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Abstract

Ancient genomic sequences have started revealing the origin and the demographic impact of
Neolithic farmers spreading into Europel=3. The adoption of farming, stock breeding and
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sedentary societies during the Neolithic may have resulted in adaptive changes in genes associated
with immunity and diet®. However, the limited data available from earlier hunter-gatherers
precludes an understanding of the selective processes associated with this crucial transition to
agriculture in recent human evolution. By sequencing a ~7,000-year-old Mesolithic skeleton
discovered at the La Brafia-Arintero site in Ledn (Spain), we retrieved the first complete pre-
agricultural European human genome. Analysis of this genome in the context of other ancient
samples suggests the existence of a common ancient genomic signature across Western and
Central Eurasia from the Upper Paleolithic to the Mesolithic. The La Brafia individual carries
ancestral alleles in several skin pigmentation genes, suggesting that the light skin of modern
Europeans was not yet ubiquitous in Mesolithic times. Moreover, we provide evidence that a
significant number of derived, putatively adaptive variants associated with pathogen resistance in
modern Europeans were already present in this hunter-gatherer. Hence, these genomic variants
cannot represent novel mutations that occurred during the adaptation to the farming lifestyle.

Next-generation sequencing (NGS) technologies are revolutionizing the field of ancient
DNA (aDNA), and have allowed the sequencing of complete ancient genomes®5, such as
that of Otzi, a Neolithic human body found in the Alps®. However, very little is known of
the genetic composition of earlier hunter-gatherer populations from the Mesolithic period
(ca 10,000-5,000 years before present, BP, that immediately preceded the Neolithic period).

The Iberian site called La Brafia-Arintero was discovered in 2006 when two male skeletons
were found in a deep cave system, 1,500 meters above sea level in the Cantabrian mountain
range (Ledn, Northwestern Spain) (Fig. 1a). The skeletons were dated to ~7,000 years BP
(7,940-7,690 calibrated BP)’. Because of the cold environment and stable thermal
conditions in the cave, the preservation of these specimens proved to be exceptional (Fig.
1b). We identified a tooth with high human DNA content (48.4%) and sequenced this
specimen to a final 3.40X effective genomic depth-of-coverage (Extended Data Fig. 1).

We undertook several tests to assess the authenticity of the genome sequence and to
determine the amount of potential modern human contamination. First, we observed that
sequence reads from both the mitochondrial DNA (mtDNA) and the nuclear DNA of La
Brafia 1 showed the typical ancient DNA misincorporation patterns that arise from
degradation of DNA over time® (Extended Data Fig. 2a, b). Second, we showed that the
observed number of human DNA fragments was negatively correlated with the fragment
length (R? >0.92), as expected for ancient degraded DNA, and that the estimated rate of
DNA decay was low and in agreement with predicted values® (Extended Data Fig. 2c, d).
We then estimated the contamination rate in the mtDNA genome, assembled to a high
depth-of-coverage (91X), by checking for positions differing from the mtDNA genome
(haplogroup U5b2c1) that was previously retrieved with a capture method2. We obtained an
upper contamination limit of 1.69% (0.75%-2.6%, 95% CI) (Supplementary Information).
Finally, to generate a direct estimate of nuclear DNA contamination, we screened for
heterozygous positions (among reads with >4x coverage) in known polymorphic sites
(dbSNP-137) at uniquely mapped sections on the X chromosome® (Supplementary
Information). We found that the proportion of false heterozygous sites was 0.31%. Together
these results suggest low levels of contamination in the La Brana 1 sequence data.
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To investigate the relationship to extant European samples, we conducted Principal
Component Analysis (PCA)10 and found the ~7,000-year-old Mesolithic sample was
divergent from extant European populations (Extended Data Fig. 3a, b), but was placed in
proximity to Northern Europeans (e.g. samples from Sweden and Finland)11-14. Additional
PCAs and allele sharing analyses with ancient Scandinavian specimens? supported the
genetic similarity of the La Brafia 1 genome to Neolithic hunter-gatherers (Ajv70, Ajv52,
Ire8) relative to Neolithic farmers (Gok4, Otzi) (Fig. 1c, Extended Data Fig. 3¢ and
Extended Data Fig. 4). Thus, this Mesolithic individual from Southwestern Europe
represents a formerly widespread gene pool that seems to be partially preserved in some
modern-day Northern European populations, as suggested previously with limited genetic
data3. We subsequently explored the La Brafia affinities to an ancient Upper Palaeolithic
genome from Mal’ta site near Lake Baikal in Siberial®. Outgroup f3 and D statistics16:17,
using different modern reference populations, support that Mal’ta is significantly closer to
La Brafia 1 than to Asians or modern Europeans (Extended Data Fig. 5 and Supplementary
Information). These results suggest that despite the vast geographical distance and temporal
span, La Brafia 1 and Mal’ta share common genetic ancestry, indicating a genetic continuity
in ancient Western and Central Eurasia. This observation matches findings of similar
cultural artifacts across time and space in Upper Paleolithic Western Eurasia and Siberia,
particularly the presence of anthropomorphic “Venus” figurines which have been recovered
from several sites in Europe and Russia, including the Mal’ta site1®. We also compared the
genome-wide heterozygosity of the La Brafia 1 genome to a dataset of modern humans with
similar coverage (3—4X). The overall genomic heterozygosity was 0.042%, lower than the
values observed in present day Asians (0.046-0.047%), Europeans (0.051-0.054%), and
Africans (0.066-0.069%) (Extended Data Fig. 6a). The effective population size, estimated
from heterozygosity patterns, suggests a global reduction in population size of ~20% relative
to extant Europeans (Supplementary Information). Moreover, no evidence of tracts of
autozygosity suggestive of inbreeding was observed (Extended Data Fig. 6b).

To systematically investigate the timing of selection events in the recent history of modern
Europeans, we compared the La Brafia genome to modern populations at loci that have been
categorized as of interest for their role in recent adaptive evolution. With respect to two
recent well-studied adaptations to changes in diet, we found the ancient genome to carry the
ancestral allele for lactose intolerance? and ~5 copies of the salivary amylase (AMY1) gene
(Extended Data Fig. 7 and Supplementary Information), a copy number compatible with a
low-starch diet!®. These results suggest the La Brana hunter-gatherer was poor at digesting
milk and starch, supporting the hypotheses that these abilities were selected for during the
later transition to agriculture.

To expand the survey, we analyzed a catalog of candidate signals for recent positive
selection based on whole-genome sequence variation from the 1000 Genomes Project!3,
which included 35 candidate non-synonymous variants — ten of which were detected
uniquely in the CEU sample (Utah residents with Northern and Western European
ancestry)19. For each variant we assessed whether the Mesolithic genome carried the
ancestral or derived (putatively adaptive) allele.

Nature. Author manuscript; available in PMC 2014 December 17.
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Of the ten variants, the Mesolithic genome carried the ancestral and non-selected allele as a
homozygote in three regions: C120rf29 (a gene with unknown function), S_LC45A2
(rs16891982) and SLC24A5 (rs1426654) (Table 1). The latter two variants are the two
strongest known loci affecting light skin pigmentation in Europeans2%-22 and their ancestral
alleles and associated haplotypes are either absent or segregate at very low frequencies in
extant Europeans (3% and 0% for SLC45A2 and SLC24A5 respectively) (Fig. 2). We
subsequently examined all genes known to be associated with pigmentation in Europeans??,
finding ancestral alleles in MC1R, TYRand KITLG and derived alleles in TYRP1, ASP and
IRF4 (Supplementary Information). Although the precise phenotypic effects cannot
currently be ascertained in a European genetic background, results from functional
experiments20 indicate that the allelic combination in this Mesolithic individual is likely to
have resulted in dark skin pigmentation and dark/brown hair. Further examination revealed
that this individual carried the rs12913832*C single nucleotide polymorphism (SNP) and the
associated homozygous haplotype spanning the HERC2/OCAZ locus that is strongly
associated with blue eye color?3. Moreover, a prediction of eye color based on genotypes at
additional loci using HlrisPlex2* yielded a 0.823 maximal and 0.672 minimal probability for
being non-brown eyed (Supplementary Information). The genotypic combination leading to
a predicted phenotype of dark skin and non-brown eyes is unique and no longer present in
contemporary European populations. Our results indicate that the adaptive spread of light
skin pigmentation alleles was not complete in some European populations by the Mesolithic,
and that the spread of alleles associated with light/blue eye color may have preceded
changes in skin pigmentation.

For the remaining loci, La Brafia 1 displayed the derived, putatively adaptive variants in five
cases, including three genes, PTX4, UHRF1BP1 and GPATCH119, involved in the immune
system (Table 1 and Extended Data Fig. 8). The latter is associated with the risk of bacterial
infection. We subsequently determined the allelic states in 63 SNPs from 40 immunity genes
with previous evidence for positive selection and for carrying polymorphisms shown to
influence susceptibility to infections in modern Europeans (Supplementary Information). La
Brafa 1 carries derived alleles in 24 genes (60%) that have a wide range of functions in the
immune system: pattern recognition receptors, intracellular adaptor molecules, intracellular
modulators, cytokines and cytokine receptors, chemokines and chemokine receptors and
effector molecules. Interestingly, four out of six SNPs from the first category are
intracellular receptors of viral nucleic acids (TLR3, TLRS8, IFIH1/MDAS5 and LGP2)2.

Finally, to explore the functional regulation of the genome, we also assessed the La Brafia 1
genotype at all expression quantitative trait loci (eQTL) regions associated to positive
selection in Europeans (Supplementary Information). The most interesting finding is
arguably the predicted overexpression of eight immunity genes (36% of those with
described eQTLS), including three Toll-like receptor genes (TLR1, TLR2 and TLR4)
involved in pathogen recognition26.

These observations suggest that the Neolithic transition did not drive all cases of adaptive
innovation on immunity genes found in modern Europeans. Several of the derived
haplotypes seen at high frequency today in extant Europeans were already present during the
Mesolithic, either as neutral standing variation and/or due to selection predating the

Nature. Author manuscript; available in PMC 2014 December 17.
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Neolithic. De novo mutations that increased in frequency rapidly in response to zoonotic
infections during the transition to farming should be identified among those genes where La
Brafia 1 carries ancestral alleles.

To confirm if the genomic traits seen at La Brafia can be generalized to other Mesolithic
populations, analyses of additional ancient genomes from Central and Northern Europe will
be needed. Nevertheless, this genome sequence provides the first insight as to how these
hunter-gatherers are related to contemporary Europeans and other ancient peoples in both
Europe and Asia, and suggests how ancient DNA can shed light on the timing and nature of
recent positive selection.

Methods Summary

DNA was extracted from the La Brafia 1 tooth specimen with a previously published
protocol2. Indexed libraries were built from the ancient extract and sequenced on the
Illumina HiSeq platform. Reads generated were mapped with BWAZ27 to the human
reference genome (NCBI 37, hg19) after primer trimming. A metagenomic analysis and
taxonomic identification was generated with the remaining reads using BLAST 2.2.27+ and
MEGAN428 (Extended Data Fig. 9 and Supplementary Information). SNP calling was
undertaken using a specific bioinformatic pipeline designed to account for ancient DNA
errors. Specifically, the quality of misincorporations likely caused by aDNA damage was
rescaled using the mapDamage2.0 software2®, and a set of variants with a minimum read
depth of 4 was produced with GATK30, Analyses including PCA1, Outgroup 316 and D
statisticsl” were performed to determine the population affinities of this Mesolithic
individual (Supplementary Information).

Nature. Author manuscript; available in PMC 2014 December 17.
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Extended Data Figure 1. Alignment and coverage statistics of the La Brafia 1 genome
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a, Alignment summary of La Brafia 1 sequence data to hg19 assembly. b, Coverage statistics
per chromosome. The percentage of the chromosome covered by at least one read is shown,
as well as the mean read depth of all positions and positions covered by at least one read. c,
Percentage of the genome covered at different minimum read depths.
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Extended Data Figure 2. Damage pattern of La Brafia 1 sequenced reads

Frequencies of C to T (red) and G to A (blue) misincorporations at the 5’ end (left) and 3’
end (right) are shown for the nuclear DNA (a) and mtDNA (b). Fragment length distribution

of reads mapping to the nuclear genome (c) and mtDNA genome (d). Coefficients of

determination (R2) for an exponential decline and damage fractions (\) are provided for the

four different datasets.
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Extended Data Figure 3. Genetic affinities of the La Brafia 1 genome
a, Principal Component Analysis (PCA) of the La Brafia 1 SNP data and the 1000G Project

European individuals. b, PCA of La Brafia 1 vs Omni world-wide data. Continental terms
refer to each Omni population groupings as follows. Africans: Yoruba and Luyha. Asians:
Chinese (Beijing, Denver, South, Dai), Japanese and Vietnamese. Europeans: Iberians,
Tuscans, British, Finns and CEU; and Indian Gujarati from Texas. ¢, Each panel shows PC1
and PC2 based on the PCA of one of the ancient samples with the merged POPRES
+FINHM sample, prior to Procrustes transformation. The ancient samples include the La
Brafia 1 sample, four Neolithic samples from Skoglund et al.3 and Keller et al.1.
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Extended Data Figure 4. Allele sharing analysis
Each panel shows the allele sharing of a particular Neolithic sample from Skoglund et al.3

and Keller et al.1 with the La Brafia 1 sample. The sample IDs are presented in the upper left
of each panel (Ajv52, Ajv70, Ire8, Gok4, and Otzi). In the upper right of each panel, the
Pearson’s correlation coefficient is given with associated p-value.

Nature. Author manuscript; available in PMC 2014 December 17.

_Ajv52 -- R=06.P=0002 AjV70 -- R=037.P=0078 Ire8 -~ R=077.P=99-06
- 4
R © .
c R - 5
n S
° o ° > 4
e 5| © 4 5 .
] e 3 o e .
- ~ - o g il
o o maE” ®
8 i &, °&6 ]
[l I 6
(=] o o ’.' o
R 4 s
8 - S o 8°
3 5 i
- - =) ) @0 - 2 o
°3 4 ° 8 [°-- °
T T T T T T T L L = T T T T T T
0.687 0.689 0.691 0.693 0.687 0.689 0.691 0.693 0.687 0.689 0.691 0.693
Alelle sharing with La Brafia 1
Goké4 -- R=-023.P=028 ° [oti = R=-051,P=001
=
8 o
2 4
S
M 8
8 ) R
e - " o
s |, ° 8%--..85
s - o,
«Q GR [ o
B q0--- ° = s .8
=) S T
g ! =
° o £
2 °
T T T T T T T T T T T T T
0.687 0.689 0.691 0.693 0.687 0.689 0.691 0.693



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

yduasnuel Joyny vd-HIN

Olalde et al.

Page 10

a b
&4 &
o o
g‘_ =]
o ;—
w )
fe B
L s °
i S 57
E © g <
1= B
T © T ©
o < o <=
g o i [ " g o .‘
| w
5 s
2 =
o T T T T o'd T f T T T T
0.15 0.20 0.25 0.30 0.12 0.14 0.16 0.18 0.20 0.22
f3(Karitiana, X; Yoruba) f3(Han, X; Yoruba)
c [=] d o
S -
o o
@ e
S =3
8w 8 o
2 51 2 57
£ 2
8 = £ S
g © g o
S 5
3 e B e
e =+ o o
b b
) t{-)__
g— o
.
‘V_ -
T o T f T T T T T
0.13 0.13 0.14 0.15 0.16 0.17 0.18 0.19
f3(Malt'a, X; Yoruba)
e o
N
o
@
o

f3(La Braiia, X; Yoruba)
1
|

T T
0.20 0.25
f3(Karitiana, X; Yoruba)

0.30

Extended Data Figure 5. Pairwise outgroup f3 statistics
a, Sardinian vs. Karitiana. b, Sardinian vs. Han. ¢, La Brafia 1 vs. Mal’ta. d, Sardinian vs

Mal’ta. e, La Brafia 1 vs. Karitiana. The solid line is the y = x line.

Nature. Author manuscript; available in PMC 2014 December 17.

Middle East

= Europe

= Central/South Asia
East Asia

= Oceania
Americas

L]
* La Brafna
Y Maita



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

yduasnuel Joyny vd-HIN

Olalde et al.

2000 -

1500 =

Density

1000 =

500 -

Sample
GBR
CEU

[]ies

L/FIN

11s1

[Avai
LWK
cHB
JPT

[ALagrana1

T T T
0.0000 0.0004 0.0008
Heterozygosity

2] [exp] [2Rp] [Lio)

ERIERICT

Heterozygosity

T

T
10 150

0
Position (Mbp)

Extended Data Figure 6. Analysis of heterozygosity

T
200

T
250

1Y 14 91 S1IY pYS ELR0 2143 (1140 D1 (610 [8ip | Lip [9ip

2 15 2P G138 [ [678 VR S16P PR 08 8 [0 G (66 (979 (28] [958

22 120 02 BLwP

Page 11

a, Heterozygosity distributions of La Brafia 1 and modern individuals with similar coverage
from the 1,000 Genomes Project (using 1 Mb-windows with 200 Kb overlap). GBR: Great

Britain, CEU: Northern-Western European ancestry, IBS: Iberians, FIN: Finns, TSI:
Tuscans, YRI: Yorubans, LWK: Luhya, CHB: Han Chinese, JPT: Japanese. b,

Heterozygosity values in 1-Mb windows (with 200 kb overlap) across each chromosome.
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Abbreviations: DGV = Database of Genomic Variation; CN = copy number. ¢, La Brafia 1
AMY1 gene copy number in the context of low-and high-starch diet populations. d,
Classification of low-and high-starch diet individuals based on AMY1 copy number. Using
data from18, individuals were classified as in low-(less or equal than) or high-starch (higher
than) categories and the fraction of correct predictions (g) was calculated. In addition, we
calculated the random expectation and 95% limit of low-starch diet individuals classified
correctly at each threshold value.
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Figure 1. Geographic location and genetic affinities of the La Brafia 1 individual
a, Location of the La Brafia-Arintero site (Spain). b, The La Brafia 1 skeleton as discovered

in 2006. c, Principal Component Analysis (PCA) based on the average of the Procustes
transformations of individual PCAs with La Barfia and each of the five Neolithic samples?:3.
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