent as well [Sch96], and the probability that a specific pattern of intervals happens

is bounded by their product. Hence, the probability for a SBTC to be (ε, α)-bad is bounded
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by

Pr[ SBTC is (ε, α)-bad ] ≤
∑
z

∑
`1,`2,... disjoint,

of length≥εN/2

∏
i

2(2d/|S|1−α)`i

≤ dN · 2N(4d/|S|1−α)
∑
i `i

≤ (2d)N(4d/|S|1−α)εN/2,

which is exponentially small in N for a constant alphabet size |S| > (4d · (2d)2/ε)1/(1−α).

3.5 Potent Tree Codes with Arbitrarily Small ε from Linear-SBTC

So far we have assumed that ε, α are constant. Observe that for the case that ε → 0, the

above construction gives an alphabet of size |S| = dΩ(1/ε), which is not constant. In this

section we give a construction of a d-ary (ε, α)-potent tree of depth N which, for a constant

α and an arbitrary ε, requires a constant-size alphabet and fails with probability 2−Ω(εN).

Theorem 3.10. For any α ∈ (0, 1) and d ∈ N, there exists a constant alphabet size |S|

such that for any ε there exists an efficient construction of a d-ary (ε, α)-potent tree-code of

depth N over S. The construction succeeds with probability at least 1− 2−Ω(εN).

Proof. Our construction consists of two parts. In the first part we build a “weak” tree-code T1

in which each two paths of length at most logN satisfy the distance property. Such a tree

can easily be constructed using an efficient deterministic method by Schulman [Sch03]: we

find a tree code of depth 2 logN over some constant size alphabet S1, and then, starting at

depth logN we overlap another copy of the tree code at every depth that is a multiple of

logN , so that each label of T1 is a concatenation of the labels of the two overlapping tree

codes.

In the second part we construct a linear-SBTC T2 in the following way. Consider the small-

biased random2 lower-triangular matrix GN×N over some finite field F, say of characteristic

2That is, the O(N2 log |F|) bits required to define G are drawn from a small-biased sample space Bn with
n = O(N2 log |F|) and bias 2−Ω(N log |F|).
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at least d. We will set our second alphabet S2 = F. The labels assigned to the path

a1, a2, a3, . . . , aN , where ai ∈ {0, 1, . . . , d− 1}, are given by G · (a1, a2, . . . , aN )T. It is easy to

verify that each label does not depend on the path beneath, which makes this construction a

valid tree code.

We get our final tree code T over S = S1 × S1 × S2, by concatenating, for each arc, the

label of the matching arc in T1 and in T2. Note the following properties: any two divergent

paths in T which do not satisfy the distance property must be of length at least logN .

Moreover, due to the linearity of T2, it is clear that there exists an α-bad path at depth d of

length ` if and only if the path 0̄ = (0, 0, . . . , 0) has an α-bad path contained within it at

the same depth d and of the same total length `. This means that in order to bound the

probability of T to be α-bad we only need to analyze bad paths of length at least logN

where the common ancestor lies on the 0̄ path.

We now show that a constant alphabet size is sufficient for T to be (ε, α)-potent with

probability 1− 2−Ω(εN). Assume that T is α-bad. That is, the 0̄-path has bad sub-paths of

total length at least εN , and thus it is α-bad in both T1 and T2. We focus on T2 for the rest

of the analysis.

Using Lemma 3.4, there exist disjoint bad sub-paths l1, l2, . . . , ln of total length
∑

i li >

εN/2. Note that for any i, we have that li > logN , and without loss of generality we can

assume n ≤ εN/2 logN . Trivially, there are at most N2n ≤ 2εN ways to distribute the

intervals l1, . . . , ln along [1, N ].

Next, we show an analog for Lemma 3.8 and bound the probability that two divergent

paths have a Hamming distance j.

Lemma 3.11. For any two nodes v, u in a linear-SBTC that are at the same depth and have

a common ancestor l levels away,

Pr[∆(TCenc(u),TCenc(v)) = j] ≤
(

l

l − j

)(
1

|S|

)l−j
+ 2−Ω(N).

Proof. First, observe that due to the linear structure of the tree,

∆(TCenc(u),TCenc(v)) = ∆(TCenc(0̄),TCenc(u− v)).
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Let z = u− v and recall that z is non-zero only in the last l labels. It is easy to verify that,

due to our construction and the fact that G is small-biased, the labels on any path that

diverges from the 0̄ path, are almost k-independent (for any k < N). Then, the probability

for Pr[∆(TCenc(0̄),TCenc(z)) = j] is

∑
ξ

Pr[TCencl(z) = ξ] Pr[∆(TCencl(0̄),TCencl(z)) = j | TCencl(z) = ξ],

which is bounded by

(2−l log |S| + 2−cN log |S|)2l log |S|
(

l

l − j

)(
1

|S|

)l−j ( |S| − 1

|S|

)j
.

In a similar way to the standard SBTC, we can bound this probability by 2
(
l
l−j

) (
1
|S|

)l−j
.

In a similar way to the analysis performed above, let vi be the node on the 0̄ at the end

of the i-th interval. It follows that the probability that vi is α-bad of length li (with respect

to some node u) equals the probability of the divergent path to have Hamming distance at

most αli, which is bounded by
∑αli

j=0 2
(

l
li−j

) (
1
|S|

)li−j
≤ 2 · 2li/|S2|(1−α)li .

Using a union bound on all dli possible nodes u whose least common ancestor with vi

is li levels away, we bound the probability of vi to be α-bad of length li by 2(2d/|S2|1−α)li .

Finally,

Pr[T is α-bad ] ≤
∑

l1,l2,... disjoint,

of length≥εN/2

∏
i

2(2d/|S2|1−α)li

≤ 2εN2n(2d/|S2|1−α)
∑
i li

≤ (16d/|S2|1−α)εN/2.

therefore, for a constant alphabet |S2| > (16d)1/(1−α), the claim holds.
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CHAPTER 4

Interactive Communication with Random Noise:

Efficiency

In this chapter we discuss interactive communication protocols over channels with random

noise. We begin by recalling a good emulation scheme by Schulman [Sch96] that was designed

for channels with random errors (the scheme also works for channel with adversarial errors

for noise rates η < 1/240). The scheme crucially uses (standard) tree codes, and as such is

not efficient. We show that it is possible to replace the tree code with a potent code. By

doing so we achieve an efficient scheme for the case of random noise (Section 4.1).

In Section 4.2 we extend the discussion to the multiparty case, where m parties perform

an interactive computation of some function on their joint inputs. The underlying scheme is

an emulation by Rajagopalan and Schulman [RS94]. Similarly to the above, we show that it

is possible to replace the tree code used in [RS94] by a potent code, and obtain an efficient

scheme. However, we note that this emulation is not “good” as its blowup is logm in the

worst case, rather than constant.

The results of this chapter are based on [GMS11, GMS14].

4.1 The Two-Party Case

4.1.1 Schulman’s Emulation Scheme [Sch96]

Let us re-state the notion of a (noiseless) protocol π for interactive communication, using

the notations used in [Sch96]. Assume that the parties A and B hold inputs xA and xB,

respectively. Each round, each user i ∈ {A,B} sends one bit according to its input xi

32



and the messages received so far. Let πi(xi, ∅) denote the first bit sent by user i, and let

π(x, ∅) ∈ {00, 01, 10, 11} be the two bits transmitted in the first round by A and B respectively,

where x = xAxB. Generally, let m1, . . . ,mt be the first t two-bit messages exchanged during

the protocol, then the information sent in round t+ 1 is defined by π(x,m1 . . .mt).

GameTree

00 01

00 01 10 11

10 11

Figure 4.1: An illustration of the GameTree.

The computation over a noiseless channel (the transcript) can be described as a single

route γπ,x along the GameTree, a 4-ary tree of depth T (see Figure 4.1). The path γπ,x

begins at the root of the tree and the t-th edge is determined by the 2 bits exchanged at the

t-th round, i.e., the first edge in the path is π(x, ∅), the second is π(x, π(x, ∅)), etc. Also,

for a vertex v ∈ GameTree, let πi(xi, v) be the bit transmitted by user i at some round

t+ 1 = depth(v) + 1 if the information received in the previous t rounds is the labels along

the path from root to v.

Our emulation process for any two-party interactive protocol π follows a method by

Schulman [Sch96]. The idea behind the emulation is that each user keeps a record of (his

belief of) the current progress of π, described as a pebble on one of GameTree’s nodes. The

users update their belief of the current progress of π according to their inputs and the

messages received so far.

The information communicated at each round (for user i ∈ {A,B}) consists of two

parts. (i) the message defined by π for that user; according to our assumption, this is a

single bit b = πi(xi, v), where v is the most updated position1 of the user’s pebble on the

GameTree. (ii) a “control” information, which describes the change of the pebble according

to π’s progress. At each round the pebble can move to any of its adjacent nodes (including

1I.e., the position after moving the pebble according to the control part of the same round.
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its father), or to stay at the same place. This gives 6 possible movements. Along with the

bit b, each user sends one of 6× 2 possible values.

The movement of the pebble is determined in the following way. First, the user tries to

guess the position of the other users’ pebble, according to all the messages he received so

far (each message contains a single move for that pebble). Since the channel might cause

some errors, that inferred position (the guess) is possibly incorrect. The user then moves his

own pebble according to this guess: if both user’s pebbles are at the same place, the user

moves his pebble one step down along the path γπ,x. Observe that the next edge of γπ,x is

well defined via the bit b sent by each user in the previous round. On the other hand, when

an inconsistency is suspected, the user “backtracks” his pebble to the least common ancestor

of both pebbles. This is done by either keeping one’s own pebble at the same position or

moving it one step towards the root.

Informally speaking, the emulation works since the least common ancestor always lies

along the path γπ,x. If both users have the correct guess for the other party’s pebble, they

will correctly emulate one step of π and their pebbles move down along γπ,x. Otherwise, their

pebbles diverge, yet the common ancestor remains on γπ,x. On the following rounds, when

the users acknowledge an inconsistency in the pebbles’ positions, they move their pebbles

backwards until the pebbles reach their common ancestor, and the protocol continues.

The second ingredient needed for the emulation process is an (online) encoding procedure

for the messages exchanged between the users. This is done using a tree code in the following

manner. Each one of the 12 possible values represents a child in a 12-ary tree code called

the StateTreeCode (Figure 4.2). The user begins at the root of the StateTreeCode. In order

to send the value v ∈ {1, 2, ..., 12}, the user moves to the v-th child of his current position,

and communicates the label associated with that edge over the noisy channel.2 The current

StateTreeCode’s node of each user is called the user’s state.

2Labels are not sent ‘as-is’, but are encoded via a standard (Shannon) error-correction code, with
parameters that correspond the capacity of the noisy channel. This yields a constant dilation over the size of
the labels (Lemma 2.1). A channel error is to be understood as the failure of the Shannon code. Throughout
this chapter, any transmission of a label is to be understood in this manner.
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StateTreeCode

00x0 00x1 01x0 01x1 10x0

. . .

10x1 11x0 11x1 Hx0 Hx1 Bx0 Bx1

Figure 4.2: An illustration of the StateTreeCode. The first value is the movement of the pebble

according to the 4 possible children of the current pebble position, ‘B’ indicates a move to the

father node and ‘H’ indicates no change in pebble’s position. The second value is the output bit b

defined by π for that user, assuming π’s progress is according to the pebble’s position.

As hinted in Section 3, Encoding messages via a tree code has a ‘self-healing’ property:

due to the large Hamming distance between any two divergent paths, decoding a divergent

path whose least common ancestor is more than ` levels away, happens only if more than α`

errors have happened during the last ` rounds. Hence, as the protocol continues, the decoded

path does not diverge “too much” from the correct path except with a negligible probability.

Since the diversion is small, also the guessed position of the other party’s pebble is not too

far away from the correct position, and eventually the protocol is able to backtrack to the

correct progress.

The formal details of the emulation process are given in Figure 4.3 (described for user A;

the protocol for B is identical). It is shown in [Sch96] that, assuming a tree code with

distance α > 0, the emulation process succeeds with probability 1− 2−Ω(αN).

4.1.2 Efficient Emulation for 2-party Interactive Communication

with Random Errors

We now replace the tree code originally used by Schulman with a potent tree code, and show

that the emulation still succeeds with overwhelming probability. Moreover, if we are given

an oracle to a tree code decoding procedure, the obtained protocol is efficient.
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Begin with own pebble at the root of GameTree and own state SA at the StateTreeCode root’s

child labeled H × πA(xA, ∅). Repeat the following N = 5T times3:

1. Send the last label of TCenc(SA) to party B.

2. Given the sequence of messages Z received so far from party B, guess the current state g

of B as the node that minimizes ∆(TCenc(g), Z). From g, infer party B’s assumed pebble

position, pebble(g), as well as party B’s assumed message b = πB(xB, pebble(g))

3. Set own pebble’s movement and new state according to the current position v of your

pebble:

(a) If v = pebble(g) then move pebble according to the pair of bits (πA(xA, v), b) to a

state v′. The new state is SA’s child labeled with the arc (πA(xA, v), b)× πA(xA, v
′).

(b) If v is a strict ancestor of pebble(g): own movement is H, and the next state is

along the arc H × πA(xA, v).

(c) Otherwise, move pebble backwards. New state is along the arc B × πA(xA, v
′)

where v′ is the parent of v.

Figure 4.3: The interactive protocol Simπ for emulating π over noisy channels [Sch96], described

for user A.

Theorem 4.1. Given a ( 1
20
, α)-potent tree code with a constant-size alphabet |S|, an oracle

for a decoding procedure of that tree code, and a protocol π of length T , the protocol Simπ

(Figure 4.3) efficiently emulates π over a BSC, takes N = O(T ) rounds and succeeds with

probability 1− 2−Ω(T ) over the channel errors, assuming small enough label error probability.

In Section 4.1.3 we show a decoding procedure that is efficient on average, given that the

tree is SBTC. This immediately leads to the following Theorem..

Theorem 4.2. There exists an efficient emulation that computes any distributed 2-party

protocol π of length T , using a BSC for communication and a pre-shared SBTC. The emulation

has a constant dilation and it succeeds with probability 1 − 2−Ω(T ) over the channel errors
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and the choice of the SBTC.

We now give the proof idea for Theorem 4.1 and later complete the formal proof. We

begin by defining a good move: a move that advances the emulation of π in one step, and a

bad move: an erroneous step in the emulation that requires backing up and re-emulating

that step. We show that any bad move is associated with a decoding error, i.e., recovering a

wrong node u, due to channel errors or tree defects. This allows us to bound the number of

bad moves by bounding the probability for channel errors and tree defects.

Recall the following properties of the emulation process Simπ [Sch96].

Lemma 4.3. The least common ancestor of the two pebbles lies on γπ,x.

Lemma 4.4. Let vA and vB be the positions of the two pebbles in the GameTree at some

time t, and let v̄ denote the least common ancestor of vA and vB. Define the mark of the

protocol as the depth of v̄ minus the distance from v̄ to the further of vA and vB.

If during a specific round, both users guess the other’s state correctly (a good move), the

mark increases by 1. Otherwise (a bad move), the mark decreases by at most 3.

Proofs for both the above lemmas are given in [Sch96].

Our goal is to show that the probability of having more than cN bad rounds is exponentially

small. By setting c = 1/5 and N = 5T we guarantee that at the end of the emulation the

mark will be (at least) T . Since the common ancestor of the pebbles always lies along the

path γπ,x, a mark of value T indicates that the common ancestor has reached depth T , and

π was successfully emulated.

For a bad round at time t, we assume that (at least) one of the users takes a wrong guess

of the (other user’s) current state. Suppose that the least common ancestor of the right state

and the wrongly guessed state in the StateTreeCode, are distanced l levels away (we call this

event an error of magnitude l). Define the error interval (of length l) corresponding to the

erroneous guess as [t− l, t].
3For the emulation to be well defined, we must extend π to N rounds. We assume that in each of the

N − T spare rounds, π outputs 0 for each user and every input.
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We now show that given a potent tree, Simπ emulates π over a BSC channel with

overwhelming probability.

Proof. (Theorem 4.1). Suppose the parties share a ( 1
20
, α)-potent tree code4, for some

0 < α < 1. Assume that a specific run of the emulation failed. It follows that more than

N/5 bad-moves have occurred. Without loss of generality, assume that at least N/10 of the

bad-moves are due to decoding errors performed by the first user.

For that specific user, any possible path between the root of the StateTreeCode to one of

its leaves contains at most N/20 α-bad nodes, due to the tree’s potency. We can account

each such bad node towards a bad move, which implies that at least N/20 additional bad

moves have occurred when decoding non α-bad nodes of the StateTreeCode. We show that

the probability to have at least N/20 additional bad moves in the remaining (non-bad) nodes,

is exponentially small.

Consider a specific bad move at time t caused by erroneously decoding a node which is

not α-bad. Namely, the user guesses a wrong node r instead of the real transmitted node s.

For an error of magnitude l, TCenc(s) and TCenc(r) are identical from the root to the least

common ancestor of r and s at level t − l. Since the decoding is done by minimizing the

Hamming distance, making such a wrong guess is independent of transmissions prior to

round t− l. It follows that such an error (of magnitude l) can happen only if at least αl/2

channel errors have occurred during the last l rounds.

Note that each such bad move (i.e., a tree-decoding error of a non α-bad node) induces

an error interval of length li ≥ 1, and the union of these intervals is of length at least N/20.

Each such error interval happens with probability at most
∑li

j=αli/2

(
li
j

)
pj ≤ 2lipαli/2, where p

is the probability of having a channel error (recall that a channel error means a failure of

the Shannon code used to encode labels.) Due to Lemma 3.4 we can find a set of disjoint

intervals of length at least N/40. Since the intervals are disjoint, the channel errors that

4Theorem 3.7 guarantees that as long as |S| > (2d)42/(1−α), only exponentially-small fraction of the
SBTCs are ( 1

20 , α)-bad. Therefore, for obtaining a potent tree with overwhelming probability, we require
log |S| ≥ 193.
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cause each interval are independent, and their probability to jointly occur is bounded by∏
i

2lipαli/2 = (2pα/2)l.

We conclude the proof by bounding the probability for having any one of the possible

disjoint channel-errors patterns of total length at least N/40 along the bad moves associated

with nodes which are not α-bad, by using a union bound over all the
∑N

j=N/40

(
N
j

)
≤ 2N

possible channel-error patterns. The probability is bounded by∑
user U

∑
pattern of

l≥N/40 errors

(2pα/2)l ≤ 2N(2pα/2)N/40,

which is 2−Ω(N) = 2−Ω(T ) for p < 2−82/α.

The constraint on p implies a large block length of the underlying Shannon code, which

might impact the overall efficiency of the scheme. We note that we do not try to optimize

the rate of the scheme but only keep it positive.

4.1.3 Efficient Decoding

A decoding process outputs a node u (at depth t) that minimizes the Hamming distance

∆(TCenc(u), r), where r = r1r2 · · · rt is the received string of labels. Although the above

Theorem 4.1 is proven assuming an oracle to tree-code decoding procedure, this requirement

is too strong for our needs. Since we count any node which is α-bad as an error (even when

no error has occurred), it suffices to have an oracle that decodes correctly given that the

(transmitted) node is not α-bad.

We follow techniques employed by Schulman [Sch96] (which are based on ideas from

[Woz57, Rei60, Fan63]), and show an efficient decoding that succeeds if the node is not

α-bad. While the decoding process of [Sch96] is based on the fact that the underlying tree is

a tree code, in our case the tree code is a SBTC. The same proof also applies to linear-SBTC

discussed in section 3.5, and to the special case of RTC discussed in section 3.3.

The decoding procedure is described in Figure 4.4.
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For a fixed time t, let gt−1 be the current guess of the other user’s state, and denote the nodes

along the path from root to gt−1 as g1, g2, . . . , gt−1.

1. Set gt to be the child node of gt−1 along the arc labeled with rt, if such exists (break ties

arbitrarily). Otherwise, set gt as an arbitrary child of gt−1.

2. Recall that TCencm(u) denotes the m-suffix of TCenc(u), i.e., the last m labels

along the path from the tree’s root to u. We look at the earliest time i such that

∆(riri+1 · · · rt,TCenct−i+1(gt)) ≥ α(t− i)/2. For that specific i, exhaustively search the

subtree of gi and output the node u (at depth t) that minimizes the Hamming distance

∆(r1r2 · · · rt,TCenc(u)).

Figure 4.4: An efficient decoding scheme for tree-codes. The scheme is correct for any non α-bad

node.

Note that when gt is an α-bad node of maximal length l, any path from root to some

other node g′t, where the least common ancestor of gt and g′t is located l′ > l levels away, must

have a Hamming distance ∆(TCencl′(gt),TCencl′(g
′
t)) ≥ αl′. Therefore, if all the suffixes

of length l′ > l satisfy ∆(rt−l′+1 · · · rt,TCencl′(gt)) < αl′/2, we are guaranteed to find the

node minimizing the Hamming distance within the subtree of gt−l. On the other hand, it is

possible that the decoding procedure outputs a node u which is a descendant of gt−l, yet does

not minimize the Hamming distance. This happens when the decoding procedure explores a

smaller subtree, i.e., i > t− l.

The following proposition bounds the probability for a decoding error of magnitude l.

Proposition 4.5. Assume a SBTC (standard or linear) is used to communicate the string

TCenc(v) over a memoryless noisy channel. Using the efficient decoding procedure (with

some constant α ∈ (0, 1)), the probability for a specific user to make a decoding error of

magnitude l is bounded by 2
(

4d
|S|

)l
+ 2

(
2d
|S|1−α

)l
, assuming an error correction code with

(label) error probability p < |S|−2.
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Proof. A decoding error of magnitude l occurs if the decoding process outputs a node u 6= v,

such that the common ancestor of u, v is l levels away. Such an error can happen due to one

of the following reasons:

(i) For the received string r = r1r2 . . . rl it holds that ∆(r,TCenc(u)) ≤ ∆(r,TCenc(v)).

This happens when the Hamming distance ∆(TCenc(u),TCenc(v)) is j = 0, 1, . . . , l

and more than j/2 channel errors occurred.

(ii) The decoding process did not return the node that minimizes the Hamming distance.

Note that we only need to consider the paths from root to u and to v and thus use the k-wise

independence of the tree’s labels. Recall that the probability for a given Hamming distance

between TCenc(u) and TCenc(v) is bounded by Lemma 3.8 (for SBTC) and by Lemma 3.11

for a linear-SBTC. Let p < |S|−2 be the maximal label error of the channel, and for i ∈ N

let Ei be the event that at least i channel (label) errors have occurred. Using a union bound

for every possible node u, the probability of part (i) is bounded by

Pr[ Error of magnitude l ] ≤
∑
u

l∑
j=0

Pr[∆(TCenc(v),TCenc(u)) = j] Pr[Ej/2]

≤ dl
l∑

j=0

2

(
l

l − j

)(
1

|S|

)l−j l∑
k=j/2

(
l

k

)
pk(1− p)l−k

≤ 2 · dl
l∑

j=0

(
l

l − j

) l∑
k=j/2

(
l

k

)
|S|j−l|S|−2k

≤ 2 · dl · 2l · 2l · |S|−l ,

which is exponentially small in l as long as |S| > 4d.

For part (ii), note that the decoding process does not output the node that mini-

mizes the Hamming distance if l > t− i, for i determined by the decoding procedure.

For the output node u, ∆(rt−l+1 · · · rt,TCencl(u)) < αl/2. However, since u does not

minimize the Hamming distance, there must exist a node z of distance at most l, such

that ∆(TCencl(z), rt−l+1 · · · rt) ≤ ∆(rt−l+1 · · · rt,TCencl(u)). By the triangle inequality,

∆(TCencl(z),TCencl(u)) ≤ αl. Using the union bound for any possible z and any possible
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Hamming distance up to αl, we bound the probability of this event by

dl
αl∑
j=0

2

(
l

l − j

)
|S|−(l−j) ≤ 2(2d)l|S|−l(1−α) .

A union bound on the two cases completes this proof.

We stress that the above decoding process always outputs the correct node (i.e., the

node that minimizes the Hamming distance), if the transmitted node is not α-bad. For that

reason, the proof of Theorem 4.1 is still valid, since it only requires the decoding procedure

to succeed when the node is not α-bad (and assumes that the emulation has a bad move in

each node which is a bad node).

We now show that this procedure is efficient in expectation, and complete the proof for

Theorem 1.1 and Theorem 4.2.

Proposition 4.6. Assume a string of length N is encoded via a SBTC with alphabet S and

sent over a channel with error probability p < |S|−2 per label. Then, decoding the string,

bit-by-bit, using the decoding procedure in Figure 4.4 takes O(N) time, in expectation.

Proof. Let L(t) be the depth of the subtree explored at time t. Then, the decoding process

takes O
(∑N

t=1 d
L(t)
)

steps (this dominates terms of O(L(t)) required to maintain the guess,

etc).

For time t, if L(t) = l then

∆(rt−l+1 · · · rt,TCencl(gt)) ≥ αl/2,

yet for l′ > l,

∆(rt−l′+1 · · · rt,TCencl′(gt)) < αl′/2,

thus ∆(rt−l+1 · · · rt,TCencl(gt)) = dαl/2e. Let the transmitted sequence of labels be TCenc(v)

for some node v of depth t. A Hamming distance of exactly dαl/2e happens with probability
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at most

l∑
j=0

Pr[∆(TCencl(gt),TCencl(v) = j] Pr[E|dαl/2e−j|]

≤
l∑

j=0

2

(
l

l − j

)(
1

|S|

)l−j l∑
k=|dαl/2e−j|

(
l

k

)
pk(1− p)l−k,

which is bounded by 22l+1|S|−l(1−α/2) for p < |S|−2.

With a sufficiently large yet constant alphabet, e.g., |S| > (8d)1/(1−α/2), we bound the

probability that L(t) equals l to be 2−γl < d−l. The expected running time is then given by

O

( N∑
t=1

E
[
dL(t)

])
= O

( N∑
t=1

t∑
l=0

[
2−γldl

])

= O

( N∑
t=1

2γ

2γ − d

)
= O(N).

The same proof holds for a linear-SBTC with alphabet S, and therefore also for the tree T of

Section 3.5. Finally, we mention that [Sch96] presents a data structure which allows us to

perform the above decoding procedure with overhead O(L(t)).

4.2 The Multi-Party Case

In this section we extend our result to support an emulation of a protocol π with any number

m of users. This is done by incorporating the tools described in the previous sections with the

method of emulating an m-party protocol over a disturbed channel developed by Rajagopalan

and Schulman [RS94]. The paper [RS94] shows that a scheme for emulating multiparty

protocol over a disturbed channel exists, yet the question of its efficient implementation has

been open since 1994. The Scheme presented there obtains a communication dilation of

O(log(r + 1)) where r is the maximal connectivity degree, that is, the maximal number of

parties connected to a specific user (those are called his neighbours).
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4.2.1 The Rajagopalan-Schulman Emulation Scheme [RS94]

Rajagopalan and Schulman describe how to adapt the 2-party emulation of [Sch96] to an

arbitrary number of users. The key idea is to replace the 12-ary StateTreeCode with a ternary

tree (that is, d = 3), where each node has three child nodes marked with {0, 1, bkp}. The

values 0 and 1 indicate the output bit of the user in the emulated round, and bkp indicates

that the last emulated round is suspected to be invalid and should be deleted and re-emulated

(“back up” one level). For instance, if a party receives “0, 0, 1, bkp, 1, bkp, 0”, he will interpret

the emulation as just finishing the 3rd round, where the transcript so far is “0, 0, 0”.

The emulation (described here for a specific user i) is completely defined by the following

process:

• Each round, the user uses all the previous communications to infer the current emulated

round of π, and sends his output bit to user j (by communicating the label assigned

with the arc to child 0 or 1 respectively, in the ternary StateTreeCode shared between

users i and j).

• If the user finds an inconsistency, he transmits bkp which denotes deleting the last

received (undeleted) bit and rolling the protocol π one step back. Inconsistency is

defined as one of the two following cases: (1) the current decoded transcript of the

StateTreeCode disagrees with the bits sent so far, or (2) the user received bkp from one

of his neighbors.

• The user shares a ternary tree code with each of his r neighbours, and is allowed to

output a different bit to each party. Yet, when the user decides to roll back he outputs

bkp on each of the outgoing links.

We refer the reader to [RS94] for the complete details.
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4.2.2 Efficient Emulation for Multi-Party Interactive Communication

with Random Errors

One can easily check that the bulk of the analysis performed in [RS94] hold also in the case

of replacing the ternary tree code with a ternary SBTC (or RTC). The analysis is composed

of two parts. The first part shows that if after t rounds the scheme emulates step t − l

of π then at least l/2 errors have occurred in decoding the correct tree-node during all the

transmissions that affect the user state at time t. The other part bounds the probability

of having a constant fraction of errors (out of the number of rounds). While the first part

is completely independent of the fact that we replace the tree code with a SBTC, in order

to complete the proof, we must adapt the second part to using a SBTC. This is done by

Lemma 4.9 below.

Let us formally describe these two parts. We begin by defining all the transmissions that

affect the user state at time t. Let (p, t) denote a user p at time t.

Definition 4.1 ([RS94]). (p, t) and (p′, t′) are time-like if messages sent by user p at time t

has an effect on the computation of user p′ at time t′ (or vice versa).

That is, (p, t) and (p, t′) are always time-like, and (p, t) and (q, t+ 1) are time-like if p

and q are neighbors.

Definition 4.2 ([RS94]). A t time-like path is a sequence {(pi, i) | 1 ≤ i ≤ t} such that

any two elements in the path are time-like (i.e., for every i, pi and pi+1 are either neighbors

or the same party).

The correctness of the multiparty protocol of [RS94] follows from the next two lemmas

Lemma 4.7 (Lemma (5.1.1) of [RS94]). If a user p at time t has successfully emulated only

the first t− l rounds of π, then there is a t time-like sequence that ends at (p, t) and includes

at least l/2 tree-decoding errors.

Lemma 4.8 (Lemma (5.1.2) of [RS94]). For error correcting codes with dilation O(log(r + 1)),

the probability that any fixed t time-like path has more than t/4 tree-decoding errors, is less

than 1
(2(r+1))t

.
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The proof of the multiparty case is given by setting t = N = 2T . The first lemma states

that if the emulation failed (the first N/2 rounds of π are not valid for some user) then

there must exist one user who has N/4 errors along one of his N time-like sequences. The

probability of this event is bounded by the Lemma 4.8 to be less than 1
(2(r+1))t

summed over

all the N(r + 1)N possible time sequences, which is bounded by N2−N .

While the above Lemma 4.7 holds regardless of the tree code in use, we prove a variant of

the above Lemma 4.8 for the case of using a potent tree code. Moreover, although Lemma 4.8

holds for any time 1 ≤ t ≤ N , only t = N is required for completing the proof for the

multiparty case, which we prove in the following lemma.

Lemma 4.9. Suppose each two users share a ( 1
16m

, α)-potent tree, for some α ∈ (0, 1). If an

error correcting code with label error probability p is used, then for any fixed N time-like path,

the probability that there are more than N/4 tree-decoding errors is bounded by (217pα/2)N/16,

over the errors of the channel.

Proof. We assume an oracle for the decoding process, which can easily be replaced by the

efficient decoding procedure. Assume that at least N/4 errors have occurred in a specific N

time-like path. Fix a specific user i and assume that the errors of this user are included in

error intervals of total length li. By Lemma 3.4, there exist disjoint error intervals of total

length at least li/2. Recall that each error interval of length ` corresponds to an error of

magnitude `, and recall that in each tree, at most N/16m of the nodes are α-bad. Thus,

at least ki ≡ max{0, li/2 − N/16m} of the errors of user i in the N time-like path occur

in nodes which are not on an α-bad interval. These errors can only be originated due to

channel errors5, and since the intervals are disjoint, they are independent. As above (see

proof of Theorem 4.1), the probability of having errors that correspond to these (fixed)

disjoint error intervals is bounded by 2kipαki/2. Clearly, tree-decoding errors of a specific user

are independent of the communication (and channel errors) of other users. It follows that

the probability for all the users to have a total amount of N/4 errors matching the fixed

5This claim also applies to the efficient decoding procedure, as it always returns the node that minimizes
the Hamming distance, if it is not α-bad. See the proof of Theorem 4.1 and discussion in Section 4.1.3.
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intervals pattern is bounded by (2pα/2)
∑
i ki . With

∑
i li > N/4 and at most n users, this

probability is bounded by (2pα/2)N/8−m(N/16m) = (2pα/2)N/16.

Using a union bound we sum the probability over any number j ≥ N/4 of errors and over

any one of the
(
N
j

)
different ways to distribute j errors along the fixed time-like path. The

probability that there are at least N/4 errors in this fixed N time-like path is bounded by

N∑
j=N/4

(
N

j

)
(2pα/2)j/2−N/16 ≤ (217pα/2)N/16 .

For p < (5(r + 1))−32/α, this probability is at most 1
(2(r+1))N

.

The above lemma replaces Lemma 5.1.2 of [RS94], and leads to the following theorem.

Theorem 4.10. For any m-party protocol π of length T defined over a noiseless channel,

there exists an efficient emulation over a memoryless noisy channel, that emulates π with

probability 1− 2−Ω(T ) and has a dilation of O(m).

Proof. Suppose each two users share a SBTC6 with |S| ≥ ((2d)32m+2)1/(1−α) for some α ∈ (0, 1)

(as before, it is possible to begin the emluation by communicating the tree code, instead of

assuming it is pre-shared). By Theorem 3.7 the SBTC is ( 1
16m

, α)-potent with overwhelming

probability. Note that each label takes log |S| = O(m) bits. By Lemma 2.1, it is possible

to use an error correcting code such that each encoded transmission is O(m) and the label

error probability is p ≤ (5(r + 1))−32/α. Note that in order to obtain efficient decoding it is

required that p < |S|−2, which can also be achieved while keeping the length of the encoded

label O(m).

Then, except with probability 2−Ω(N) over the choice of the SBTC, for any fixed N

time-like path, the probability that there are more than N/4 tree-decoding errors is less than

1/(2(r + 1))N over the channel errors. Therefore, the emulation fails with only a negligible

probability since, if we set t = N = 2T in Lemma 4.7, then at least N/4 tree-decoding errors

must have occurred, which completes the proof.

6The same tree can be used by all users.
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Finally, we obtain Theorem 1.2 by using the potent-tree construction described in

Section 3.5 and setting ε = O(1/m). The construction yields a (1/16m,α)-potent tree

code with a constant size alphabet S, and succeeds with probability 1 − 2−Ω(N/m). We

can furthermore encode each label via Theorem 2.1 and achieve a label error-probability

p < (5(r + 1))−32/α with a dilation of O(log(r + 1)).

48



CHAPTER 5

Interactive Communication with Adversarial Noise:

Resilience

We now turn to the adversarial noise model, where the only limit on the noise is the total

noise rate η. In the plain model, it is known that η = 1/4 is a tight bound on the rate of

noise: for any function f and any ε > 0 there exists a protocol that correctly computes f as

long as η < 1/4− ε [BR11]; on the other hand, for noise η ≥ 1/4 some functions cannot be

computed [BR11] (to see this impossibility, consider the party that speaks less in the entire

protocol, and assume the channel corrupts half of that party’s transmissions.)

In this chapter we wish to get better noise resilience and “break” the η = 1/4 bound by

relaxing the setup assumptions of the model, and assuming the shared randomness model

(Section 2.5). Specifically, we allow the users to share some private randomness, unknown to

the adversarial channel Eve.

We show that assuming shared randomness changes the noise bound to η = 1/2. That is,

for adversarial noise rate of 1/2 or higher, no constant-rate protocol can compute functions

that require interaction between the parties, while for any function f there is a protocol

that correctly computes f if the adversarial noise rate is below 1/2. Formally, we show the

following separation theorems,

Theorem 5.1. For any function f which depends on both x and y, the following holds. If the

adversarial corruption rate is 1
2

or higher then no constant-rate interactive protocol correctly

computes f with probability higher than the probability of guessing f(x, y) given only the

input x (or only the input y).
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Theorem 5.2. For any constant ε > 0 and for any function f , there exists an interactive

protocol with constant overhead such that if the adversarial corruption rate is at most η = 1
2
−ε,

the protocol outputs f with overwhelming probability over the shared random string R.

The proof of the impossibility part is rather simple:

Proof. (Theorem 5.1) Assume that the protocol takes T rounds. Furthermore, recall that

in our model it is assumed that at each round both parties send exactly one message.1 Hence

and without loss of generality, Alice is the sender of at most T/2 of the transmissions. Eve

corrupts all the transmissions originated by Alice. Effectively, the unidirectional channel

from Alice to Bob has zero capacity, and it cannot be that Bob correctly computes f(x, y)

with probability higher than guessing f(x, y) given only y.

In the rest of this chapter we will construct a protocol that correctly computes any f(x, y)

with overwhelming probability as long as the adversarial corruption rate is 1
2
− ε for ε > 0.

The protocol is based on an emulation process by Braverman and Rao [BR11] that resists

noise rates up to 1/4 − ε in the plain model. We begin by describing the Blueberry code

(Section 5.1), a random error-detection code that effectively doubles the noise-resilience by

detecting most of the adversarial corruptions. Later, we concatenate the Braverman-Rao

protocol (Section 5.2) with the Blueberry code, and prove Theorem 5.2 (Section 5.3).

The results of this chapter are based on [FGOS13].

1The proof also holds for protocols for which there exists a function Next(i) which defines for each round i,
which of the parties sends a message, and is independent of the messages sent so far (these kind of protocols
are called oblivious in [BR11]). In that case there exists one party that communicates at most T/2 messages
at rounds known to Eve in advance.

On the other hand, the proof does not hold for the most general model, in which the protocol adaptively
determines who is to speak next, possibly according to the noise observed so far. Indeed, adaptive protocols
may resist a higher level of noise, see [GHS13, AGS13].
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5.1 The Blueberry Code

The main ingredient of our construction is an error-detection code we name the Blueberry

code2. The Blueberry code uses the shared randomness in order to detect corruptions

made by the channel, and marks them as erasures. One can think about this code as a

weak message authentication code (MAC) that authenticates each symbol separately with a

constant probability (see [Gol04] for a formal definition of MAC). To this end, each symbol

of the input alphabet Σ is randomly and independently mapped to a larger alphabet Γ (the

channel alphabet). This means that only a small subset of the channel alphabet is meaningful

and the other symbols serve as “booby-traps”. Since each symbol is encoded independently,

any corruption is caught with constant probability |Σ|−1
|Γ|−1

and marked with a special sign ⊥

to denote it was corrupted by the channel (this will be called an erasure). Most of the

corruptions made by an adversary become erasures and only a small fraction (arbitrarily

small, controlled by the size of |Γ|) turns into errors.

...

0

1

...

0

1

...

0

1

...

0

1

...

0

1

...

0

1

time

Σ = {0, 1}

Γ = {0, . . . , N}

Figure 5.1: A demonstration of the Blueberry code: at any given time each symbol in Σ is

randomly mapped to a symbol of Γ. Symbols of Γ with no incoming arrow are “booby-traps”,

which detect corruptions.

The main insight is that erasures are more easy to correct than errors: Indeed, assume

2The name of the Blueberry code is inspired by the children’s book “The case of the hungry
stranger” [Bon63] in which a blueberry pie is gone missing, and the thief (who turns out to be the dog) is
identified by his big blue grin.
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that the Hamming distance of two strings, x and y, is m. Then if x was communicated

but y is decoded it means that at least m/2 errors have occurred, or alternatively, at least m

erasures. More generally, assuming we decode by minimizing the Hamming distance, then

our decoding fails if the number of errors e and the number of erasures d satisfy 2e+ d ≥ m.

Definition 5.1. For i ≥ 1 let Bi : [L+ 1]→ [L+ 1] be a random and independently chosen

permutation. The Blueberry code maps a string x of arbitrary length n to

B(x) = B1(x1)B2(x2) · · ·Bn(xn).

We denote such a code as B : [L+ 1]∗ → [L+ 1]∗.

We use the Blueberry code in the shared-randomness model where the legitimate parties

share the random permutations Bi, unknown to the adversary. Although Bi is a permutation

on [L+ 1], we actually use it to encode strings over a smaller alphabet [S + 1] with S < L;

that is, we focus on the induced mapping B : [S + 1]∗ → [L + 1]∗. The adversary does

not know the specific permutations Bi, and has probability of at most S/L to change a

transmission into a symbol whose pre-image is in [S + 1].

Definition 5.2. Assume that at some time i, yi = Bi(xi) is transmitted and ỹi 6= yi is

received. If B−1
i (ỹ) /∈ [S + 1], we mark the transmission as an erasure (specifically, the

decoding algorithm outputs ⊥); otherwise, this event is called an error.

Corollary 5.3. Let x ∈ [S + 1]n and assume B(x) is communicated over a noisy channel.

Every symbol altered by the channel will cause either an error with probability S/L, or an

erasure with probability 1− S/L.

Assuming S � L, most of the corruptions done by the channel are marked as erasures,

and only a small fraction of the corruptions percolate through the Blueberry code and cause

an error.

Lemma 5.4. Let S, L ∈ N be fixed and assume a Blueberry code B : [S + 1]∗ → [L+ 1]∗ is

used to transmit a string x ∈ [S + 1]n over a noisy channel. For any constant 0 ≤ c ≤ 1, if

the channel’s corruption rate c, then with probability 1− 2−Ω(n) at least a (1− 2S
L

)-fraction

of the corruptions are marked as erasures.
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Proof. Denote by zi the random variable which is 1 if the i-th corrupted-transmission is

marked as an erasure and 0 otherwise. These are independent Bernoullis with probability

1− S
L

. Let Z =
∑

i zi and note that E[Z] = cn(1− S
L

). By Chernoff-Hoeffding inequality,

Pr
R

[
1

n

∑
i

zi < c
(
1− 2S

L

)]
< e−2n(cS/L)2 .

Corollary 5.5. Let S, L ∈ N be fixed. If out of n received transmissions, cn were marked as

erasures by a Blueberry code B : [S + 1]∗ → [L+ 1]∗, then except with probability 2−Ω(n) over

the shared randomness, the adversarial corruption rate is at most c/(1− 2S
L

).

We will use the Blueberry code concatenated with another (outer) code that is less

sensitive to erasures than to errors. From the outer code’s point of view, this effectively

increases the channel’s “error rate resilience” from 1− 2c to 1− c(1 +S/L). The construction

of the code B from independent Bi’s allows us to encode and decode each xi independently,

which is crucial for on-line applications in which the message x to be sent is not fully known

in advance.

5.2 The Braverman-Rao Emulation Scheme

We now give an outline of the Braverman-Rao emulation process, and refer the reader

to [BR11] for the full details (in order to be self contained, we also recall the protocol in

Appendix A).

Recall that Alice and Bob wish to compute some function f : X × Y → Z, where Alice

holds x ∈ X and Bob holds y ∈ Y. The computation is performed interactively: at each

round, both parties communicate a message which depends on their input and previous

transmissions. Without loss of generality, we assume each message is a single bit, and that

the protocol takes T rounds. At the end of the computation Alice outputs zA ∈ Z and Bob

outputs zB ∈ Z, and we say that f was correctly computed if zA = zB = f(x, y). Without

loss of generality we assume the output is a single bit, |Z| = 2.
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The users consider π as a binary tree T : each root-leaf path in the tree describes a

possible transcript of π, where odd levels describe Alice’s outputs and even levels describe

Bob’s outputs. See Figure 5.2 for an illustration of a possible T .

root

0 1

0

0 1

1

0

0 1

0

0 1

1

1
Alice

Bob

Alice

Figure 5.2: A tree T illustrating a path P (bold edges) taken by Alice and Bob for computing

f(x, y) for some input. Dashed edges represent the hypothetical reply of Alice and Bob given that

a different path P ′ was taken (when such replies are defined).

The emulation process takes R = O(T ) rounds, in each of which each party sends one

symbol and receives one symbol. The parties use a tree-code (or a potent tree code) to

communicate the vertices of T according to their inputs. At each round of the emulation,

the party decodes via the tree code all the received messages so far and obtains a set of

edges in T , which belong to the other party; then, it communicates one additional edge of T

owned by him, that extends the longest consistent path on T .

The encoding of the next edge is performed as follows. To simplify the explanation,

assume that each transmission is over the alphabet Σ = {0, . . . , N} × {0, 1}≤2. Intuitively,

the transmission (e, s) ∈ Σ means “extend the path P by taking at most two steps defined

by s starting at the child of the edge I have transmitted at transmission number e”. Each

symbol (e, s) is communicated to the other side via a |Σ|-ary tree code with distance α and

alphabet Γ. Although this alphabet is not of constant size, it is easy to obtain a constant

size alphabet by encoding each (e, s) into a delimited binary string (see Section 6 in [BR11]).

See Appendix A for the detailed protocol.
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5.3 Resisting Noise Rate η < 1/2 in the Shared Randomness Model

The emulation protocol. The protocol for resisting higher rates of noise is simply

obtained by performing the Braverman-Rao protocol, yet encoding each transmission using a

Blueberry code. Specifically, each symbol (e, s) is first encoded via a |Σ|-ary tree code with

distance α and alphabet Γ, and then encoded via a Blueberry code B : [S + 1]∗ → [L+ 1]∗

with |S + 1| = |Γ| and S/L to be determined later. Thus, at time n Alice computes an ∈ Γ,

the last symbol of

TCenc((e, s)1, . . . , (e, s)n) = a1a2 · · · an,

and communicates Bn(an); Bob, after decoding the Blueberry code receives ãn ∈ Γ ∪ {⊥},

possibly with added noise or an erasure mark (similarly, Bob’s labels are bn, and Alice receives

a noisy or deleted version b̃n).

We now analyze the above emulation protocol and prove Theorem 5.2.

Analysis. Let TCdec(ã1, . . . , ãn) denote the string Bob decodes at time n (similarly, Alice

decodes TCdec(b̃1, . . . , b̃n)). For every i > 0, we denote with m(i) the largest number such

that the first m(i) symbols of TCdec(ã1, . . . , ãi) equal to a1, . . . , am(i) and the first m(i)

symbols of TCdec(b̃1, . . . , b̃i) equal to b1, . . . , bm(i).

Define N (i, j) to be the “effective” number of adversarial corruptions in interval [i, j]:

the number of erasures plus twice the number of errors in the [i, j] interval of the simulation

(for both users).

Definition 5.3. Let

Na(i, j) = |{k | i ≤ k ≤ j, ãk = ⊥}|+ 2|{k | i ≤ k ≤ j, ãk /∈ {ak,⊥}}|

be the noise on the channel from A to B, and similarly define Nb(i, j) as the noise on the

other direction. The effective number of corruptions in interval [i, j] is

N (i, j) = Na(i, j) +Nb(i, j).
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We begin by showing that if m(i) < i then many corruptions must have happened in the

interval [m(i) + 1, i].

Lemma 5.6. N (m(i) + 1, i) ≥ α(i−m(i)).

Proof. Assume that at time i Bob decodes the string TCdec(ã1, . . . , ãi) = σ̃1, . . . , σ̃i. By

the definition of m(i), σ̃1, . . . , σ̃m(i) = σ1, . . . , σm(i), and assume without loss of generality

that σ̃m(i)+1 6= σm(i)+1. Note that the Hamming distance between TCenc(σ1, . . . , σi) and

TCenc(σ̃1, . . . , σ̃i) must be at least α(i−m(i)). It is immediate that for Bob to make such a

decoding error, Na ≥ α(i−m(i)).

Lemma 5.7 ([BR11]). Let t(i) be the earliest time such that both users announced the first

i edges of P within their transmissions. For i ≥ 0, k ≥ 1, if t(k) > i+1, then t(k−1) > m(i).

Proof. The proof is taken from [BR11]: Without loss of generality, assume that the k-th

edge of P describes Alice’s move. Suppose t(k − 1) ≤ m(i) and t(k) > i+ 1. Then it must

be the case that the first k − 1 edges of P have already been announced within the first

m(i) transmissions of both parties, yet the k-th edge has not. By the protocol definition, Alice

will announce this edge at round i+1, in contradiction to our assumption that t(k) > i+1.

Next we show that if at some time i the length of the proposed P is not long enough

(less than k), then many transmissions must have been corrupted.

Lemma 5.8. For i ≥ −1, k ≥ 0, if t(k) > i+ 1, then N (1, i) ≥ α(i− k + 1).

Proof. We prove by induction on i and k. The claim vacuously holds for k = 0 and trivially

holds for i ≤ 0 since N (1, i) is non-negative. Otherwise, we have

N (1, i) = N (1,m(i)) +N (m(i) + 1, i).

The second term, by Lemma 5.6 gives N (m(i) + 1, i) ≥ α(i − m(i)). For the first term,

Lemma 5.7 suggests that t(k − 1) > m(i) and we can use the inductive hypothesis with

i′ = m(i)− 1 and k′ = k − 1 to get

N (1,m(i)) ≥ N (1, i′) ≥ α(i′ − k′ + 1) = α(m(i)− k + 1).
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The above Lemmas allow us to complete the proof of Theorem 5.2 by showing that if the

simulation of P failed, there must have been “too many” corruptions.

Proof. (Theorem 5.2) Assume an unsuccessful run of the simulation protocol. That is, the

simulation of the path P has failed, m(N) < t(T ). The number of adversarial corruptions

throughout the protocol is given by N (1, N) = N (1,m(N)) +N (m(N) + 1, N) which by

Lemma 5.8 and Lemma 5.6 is lower bounded by

N (1, N) ≥ α(m(N)− T + 1) + α(N −m(N)) ≥ α(N − T ) ≥ α(N − (1− α)N) = α2N .

Yet, assume the adversary is restricted to corrupt at most c = 1/2 − ε fraction of the

2N = 2d T
1−αe transmissions, then Lemma 5.4 guarantees that with overwhelming probability

there will be at least 2cN(1−2S/L) erasures. This implies that with overwhelming probability

N (1, N) ≤ 2cN(1 + 2S/L). For any 0 < ε ≤ 1/2 we can choose constants α < 1 and L > S

such that α2 > (1−2ε)(1+2S/L) and conclude that the protocol succeeds with overwhelming

probability over the shared randomness.

5.4 Resisting Noise η < 1/2 over Erasure Channels in the Plain

Model

We make the simple observation, that the shared randomness (i.e., the Blueberry code) is used

for the main purpose of detecting Eve’s noise, transforming corrupted symbols into erasures.

With the above analysis, it immediately follows that the Braverman-Rao scheme [BR11]

resists a maximal noise rate of 1/2− ε over an erasure channel. Such channels are modeled

as a function ch : Σ→ Σ ∪ {⊥}, where each transmitted symbol either goes through intact,

or turns into a deletion mark {⊥}. The parties need not pre-share any randomness nor use

the Blueberry code, since the adversary is restricted to only making erasures to begin with.
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Corollary 5.9. For any constant ε > 0 and for any function f , there exists an interactive

protocol over an erasure channel, that has a constant rate and resists adversarial erasure rate

of up to 1
2
− ε.
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CHAPTER 6

Efficient Coding Schemes for Data Streams

In this chapter we discuss the model of data stream. A data stream S is a (potentially

infinite) sequence of elements (x0, x1, x2, . . .) where xt ∈ {1, . . . , u} arrives at time t. We

assume the data stream is generated at Alice side, and should be communicated to Bob over

a noisy channel.

As in previous sections, our communication model consists of a channel ch : Σ → Σ

subject to corruptions. The noise model is such that any symbol σ sent through the channel

can turn into another symbol σ̃ ∈ Σ. It is not allowed to insert or delete symbols. For all of

our applications we assume that one symbol σi ∈ Σ is sent at any time slot i.1 We say that

the adversarial corruption rate is c if for n transmissions, at most cn symbols were corrupted.

In Section 6.1 we consider the plain model, we show that via a simple usage of tree codes

one can get a scheme that allows Bob to decode, at any time n, a prefix (x0, x1, x2, . . . , x1−2cn)

of the stream as long as the fraction of noise is c < 1/2. We also show that this result is

tight for the plain model.

Next, in Section 6.2, we consider the shared randomness model, and show a scheme

that allows Bob to decode a prefix (x0, x1, x2, . . . , x1−cn) of the stream, as long as the noise

is c < 1. This is obtained by concatenating tree codes with Blueberry codes: the Blueberry

code prevents the adversary from corrupting too many transmissions without being noticed,

and given that the noise level is low enough, the tree code correctly decodes a prefix of the

stream whose length is determined by the average noise level up to that time.

1The channel time slots need not correspond with the times in which stream symbols are received. I.e, it
is possible that between the arrival of stream elements xi and xi+1, several channel-symbols are transmitted.
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The only caveat of the above construction is that tree code decoding is not necessarily

efficient and may be, in the worst case, exponential in the length of the received transmission.

In Section 6.3 we obtain an efficient authentication scheme by splitting the stream into small

segments and repeatedly sending random segments of the history. That way, even if some

part of the transmission was changed by the channel, the same information will keep being

retransmitted at random future times, and eventually (with high probability) will be received

at the other side intact.

Roughly speaking, we use n/ log n tree codes to encode chunks of the stream (each of

length roughly log n). Note that as n grows, so does the number of the trees in use, and

the expected depth of each tree. At each time step, we randomly select one of the n/ log n

trees and transmit the next label of the path defined by the corresponding chunk of the

stream. For most of the trees, the expected number of labels transmitted is Θ(log n), and the

decoding of the specific chunk succeeds except with polynomially small probability. Since

each tree code is used to encode a word of length O(log n), the decoding can be performed

efficiently by an exhaustive search.

The results of this chapter are based on [FGOS13].

6.1 Error Correction of Data Streams

We begin with a simple, non-efficient, constant-rate error-correction scheme for data streams

that withstands noise c < 1/2 and decodes a prefix of length 1− 2c of the stream sent so far.

The scheme is obtained by simply encoding the stream via a tree code T with large enough

distance α ∈ (0, 1) and a constant-size alphabet.

Theorem 6.1. For any constants c < 1/2 and ε > 0 there exists a constant-rate error-

correction scheme for data stream x1, x2, . . . such that at any given time n the receiver outputs

a string x′1, x
′
2, . . . , x

′
n, and if the noise rate until time n is at most c, then

x′1, x
′
2, . . . , x

′
(1−2c)n−εn = x1, x2, . . . , x(1−2c)n−εn

that is, a prefix of the stream of length at least (1− 2c)n− εn is correctly decoded.
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Proof. Assume that Alice encodes each stream symbol using TCencT () using some tree

code T whose parameters we fix shortly.

For a specific time n, consider a string x̃ ∈ {0, 1}n, such that anc(x, x̃) ≥ (2c+ ε)n. Due

to the tree distance property, the Hamming distance between TCenc(x̃) and TCenc(x) is

at least α(2c+ ε)n. Assume that Eve causes e errors. A maximal-likelihood decoding will

prefer x over x̃ as long as bα(2c+ ε)nc > 2e. Since Eve’s corruption rate is limited to c, we

know that e ≤ cn. By setting α > 2c
2c+ε

we guarantee that α(2c+ ε)n > 2e, and Bob decodes

a string x′ such that anc(x, x′) < (2c+ ε)n with certainty.

6.2 Perpetual Authentication

Sending a data stream over a noisy channel is not a simple task, especially when the noise

model is adversarial. Our goal is to design an encoding and decoding scheme such that the

encoding has a constant rate and the decoding recovers the encoded transmitted stream, or

else aborts. Furthermore, we wish an “authentication” guarantee, that is, if the decoding

scheme did not abort, it decodes the correct data with high probability (note that the

probability that the scheme aborts potentially differs from the probability that the decoding

scheme outputs incorrect data). The amount of recoverable data depends on the noise and

the goal is to output (and authenticate) the longest possible prefix of the stream, given a

constant corruption rate.

Definition 6.1. A (c(n), γ(n), κ(n))-Streaming Authentication Scheme with constant rate r

is an encoding e : {0, 1}∗ × {0, 1}∗ → {0, 1}r that encodes a stream x1, x2, . . . into a stream

y1 = e(x1, R), y2 = e(x1x2, R), . . ., yi = e(x1 · · ·xi, R), and a decoding d : {0, 1}∗ ×

{0, 1}∗ → {0, 1}∗ ∪ {⊥} such that the following holds. For any n, and for any adversary

Adv(x1 · · ·xn, y1 · · · yn) = y′1 · · · y′n, either d(y′1 · · · y′n, R) = x′1x
′
2 · · ·x′n or d(y′1 · · · y′n, R) = ⊥,

and if at most c(n) transmissions were corrupted, then

1. the scheme aborts with probability at most κ(n),

Pr
R

[d(y′1 · · · y′n, R) = ⊥] < κ(n).
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2. if not aborted, the probability to decode an incorrect γ(n)-prefix of the stream is at most

κ(n),

Pr
R

[d(y′1 · · · y′n, R) 6= ⊥ ∧ x′1 · · ·x′γ(n) 6= x1 · · ·xγ(n)] < κ(n).

Eve is given both the raw stream and the channel transmissions, however she does not

know the shared random string R used as the secret authentication key. It is desired that as

long as Eve corrupts only a small fraction of the transmissions, Bob will be able to correctly

decode a prefix of the stream, or otherwise be aware of the adversarial intervention and

abort.

We show the following dichotomy: If the adversarial corruption rate is some constant

c, then there exists a streaming authentication stream that decodes a prefix of at most

(1 − c)-fraction of the stream received so far. In addition, there does not exist a stream-

ing authentication scheme that is capable of decoding a longer prefix with non-negligible

probability.

Theorem 6.2. In the shared-randomness model, for every constants c, ε such that 0 ≤ c < 1

and 0 < ε ≤ (1 − c)/2 there exists a constant-rate (cn, (1 − c)n − εn, 2−Ω(n))-Streaming

Authentication Scheme. Moreover, there exists an efficient constant-rate (cn, (1 − c)n −

εn, 2−Ω(logn))-Streaming Authentication Scheme.

For any constant cth > c, if the adversarial corruption rate exceeds cth, the schemes abort

with overwhelming probability over the shared randomness.

Theorem 6.3. Assume that a bitstream x1, x2, . . . is communicated using some encoding

protocol with a constant rate, and assume that at time n the receiver decodes the bitstring

x′1, . . . , x
′
n. If the rate of adversarial corruptions is 0 ≤ c ≤ 1, then for any constant ε > 0,

Pr[x′1 · · ·x′(1−c)n+εn = x1 · · ·x(1−c)n+εn] ≤ 2−Ω(εn)

where the probability is over the coin tosses of the decoding algorithm, assuming {xi} are

uniformly, independently distributed.
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We now prove Theorem 6.3 and then construct the protocols guaranteed by Theorem 6.2.

Proof. Consider an adversary that, starting at time (1− c)n, corrupts all the transmissions.

It is easy to verify that the corruption rate is c. Clearly, from time (1 − c)n and on, the

effective capacity of the channel is 0. This means that the decoder has no use of transmissions

of times ≥ (1− c)n and he decodes only using transmissions received up to time (1− c)n.

However, due to the streaming nature of the model, transmissions at times < (1− c)n depend

only on x1, . . . , x(1−c)n (the suffix of the stream is yet unknown to the sender). The receiver

has no information about any bit xi with i > (1− c)n and his best strategy is to guess them.

The probability to correctly guess the last εn bits is at most 2−bεnc.

In order to construct a streaming authentication scheme, we use two concatenated layers

of online codes. The inner code is a Blueberry B : [S+1]∗ → [L+1]∗ code with constant S, L,

and the outer code A is an online code that allows a prefix decoding in the presence of errors

and erasures. The entire process can be described by

(x1, . . .)
A−→ (y1, . . .)

B−→ (z1, . . .)
channel−→ (z̃1, . . .)

B−1

−→ (ỹ1, . . .)
A−1

−→ (x̃1, . . .)

We begin with a simple and elegant construction which, although not efficient, demon-

strates the power of the Blueberry code.

Proposition 6.4. Let c, ε be constants 0 ≤ c < 1, 0 < ε ≤ (1 − c) and let A = TCenc()

be an encoding using a binary tree code and B a Blueberry code with constant parameters

determined by c, ε. The concatenation of A and B is a (cn, (1− c)n− εn, 2−Ω(n))-streaming

authentication scheme.

Proof. Assume that in order to encode the bitstream x1, x2, . . ., we use a binary tree code over

alphabet [S + 1] with distance α to be determined later, concatenated with a Blueberry-code

B : [S + 1]∗ → [L+ 1]∗. We show that if at time n we decode a string x̃1 · · · x̃n whose prefix

x̃1 · · · x̃(1−c−ε)n differs from x1 · · ·x(1−c−ε)n, then the corruption rate was larger than c.

For a specific time n, consider a string x̃ ∈ {0, 1}n, such that anc(x, x̃) ≥ (c+ ε)n. Due

to the tree distance property, the Hamming distance between TCenc(x̃) and TCenc(x) is at
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least α(c+ ε)n. Assume Eve causes d erasures and e errors, a maximal-likelihood decoding

will prefer x over x̃ as long as bα(c+ ε)nc > 2e+ d.

If Eve’s corruption rate is limited to c, Lemma 5.4 implies that with overwhelming

probability at most 2cnS/L of these corruptions become errors and the rest are marked

as erasures. Setting α > c
c+ε

(1 + 2S
L

) we guarantee that with overwhelming probability

α(c+ ε)n > 2 · 2cnS/L+ cn(1− 2S/L),2 thus Bob decodes a string x̃ such that anc(x, x̃) <

(c+ ε)n with overwhelming probability , as claimed.

Note that the actual fraction of adversarial corruptions can be estimated out of the number

of erasures marked by the Blueberry code. We abort the decoding if at a specific time n the

number of erasures exceeds cn. Lemma 5.4 guarantees that if the adversary corrupts more

than a c/(1− 2S
L

)-fraction of the transmissions, she will cause at least cn erasures, except

with negligible probability. Choosing L such that (1− 2S
L

) ≥ c
cth

completes the proof for the

non-efficient case of Theorem 6.2.

We note that although in the above proof we require ε to be constant, for the case of

c = 0 (i.e., when the channel is not inherently noisy) we can let ε be smaller. For instance, if

we let ε = κ/n for a security parameter κ, the scheme is comparable to a (non-streaming)

authentication scheme with the same security parameter: in order to change even a single

bit in a prefix of length n, after n+ κ symbols were transmitted, the adversary must change

at least ακ/2 transmissions, and will be caught except with probability 2−Ω(κ). Since the

above holds for any time n, we get a perpetual authentication of the stream.

The case where c > 0 has a meaning of communicating over a noisy channel (regardless

of the adversary). The users do not abort the authentication scheme although they know the

message was changed by the channel. Instead, the scheme features both error-correction and

authentication abilities and the parties succeed to recover (a prefix of) the original message

with high probability.
2It is required to have α < 1, thus the choice of (the constant) L should depend on ε and c, specifically,

L > 2S cε . Also note that S depends on α, however L is independent of both. For a fixed value of α (and

S = dO(1/(1−α))) there is always a way to choose a constant L that satisfies the conditions.
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6.3 Efficient Streaming Authentication

We now complete the proof of Theorem 6.2 by defining an efficient randomized code Aeff for

streaming prefix-decoding in the presence of errors and erasures (Figure 6.1). The protocol

partitions the stream into words of logarithmic size and encodes each using a tree code. At

any time n, one of the O(n/ log n) words is chosen at random and its next encoded symbol

is transmitted. The value n increases as the protocol progresses which means that the length

of each encoded word increases as well. This however causes no problem: each word is

encoded by a tree code (rather than, say, a block code), which is performed in an online

manner without assuming knowledge of the word’s length. Decoding can be performed

efficiently by an exhaustive search since each word is of logarithmic length in the current

time n. We note that the parties hold the entire stream in their memory throughout the

protocol, which is different from the common practice of streaming algorithms in which there

is only a single party (rather than two) which aim to compute some statistics of the stream

using poly-logarithmic memory.

Proposition 6.5. For any constants 0 ≤ c < 1, 0 < ε ≤ (1− c)/2 and a constant c1 > 0,

the concatenation of Aeff (Figure 6.1) with a Blueberry code [S + 1]∗ → [L+ 1]∗ (with suitable

constants S, L) satisfies the following condition for any set of infinite strings {x1,x2, . . .}

and for any sufficiently large time n except with polynomially small probability in n.

If the corruption rate at time n is at most c then the scheme correctly decodes a prefix of

length c1 log n of each one of the strings xk with k ∈ {d εn/4
log εn/4

e, . . . , d (1−c−ε)n
log(1−c−ε)ne}. Moreover,

up to time n the encoding scheme assumes knowledge of only strings xk with k ≤ n/ log n.

Proof. We begin by showing that for any time n, if we look at k’s which are not too close to

the start or to the end, that is, k’s in Kn , {d εn/4
log εn/4

e, . . . , d (1−c−ε)n
log(1−c−ε)ne}, then every string

xk is selected by the encoding scheme Θ(log n) times in expectation. In addition, a constant

fraction of a specific tree’s transmissions is received intact, while the expected number of

errors is a smaller fraction, controlled by L. Therefore, a logarithmic prefix of the string xk

can be decoded with high probability.
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Let 0 ≤ c < 1 and 0 < ε < (1− c)/2 be fixed parameters of the protocol. Let c0, c1 be some constants

which depend on c and ε. Let T be a tree code over alphabet [S + 1] with distance α to be set later.

Aeff Encoding: For every k > 0 set countk = 0.

At any time n > 1, repeat the following process for j = 1, 2, . . . , c0:

(a) randomly choose k ∈ {1, . . . , bn/ log nc}.

(b) set countk = countk + 1.

(c) transmit yn,j ∈ [S + 1], the next symbol of the encoding of xk using T , that is, the last

symbol of

TCenc(xk1 · · ·xkcountk) = TCenc(xk1 · · ·xkcountk−1) ◦ yn,j .

Aeff Decoding: For every (i, j) ∈ N× [c0] we denote by ID(i, j) the identifier k of the string xk

used at iteration (i, j). For each time n, mark all the transmissions yi,j with i < εn/4 as

erasures, and decode xk for d εn/4
log εn/4e ≤ k ≤ d

(1−c−ε)n
log(1−c−ε)ne:

let Yk = {(i, j) | ID(i, j) = k}. Decode the received string indexed by Yk. That is, set

x̂k = TCdec(y|Yk
),

where y|Yk
is the string given by concatenating all yi,j with (i, j) ∈ Yk, where yi,j comes before

yi′,j′ if i < i′ or (i = i′) ∧ (j < j′). Consider a prefix of length c1 log n of x̂k and ignore the rest.

Figure 6.1: The efficient coding scheme Aeff for communicating a logarithmic prefix of

{x1,x2, . . . , }.

Lemma 6.6. Let c, ε be given. For a given time n and for every k ∈ Kn,

1. the expected number of transmissions (i, j) with ID(i, j) = k is Θ(c0 log n).

2. if the corruption rate is at most c, then for transmissions with ID(i, j) = k, the expected

number of transmissions not corrupted by the adversary is Θ(c0 log n) and the expected

number of errors is Θ(c0 log n/L).
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Proof. Fix a k ∈ Kn, and recall that Yk = {(i, j) | ID(i, j) = k}. It is easy to verify that

Pr[(i, j) ∈ Yk] =


0 i/ log i < k

1

b i
log ic

i/ log i ≥ k
,

where the probability is over the shared randomness R. Assume that the channel’s (Eve’s)

noise pattern is P = p1, . . . , pcn, with pi ∈ [n] × [c0]. First let us bound the number of

erroneous transmissions of symbols from Yk. For a specific instance of the scheme, let

ERRk =
∣∣{(i, j) ∈ Yk | ỹi,j is an error

}∣∣ .
We are interested in the (adversarial) corruption pattern that maximizes the expected number

of these errors,

max
P

E [ERRk] .

Since the decoding process ignores the first εn/4 transmissions, and since the expected

number of errors is a S
L

-fraction of the corrupted transmissions in Yk, this equals to

max
P

E
[
S
L

∣∣{(i, j)
∣∣ ID(i, j) = k, i > εn/4 and ỹi,j 6= yi,j

}∣∣] ,

where the expectation is over the shared randomness R. Note that Pr[(i, j) ∈ Yk] is

monotonically decreasing for i ≥ t(k), and zero otherwise. The pattern P that maximizes

Eve’s probability to hit transmissions in Yk is P◦ , {t(k), t(k) + 1, . . . , t(k) + cn}. However,

the decoding algorithm ignores the first εn/4 indices and Eve has no use in attacking them.

Therefore, if P◦ ∩ [εn/4] 6= ∅, Eve’s best strategy is to shift her attack to the window

P = {bεn/4c, bεn/4c+ 1, . . . , d(ε/4 + c)ne}.

max
P

E [ERRk] = max
P

S

L

∑
(i,j)∈P

Pr[(i, j) ∈ Yk]

≤ c0S

L

cn+t(k)∑
i=t(k)

1
i

log i
− 1

≤ c0S log n

L

n∑
i=εn/4

1

i− log i

≤ c0S log n

L

n∑
i=εn/4

1

c′′i
=
c0S log n

c′′L
(Hn −Hεn/4)

67



where the second inequality applies to both the cases of empty and non-empty P◦ ∩ [εn/4],

and c′′ < 1 is some constant such that c′′i ≤ i − log i for i ≥ εn/4, for a sufficiently

large n. Hn is the n-th Harmonic number, and it holds that 0 < Hn − ln(n) < 1. We get

maxP E [ERRk] = O(c0 log n/L).

On the other hand, we can lower bound the amount of uncorrupt transmissions in Yk.

In a similar way to the above we define INTACTk = |{(i, j) ∈ Yk| ỹi,j = yi,j}| , and wish to

lower bound the quantity minP E [INTACTk]. It is easy to verify that Eve’s strategy from

above is optimal for this case as well, thus

min
P

E [INTACTk] ≥min
P

∑
(i,j)/∈P
i>εn/4

Pr[(i, j) ∈ Yk] ≥
n∑

i=(c+ε/4)n+t(k)

c0 log i

i

≥c0

(
(1− c− ε/4)n− t(k)

) log((c+ ε/4)n+ t(k))

n
,

which is Ω(c0 log n) for t(k) ≤ (1− c− ε)n, hence the claim holds for

k ≤ (1− c− ε)n
log(1− c− ε)n

.

Finally, define TOTALk = |Yk| to be the total amount of transmissions with ID(i, j) = k

(erasures, errors, and intact). The expected amount of this quantity is at least

E[TOTALk] ≤ c0

n∑
i=εn/4

log i

i− log i
≤ c0

n∑
εn/4

log i

c′′i
≤ c0 log n

c′′
(Hn −Hεn/4) = O(c0 log n)

with some small constant c′′ < 1 for a sufficiently large n. The sum begins from εn/4 since

xk is declared only at time t(k) ≥ εn/4, if k ≥ εn/4 log(εn/4). Since the number of intact

transmissions is Ω(c0 log n), the total amount of transmissions is lower-bounded by the same

quantity, thus E[TOTALk] = Θ(c0 log n).

At time n, assume maxk∈Kn E[TOTALk] < CT log n and mink∈Kn E[INTACTk] > CI log n,

and define β = CI/CT . Note that β is independent of n and c1. Fix k ∈ Kn. Denote

by BAD1 the event that there were too many erasures and errors for the k-th codeword,

i.e. INTACTk/TOTALk < β/2, and by BAD2 the event that there were not enough transmis-

sions for the k-th codeword, TOTALk <
2c1
β

log n.
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By an appropriate choice of c0 = O(c, ε, c1, 1/β), we can bound the probability of any bad

event to be polynomially small. For large enough c0 we can assure that E[TOTALk] >
4c1
β

log n,

and thus by Chernoff, Pr[BAD2] ≤ 2−Ω(logn). Furthermore, a union bound gives

Pr[BAD1] < Pr
[
TOTALk >

√
2CT log n

]
+ Pr

[
INTACTk <

1√
2
CI log n

]
,

and by Chernoff inequality,

Pr[BAD1] ≤ 2−Ω(E[TOTALk]) + 2−Ω(E[INTACTk]) = 2−Ω(logn).

Conditioned on the fact that BAD1 and BAD2 did not occur, we know that n∗ > 2c1
β

log n

symbols of TCenc(xk) were transmitted, and the adversary has corrupted at most c∗ <

(1− β/2) fraction of these transmissions. Proposition 6.4 suggests that for an appropriate

choice of constant L, we are able to decode a prefix of length at least ≈ (1− c∗)n∗ = c1 log n

except with probability exp(−Ω(n∗)) = exp(−Ω(log n)). A union bound over all the possible

k ∈ Kn completes the proof.

We note that since each codeword is of length O(log n), decoding via exhaustive search

can be performed with polynomial computational effort. Hence, it is easy to verify that both

the encoding and decoding can be done efficiently. We also emphasize that each encoded

symbol is of constant size, thus the scheme has constant rate.

In order to complete the proof of Theorem 6.2, we are left to explain how to split

the stream x1, x2, . . . into words {x1,x2, . . .} such that for any time n, the entire prefix

x1, . . . , x(1−c−ε)n appears in the c1 log n-prefixes of strings {xk} with k ∈ Kn.

For every k, define xk to be the string that contains the stream prefix xt(k) downto x1

concatenated with as many zeros as needed, xk = xt(k)xt(k)−1 · · ·x2x1000 · · · , where t(k) is

defined to be the minimal time such that t(k)/ log t(k) > k. We say that xk is declared

at time t(k), meaning that only from this time and on the algorithm may choose to send

symbols of the encoding of xk. It is easy to verify that the string xk is well defined at the

time it is declared (the corresponding xi’s are known).
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If some string xk is declared at time t(k) then the string xk+1 will be declared at time

t(k + 1) ≈ t(k) + log t(k) + O(log log t(k)). By setting c1 = 2 we are guaranteed that, for

every εn/4 ≤ ` ≤ (1− c− ε)n, x` appears in a correctly decoded c1 log n-prefix of some xk

with k ∈ Kn.

Lemma 6.7. If xk is the latest string declared at time i > 8, then xk+1 is declared at time

sooner than i+ 2 log i.

Proof. Let f(i) = i+2 log i
log(i+2 log i)

− i
log i

. f is monotonically increasing, and f(8) > 1.

Corollary 6.8. For any time n > 8, and any `, the bit x` is within the first 2 log n symbols

of xd`/ log `e. Hence, every x` with εn/4 ≤ ` ≤ (1− c− ε)n, appears in a 2 log n-prefix of (at

least) one of the strings {xk}k∈Kn.

Unfortunately, with the above choice of xks, only part of the stream, xεn/4, . . . , x(1−c−ε)n,

is decoded by the protocol. In order to communicate the prefix x1, . . . , xεn/4 we run another

instance of the scheme guaranteed by Proposition 6.5 for the following set of infinite strings

{v1,v2, . . .}. (We explain how to combine these two instances below). Define vk in the

following way

vki =


x1 k = 1, ∀i

x1+(` mod dt(k)/2e+1) k > 1, i = 1 and vk−1
2 log t(k−1) = x`

x1+(` mod dt(k)/2e+1) k > 1, i > 1 and vki−1 = x`

It is easy to verify that at time n, the string vbn/ lognc is well defined and known to the

encoder.

Lemma 6.9. For every time n > 256/(1− c− ε), any bit x` with 1 ≤ ` ≤ εn/4 appears in a

2 log n-prefix of (at least) one of the strings {vk}k∈Kn.

Proof. Note that the concatenation of O(log n)-prefix of the vks gives a string of the form

V , x1x2 . . . xdt(k1)/2ex1x2 . . . xdt(k2)/2ex1x2 . . ., and V is decoded byAeff with high probability.3

3To be more accurate, V is a substring of the string decoded by the scheme.
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By taking c1 = 2 and recalling that ε < (1 − c)/2, (and thus, (1 − c − ε)n/4 > εn/4) the

length of V is lower bounded by the amount of indices in prefixes of size 2 log 1
4
(1− c− ε)n

of {v(1−c−ε)n/4, . . . ,v(1−c−ε)n},

2 log
1

4
(1− c− ε)n

(
(1− c− ε)n

log(1− c− ε)n
−

1
4
(1− c− ε)n

log 1
4
(1− c− ε)n

)
≥ 3

2
(1− c− ε)n− 4

(1− c− ε)n
log(1− c− ε)n

≥ (1− c− ε)n

where the last inequality holds for n > 256
1−c−ε . Consider the latest place in V where x1 appears.

If that place is at least (1− c− ε)/4 indices from the end of V , it is clear that x1 . . . x(1−c−ε)/4

appears in the (1 − c − ε)/4-suffix of the decoded V . For the other case, let the bit that

precedes this x1 be x`. By the way we defined {vk} it follows that 3
8
(1−c−ε) ≤ ` ≤ 1

2
(1−c−ε)

which means that x1 . . . x(1−c−ε)/4 must appear in a prefix of size 3/4 · (1− c− ε)n of V . Since

(1− c− ε)n/4 > εn/4, the claim holds.

One cannot run Aeff twice, once for {x} and separately for {v}. Indeed, Eve can block all

the transmissions of one of the instances, thus prevent the correct decoding of the stream with

probability one, while her corruption rate does not exceed c = 1/2. One possible solution is

to set c1 = 4 and interleave the transmitted data, that is, define the set {z1, z2, . . .} where

zk = xk1v
k
1xk2v

k
2 . . ., etc.

Corollary 6.10. Let c, ε be constants 0 ≤ c < 1, 0 < ε ≤ (1 − c)/2, and let B be a

Blueberry code with constant parameters determined by c, ε. For the strings {z1, z2, . . .}

defined above, the concatenation of Aeff with B is an efficient (cn, (1− c)n− εn, 2−Ω(logn))-

streaming authentication scheme.

6.4 Streaming Authentication: Extensions

6.4.1 Decoding a Prefix Longer than (1− c)n

Although our scheme decodes a prefix of length (1− c)n in the worst case, the successfully

decoded prefix can in fact be longer. The worst case, as demonstrated by Theorem 6.3,
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happens when the adversary blocks the suffix of the transmitted stream. On the other hand,

if the adversary blocks the prefix of the transmissions, then the scheme of Proposition 6.4

correctly decodes the entire stream! We show the following,

Theorem 6.11. At any given time n in which the noise rate does not exceed c, there exists

a time (1− c− ε)n < t < n, such that for all 1 ≤ m ≤ t,

Pr[x′m 6= xm] ≤ 2−Ω(|t−m|).

Furthermore, Bob can output estimators tmin and tmax such that Pr[tmin > t] < 2−Ω(tmin−t)

and Pr[tmax < t] < 2−Ω(t−tmax).

Proof. We begin by showing that any time t that satisfies the following suffix condition, is a

times in which Bob will be able to decode the prefix of the stream up to almost t. Later (in

Proposition 6.14) we show that Bob can get a very close estimation of the latest time that

satisfies the suffix condition.

Definition 6.2. For any constant 0 ≤ γ < 1, we say that time n satisfies the γ-suffix

condition if any suffix xt . . . xn has at most γ(n− t) corrupted transmissions.

Definition 6.3. Let c < 1 and γ ∈ (c, 1) be given. For any time n let Nγ(n) be the latest

index that satisfies the γ-suffix condition. When n is clear from the context, we denote Nγ(n)

simply as Nγ.

The following Lemma guarantees that for any γ ∈ (c, 1) it holds that (1 − c/γ)n ≤

Nγ(n) ≤ n.

Lemma 6.12. For every corruption rate c and constant 1 < ξ < 1/c there exist a time

t > (1− 1
ξ
)n that satisfies the cξ-suffix condition.

Proof. Look at a suffix yt+1, . . . , yn for which the number of corruptions is strictly larger than

cξ(n− t). If no such suffix exists then the lemma is true for y1, . . . , yn. Otherwise, discard

yt+1, . . . , yn, and repeat the process with y1, . . . , yt. At each iteration we remove more than

cξ(n − t) corrupted transmissions and shorten the string by n − t symbols. Assume that
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the process stops with some prefix of length L < (1− 1
ξ
)n, then we have removed at least

cξ(n−L) > cξ(n− n+ n/ξ) > cn corruptions which is a contradiction. Therefore, the entire

process must stop with some prefix of length at least (1− 1
ξ
)n.

Let the corruption rate c and ε > 0 be fixed, and set γ = c/(c+ ε). Then, for any time n

that satisfies the γ-suffix condition, Bob will correctly decode almost all the way up to n.

That is, the probability that a bit that is located t indices away from n was not correctly

decoded decreases exponentially in n− t. Formally,

Lemma 6.13. Let c and ε be given and let γ = c/(c+ ε). Assume that time n satisfies the

γ-suffix condition, and let x′1, . . . , x
′
n be the string Bob outputs at time n in the protocol of

Proposition 6.4. Then, for any t < n,

Pr[x′t 6= xt] < 2−Ω(n−t).

Proof. Assume towards contradiction that Bob recovers the stream correctly only until

time t < n. It follows that the errors and erasures in the [t, n] suffix (e and d respectively,)

satisfy 2e + d ≥ α(n − t). However, we know that n satisfies the γ-suffix condition so

e+ d < γ(n− t). Except with probability 2−Ω(n−t) it holds that 2e+ d < (1 + 2S
L

) · γ(n− t),

thus except with the same probability, α < (1 + 2S
L

) c
c+ε

which is a contradiction to the way

we choose α in the protocol described in Proposition 6.4.

Next, we show how Bob can estimate the value of Nγ by checking the number of erasures

marked by the Blueberry code.

Proposition 6.14. Bob can efficiently compute a (lower-bound) estimation N ′γ for Nγ, such

that N ′γ > (1− c− ε)n and

Pr[N ′γ > Nγ] < 2−Ω(N ′γ−Nγ).

Proof. Consider the following procedure for estimating Nγ.

Let c ∈ [0, 1) be given. For an input γ ∈ (c, 1), at time n, Bob tries to find the longest suffix

that satisfies the γ-suffix condition. To this end Bob performs the following.
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1. Set i = n.

2. Check all the suffixes xt, . . . , xi, with t < i.

(a) If, in all such suffixes, the number of erasures is less than γ(i− t)(1− 2S
L

), output

N ′γ = i.

(b) Otherwise set i ← i − 1 and repeat. If i < (1 − c/γ)n break and output

N ′γ = b(1− c/γ)nc.

Assume that Bob outputs N ′γ > Nγ . Since Nγ is the latest index that satisfies the γ-suffix

condition, there must exist some time t such that [t, N ′γ ] has more than γ(N ′− t) corruptions,

yet the number of erasures in that interval is less than γ(N ′γ − t)(1− 2S
L

). This happens with

probability exponentially small in N ′γ − t. If t < Nγ then N ′γ − t > N ′γ −Nγ which proves

the claim for this case.

For the case where t > Nγ, we note that time t does not satisfy the γ-suffix condition,

therefore there must exist some time t1 < t, for which the number of corruptions in the

interval [t1, t] is more than γ(t− t1). If t1 > Nγ, then there must exist time t2 and interval

[t2, t1] that doesn’t satisfy the γ-suffix condition. We repeat this reasoning until we find the

first interval [tj, tj−1] such that tj < N . By considering the union of all these intervals, it

follows that the number of corruptions in [tj, N
′
γ] is more than γ(N ′γ − tj) > γ(N ′γ − Nγ).

However, Bob’s estimation process found at most γ(N ′γ − Nγ)(1 − 2S
L

) erasures when it

examined the suffix interval [tj, N
′
γ] (otherwise, it would have failed the check in Step 2a).

According to Lemma 5.4 and Corollary 5.5, this happens with probability exponentially

small in (N ′γ −Nγ).

We note that Bob can repeat the same procedure and compute a value N ′′γ which usually

upper-bounds Nγ, by finding the latest time i for which every suffix [t, i] has less than

γ(i− t)(1− 1
2
S
L

). As above, the probability of the bad event that N ′′γ < Nγ is exponentially

small in (Nγ −N ′′γ ). This completes the proof of Theorem 6.11.
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6.4.2 Efficient Authentication Scheme with Exponentially Small Error

It is possible to improve the efficient scheme of Theorem 6.2 so that it aborts with polynomially

small probability, however, given that it did not abort, the probability that the decoded

prefix is incorrect is exponentially small. More accurately, the ‘trust’ Bob has in the decoded

string increases with the amount of received transmissions. Thus, except for the last fraction

of the stream, the decoded stream is identical to the one sent by Alice with overwhelming

probability.

Theorem 6.15. For any 0 ≤ c < 1, 0 < ε ≤ 1
2
(1− c) there exists an efficient (cn, (1− c)n−

εn, 2−Ω(logn))-streaming authentication protocol that, for any time n in which the decoding

procedure did not abort, for any 1 ≤ ` ≤ (1− c− ε)n it holds that

Pr [x′` 6= x`] < 2−Ω(n).

To this end, we add a parallel transmission of random hash values of the entire stream

(up to time n), where the hash length is logarithmic in n.4 More formally, define an

additional set of infinite strings {h1,h2, . . . }. We identify a string a = a1a2 · · · an with the n-

dimensional vector (a1, a2, . . . , an), and define hk in the following way. Randomly pick a matrix

Rk ∈ {0, 1}log t(k)×t(k) and a vector Vk ∈ {0, 1}log t(k) and set hk = Rk · (x1, x2, . . . , xt(k))
T +Vk,

concatenated with as many zeroes as needed. The strings {hk} are interleaved with the

strings {xk} and {vk}, and c1 increases as explained in Section 6.3. We call the resulting

scheme Aeff with hash testing.

Proposition 6.5 guarantees that except with polynomially small probability in n all the

hash values {hk}k∈Kn are correctly decoded. The decoding at time n aborts if any of the

hash values {hk}k∈Kn mismatches the corresponding prefix x1 · · ·xt(k).

Proposition 6.16. Given that Aeff with hash testing did not abort, let x′ be the decoded

stream, then for every ` ≤ (1− c− ε)n,

Pr
R

[x′` 6= x`] < 2−Ω(max{(1−c−ε)n−` , logn}).

4This method is similar to the classic authentication method of splitting a stream into chunks of size log n
and adding a MAC of logarithmic size after each chunk.
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Proof. Eve is oblivious of Ri and Vi, thus for any two vectors x̃ ∈ {0, 1}t(i), h̃ ∈ {0, 1}log t(i)

chosen by Eve, PrRi [h̃ = Ri · x̃T + Vi] < 2− log t(i).

Clearly, the smaller ` is, the more hash values that are checked to be consistent with the

decoded x′`. For ` > εn/4 there are at least ((1− c− ε)n− `)/2 log n independent hash values

of stream prefixes longer than `, where the smallest hash length is ≈ log(εn/4). Hence, the

probability that x′` 6= x` yet the decoding procedure did not abort is at most

2−Ω
(

log(εn/4)
(1−c−ε)n−`

2 logn

)
= 2−Ω((1−c−ε)n−`)).

Clearly, for ` < εn/4 there are as many hash tests as for ` = εn/4, thus the probability to

incorrectly decode x` with ` < εn/4 is exponentially small in n as well. Finally, for the case

where ((1 − c − ε)n − `) < log n we note that at least one hash value must be consistent,

hd(1−c−ε)n/ log(1−c−ε)ne. The probability to incorrectly decode x` and pass the hash check is at

most 2−Ω(logn), which completes the proof.

The proof of Theorem 6.15 is immediate from the above Proposition.

Proof. (Theorem 6.15) Let c, ε be fixed. Perform Aeff with hash testing with parame-

ters c, ε′ = ε/2. By Proposition 6.16, every decoded x′` with ` ≤ (1− c− ε)n satisfies

Pr [x′` 6= x`] < 2−Ω((1−c−ε′)n−`) ≤ 2−Ω(εn/2).
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APPENDIX A

The Braverman-Rao Emulation Scheme [BR11]

For self-containment, we give here the detailed emulation process of Braverman and Rao.

This section is taken almost as is from [BR11].

Any communication protocol of T rounds where the parties alternately exchange bits

can be be reduced to the following jumping pointer problem. Let T be a binary tree of

depth T , Let X denote the set of edges leaving vertices at even depth, and Y denote the set

of edges leaving vertices at odd depth. Given any set A of edges in the tree, we say that A is

consistent if A contains at most one edge leaving every vertex of the tree. We write v(A) to

denote the unique vertex of maximal depth that is reachable from the root using the edges

of A. Let X ⊂ X , Y ⊂ Y be consistent subsets, and observe that X ∪ Y is also consistent.

Now, any specific protocol π can be seen as giving the parties such sets Xπ, Yπ, and the goal

is compute v(Xπ ∪ Yπ).

The emulation protocol is defined over the alphabet

Σ = {0, 1, . . . , R} × {0, 1}≤2,

encoded using a tree code. Let TCenc : Σ≤R → Γ≤R and TCdec : Γ≤R → Σ≤R be the encoding

and decoding functions of a |Σ|-ary tree code of distance α = 1− ε.

Given any σ ∈ Σk, σ represents a set of at most k edges in the binary tree T , computed

as follows. Let σi = (ri, si), where ri ∈ {0, 1, . . . , R} and si ∈ {0, 1}≤2. We think of ri as a

pointer to the ri’th edge determined by σ1, . . . , σri , and of si as specifying an edge that is a

descendant of the ri’th edge.

Formally, for i = 1, . . . , k, we use the following procedure to determine an edge ei from σi:
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1. If ri = 0, set e′i to be the edge of depth at most 2 that is specified by the bits si.

2. If ri < i and eri has been defined, let e′i be the edge specified by starting at the child

vertex of the edge eri and then taking (at most) two steps in the tree using the bits si.

3. If e′i has been assigned an edge, and there there is no j < i for which ej, e
′
i share a

common parent, set ei = e′i. Else leave ei undefined.

Given such a string σ, we write E(σ) to denote the set of edges that have been assigned

to ei for some i in the process above. Observe that for every edge in E(σ), there is a

unique index i to which the edge has been assigned to ei. Further, E(σ) is consistent and

E(σ1, . . . , σi) ⊆ E(σ1, . . . , σi+1).

Our protocol will proceed in rounds. In the i’th round, the first party (resp. second

party) computes a symbol σi that extends longest consistent path in T . The party then

transmits ai, the last symbol of TCenc(σ); the second party receives (a possibly corrupt) ãi

(resp., the second party computes ρi and transmits bi, the last symbol of TCenc(ρ), which

becomes b̃i after the noisy channel). The transmissions will ensure that E(σ1, . . . , σi−1) ⊆ X

and E(ρ1, . . . , ρi−1) ⊆ Y . Define

Ai =


∅ if i = 1,

E(σ1, . . . , σi−1) ∪ (E(TCdec(b̃1, . . . , b̃i−1)) ∩ Y) else.

and

Bi =


∅ if i = 1,

E(ρ1, . . . , ρi−1) ∪ (E(TCdec(ã1, . . . , ãi−1)) ∩ X ) else.

The Emulation Protocol.

1. For i = 1, . . . , R,

First Party: If v(Ai) 6= v(Ai ∪X), set σi so that E(σ1, . . . , σi) contains the edge out

of v(Ai) from the set X. Else, set σi = (R, 00), so that σi cannot represent any edge.

Transmit ai, the last symbol of TCenc(σ1, . . . , σi).
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Second Party: If v(Bi) 6= v(Bi ∪ Y ) set ρi so that E(ρ1, . . . , ρi) contains the edge

out of v(Bi) from the set Y . Else, set ρi = (R, 00), so that ρi cannot represent any

edge. Transmit bi, the last symbol of TCenc(ρ1, . . . , ρi).

2. The outcome of the protocol from the first (resp. second) party’s point of view is the

vertex v(AR+1) (resp. v(BR+1)).

Note that the protocol is well defined since if v(Ai) 6= v(Ai ∪ X), then v(Ai) must be

at even depth, and E(σ1, . . . , σi−1) must contain an edge touching a grandparent of v(Ai)

that was transmitted by the first party. Thus there is always a symbol σi that can extend

σ1, . . . , σi−i to encode the next edge on the path to v(Ai).
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SOFSEM 2014: Theory and Practice of Computer Science, Lecture Notes in
Computer Science, vol. 8327, pp. 258–268. Springer International Publishing,
2014.

[GSW14] R. Gelles, A. Sahai, and A. Wadia. Private interactive communication across
an adversarial channel. Proceedings of the 5th Conference on Innovations in
Theoretical Computer Science, ITCS ’14, pp. 135–144. ACM, 2014.

[GR97] R. Gennaro and P. Rohatgi. How to sign digital streams. B. Kaliski, ed., Advances
in Cryptology – CRYPTO ’97, Lecture Notes in Computer Science, vol. 1294, pp.
180–197. Springer Berlin / Heidelberg, 1997.

[GH13] M. Ghaffari and B. Haeupler. Optimal error rates for interactive coding II:
Efficiency and list decoding. Manuscript, arXiv:1312.1763 (cs.DS), 2013.

[GHS13] M. Ghaffari, B. Haeupler, and M. Sudan. Optimal error rates for interactive
coding I: Adaptivity and other settings. Manuscript, arXiv:1312.1764 (cs.DS),
2013.

[Gol04] O. Goldreich. Foundations of cryptography. Vol II: Basic applications. Cambridge
University Press, New York, 2004. ISBN 0521830842.

[GM01] P. Golle and N. Modadugu. Authenticating streamed data in the presence of
random packet loss. ISOC Network and Distributed System Security Symposium,
NDSS’01. 2001.

[Hae14] B. Haeupler, 2014. Personal communication.

[KR13] G. Kol and R. Raz. Interactive channel capacity. STOC ’13: Proceedings of the
45th annual ACM symposium on Symposium on theory of computing, pp. 715–724.
ACM, 2013.

81



[Lan04] M. Langberg. Private codes or succinct random codes that are (almost) perfect.
Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer
Science, FOCS ’04, pp. 325–334. IEEE Computer Society, 2004.

[LH12] D. Leong and T. Ho. Erasure coding for real-time streaming. Information Theory
Proceedings (ISIT), 2012 IEEE International Symposium on, pp. 289–293. 2012.

[MS02] E. Martinian and C.-E. W. Sundberg. Low delay burst erasure correction codes.
Communications, 2002. ICC 2002. IEEE International Conference on, vol. 3, pp.
1736–1740 vol.3. 2002.

[MS01] S. Miner and J. Staddon. Graph-based authentication of digital streams. Security
and Privacy, 2001, IEEE Symposium on, pp. 232 –246. 2001.

[MS14] C. Moore and L. J. Schulman. Tree codes and a conjecture on exponential
sums. Proceedings of the 5th Conference on Innovations in Theoretical Computer
Science, ITCS ’14, pp. 145–154. ACM, 2014.

[NN90] J. Naor and M. Naor. Small-bias probability spaces: efficient constructions
and applications. STOC ’90: Proceedings of the twenty-second annual ACM
symposium on Theory of Computing, pp. 213–223. ACM, New York, NY, USA,
1990.

[Pec06] M. Peczarski. An improvement of the tree code construction. Information
Processing Letters, 99(3):92–95, 2006.

[PCTS00] A. Perrig, R. Canetti, J. Tygar, and D. Song. Efficient authentication and signing
of multicast streams over lossy channels. Security and Privacy, 2000, IEEE
Symposium on, pp. 56–73. 2000.

[RS94] S. Rajagopalan and L. Schulman. A coding theorem for distributed computation.
STOC ’94: Proceedings of the twenty-sixth annual ACM symposium on Theory
of computing, pp. 790–799. ACM, 1994.

[Rei60] B. Reiffen. Sequential encoding and decoding for the discrete memoryless channel.
Tech. Rep. 374, Research Laboratory of Electronics. Massachusetts Institute of
Technology, 1960.

[Sch92] L. J. Schulman. Communication on noisy channels: a coding theorem for com-
putation. Proceedings of the 33rd IEEE Annual Symposium on Foundations of
Computer Science, FOCS ’92, pp. 724–733. IEEE Computer Society, 1992.

[Sch93] L. J. Schulman. Deterministic coding for interactive communication. STOC ’93:
Proceedings of the twenty-fifth annual ACM symposium on Theory of computing,
pp. 747–756. ACM, 1993.

[Sch96] L. J. Schulman. Coding for interactive communication. IEEE Transactions on
Information Theory, 42(6):1745–1756, 1996.

82



[Sch03] L. J. Schulman. postscript to “coding for interactive communication” [On-
line], 2003. Available: http://www.cs.caltech.edu/~schulman/Papers/

intercodingpostscript.txt.

[Sha58] C. E. Shannon. A note on a partial ordering for communication channels.
Information and Control, 1(4):390 – 397, 1958.

[Sha48] C. E. Shannon. A mathematical theory of communication. ACM SIGMOBILE
Mobile Computing and Communications Review, 5(1):3–55, 2001. Originally
appeared in Bell System Tech. J. 27:379–423, 623–656, 1948.

[Smi07] A. Smith. Scrambling adversarial errors using few random bits, optimal infor-
mation reconciliation, and better private codes. Proceedings of the 18th annual
ACM-SIAM symposium on Discrete algorithms, SODA ’07, pp. 395–404. 2007.

[THYJ12] O. Tekin, T. Ho, H. Yao, and S. Jaggi. On erasure correction coding for streaming.
Information Theory and Applications Workshop (ITA), 2012, pp. 221–226. 2012.

[Vaz86] U. V. Vazirani. Randomness, Adversaries and Computation. Ph.D. thesis, EECS,
UC Berkeley, 1986.

[Woz57] J. M. Wozencraft. Sequential decoding for reliable communication. Tech. Rep.
325, Research Laboratory of Electronics, Massachusetts Institute of Technology,
1957.

83

http://www.cs.caltech.edu/~schulman/Papers/intercodingpostscript.txt
http://www.cs.caltech.edu/~schulman/Papers/intercodingpostscript.txt

	Introduction
	Interactive Coding Schemes
	Coding Schemes for Data Streams
	Related Work

	Preliminaries
	Notations
	Interactive Communication Protocols
	Channels and Noise Models
	Random Noise Channels
	Adversarial Noise Channels
	Erasure Channels

	Emulation Schemes
	The Shared Randomness Model

	Potent Tree Codes
	(Schulman's) Tree Codes
	Potent Tree Codes
	Relaxing the Tree Code Notion
	Potent Tree Codes: Definition

	Random Tree Codes as Potent Trees
	Small-Biased Random Trees as Potent Trees
	Potent Tree Codes with Arbitrarily Small  from Linear-SBTC

	Interactive Communication with Random Noise: Efficiency
	The Two-Party Case
	Schulman's Emulation Scheme schulman96
	Efficient Emulation for 2-party Interactive Communication with Random Errors
	Efficient Decoding

	The Multi-Party Case
	The Rajagopalan-Schulman Emulation Scheme RS94
	Efficient Emulation for Multi-Party Interactive Communication  with Random Errors


	Interactive Communication with Adversarial Noise: Resilience
	The Blueberry Code
	The Braverman-Rao Emulation Scheme
	Resisting Noise Rate <1/2 in the Shared Randomness Model
	Resisting Noise <1/2 over Erasure Channels in the Plain Model

	Efficient Coding Schemes for Data Streams
	Error Correction of Data Streams
	Perpetual Authentication
	Efficient Streaming Authentication
	Streaming Authentication: Extensions
	Decoding a Prefix Longer than (1-c)n
	Efficient Authentication Scheme with Exponentially Small Error


	The Braverman-Rao Emulation Scheme BR11
	References



