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Abstract

Human decision-making is filled with numerous paradoxes and
violations of rationality principles. A particularly notable ex-
ample is violation of cumulative independence (VoCI). Re-
cently, there has been a surge of interest in theorizing and
developing a resource-rational foundation for many such phe-
nomena. Here we ask whether VoCI could be given a resource-
rational basis too. To what extent could VoCI be explained in
terms of the optimal use of limited cognitive resources? In
this work, we look at VoCI through the lens of modern psy-
chological theories of bounded rationality, presenting the first
resource-rational account of VoCI. We discuss the implications
of our work for risky decision-making, and more broadly, hu-
man rationality.

Keywords: cumulative independence; resource-rationality;
risky choice; resource-rational process models

1 Introduction
Over the past years, extensive empirical work has revealed
that human decision-making is filled with numerous para-
doxes and apparent violations of rationality principles. Ex-
amples include the Allais paradox (Allais, 1953), the St. Pe-
tersburg paradox (Bernoulli, 1738), the Ellsberg paradox
(Ellsberg, 1961), the decoy effect (Huber et al., 1982), and
violations of transitivity (Loomes et al., 1991), stochastic
dominance (Birnbaum, 2005), betweenness (Camerer & Ho,
1994), the sure-thing principle (Jeffrey, 1982), and cumula-
tive independence (Birnbaum & Navarrete, 1998).

In particular, mounting empirical evidence shows that vio-
lation of cumulative independence (VoCI) is both substantial
and systematic (e.g., Birnbaum & Navarrete, 1998; Birnbaum
et al., 1999; Birnbaum, 1999, 2006).

Recently, there has been a surge of interest in theoriz-
ing and developing a resource-rational foundation for many
such paradoxes and violations of rationality principles (e.g.,
Dasgupta, Schulz, & Gershman, 2017; Nobandegani, da
Silva Castanheira, Shultz, & Otto, 2019b; Nobandegani &
Shultz, 2020c, 2020d; Nobandegani, Shultz, & Dubé, 2021),
viewing them through the lens of modern psychological the-
ories of bounded rationality (e.g., Griffiths, Lieder, & Good-
man, 2015; Gershman, Horvitz, & Tenenbaum, 2015; Noban-
degani, 2017; Bhui, Lai, & Gershman, 2021).

Following this new line of research, we ask whether VoCI
also could be given a resource-rational basis. To what ex-
tent could VoCI be explained in terms of the optimal use
of limited cognitive resources? We present here the first

resource-rational account of VoCI. Specifically, we show that
a resource-rational process model, sample-based expected
utility (SbEU; Nobandegani et al., 2018) can account for a
broad range of empirical results on VoCI. Here, we particu-
larly focus on Birnbaum and Navarrete (1998), which is, to
our knowledge, the most extensive empirical study of VoCI.

We begin by formally defining CI (Sec. 2) and discussing
how SbEU works (Sec. 3). We then present our simulation
results, comparing SbEU model predictions to human data
(Sec. 4). We conclude by discussing the implications of our
work for risky decision-making, and more broadly, human
rationality.

2 Cumulative Independence
Before defining CI, we introduce two notations. First, a short-
hand notation for representing risky gambles (Birnbaum &
Navarrete, 1998): A generic n-branch gamble P given by:
(w.p. stands for “with probability”)

P =


x1 w.p. p1
x2 w.p. p2
...
xn w.p. pn = 1−∑

n−1
i=1 pi

(1)

where x1 ≤ x2 ≤ x3 ≤ . . .≤ xn−1 ≤ xn

can be alternatively represented, in a vector format, as P =
(x1, p1;x2, p2; . . . ,xn−1, pn−1;xn, pn). Second, A � B means
gamble A is preferred to gamble B, and A ≺ B means gam-
ble B is preferred to gamble A.

There are two types of cumulative independence: lower
cumulative independence (LCI) and upper cumulative inde-
pendence (UCI). Assuming 0 < z < x′ < x < y < y′ < z′ and
p+q+r = 1, LCI corresponds to the following condition be-
ing satisfied (Birnbaum & Navarrete, 1998):

S = (z,r;x, p;y,q)� R = (z,r;x′, p;y′,q)⇒
S′′ = (x′,r;y, p+q)� R′′ = (x′,r+ p;y′,q) (2)

while, UCI corresponds to the following condition being sat-
isfied (Birnbaum & Navarrete, 1998):

S′ = (x, p;y,q;z′,r)≺ R′ = (x′, p;y′,q;z′,r)⇒
S′′′ = (x, p+q;y′,r)≺ R′′′ = (x′, p;y′,q+ r) (3)
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In verbal terms, LCI and UCI indicate that choice
preference among two risky gambles should remain un-
changed when those two gambles undergo a particular form
of transformation—involving removal of common conse-
quences and swapping of probabilities—formalized in (2) and
(3). For example, according to LCI, if you prefer gamble S
over gamble R, then you should also prefer a particular trans-
formation of S, i.e. S′′, over a particular transformation R,
i.e. R′′. Therefore, choosing S together with R′′ would count
as violation of LCI, as this choice pattern violates the LCI
condition given in (2). Likewise, choosing R′ together with
S′′′ would count as violation of UCI, as this choice pattern
violates the UCI condition given in (3).

3 Resource-Rational Process Model
Extending an earlier model of decision-making (Lieder, Grif-
fiths, & Hsu, 2018) to the realm of meta-reasoning, sample-
based expected utility (SbEU; Nobandegani et al., 2018) is a
resource-rational process model of risky choice which main-
tains that people rationally adapt their strategy depending on
the amount of time available for decision-making. Concretely,
SbEU assumes that people estimate expected utility

E[u(o)] =
∫

p(o)u(o)do, (4)

using self-normalized importance sampling (Hammersley &
Handscomb, 1964; Geweke, 1989), with its importance distri-
bution q∗ aiming to optimally minimize mean-squared error
(MSE):

Ê =
1

∑
s
j=1 w j

s

∑
i=1

wiu(oi), ∀i : oi ∼ q∗, wi =
p(oi)

q∗(oi)
, (5)

q∗(o) ∝ p(o)|u(o)|

√
1+ |u(o)|

√
s

|u(o)|
√

s
. (6)

MSE is a standard measure of estimation quality, widely used
in decision theory and mathematical statistics (Poor, 2013).
In Eqs. (4-6), o denotes an outcome of a risky gamble, p(o)
the objective probability of outcome o, u(o) the subjective
utility of outcome o, Ê the importance-sampling estimate of
expected utility given in Eq. (4), q∗ the importance-sampling
distribution, oi an outcome randomly sampled from q∗, and s
the number of samples drawn from q∗.

In this work, we assume that, when choosing between a
pair of risky gambles A,B, people consider whether the ex-
pected value of the utility of the difference between the two
gambles, ∆u(o), is positive or negative:

A =

{
oA w.p. PA
0 w.p. 1−PA

(7)

B =

{
oB w.p. PB
0 w.p. 1−PB

(8)

∆u(o) =


u(oA−oB) w.p. PAPB
u(oA) w.p. PA(1−PB)
u(−oB) w.p. (1−PA)PB
u(0) w.p. (1−PA)(1−PB)

(9)

In Eq. (9), u(·) denotes the subjective utility function of a
decision-maker. Fully consistent with past work (Nobande-
gani et al., 2018; Nobandegani et al., 2019a; Nobandegani,
Destais, & Shultz, 2020a, Nobandegani & Shultz, 2020b), in
this paper we use the following utility function:

u(x) =
{

x0.85 if x≥ 0,
−|x|0.95 if x < 0.

(10)

Also, in line with prospect theory (Kahneman & Tversky,
1979), we here assume that people perform a variant of can-
cellation on gambles having 3 or more branches, as a form of
editing, prior to evaluating the gambles. The purpose of edit-
ing is to obtain a simplified representation of gambles prior
to further evaluation (Kahneman & Tversky, 1979).1 In this
variant of cancellation, the common outcomes between two
gambles are fully removed from those gambles.

In our simulations (Sec. 4), we also assume that people
draw between 1 to 6 samples when deciding. Specifically, we
adopt a uniform distribution and assume that one-sixth of the
population draw one sample (i.e., s = 1; see Eqs. (5-6)), one-
sixth of the populations draw two samples (i.e., s = 2), one-
sixth of the population draw three samples and so on. This
is consistent with mounting evidence suggesting that people
draw only a few samples in probabilistic judgment and rea-
soning (e.g., Vul et al., 2014; Battaglia et al., 2013; Lake et
al., 2017; Gershman, Horvitz, & Tenenbaum, 2015; Hertwig
& Pleskac, 2010; Griffiths et al., 2012; Gershman, Vul, &
Tenenbaum, 2012; Bonawitz et al., 2014; Nobandegani et al.,
2018; Nobandegani et al., 2020a).

Recent work has shown that SbEU provides a unified ac-
count of a wide range of empirical findings across risky,
value-based, and strategic decision-making (Nobandegani et
al., 2018; Nobandegani et al., 2019a, 2019b; Nobandegani
et al., 2020a; Nobandegani & Shultz, 2020b, 2020c, 2020d;
Lizotte, Nobandegani, & Shultz, 2021), and also bridges be-
tween decision-making under risk and decision-making un-
der uncertainty (Nobandegani et al., 2021). There is also
a counterintuitive prediction of SbEU which is empirically
confirmed: deliberation makes people move from one cogni-
tive bias, framing effect, to another bias, the fourfold pattern
of risk preferences (da Silva Castanheira et al., 2019). No-
tably, SbEU is the first rational process model to score near-
perfectly in optimality, economical use of limited cognitive
resources, and robustness, all at the same time (Nobandegani
et al., 2018; Nobandegani et al., 2019c).

4 Simulation Results
In this section, we simulate the empirical results on VoCI in
Birnbaum and Navarrete (1998), which is, to our knowledge,

1As such, editing is broadly consistent with resource-rationality.
We elaborate on this in the Discussion section (Sec. 5).
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the most extensive empirical study of VoCI.

4.1 Lower Cumulative Independence (LCI)
Birnbaum and Navarrete (1998) performed 27 tests of vio-
lation of LCI. Each test comprised two trials. In one trial,
participants had to choose between two 3-branch risky gam-
bles: S and R. In the other trial, participants had to choose
between two 2-branch risky gambles: S′′ and R′′ (see the LCI
condition given in (2)). The parameters of these 4 gambles
were systematically manipulated across the 27 tests (see Ap-
pendix for details). Accordingly, possible choice patterns are:
SS′′, SR′′, RS′′, and RR′′.

As Fig. 1(a) shows, SbEU model predictions for these
choice patterns correlate highly with the empirically observed
data (Pearson r = .8021, p < 10−4). We simulate 6000 par-
ticipants in each trial of each test.

4.2 Upper Cumulative Independence (UCI)
Birnbaum and Navarrete (1998) performed 27 tests of vio-
lation of UCI. Each test comprised two trials. In one trial,
participants had to choose between two 3-branch risky gam-
bles: S′ and R′. In the other trial, participants had to choose
between two 2-branch risky gambles: S′′′ and R′′′ (see the
UCI condition given in (3)). The parameters of these 4 gam-
bles were systematically manipulated across the 27 tests (see
Appendix for details). Accordingly, possible choice patterns
are: S′S′′′, S′R′′′, R′S′′′, and R′R′′′.

As Fig. 1(b) shows, SbEU model predictions for these
choice patterns again correlate highly with the empirically
observed data (Pearson r = .8030, p < 10−4). We simulate
6000 participants in each trial of each test.

5 Discussion
Decades of research has revealed that human decision-
making is filled with numerous biases, paradoxes, and vio-
lations of rationality principles (e.g., Allais, 1953; Ellsberg,
1961; Loomes et al., 1991; Birnbaum, 2005; Camerer & Ho,
1994; Jeffrey, 1982; Birnbaum & Navarrete, 1998), seriously
calling into question human rationality.

Viewing these puzzling behaviors through the lens of mod-
ern psychological theories of bounded rationality, a new
line of research has provided a resource-rational foundation
for many of these violations of rationality principles (e.g.,
Nobandegani et al., 2019b; Dasgupta et al., 2017; Nobande-
gani et al., 2021), explaining them in term of the optimal use
of limited cognitive resources (e.g., Griffiths et al., 2015; Ger-
shman et al., 2015; Nobandegani, 2017; Bhui et al., 2021).

Pursuing this new line of research, in this work we focus on
a notable violation of rationality principles in risky decision-
making, cumulative independence, and ask: could violation
of cumulative independence (VoCI) be given a rational ba-
sis? Specifically, could VoCI be understood in terms of the
optimal use of limited cognitive resources?

In this work, we present the first resource-rational account
of VoCI. Concretely, we show that a resource-rational process
model, sample-based expected utility (SbEU), can account

for the empirical results of Birnbaum and Navarrete (1998),
the most extensive empirical study of VoCI to date.

Although the SbEU model predictions correlate highly and
significantly with the empirical data (see Fig. 1), the quanti-
tative fit is not perfect. Several factors may explain this. In
the work presented here, we make only minimal assumptions
on the part of the simulated participants. To be consistent,
we use the exact same utility function (Eq. 10) used in past
work, without optimizing it to improve model fit. Also, for
the sake of simplicity, we assume that every simulated par-
ticipant implements cancellation, but this might not be the
case. Presumably, human decision-makers make use of vari-
ous editing rules (not just cancellation), and some might not
use editing at all. Future work should investigate the effect
of all these assumptions on the quality of model fit, and opti-
mize the corresponding parameters (i.e., the utility function,
number of samples, editing rules) to improve model fit. The
observation that SbEU can adequately account for the empiri-
cal data of Birnbaum and Navarrete (1998) in spite of making
such minimal assumptions provides even stronger evidence
that resource rationality might play an important role in shap-
ing the algorithmic foundations of VoCI.

The purpose of editing is to obtain a simplified repre-
sentation of gambles prior to further evaluation (Kahneman
& Tversky, 1979). As such, editing is broadly consistent
with resource-rationality as it acknowledges the representa-
tional constraints that people are naturally faced with (see
Bhui & Gershman, 2018). To show that editing is fully con-
sistent with resource-rationality, future work should investi-
gate whether people boundedly-optimally allocate their rep-
resentational bandwidth in editing. These future investiga-
tions could be guided by, and fruitfully benefit from, re-
cent theoretical advances in heuristics which provide optimal-
ity results and strong robustness guarantees on well-known
heuristics (e.g., Nobandegani & Shultz, 2019).

All rank-dependent and rank-and-sign-dependent theories
of decision-making (e.g., Quiggin, 1982; Lopes, 1990; Luce
& Fishburn, 1991, 1995; Wakker, Erev, & Weber, 1994), in-
cluding cumulative prospect theory (CPT) (Tversky & Kah-
neman, 1992), satisfy cumulative independence and therefore
fail to explain VoCI (Birnbaum & Navarrete, 1998). The work
presented here explains VoCI in terms of the optimal use of
limited cognitive resources, suggesting that expected utility
maximization based on only a few samples might be respon-
sible for the empirically observed VoCI in human decision-
making. Nonetheless, to provide direct evidence for this ac-
count, future experimental work should test participants un-
der various time pressure and/or cognitive load conditions
and verify if observed VoCI rate is consistent with SbEU
model predictions.

An intimately related phenomenon to VoCI is violation of
stochastic dominance (VoSD) (e.g., Birnbaum & Navarrete,
1998; Birnbaum, 2004a, 2004b; Birnbaum et al., 1999; Birn-
baum, 1999, Birnbaum & Martin, 2003; Birnbaum, 2005),
which all rank-dependent and rank-and-sign-dependent the-
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(a) (b)

Figure 1: Comparing human data (Birnbaum & Navarrete, 1998) with SbEU model predictions. (a) LCI: The x-axis
shows the human participants’ probability of choosing a pattern (SS′′, SR′′, RS′′, or RR′′) in the Birnbaum and Navarrete’s
(1998) LCI experiment, and the y-axis shows the SbEU model predictions for the corresponding choice patterns. (b) UCI:
The x-axis shows the human participants’ probability of choosing a pattern (S′S′′′, S′R′′′, R′S′′′, or R′R′′′) in the Birnbaum and
Navarrete’s (1998) UCI experiment, and the y-axis shows the SbEU model predictions for the corresponding choice patterns.

ories of decision-making fail to account for (Birnbaum &
Navarrete, 1998).2 Interestingly, Birnbaum and Navarrete
(1998) provided empirical evidence for both VoCI and VoSD
in the same population. This weakly suggests that similar
psychological processes might underlie these two phenom-
ena. Providing further evidence for this hypothesis, recent
work has shown that SbEU can also explain VoSD (Xia,
Nobandegani, Shultz, & Bhui, 2022), thus providing a uni-
fied, resource-rational account of VoCI and VoSD.

Another closely related phenomenon is violation of branch
independence (VoBI) (Birnbaum & Beeghley, 1997; Birn-
baum & McIntosh, 1996; Birnbaum & Navarrete, 1998). Fu-
ture work should investigate whether VoBI could also be
given a resource-rational basis. The observation that the Al-
lais paradox, as a notable instance of violation of VoBI, can
be given a resource-rational account elevates this possibility
(Nobandegani et al., 2021).

In this work, we examine VoCI through the lens of mod-
ern psychological theories of bounded rationality (Griffiths et
al., 2015; Gershman et al., 2015; Nobandegani, 2017; Bhui et
al., 2021), providing a resource-rational algorithmic founda-
tion for VoCI. Given the broad empirical coverage of SbEU
across risky, value-based, and strategic decision-making (see
Sec. 3), this result is particularly interesting as it brings us
a step closer to developing a unified, boundedly-optimal ac-
count of human decision-making. The work presented here is

2Stochastic dominance directly follows from the three assump-
tions of outcome monotonicity, transitivity, and coalescing. Cumu-
lative independence directly follows from those three assumptions
plus comonotonic independence (Birnbaum & Navarrete, 1998).

a step in this important direction.
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Appendix
LCI Experiment
Below, we use the same parameters used in the LCI condition
given in (2) in the main text.

(r, p,q) = (.50, .25, .25):
Choice 1: (z,x′,x,y′,y) = ($2,$11,$52,$56,$97)
Choice 2: (z,x′,x,y′,y) = ($3,$10,$48,$52,$98)
Choice 3: (z,x′,x,y′,y) = ($2,$11,$45,$49,$97)
Choice 4: (z,x′,x,y′,y) = ($2,$10,$40,$44,$98)
Choice 5: (z,x′,x,y′,y) = ($4,$11,$35,$39,$97)
Choice 6: (z,x′,x,y′,y) = ($5,$12,$30,$34,$96)

(r, p,q) = (.80, .10, .10):
Choice 7: (z,x′,x,y′,y) = ($2,$11,$52,$56,$97)
Choice 8: (z,x′,x,y′,y) = ($3,$10,$48,$52,$98)
Choice 9: (z,x′,x,y′,y) = ($2,$11,$45,$49,$97)
Choice 10: (z,x′,x,y′,y) = ($2,$10,$40,$44,$98)
Choice 11: (z,x′,x,y′,y) = ($4,$11,$35,$39,$97)
Choice 12: (z,x′,x,y′,y) = ($5,$12,$30,$34,$96)

(r, p,q) = (.60, .30, .10):
Choice 13: (z,x′,x,y′,y) = ($2,$11,$52,$56,$97)
Choice 14: (z,x′,x,y′,y) = ($3,$10,$48,$52,$98)
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Choice 15: (z,x′,x,y′,y) = ($2,$11,$45,$49,$97)
Choice 16: (z,x′,x,y′,y) = ($2,$10,$40,$44,$98)
Choice 17: (z,x′,x,y′,y) = ($4,$11,$35,$39,$97)
Choice 18: (z,x′,x,y′,y) = ($5,$12,$30,$34,$96)
Choice 19: (z,x′,x,y′,y) = ($3,$10,$25,$29,$98)

(r, p,q) = (.60, .10, .30):
Choice 20: (z,x′,x,y′,y) = ($4,$10,$61,$65,$98)
Choice 21: (z,x′,x,y′,y) = ($3,$12,$56,$60,$96)
Choice 22: (z,x′,x,y′,y) = ($2,$11,$52,$56,$97)
Choice 23: (z,x′,x,y′,y) = ($3,$10,$48,$52,$98)
Choice 24: (z,x′,x,y′,y) = ($2,$11,$45,$49,$97)
Choice 25: (z,x′,x,y′,y) = ($2,$10,$40,$44,$98)
Choice 26: (z,x′,x,y′,y) = ($4,$11,$35,$39,$97)
Choice 27: (z,x′,x,y′,y) = ($5,$12,$30,$34,$96)

UCI Experiment
Below, we use the same parameters used in the UCI condition
given in (3) in the main text.

(r, p,q) = (.50, .25, .25):
Choice 1: (x′,x,y′,y,z′) = ($11,$52,$56,$97,$108)
Choice 2: (x′,x,y′,y,z′) = ($10,$48,$52,$98,$107)
Choice 3: (x′,x,y′,y,z′) = ($11,$45,$49,$97,$107)
Choice 4: (x′,x,y′,y,z′) = ($10,$40,$44,$98,$110)
Choice 5: (x′,x,y′,y,z′) = ($11,$35,$39,$97,$111)
Choice 6: (x′,x,y′,y,z′) = ($12,$30,$34,$96,$110)

(r, p,q) = (.80, .10, .10):
Choice 7: (x′,x,y′,y,z′) = ($11,$52,$56,$97,$108)
Choice 8: (x′,x,y′,y,z′) = ($10,$48,$52,$98,$107)
Choice 9: (x′,x,y′,y,z′) = ($11,$45,$49,$97,$107)
Choice 10: (x′,x,y′,y,z′) = ($10,$40,$44,$98,$110)
Choice 11: (x′,x,y′,y,z′) = ($11,$35,$39,$97,$111)
Choice 12: (x′,x,y′,y,z′) = ($12,$30,$34,$96,$110)

(r, p,q) = (.60, .30, .10):
Choice 13: (x′,x,y′,y,z′) = ($11,$52,$56,$97,$108)
Choice 14: (x′,x,y′,y,z′) = ($10,$48,$52,$98,$107)
Choice 15: (x′,x,y′,y,z′) = ($11,$45,$49,$97,$107)
Choice 16: (x′,x,y′,y,z′) = ($10,$40,$44,$98,$110)
Choice 17: (x′,x,y′,y,z′) = ($11,$35,$39,$97,$111)
Choice 18: (x′,x,y′,y,z′) = ($12,$30,$34,$96,$110)
Choice 19: (x′,x,y′,y,z′) = ($10,$25,$29,$98,$109)

(r, p,q) = (.60, .10, .30):
Choice 20: (x′,x,y′,y,z′) = ($10,$61,$65,$98,$108)
Choice 21: (x′,x,y′,y,z′) = ($12,$56,$60,$96,$107)
Choice 22: (x′,x,y′,y,z′) = ($11,$52,$56,$97,$108)
Choice 23: (x′,x,y′,y,z′) = ($10,$48,$52,$98,$107)
Choice 24: (x′,x,y′,y,z′) = ($11,$45,$49,$97,$107)
Choice 25: (x′,x,y′,y,z′) = ($10,$40,$44,$98,$110)
Choice 26: (x′,x,y′,y,z′) = ($11,$35,$39,$97,$111)
Choice 27: (x′,x,y′,y,z′) = ($12,$30,$34,$96,$110)
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