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ABSTRACT OF THE DISSERTATION
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Highly structured data collected in a variety of biomedical applications such as electroen-

cephalography (EEG) are discrete samples of a smooth functional process observed across

both temporal and spatial dimensions. EEG data is conceptualized as region-referenced lon-

gitudinal functional data in which the functional dimension captures local signal dynamics,

the longitudinal dimension tracks changes over the course of an experiment, and the regional

dimension indexes spatial information across electrodes on the scalp. This complex data

structure exhibits intricate dependencies with rich information but its dimensionality and

size produce significant obstacles for interpretation, estimation, and inference. Motivated

by a series of EEG studies in children with autism spectrum disorder (ASD), a set of com-

putationally efficient methods for these high-dimensional data structures are proposed that

both maintain information along each dimension and yield interpretable components and

inferences.

The first half of the work considers decompositions of the total variation. To begin, a

multi-dimensional functional principal components analysis (MD-FPCA) is introduced which

decomposes the total variation into subject- and electrode-level components and for each

level employs a two-stage functional principal components decomposition sequentially across

functional and longitudinal time. Next, a hybrid principal components analysis (HPCA) for

region-referenced longitudinal functional EEG data is proposed which utilizes both vector

and functional principal components analyses and does not collapse information along any of
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the three dimensions of the data. The second half of the work shifts to modeling associations

and introduces a covariate-adjusted region-referenced generalized functional linear model

(CARR-GFLM) for modeling scalar outcomes from region-referenced functional predictors.

CARR-GFLM utilizes a tensor basis formed from one-dimensional discrete and continuous

bases to estimate functional effects across a discrete regional domain while simultaneously

adjusting for additional non-functional covariates, such as age. Proposed methods not only

help identify neurodevelopmental differences between typically developing and ASD children

but can also be used to study the heterogeneity within children with ASD. The performance

of all proposed methods is studied via extensive simulations.
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CHAPTER 1

Introduction

First demonstrated in 1929 by the German physiologist Hans Berger, electroencephalogra-

phy (EEG) is the measurement and recording of electrical activity in the human brain by

electrodes placed near the scalp [Luck, 2014]. While Berger’s recordings were made subcu-

taneously using needles, contemporary EEG systems include high density electrode arrays

containing between 64 and 256 electrodes placed on the scalp, each capturing local electrical

potentials produced by synchronized excitatory or inhibitory post-synaptic activity in the

cortex [Collura, 1993, Ombao, 2017]. The local potentials recorded at each electrode form

EEG signals that capture both spatial and temporal changes in cortical neural synchrony

on the millisecond time scale. Due to the excellent temporal resolution and relative ease

of recording when compared to other imaging techniques, for instance functional magnetic

resonance imaging (fMRI), practitioners from fields such as neurology, clinical psychology,

and pharmacology have used EEG in a variety of experimental paradigms to study cognitive

processes and disease states [Millsap and Maydeu-Olivares, 2010].

However, the structure of EEG signals presents many challenges from a statistical per-

spective that must be overcome in order to extract meaningful information. Chief among

these challenges is the high dimensional structure of EEG data. EEG signals are observed un-

interrupted for several minutes at multiple electrodes and the continuous signal is divided into

shorter segments to facilitate analysis with electrodes, segments, and signals within segments

forming regional, longitudinal, and functional dimensions, respectively (Figure 1.1). While

we may assume that the functional repetitions evolve continuously within a single electrode

over the course of an experiment, signal dynamics among regions may vary substantially

due to localized nature of neuronal activity. Therefore, we consider the regional dimension
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Figure 1.1: During a standard experimental paradigm, EEG signals are recorded at each
electrode (regional dimension) and the continuous signal is divided into short segments (lon-
gitudinal dimension) with the signal within each segment encoding cortical neural activity
(functional dimension).

to be discrete without the natural ordering provided by continuity. Thus, we conceptualize

the EEG data as region-referenced longitudinal functional data in which the functional di-

mension captures local signal dynamics, the longitudinal dimension tracks changes in signal

dynamics over the course of an experiment, and the regional dimension indexes spatial infor-

mation across electrodes on the scalp. The resulting region-referenced longitudinal functional

EEG data exhibits intricate dependencies rich with information that are difficult to capture

using traditional statistical models. In order to apply standard statistical methods, the rich

information contained in EEG data is often lost prior to modeling. EEG signals are collapsed

across segments, resulting in an average signal that is further reduced into scalar features

such as peak amplitude or frequency band power. Spatial information is similarly discarded

by collapsing average signals or signal features across electrodes or restricting the analyses

to a handful of electrodes contained in the high density electrode array. In this document,

three functional data models are proposed that preserve the high dimensional structure of

EEG data while simultaneously allowing for interpretation and analysis. The methods are

demonstrated on EEG data collected in a series of studies that utilize event-related and
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continuous paradigms to measure brain activity in young children with autism spectrum

disorder (ASD). The remainder of this introduction discusses the basic framework of EEG

experimental paradigms, defines the resulting EEG data structure, and presents functional

data analysis as an alternative to the standard statistical analysis of EEG data to motivate

the proposed methods.

1.1 Experimental paradigms for electroencephalography

Despite the wide variety of studies that employ EEG, experimental paradigms can essentially

be classified into two categories, event-related paradigms and continuous paradigms. The

distinguishing characteristic between these two categories is that event-related paradigms

consider EEG signals time-locked to repeated presentation of stimuli, known as event-related

potentials (ERPs), whereas continuous paradigms examine longer EEG signals without ref-

erence to a temporal event [Gross, 2014]. While both types of paradigms utilize EEG signals

as a measure of brain activity, ERPs collected during event-related paradigms are analyzed

in the time domain whereas EEG signals produced by continuous paradigms are typically

analyzed in the frequency domain.

1.1.1 Event-related paradigms

The goal of event-related paradigms is to study the evolution of EEG signals in response

to the presentation of time-locked stimuli. Subjects are repeatedly exposed to a stimulus,

possibly under different conditions, and EEG signals are recorded at each electrode for a short

time before and after exposure. Thus, each stimulus, or trial, generates an ERP waveform

which is an instance of functional data. The experiments are made up of sequences of

multiple trials, resulting in longitudinal functional data recorded at each electrode, adding

a region dimension. The resulting ERP waveforms can be characterized by temporally

ordered components called positivies (P) and negativities (N) that represent local maxima

and minima of positive and negative electrical potential, respectively.

The characteristic components elicited vary among event-related paradigms based on the
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stimuli presented. For example, in paradigms in which subjects are shown images, a compo-

nent called the P3 peak is often observed 300 milliseconds after the stimulus and is thought

to be associated with evaluation or categorization of stimuli [Daltrozzo and Conway, 2014].

The ERP components observed in a given experiment are typically studied by measuring

their amplitude (size of component peak, measured in microvolts) or latency (time to compo-

nent peak, measured in milliseconds). Because ERPs offer a way of measuring brain activity

in response to stimuli, event-related paradigms have proven particularly useful in studying

populations that are too young or developmentally delayed to provide overt behavioral re-

sponses [Luck, 2014]. Specifically, ERPs can act as covert measures of processing and have

been highlighted as an instrumental method in the study of children with ASD [Jeste and

Nelson, 2008].

1.1.2 Continuous paradigms

While event-related paradigms are concerned with the alteration of EEG signals in response

to time-locked stimuli, continuous paradigms produce EEG signals recorded at each elec-

trode over minutes or hours without reference to a specific temporal event. The resulting

EEG signals are typically segmented into 1-3 second epochs and their analysis is focused on

the spectral information in each epoch rather than changes in electrical potential over time.

There exist a number of methods to transform epochs into the frequency domain but popular

choices are the Fast Fourier Transform (FFT) and parametric autoregressive modeling [Om-

bao and Moon-Ho, 2006]. Thus, for each epoch there exists a corresponding spectral density

which can be considered functional data. The collection of ordered epochs form longitudinal

functional data recorded at each electrode, producing a similar data structure as found in

event-related paradigms albeit with a different set of interpretations.

The exact understanding of the spectral information contained in each epoch depends on

the presence or absence of stimulation during the course of the EEG recording [Gross, 2014].

One set of continuous paradigms take place during resting-state in which EEG signals are

recorded on subjects not engaged in a task, typically with eyes closed or open, with the goal
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of identifying functional connectivity among brain regions or baseline spectral characteristics.

A second set of continuous paradigms collect EEG signals on subjects exposed to a task that

lasts several minutes, such as reading or a sustained auditory stimulus. Spectral properties

of the resulting task-based EEG are then correlated and contrasted across conditions and

groups to identify differences or patterns. Similar to event-related paradigms, continuous

paradigms have been heavily utilized as a method for studying neural function in children

with ASD [Wang et al., 2013].

1.2 Standard statistical methods for EEG data

Despite the highly structured nature of EEG data, much of the information is discarded

in order to allow for inference using standard statistical procedures, making the need for

methods that model the dependency among EEG signals all the more urgent. Whether

EEG is collected during an event-related or continuous paradigm, the observed signal can

be considered a spatio-temporal stochastic process. Specifically, the EEG measured at each

electrode is formed as a mixture of random signals corresponding in part to synchronized

neuronal activity but also artifacts originating from a number of sources including facial

muscles and nearby electromagnetic fields. Thus, artifact removal and correction is a key

step in removing undesirable signals prior to statistical analysis and can impact the resulting

data structure. A brief discussion of artifact rejection and correction will precede a summary

of the loss of information that results from the application of standard statistical methods

to EEG data.

1.2.1 Artifact rejection and correction

After pre-processing (i.e. segmentation, filtering, and referencing, see Cohen [2014] for ex-

tensive details), the rejection and correction of artifacts commonly takes place at the level

of epochs for event-related and continuous paradigms, respectively. Note, for event-related

paradigms, the formation of epochs for artifact rejection and correction precedes isolation of

the ERP. Artifacts can be rejected by removing the entire portion of the contaminated signal
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or corrected by an adjustment. Artifact rejection can be carried out by removing signals

that exceed a pre-established amplitude threshold (e.g +/- 100 microvolts). On the other

hand, artifacts may be corrected if the undesirable noise can be isolated and removed. One

such method is Independent Components Analysis (ICA) which decomposes the EEG signal

into independent components [Makeig et al., 1997]. Upon inspection, some components may

exhibit voltage profiles that correspond to extracortical sources, such as muscular activity,

and are removed when the signal is reconstructed. If a substantial number of artifacts are

rejected rather than corrected, missingness can be introduced into the data structure which

can produce challenges in statistical modeling.

1.2.2 Standard statistical method for the analysis of EEG data

Once artifacts are accounted for, EEG data is frequently collapsed across longitudinal, re-

gional, and functional dimensions prior to statistical modeling due to a lack of appropri-

ate methods, resulting in both a loss of information and interpretation. In event-related

paradigms, the longitudinal dimension is collapsed by averaging ERPs across trials thus

loosing potentially informative changes in ERPs over the course of the experiment. Further,

regional information is often discarded by averaging ERPs across electrodes or restricting the

analysis to a subset of predefined electrodes. Finally, functional information is summarized

by features of the characteristic components such as latency and peak amplitude, which

reduce the ERP from a curve into a single scalar value.

For continuous paradigms, the spectral information observed at each electrode and epoch

is condensed in a similar manner. The observed spectral densities are averaged across epochs

and summarized across electrodes to form single spectral density estimates for entire brain

regions. The average spectral density is then integrated across clinically defined frequency

bands of delta (0-4 Hz), theta (4-8 Hz), alpha (8-15 Hz), beta (15-32 Hz), and gamma (32-50

Hz), resulting in scalar summaries of spectral power for each band that do not account for

the shape or trajectory of the spectral density.

Scalar summaries of ERPs and spectral information are then used as either outcomes or
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predictors in generalized linear mixed models (GLMM), though it is often unclear whether

Gaussian assumptions are reasonable even after the data is transformed (e.g. log trans-

formed). If there are doubts about whether the observed data (or transformed data) are

normally distributed, a number of robust non-parametric procedures have been applied in-

cluding bootstrap analysis, permutation tests, Mann-Whitney U test, and Kruskal-Wallis

test [Millsap and Maydeu-Olivares, 2010].

1.3 Functional data analysis

Rather than collapse the EEG data to accommodate traditional statistical methods, the

observed signal (i.e. ERP or spectral density) may be considered discrete samples of an

underlying functional process for which functional data analysis (FDA) offers a powerful

methodological framework. FDA elucidates the underlying structure in this data by assum-

ing that the basic unit of observation is a signal observed over some continuous domain

[Ramsay and Silverman, 2010]. By modeling the entire functional process without collaps-

ing information, functional data methods simultaneously maintain information and yield

both interpretable components and inferences. While FDA grew from the analysis of one-

dimensional curves, more and more applications produce functional data that are repeatedly

observed across temporal or spatial domains (e.g. EEG recordings). The resulting data

structure is rich in information but its dimensionality and size produce significant obstacles

for interpretation, estimation, and inference. There is a critical need to expand existing

FDA methods to accommodate this new generation of multi-dimensional functional data,

motivating the methods proposed in this dissertation. A brief review of FDA follows, with

emphasis on two work horses in the literature, functional principal components analysis

and functional regression. These methods are detailed as they form the foundation for the

functional models proposed in the following chapters.
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1.3.1 Functional principal components analysis

Similar to principal components analysis (PCA) for multivariate data [Jolliffe, 2002], func-

tional PCA (FPCA) is an instrumental method for dimension reduction for functional data

[Wang et al., 2016]. Specifically, FPCA provides an orthogonal basis that explains more

variation for a fixed dimension than any other basis, providing an optimal finite dimen-

sional representation of an infinite dimensional functional process. Consider a sample of

independent real-valued smooth functions, Xi(t), i = 1, . . . , n, defined on some continu-

ous interval t ∈ T . The mean and covariance functions, defined as µ(t) = E{Xi(t)} and

Σ(t, t′) = cov{Xi(t), Xi(t
′)}, provide functional information both across and within subjects,

respectively. By Mercer’s theorem, the covariance function can be expressed in terms of its

spectral decomposition, Σ{t, t′} =
∑∞

k=1 λkφk(t)φk(t
′), where λk and φk(t) are ordered eigen-

values and eigenfunctions (functional principal components), respectively. The Karhunen-

Loève (KL) expansion (FPCA expansion) [Karhunen, 1946, Loeve, 1946] of a random signal

is given by,

Xi(t) = µ(t) +
∞∑
k=1

ξikφk(t),

where ξik =
∫
{Xi(t) − µ(t)}φk(t)dt are the functional principal component scores which

capture the stochastic behavior of the process. The scores are uncorrelated and encapsulate

all the stochastic information in the functional process with E(ξik) = 0 and var(ξik) =

λk. If the KL expansion is truncated to include only K components, a finite dimensional

approximation to the signal is obtained. In addition to providing an optimal basis, the

functional principal components themselves provide useful interpretations by characterizing

the directions of principal variation in the observed data.

Since the introduction of the KL expansion, a detailed literature has developed around

the estimation of functional principal scores and components for both densely and sparsely

observed functional data along a single dimension (see Wang et al. [2016] for a thorough

review). In recent years, the literature surrounding FPCA has shifted to consider functional

data with more complex dependency structures, including repeatedly measured functional
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data [Crainiceanu et al., 2009, Di et al., 2009, Kundu et al., 2016, Morris and Carroll, 2006,

Morris et al., 2003, Zipunnikov et al., 2014], longitudinally observed functional data [Greven

et al., 2010, Chen and Müller, 2012, Park and Staicu, 2015, Chen et al., 2016], spatially

correlated functional data [Baladandayuthapani et al., 2007, Giraldo et al., 2010, Zhou et al.,

2010, Staicu et al., 2010, Liu et al., 2017], and multivariate functional data [Jaques and

Preda, 2014, Chiou et al., 2014, Happ and Greven, 2018]. EEG and similar data structures

present a unique set of challenges that are not addressed by previous FPCA methods and a

major focus of this work is to develop computationally efficient and interpretable principal

component decompositions to bridge this gap.

1.3.2 Functional regression

Whereas FPCA identifies the principal directions of variation in functional data to provide

an optimal basis representation, functional regression methods model and characterize asso-

ciations in functional data (for a comprehensive review, see Morris [2015] and Greven and

Scheipl [2017]). Functional regression models can divided into three categories based on the

role of the functional data, (1) scalar-on-function regression (SoFR), (2) function-on-scalar

regression (FoSR), and (3) function-on-function regression (FoFR). While methods within

these three categories share common attributes and assumptions, they also each carry a

distinct set of challenges. For instance, FoFR and FoSR models often produce greater com-

putational burden due to the size of design matrices, while SoFR must deal more directly

with the ‘small n, big p’ problem given that the dimension of the functional predictor ex-

ceeds the number of observed scalar responses. In this dissertation, a SoFR model will be

proposed and thus the remaining discussion of functional regression methods will focus on

this class of models.

Consider the pair
{
yi, Xi(t)

}
, where yi is a scalar response and Xi(t) is a functional

predictor defined as in Section 1.3.1. The foundational functional regression model proposed

by Ramsay and Dalzell [1991] assumed a linear relationship between predictor and outcome

and was explicitly described for SoFR with a Gaussian response by Hastie and Mallows
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[1993],

yi = β0 +

∫
Xi(t)β(t)dt+ εi,

where β(t) is a regression function, β0 is an intercept term, and εi ∼ N(0, σ2) is residual

error. The effect of the functional predictor Xi(t) is mapped by a regression function β(t),

the product of which are integrated to produce an effect on the scale of the outcome. Marx

and Eilers [1999] extended this model to include exponential family responses and both

models have been adapted to accommodate multilevel functional predictors and both non-

parametric and non-linear frameworks (see Reiss et al. [2017] for more details). In the linear

setting, estimation of the regression function β(t) often takes place by projection onto a

suitable basis (e.g. B-splines, Fourier basis, wavelets) and penalizing the resulting loadings

to obtain desirable properties (e.g sparsity or smoothness). Just as was the case with FPCA,

as the complexity of the functional predictors grow, challenges emerge in formulating and

estimating a suitable functional regression model. While some methods exist to address

multivariate (i.e. multiple functional signals defined on possibly different domains; Zhu

et al. [2010], Gertheiss et al. [2013], Lian [2013]) and multi-dimensional (i.e. two- or higher-

dimensional functional signals defined continuously on a single domain; Marx and Eilers

[2005], Reiss and Ogden [2010], Goldsmith et al. [2014]) functional predictors, no existing

methods accommodate the complex nature of EEG data and similar data structures that

exhibit complex spatial and temporal correlations as detailed in the next section. A second

major focus of this dissertation is to develop a SoFR method suited for the challenges of

modeling region-referenced functional data such as the motivating EEG studies.

1.4 Overview of proposed methods

The collapse of longitudinal, regional, and functional dimensions is largely motivated by a

lack of available statistical methods and software suited for the high-dimensional structure

of EEG data. In order to preserve the high-dimensional structure of EEG data produced

during event-related and continuous paradigms and allow for inference and interpretation
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along the functional, longitudinal, and regional dimensions, three statistical methods are

developed.

Chapter 2 develops multi-dimensional functional principal components analysis (MD-FPCA)

to model longitudinal and spatial information in ERPs produced during an implicit learning

paradigm in children with ASD. The decomposition is based on separation of the total vari-

ation into subject and subunit level variation which are further decomposed in a two-stage

FPCA. In the context of EEG data, electrodes are grouped into scalp regions and within each

scalp region electrodes are considered exchangeable. The proposed methodology is shown to

be useful for modeling longitudinal trends in ERP functions while accounting for repetitions

across electrodes within scalp regions, leading to novel insights into the learning patterns of

children with ASD and their typically developing peers as well as comparisons between the

two groups. Emphasis is placed on the longitudinal evolution of ERPs across experimental

time due to the fact that changes in ERP morphology may provide insight into underlying

cognitive processes [Daltrozzo and Conway, 2014].

Chapter 3 proposes a hybrid principal components analysis (HPCA) that provides a low-

dimensional decomposition of EEG data via weak separability of the total covariance process.

While MD-FPCA offers a flexible but intricate model of the total variance through a multi-

level two-stage decomposition, HPCA offers a more parsimonious decomposition in terms of

an empirical tensor basis based on one-dimensional eigenvectors and eigenfunctions obtained

from the marginal covariances. The motivating example is a word segmentation paradigm in

which TD children and children with ASD were exposed to a continuous speech stream. For

each subject, continuous EEG signals recorded at each electrode were divided into one-second

segments and projected into the frequency domain via Fast Fourier Transform. Following

a spectral principal components analysis for dimension reduction, the resulting data con-

sist of region-referenced principal power indexed regionally by scalp location, longitudinally

by one-second segments, and functionally across frequencies. HPCA utilizes both vector

and functional principal components analyses via a product of one dimensional eigenvectors

and eigenfunctions obtained from the regional, functional, and longitudinal marginal covari-

ances, to represent the observed data, providing a computationally feasible nonparametric
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approach. A mixed effects framework is proposed to estimate the model components coupled

with a bootstrap test for group level inference, both geared towards sparse data applications.

Analysis of the data from the word segmentation paradigm leads to valuable insights about

group-region differences among the TD and ASD children.

Chapter 4 shifts from covariance decompositions to introduce a covariate-adjusted region-

referenced generalized functional linear model (CARR-GFLM) that models clinical outcomes

from region-referenced EEG data while adjusting for non-functional covariates. The proposed

method is motivated by a resting state study in TD and ASD children evaluating an EEG

biomarker called the peak alpha frequency (PAF), defined as the maximum of a prominent

peak in the alpha frequency band. To retain the most information, oscillations in the spectral

density within the entire alpha band rather than just the peak location are modeled as a

functional predictor of diagnostic status (TD vs. ASD). CARR-GFLM utilizes a penalized

tensor basis formed from discrete and continuous basis functions to estimate functional

effects across a discrete regional domain while simultaneously adjusting for non-functional

covariates. As case in point, alpha band oscillations exhibit developmental changes and thus

chronological age must be accounted for when estimating effects. Application of CARR-

GFLM to the resting state EEG data demonstrate that developmental trajectories in alpha

spectral dynamics are associated with autism diagnostic status.

In summary, the three proposed methods maintain the high dimensional data structure

observed in EEG data and allow for interpretation and analysis along each dimension. In

Chapter 2, the proposed MD-FPCA decomposition based on the separation of the total

variation into subject and subunit level variation models the longitudinal evolution of ERPs

across experimental time and leads to novel insights into the learning patterns of children

with ASD and their TD peers in an implicit learning paradigm. In Chapter 3, the HPCA

decomposition provides a low dimensional approximation of region-referenced longitudinal

functional EEG data via weak separability of the covariance process and a bootstrap pro-

cedure is proposed that allows for group-level comparisons of TD and ASD children in a

task-based continuous paradigm. In Chapter 4, CARR-GFLM utilizes alpha oscillatory

dynamics to model diagnostic status while accounting for developmental progression to illu-

12



minate developmental differences between TD and ASD children. Chapter 5 concludes with

a discussion of the proposed methods and outlines future methodological developments that

could follow this work.
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functional EEG data. Biostatistics (Epub ahead of print).
Drafted by Aaron Scheffler and Damla Şentürk

Chapter 4: Covariate-adjusted region-referenced generalized functional linear model

A. Scheffler, D. Telesca, Q. Li, C. Sugar, S. Jeste, A. Dickinson, C. DiStefano,
D. Şentürk (2018). Covariate-adjusted region-referenced generalized functional
linear model for EEG data. (under review)
Drafted by Aaron Scheffler and Damla Şentürk

1.6 Software and implementation

The analyses carried out in this dissertation were performed on a 2.4 GHz 6-Core Intel Xeon

processor operating MATLAB (v. 8.6.0.267246, The MathWorks Inc. [2015b]) and R (v.

3.5.1, R Core Team [2018]). Code for the proposed estimation and inference procedures

are publicly available online at [https://github.com/aaron-scheffler], along with tutorials for

step-by-step implementation of the proposed methodologies on simulated data.
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CHAPTER 2

Multi-Dimensional Functional Principal Components

Analysis

The electroencephalography (EEG) data created in event-related potential (ERP) experi-

ments have a complex high-dimensional structure. Each stimulus presentation, or trial, gen-

erates an ERP waveform which is an instance of functional data. The experiments are made

up of sequences of multiple trials, resulting in longitudinal functional data and moreover,

responses are recorded at multiple electrodes on the scalp, adding an electrode dimension.

Traditional EEG analyses involve multiple simplifications of this structure to increase the

signal-to-noise ratio, effectively collapsing the functional and longitudinal components by

identifying key features of the ERPs and averaging them across trials. Motivated by an

implicit learning paradigm used in autism research in which the functional, longitudinal

and electrode components all have critical interpretations, we propo gse a multi-dimensional

functional principal components analysis (MD-FPCA) technique which does not collapse any

of the dimensions of the ERP data. The proposed decomposition is based on separation of

the total variation into subject and subunit level variation which are further decomposed in a

two-stage functional principal components analysis. The proposed methodology is shown to

be useful for modeling longitudinal trends in the ERP functions, leading to novel insights into

the learning patterns of children with Autism Spectrum Disorder (ASD) and their typically

developing peers as well as comparisons between the two groups. Finite sample properties

of MD-FPCA are further studied via extensive simulations.
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(b)

Figure 2.1: (a) The sequence of shape pairs in the implicit learning study. Transitions
within a shape pair are labelled ‘expected’ (square and cross are a shape pair, so that the
cross always follows the square); transitions between shape pairs are labelled ‘unexpected’.
(b) The ERP waveform containing the P3 and N1 phasic components from the implicit
learning study.

2.1 Introduction

Electroencephalography (EEG) is a well-established noninvasive method for measuring spon-

taneous electrical activity across brain regions to identify neural function and cognitive states.

Our motivating data is from a visual implicit learning study on young children with autism

spectrum disorder (ASD) [Jeste et al., 2015]. The experiment involved event-related po-

tentials (ERP) in which EEG signals were time locked to the presentation of a continuous

sequence of colored shapes (visual stimuli) recorded in age-matched 2 to 5 year old typi-

cally developing and ASD children (Figure 2.1(a)). The six colored shapes, grouped into

three shape pairs, were presented in random order. Transitions within a shape pair were

labeled ‘expected’ since they could be learned (shape ordering within a pair was fixed) and

transitions between shape pairs were labeled ‘unexpected’ since they could not be predicted.

The goal of the study was to characterize implicit learning, defined as the detection of reg-

ular patterns in one’s environment without a conscious awareness or intention to learn, by

contrasting brain response to expected and unexpected transitions.

15



The data created in typical ERP studies as the one described above are rich and multi-

dimensional. Each stimulus, corresponding to the presentation of a single shape, referred to

as a trial, results in an ERP function with paradigm-specific phasic components. The P3

peak and N1 dip phasic components typically studied in this paradigm and thought to be

related to cognitive processes and early category recognition are given in Figure 2.1(b) [Jeste

et al., 2015]. Hence the experiment creates functional data (ERP curves) for each subject,

collected longitudinally over trials (presentation of each shape) at multiple electrodes placed

on the scalp. Due to the richness and multifaceted nature of the data along functional,

longitudinal and electrode dimensions (repetitions over electrodes), typical practice involves

multiple simplifications of the data before analysis. To increase the low signal-to-noise ratio

(SNR) in raw ERP data, data are first collapsed in the longitudinal dimension, in which ERP

functions observed over trials are averaged for each subject [Jeste et al., 2015, Gasser and

Molinari, 1996]. In addition, aside from a few works on functional mixed effects modeling

for the analysis of ERP data [Bugli and Lambert, 2006, Davidson, 2009], the functional

dimension is typically summarized by the amplitude (magnitude of the peak or dip) or

latency (time when the peak or dip occurs) of the phasic components of the averaged ERP

functions. Hence, once both functional and longitudinal dimensions have been collapsed into

one-dimensional data summaries, a repeated measures ANOVA can be used for analysis.

In this paper we propose, for the first time in the literature, a longitudinal principal com-

ponents decomposition for the EEG data, which we refer to as multi-dimensional functional

principal components analysis (MD-FPCA). MD-FPCA embodies all three dimensions (func-

tional, longitudinal and electrode) of the ERP data, preserving the full complexity without

stringent assumptions or data reduction. In order to increase the SNR without collapsing

the longitudinal dimension over trials, we adopt MAP-ERP, a meta-preprocessing step based

on a moving average of the ERP functions over trials in a sliding window [Hasenstab et al.,

2015]. Capturing the longitudinal dimension is especially important in settings such as our

motivating example, where patterns of learning correspond by definition to changes in ERP

functions across trials. Previous studies in neuroscience and biomedical engineering have

acknowledged that ERP function morphology may change over the course of a task. How-
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ever, most prior work has focused on controlling for longitudinal trends [Gasser et al., 1983,

Turetsky et al., 1989] rather than modeling them; the few works on modeling longitudinal

trends have been limited to parametric forms [Rossi et al., 2007, De Silva et al., 2012]. We

will build our proposed MD-FPCA on data produced by the novel meta-preprocessing step,

MAP-ERP, capturing the continuum of longitudinal dynamics.

The literature on functional data analysis (FDA) [Ramsay and Silverman, 2010] has

grown rapidly over the past two decades, with a considerable fraction of the work involv-

ing applications to longitudinal data [James et al., 2000, Müller, 2008, Şentürk and Müller,

2010]. More recently, there has been interest in analyzing multiple trajectories, with depen-

dencies among the repeatedly measured functional data [Crainiceanu et al., 2009, Di et al.,

2009, Kundu et al., 2016, Morris and Carroll, 2006, Morris et al., 2003, Zipunnikov et al.,

2014]. Functional principal components decompositions for multilevel or longitudinal func-

tional processes have been a major modeling theme in the FDA literature. Di et al. [2009]

suggested decomposing sources of functional variation in an additive fashion via multilevel

ANOVA, which we refer to as the ANOVA functional principal components decomposition

(ANOVA-FPCA). Greven et al. [2010] proposed a decomposition based on a functional ran-

dom intercept and slope to capture longitudinal variations, which we refer to as linear FPCA

(LFPCA). Chen and Müller [2012] suggested a double decomposition (DFPCA) to capture

potential nonlinear and nonparametric longitudinal trends within repeatedly observed func-

tional data; parsimonious extensions of DFPCA have recently been proposed by Park and

Staicu [2015] and Chen et al. [2016]. While ANOVA-FPCA models longitudinal repetitions

as repeated measurements without a particular time ordering, similar to an ANOVA, LF-

PCA models longitudinal trends linearly, and DFPCA does not assume a parametric form.

For spatially correlated functional data, Delicado et al. [2010] summarize limited works in

three categories, analysis of geostatistical functional data [Baladandayuthapani et al., 2007,

Giraldo et al., 2010, Zhou et al., 2010, Staicu et al., 2010, Liu et al., 2017] (mostly involving

distance-based parametric correlation structures), point processes with associated functional

data and functional areal data.

Our proposed MD-FPCA combines the flexible DFPCA modeling of longitudinal trends,
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especially important for modeling learning trajectories in the motivating implicit learning

experiment, with the decomposition of the total variation into subject and electrode level

components as in ANOVA-FPCA, to embody all the dimensions of the multi-dimensional

ERP data. MD-FPCA induces correlation between the electrode repetitions via random

effects and utilizes multilevel random effects for extensions that involve data from multi-

ple scalp regions. Following the initial ANOVA decomposition of the total variation, the

proposed MD-FPCA involves a two-stage functional principal components decomposition of

the subject and electrode level variations across functional and longitudinal time, leading

to highly interpretable components contributing to the principal surfaces in a multiplicative

fashion. Hence, even though multiple decompositions have been proposed for longitudinally

observed or spatially correlated functional data in the literature, MD-FPCA is the first de-

composition proposed for repeatedly measured longitudinal functional data which is tailored

to model the specific features of the EEG data produced in ERP studies.

The remainder of the paper is organized as follows. Section 2.2 introduces the proposed

MD-FPCA approach, compares it with other recently proposed functional principal compo-

nents decompositions for longitudinally observed functional data, and outlines the extension

of the methodology to analysis of data from multiple scalp regions. Section 2.3 provides

insights gained from the implicit learning application, including comparisons of learning

patterns in ASD and TD groups, summarized via the longitudinal trends in ERP functions

across the experiment. We study the performance of the proposed decomposition in exten-

sive simulation studies summarized in Section 2.4 and conclude with a brief discussion in

Section 2.5.
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2.2 Multi-dimensional functional principal components analysis

(MD-FPCA)

2.2.1 The proposed MD-FPCA decomposition

Denote by Xij(t|s) a multilevel square integrable random function observed across contin-

uous functional time t, t ∈ T , at longitudinal time s, s ∈ S, for subunit j, j = 1, . . . , J ,

and subject i, i = 1, . . . , n. In applications to the EEG data, data collected over electrodes

represent the subunits within subjects, functional time is the time scale of the ERP func-

tion and longitudinal time corresponds to trials. The notation, Xij(t|s), for the multilevel

longitudinal functional process is used to stress the two-stage nature of the Karhunen-Loève

decompositions in MD-FPCA, where the first-stage expansions are conditional on a par-

ticular longitudinal time s, and second-stage decompositions describe the variations along

longitudinal time s. The function Xij(t|s) is decomposed using a multilevel random effects

model at each longitudinal time s,

Xij(t|s) = µ(t, s) + ηj(t, s) + Zi(t|s) +Wij(t|s) + εij(t|s), (2.1)

where µ(t, s) and ηj(t, s) are fixed functional effects that represent the overall mean func-

tion and subunit-specific shifts, respectively; Zi(t|s) and Wij(t|s) are the random subject-

and subunit-specific deviations, respectively; and εij(t|s) is measurement error with mean

zero and variance σ2
s . Denote the total variation of Xij(t|s) at a fixed longitudinal time

s by ΣT (t, t′|s) = cov{Xij(t|s), Xij(t
′|s)} and let Σ̃T (t, t′|s) = cov{Xij(t|s), Xij(t

′|s)} −

σ2
s1{t=t′} be the total variation without the measurement error with 1{A} denoting the in-

dicator function for event A. Assuming the subject and subunit-specific deviations, Zi(t|s)

and Wij(t|s), are uncorrelated mean zero stochastic processes, (2.1) implies separation of

the total variation Σ̃T (t, t′|s) at each longitudinal time s into subject level Σ(1)(t, t′|s) =

cov{Xij(t|s), Xij′(t
′|s)} =

∑
k λ

(1)
k (s)φ

(1)
k (t|s)φ(1)

k (t′|s) and electrode level Σ(2)(t, t′|s) =

Σ̃T (t, t′|s) − Σ(1)(t, t′|s) =
∑

p λ
(2)
p (s)φ

(2)
p (t|s)φ(2)

p (t′|s) variation. Note that Σ(1)(t, t′|s) cap-

tures variation between electrodes within a subject and Σ(2)(t, t′|s) represents the remaining
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second level variance; we refer to these quantities as subject and electrode level variations,

respectively, to build intuition that this separation is analogous to an ANOVA decomposi-

tion. In this formulation, φ
(1)
k (t|s) and φ

(2)
p (t|s) are the first and second level eigenfunctions,

describing modes of variation across functional time t at each longitudinal time s, and λ
(1)
k (s)

and λ
(2)
p (s) are the first and second level eigenvalues.

Note that while the terminology ‘level’ is used to refer to the separation of the vari-

ation into the subject and electrode components, ‘stage’ is going to be used to refer to

the two subsequent functional principal components decompositions applied to the devi-

ation/variance defined at each level, first conditional on a particular longitudinal time s,

and second describing variations along s. The first-stage Karhunen-Loève decompositions

for Zi(t|s) =
∑

k ξik(s)φ
(1)
k (t|s) and Wij(t|s) =

∑
p ζijp(s)φ

(2)
p (t|s) are carried out at each s,

yielding

Xij(t|s) = µ(t, s) + ηj(t, s) +
∞∑
k=1

ξik(s)φ
(1)
k (t|s) +

∞∑
p=1

ζijp(s)φ
(2)
p (t|s) + εij(t|s),

where ξik(s) and ζijp(s) are the first and second level eigenscores, respectively, such that

var{ξik(s)} = λ
(1)
k (s) and var{ζijp(s)} = λ

(2)
p (s). In practice, the decompositions are trun-

cated at only a small number of eigencomponents K and P (Appendix 2A). Note that the

subunit repetitions within a subject, Wij(t|s) and hence ζijp(s), are assumed to be inde-

pendent across j, since the subunit dependency is modeled by the subject-specific random

component Zi(t|s). Next, the second-stage Karhunen-Loève decompositions for the first and

second level eigenscores, ξik(s) =
∑∞

k′=1 ξ
′
ikk′ψ

(1)
kk′(s), ζijp(s) =

∑∞
p′=1 ζ

′
ijpp′ψ

(2)
pp′(s), yield

Xij(t|s) = µ(t, s)+ηj(t, s)+
∞∑
k=1

∞∑
k′=1

ξ′ikk′ψ
(1)
kk′(s)φ

(1)
k (t|s)+

∞∑
p=1

∞∑
p′=1

ζ ′ijpp′ψ
(2)
pp′(s)φ

(2)
p (t|s)+εij(t|s).

(2.2)

In (2.2), ξ′ikk′ and ζ ′ijpp′ are the eigenscores, λ
(1)
kk′ = var(ξ′ikk′) and λ

(2)
pp′ = var(ζ ′ijpp′) are the

eigenvalues and ψ
(1)
kk′(s) and ψ

(2)
pp′(s) are the eigenfunctions describing the modes of variation

across longitudinal time of the first-stage eigenscores.

We propose two decomposition summaries for MD-FPCA that are important in identify-
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ing the contributions of different sources to the total variation in the analysis of the multilevel

stochastic process Xij(t|s). While the first quantity, ρ(s) = {
∑

k λ
(1)
k (s)}/ {

∑
k λ

(1)
k (s) +∑

p λ
(2)
p (s)}, summarizes the proportion of variability explained by the subject level (first

level) variation in the first-stage of MD-FPCA conditional on longitudinal time s, the sec-

ond summary measure, ρ = {
∑

k

∑
k′ λ

(1)
kk′}/{

∑
k

∑
k′ λ

(1)
kk′ +

∑
p

∑
p′ λ

(2)
pp′}, captures the over-

all proportion of variability explained by the subject level variation in both stages of the

MD-FPCA across longitudinal time s. The two summaries can be viewed as extensions

of the intra-cluster correlation of the linear mixed effects framework to the decomposition

of multilevel longitudinally observed functional processes. The intraclass correlations can

also be interpreted as the average correlation between two subunits from the same subject,

conditional on and across longitudinal time s, respectively. In applications to ERP data,

repetitions over electrodes are considered subunits; within-subject correlations between these

repetitions provide insight into the similarity of the trends across electrodes.

2.2.2 Comparison to other Karhunen-Loève decompositions

We briefly review three recently proposed principal components decompositions for functional

processes, which are special cases of the proposed MD-FPCA, and highlight differences of

MD-FPCA from a multilevel two-dimensional Karhunen-Loève decomposition. The three

special cases are given without additive measurement error for simplicity. The ANOVA-

FPCA of Di et al. [2009],

Xij(t) = µ(t) + ηj(t) + Zi(t) +Wij(t) = µ(t, s) +
∞∑
k=1

ξikφ
(1)
k (t) +

∞∑
p=1

ζijpφ
(2)
p (t), (2.3)

is a special case of MD-FPCA, where the decomposition does not have a longitudinal compo-

nent. The repeatedly observed functional process Xij(t) is decomposed into an overall mean

µ(t), a visit-specific mean ηj(t), a subject-specific deviation from the visit-specific mean Zi(t)

and a subject-visit-specific deviation Wij(t). Similar to MD-FPCA, Zi(t) and Wij(t), which

are called the first and second level deviations, respectively, are expanded using Karhunen-

Loève decompositions with first and second level eigenscores ξik and ζijp and eigenfunctions
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φ
(1)
k (t) and φ

(2)
p (t), respectively. Note that repetitions of the functional process are modeled

without a particular time ordering, similar to an ANOVA.

In contrast, the linear FPCA (LFPCA) of Greven et al. [2010] models longitudinal trends

in a repeatedly observed functional process linearly. The double FPCA (DFPCA) decom-

position of Chen and Müller [2012],

Xi(t|s) = µ(t, s) + Zi(t|s) = µ(t, s) +
∞∑
k=1

ξik(s)φk(t|s) = µ(t, s) +
∞∑
k=1

∞∑
p=1

ζikpψkp(s)φk(t|s),

(2.4)

does not assume a parametric form for the longitudinal time trend and thus can capture

very flexible dynamics, similar to MD-FPCA. Note that the decomposition is for a longitu-

dinally observed functional process that is not repeatedly observed, hence is a special case of

MD-FPCA which considers the repeatedly observed longitudinal functional process Xij(t|s)

with subject- and subunit-specific deviations. In (2.4), Xi(t|s) is decomposed at a grid of

longitudinal times s, yielding the mean function µ(t, s), eigenfunctions φk(t|s) and subject-

specific random eigenscores ξik(s) at the first-stage. The eigenscores at each longitudinal

time s are then decomposed further at the second-stage to yield eigenscores ζikp and eigen-

functions ψkp(s). Only decompositions LFPCA and DFPCA are suitable for situations in

which interest centers on detecting changes in the ERP functions across longitudinal time.

Moreover, in applications to the implicit learning paradigm, even LFPCA may be quite re-

strictive, since it requires these trends to be linear. Hence the proposed MD-FPCA combines

the more flexible DFPCA to model longitudinal trends with ANOVA-FPCA to model rep-

etitions over electrodes (the electrode dimension), enabling us to compare the nature of the

implicit learning processes of children with ASD and their typically developing peers.

In comparing MD-FPCA to a multilevel two-dimensional Karhunen-Loève decomposi-

tion, note that the proposed MD-FPCA in (2.2) implies principal surfaces across both the

functional and longitudinal domains,

Xij(t|s) = µ(t, s) + ηj(t, s) +
∞∑
k=1

∞∑
k′=1

ξ′ikk′ϕ
(1)
kk′(t, s) +

∞∑
p=1

∞∑
p′=1

ζ ′ijpp′ϕ
(2)
pp′(t, s) + εij(t|s), (2.5)
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such that ϕ
(1)
kk′(t, s) = φ

(1)
k (t|s)ψ(1)

kk′(s) is a product of the first- and second-stage eigenfunc-

tions, describing the variation conditional on longitudinal time s and along longitudinal

time s, respectively; similarly ϕ
(2)
pp′(t, s) = ψ

(2)
pp′(s)φ

(2)
p (t|s). However, the principal surfaces

ϕ
(1)
kk′(t, s) and ϕ

(2)
pp′(t, s) in (2.5) are not the eigenfunctions of the unconditional subject and

subunit level covariance operators. In other words, the proposed MD-FPCA is distinct from

a multilevel two-dimensional Karhunen-Loève decomposition with eigenscores θik and νijp

and two-dimensional orthogonal eigenfunctions ω
(1)
k (t, s) and ω

(2)
p (t, s),

Xij(t, s) = µ(t, s) + ηj(t, s) +
∞∑
k=1

θikω
(1)
k (t, s) +

∞∑
p=1

νijpω
(2)
p (t, s) + εij(t, s).

For the multilevel two-dimensional Karhunen-Loève decomposition, the unconditional total

covariance of Xij(t, s) minus measurement error, Σ̃T (t, s, t′, s′) = cov{Xij(t, s), Xij(t
′, s′)} −

σ2
s1{t=t′,s=s′}, would be decomposed into subject Σ(1)(t, s, t′, s′) = cov{Xij(t, s), Xij′(t

′, s′)}

and subunit level Σ(2)(t, s, t′, s′) = Σ̃T (t, s, t′, s′) − Σ(1)(t, s, t′, s′) covariances. Then the co-

variation at both the subject and subunit levels would be expanded with two-dimensional

functional principal component expansions, Σ(1)(t, s, t′, s′) =
∑

k τ
(1)
k ω

(1)
k (t, s)ω

(1)
k (t′, s′),

Σ(2)(t, s, t′, s′) =
∑

p τ
(2)
p ω

(2)
p (t, s)ω

(2)
p (t′, s′) with eigenvalues τ

(1)
k and τ

(2)
p and eigenfunctions

ω
(1)
k (t, s) and ω

(2)
p (t, s).

A major advantage of the proposed MD-FPCA is that while the multilevel two-dimensional

Karhunen-Loève decomposition would require decomposition and hence smoothing of mul-

tiple four-dimensional covariance surfaces at the subject and subunit levels, the proposed

MD-FPCA involves decompositions of only two-dimensional covariance surfaces due to the

two-stage structure, leading to ease in implementation and savings in computational costs.

Conditioning on longitudinal time s at the first-stage lowers the dimension of the covariance

surface considered at both stages of the proposed algorithm. A second major advantage, as

will be demonstrated in our application to the implicit learning study, is in interpretations

of the decomposition components. The two-stage structure leads to additional decompo-

sition components, such as the first- and second-stage eigenfunctions, which help with the

interpretation of complex variation patterns in higher dimensions.
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2.2.3 Extension to data from multiple scalp regions

In applications to the ERP data from the implicit learning paradigm, we consider four

electrodes in the right frontal region of the scalp where maximal condition differentiation

is detected. Motivated by the exchangeable correlation structure among electrodes within

the same scalp region observed in the longitudinal functional ERP data, MD-FPCA models

electrode repetitions by a random effect similar to an ANOVA approach. However MD-FPCA

can be extended within the same ANOVA framework for analysis of data from multiple

regions of interest on the scalp by an additional level of random effects at the scalp region

level to account for differences between electrodes from different regions.

Denote by Xirj(t|s) a multilevel square integrable random function observed across con-

tinuous functional time t, t ∈ T , at longitudinal time s, s ∈ S, for electrode j, j = 1, . . . , J ,

within scalp region r, r = 1, . . . , R, and subject i, i = 1, . . . , n. Separating the total variation

into variability at the subject, region and electrode levels at each longitudinal time s leads

to

Xirj(t|s) = µ(t, s) + ηr(t, s) + αrj(t, s) + Zi(t|s) +Wir(t|s) + Uirj(t|s) + εirj(t|s), (2.6)

where µ(t, s), ηr(t, s) and αrj(t, s) are the overall mean function, region- and electrode-

specific shifts, respectively; Zi(t|s), Wir(t|s) and Uirj(t|s) are the random subject-, region-

and electrode-specific deviations, respectively; and εirj(t|s) is measurement error with mean

zero and variance σ2
s . Denote the total variation of Xij(t|s) at a fixed longitudinal time

s by ΣT (t, t′|s) = cov{Xirj(t|s), Xirj(t
′|s)} and let Σ̃T (t, t′|s) = cov{Xirj(t|s), Xirj(t

′|s)} −

σ2
s1{t=t′}. Decomposition (2.6) implies separation of the total variation Σ̃T (t, t′|s) at each lon-

gitudinal time s into subject level Σ(1)(t, t′|s) = cov{Xirj(t|s), Xir′j′(t
′|s)} =

∑
k λ

(1)
k (s)φ

(1)
k (t|s)

φ
(1)
k (t′|s), region level Σ(2)(t, t′|s) = cov{Xirj(t|s), Xirj′(t

′|s)} =
∑

p λ
(2)
p (s)φ

(2)
p (t|s)φ(2)

p (t′|s)

and electrode level Σ(3)(t, t′|s) = Σ̃T (t, t′|s) − Σ(1)(t, t′|s) − Σ(2)(t, t′|s) =
∑

v λ
(3)
v (s)φ

(3)
v (t|s)

φ
(3)
v (t′|s) variation. The second-stage Karhunen-Loève decompositions applied to the eigen-

scores ξik(s) =
∑∞

k′=1 ξ
′
ikk′ψ

(1)
kk′(s), ζirp(s) =

∑∞
p′=1 ζ

′
irpp′ψ

(2)
pp′(s) and βirjv(s) =

∑∞
v′=1 β

′
irjvv′ψ

(3)
vv′(s)

from the first-stage Karhunen-Loève decompositions, Zi(t|s) =
∑

k ξik(s)φ
(1)
k (t|s), Wir(t|s) =
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∑
p ζirp(s) φ

(2)
p (t|s) and Uirj(t|s) =

∑
v βirjv(s)φ

(3)
v (t|s), yield the extended MD-FPCA de-

composition

Xij(t|s) = µ(t, s) + ηr(t, s) + αrj(t, s) +
∞∑
k=1

∞∑
k′=1

ξ′ikk′ψ
(1)
kk′(s)φ

(1)
k (t|s)

+
∞∑
p=1

∞∑
p′=1

ζ ′irpp′ψ
(2)
pp′(s)φ

(2)
p (t|s) +

∞∑
v=1

∞∑
v′=1

β′irjvv′ψ
(3)
vv′(s)φ

(3)
v (t|s) + εij(t|s).

Similar to MD-FPCA, ξ′ikk′ , ζ
′
irpp′ and β′irjvv′ denote the second-stage eigenscores, λ

(1)
k (s) =

var{ξik(s)}, λ(2)
p (s) = var{ζirp(s)} and λ

(3)
v (s) = var{βirjv(s)} are the first-stage eigenvalues,

λ
(1)
kk′ = var(ξ′ikk′), λ

(2)
pp′ = var(ζ ′ijpp′), λ

(3)
vv′ = var(β′irjvv′) are the second-stage eigenvalues and

ψ
(1)
kk′(s), ψ

(2)
pp′(s) and ψ

(3)
vv′(s) are the second-stage eigenfunctions.

Note that the above outlined extension models correlations between electrodes within a

scalp region and correlations between electrodes across different scalp regions as exchange-

able. While in our experience, the first assumption is easier to verify for EEG data, the second

assumption may be relaxed by modeling spatial correlations between electrodes across differ-

ent scalp regions based on anatomical distances between the scalp regions. Distance-based

correlations can be modeled by the addition of a spatial process to the expansion in (2.6)

similar to the approach taken by [Staicu et al., 2010]. Authors model multilevel functional

data where spatial correlations are modeled at the lowest level of the hierarchy via a ran-

dom spatial process. For EEG applications, the random spatial process would be added at

the region level rather than the lowest level of the hierarchy which is the electrode level.

This extension requires further developments and is identified as a topic for future research.

Finally note that both the mean and the random effects structures can include additional

terms such as diagnostic group (e.g. ASD, TD) or condition (e.g. expected, unexpected)

for incorporation of different experiment specific factors into MD-FPCA. For illustration of

the methodology, we model condition difference trajectories directly in applications to the

implicit learning paradigm in the next section, where the diagnostic groups are modeled

separately since we expect the ASD and TD groups to be different in mean trends as well as

covariation.
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2.3 Application to the implicit learning study

2.3.1 Description of the data structure

In our motivating implicit learning study, EEG data are recorded on 37 ASD and 34 TD

children for 120 trials per condition (expected and unexpected) for each subject at 128 elec-

trodes. The EEG signals are sampled at 250Hz, producing 250 within-trial time points per

waveform spanning 1000ms. The standard preprocessing steps of the data include artifact

detection, bad channel replacement, referencing and baseline corrections. Next, the meta-

preprocessing of Hasenstab et al. [2015] is applied to the data, following the preprocessing

steps, to increase the SNR to a level at which P3 peak locations can be identified without

collapsing the entire longitudinal dimension (via averaging the ERP curves over all trials).

The meta-preprocessing step averages ERP functions separately for each subject, electrode

and condition, in a moving window of 30 trials to identify the P3 peak location in the aver-

aged ERPs (see Appendix 2B for more details). We capture the shape of the entire P3 peak

from these averaged ERPs by examining a 140ms window around the P3 peak identified in

the meta-preprocessing step (i.e. functional time domain around the P3 peak location is

t ∈[-70ms, 70ms] in 4ms increments). The length of the functional time domain of 140ms

is determined by scientific practice and our own observation of the length of the entire P3

peak across trials. Note that the ERP curves in the described functional domain are already

aligned across subjects, trials and electrodes, since we consider a symmetric window around

each P3 peak. Since the interest lies in condition differentiation characterizing implicit learn-

ing, we focus on ERP difference functions obtained by subtracting the meta-preprocessed

ERP corresponding to the unexpected condition from the expected condition. For illustra-

tion of the proposed methods, MD-FPCA is applied to meta-preprocessed difference ERPs

from four electrodes in the right frontal region of the scalp, observed in trials s ∈[5, 60], where

maximal condition differentiation is detected. Note that the longitudinal time domain starts

at trial 5 to avoid boundary effects.

The proposed MD-FPCA algorithm is applied to the ASD and TD groups separately.

Five subjects are removed as outliers prior to analysis. One of the removed subjects in the
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ASD group did not have available data until trial 20 and the remaining four subjects (two

in each diagnostic group) had ERP difference functions more than 2 standard deviations

away from their respective group means for most of the observations across both functional

and longitudinal time domains. In addition, a single electrode is omitted from two subjects

in the TD group due to highly nonhomogeneous trends compared to the other electrodes.

The bandwidths of the mean functions and covariance smooths are selected using GCV and

visual inspection of the one- and two-dimensional smooths. The selected bandwidths for

the two-dimensional smoothing of the overall and subunit mean functions and total and

within covariances in the first-stage decompositions are (30ms, 30 trials), (30ms, 30 trials),

(15ms, 15ms), (15ms, 15ms) in the ASD group and (30ms, 30 trials), (30ms, 30 trials), (5ms,

5ms), (5ms, 5ms) in the TD group. The selected bandwidths for the mean functions and

covariances in the second-stage decompositions are (15 trials, 15 trials), (5 trials, 5 trials) in

the ASD group and (10 trials, 10 trials), (15 trials, 15 trials) in the TD group.

2.3.2 Data analysis results

Overall mean surface estimates µ(t, s) of ERP difference trajectories for both diagnostic

groups are given in Figure A2.5 (a-b). The ASD mean surface displays a trend of positive

concave condition differentiation across trials that is uniform across ERP time. The mean

surface peaks around trial 35 where there is a slight differential increase around the P3 peak

location (indexed by functional time t = 0). In contrast to the ASD mean surface, the TD

group exhibits a trend of negative differentiation across trials with much smaller magnitude,

including a prominent dip of negative differentiation around trial 25. Since the mean surfaces

represent condition differentiation, the opposing mean trends between diagnostic groups

imply that children with ASD have higher EEG values in the expected condition while those

in the TD group have higher values in the unexpected condition. This is consistent with our

previous findings in Hasenstab et al. [2015] and Hasenstab et al. [2016]. Another difference

between diagnostic groups is in the timing of maximal condition differentiation (trial 35

for ASD and trial 25 in TD). This implies that while both diagnostic groups differentiate

between the conditions, implying implicit learning, the children in the TD group are learning
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at higher speeds. Finally, while the entire P3 peak trajectory is increasing until trial 35 in

the ASD group, there is a narrower window around the P3 peak that is minimized at the

time of maximal condition differentiation in TD youth. The electrode specific means have

similar patterns to the overall mean surfaces and are deferred to Figures A2.2 and A2.3.

Estimated leading subject level first-stage eigenfunctions φ
(1)
k (t|s) and second-stage eigen-

functions ψ
(1)
kk′(s) are given in Figures 2.3 and 2.4 for the ASD and TD groups, respectively.

Recall that while the eigenfunctions φ
(1)
k (t|s) display modes of variation in the functional

dimension at a fixed longitudinal time s, the eigenfunctions ψ
(1)
kk′(s) display modes of varia-

tion of the first-stage eigenscores in the longitudinal dimension. The products of these two

quantities create subject level principal surfaces ϕ
(1)
kk′(t, s) in (2.5) capturing the variation

along both dimensions. Note that the model components φ
(1)
k (t|s) and ψ

(1)
kk′(s) within them-

selves are quantities of interest and viewing them together provides an easily interpretable

summary of the total variation conditional on and along longitudinal time.

In the ASD group, the uniform variation across ERP time in the leading component

φ
(1)
1 (t|s) (Figure 2.3 (a)), coupled with ψ

(1)
1k′(s), k

′ = 1, 2 (Figure 2.3 (b)) displaying variation

along trials, indicate that majority of the variation is in the longitudinal/trial dimension at

intermediate and later trials, k′ = 1 (solid, corresponding to 27% of total variation explained),

and at the boundary trials, k′ = 2 (dashed, corresponding to 18.4% of variation explained).

The resulting product principal surfaces and surface intervals µ(t, s) ±
√
λ

(1)
1k′ϕ

(1)
1k′(t, s) for

k′ = 1 and 2, leading to the same interpretations, are given in Figures A2.6-7, Figure A2.5

(c) and Figure A2.5 (a), respectively. The second component φ
(1)
2 (t|s) (Figure 2.3 (c)) of

the subject level variation conditional on longitudinal time, captures a uniformly concave

mode of variation in ERP time maximized at the P3 peak location t = 0. Estimated ψ
(1)
21 (s)

(Figure 2.3 (d)) (solid, 1.8%), capturing modes of variation in the trial direction, indicates

that the variation around the P3 peak is maximized at trial 35, the trial of maximum positive

condition differentiation in the overall mean surface in the ASD group. There is additional

variation in the boundary and intermediate trials in component ψ
(1)
22 (s) (Figure 2.3 (d))

(dashed, 1%).

As in the flat contour of the ASD leading eigenfunction, the leading component φ
(1)
1 (t|s)
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Figure 2.2: (a-b) Estimated mean surfaces, µ(t, s), for the ASD and TD groups, respectively.
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11 (t, s), for the ASD and TD groups,

respectively.
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Figure 2.3: (a, c) Estimated leading subject level first-stage eigenfunctions, {φ(1)
k (t|s)}, k =

1, 2, respectively, for the ASD group. (b, d) Estimated leading subject level second-stage

eigenfunctions, {ψ(1)
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Figure 2.4: (a, c) Estimated leading subject level first-stage eigenfunctions, {φ(1)
k (t|s)}, k =

1, 2, respectively, for the TD group. (b, d) Estimated leading subject level second-stage

eigenfunctions, {ψ(1)
kk′(s)}, k, k′ = 1, 2.
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(Figure 2.4 (a)) for the TD group is also fairly flat with majority of the variation still in

the longitudinal/trial dimension at the early and intermediate trials as captured by ψ
(1)
11 (s)

(Figure 2.4 (b)) (solid, 36.9%) and later trials as captured by ψ
(1)
12 (s) (Figure 2.4 (b)) (dashed,

18.6%). (See Figure A2.5 (d) and Figure A2.5 (b) for surface intervals µ(t, s)±
√
λ

(1)
1k′ϕ

(1)
1k′(t, s),

k′ = 1 and 2, respectively.) The estimated φ
(1)
2 (t|s) (Figure 2.4 (c)) captures leftover variation

around the peak location and in the boundaries of the functional/ERP time domain, with

variation in the trial direction maximized at boundary trials as reflected in ψ
(1)
21 (s) (Figure

2.4 (d)) (solid, 1.3%) and intermediate trials as reflected in ψ
(1)
22 (s) (Figure 2.4 (d)) (dashed,

0.9%). In summary, while the majority of the variation is in the longitudinal/trial dimension

for both ASD and TD groups, most of the variation is observed at intermediate and later trials

in the ASD group and at early and intermediate trials in the TD group. For interpretations

on the electrode level variation and subject-specific eigenscores, see Appendix 2C.

The number of principal components at both stages of the MD-FPCA fit are selected to

explain at least 90% of the variation. The breakdown of the total variation explained by each

component of the subject and electrode level decompositions are given in Table 1 for the

ASD and TD groups. While two components are selected in the first-stage decompositions

uniformly across levels and diagnostic groups, three to four components are needed in the

second-stage decompositions. The variability explained by the subject level variation in

both stages of the MD-FPCA across longitudinal time (ρ) is estimated to be 62% and 72%,

respectively, in the ASD and TD groups. This indicates that the longitudinal functional

trajectories observed at the four electrodes in the right frontal region within a subject behave

similarly, as expected, and the majority of the total variation is explained at the subject

level for both diagnostic groups. Nevertheless, the similarity among electrodes seems to

be larger in the TD group, although the difference between diagnostic groups is not found

to be significant (90% percentile CI’s for ρ for ASD and TD groups are (0.53, 0.71) and

(0.67, 0.82), respectively, based on a bootstrap procedure on the meta-preprocessing and

MD-FPCA using 200 data sets sampled with replacement from subjects). Figure A2.8 (a-b)

display the estimated proportion of variability ρ(s) explained at the subject level in the first-

stage of MD-FPCA for the ASD and TD groups, respectively. The average estimated ρ(s)
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Figure 2.5: (a-b) Estimated proportion of variability explained at the subject level in the
first-stage of MD-FPCA for the ASD and TD groups, respectively. The thin black line
corresponds to the raw proportion of variability explained while the thick line corresponds
to its smooth.

values again are higher in the TD group, where locations (along s) of maximum condition

differentiation (trials 20 to 30) correspond to higher estimated ρ(s) values in both groups.

The similarity among electrodes within a subject seems to get stronger as the children start

differentiating between the conditions, especially in the TD group.

Table 2.1: The number of principal components at both stages of the MD-FPCA fit selected
to explain at least 90% of the variation.

Level 1

ASD TD

k = 1 k = 2 k = 1 k = 2

k′ = 1 .270 .018 .369 .013
k′ = 2 .184 .010 .186 .009
k′ = 3 .133 .005 .141 .002
k′ = 4 / .004 / /

Level 2

ASD TD

p = 1 p = 2 p = 1 p = 2

p′ = 1 .217 .006 .118 .007
p′ = 2 .085 .004 .074 .005
p′ = 3 .062 .002 .055 .003
p′ = 4 / / .014 .001

To conclude, we briefly highlight the additional insights gained by utilizing all the di-

mensions of the data in the analysis without collapsing across longitudinal, functional or

electrode repetitions. Note that the analysis of the longitudinal functional condition differ-

entiation trajectories averaged over the electrodes, collapsing the electrode dimension, can
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be carried out by DFPCA of Chen and Müller [2012] which is a special case of MD-FPCA.

Modeling the electrode dimension allowed us to study the electrode level variability, includ-

ing comparisons to the variability at the subject level and the direction of the variation at

the electrode level. More specifically, we learned that the majority of the variability was

explained at the subject level in both groups (62% and 72% in ASD and TD, respectively).

In addition, the proposed index ρ(s) provided a more detailed depiction of the proportion of

total variability at the subject level as a function of longitudinal time.

Similarly, the analysis of the data collapsed over either the functional or longitudinal

dimensions can be carried out by ANOVA-FPCA of Di et al. [2009], another special case of

MD-FPCA. Not collapsing the longitudinal dimension (enabled by the meta-preprocessing

and MD-FPCA) revealed critical information in the application to the implicit learning

study. We were able to characterize the entire learning process as well as its speed in

addition to comparisons between groups. There is exploratory evidence that the TD group

starts differentiating between the two conditions of the experiment earlier (trial 25) than the

ASD group (trial 35). Modeling the P3 waveform instead of just the P3 peak amplitude (see

our previous work [Hasenstab et al., 2015, 2016]) allowed us to compare the variation in the

longitudinal and functional dimensions. Variations/changes over longitudinal time (trials)

explain more of the total variation in the data than variation in the functional dimension.

We also observed that longitudinal changes in the P3 waveform morphology were different

between the two groups. While the entire P3 peak trajectory increased until trial 35 in the

ASD group, the TD group showed condition differentiation in a much narrower functional

time window around the P3 peak at the time of maximal condition differentiation.

2.4 Simulation

We study the finite sample properties of MD-FPCA through extensive simulations outlined

in Appendix 2D. MD-FPCA recovers the true first- and second-stage model components for

both small (N = 30) and moderate (N = 100) sample sizes, under varying SNRs (between

1 and 100) and sparsity levels in the longitudinal time domain, with up to 40% of data
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missing at random longitudinal time points per subject. The median relative squared errors

(RSEs) for all model components decrease with a denser design, increasing sample size and

a higher SNR with the exception of the RSEs of the second-stage eigenfunctions which do

not change with increasing SNR. This may be due to the fact that these quantities do not

directly depend on data observed with measurement error.

2.5 Discussion

The proposed MD-FPCA has been presented under general settings without stringent as-

sumptions on the separability of the longitudinal, functional and electrode covariances. Note

that under the additional assumptions that modes of variability in the functional dimension

stay the same across longitudinal times and electrode locations, or that modes of variability

in the longitudinal dimension stay the same across functional times and electrode locations,

more parsimonious versions of MD-FPCA can be derived using the marginal and product

FPCA ideas of Park and Staicu [2015] and Chen et al. [2016]. These extensions would lead

to a common set of eigenfunctions in functional time across longitudinal times and electrode

locations and/or a common set of eigenfunctions in longitudinal time across functional time

and electrode locations. Finally, while we focused on modeling the P3 peak curves in the

current application, MD-FPCA can be extended to model the entire ERP waveform in the

functional dimension. This extension would require warping of the ERP waveforms after

meta-preprocessing according to data features (e.g. N1, P3) while simultaneously carrying

out the multi-dimensional functional principal components decompositions.

Supporting materials

The proposed estimation algorithm, the meta-preprocessing step, additional data analysis

interpretations, and the simulation studies are available in the appendices. MATLAB code,

a sample simulated data set and a tutorial for implementing the MD-FPCA algorithm are

also available on Github [https://github.com/aaron-scheffler/MD-FPCA].
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CHAPTER 3

Hybrid Principal Components Analysis

Electroencephalography (EEG) data possess a complex structure that includes regional,

functional, and longitudinal dimensions. Our motivating example is a word segmentation

paradigm in which typically developing (TD) children and children with Autism Spectrum

Disorder (ASD) were exposed to a continuous speech stream. For each subject, contin-

uous EEG signals recorded at each electrode were divided into one-second segments and

projected into the frequency domain via Fast Fourier Transform. Following a spectral prin-

cipal components analysis, the resulting data consist of region-referenced principal power

indexed regionally by scalp location, functionally across frequencies and longitudinally by

one-second segments. Standard EEG power analyses often collapse information across the

longitudinal and functional dimensions by averaging power across segments and concentrat-

ing on specific frequency bands. We propose a hybrid principal components analysis (HPCA)

for region-referenced longitudinal functional EEG data which utilizes both vector and func-

tional principal components analyses and does not collapse information along any of the

three dimensions of the data. The proposed decomposition only assumes weak separabil-

ity of the higher-dimensional covariance process and utilizes a product of one dimensional

eigenvectors and eigenfunctions, obtained from the regional, functional, and longitudinal

marginal covariances, to represent the observed data, providing a computationally feasible

nonparametric approach. A mixed effects framework is proposed to estimate the model

components coupled with a bootstrap test for group level inference, both geared towards

sparse data applications. Analysis of the data from the word segmentation paradigm leads

to valuable insights about group-region differences among the TD and verbal and minimally

verbal children with ASD. Finite sample properties of the proposed estimation framework
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and bootstrap inference procedure are further studied via extensive simulations.

3.1 Introduction

Approximately 30% of children with Autism Spectrum Disorder (ASD) never gain spoken

language (referred to as ‘minimally verbal’) and the reasons are largely unknown [Tager-

Flusberg and Kasari, 2013]. A major barrier in conducting research with minimally verbal

children is the limited availability of appropriate assessment techniques. The recording of

electroencephalography (EEG) signals during our motivating study, involving a word seg-

mentation paradigm, gave researchers a unique opportunity to compare and contrast neu-

rocognitive processes involved in language and communication development among verbal

ASD (vASD), minimally verbal ASD (mvASD) and typically developing (TD) children, with-

out relying on the children’s ability to understand directions or provide an overt behavioral

response. EEG is a popular non-invasive method for measuring voltage fluctuations across

scalp regions in order to characterize neurocognitive processes and disorders. Children lis-

tened to a continuous speech stream which contained four ‘made-up’ words, each composed

of three different phonemes or units of sound (Figures 3.1(a)-(b)). The four words were

repeated 45 times in random order such that no word was used twice in a row and there was

no time gap between words. The full experiment took 144 seconds. Children were expected

to segment the speech stream, i.e. identify boundaries between words, by recognizing the

differential patterns in the phonemes [Scott-Van Zeeland et al., 2010].

EEG studies, including both event-related and resting state paradigms, create high-

dimensional data with regional, functional and longitudinal dimensions. Data from rest-

ing state paradigms are typically analyzed in the frequency domain, while event-related

paradigms, where stimuli are applied repeatedly throughout the experiment, are analyzed

either in the time or frequency domain. In our word segmentation paradigm, an event-

related study, quantities considered of interest are in the frequency domain. Hence EEG

signals, collected from an 128 electrode sensor net, were divided into one-second segments

and projected into the frequency domain via Fast Fourier Transform (FFT). Given the fact
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that EEG signals have low spatial resolution and that neighboring electrodes have similar

power spectra, spectral principal components analysis (PCA) has been proposed to com-

bine information from EEG signals recorded at electrodes within a scalp region [Ombao and

Moon-Ho, 2006]. This pre-processing step produces region-referenced principal power, fol-

lowing a region-referenced longitudinal functional stochastic process. Specifically, the scalp

locations represent the regional dimension, principal power obtained across frequencies repre-

sents the functional dimension and the one-second EEG segments represent the longitudinal

dimension. Similarly, if the quantities of interest in an event-related paradigm are in the

time domain, event-related potentials (ERP) time-locked to each stimulus (potentially com-

bined over electrodes within a scalp region) would represent the functional dimension, and

repetitions of the stimuli throughout the experiment would represent the longitudinal di-

mension. Note that all three dimensions of the observed data carry distinct interpretations

and that longitudinal time (captured through segments across the experiment) may play

an important role, especially in learning paradigms in which the focus is on changes over

experimental time as learning evolves.

Standard analysis of high-dimensional EEG data involves collapsing information along

multiple dimensions. The longitudinal dimension is collapsed when power spectra are aver-

aged over segments or ERP curves are averaged over stimuli. Similarly, analysis of spectral

power from specific frequency bands or specific ERP curve features corresponds to collapsing

of the functional dimension, while averages over scalp regions collapse the regional dimension

of the data We propose a hybrid principal components analysis (HPCA) for region-referenced

longitudinal functional EEG data that does not collapse any of the three dimensions. We call

the proposed decomposition hybrid, since it combines vector principal components analysis

along the regional dimension (lacking a time order) and functional principal components

analysis along the longitudinal and functional dimensions, providing an efficient nonpara-

metric means of modeling high-dimensional EEG data. The HPCA decomposition involves a

product of one-dimensional eigenvectors and eigenfunctions obtained from marginal covari-

ances along the three dimensions of the data. A central assumption in this low dimensional,

and hence computationally feasible, framework is the weak separability of the overall covari-
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Speech stream

(c)

Figure 3.1: (a) Four ‘made-up’ words formed by concatenating three phonemes from a set of
twelve phonemes without repetition in the word segmentation paradigm. (b) The artificial
speech stream generated during the word segmentation paradigm. Breaks between phonemes
are denoted by a dash and breaks between words are denoted by a dot. (c) The estimated
mean log principal power µ(ω) for subjects pooled across the TD, vASD, and mvASD groups.
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ance process of the observed data. The concept of weak separability, recently proposed by

Chen and Lynch [2017], refers to the idea that the covariance can be approximated by a

weighted sum of separable covariance components and implies that the direction of variation

(i.e. eigenvectors/eigenfunctions) along one of the three dimensions of the EEG data is the

same across fixed slices of the other two dimensions. Note that this assumption is weaker

than the commonly assumed strong separability of covariance surfaces in higher dimensions,

which requires that the entire covariance structure, not only the directions of variation, is

the same up to a constant across fixed slices of the other dimensions.

The literature on functional data analysis has proliferated over the past two decades, with

methodological developments motivated by the complex dependency structures of repeat-

edly measured curves. Most of the recent developments on functional principal components

analysis (FPCA) consider either longitudinally or spatially repeated functional data but

not both. For longitudinally repeated functional data, Di et al. [2009] proposed multilevel

ANOVA decompositions. Greven et al. [2010] extended their work to linear longitudinal

decompositions, and Chen and Müller [2012], Park and Staicu [2015], Chen et al. [2016]

and Hasenstab et al. [2017] considered more flexible nonlinear forms. For spatially repeated

functional data, Staicu et al. [2010], Zhou et al. [2010] and Liu et al. [2017] considered para-

metric forms, while Huang et al. [2017] proposed a nonparametric decomposition. Of the

proposed methods, only Hasenstab et al. [2017] decomposed both longitudinal and regional

sources of functional variation in three dimensions via a multi-dimensional FPCA procedure

(MD-FPCA). MD-FPCA, motivated by the analysis of the high-dimensional event-related

ERP data in the time domain (through ERPs), treated scalp regions as exchangeable. The

proposed HPCA method relaxes this assumption and involves a much simpler and compu-

tationally efficient decomposition via the weak separability of the covariance process. Prod-

uct FPCA of Chen et al. [2016] also relies on weak separability and involves a product of

one-dimensional eigenfunctions in the proposed decomposition; but their developments are

obtained for two-dimensional functional data. HPCA extends product FPCA approach of

Chen et al. [2016] to higher dimensions targeting region-referenced longitudinal functional

EEG data and combining vector and functional principal components analysis. In addition,
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while developments for product FPCA have only focused on densely measured longitudinally

observed functional data, the estimation and inference procedures proposed for HPCA focus

on sparse EEG data applications.

The outline of the paper is as follows. Section 3.2 introduces spectral PCA as a pre-

processing step with minimal loss of information that produces region-referenced longitudi-

nal functional data. Section 3.3 introduces the HPCA decomposition, develops an innovative

mixed effects framework for estimation of the model components, specifically geared towards

sparse data applications, and outlines a bootstrap procedure for group-level inference. We

highlight that the developments for sparse data applications are novel. Prediction of subject-

specific scores based on sparse data have not yet been considered for decompositions based

on weak separability of the covariance process, such as the product FPCA. The proposed

mixed effects framework is also utilized to assess the weak separability assumption via the

random effects correlation structure. Section 3.4 provides insights from the word segmenta-

tion paradigm, including inference on group-region differences in spectral dynamics among

TD, vASD, and mvASD children. We assess the proposed decomposition and the associated

bootstrap test with an extensive simulation study summarized in Section 3.5 and conclude

with a discussion in Section 3.6.

3.2 Spectral PCA and the resulting region-referenced longitudinal

functional EEG data

Given that EEG signals measured on neighboring electrodes are highly multi-collinear due to

their spatial proximity, the analysis of EEG data collected from high density electrode arrays

is often preceded by reduction of the electrode dimension to discard redundant information

and facilitate interpretation. When analysis takes place in the frequency domain, dimensional

reduction is often unsatisfactorily carried out by selecting spectra from a single electrode or

averaging spectra within a scalp region. Alternatively, given that electrodes within a scalp

region possess similar spectra, spectral PCA has been proposed to pool spectral information

within a scalp region with minimal loss of information. Spectral PCA applications in the
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analysis of time series data date back to Brillinger [1981], but we follow a more recent

application to EEG data by Ombao and Moon-Ho [2006]. They utilize spectral PCA as

an exploratory tool to consolidate power spectra in a scalp region by utilizing overlapping

segments of the continuous multi-channel time-series recorded at multiple electrodes in a

seizure study. In contrast, we perform spectral PCA on non-overlapping EEG segments as

a pre-processing step to be followed by scalp-wide analysis.

We highlight the outline of spectral PCA procedure here and defer details to Appendix

A of the Supplementary Materials. Fourier coefficients at a fixed frequency are obtained via

FFT for EEG signals measured from electrodes within the same scalp region and collected in

a region-specific periodogram matrix. Following smoothing of each term of the periodogram

matrices over frequencies, principal power is defined as the normalized leading eigenvalue of

the smoothed periodogram matrix, representing the common variation in the fixed frequency

across the electrodes (relative to variation in other frequencies) in a given scalp region along

the direction of the leading eigenvector. The interpretation of principal power is closely

tied to the goal of spectral PCA in combining signals across electrodes within a given scalp

region. The assumption that electrodes within a scalp region have similar spectral densities

implies that the region-specific periodogram matrix at a particular frequency would be of low

rank. Hence, extracting the largest eigenvalue would serve as a reasonable summary of the

spectral dynamics within a brain region. While our analysis focuses on the largest eigenvalue

as principal power, note that second and third eigenvalues can also be modeled similarly via

HPCA, allowing further analysis of the spectral dynamics among brain regions. Spectral

PCA being applied at each segment and region for each subject, yields region-referenced

longitudinal functional data, i.e. principal power as a function of region r, frequency ω

and segment s, denoted by Ydi(r, ω, s). If a given subject does not have valid data at a

fixed segment then the principal power for that segment is considered missing. We model

Ydi(r, ω, s) as a summary measure of the power dynamics across the scalp.
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3.3 Hybrid principal components analysis (HPCA)

3.3.1 The HPCA decomposition

Let Ydi(r, ω, s) denote the log principal power, which comprises region-referenced longitu-

dinal functional data observed for subject i, i = 1, . . . , nd, from group d, d = 1, . . . , D,

in region r, r = 1, . . . , R, at frequency ω, ω ∈ Ω and segment s, s ∈ S. Here Ω and

S represent the functional and longitudinal domains, respectively, and Ydi(r, ω, s) is as-

sumed to be square-integrable. Even though subjects may not be observed at all seg-

ments s ∈ S, we use a common index set in the formulations below for notational ease.

Note that the smoothing-based estimation procedure proposed in the next section, will

readily extend to subject-specific sparse longitudinal domains. Further let Zdi(r, ω, s) =

Ydi(r, ω, s) − µ(ω, s) − ηd(r, ω, s) − εdi(r, ω, s) denote a de-meaned and de-noised region-

referenced stochastic process, where µ(ω, s) and ηd(r, ω, s) denote the functional fixed effects

that represent the overall mean function and group-region shifts, respectively, and εdi(r, ω, s)

denotes the measurement error with mean zero and variance σ2
d.

The proposed HPCA decomposition provides a lower dimensional approximation of a

stochastic process defined over regional, functional and longitudinal dimensions in terms of

an empirical orthonormal basis based on eigenvectors and eigenfunctions obtained from the

marginal covariances in each dimension. A central assumption of HPCA is the weak sepa-

rability of the overall three-dimensional covariance process, which implies that the direction

of variation (i.e. eigenvectors/eigenfunctions) along any one of the three dimensions of the

EEG data is the same across fixed slices of the other two dimensions. This assumption is less

stringent than the strong separability commonly assumed in the analysis of spatio-temporal

stochastic processes, which requires that the entire covariance process along one dimension,

not only the direction of variation, is the same up to a constant across fixed slices of the

other dimensions. Note that the eigenfunctions or eigenvectors being the same does not

necessarily imply the same covariance surface at fixed slices of the other dimensions due to

weighting through the eigenvalues. We refer readers to Chen and Lynch [2017] for a detailed

comparison of weak versus strong separability and note that we propose two separate checks
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for the weak separability assumption in Section 3.3.2 and Appendix D of the Supplementary

Materials, through a test for the correlation structure of the random effects in the mixed

effects modeling and through visualization of the data, respectively.

Under weak separability, the common eigenfunctions and eigenvectors along each of the

three dimensions can be estimated using the marginal covariances. Let the functional and

longitudinal marginal covariance surfaces be defined as

Σd,Ω(ω, ω′) =
∑
r

∫
S

cov{Zdi(r, ω, s), Zdi(r, ω′, s)}ds =
∞∑
`=1

τd`,Ωφd`(ω)φd`(ω
′),

Σd,S(s, s′) =
∑
r

∫
Ω

cov{Zdi(r, ω, s), Zdi(r, ω, s′)}dω =
∞∑
m=1

τdm,Sψdm(s)ψdm(s′),

and let Σd,R denote the regional marginal covariance matrix with (r, r′)-th element equal to

(Σd,R)r,r′ =

∫
S

∫
Ω

cov{Zdi(r, ω, s), Zdi(r′, ω, s)}dωds =
R∑
k=1

τdk,Rvdk(r)vdk(r
′),

where φd`(ω) and ψdm(s) are the common eigenfunctions of the functional and longitudinal

marginal covariance surfaces, respectively; vdk(r) are the common eigenvectors for the re-

gional marginal covariance matrix; and τd`,Ω, τdm,S and τdk,R are the respective eigenvalues.

While we estimate the regional marginal covariance matrix nonparametrically, we note that

parametric approaches have been quite popular for modeling spatial covariances. An im-

portant difference of the current EEG application from typical environmental applications

is that in the latter spatial data may typically be observed only once over the location grid

at a fixed time point, while we observe the region-specific longitudinal functional EEG data

repeatedly over subjects. Parametric assumptions to interpolate information across regions

are thus not necessarily needed in modeling the spatial dependence in our application and

we use a nonparametric region marginal covariance matrix, mimicking the nonparametric

marginal functional and longitudinal covariance surfaces.

Utilizing the eigenfunctions and eigenvectors of the marginal covariances, the HPCA
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decomposition of Ydi(r, ω, s) is given as

Ydi(r, ω, s) = µ(ω, s) + ηd(r, ω, s) + Zdi(r, ω, s) + εdi(r, ω, s)

= µ(ω, s) + ηd(r, ω, s) +
R∑
k=1

∞∑
`=1

∞∑
m=1

ξdi,k`mvdk(r)φd`(ω)ψdm(s) + εdi(r, ω, s).(3.1)

In (3.1), the subject-specific scores ξdi,k`m are defined through the projection, 〈Zdi(r, ω, s),

vdk(r)φd`(ω)ψdm(s)〉 =
∑R

r=1

∫ ∫
Zdi(r, ω, s)vdk(r)φd`(ω)ψdm(s)dωds, of the de-meaned and

de-noised stochastic process, Zdi(r, ω, s), onto the orthonormal bases vdk(r)φd`(ω)ψdm(s)

defined as the product of the one-dimensional eigenfunctions and eigenvectors of the marginal

covariances. Note that the set of subject-specific scores (ξdi,k`m) are uncorrelated over regions,

frequencies and segments under weak separability. Hence, the proposed HPCA expansion

also leads to a decomposition of the total covariance, Σd,T{(r, ω, s), (r′, ω′, s′)}, of Ydi(r, ω, s),

as follows,

Σd,T{(r, ω, s), (r′, ω′, s′)} = cov{Zdi(r, ω, s), Zdi(r′, ω′, s′)}+ σ2
dδ{(r, ω, s), (r′, ω′, s′)}

=
R∑
k=1

∞∑
`=1

∞∑
m=1

τd,k`mvdk(r)φd`(ω)ψdm(s)vdk(r
′)φd`(ω

′)ψdm(s′) + σ2
dδ{(r, ω, s), (r′, ω′, s′)},

where τd,k`m = var(ξdi,k`m) and δ{(r, ω, s), (r′, ω′, s′)} denotes the indicator for {(r, ω, s) =

(r′, ω′, s′)}. Note that the total covariance is written as a weighted sum of separable regional,

functional and longitudinal covariances. One way of assessing the weak separability assump-

tion will be to examine the correlation structure of the subject-specific decomposition scores

ξdi,k`m via the mixed effects modeling framework proposed in Section 3.3.2.

In practice, the HPCA decomposition is truncated to include only K, L, and M eigencom-

ponents for the regional, functional and longitudinal marginal covariances in the expansion,

respectively, with truncation based on the fraction of variance explained (FVE). A general

guideline is to initially include marginal eigencomponents in the HPCA expansion that ex-

plain approximately 90% of variation in their respective marginal covariances. Some of these

components may be eliminated after subject-specific scores and their associated variance

components are estimated via the proposed mixed effects modeling framework of Section
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3.3.2, which provide an overall estimate of FVE, not only for the separate marginal covari-

ances, but for the covariance based on the entire data. Details on the selection of the number

of eigencomponents are deferred to Section 3.3.2.

Note that the three-dimensional (3-D) HPCA introduced in (3.1) reduces to a two-

dimensional (2-D) HPCA with the regional and functional dimensions when the longitudinal

dimension may not be of interest or may not exhibit change. Given that the remaining in-

dices and arguments are unchanged, let Ydi(r, ω) denote the region-referenced functional data

with a weakly separable covariance process. Utilizing the eigenfunctions and eigenvectors of

the marginal covariances, the 2-D HPCA decomposition of Ydi(r, ω) can be given as,

Ydi(r, ω) = µ(ω) + ηd(r, ω) + Zdi(r, ω) + εdi(r, ω)

= µ(ω) + ηd(r, ω) +
R∑
k=1

∞∑
`=1

ξdi,k`vdk(r)φd`(ω) + εdi(r, ω),

where model components and the decomposition of the total variance are defined as in the 3-

D HPCA by omitting the longitudinal argument s. The functional dimension can similarly be

collapsed leading to the 2-D HPCA with only the regional and longitudinal dimensions. The

discussion will continue to center on the 3-D HPCA with the understanding that extensions

to 2-D HPCA are available by omitting one of the continuous arguments.

Motivated by the high-dimensional EEG data, both 3-D and 2-D HPCA extend the

product FPCA of Chen et al. [2016] for longitudinally observed functional data by the ad-

dition of a regional dimension. Moreover, HPCA involves a hybrid decomposition for the

region-referenced longitudinal functional EEG data, combining vector and functional prin-

cipal components analysis under the assumption of weak separability. Another important

divergence from the product FPCA formulation is in estimation. Motivated by the longi-

tudinally sparse EEG data, we next propose a novel mixed effects procedure framework for

estimation of the model components, specifically geared towards sparse data applications

(with low number of repetitions and irregular spacing in observations over the longitudinal

dimension). The estimation and testing procedures proposed for the product FPCA largely

depend on projection techniques which are applicable only to densely measured longitudinal
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functional data [Chen et al., 2016, Chen and Lynch, 2017].

3.3.2 Estimation of model components

The section below outlines the estimation of all the model components, including functional

fixed effects, marginal covariances and eigencomponents, a novel mixed effects framework

for estimation of subject-specific decomposition scores and associated variance components,

and a recommendation to select the number of eigencomponents included in the proposed

HPCA. We begin by introducing the HPCA estimation algorithm.

Algorithm: HPCA Estimation Procedure

1. Estimation of Fixed Effects
(a) Calculate µ̂(ω, s) =

∑D
d=1 µ̂d(ω, s) by applying a bivariate penalized spline

smoother to all observed data
{ω, s, Ydi(r, ω, s) : i = 1, . . . , nd; r = 1, . . . , R; ω ∈ Ω; s ∈ S}.

(b) Calculate η̂d(r, ω, s) by applying a bivariate penalized spline smoother to all

observed data {ω, s, Ŷdi(r, ω, s)− µ̂(ω, s) : i = 1, . . . , nd; ω ∈ Ω; s ∈ S}.
2. Estimation of Marginal Covariances and Measurement Error Variance

(a) Calculate Σ̃d,Ω(ω, ω′) and Σ̃d,S(s, s′) by applying bivariate penalized spline

smoothers to the pooled covariances, Σ̂d,Ω(ω, ω′) and Σ̂d,S(s, s′), respectively.
(b) Calculate σ̂2

d by averaging the measurement error variance estimates σ̂2
d,Ω and

σ̂2
d,S .

(c) Calculate Σ̃d,R by removing the estimated measurement error variance σ̂2
d from

the diagonal entires of the pooled covariance Σ̂d,R.
3. Estimation of Marginal Eigencomponents

(a) Employ FPCA on Σ̃d,Ω(ω, ω′) and Σ̃d,S(s, s′) to estimate the eigenvalue,
eigenfunction pairs, {τd`,Ω, φd`(ω) : ` = 1, . . . , L} and {τdm,S , ψdm(s) :
m = 1, . . . ,M}, respectively.

(b) Employ PCA on Σ̃d,R to estimate the eigenvalue, eigenvector pairs
{τdk,R, vdk(r) : k = 1, . . . K}.

4. Estimation of Variance Components and Subject-Specific Scores via Linear Mixed
Effects Models

(a) Calculate κ̂dg and σ̂2
d by fitting the proposed linear mixed effects model.

(b) Calculate ζ̂dig as the BLUP ζ̂dig = E(ζdig|Ydi).
(c) Select G′ such that FV EdG′ > 0.8 for d = 1, . . . , D and form predictions

Ŷdi(r, ω, s).
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We defer details on steps 1-3 to Appendix B of the Supplementary Materials in which we

refer readers to previous works on well-established mean, covariance, and eigencomponent

estimation. However, we briefly highlight two novel estimation procedures found in step 2 for

the measurement error variance, σ2
d, and regional marginal covariance, Σd,R. While previous

authors obtain estimates of the measurement error variance using smoothing techniques on

the raw covariance from a single dimension [Yao et al., 2005, Park and Staicu, 2015], we

adapt this method to high dimensional settings by pooling information across both the func-

tional and longitudinal marginal covariances. We then use this pooled estimate to remove

the measurement error variance from the diagonals of the raw regional marginal covariance,

which as a matrix is not amenable to smoothing techniques. Thus, we are able to leverage in-

formation from both the functional and longitudinal dimensions to obtain a decontaminated

estimate of the regional marginal covariance.

In step 4, we utilize the estimated functional fixed effects and marginal eigencomponents

to propose a linear mixed effects framework for modeling sparsely observed region-referenced

longitudinal functional EEG data. In addition to allowing estimation of subject-specific

scores under the assumption of their joint normality with the measurement error, the pro-

posed mixed effects framework also provides final estimates for the corresponding variance

components and the measurement error variance. The variance components estimates asso-

ciated with the subject-specific scores are utilized in selection of the number of eigencom-

ponents included in the HPCA decomposition via estimation of the proportion of variance

explained, as well as in the construction of a hypothesis testing procedure for group-level

inference via the bootstrap. Finally, the proposed mixed effects framework provides an op-

portunity to check the weak separability assumption via examining the correlation structure

of the random effects.

For ease of notation, we replace the triple index k`m in HPCA truncated at K, L, and

M with a single index g = (k − 1) +K(`− 1) +KL(m− 1) + 1,

Ydi(r, ω, s) = µ(ω, s) + ηd(r, ω, s) +
G∑
g=1

ζdigϕdg(r, ω, s) + εdi(r, ω, s),
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where ϕdg(r, ω, s) = vdk(r)φd`(ω)ψdm(s), ζdig = 〈Zdi(r, ω, s), ϕdg(r, ω, s)〉, κdg = cov(ζdig) and

G = KLM . Denote by Ydi the vectorized form of Ydi(r, ω, s) over the subject-specific region,

frequency and segment grid for subject i, i = 1, . . . , nd. In our EEG application, while

the region and frequency grids are the same for all subjects, the segment grid is subject-

specific due to data quality issues. Similar subject-specific vectorized forms for the functional

fixed effects, µ(ω, s) and ηd(r, ω, s), the region-referenced stochastic process Zdi(r, ω, s), the

measurement error εdi(r, ω, s), and the multidimensional orthonormal basis ϕdg(r, ω, s) are

denoted by µi, ηdi, Zdi, εdi and ϕdig, respectively. Note that the mean vectors µi, ηdi are

indexed by subject since they are defined over the subject-specific region, frequency and

segment grids. Under the assumption that ζdig and εdi are jointly Gaussian, the proposed

linear mixed effects model is given as

Ydi = µi + ηdi +Zdi + εdi = µi + ηdi +
G∑
g=1

ζdigϕdig + εdi, for i = 1, . . . , nd. (3.2)

The model can be fit separately in each group, d = 1, . . . , D, with both µi and ηdi previously

obtained by smoothing. The functional, longitudinal and regional dependencies in Ydi are

induced through the subject-specific random effects ζdig in (3.2). Given estimates for µi, ηdi

and ϕdig, estimates of the variance components, κdg and σ2
d are obtained using maximum

likelihood.

Following Yao et al. [2005] in using conditional expectations to estimate subject-specific

scores for sparse functional data, the ζdig are estimated using best linear unbiased prediction

(BLUP), ζ̂dig = E(ζdig|Ydi) = κ̂dgϕ̂digΣ̂
−1
Ydi

(Ydi−µ̂i−η̂di), where Σ̂Ydi
=
∑

g κ̂dgϕ̂digϕ̂
′
dig+σ̂

2
dIi

with Ii denoting the identity matrix of the same dimension as the length of the vectorized

response Ydi. Compared to the projection-based estimator of the subject-specific random

effects in Chen et al. [2016] and Chen and Lynch [2017], which is only applicable for densely

measured longitudinal functional two-dimensional process observed without measurement

error, the proposed approach via mixed effects modeling is specifically geared towards sparse

region-referenced longitudinal functional EEG data observed with measurement error. It

also allows for assessing the weak separability assumption via a likelihood ratio test for
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the independence of the random effects (for details see Appendix D of the Supplementary

Materials).

The subject-specific scores and variance components estimated via the proposed mixed

effects model are used to obtain predicted subject-specific trajectories and to choose the

number of eigencomponents included in the HPCA decomposition. Using subject-specific

scores estimated from the mixed effects model, subject-specific trajectories can be predicted

via Ŷdi(r, ω, s) = µ̂(r, ω, s)+η̂d(r, ω, s)+
∑G′

g=1 ζ̂digϕ̂dig(r, ω, s), where G′ denotes a set of eigen-

components such that the total fraction of variance explained (FV EdG′) is greater than 0.8 in

all groups d = 1, . . . , D. We recommend starting with a larger number G = KLM of eigen-

components in the mixed effects modeling used for the estimation of (κdg : g = 1, . . . , G). In

order to estimate the group-specific fraction of total variance explained via the G eigencom-

ponents, we consider the quantity, FV EdG = {nd
∑G

g=1 κ̂dg}/[
∑nd

i=1{||Ydi(r, ω, s)− µ̂(ω, s)−

η̂d(r, ω, s)|| − R|Ω||S|σ̂2
d}], where ||f(r, ω, s)||2 =

∑R
r=1

∫ ∫
f(r, ω, s)2dωds. Note that the

above formulation utilizes variance components estimates κ̂dg and σ̂2
d obtained from the pro-

posed mixed effects model and considers the ratio of the variance in the G eigencomponents

to the total variation in the observed data Ydi(r, ω, s) without measurement error. The

denominator of FV EdG does not use variation in a large number of eigencomponents to

estimate the total variation in the observed data due to computational costs in fitting the

proposed mixed effects model, but instead uses the three-dimensional norm of the de-meaned

data, similar to the approach by Chen et al. [2016]. As a result, a limitation of FV EdG is

that when measurement error variance is overestimated and scaled by a factor of R|Ω||S|,

FV EdG may exceed 1.

3.3.3 Group-level inference via bootstrap

To test the null hypothesis that all groups have equal means in the scalp region r, i.e.

H0 : ηd(r, ω, s) = η(r, ω, s) for d = 1, . . . D, we propose a parametric bootstrap procedure

based on the HPCA decomposition. The proposed parametric bootstrap generates outcomes

based on the estimated model components under the null hypothesis as Y b
di(r, ω, s) = µ̂(ω, s)+
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η̂(r, ω, s) + Zb
di(r, ω, s) + εbdi(r, ω, s) = µ̂(ω, s) + η̂(r, ω, s) +

∑G′

g=1 ζ
b
digϕ̂dig(r, ω, s) + εbdi(r, ω, s)

in region r and as Y b
di(r, ω, s) = µ̂(ω, s) + η̂d(r, ω, s) + Zb

di(r, ω, s) + εbdi(r, ω, s) = µ̂(ω, s) +

η̂d(r, ω, s) +
∑G′

g=1 ζ
b
digϕ̂dig(r, ω, s) + εbdi(r, ω, s) in the other regions, where subject-specific

scores and measurement error are sampled from ζbdig ∼ N (0, κ̂dg) and εbdi(r, ω, s) ∼ N (0, σ̂2
d).

The proposed test statistic Tr = [
∑D

d=1

∫ ∫
{η̂d(r, ω, s)− η̂(r, ω, s)}2dωds]1/2 is based on the

norm of the sum of the departures of the estimated group-region shifts η̂d(r, ω, s) from the

estimate of the common shift across groups, η(r, ω, s). The common region shift estimate

η̂(r, ω, s), under the null, is set to the point-wise average of the group-region shift estimates,

η̂d(r, ω, s), d = 1, . . . , D. We utilize the proposed parametric bootstrap to estimate the

distribution of the test statistic Tr. The proposed procedure can be extended to test for equal

means from specific frequency bands (i.e. subsets of Ω). We defer steps of the bootstrap

algorithm to Appendix C of the Supplemental Materials.

3.4 Application to the word segmentation data

3.4.1 Data structure

In our motivating word segmentation study, EEG data were recorded for 144 seconds using

an 128 electrode HydroCel Geodesic Sensor Net for 9 TD, 13 vASD, and 19 mvASD children

ranging between 4 to 12 years of age. The EEG data is divided into non-overlapping segments

of 1.024 seconds, producing a maximum of 140 observable segments for each subject at each

electrode. Descriptions on the pre-processing steps and the final study sample are deferred

to Appendix D of the Supplementary Materials. We consider 11 regions made up of 4-7

electrodes; left and right for the temporal region (LT and RT) and left, right, and middle

for the frontal, central, and posterior regions (LF, RF, MF, LC, RC, MC, LP, RP and MP,

respectively). We employ the spectral PCA described in Section 3.2 and Appendix A as a pre-

processing procedure to reduce the spectra within each brain region to its corresponding log

transformed principal power. The functional domain ranges from 0 to 50 Hz, to include the

clinically defined frequency bands of delta (0−4 Hz), theta (4−8 Hz), alpha (8−15 Hz), beta

(15−32 Hz), and gamma (32−50 Hz). Even though HPCA captures power dynamics across
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the total frequency domain, we note that the gamma band was of particular interest in the

word segmentation study since a higher gamma power is associated with better performance

in cognitive processes.

We employ a 3-D HPCA to model log principal power as a function of region, frequency

and segment. Based on the 3-D HPCA decomposition, we observe minimal variability in the

segment dimension in both the functional fixed effects (Figures S1(b) and S5) and leading

marginal eigenfunctions (Figure S2(c)), accounting for more than 85% of the marginal seg-

ment variation in each group (Table S1). Collectively, these two observations suggest that log

principal power dynamics do not substantially change in the segment dimension both within

subjects and among groups. Therefore, we collapse the segment dimension by averaging log

principal power across segments within regions and employ a 2-D HPCA decomposition to

model the resulting average log principal power Ydi(r, ω) as a function of region and fre-

quency. Thus, we utilize the 3-D HPCA decomposition to justify the collapse of the segment

dimension allowing for a more interpretable analysis based on the 2-D HPCA decomposi-

tion. Finally, we illustrate the benefit of modeling the unreduced frequency dimension by

integrating the average log principal power Ydi(r, ω) over clinically defined frequency bands

and comparing separate linear mixed models (LMMs) of the resulting region-referenced log

principal power bands with the 2-D and 3-D HPCA. In the LMMs, group-region dynam-

ics are captured through group-region interactions while within-subject region variation is

modeled using a subject-specific random intercept. LMMs were fit using nlme [Pinheiro

et al., 2017]. For the 2-D and 3-D HPCA decompositions, the smoothing parameters for the

functional fixed effects and marginal covariances were selected by GCV/REML.

3.4.2 Data analysis results

We present full results from the 2-D HPCA decomposition but defer details from the 3-D

HPCA decomposition, including detailed checks of the weak separability assumption on the

2-D and 3-D covariance processes, to Appendix D of the Supplementary Materials. Our main

focus is inference on group-region differences but we will briefly discuss the estimated model
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Table 3.1: FVE of the marginal covariances for the selected eigencomponents in each diag-
nostic group in the 2-D HPCA decomposition. The number of eigencomponents are chosen
to explain at least 90% FVE.

TD vASD mvASD
R Ω R Ω R Ω

0.652 0.698 0.706 0.653 0.583 0.656
0.113 0.159 0.112 0.249 0.133 0.231
0.084 0.091 0.083 - 0.113 0.048
0.058 - - - 0.062 -

- - - - 0.042 -

components from the 2-D HPCA decomposition. Table A3.1 displays the eigencomponents

for the regional and functional marginal covariances that explain at least 90% marginal FVE

in all three diagnostic groups. The leading four, three, and five regional marginal eigenvector

and three, two, and three functional marginal eigenfunctions are collectively found to explain

0.998, 1.000, and 0.999 of the total FVE (FV EdG) in the TD, vASD, and mvASD groups,

respectively.

In the functional dimension, the first leading marginal eigenfunction φd1(ω) (Figure

3.2(a)) displays increasing variation with increasing frequency for all diagnostic groups, with

the peak observed in the beta and gamma bands (15-50 Hz). The second leading marginal

eigenfunction φd2(ω) (Figure 3.2(b)) displays peak variation mostly in the beta band (15-

32 Hz). The first two eigenfunctions together explain at least 85% of the variation in the

functional marginal covariance in all three diagnostic groups. In the regional dimension, the

weights of the first leading marginal eigenvector vd1(r) (Figure 3.2(c)) are uniform across

scalp locations in all the diagnostic groups, implying equal variation, while the weights of

the second leading marginal eigenvector vd2(r) (Figure 3.2(d)) are highest for the LT and RP

regions, and MF and RF regions for the TD and vASD groups, respectively. In the mvASD

group, the leading components signal a contrast between LF and MP regions. The first two

regional marginal eigenvectors together explain at least 70% of the variation in the regional

marginal covariance in all three diagnostic groups.
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(a) (b)

(c) (d)

Figure 3.2: (a, b) Estimated first and second leading functional and longitudinal marginal
eigenfunctions φd1(ω) and φd2(s). (c, d) Estimated first and second leading regional marginal
eigenvectors vd1(r) and vd2(r).

The estimated overall mean log principal power µ(ω) curve, given in Figure 3.1(c), follows

the well known trend of decreasing power with increasing frequency. In order to test for

differences in the group-region means among the three diagnostic groups, we utilize the

bootstrap test proposed in Section 3.3.3 originally for the 3-D HPCA decomposition, which

can be extended to the 2-D HPCA decomposition via the test statistic Tr = [
∑D

d=1

∫
{η̂d(r,

ω) − η̂(r, ω)}2dω]1/2. For each scalp region r, we test the null hypothesis that the three

diagnostic groups share a common mean which takes the form H0 : ηd(r, ω, s) = η(r, ω, s)

and H0 : ηd(r, ω) = η(r, ω), d = 1, 2, 3, for 3-D and 2-D bootstrap procedures, respectively.

The 2-D and 3-D bootstrap tests find significant differences among the group-region means

for the three frontal regions: LR, RF, and MF (Figures 3.3 (a, c, e) and S5 (a-f), p<.05)
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across the full frequency domain. The 3-D bootstrap procedure also identifies a significant

difference among the group-region means for the total frequency domain in the LT, MC, and

RP, although for the LT and RP regions this may be ascribed to edge effects in the segment

dimension inflating the observed test statistic and for the MC region the 2-D bootstrap

test is nearly significant (p=.05). While the 2-D and 3-D bootstrap tests provide insight

into group-level dynamics for the full frequency domain, we also employ their band-specific

extensions to enhance interpretation and enable comparisons with band-specific LMMs.

Table 3.2 displays the results of hypothesis tests for all scalp regions and frequency

bands from the three separate models, the 2-D and 3-D HPCA decompositions and a set

of band-specific LMMs. The greatest variation in group-region means from the 2-D HPCA

decomposition are observed in LF and RF regions for the gamma band (Figure 3.3(a, c),

p<.05), with the highest gamma principal power observed in the TD group, followed by

the mvASD and vASD groups regions as evidenced by their relative difference from the

group-region averages (Figure 3.3(b, d)). The mvASD group appears to have higher gamma

principal power than the vASD group in the LF and LR regions, contradicting the expec-

tation that the ordering of verbal impairment would be mirrored in group-region shifts in

gamma activity which is thought to signal cognitive processes. One reason could be that

the three diagnostic groups were not age-matched. The age distribution of vASD group had

minimal overlap with those of the TD and mvASD groups and was over 20 months younger

on average than the other diagnostic groups which may explain its lower gamma principal

power. Further evidence of this age imbalance may be observed in LF and RF regions for

the theta band in which the vASD group displays higher activity than the TD and mvASD

groups across brain regions, consistent with the expected trend that theta activity is higher

in younger children (Figures 3.3(a, c)). Finally, for each brain region the TD group followed

by the vASD group have the highest alpha activity which is thought to be associated with

relaxation, suggesting that mvASD children are not as relaxed as their verbally able peers.

The 2-D HPCA decomposition enhances the analysis of principal power by not only

capturing the whole frequency domain but also by detecting significant differences among

group-region means that are missed when the frequency domain is collapsed into specific
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(a) LF (b) LF

(c) RF (d) RF

(e) MF (f) MF

Figure 3.3: (a, c, e) The estimated group-region shifts ηd(r, ω) in the left, right and middle
frontal regions in the TD, vASD, and mvASD groups. (b, d, f) The differences of the
estimated group-region shifts ηd(r, ω) from group-region averages in the left, right and middle
frontal regions in the TD, vASD, and mvASD groups. Note, the quantity ηd(r, ω)− η(r, ω)
forms the basis of the proposed bootstrap test statistic.
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bands and modeled via band-specific LMMs. In the MF region for the gamma band, the TD

and mvASD groups display higher principal power than the vASD group (Figure 3.3(e, f))

and the null hypothesis of a common group-region mean is rejected by the 2-D bootstrap test

but not by the band-specific LMM. In addition, the 2-D bootstrap procedure finds significant

differences in theta band dynamics among groups in all regions but the RC region while the

LMM finds no significant differences among group-region means. By collapsing the frequency

dimension prior to modeling, analysis methods such as the LMM cannot capture dynamics

within frequency bands among groups (e.g. two signals crossing in a given interval) that

may be modeled by maintaining the full frequency dimension.

3.5 Simulation

We studied the finite sample properties of the proposed HPCA and the bootstrap test for

group-level inference via extensive simulations. While the results of the simulations are

summarized here briefly, we defer details including data generation, discussion of the total

and marginal FVEs, and further details on the bootstrap test to Appendix E of the Supple-

mentary Materials. We conducted simulations for two sample sizes (nd = 15 and 50), two

signal-to-noise ratios (SNRs= 2.5 and 10) and two data sparsity levels (complete, partial in

the longitudinal domain), for a total of eight settings. The lower sample size and sparsity

levels were chosen to mimic the word segmentation data. To assess the performance of the

proposed estimation algorithm in targeting the components of HPCA, we utilize normalized

mean squared errors (MSE) and relative squared errors (RSE), based on the norms of the

deviations of the estimate from the targeted quantities. In addition, we report the total

and marginal fraction of variance explained along the regional, functional, and longitudi-

nal dimensions, FV EdK,R, FV EdL,Ω, and FV EdM,S , based on the K, L, and M marginal

eigencomponents included in the decomposition, respectively.

Figures A3.9 and S7 display the estimated model components based on 200 Monte Carlo

runs from the sparse simulation set-up with nd = 15 and high SNR. The estimated overall

mean function and group-region shift with the median RSE values (Figures S7(b),(d)) track
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the corresponding true surfaces (Figures 7(a),(c)). The estimated functional and longitudinal

marginal eigenfunctions (Figure A3.9) are displayed from runs with RSE values at the 10th,

50th, and 90th percentiles, overlaid by their true quantities. Even with a small sample

size, HPCA captures the periodicity and magnitude of the true components; patterns of

estimated components from the dense case are similar and are deferred to Figures S8 and

S9. Tables A3.2 and S2 display median, 10th, and 90th percentile RSE, normalized MSE

values, and both total and marginal FVEs based on 200 Monte Carlo runs corresponding to

the estimated HPCA components from all eight simulation settings. In general, the RSEs

for all model components decrease with higher sample size and lower level of sparsity in

the data. The fitted surfaces Ydi(r, ω, s) are the most susceptible to changes in SNR. The

RSEs associated with the marginal eigencomponents are not sensitive to changes in SNR,

suggesting that the estimation procedure successfully corrects for measurement error when

obtaining the marginal covariances. For simulation set-ups with nd = 15, the 90th percentile

RSE for the marginal eigenvectors and eigenfunctions can exceed 1 but we note that 15

subjects is small for PCA and FPCA decompositions and that for nd = 50 the comparable

RSE values improve dramatically. The estimated level is on target and the power increases

faster as one moves away from the null for the larger sample size, as expected (Figure S10).

3.6 Discussion

We proposed a hybrid principal components analysis technique (HPCA) which combines tools

from vector and functional principal components analysis to decompose three-dimensional

region-referenced longitudinal functional EEG data in a computationally efficient manner

through the product of the one-dimensional eigenvectors and eigenfunctions of marginal

covariances. Hence, the proposed estimation procedure scales up well to large datasets

since estimation of the covariances and eigencomponents are performed within the marginal

dimensions. To ease the computational burden in fitting the proposed mixed effects model for

large data applications, the size of the grid chosen along each marginal dimension affecting

the length of the design matrices can be controlled. Note also that the number of subjects
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in most EEG studies are similar to those in our data application, hence HPCA would be

applicable in most EEG paradigms.

The proposed estimation procedure centered around weak separability was developed

to specifically handle realistic scenarios observed in EEG studies with potentially sparse

data in the longitudinal dimension measured with noise. Note that similar ideas can be

used to handle sparsity in the functional and regional dimensions as well. The HPCA

decomposition paves the way for future work on regression analysis involving the high-

dimensional EEG signals. A particular question of interest in autism research centers around

relating behavioral outcomes to information within the EEG signals collected during an

experiment. HPCA is a promising dimension reduction tool to enable regression modeling

involving high-dimensional EEG signals.

Supporting materials

The reader is directed to the appendices for further details on the spectral PCA, HPCA es-

timation, bootstrap test, data analysis and simulation results. R programs and a tutorial for

implementing HPCA can be found at Github [https://github.com/aaron-scheffler/HPCA].
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CHAPTER 4

Covariate-Adjusted Region-Referenced Generalized

Functional Linear Model

Electroencephalography (EEG) studies produce region-referenced functional data in the form

of EEG signals recorded across electrodes on the scalp. It is of clinical interest to relate the

highly structured EEG data to scalar outcomes such as diagnostic status. In our motivat-

ing study, resting state EEG is collected on both typically developing (TD) children and

children with Autism Spectrum Disorder (ASD) aged two to twelve years old. The peak

alpha frequency (PAF), defined as the location of a prominent peak in the alpha frequency

band of the spectral density, is an important biomarker linked to neurodevelopment and is

known to shift from lower to higher frequencies as children age. To retain the most amount

of information from the data, we consider the oscillations in the spectral density within the

alpha band, rather than just the peak location, as a functional predictor of diagnostic status

(TD vs. ASD), adjusted for chronological age. A covariate-adjusted region-referenced gen-

eralized functional linear model (CARR-GFLM) is proposed for modeling scalar outcomes

from region-referenced functional predictors, which utilizes a tensor basis formed from one-

dimensional discrete and continuous bases to estimate functional effects across a discrete re-

gional domain while simultaneously adjusting for additional non-functional covariates, such

as age. The proposed methodology provides novel insights into differences in neural devel-

opment of TD and ASD children. The efficacy of the proposed methodology is investigated

through extensive simulation studies.
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4.1 Introduction

Children with Autism Spectrum Disorder (ASD) display a wide range of cognitive ability

compared to their typically developing (TD) peers, yet the neural processes underlying this

variability are not well understood [Dickinson et al., 2018]. In our motivating study, resting-

state electroencephalograms (EEG) were recorded on both ASD and TD children aged two

to twelve years old, allowing researchers to compare and contrast neural processes between

the two diagnostic groups over a wide developmental range. Of particular interest was the

location of a single prominent peak in the spectral density located within the alpha frequency

band (6-14 Hz) called the peak alpha frequency (PAF). PAF has been shown to index neural

development in TD children, where it shifts from lower to higher frequencies as children

grow older [Miskovic et al., 2015, Valdas-Hernandez et al., 2010] .Recent research suggests

that this chronological shift (from lower to higher frequencies) in PAF is delayed or possibly

absent in children with ASD [Dickinson et al., 2018, Edgar et al., 2015] . This phenomena

can be seen in our motivating data where slices of the group-specific bivariate mean surface

of the spectral density (across age and frequency) at ages 30, 60, 90 and 120 months from

the T8 electrode are plotted in Figure 4.1(a). The PAF, resembled by the location of the

‘humps’ in the spectral density, is more pronounced and displays a greater shift with age in

the TD children compared to their peers diagnosed with ASD.

While the PAF location is well defined in sample averages, estimating a subject-electrode

specific PAF presents many challenges, including the variability in estimation of the spectral

densities and the potential for multiple local maxima [Corcoran et al., 2018]. In addition,

identifying a single PAF inherently collapses information in the data across the alpha fre-

quency band into a single number. To retain the most information from the data, we consider

the spectral density across the alpha band as a functional observation and model associations

between alpha band spectral dynamics and diagnostic status. In our motivating study, EEG

signals are observed uninterrupted for several minutes across a high density electrode array

and the continuous signal is divided into two-second segments before Fast Fourier Transform

(FFT) to guarantee stationarity. The spectral density is then averaged across segments to
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(a)

(b)

Figure 4.1: (a) Slices of the group-specific bivariate mean alpha band spectral density (across
age and frequency (6-14 Hz)) at ages 30, 60, 90 and 120 months from the T8 electrode. Darker
lines correspond to older children. (b) A schematic diagram of the 10-20 system 25 electrode
montage.
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increase the signal-to-noise ratio. The resulting spectral densities obtained across electrodes

form the region-referenced functional data, with the spectral densities and the electrodes

referred to as the functional and regional dimensions of the data. In order to model the

association between diagnostic status and the high-dimensional EEG data, two methodolog-

ical obstacles must be addressed. First, EEG signals recorded at each electrode result in a

region-referenced functional predictor for which an appropriate functional regression model

does not exist. Second, the relationship between the alpha band spectral dynamics and

diagnostic status is expected to change with age and thus the potential regression model

must allow for covariate-adjustments when estimating functional effects. To address both is-

sues, we propose the covariate-adjusted region-referenced generalized functional linear model

(CARR-GFLM) that jointly estimates covariate-adjusted functional effects at each region by

first projecting the regression function onto a tensor basis and then performing dimension

reduction to produce a well-posed problem.

Since the introduction of the functional linear model (FLM) by Ramsay and Dalzell

[1991], functional regression methods have been formalized into three categories based on

the role of the functional data object: (1) scalar-on-function, (2) function-on-scalar, and (3)

function-on-function regression models [Ramsay and Silverman, 2010, Morris, 2015]. Given

that our goal is to relate a region-referenced functional predictor (region-referenced EEG

spectral densities) to a scalar response (ASD diagnostic status), we restrict our discus-

sion to relevant scalar-on-function regression methods (SoFR) particularly with respect to

multivariate (i.e. multiple functional signals defined on possibly different domains) and

multi-dimensional (i.e. two- or higher-dimensional functional signals defined continuously

on a single domain) functional predictors. Hastie and Mallows [1993] were the first to for-

mally define a FLM for a Gaussian response and Marx and EilersMarx and Eilers [1999]

broadened this foundational model to include exponential family responses by proposing

a generalized FLM (GFLM). Both models have been extended to accommodate multilevel

functional predictors and adapted to non-parametric and non-linear frameworks [Reiss et al.,

2017]. Considerable methodological development has focused on appropriate regularization

strategies for settings in which multivariate or multi-dimensional functional predictors are
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observed, where estimation is often performed via projection of the corresponding regression

function(s) onto smooth basis functions with regularization imposed via the basis coeffi-

cients. While regularization for multivariate functional predictors is enforced within each

distinct functional domain [Zhu et al., 2010, Gertheiss et al., 2013, Lian, 2013], regulariza-

tion for multi-dimensional functional predictors is enforced by assuming continuity across

the functional domain [Marx and Eilers, 2005, Reiss and Ogden, 2010, Goldsmith et al.,

2014]. Specific to EEG and local field potentials, recent works by Gao et al. [2016] and Gao

et al. [2018] develop methods for vector-valued electrical potentials recorded from multiple

electrodes but these models focus on capturing longitudinal dynamics and cluster structures

over the course of a recording session, respectively, rather than modeling associations with

a scalar response.

Our proposed CARR-GFLM makes two important contributions to the existing litera-

ture. First, to our knowledge no SoFR method accommodates region-referenced functional

predictors, i.e. correlated functional data observed over a non-smooth regional domain. To

address this challenge, we consider a tensor basis that is a mixture of discrete and contin-

uous basis functions. A corresponding penalty structure is developed to ensure smoothness

of the regression function within each region along the functional dimension, with joint pe-

nalization across the regional domain. Second, we allow for the region-referenced regression

function to vary across a continuous covariate, in our application, age. In the setting of a

one-dimensional functional predictor, Wu et al. [2010] proposed a varying-regression func-

tional linear regression model where regression effects not only vary across functional time

but also across a scalar covariate. Authors estimate regression effects by targeting the func-

tional covariance processes conditional on specific values of the scalar covariate via kernel

smoothing methods. This estimation approach does not scale up well for higher dimensional

functional data (e.g. region-referenced EEG spectral densities) given the reliance on com-

putationally intensive kernel methods. Different from the approach in Wu et al. [2010], we

add age as an argument to the tensor basis considered in estimation. The tensor basis is

formed as a kronecker product of a marginal bases in the functional, regional and covariate

domains leading to greater computational efficiency. The resulting number of tensor basis
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functions may exceed the number of subjects in some applications; hence we further consider

the singular value decomposition (SVD) of the design matrix as in Reiss and Ogden [2007]

and Reiss and Ogden [2007] to ensure the problem is well-posed.

Note that existing SoFR methods do not provide an adequate covariate-adjusted model-

ing framework for region-referenced functional predictors. Given that region-referenced func-

tional predictors are observed over a discrete regional domain, methods for multi-dimensional

functional predictors which assume continuity of the regression function across each dimen-

sion cannot be used in the analysis of region-referenced functional predictors. Considering

the functional signal from each region as multivariate functional data and applying existing

multivariate GFLM (m-GFLM) techniques would require either a global regularization pa-

rameter across all dimensions or a separate regularization parameter for each region, both of

which are undesirable due to the possibility of under fitting or over fitting the data, respec-

tively. In addition to less than desirable regularization, existing multivariate methods do not

allow for covariate adjustments when modeling the regression effects, as these adjustments

have only been proposed in the literature for a single functional predictor byWu et al. [2010].

We show the favorable predictive performance of the proposed CARR-GFLM in comparison

to the existing simpler approaches of m-GFLM, ignoring covariate effects, and a multivari-

ate GFLM with a linear interaction term between the covariate and the functional predictor

(m-GFLMi) in simulation studies and data applications.

The paper is organized as follows. Section 4.2 introduces the proposed model and develops

estimation and inferential procedures. Section 4.3 discusses application of the proposed

method to resting state EEG data from our motivating study, focusing on inference and

interpretation of the estimated regression coefficients. Section 4.4 assesses performance of

the proposed methodology via a simulation study. We conclude with a brief discussion in

Section 4.5.
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4.2 The proposed covariate-adjusted region-referenced general-

ized functional linear model (CARR-GFLM)

4.2.1 Statistical framework and modeling

Suppose for i = 1, . . . n subjects, we observe the data
{
yi, Xi(ai, r, ω), ai

}
, where yi is a

scalar response, Xi(ai, r, ω) is a region-referenced functional predictor observed at region r,

r = 1, . . . , R, frequency ω, ω ∈ Ω and non-functional scalar covariate ai ∈ A ⊂ R. While

Ω and A are both continuous domains, they represent a functional and a non-functional

covariate domain, respectively. The predictor Xi(ai, r, ω) is assumed square-integrable and

smooth over the functional domain Ω. Given our motivating data, we assume ai is a scalar

covariate though it could constitute a real valued vector of continuous covariates. For nota-

tional convenience, a regular grid for observations is assumed in the regional and functional

dimensions, however, note that for sparse data applications in either the regional or func-

tional dimension or both, the hybrid principal components analysis (HPCA) of Scheffler et al.

[2018] can be used to reconstruct the full functional predictor. Throughout the remainder

of the paper, scalars will be represented by lower case letters (b), vectors by lower case bold

letters (b), and matrices by upper case bold letters (B).

First consider the region-referenced GFLM allowing for a region-referenced functional

predictor,

yi ∼ F(µi,ϑ)

g(µi) =
R∑
r=1

∫ {
Xi(r, ω)− η(r, ω)

}
β(r, ω)dω =

R∑
r=1

∫
Xc
i (r, ω)β(r, ω)dω (4.1)

where F is an exponential family distribution with conditional expectation µi = E{yi|Xi(r, ω),ϑ},

ϑ denoting the vector of nuisance parameters and g(·) denoting an invertible link function.

The region-referenced mean curve for all subjects is denoted by η(r, ω) = E{Xi(r, ω)} and

the mean centered subject-specific functional predictor which captures subject-level devia-

tions from the region-referenced mean curve is denoted by Xc
i (r, ω) = Xi(r, ω)−η(r, ω). The
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region-referenced regression function β(r, ω) models the linear association between g(µi) and

Xc
i (r, ω), where β(r, ω) is not assumed to be smooth across the R regions. Note that the

region-referenced GFLM in (4.1) is different from a multivariate GFLM with R separate

functional predictors (possibly evaluated over different functional domains) in that the R

functional predictors considered for (4.1) all represent spectral densities evaluated over the

same domain, hence modeled in the next section with a single tensor basis and a combined

smoothing parameter. Fixing R = 1 yields a standard GFLM for a functional predictor and

scalar response as described in Marx and Eilers [1999].

Next, consider the proposed CARR-GFLM where the regression relationship changes as

a function of a non-functional covariate. In our motivating data for example, the association

between a subject’s diagnostic status and alpha band spectral dynamics depends on chrono-

logical age. Thus, the proposed model for region-referenced functional predictors is given

by

g(µi) =
R∑
r=1

∫ {
Xi(ai, r, ω)− η(ai, r, ω)

}
β(ai, r, ω)dω =

R∑
r=1

∫
Xc
i (ai, r, ω)β(ai, r, ω)dω

(4.2)

where µi = E{yi|Xi(ai, r, ω), ai,ϑ}, η(a, r, ω) = E{Xi(ai, r, ω)|ai}, Xc
i (ai, r, ω) and β(ai, r, ω)

denote the conditional expectation, the region-referenced mean surface, the mean-centered

subject-specific functional predictor and the regression function that now all depend on the

covariate a, respectively. The regression function β(a, r, ω) in a specific region r is assumed to

be smooth in both the functional domain Ω and the covariate domain A, allowing borrowing

of information across the range of the covariate values observed in the sample in estimation.

For a fixed a, the regression function β(a, r, ω) captures the different weights placed on the

functional predictor across the frequency domain and how these relations change over the R

regions. Changes over a add to this interpretation by depicting how this regression relation

can vary over the different values of the covariate a. The proposed model reduces to the

varying-coefficient functional linear model of Wu et al. [2010] for R = 1.

The regression function β(a, r, ω) is approximated by a linear combination of basis func-
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tions that are formed as a tensor product of discrete and continuous marginal basis functions

in a, r, and ω,

β(a, r, ω) ≈
Ka∑
ka=1

Kr∑
kr=1

Kω∑
kω=1

φka(a)φkr(r)φkω(ω)θka,kr,kω

where the basis functions in a and ω, denoted by φka(a) and φkω(ω), respectively, can be

chosen to be any set of continuous basis functions appropriately combined with a quadratic

penalty, such as functional principal components or B-splines. The basis functions in r,

denoted by φkr(r), is a set of discrete basis functions such that span
[
{φkr(r)}Kr

kr=1

]
⊆ RR

(e.g. columns of an identity matrix). The unknown coefficients of the projection, denoted by

θka,kr,kω are collected into the vector θ and are estimated. Note that the total number (Ka, Kr

and Kω) of basis functions considered in each dimension, is chosen to be sufficiently large

to capture the regression function behavior before penalization. The shape of the resulting

regression function can be controlled by both the choice of the marginal basis functions and

the quadratic penalization of θ. We follow Wood [2006a] to construct a general penalty

structure which is formed by a kronecker sum of marginal penalties along each dimension a,

r and ω,

pen(θ|λ) = θTP (λ)θ,

P (λ) = λa(Pa ⊗ IKr ⊗ IKω) + λr(IKa ⊗ Pr ⊗ IKω) + λω(IKa ⊗ IKr ⊗ Pω),

where λ = (λa, λr, λω) denotes a vector of positive penalty parameters and Pa, Pr, and Pω

denote the positive semi-definite penalty matrices, that control the degree of smoothness or

shrinkage along each marginal dimension. For the dimensions along which the regression

function is expected to be smooth (i.e. the functional and covariate dimensions), a differ-

encing penalty can be used for a B-spline basis to penalize rapid change in the coefficients.

In case of the regional dimension, the regression function is not assumed to be smooth and

the choice of penalty structure requires more deliberation. In situations where there is no a

priori knowledge of the dependency of the functional effects among regions, a ridge penalty
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would promote smaller coefficients without imposing a prior dependency structure. If prior

knowledge is available, one way to induce dependency across regions would be through a

Gaussian Markov Random Field prior which have been applied in spatial analysis and gen-

eralized additive models [Besag, 1974, Wood, 2017]. The choice of the penalty structure plays

an important role in inference through the posterior distribution of the coefficient vector θ

and should be considered carefully.

To our knowledge, this is the first application of a tensor basis formed from a mixture of

discrete and continuous basis functions for estimating functional regression effects. Note that

the proposed penalty structure with one penalty parameter for each marginal dimension,

strikes a balance between under smoothing and increased computational burden with a

larger number of penalty parameters and over smoothing with a smaller number of penalty

parameters. For example, penalizing the regression function in each region separately would

lead to R separate pairs of penalty parameters (λra, λrω), r = 1, . . . , R, increasing the number

of penalty parameters and hence the computational burden significantly. Alternatively, λr,

can be set to zero, effectively controlling smoothness across Ω and A at each region with

just two parameters, possibly leading to over smoothing.

4.2.2 Estimation and inference

The proposed CARR-GFLM model is fit using the general additive model (GAM) framework

of Wood [2017] for which there exists both stable optimization routines and theory for

inference via confidence intervals. The region-referenced mean surface η(a, r, ω) is estimated

prior to model fitting separately for each region based on pooled data across all subjects

via smoothing achieved by projection onto a tensor basis of penalized marginal B-splines

in a and ω. Estimation and smoothing parameter selection are carried out by restricted

maximum likelihood (REML) methods. Let (ω1, . . . , ωH) denote the regular functional grid

where the region-referenced functional predictor is observed. The proposed CARR-GFLM

72



in (4.2) can be written in matrix notation as,

R∑
r=1

∫
Xc
i (ai, r, ω)β(ai, r, ω)dω ≈

R∑
r=1

∫
Xc
i (ai, r, ω)

Ka∑
ka=1

Kr∑
kr=1

Kω∑
kω=1

φka(ai)φkr(r)φkω(ω)θka,kr,kωdω

≈
R∑
r=1

H∑
h=1

Ka∑
ka=1

Kr∑
kr=1

Kω∑
kω=1

whX
c
i (ai, r, ωh)φka(ai)φkr(r)φkω(ωh)θka,kr,kω

=
[
Φa ⊗r

{
X W

(
Φr ⊗Φω

)}]
θ (4.3)

where ⊗ and ⊗r denote the standard and the row kronecker products, respectively. For two

matrices with the same number of rows, the row kronecker product ⊗r forms a new matrix by

taking the kronecker product of the rows of each matrix. In (4.3), Φa =
{
φka(ai)

i=1,...,n
ka=1,...,Ka

}
denotes an n×Ka matrix with ith row containing evaluations of the marginal basis functions

at ai; and Φr =
{
φkr(r)

r=1,...,R
kr=1,...,Kr

}
and Φω =

{
φkω(ωh)

h=1,...,H
kω=1,...,Kω

}
denote R×Kr and H×Kω

matrices, respectively, whose columns contain evaluations of the marginal basis functions in r

and ω. The predictor matrixX is a n×RH matrix containing the vectorized subject-specific

functional predictor Xc
i (ai, r, ω) in its ith row. Finally, W = diag

{
(wrh)

h=1,...,H
r=1,...,R

}
denotes the

RH ×RH diagonal matrix of weights that correspondingly sum across the R regions and is

used to approximate the integral in ω. More information on defining appropriate marginal

basis function can be found in Wood [2017].

The coefficient vector θ is estimated by penalized least squares, with the penalized log-

likelihood given by

`p(θ,λ,ϑ|y) = `(u,ϑ|y)− 1

2
pen(θ|λ)

where u = g−1
([

Φa ⊗r
{
XW

(
Φr ⊗Φω

)}]
θ
)

and `(u,ϑ|y) =
∑n

i=1 `(µi,ϑ|yi) denotes the

log-likelihood function for the response distribution F(µi,ϑ). The penalized log-likelihood is

maximized using REML rather than generalized cross-validation (GCV) due to the superior

performance of REML reported in numerical studies. Reiss and Todd Ogden [2009] The
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penalized likelihood can be maximized in a number of different ways. One popular approach

is to treat λ as a precision parameter in a generalized linear mixed model [Wood, 2006a,

Goldsmith et al., 2011]. However, this often produces covariance structures that are difficult

to implement in standard software; a challenge that can be circumvented by suitable trans-

formations of the marginal basis functions that divide the coefficient vector into sets of fixed

effects and independent and identically distributed Gaussian random effects. This solution

may still not be desirable since it introduces additional penalty parameters that may be

hard to interpret [Wood et al., 2013]. We opt to maximize the penalized likelihood with

the gam() function in the R package mgcv which finds an approximate REML criterion via

Laplace approximation and optimizes the approximated likelihood using Newton-Raphson

updates. The procedure iterates between estimating the λ and θ using standard penalized

regression methods [Wood, 2011, 2017].

By projecting the regression function β(a, r, ω) onto a tensor basis, we perform an initial

dimension reduction step. However, for SoF regression with multi-dimensional predictors,

the number of basis functions may still greatly exceed the number of subjects, suggesting that

the dimension of the basis is too large to be estimated well and further dimension reduction

may be needed. Rather than restricting the number of basis functions in the tensor product,

we perform a second dimension reduction step by only retaining the leading right singular

vectors of the design matrix D = Φa ⊗r
{
XW

(
Φr ⊗ Φω

)}
as in Reiss and Ogden [2007]

and Reiss and Ogden [2010]. Therefore, we minimize the penalized log-likelihood based on

the response mean function,

u = g−1
(
DVqθ̃

)
, (4.4)

where Vq denotes the matrix containing the q leading columns from the singular value de-

composition UEV T of the design matrix D and θ̃ denotes the coefficient vector for the

reduced dimensional design matrix DVq. In applications, we retain the minimum number

of components q that explain 95% of the total variation in the design matrix D, i.e. q is the

minimum number of components that satisfy
∑q

s=1 κ
2
s/
∑KaKrKω

s=1 κ2
s > .95, where κs are the

74



ordered singular values from the SVD of D. The penalty structure can easily be updated to

accommodate the SVD of the design matrix, pen(θ̃|λ) = θ̃TV T
q P (λ)Vqθ̃. This dimension

reduction serves two purposes, (1) it ensures that there is a unique solution that maximizes

the penalized log-likelihood and (2) it allows for the use of the inferential machinery of mgcv

which requires that the number of coefficients is less than or equal to the number of subjects.

As emphasized earlier, this is a common issue with multi-dimensional predictors in SoF re-

gression where the dimension of the scalar response may be much lower than the dimension

of the functional predictors.

Due to the quadratic penalty, estimates of the coefficient vector θ̃ (associated with the

the reduced dimensional design matrix DVq) are biased and thus naive point-wise confi-

dence intervals calculated based on the covariance matrix of the estimated coefficient vector

can produce poor coverage. Therefore, we adopt the Bayesian point-wise confidence inter-

vals described in Wood [2006b] which are based on the large sample limit of the posterior

distribution θ̃|y, which can be obtained by a default option in gam(). More specifically,

θ̃|y ∼ N
[
γ,
{
V T
q D

TZDVq + V T
q P (λ)Vq

}−1
]

where γ denotes the estimate of θ̃, Z denotes an n × n matrix containing entries Zii ={
g′(µi)

2V (µi)
}−1

with µi equal to the ith entry of u in (4.4), V denotes the variance function

such that V (µi)σ
2 is equal to the variance of yi and σ2 is a scale parameter defined by F .

The covariance of θ̃|y can be adjusted by Vq in order to recover the posterior distribution

of θ|y. The Bayesian point-wise confidence intervals have been reported to lead to better

coverage than those based on the covariance of the parameter estimates. We study the finite

sample properties of the proposed methodology including coverage of the proposed Bayesian

point-wise confidence intervals in the simulations of Section 4.4.
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4.3 Data Analysis

4.3.1 Data structure and methods

In our motivating study, EEG data was sampled at 500 Hz for two minutes using a 128-

channel HydroCel Geodesic Sensor Net on 58 ASD and 39 TD children 25 to 144 months

old (groups were age matched). EEG recordings were made under an ‘eyes-open’ paradigm

in which bubbles were presented on a screen in a sound-attenuated room [Dickinson et al.,

2018]. Four electrodes near the eyes were removed prior to recording, in order to improve the

comfort of the subjects. To facilitate independent component analysis for identification of

artifacts, the data was interpolated to the international 10-20 system 25 electrode montage

(R = 25) by spherical interpolation as described in Perrin et al. [1989] and implemented in the

function eeg interp from EEGLAB [Delorme and Makeig, 2004] (Figure 4.1 (b)). Following

interpolation and ICA, the signal was reconstructed without components attributed to non-

neural sources of signal, such as electromyogram (EMG) or non-stereotyped artifacts, and

re-referenced to the average of all electrodes. For spectral analysis, the first 38 seconds

of artifact free EEG data was used for each subject, where 38 seconds was the minimum

amount of artifact free data available on all the subjects. Spectral density estimates were

obtained by Welch’s method [Welch, 1967]. The 38 second EEG signal was divided into two

second Hanning windows with 50% overlap and transformed into the frequency domain via

FFT. For each electrode, the spectral densities at each overlapping segment were averaged,

resulting in electrode-specific estimates of the spectral density.

Since the interest is on the location of the dominant alpha peak and the general shape of

the alpha band spectral dynamics more than alpha band power, the alpha (Ω = (6 Hz, 14 Hz))

spectral density normalized to a unit area (through division by its integral) is considered

as the region-referenced functional predictor to facilitate comparisons across electrodes and

subjects. As a result of the sampling scheme, the grid along the functional domain has a

frequency resolution of .25 Hz and thus includes H = 33 points. Smooths of the region-

referenced mean surface η(a, r, ω) are obtained as described in Section 4.2.2 using a tensor

basis of penalized cubic B-splines (with 15 and 4 degrees of freedom in the frequency and
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age domains, respectively) and second degree difference penalties along each dimension. In

order to avoid bias in estimation of the region-referenced mean surfaces due to the observed

imbalance in sample size between diagnostic groups, we re-weight the data such that the two

diagnostic groups contribute equally to the region-referenced mean surface smoothing. The

mean centered subject-specific functional predictors, Xc
i (ai, r, ω) = Xi(ai, r, ω) − η(ai, r, ω),

are obtained by subtracting age conditional slices of η(a, ω, r) from the observed subject-

specific alpha spectral densities.

The regression function β(a, r, ω) is estimated by projection onto a tensor basis formed

as the product of basis functions along the age, region/electrode and frequency dimensions.

The marginal basis matrices Φa and Φω are formed as evaluations of cubic B-splines with

Ka = 5 and Kω = 10 degrees of freedom, respectively. The regional basis matrix is equal

to Φr =
[
1R, IR

]
with Kr = 26, where 1R is an R × 1 vector of 1’s. Second order marginal

difference penalties are utilized for both Pa and Pω to ensure smoothness over the functional

and age domains. Given that we do not have any prior knowledge regarding the dependency

of alpha spectral effects across electrodes, we employ a ridge style penalty across the regional

dimension, Pr =
[
0R, IR

]
, where 0R is an R × 1 vector of 0’s. The zero entry along the

diagonal of Pr corresponds to the basis vector 1R which is left unpenalized to absorb the

common effect across all electrodes. The remaining regional basis vectors are penalized and

loadings on them represent the electrode-specific deviations from the overall effect across the

scalp. The number of columns in the resulting design matrix D is KaKrKω = 1300.

We carry out comparisons between the proposed CARR-GFLM and the existing ap-

proaches of m-GFLM and m-GFLMi. For the m-GFLM, the region-referenced alpha spec-

tral densities are treated as multivariate functional data where the functional effect at each

region is estimated by projection onto a basis of cubic B-splines with ten degrees of freedom.

The m-GFLMi includes a main effect of age as well as a linear interaction term between age

and the region-referenced alpha spectral densities for which an additional set of functional

effects are estimated. For each functional effect, regularization is enforced using a separate

smoothing parameter with a second degree difference penalty. Similar to CARR-GFLM,

the number of basis functions for m-GFLM and m-GFLMi is too large to be estimated well
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and the portion of the design matrix encoding functional effects is reduced by SVD with

appropriate adjustments made to the penalty structure. The number of columns (i.e. rank)

of the SVD reduced design matrices for the CARR-GFLM, m-GFLM, and m-GFLMi models

is 66, 57, and 50, respectively, accounting for approximately 99% of the total variation. The

threshold for the proportion of variation explained is slightly higher in the data analysis

than suggested in Section 4.2.2 in order to ensure model convergence. Models are fit using

the gam() function from mgcv (version 1.8-24) on a 2.4 GHz 6-Core Intel Xeon processor

operating R (version 3.5.1) with a mean computation time of 26.6 seconds based on ten runs.

Penalty parameters are selected via REML and estimated to be λa = 0.0063, λr = 0.0042,

and λω = 0.0078.

4.3.2 Data analysis results

Slices of the region-referenced mean surface η(a, r, ω) representing the electrode-specific mean

alpha spectral density at ages 30, 60, 90, and 120 months for the T8 and T10 electrodes

(right temporal) are given in Figure 4.2. Across subjects and electrodes, the PAF increases

with increasing chronological age. Since functional predictors are supposed to retain group

differences to predict diagnostic status, region-referenced mean surfaces are estimated across

subjects (rather than within diagnostic groups) and subtracted from the observed alpha spec-

tral densities to obtain the mean-centered functional predictors Xc
i (ai, r, ω) used in modeling.

It is expected that, on average, subjects within each diagnostic group will deviate from the

region-referenced mean surfaces in a distinct manner, allowing for characterization of pat-

terns in the alpha spectral density that are predictive of ASD diagnosis.

The results from fitting the CARR-GFLM model to our motivating data for the T8

electrode are shown in Figure 4.3 and are representative in shape and sign of other electrodes

across the scalp. In order to visualize information across chronological age, results are shown

as cross sections at 30, 60, 90, and 120 months. The T8 electrode is highlighted because

among all electrodes it produces the highest average contribution to the log-odds of ASD

diagnosis, 1/n
∑n

i=1

∫
Ω
|Xc

i (ai, r, ω)β̂(ai, r, ω)|dω, which can be interpreted as a measure of
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Figure 4.2: Slices of the region-referenced mean surface η(a, r, ω) representing the electrode-
specific mean alpha spectral density at ages 30, 60, 90, and 120 months for the T8 and T10
electrodes. Darker lines correspond to older children.

the absolute effect of a given electrode across all subjects. Referring to Figure 4.1(b), the

three electrodes with the highest average contribution to the log-odds of ASD diagnosis, the

T8, T10, and F8 electrodes, are located in the right temporal and frontal region of the scalp,

suggesting differences in these brain regions have the strongest effect on whether a subject

is predicted to have an ASD diagnosis. The average mean-centered functional predictors for

the TD and ASD children displayed in in Figure 4.3(top row) provide insights into group

differences. On average at 30 months old, TD children display higher alpha power between

8 to 10 Hz. This changes over the course of development and by 120 months ASD children

display higher alpha power between 6 to 10 Hz and TD children show higher power between

10 to 12 Hz.

The slices of the estimated regression function β̂(a, r, ω) for the T8 electrode are plotted

in Figure 4.3(middle row). The estimated regression function puts mostly negative weight

on the spectral density for frequencies between 8 to 10 Hz and positive weight for frequencies

between 10 to 14 Hz for subjects aged 30 to 60 months. After 60 months the shape of the

regression function begins to flip, with positive weight on frequencies between 6 and 10 Hz
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and negative weight for those between 10 and 14 Hz. The Bayesian point-wise confidence

intervals are wide including zero, due to the small sample size within diagnostic groups;

however they exclude zero at 11.25 Hz for children between 124 to 134 months (not shown).

The point-wise product of the average mean-centered functional predictors for each group

and the regression function are displayed in Figure 4.3(bottom row) where the shading

represents the area under the curve for each group which ultimately encapsulates the linear

effect on the log odds of ASD diagnosis. Before 60 months, the average TD child has a PAF

between 8 to 10 Hz and hence due to the negative weighting by the regression coefficient,

this results in a predicted probability of ASD diagnosis that is less than .5. Similarly, since

the average TD child of age older than 60 months have PAF between 10 to 14 Hz, a negative

weight in that domain results in a predicted probability of ASD diagnosis that is again less

than .5. Similar descriptions can be formed for the ASD group and on average the areas

under the curve produced by the point-wise products formed in Figure 4.3(bottom row) are

in accordance with the true diagnostic status.

To get a better sense of the predictive performance of the CARR-GFLM in our data across

electrodes stratified by developmental age, we look at the predicted probabilities of ASD di-

agnosis and their associated 95% confidence intervals for the study subjects in Figure 4.4(top

row). The 95% confidence intervals are calculated on the logit scale based on the posterior

distribution of DVqθ̃|y (see Section 4.2.2) and then transformed onto the probability scale.

If subjects are classified based on a threshold of .5, then at younger and older ages CARR-

GFLM discriminates between the two groups well. However, between 50 and 75 months the

model has some trouble distinguishing the two diagnostic groups. This is likely because the

differences in the alpha spectrum between the two groups are minimal at the median study

age, suggesting the greatest group differences in alpha spectral dynamics occur at younger

and older ages. In order to contrast the predictive performance of the CARR-GFLM with

the existing models of m-GFLM and m-GFLMi, we compare performance measures includ-

ing sensitivity (sens = P{ÂSD|ASD}), specificity (spec = P{T̂D|TD}), and the area under

the receiver operating characteristic curve (AUC). Predicted probabilities are estimated us-

ing leave-one-out cross validation (LOOCV) in which each subject is iteratively withheld
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Figure 4.3: The results from fitting the CARR-GFLM model to the resting state EEG data
for the T8 electrode. Results are presented with increasing age from 30 to 120 months
organized by column. (top row) The average mean-centered functional predictor for (black)
TD children and (grey) ASD children. (middle row) Cross sections of the estimated regression
function. (bottom row) The point-wise product of the top two rows where the shading
represents the average area under the curve for the (black) TD children and (grey) ASD
children.
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from the model data, models are fit, and then probabilities are predicted for the withheld

subject. The CARR-GFLM (sens = .602; spec = .663; AUC = .635) outperforms both

m-GFLM (sens = .527; spec = .588; AUC = .553) and m-GFLMi (sens = .822; spec = .363;

AUC = .593) in terms of both balance between sensitivity and specificity and AUC.

It is clear from the superior performance of the CARR-GFLM and m-GFLMi models

compared to m-GFLM that including age improves prediction of ASD diagnosis. To deter-

mine why CARR-GFLM outperforms m-GFLMi despite the fact that both models account

for age, we consider the estimated regression functions from the T8 electrode for both models.

For m-GFLMi (Figure 4.4(bottom row)), the association between the alpha spectral densities

and ASD diagnosis is modeled as a function of two terms, the main effect, Xc
i (T8, ω), and the

interaction term, aiX
c
i (T8, ω). The estimated regression function for the main effect is flat

compared to the estimated regression function of the interaction term which assumes a rel-

atively linear decreasing trend with a positive weight on the alpha spectral density between

6 to 9 Hz and a negative weight between 9 to 14 Hz. These effects get stronger as children

age. On the other hand, CARR-GFLM (Figure 4.3(middle row)), allows the regression func-

tion to vary in a non-linear manner across age, with the sign and shape of the regression

function shifting across development. The benefit of the greater flexibility of CARR-GFLM

over m-GFLMi is visible in the predicted probabilities for each model. While both models

struggle to differentiate between the two groups between 50 and 75 months, CARR-GFLM

(Figure 4.4(top row)) is able to discriminate between the two diagnostic groups at younger

ages between 25 and 50 months while m-GFLMi (Figure 4.4 (middle row)) shows a clear

bias towards a diagnosis of ASD, likely induced by the more rigid linear modeling structure.

4.4 Simulation

We assess the finite sample performance of the proposed methodology across a range of

simulation settings. The data generating process for the simulation is described in Section

4.4.1 and simulation results are deferred to Section 4.4.2.
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Figure 4.4: (top and middle row) The predicted probabilities of ASD diagnosis and their
associated 95% confidence intervals for the study subjects, with true group membership
denoted by black for TD and grey for ASD for the CARR-GFLM (top) and m-GFLMi
(middle) models. (bottom row) The estimated regression functions for the main effects and
interaction term from the T8 electrode for the m-GFLMi model.
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4.4.1 Data generation

Binary scalar outcomes are simulated from yi ∼ Bernoulli(µi), i = 1, . . . , n, where the

subject-specific probabilities are formed on the log odds scale through the linear model

logit(µi) =
R∑
r=1

∫
Xc
i (ai, r, ω)β(ai, r, ω)dω. The functional and covariate grids are chosen

as 50 and 30 equidistant points in [0, 1], respectively, with data generated for a total of

R = 15 regions. For each subject, the observed covariate values are simulated from a

discrete uniform distribution defined on the covariate grid in [0, 1]. The regression function

β(a, r, ω) is constructed to vary both across regions and along the functional and covariate

domains,

β(a, r, ω) =


(−1)r2cos(ωrπ/6 + πa), r = 1, . . . , 8

(−1)r2sin
{
ω(r − 8)π/6 + πa

}
, r = 9, . . . , 15.

The subject-specific functional predictors are formed by Xi(ai, r, ω) =
5∑

k=1

ξikrψk(ω), with a

common set of basis functions ψk(ω), k = 1, . . . , 5, across the 15 regions, where ψk(ω) are cu-

bicB-splines and the vector of subject-specific scores is generated from ξik = (ξik1, . . . , ξikR)T ∼

MVN (0,Σk). The r× r covariance matrix Σk controls the regional dependency of the func-

tional predictors by inducing correlations between a subject’s scores for the kth spline basis

across the R regions. The covariance matrix Σk is chosen to have a compound symmetric

structure with diagonal entries equal to one and off diagonal entries equal to ρ, a tuning

parameter for the level of dependency across regions. For simplicity, we set η(ai, r, ω) to

zero.

We perform 500 Monte Carlo runs across nine simulation settings: three sample sizes

(n = 200, 500, 1000) and three levels of regional dependency (ρ = 0.0, 0.1, 0.3). We use

the relative squared error RSE(a, r, ω) = ||f̂(a, r, ω)− f(a, r, ω)||2/||f(a, r, ω)||2 to assess the

regression function estimates, where ||f(a, r, ω)||2 =
∑R

r=1

∫ ∫
f 2(a, r, ω)dadω. The coverage

probability of the Bayesian point-wise confidence intervals as a function of a, r and ω, is

assessed by recording the proportion of times the regression function estimates lie within
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the confidence interval over the 500 Monte Carlo runs. For each Monte Carlo run at a fixed

sample size n, we generate n + 200 samples, where first n is used for estimation and the

additional 200 samples are reserved as a validation set for assessing prediction accuracy.

Prediction accuracy is assessed by the AUC in the validation sets. The use of validation sets

with a common number of observations (200 samples) allows for comparisons of the AUC

from different simulation settings.

The region-referenced mean curves are estimated by pooling data across subjects and

performing bivariate penalized smoothing over the functional and covariate domains with a

tensor basis of penalized cubic B-splines (with 10 and 5 degrees of freedom in the functional

and covariate domain, respectively). In addition, second order difference penalties are used

along the functional and the covariate dimension, similar to the data analysis. The marginal

basis matrices Φa and Φω are formed as evaluations of the cubic B-splines with Ka = 5

and Kω = 5 degrees of freedom, respectively, and the regional basis matrix is equal to

Φr =
[
115, I15

]
with Kr = 16. First order marginal difference penalties are utilized for both

Pa and Pω to ensure smoothness over the functional, and the covariate domains. For the

regional domain, a ridge style penalty Pr =
[
015, I15

]
is employed as in the data analysis.

The model for all simulation settings has Ka×Kr×KΩ = 400 coefficients and for each Monte

Carlo run SVD is used to reduce the dimension of the design matrix such that the resulting

columns account for at least 95% of the total variation. Across simulation settings, the rank

of the SVD reduced design matrix increases with sample size and decreases as a function

of ρ, with the median rank at ρ = 0.0 equal to 93, 128, 145, for n = 200, 500, and 1000,

respectively. Moving from ρ = 0.0 to ρ = 0.3, the median rank decreases by approximately

20 at each sample size. The median penalty parameters across 500 Monte Carlo runs for

n = 500; ρ = 0.0 are λa = .0033, λr = .0036, and λω = .0043, with penalty parameters

displaying no median trend across sample size or dependency structure but slightly more

variation among Monte Carlo runs at n = 200 compared to larger sample sizes. The average

computation times based on ten iterations for Monte Carlo runs at n = 200, 500, 1000 are 7.6,

15.4, and 29.1 seconds, respectively. Predictive performance of CARR-GFLM is compared

to the existing methods of m-GFLM and m-GFLMi with functional effects estimated by
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projection onto a basis of cubic B-splines with five degrees of freedom and second degree

differencing penalties.

4.4.2 Results

Figure 4.5 displays the results from 500 Monte Carlo runs under each simulation setting,

with RSE values for the regression function β(a, r, ω) (top row) and coverage probabilities

for the Bayesian point-wise confidence intervals (bottom row). As expected, RSE values

decrease as sample size increases with the median RSE reduced by approximately a factor

of 3 moving from n = 200 to n = 1000 at each level of regional dependency. For a fixed

sample size, an increase in regional dependency produces a modest but consistent increase

in median RSE (RSE is increased by 7.2% with ρ changing from 0.0 to 0.3 at n = 200).

With increasing ρ, functional predictors at each region share more information and the

estimated regression function may lose precision much akin to when a multivariate regression

experiences multicollinearity. The true and estimated regression function β(a, r, ω) at three

regions from the Monte Carlo run with the median RSE (0.327) for n = 500 and ρ = 0.1 is

shown in Figure 4.6. Despite the non-negligible RSE, the shape, periodicity, and magnitude

of the regression function is well preserved, suggesting that the accumulation of estimation

error is evenly distributed across the regression functions from each region rather than being

concentrated within a few regions. Note that n = 200 is a small sample size for functional

regression settings, especially for binary functional regression. This explains the relatively

high median RSE values observed for n = 200 (ranging between 0.57 and 0.65 for varying

values of ρ). The coverage probabilities for each simulation setting approaches the nominal

level of 95% as sample size increases. For sample sizes n = 500 and 1000, the median

coverage observed is consistently larger than .83. Since the confidence intervals considered

are point-wise, they are not expected to hit the nominal level uniformly over all a, r and ω.

However for n = 200, coverage decreases significantly with increasing ρ. This may be due to

the fact that the rank of the resulting design matrix after SVD is the smallest at n = 200 and

ρ = .3, leading to narrower confidence intervals. Note that because coverage probabilities

are calculated at each (a, r, ω), the number of points considered 15∗30∗50 = 22, 500 is large
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and thus outliers have been jittered horizontally to improve presentation.

Figure 4.5: The simulation results from 500 Monte Carlo runs under each simulation setting
(ρ = 0, 0.1, 0.3 in columns and n = 200, 500, 1000 in columns within panels). RSE values
for the regression function β(a, r, ω) (top row) and the coverage probability for the Bayesian
point-wise confidence intervals for a nominal level of 95% ((bottom row) are provided. Out-
liers are jittered horizontally to improve presentation.

Figure 4.7 compares the AUC from CARR-GFLM (top row) with m-GFLM (middle row)

and m-GFLMi (bottom row) over 500 Monte Carlo runs under each simulation setting. For

all models, the median AUC for the validation sets improves with increasing sample size and

decreases with increasing regional dependency, though the differences observed for regional

dependency are small. At each simulation setting, a descending trend is observed for median

AUCs as one moves from CARR-GFLM to m-GFLMi to m-GFLM. While the median AUC
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for CARR-GFLM is greater than .80 for sample sizes greater than n = 200, m-GFLM and

m-GFLMi fail to exceed a median AUC of .75 for any simulation setting, suggesting that

incorporating flexible covariate-adjustments is essential for predictive performance even at

large sample sizes. The overall good AUC for CARR-GFLM suggests that despite the high

model complexity, the regularization induced by the quadratic penalty and SVD avoids

overfitting and allows for generalization of the fitted model to newly observed data.

4.5 Discussion

We propose a covariate-adjusted region-referenced generalized functional linear model (CARR-

GFLM) that estimates functional effects across a non-smooth regional domain while simul-

taneously adjusting for observed covariates. The proposed estimation procedure projects the

regression function onto a tensor basis formed from a kronecker product of one-dimensional

discrete and continuous basis functions. The tensor structure allows for construction of a

flexible penalty structure that induces regularization along each dimension while at the same

time controlling the number of shrinkage parameters. Even for a three-dimensional regres-

sion function, the number of elements in the tensor basis will often greatly exceed the number

of observed subjects and thus SVD is utilized to reduce the dimension of the design matrix

allowing the proposed model to be fit in standard software. The model can be generalized

to accommodate a vector of covariates by introduction of additional marginal bases in the

kronecker product.

The proposed method is used to model associations between diagnostic status and alpha

band spectral dynamics in ASD and TD children across a broad developmental range. The

challenge in estimating a single PAF at each electrode is a voided by considering the full alpha

spectral density, where the information on the developmental stage of the child is integrated

into the model by adjusting for chronological age. Thus, based on EEG data alone, we find

that differences across the scalp in alpha band spectral dynamics between ASD and TD

children at similar ages can predict diagnostic status reasonably well. This finding suggests

that developmental differences in the alpha band spectral density may provide a promising
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point of further investigation into the underlying neural differences between ASD and TD

children. Performance of the CARR-GFLM model is compared to existing methods in both

the data analysis and the simulation study and is found to provide superior prediction

and inference. While the proposed model is motivated by a developmental EEG study, the

methodology can be considered in applications involving other brain imaging modalities with

a regionally-referenced functional predictor and an additional set of covariates.

Supporting materials

The code for the proposed estimation and inference procedures are made publicly available

online on the Github page [https://github.com/aaron-scheffler/CARRGFLM], along with a

tutorial for step-by-step implementation of the proposed methodology.
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Figure 4.6: The true (left column) and estimated (right column) regression function β(r, a, ω)
for regions r = 1, 7, 15 (descending rows) from the Monte Carlo run with the median RSE
(0.327) under the simulation design, n = 500; ρ = 0.1.
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Figure 4.7: The AUC for the validation data sets from 500 Monte Carlo runs under each
simulation setting (ρ = 0, 0.1, 0.3 in columns and n = 200, 500, 1000 in columns within
panels) for the CARR-GFLM (top row), mGFLM (middle row), and m-GFLMi (bottom
row).
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CHAPTER 5

Conclusion

This concluding chapter provides a summary in Section 5.1 of the proposed methods and

insights gained by their application to the motivating EEG studies in children with ASD.

The challenges posed by region-referenced longitudinal functional data, and other multi-

dimensional functional data structures, provide several avenues for future work which are

discussed in Section 5.2.

5.1 Concluding summary

As is the case in many biomedical applications, EEG produces highly structured data that

exhibits intricate dependencies with rich information but the dimensionality and size of the

data can produce significant obstacles for interpretation, estimation, and inference. In stud-

ies that utilize EEG to measure neural activity, the resulting region-referenced longitudinal

functional data is often collapsed along all three dimensions to facilitate analysis by stan-

dard statistical methods which produces a loss of valuable information. This doctoral work

proposed three functional data methods methods that both maintain information along each

dimension and yield interpretable components and inferences. Methodological development

centers on extending two fundamental tools of FDA, functional principal components analy-

sis and functional regression, from the setting of one-dimensional curves to region-referenced

longitudinal functional signals. In doing so, several theoretical and computational challenges

are addressed, namely developing flexible but low-dimensional representations of these com-

plex data structures and their corresponding effects and applying appropriate regularization

along each dimension of the data. The proposed methods are motivated by three exper-
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imental paradigms that each utilize EEG as covert measure of brain activity in children

with ASD and their TD peers, producing a common region-referenced longitudinal function

data structure. By allowing the EEG data to be modeled without dimensional collapse, the

proposed methods provide novel insights of the neural features underlying autism across a

wide developmental spectrum.

In Chapter 2, the proposed multi-dimensional functional principal components analysis

(MD-FPCA) decomposition provides a flexible and nonparametric decomposition based on

separation of the total variation into subject and subunit level variation which are further

decomposed in a two-stage FPCA across both longitudinal and functional dimensions. The

MD-FPCA decomposition is the first proposed for repeatedly measured longitudinal func-

tional data and characterizes functional variation both longitudinally over the course of the

implicit learning paradigm and spatially over the scalp through an exchangeable correlation

structure. In the implicit learning data, characterizing longitudinal trends in ERP waveforms

over the course of the experiment is considered essential to track visual learning. Based on the

MD-FPCA decomposition, TD children are found to achieve earlier visual condition differ-

entiation than their ASD peers with substantial variation in condition differentiation among

electrodes and throughout the course of the experiment. While the MD-FPCA decomposi-

tion is extremely flexible in its treatment of functional dynamics across the experiment (i.e.

a separate FPCA is performed at each longitudinal grid point), the spatial correlation struc-

ture is somewhat restrictive due to the assumption of exchangeability of electrodes within a

scalp region. This produces two potential limitations, (1) the flexibility of the longitudinal

functional covariance results in added computational burden and (2) the exchangeability

assumption requires justification that is not always scientifically available.

In Chapter 3, hybrid principal components analysis (HPCA) introduced an alternative

decomposition for region-referenced longitudinal functional data that provides superior bal-

ance between parsimony and flexibility. Under the assumption of weak separability, the total

covariance is decomposed via a tensor product of marginal eigenvectors and eigenfunctions

obtained from the marginal regional, longitudinal, and functional covariances. By operating

on the marginal covariances along each dimension, computation is alleviated while simul-

93



taneously allowing for a more unrestricted form for the regional dependency structure (i.e.

similar to an empirical rather than a compound symmetric covariance matrix). A mixed ef-

fects modeling framework is used to estimate subject loadings onto the tensor basis, allowing

for sparsity introduced during artifact correction in EEG studies. The mixed effects model

allows for a parametric bootstrap procedure to perform group-level inference. Application

of the HPCA decomposition to the word segmentation paradigm data finds the strongest

differences in spectral dynamics among the TD, vASD, and mVASD groups were located in

the left and right frontal regions of the scalp, particularly among high frequency oscillations.

In Chapter 4, attention shifts from decompositions of the total variation to the modeling

of clinical outcomes from region-referenced EEG data while adjusting for non-functional

covariates using a covariate-adjusted region-referenced generalized functional linear model

(CARR-GFLM). The motivating EEG data comes from a developmental study that produces

two analytical challenges that must be overcome, (1) functional effects must be jointly fit

across a discrete regional domain, and (2) the resulting regression function needs to be

adjusted for covariate-effects analogous to a varying-coefficient model. Both challenges are

addressed simultaneously by projecting the regression function onto a tensor basis of discrete

and continuous bases in the regional, functional, and covariate dimensions. A key features

in estimation is defining the penalty structure for the basis coefficients as a kronecker sum

of penalties along each dimension. The resulting system is rank deficient and singular value

decomposition is applied to to the design matrix and penalty structure to create a well-posed

problem. Applying CARR-GFLM to the motivating data finds that PAF tends to increase

with age across the scalp in TD children but not in ASD children and this developmental

difference can be used to predict diagnostic status. This finding suggests that developmental

differences in the alpha band spectral density may provide a promising point of further

investigation into the underlying neural differences between ASD and TD children.

The proposed methods provide a set of inferential and analytical tools for region-referenced

longitudinal functional data that preserve information along each dimension while simultane-

ously modeling functional associations and covariation. The finite sample properties of each

estimation procedure are assessed via extensive simulation studies. Although the proposed
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methods are motivated and applied to experimental EEG data, the models are also appli-

cable to general settings in which longitudinal functional data are observed across discrete

regions, such as fMRI brain imaging studies or streaming activity data from multiple sensors

(i.e. gait monitoring).

5.2 Future work and directions

Region-referenced longitudinal functional data is highly complex and thus the opportunities

for future work are bountiful both from a theoretical and a computational perspective. Sev-

eral direct extensions of the proposed work are available. Similar to the covariate-adjustment

in CARR-GFLM, introducing covariate-adjustments to high-dimensional covariance decom-

positions would allow for characterization of changes in dependency across clinically infor-

mative quantities (e.g. age). Another interesting project would be to weave together FPCA

and functional regression by incorporating information from previously developed covariance

decompositions to form adaptive penalty structures for use in multi-dimensional functional

regression models [James and Silverman, 2005]. In addition, motivated by recent work in

functional graphical models [Qiao et al., 2019] and dynamic connectivity [Lan et al., 2017,

Li et al., 2019], modeling connectivity and graph structures of high-dimensional functional

data would prove an interesting methodological problem to address as well as informative in

many biomedical settings.

Another direction for future work is to draw connections between the literature on func-

tional regression and a set of flexible optimization methods called the majorize-minimization

(MM) algorithm [Lange, 2016]. The MM algorithm is a method for obtaining parameter

estimates by bounding a cost function either above or below by a simpler convex function

and then iteratively minimizing or maximizing the bounding function. By reducing the

complexity of parameter estimation to a problem of convex optimization, the MM algorithm

allows for stable fitting of complex models with the added numerical benefit of separating

parameters during optimization. Although the MM algorithm has been applied to a variety

of statistical problems, the connection has not yet been made with functional regression
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models. By introducing the MM algorithm to the functional data literature, new approaches

to variable selection and smoothing will be possible through fast optimization of a broad

array of likelihood functions.
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APPENDICES

Appendix 2A: Estimation algorithm

In this section we provide an outline of the proposed estimation procedures and refer the

reader to Şentürk and Nguyen (2011), Şentürk et al. (2013), Chen and Müller (2012) and Di

et al. (2014) for further details. We also present explicit algorithm steps at the end of this

section. Denote the observations collected on the ith subject at subunit j, longitudinal time

sijq and functional time tijq` by {Xij(tijq`|sijq), i = 1, . . . , n; j = 1, . . . , J ; q ∈ Qij; ` ∈ Lijq},

where the sets of observed longitudinal and functional times (Qij and Lijq, respectively) are

allowed to be different across subjects, subunits and longitudinal times. The global mean

surface µ(t, s) is estimated by a two-dimensional smoother applied to all observed data

{sijq, tijq`, Xij(tijq`|sijq), i = 1, . . . , n; j = 1, . . . , J ; q ∈ Qij; ` ∈ Lijq}. The subunit-specific

means ηj(t, s) are similarly estimated by smoothing across all mean-centered observation

pairs {sijq, tijq`, Xij(tijq`|sijq)− µ̂(tijq`, sijq), i = 1, . . . , n; q ∈ Qij; ` ∈ Lijq}.

Let {sq, q = 1, . . . , Q} be the unique set of longitudinal times among {sijq, i =

1, . . . , n; j = 1, . . . , J ; q ∈ Qij}. The two-stage estimation procedure involves the func-

tional principal components decompositions of the subject and subunit covariance surfaces

over functional time at a fixed longitudinal time sq in the first-stage. The subject co-

variance surface Σ(1)(t, t′|sq) is estimated by a two-dimensional smoothing of the products

{Xij(tijq`|sijq)− µ̂(tijq`, sijq)− η̂j(tijq`, sijq)}{Xij′(tij′q`′|sij′q)− µ̂(tij′q`′ , sij′q)− η̂j′(tij′q`′ , sij′q)}

over functional times {tijq`, tij′q`′} for all subjects and subunits from different electrodes, ob-

served at sijq = sq, ` ∈ Lijq, `′ ∈ Lij′q and j 6= j′. The subunit covariance surface is estimated

by the difference between the total and subject covariances, Σ̂(2)(t, t′|sq) =
̂̃
ΣT (t, t′|sq) −

Σ̂(1)(t, t′|sq), where the total covariance surface is obtained by the two-dimensional smooth-

ing of {Xij(tijq`|sijq)−µ̂(tijq`, sijq)−η̂j(tijq`, sijq)}{Xij(tijq`′ |sijq)−µ̂(tijq`′ , sijq)−η̂j(tijq`′ , sijq)}

over functional times {tijq`, tijq`′} for all subjects and subunits from the same electrode, ob-

served at sijq = sq and ` 6= `′ ∈ Lijq. Note that the diagonal (` = `′) is excluded in the

smoothing of the two-dimensional total covariance surface to eliminate the effects of mea-
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surement error. The measurement error variance σ2
sq can be estimated by smoothing the

difference between the left out diagonal and the diagonal of the estimated total covariance

surface, {Xij(tijq`|sijq)−µ̂(tijq`, sijq)−η̂j(tijq`, sijq)}2− ̂̃ΣT (t`, t`|sq), over {tijq`} for all subjects

and subunits observed at sijq = sq. The bandwidths used in the two-dimensional smoothing

of the mean and covariance surfaces can be selected using cross-validation or generalized

cross-validation (GCV).

After obtaining the covariance surface estimates at each longitudinal time sq, a nonpara-

metric functional principal component decomposition is employed on the smooth estimates

of the covariance surfaces, Σ̂(1)(t, t′|sq) and Σ̂(2)(t, t′|sq), by a standard discretization pro-

cedure to estimate the subject and subunit level (first and second level) eigenvalues and

eigenfunctions, λ
(1)
k (sq), φ

(1)
k (t|sq) and λ

(2)
p (sq), φ

(2)
p (t|sq), respectively. In order to guarantee

the non-negative definiteness of the covariance matrix, the negative eigenvalue estimates

and the corresponding eigenfunctions are removed from the functional principal component

decomposition of the covariances. In addition, to maintain the smoothness of φ̂
(1)
k (·|s) and

φ̂
(2)
p (·|s) over s, we determine the signs of consecutive eigenfunctions as follows. Let φ̂

(1)
k (·|sq)

be the first level eigenfunction estimate at the qth longitudinal time sq. The sign of the eigen-

function, φ̂
(1)
k (·|sq), is determined such that the L2 distance to the previous eigenfunctions

{φ̂(1)
k (·|sq−1), . . . , φ̂

(1)
k (·|sq−q′)} is minimized. We found comparisons up to q′ = 5 previous

eigenfunctions to yield good results in our implementations. This is recursively performed

for the entire domain of s for both the first and second level eigenfunctions across k and p,

respectively.

The decompositions given in (2) and (5) are truncated to include only the components

containing the largest modes of variation. Specifically, the number of first-stage subject level

(K) and subunit level (P) principal components are selected using percentage of variation

explained. Let Ksq and Psq be the smallest number of components satisfying the criteria

{
∑Ksq

k=1 λ̂
(1)
k (sq)}/{

∑M1

k=1 λ̂
(1)
k (sq)} > 0.9 and {

∑Psq

p=1 λ̂
(2)
p (sq)}/{

∑M2

p=1 λ̂
(2)
k (sq)} > 0.9 for first

and second levels, respectively, where M1 and M2 are large. We select K ≡ maxq(Ksq) and

P ≡ maxq(Psq) to ensure the same number of principal components at each sq for subsequent

modeling of the first-stage eigenscores. The number of first (K ′k) and second level components
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(P ′p) of the second-stage decomposition are selected similarly to explain at least 90% of the

total variation. Other methods for selecting the number of principal components include

cross-validation (Rice and Wu, 2001) and Akaike’s Information Criterion (Yao et al., 2005).

The first-stage subject and subunit level eigenscores, ξik(sq) and ζijp(sq), are estimated

using their best linear unbiased predictors (BLUP) as described in Di et al. (2014). Next,

second-stage functional principal components decompositions are applied to the longitudi-

nally observed first-stage eigenscores separately for k = 1, . . . , K and p = 1, . . . , P . This

involves the two-dimensional smoothing of the raw covariances {ξ̂ik(sq)ξ̂ik(sq′)} over {sq, sq′},

q, q′ = 1, . . . , Q and {ζ̂ijp(sq)ζ̂ijp′(sq′)} over {sq, sq′}, q, q′ = 1, . . . , Q; j, j′ = 1, . . . , J .

As with the first-stage decompositions, the smooth covariance surface estimates are dis-

cretized to estimate the second-stage subject and subunit level eigenvalues and eigenfunc-

tions {λkk′ , ψ(1)
kk′(s)} and {λpp′ , ψ(2)

pp′(s)}, respectively, for k = 1, . . . , K; k′ = 1, . . . , K ′k;

p = 1, . . . , P ; p′ = 1, . . . , P ′p. The second-stage eigenscores are also estimated using BLUP,

yielding ξ̂′ikk′ , ζ̂
′
ijpp′ . Estimated model components from both stages yield predictions of the

subject and subunit trajectories over functional and longitudinal time,

X̂ij(t|s) = µ̂(t, s) + η̂j(t, s) +
K∑
k=1

K′
k∑

k′=1

ξ̂′ikk′ψ̂
(1)
kk′(s)φ̂

(1)
k (t|s) +

P∑
p=1

P ′
p∑

p′=1

ζ̂ ′ijpp′ψ̂
(2)
pp′(s)φ̂

(2)
p (t|s).

The MD-FPCA estimation algorithm implemented in the MATLAB function

MultiLevelFuncLong.m is outlined below. The custom functions developed specifically for

MD-FPCA are listed alongside the relevant steps. For more detailed comments, please see

the MATLAB code posted on Github. The runtime of a single Monte Carlo run for the

sparsely observed data described in Appendix 2D with a sample size of N = 30 is 15 minutes

and 32 seconds on a 2.4 GHz 6-Core Intel Xeon processor operating MATLAB R2015B. The

runtime for the data analysis are 10 minutes and 17 seconds and 11 minutes and 31 seconds

for the ASD and TD groups, respectively.

MD-FPCA Algorithm [MultiLevelFuncLong.m]

1. Estimate µ(t, s) with a two-dimensional smoother applied to all observed data
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{sijq, tijq`, Xij(tijq`, sijq), i = 1, . . . , n; j = 1, . . . , J ; q ∈ Qij; ` ∈ Lijq}. [MeanSmooth2D.m]

2. Estimate ηj(t, s) with a two-dimensional smoother applied to all mean-centered obser-
vation pairs {sijq, tijq`, Xij(tijq`, sijq) − µ̂(tijq`, sijq), i = 1, . . . , n; q ∈ Qij; ` ∈ Lijq}.
[MeanSmooth2D.m]

3. First-stage Karhunen-Loève decomposition:
(a) For each longitudinal time sq, q = 1, . . . , Q, perform a multilevel FPCA for all

data {tijq`, Xij(tijq`|sijq), i = 1, . . . , n; j = 1, . . . , J ; ` ∈ Lijq} observed at
sijq = sq. [MultilevelFPCA.m]

i. Estimate Σ(1)(t, t′|sq) with a two-dimensional smoother applied to the prod-
ucts {Xij(tijq`|sijq)−µ̂(tijq`, sijq)−η̂j(tijq`, sijq)}{Xij′(tij′q`′|sij′q)−µ̂(tij′q`′ , sij′q)−
η̂j′(tij′q`′ , sij′q)} over functional times {tijq`, tij′q`′} for all subjects and sub-
units from different electrodes, observed at ` ∈ Lijq, `

′ ∈ Lij′q and j 6= j′.
[CovarianceSmooth.m]

ii. Estimate Σ̃T (t, t′|sq) with a two-dimensional smoother applied to the products
{Xij(tijq`|sijq) − µ̂(tijq`, sijq) − η̂j(tijq`, sijq)}{Xij(tijq`′|sijq) − µ̂(tijq`′ , sijq) −
η̂j(tijq`′ , sijq)} over functional times {tijq`, tijq`′} for all subjects and subunits
from the same electrode, observed at ` 6= `′ ∈ Lijq. [CovarianceSmooth.m]

iii. Estimate Σ(2)(t, t′|sq) = Σ̃T (t, t′|sq)− Σ(1)(t, t′|sq) by taking the difference of̂̃
ΣT (t, t′|sq)− Σ̂(1)(t, t′|sq).

iv. Estimate σ2
sq = {Xij(tijq`|sijq)−µ̂(tijq`, sijq)−η̂j(tijq`, sijq)}2−Σ̃T (tijq`, tijq`′ |sq),

observed at ` = `′ ∈ Lijq.

(b) Employ a FPCA on Σ̂(1)(t, t′|sq) to estimate {λ(1)
k (sq), φ

(1)
k (t|sq)}.

(c) Employ a FPCA on Σ̂(2)(t, t′|sq) to estimate {λ(2)
p (sq), φ

(2)
p (t|sq)}.

(d) For each longitudinal time sq, q = 1, . . . , Q, letKsq and Psq be the smallest number

of components satisfying the criteria {
∑Ksq

k=1 λ̂
(1)
k (sq)}/{

∑M1

k=1 λ̂
(1)
k (sq)} > 0.9 and

{
∑Psq

p=1 λ̂
(2)
p (sq)}/{

∑M2

p=1 λ̂
(2)
k (sq)} > 0.9, where M1, M2 are large.

(e) Set K = maxq(Ksq) and P = maxq(Psq).

(f) For each longitudinal time sq, q = 2, . . . , Q, determine the sign of φ̂
(1)
k (·|sq) by

minimizing the L2 distance to the previous eigenfunction φ̂
(1)
k (·|sq−1). Repeat the

procedure for φ̂
(2)
p (·|sq).

(g) Estimate ξik(sq) and ζijp(sq) using their multilevel best linear unbiased predictors
(BLUP). [ComputeScores.m]

4. Second-stage Karhunen-Loève decomposition:
(a) Perform a two-dimensional smooth of the raw covariances {ξ̂ik(sq)ξ̂ik(sq′)} over

{sq, sq′}, q, q′ = 1, . . . , Q, and {ζ̂ijp(sq)ζ̂ij′p(sq′)} over {sq, sq′}, q = 1, . . . , Q; j, j′ =
1, . . . , J .

(b) Employ a FPCA on the smooth covariance surface obtained in 4 (a) to estimate

{λkk′ , ψ(1)
kk′(s)}.
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(c) Employ a FPCA on the smooth covariance surface obtained in 4 (a) to estimate

{λpp′ , ψ(2)
pp′(s)}.

(d) Let K ′k and P ′p be the smallest number of components satisfying the criteria

{
∑K′

k

k′=1 λ̂
(1)
kk′}/{

∑M1

k′=1 λ̂
(1)
kk′} > 0.9 and {

∑P ′
p

p′=1 λ̂
(2)
pp′}/{

∑M2

p′=1 λ̂
(2)
pp′} > 0.9, where M1,

M2 are large.
(e) Estimate ξ′ikk′ and ζ ′ijpp′ using their BLUP.
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Appendix 2B: The meta-preprocessing

Due to the low SNR of the ERP, components such as the P3 peak are hard to identify on trial

specific ERPs. The meta-preprocessing of Hasenstab et al. (2015), utilizing a moving average

of ERPs across sliding trial windows, increases the SNR without collapsing the longitudinal

dimension (via the typical practice of averaging across all ERP trials) to extract longitudinal

information from ERPs. For illustration of the increase in the SNR and identification of the

P3 and N1 components, consider a single ERP waveform for one subject from a single trial

recorded in the right frontal region of the scalp and an average of 30 ERP waveforms from

adjacent trials plotted in Figures A2.1 (a) and (b), respectively. While the components are

unrecognizable in Figure A2.1 (a) due to low SNR, P3 peak and N1 dip are easily recognized

in the meta-preprocessed ERP in Figure A2.1 (b). Note that a limitation inherent to the

problem at hand is that components such as P3 and N1 cannot be aligned across trials

prior to the averaging in the meta-preprocessing, since alignment would de facto require

that features be identified before averaging, which is impractical due to noise levels in the

individual raw ERP.
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Appendix 2C: Additional data analysis results: electrode-level vari-

ation and subject-specific eigenscores

The leading first-stage electrode level eigenfunctions φ
(2)
1 (t|s) for the ASD and TD groups

(shown in Figure A2.4 (a) and (c), respectively) both have relatively flat contours, indicating

that the majority of the electrode level variation is also along the longitudinal/trial dimen-

sion. While second-stage eigenfunctions indicate variability at intermediate trials (Figure

A2.4 (b)) (solid, 21.7%) and boundary trials (Figure A2.4 (b)) (dashed, 8.5%) in the ASD

group, most of the variability in the TD group seems to be quite uniform across trials with

slightly larger variance at intermediate and later trials (Figure A2.4 (d)) (solid, 11.8%),

followed by variation in early trials (Figure A2.4 (d)) (dashed, 7.4%).

The subject-specific eigenscores are estimated to predict subject-specific trajectories and

to study subgroups within diagnostic groups of ASD and TD. The median (10th and 90th)

percentile relative squared error, as defined in Appendix 2D, for the predicted surfaces

Xij(t|s) are .394 (.171, .811) and .350 (.141, .650) for the ASD and TD groups, respectively.

These are reasonable values for the available data with a low SNR and a small sample size.

ASD is a highly heterogeneous disorder. In order to study subgroups with similar learning

patterns within the diagnostic groups, we plot the two leading subject level eigenscores from

the second-stage of MD-FPCA in Figures A2.9 (a) and (b) for the ASD and TD groups (the

subject level eigenscores from the first-stage decompositions are displayed in Figure A2.8).

In addition, the smoothed subject-specific amplitude difference trajectories (averaged over

the four electrodes) across trials at the peak location (t = 0) partitioned by the median of the

leading scores ξ′i11 are given in Figures A2.9 (c) and (d) for ASD and TD groups, respectively.

The variation in the leading eigenscore in the ASD group represents the largest component

of the total variation in the ASD group that is observed in the intermediate and later trials.

While no major clusters seem to emerge in either diagnostic group, there seems to be a small

cluster around zero in the ASD group. Specifically the small cluster around zero observed

in Figure A2.9 (a), falling in the below median partition, are plotted in black in Figure

A2.9 (c) with minimal variation along trials, signaling little or no implicit learning. The

103



second group plotted in gray shows a positive condition differentiation at intermediate trials,

implying implicit learning is taking place. In contrast, the variation in the leading eigenscore

in the TD group represents variation at early and intermediate trials, corresponding to

two groups in TD with positive (plotted in gray) and negative (plotted in black) condition

differentiation. These subgroups with distinct patterns of condition differentiation at the P3

peak location within the two diagnostic groups are similar to insights gained in our previous

works (Hasenstab et al. (2016)) based on a clustering of subjects according to longitudinal

trends over trials, ignoring the functional dimension.
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Appendix 2D: Simulation

We study the finite sample properties of MD-FPCA through simulations. We generate data

from the model

Xij(t|s) = µ(t, s) + ηj(t, s) +
2∑

k=1

2∑
k′=1

ξ′ikk′ψ
(1)
kk′(s)φ

(1)
k (t|s) +

2∑
p=1

2∑
p′=1

ζ ′ijpp′ψ
(2)
pp′(s)φ

(2)
p (t|s) + εij(t|s),

containing components from both stages of the MD-FPCA decomposition for i = 1, . . . , n,

j = 1, . . . , 4. The grids for the longitudinal and functional time points, s and t, are chosen as

50 equidistant points in [0, 1]. The overall mean function is µ(t, s) = 10
√

1− (t− .5)2 − (s− .5)2

with a positive concave pattern similar to the mean function of the ASD group, and the

subunit-specific shifts ηj(t, s) are set to zero for j = 1, . . . , 4, for simplicity. The first- and

second-stage eigenfunctions at both the subject and subunit levels are defined as φ
(1)
1 (t|s) =

√
2 cos{π(t − s)}, φ(1)

2 (t|s) =
√

2 cos{3π(t − s)}, φ(2)
1 (t|s) =

√
2 sin{π(t − s)}, φ(2)

2 (t|s) =
√

2 sin{3π(t − s)}, ψ(1)
11 (s) =

√
2 sin(2πs), ψ

(1)
12 (s) =

√
2 cos(2πs), ψ

(1)
21 (s) =

√
2 cos(4πs),

ψ
(1)
22 (s) =

√
2 sin(4πs), ψ

(2)
11 (s) =

√
2 sin(2πs), ψ

(2)
12 (s) =

√
2 cos(2πs), ψ

(2)
21 (s) =

√
2 cos(4πs),

and ψ
(2)
22 (s) =

√
2 sin(4πs). The second-stage eigenscores at the subject and subunit lev-

els, ξi11, ξi12, ξi21, ξi22, ζij11, ζij12, ζij21, and ζij22 are simulated from mean zero Gaussian

distributions with variances λ
(1)
11 = 3, λ

(1)
12 = 2, λ

(1)
21 = 1.5, λ

(1)
22 = .75, λ

(2)
11 = 3, λ

(2)
12 = 2,

λ
(2)
21 = 1.5, λ

(2)
22 = .75, respectively, corresponding to the leading first-stage eigenscores ξi1(s),

ξi2(s), ζij1(s), and ζij2(s) with variance functions var{ξi1(s)} = λ
(1)
1 (s) =

∑2
k′=1 λ

(1)
1k′ψ

(1)
1k′(s),

var{ξi2(s)} = λ
(1)
2 (s) =

∑2
k′=1 λ

(1)
2k′ψ

(1)
2k′(s), var{ζij1(s)} = λ

(2)
1 (s) =

∑2
p′=1 λ

(2)
1p′ψ

(2)
1p′(s), and

var{ζij2(s)} = λ
(2)
2 (s) =

∑2
p′=1 λ

(2)
2p′ψ

(2)
2p′(s). The measurement error εij(t|s) is simulated in-

dependently over longitudinal and functional time from a mean zero Gaussian distribution

with variance σ2(s) = {7 + cos(2πs)}/c, where c is used to vary the SNRs of the simulated

data.

We run simulations under multiple scenarios with varying SNRs, sample sizes, and spar-

sity levels in the longitudinal time domain. A range of measurement error variance was

obtained by varying the c values from 0.5 to 50, corresponding to SNRs of roughly 1 and

105



100, respectively. Web Tables 1 and 2 report results from the boundary cases of c = 0.5 and

50. In addition, results are reported for two sample sizes N = 30 (similar to the implicit

learning data) and N = 100, as well as two sparsity levels at the longitudinal dimension.

As in our motivating implicit learning example, while ERP data are recorded on a dense

grid of functional time points, there may be some missing values on the longitudinal time

grid due to trials with low data quality. Hence for the sparse design case, we consider 40%

missing data at random longitudinal time points per subject. As with our data analysis,

the number of principal components for both stages of the MD-FPCA decomposition are

selected to explain at least 90% of the variation. The smoothing bandwidths are selected in

a preliminary simulation study using GCV and are fixed for the full simulation at (.2, .2) for

first-stage overall and subunit means for both sample sizes, at (.1, .1) for the total and sub-

unit covariance surfaces for N = 30, at (.02, .02) for the total and subunit covariance surfaces

for N = 100, and at (.05, .05) for the second-stage mean and covariance surfaces for both

sample sizes. We utilize relative squared error RSE(s, t) = {||f(t, s) − f̂(t, s)||2}/||f(t, s)||2

to assess estimates of the one and two dimensional decomposition components in MD-FPCA

where ||f(s)|| =
∫
f(s)2ds and ||f(t, s)||2 =

∫ ∫
f(t, s)2dsdt, respectively. For assessment of

estimated scalar model components, we utilize mean squared error (MSE).

Figures A2.10-A2.14 display estimated model components from 200 Monte Carlo runs for

a dense design with N = 100 and c = .5 (low SNR). The estimated first-stage subject and

subunit level eigenfunctions with the median RSE value (Figures A2.11-A2.12 (b) and (d))

track the true quantities (Figures A2.11-A2.12 (a) and (c)) closely, similar to the overall mean

estimates (Figures A2.10 (a) and (b)). The estimated first-stage subject and subunit eigen-

score variance functions, λ
(1)
1 (s), λ

(1)
2 (s), λ

(2)
1 (s), and λ

(2)
2 (s) (Figures A2.11-A2.12 (e)-(f)),

second-stage eigenfunctions (Figures A2.13-A2.14 (a)-(d)) and the estimated proportion of

variability explained at the subject-level in the first-stage of MD-FPCA, ρ(s), (Figure A2.13

(c)), are given from runs with RSE values at the 10th, 50th and 90th percentiles, overlaying

the true quantities. The estimates for the second leading first-stage eigenscore variance func-

tions, the second-stage eigenfunctions, and ρ(s) track the periodicity, magnitude, and shape

of the true functions. The estimated leading first-stage eigenscore variance functions capture
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the periodicity and shape but tend to overestimate the magnitude of the true functions.

Web Tables 1 and 2 display the median, 10th and 90th percentiles of the RSE and MSE

for estimated MD-FPCA model components over the eight simulation designs. As expected,

the RSEs for the mean surface, µ(t, s), first-stage eigenfunctions, φ
(1)
1 (t|s), φ(1)

2 (t|s), φ(2)
1 (t|s),

and φ
(2)
2 (t|s), the first-stage eigenscore variance, λ

(1)
1 (s), λ

(1)
2 (s), λ

(2)
1 (s), and λ

(2)
2 (s), and the

proportion of variability displayed at the subject-level, ρ(s), decrease under a denser design,

with increasing sample size and SNR. The fitted surfaces for Xij(t|s) seem to be the most

sensitive to increasing SNR. The RSE for the low SNR design corresponds to only 10% of

the area under the true subject specific surface and improves substantially moving to the

high SNR design. The RSEs for second-stage eigenfunctions, ψ
(1)
kk′(s) and ψ

(2)
pp′(s), decrease

with increasing sample size under a denser design, but do not change with increasing SNR.

This may be due to the fact that these quantities are estimated in the second-stage of the

algorithm, based on estimated quantities in the first-stage and do not depend directly on

data observed with measurement error. In addition, note that N = 100, especially N =

30, are small sample sizes for functional principal components decompositions and estimates

especially for the second-stage quantities get better with increasing sample size (see the drop

in the 90th percentile for the RSEs of the second-stage eigenfunctions with sample size).

Finally, the median MSE for ρ decreases under a denser design, with increasing sample size

and SNR.
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Figure A2.1: (a) ERP waveform from a single subject, condition, electrode and trial in the
right frontal region of the scalp. (b) The average of the first 30 consecutive ERP waveforms
for the same subject, electrode and condition after preprocessing.

Appendix 3A: Spectral PCA

We consider 11 scalp regions (left and right temporal (LT, RT) and left, right, and mid-

dle, frontal, central, and posterior regions (LF, RF, MF, LC, RC, MC, LP, RP, MP), each

containing 4 to 7 electrodes, identified by our collaborators to be of interest in the word

segmentation paradigm. Let Xdirjs(t) denote the locally stationary mean zero time series

observed on subject i, i = 1, . . . , nd, from group d, d = 1, . . . , D, at electrode j, j = 1, . . . , Jr,

within region r, r = 1, . . . , R, for segment s, s = 1, . . . , S, at a sampling rate of U across

discretized time t, t = 0,±1, . . . ,±U/2. For each observation Xdirjs(t), FFT is performed

to obtain the set of Fourier coefficients adirjs(ω) = U−1/2
∑U/2

t=−U/2+1Xdirjs(t)e
−2πiωt across

frequency ω = {u + (U/2 − 1)}/U , u = −U/2 + 1, . . . , U/2. Using the Fourier coefficients

obtained, the raw Jr×Jr periodogram matrix Idirs(ω) is computed, where the (j, j′)-th entry

is equal to adirjs(ω)ādirj′s(ω), with ādirj′s(ω) denoting the conjugate transpose of adirj′s(ω).

Next, kernel smoothing is applied to each (j, j′)-th entry in the U/2 + 1 periodogram ma-

trices across frequency ω, using a modified Daniell kernel to obtain a consistent estimate

of the spectral density, denoted by Ĩdirs(ω). To guarantee that the resulting smoothed pe-

riodogram matrix is non-negative definite, generalized cross validation (GCV) is used to
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Figure A2.2: Estimated electrode-specific mean surfaces for the ASD group.
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Figure A2.3: Estimated electrode-specific mean surfaces for the TD group.
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and (b, d) estimated leading electrode level second-stage eigenfunctions, {ψ(2)
1p′(s)}, p′ = 1, 2,

for the ASD and TD groups, respectively.
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√
λ
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12 ϕ
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12 (t, s), for the ASD and TD

groups, respectively.

select a common bandwidth for the smoothing of all the terms in the raw periodogram ma-

trices. For each frequency ω, a principal components decomposition is performed on the

smoothed periodogram matrix Ĩdirs(ω) and the leading eigenvalue, denoted by λdirs1(ω), is

extracted. We normalize the leading eigenvalue λdirs1(ω) across the frequency domain such

that
∫
λdirs1(ω)dω = 1, defined as principal power that is comparable across brain regions,

similar to the relative power commonly calculated in EEG spectral analysis. While the lead-

ing eigenvector summarizes the contribution of the specific electrodes to total variation in a

given frequency within a region, the principal power, as the normalized leading eigenvalue,

represents the common variation in that frequency across the electrodes (relative to variation

in other frequencies) in a given scalp region along the direction of the leading eigenvector.
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Figure A2.7: Estimated subject level principal surfaces ϕ
(1)
kk′(t, s) = ψ

(1)
kk′(s)φ

(1)
k (t|s) for (a)

k = 1, k′ = 1, (b) k = 1, k′ = 2, (c) k = 2, k′ = 1 and (d) k = 2, k′ = 2 for the TD group.
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Figure A2.8: Estimated subject-specific eigenscores from the first-stage decompositions for
the ASD ((a, c)) and TD ((b, d)) groups.
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Figure A2.9: (a-b) The two leading subject level eigenscores from the second-stage decom-
positions for the ASD and TD groups, respectively. (c-d) The smoothed subject-specific
amplitude difference trajectories at P3 peak location t = 0, partitioned by the median of the
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Figure A2.11: The true and estimated model components based on 200 Monte Carlo runs
from the dense design scenario at N = 100 and low SNR. The true ((a, c)) and estimated ((b,
d)) first-stage subject level eigenfunctions are displayed in the first two rows. The estimated
functions correspond to the Monte Carlo run with RSE value at the 50th percentile. The
true and estimated first-stage subject level eigenscore variance functions are given in (e) and
(f) from runs with RSE values at the 10th, 50th and 90th percentiles.
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Figure A2.12: The true and estimated model components based on 200 Monte Carlo runs
from the dense design scenario at N = 100 and low SNR. The true ((a, c)) and estimated ((b,
d)) first-stage subunit level eigenfunctions are displayed in the first two rows. The estimated
functions correspond to the Monte Carlo run with RSE value at the 50th percentile. The
true and estimated first-stage subunit level eigenscore variance functions are given in (e) and
(f) from runs with RSE values at the 10th, 50th and 90th percentiles.
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Figure A2.13: The true and estimated model components based on 200 Monte Carlo runs
from the dense design scenario at N = 100 and low SNR. Estimated model components
are given from runs with RSE values at the 10th, 50th and 90th percentiles. Displayed are
the ((a-d)) second-stage subject level eigenfunctions and (e) the proportion of variability
explained at the subject level, ρ(s), in the first-stage decompositions.
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Figure A2.14: The true and estimated model components based on 200 Monte Carlo runs
from the dense design scenario at N = 100 and low SNR. Estimated model components are
given from runs with RSE values at the 10th, 50th and 90th percentiles. Displayed ((a-d))
are the second-stage subunit level eigenfunctions.
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Appendix 3B: Estimation of model components

Presented below are details of the estimation algorithm deferred from Section 3.2 due to their

utilization of well-established mean, covariance, and eigencomponent estimation procedures.

1. Estimation of the Fixed Effects:

(a-b) The overall mean and group-region shifts, µ(ω, s) and ηd(r, ω, s), are estimated using

bivariate penalized splines via the sandwich smoother of Xiao et al. [2013]. Given possible

imbalances in group sample sizes, the estimated overall mean function is taken as a point-wise

average of the smoothed mean functions within each group.

2. Estimation of the Marginal Covariances and Measurement Error Variance:

(a) After the functional fixed effects are estimated, let Ŷ c
di(r, ω, s) = Ydi(r, ω, s) − µ̂(ω, s) −

η̂d(r, ω, s) denote the centered data. We estimate the functional marginal covariance surface

by first obtaining the pooled sample covariance, Σ̂d,Ω(ω, ω′) = {
∑nd

i=1

∑R
r=1

∑
s∈S Ŷ

c
di(r, ω, s)Ŷ

c
di(r, ω

′, s)}

/(ndR|S|), where |S| denotes the total number of grid points observed in S. Note that the

sample covariance is pooled to accelerate computation. Given that the diagonals of the

pooled sample covariance Σ̂d,Ω(ω, ω′) are inflated by the measurement error variance σ2
d, the

estimated functional marginal covariance surface Σ̃d,Ω(ω, ω′) is obtained by smoothing the

off-diagonal elements of the pooled sample covariance Σ̂d,Ω(ω, ω′) over frequencies (ω, ω′)

using bivariate penalized splines with smoothing parameters selected by restricted maxi-

mum likelihood (REML) as proposed by Goldsmith et al. [2012]. The estimated longitudinal

marginal covariance surface, Σ̃d,S(s, s′), is obtained similarly. If missingness in the data is not

symmetric along either the longitudinal or functional dimensions, the proposed smoothing

procedure can be adapted by incorporating weights to adjust for the number of observations

at each grid point in the pooled marginal sample covariance.

(b) The measurement error variance σ2
d is estimated by the difference of two smooths, the one-

dimensional smooth fitted only to diagonal elements of the pooled marginal covariance and

the diagonal elements of Σ̃d,Ω(ω, ω′). The resulting measurement error variance estimate is

denoted by σ̂2
d,Ω. The estimated measurement error variance, σ̂2

d,S , based on the longitudinal
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covariance is obtained similarly. The two measurement error variance estimates, σ̂2
d,Ω and

σ̂2
d,S , are averaged to derive an initial estimate of the measurement error variance σ̂2

d, utilized

below in estimation of the regional marginal covariance matrix.

(c) Unlike the marginal covariance surfaces, it is not possible to adjust for measurement error

by smoothing over non-diagonal elements when estimating the regional marginal covariance

matrix. Hence we utilize our initial estimate, σ̂2
d, of the measurement error variance to

de-noise the pooled regional marginal covariance matrix. More specifically, the estimated re-

gional marginal covariance matrix, Σ̃d,R, is obtained by adjusting the diagonal elements of the

pooled sample covariance, (Σ̂d,R)r,r′ = {
∑nd

i=1

∑
s∈S
∑

ω∈Ω Ŷ
c
di(r, ω, s)Ŷ

c
di(r

′, ω, s)}/(nd|Ω||S|),

where (Σ̃d,R)r,r′ = (Σ̂d,R)r,r′ for r 6= r′ and (Σ̃d,R)r,r′ = (Σ̂d,R)r,r′ − σ̂2
d for r = r′.

3. Estimation of the Marginal Eigencomponents:

(a-b) The estimated marginal eigenvalue, eigenvector/function pairs {τ̂dk,R, v̂dk(r)}, {τ̂d`,Ω, φ̂d`(ω)},

and {τ̂dm,S , ψ̂dm(s)} are obtained by eigendecompositions of the marginal covariance matrix

and surfaces, respectively [Park and Staicu, 2015, Chen et al., 2016]. Unlike previous works,

the marginal eigendecompositions for HPCA utilize both functional and vector PCA. Initial

values for the number of eigencomponents, K, L, and M , included in the truncated HPCA

are chosen to explain at least 90% of the variation in the respective marginal covariance

decompositions.

The runtime of a single Monte Carlo run for the longitudinally dense data described in

Appendix E with a sample size of nd = 15 is 9 minutes and 26 seconds on a 2.4 GHz 6-Core

Intel Xeon processor operating R 3.3.2 [R Core Team, 2018].
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Appendix 3C: Algorithm for the bootstrap test

Presented below is the algorithm for the bootstrap test proposed in Section 3.3.

Algorithm: Bootstrap Test :

For a fixed region, r ∈ {1, . . . , R}, perform the following algorithm:

1. Generate B parametric bootstrap samples with sample sizes in each group identical
to the observed data.

2. For the bth parametric bootstrap sample, calculate the test statistic

T br =

√√√√ D∑
d=1

∫ ∫
{η̂bd(r, ω, s)− η̂b(r, ω, s)}2dωds,

where η̂bd(r, ω, s) and η̂b(r, ω, s) are both estimated based on the bth bootstrap sample.
3. Use (1/B)

∑B
b=1 I(T br > Tr) to estimate the p-value where I(·) denotes the indicator

function and Tr is the test statistic from the original sample.
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Appendix 3D: Application to the word segmentation data

D.1: Data Structure and Methods

Prior to FFT, the linear trend is removed and the EEG signal is normalized at each segment

and electrode to facilitate comparison of the resulting spectral densities. Standard EEG pre-

processing steps include bad electrode replacement, automatic segment rejection (QEEG

(4.0) Auto Artifact Detection, Netstation 4.4.5), manual segment rejection due to muscle

activity, saccades or eye movements, and re-referencing to the average scalp signal. Since

the segment rejection varies from person to person, the support of the longitudinal dimension

is subject-specific, but remains the same across electrodes within a subject. The mvASD

children had the lowest number of good segments after the pre-processing steps (as few as

12), leading to data sparsity in the longitudinal dimension (Figure A3.1(a)). We exclude

the first 4 segments for which only one subject in the TD group has valid data and, so the

range of the longitudinal domain is S = {5 : 140}. One mvASD subject was removed prior

to analysis due to having valid data in less than ten segments.

D.2: Data Analysis Results

In order to asses the weak separability assumption on the covariance process, we compare the

first and second leading eigenvectors and eigenfunctions along each of the three dimensions

of the observed data across fixed slices of the other two dimensions for all three diagnostic

groups of TD, vASD and mvASD children (Figures A3.2 and A3.3, second columns). For

ease of interpretation, we also display leading eigenvectors and eigenfunctions of the regional,

functional and longitudinal marginal covariances, depicting modes of marginal variation

along the three dimensions (Figures A3.2 and A3.3, first columns). Table A3.1 displays

the FVE by the eigencomponents for the regional, functional and longitudinal marginal

covariances that explain at least 90% FVE in all three diagnostic groups. The leading five,

four, and five regional marginal eigenvectors, five functional marginal eigenfunctions, and

the two longitudinal marginal eigenfunction are found to explain FV EdG = 0.934, 0.944,
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and 0.925 of the total variation in the TD, vASD, and mvASD groups, respectively.

In the functional dimension, the first leading marginal eigenfunction φd1(ω) (Figure

A3.2(a)) displays increasing variation with increasing frequency for all diagnostic groups,

with the peak observed in the beta and gamma bands (15-50 Hz). The second leading

marginal eigenfunction φd2(ω) (Figure A3.3(a)) displays peak variation mostly in the beta

band (15-32 Hz). The first two eigenfunctions together explain at least 70% of the variation

in the functional marginal covariance in all three diagnostic groups. The eigencomponents

estimated at fixed slices of the other two dimensions have similar shapes within diagnostic

groups and are also similar to the eigencomponents of the functional marginal covariance.

Figures A3.2 and A3.3(b) illustrate these effects using slices corresponding to the LT region

at segments s = 40, 70, 100.

In the longitudinal dimension, the first leading marginal eigenfunction ψd1(s) (Figure

A3.2(c)) displays constant variation across segments and explains more than 85% of the vari-

ation in the longitudinal marginal covariance for all diagnostic groups. The second leading

longitudinal marginal eigenfunction ψd2(s) (Figure A3.3(c)) oscillates around zero explaining

less than 7% of the longitudinal marginal covariance for all diagnostic groups. As illustrated

in the LT region at fixed frequencies ω = 30, 40, 50, the estimated eigencomponents have

similar shapes within diagnostic groups and with the eigencomponents of the longitudinal

marginal covariance (Figures A3.2 and A3.3(d)).

In the regional dimension, the weights of the first leading marginal eigenvector vd1(r)

(Figure A3.2(e)) are uniform across scalp locations in all the diagnostic groups, implying

equal variation, while the weights of the second leading marginal eigenvector vd2(r) (Figure

A3.3(e)) are highest for the MP and RP regions, and MF and RF regions for the TD and

vASD groups, respectively. In the mvASD group, the leading components signal a contrast

between LT and MC regions. The first two regional marginal eigenvectors together explain

at least 70% of the variation in the regional marginal covariance. The leading eigenvectors

obtained at fixed slices of (ω, s) = (30, 40), (30, 70), (30, 100) put reasonably similar weights

on regions within diagnostic groups, at least for the first leading eigenvector (Figures A3.2

and A3.3(f)). However, the estimates may not be very reliable, based on sample sizes as low
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as seven subjects per group, due to conditioning on the sparse longitudinal dimension. In ad-

dition to the visual inspection of the shapes of the eigenvectors and eigenfunctions along each

dimension at fixed slices of the other two dimensions, we also performed a likelihood ratio

test on the correlation structure of the subject-specific scores to check the weak separability

assumption. Specifically, we test for an independence structure versus an alternative of a het-

erogenous compound-symmetric dependence structure, with potentially different variances

on the diagonal. We chose the compound symmetric dependence as the alternative rather

than unstructured to maximize the stability of the estimates given the number of covariance

parameters required. The likelihood ratio test fails to reject the null hypothesis of the inde-

pendence structure, corresponding to the weak separability assumption (p= 0.72, 0.79, 0.62

for the TD, vASD and mvASD groups respectively), consistent with the results of our vi-

sual inspection. Weak separability of the covariance process is maintained after collapsing

the longitudinal dimension given that the marginal longitudinal eigenfunctions are simply

integrated out.

While there is sufficient evidence to justify the assumption of weak separability in the

observed data, the question remains whether the even more restrictive property of strong

separability can be assumed. Recall that strong separability requires that the entire covari-

ance structure, not only the directions of variation along each dimension, is the same up to

a constant across fixed slices of the other dimensions. The estimated functional covariance

surfaces, Σd,Ω(ω, ω′), are displayed for TD, vASD, and mvASD groups in descending rows for

the RT region for fixed s = 100 (Figure A3.4 (a, c, e)) and RF region for fixed s = 70 (Figure

A3.4 (b,d,f)). Visual inspection of the covariance surfaces within each group shows that the

covariance structure in the functional dimension is not the same up to a constant across

fixed slices of the regional and longitudinal dimensions, suggesting that the assumption of

strong separability is too stringent for the observed data.

129



Appendix 3E: Simulation

We studied the finite sample properties of the proposed HPCA and the bootstrap test for

group-level inference via extensive simulations. We generated data from the model

Ydi(r, ω, s) = µ(ω, s) + ηd(r, ω, s) +
3∑

k=1

3∑
`=1

3∑
m=1

ξdi,k`mvdk(r)φd`(ω)ψdm(s) + εdi(r, ω, s), (A.1)

with K = L = M = 3 for d = 1, 2, and i = 1, . . . , nd. The functional and longitudinal grids

were chosen as 50 equidistant points in [0, 1], where data were generated for a total of R = 9

regions. The overall mean function was µ(ω, s) = 5
√

1− (ω − .5)2 − (s− .5)2 and the group-

region shifts were ηd(r, ω, s) = 3(−1)dω2, for d = 1, 2 and r = 1, . . . , R = 9. The rth element

of the regional marginal eigenvectors were (vdk)r = 1/2 sin[{kπ(r − 1)}/8], for d = 1, 2,

r = 1, . . . , 9 and k = 1, 2, 3; the functional and longitudinal marginal eigenfunctions were

φd`(ω) =
√

2 sin(`πω), d = 1, 2, ` = 1, 2, 3, and ψdm(s) =
√

2 cos(mπs), d = 1, 2, m = 1, 2, 3,

respectively. The subject-specific scores ξdi,k`m were simulated independently from mean zero

Gaussian distributions with variances τd,k`m =
√
.01/(k`m), for k, ` and m ranging from 1

to 3. The measurement error εdi(r, ω, s) was simulated independently over region, frequency,

and segment from a mean zero Gaussian distribution with variance σ2
d = 5/c, where c was

used as a tuning parameter to vary the signal-to-noise ratio (SNR) of the simulated data.

We conducted simulations for two sample sizes, two SNRs and two data sparsity lev-

els, for a total of eight settings. We considered SNR ratios of approximately 2.5 and 10,

corresponding to c = 2 and 10, respectively, in the generation of the error variance. We

simulated data at sample sizes nd = 15 and 50 where the lower sample size mimics the

within group sample size of the word segmentation data. In addition to the dense case with

every subject observed at the full segment domain S, we considered sparsity in the longitu-

dinal dimension similar to the word segmentation data where subjects were observed at a

subject-specific longitudinal domain, denoted by Sdi. To induce sparsity, we generated the

number of segments observed for each subject, denoted by |Sdi|, from a uniform distribution

on [30, 50]. Once the number of segments were generated for each subject, the segments
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observed for subject i were selected randomly from the 50 grid points in [0, 1] constitut-

ing the subject-specific longitudinal domain Sdi. In all settings, marginal components were

selected to explain at least 90% of the variation in the respective marginal covariance de-

compositions. Smoothing bandwidths were selected by GCV and REML for the functional

fixed effects and marginal covariances, respectively. To assess the performance of the pro-

posed estimation algorithm in targeting the functional and vector components of HPCA, we

utilizes relative squared errors RSE(s) = ||f̂(s) − f(s)||2/||f(s)||2, RSE(ω, s) = ||f̂(ω, s) −

f(ω, s)||2/||f((ω, s)||2, RSE(r, ω, s) = ||f̂(r, ω, s) − f(r, ω, s)||2/||f((r, ω, s)||2 and RSE(r) =

||f̂(r) − f(r)||2/||f(r)||2, for one- to three-dimensional functional components and the vec-

tor components, respectively, where ||f(s)||2 =
∫
f 2(s)ds, ||f(ω, s)||2 =

∫ ∫
f 2(ω, s)dωds,

||f(r, ω, s)||2 =
∑R

r=1

∫ ∫
f 2(ω, s)dωds and ||f(r)||2 =

∑R
r=1 f

2(r). For assessment of the

scalar components, we utilize normalized mean squared errors, MSE= (θ̂− θ)2/θ2, for an es-

timate θ̂ of a parameter θ. In addition, we report the total FVE, FV EdG′ , and the marginal

FVEs along the regional, functional, and longitudinal dimensions, FV EdK,R, FV EdL,Ω, and

FV EdM,S , based on the K, L, and M marginal eigencomponents included in the decompo-

sition, respectively.

Figures A3.8 and A3.9 display the estimated model components based on 200 Monte

Carlo runs from the dense simulation set-up with nd = 15 and c = 10 (high SNR). The

estimated overall mean function and group-region shift with the median RSE values (Fig-

ure A3.8(b),(d)) track the corresponding true surfaces (Figure A3.8(a),(c)). The estimated

functional and longitudinal marginal eigenfunctions (Figure A3.9) are displayed from runs

with RSE values at the 10th, 50th, and 90th percentiles, overlaid by their true quantities.

Even with a small sample size, HPCA captures the periodicity and magnitude of the true

components. Tables 3 and A3.2 display median, 10th, and 90th percentile RSE and nor-

malized MSE values based on 200 Monte Carlo runs corresponding to the estimated HPCA

components from all eight simulation settings. Note that since normalized measures of RSE

and MSE were used, we report percentiles for the same quantity over combined Monte Carlo

runs across groups and potentially subjects. More specifically, while performance measures

for ηd(r, w, s), vdk(r), φd`(w), ψdm(s), σ2
d, FV EdG′ , FV EdK,R, FV EdL,Ω, and FV EdM,S are
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reported over D × 200 Monte Carlo runs, measures for Ydi(r, w, s) and τd,klm are reported

over D × nd × 200 and D ×K × L×M × 200 Monte Carlo runs, respectively.

Across simulation designs, the marginal FVEs almost always approach 1 due to the rela-

tively small number of eigencomponents utilized in the data generation procedure. Despite

this, trends in the marginal FVEs in all three dimensions are still detectable. The marginal

FVE increases or stays the same with increasing sample size and decreasing sparsity due to

improved estimation of the marginal eigencomponents. FV EdG′ is similarly high across sim-

ulation designs, which is not surprising given the value of the marginal FVEs. However, as

noted in Section 3.2, estimation of FV EdG′ relies on estimates of the variance components

and the three-dimensional norm of the demeaned observed data, which may explain why

FV EdG′ exceeds 1 in some instances.

To study the performance of the proposed bootstrap test for group-level inference, we

considered testing the equality of the group-region mean shifts within the fifth region (with

maximal variation in the leading marginal eigenvector), H0 : ηd(5, ω, s) = η(5, ω, s). Data

were generated from model (A.1) with ηd(r, ω, s) = 0 for r 6= 5 and ηd(5, ω, s) = (−1)d∆ for

r = 5, where ∆ was a tuning parameter used to vary the difference between the group-region

shift. We conducted simulations under the sparse data design with nd = 15, 30, 50 and c = 2

(low SNR) at varying levels of ∆, ∆ = 0, .02, .04, .06, .08, .10, .12, with ∆ = 0 corresponding

to no difference in region shifts and ∆ = .12 to the largest group-region shift difference. We

assessed the level and power of the proposed test based on 200 Monte Carlo runs with the

p-values estimated from 200 bootstrap samples within each Monte Carlo run (Figure A3.10).

The null hypothesis was rejected if the estimated p-value was less than or equal to .05. The

level of the test is estimated at .085, .070, and .035 for nd = 15, nd = 30, and nd = 50,

respectively. The power is found to increase faster with increasing ∆ for the larger sample

sizes as expected, with a power of 1 reached at ∆ equal to .12, .10, and .08 for nd = 15,

nd = 30, and nd = 50, respectively, suggesting that even at low SNR and small group sample

sizes the proposed bootstrap procedure is sensitive to departures from the null hypothesis.
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Table A3.1: FVE of the marginal covariances for the selected eigencomponents in each diag-
nostic group in the three dimensional HPCA decomposition. The number of eigencomponents
are chosen to explain at least 90% FVE.

TD vASD mvASD
R Ω S R Ω S R Ω S

0.590 0.595 0.890 0.613 0.575 0.892 0.571 0.579 0.857
0.114 0.139 0.049 0.122 0.181 0.060 0.136 0.174 0.063
0.099 0.080 - 0.101 0.085 - 0.111 0.083 -
0.078 0.065 - 0.067 0.049 - 0.077 0.052 -
0.051 0.042 - - 0.042 - 0.046 0.040 -
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(a)

(b)

Figure A3.1: (a) Longitudinal sparsity plot: observed segments for each subject are shown in
grey. Diagnostic groups are separated by black lines. (b) The estimated mean log principal
power µ(ω, s) for subjects pooled across the TD, vASD, and mvASD groups. The black
vertical lines on the frequency axis separate the five frequency bands and the white lines
show the boundaries projected onto the surface.
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(a) (b)

(c) (d)

(e)

(f)

Figure A3.2: (a, c) Estimated first leading functional and longitudinal marginal eigenfunc-
tions φd1(ω) and ψd1(s). (b, d) Estimated first leading functional and longitudinal eigen-
functions φd1(ω) and ψd1(s) in the LT region calculated at fixed values of s = 40, 70, 100
and ω = 30, 40, 50, respectively. (e) Estimated first leading regional marginal eigenvectors
vd1(r). (f) Estimated first leading regional eigenvectors vd1(r) obtained at fixed slices of
(ω, s) = (30, 40), (30, 70), (30, 100) (top to bottom, respectively).
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(a) (b)

(c) (d)

(e)

(f)

Figure A3.3: (a, c) Estimated second leading functional and longitudinal marginal eigen-
functions φd2(ω) and ψd2(s). (b, d) Estimated second functional and longitudinal eigenfunc-
tions φd2(ω) and ψd2(s) in the LT region calculated at fixed values of s = 40, 70, 100 and
ω = 30, 40, 50, respectively. (e) Estimated second leading regional marginal eigenvectors
vd2(r). (f) Estimated second leading regional eigenvectors vd2(r) obtained at fixed slices of
(ω, s) = (30, 40), (30, 70), (30, 100) (top to bottom, respectively).
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(a) TD (b) TD

(c) vASD (d) vASD

(e) mvASD (f) mvASD

Figure A3.4: Estimated functional covariance surfaces, Σd,Ω(ω, ω′), in the RT region for fixed
s = 100 (left column) and RF region for fixed s = 70 (right column). Covariance surfaces
are calculated within diagnostic groups, with the TD, vASD, and mvASD groups displayed
in descending rows.
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(a) TD (b) TD

(c) vASD (d) vASD

(e) mvASD (f) mvASD

Figure A3.5: The estimated group-region shifts ηd(r, ω, s) in the LF (first column) and
RF (second column) regions for the TD, vASD, and mvASD groups in descending rows,
respectively. The black vertical lines on the frequency axis separate the five frequency bands
and the white lines show the boundaries projected onto the surface.
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(a) TD (b) TD

(c) vASD (d) vASD

(e) mvASD (f) mvASD

Figure A3.6: The differences of the estimated group-region shifts ηd(r, ω, s) from group-region
averages in the LF (first column) and RF (second column) regions for the TD, vASD, and
mvASD groups in descending rows, respectively. The black vertical lines on the frequency
axis separate the five frequency bands and the white lines show the boundaries projected
onto the surface.
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(a) (b)

(c) (d)

Figure A3.7: The true (a, c) and estimated (b, d) overall mean function µ(ω, s) and group-
specific shift ηd(r, ω, s), respectively, based on 200 Monte Carlo runs from the sparse simu-
lation design at nd = 15 and high SNR. The estimated quantities correspond to the Monte
Carlo run with RSE value at the 50th percentile across groups.
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(a) (b)

(c) (d)

Figure A3.8: The true (a, c) and estimated (b, d) overall mean function µ(ω, s) and group-
region shift ηd(r, ω, s), respectively, based on 200 Monte Carlo runs from the dense simulation
design at nd = 15 and high SNR. The estimated quantities correspond to the Monte Carlo
run with RSE value at the 50th percentile across groups.
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Figure A3.10: The level and power of the proposed parametric bootstrap procedure based
on 200 Monte Carlo runs with the p-values estimated from 200 bootstrap samples within
each Monte Carlo run.
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