
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Leveraging Human Perception and Computer Vision Algorithms for Interactive Fine-Grained 
Visual Categorization /

Permalink
https://escholarship.org/uc/item/5z2523gj

Author
Wah, Catherine Lih-Lian

Publication Date
2014
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5z2523gj
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Leveraging Human Perception and Computer Vision Algorithms for Interactive
Fine-Grained Visual Categorization

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in

Computer Science

by

Catherine Lih-Lian Wah

Committee in charge:

Professor Serge Belongie, Chair
Professor David Kriegman
Professor Gert Lanckriet
Professor Lawrence Saul
Professor Nuno Vasconcelos

2014



Copyright

Catherine Lih-Lian Wah, 2014

All rights reserved.



The Dissertation of Catherine Lih-Lian Wah is approved and is acceptable

in quality and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2014

iii



DEDICATION

To my parents and twin sister, who continue to support and inspire me everyday.

iv



EPIGRAPH

Do not fear going forward slowly; fear only to stand still.

Chinese proverb

Nothing is difficult, only unfamiliar.

Unknown

GOD: I own you like I own the caves.
THE OCEAN: Not a chance. No comparison.
GOD: I made you. I could tame you.
THE OCEAN: At one time, maybe. But not now.
GOD: I will come to you, freeze you, break you.
THE OCEAN: I will spread myself like wings. I am a billion tiny feathers. You have no
idea what’s happened to me.

Dave Eggers
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ABSTRACT OF THE DISSERTATION

Leveraging Human Perception and Computer Vision Algorithms for Interactive
Fine-Grained Visual Categorization

by

Catherine Lih-Lian Wah

Doctor of Philosophy in Computer Science

University of California, San Diego, 2014

Professor Serge Belongie, Chair

Fine-grained categorization has emerged in recent years as a problem of great

interest to the computer vision community, given its wide range of applications including

species identification for animals, plants, and insects, as well as classification of man-

made objects such as vehicle makes and models and architectural styles. The goal

of fine-grained categorization is to distinguish between subcategories (e.g., Pembroke

Welsh Corgi, Shiba Inu) that belong to the same entry-level category (e.g., Dog). As

fine-grained categories are often visually similar, a general-purpose computer vision

algorithm for basic-level category recognition is often ineffective in the fine-grained case.

xvii



Moreover, fine-grained categories are typically recognizable only by experts (e.g., the

average person cannot recognize a Myrtle Warbler, a species of bird), while a layperson

can immediately recognize entry-level categories like motorcycles or cats.

While fine-grained categorization is difficult for both humans and machines, we

combine their respective strengths to create an effective human-in-the-loop classification

system. These types of systems integrate machine vision algorithms with user feedback

at test time in order to interactively arrive at the correct answer. Incorporating user input

drives up recognition accuracy to levels sufficient for practical applications; at the same

time, computer vision reduces the amount of human interaction required. Moreover, we

are able to incrementally improve our models and algorithms while providing a useful

service to users.

In this dissertation, we explore two paradigms for interactive categorization. The

first relies on a comprehensive vocabulary of semantic parts and attributes to discriminate

categories. A bird species recognition system, for example, may request feedback from

the user regarding a particular image, such as “Where is the beak?” or “Is the wing

blue?” Semantic vocabulary-based methods, however, present certain challenges in terms

of scalability and finding experts with necessary domain knowledge, as experts can

be a scarce resource. The second paradigm we present eliminates the need for such a

vocabulary; instead, it is based on perceptual similarity metrics learned from human-

provided similarity comparisons. By leveraging these continuous embedded similarity

spaces, we exploit a vastly more powerful representation that can be readily applied to

other basic-level categories.

xviii



Chapter 1

Introduction

Fine-grained categorization, also known as subordinate categorization in the psy-

chology literature [85, 68, 10], has emerged in recent years as a problem of great interest

to the computer vision community, with applications including species identification

for animals [112, 61, 49], plants [52], flowers [71] and insects [55] as well as classifi-

cation of man-made objects such as vehicle makes and models [94] and architectural

styles [63]. Fine-grained visual categories lie in the space between basic (or entry) level

categories [86] (e.g., the 20 classes from PASCAL-VOC [29] including motorbikes,

dining tables, etc.) and identification of individuals (e.g., face or fingerprint biometrics).

As the visual distinctions among fine-grained categories are often quite subtle, a given

general-purpose tool popular for basic-level category recognition can be rendered a rather

blunt instrument in the fine-grained case.

Fine-grained categories are usually recognized only by experts (e.g., the average

person cannot recognize a Myrtle Warbler), while a layperson can recognize entry level

categories like bicycles or sheep immediately. This work arises from a key realiza-

tion: while fine-grained visual categorization is difficult for both humans and machines,

humans and machines have radically different strengths and weaknesses. A visual in-

teractive categorization system composed of a human and a machine can carry out the

task, and do so efficiently, by combining the strength of each; this requires a dynamic

1
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collaboration between the two agents. Humans are able to detect and broadly categorize

objects, even when they do not recognize them. They can localize basic shapes and

parts, and recognize colors and materials. Human errors arise primarily because people

have (1) limited experiences and memory and (2) subjective and perceptual differences.

In contrast, computers can run deterministic software and aggregate large databases of

information. They excel at memory intensive problems like recognizing movie posters or

cereal boxes but struggle with objects that are textureless, immersed in clutter, highly

articulated or non-trivially deformed.

My dissertation focuses on exploring the different methods by which can we

incorporate human interaction into an interactive categorization system. Incorporating

user input drives up recognition accuracy to levels sufficient for practical applications;

at the same time, computer vision reduces the amount of human interaction required.

Moreover, we are able to incrementally improve our models and algorithms while

providing a useful service to users. To make the scope of this research problem reasonable,

we focus our attention and experiments on a single entry-level category, birds (see

Appendix A for more details on the dataset that we collected).

In Chapter 2, I describe Visipedia, which is the motivating application of this

work, and I provide an overview of relevant work in related areas of research.

In Chapter 3, I present the first of two novel paradigms for interactive catego-

rization that relies on a comprehensive vocabulary of semantic parts and attributes to

discriminate categories. The classification method can be seen as a visual version of

the 20 Questions Game, where questions based on simple visual attributes are posed

interactively. Our models and algorithms for object detection, part localization, and

category recognition scale efficiently to large numbers of categories. In addition, we

evaluate the usefulness of different types of human input and take into account varying

levels of human error, time spent and informativeness in a multiclass or multitask setting,
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and combine computer vision algorithms, forms of user input and question selection

techniques in an integrated framework.

In Chapter 4, I present a second paradigm that is a departure from the previous

expert-driven and attribute-centric approach; instead, we rely on relative similarity

comparisons provided by users, incorporating computer vision and learned perceptual

similarity metrics in a unified framework. We also observe how localization of these

similarity metrics improves classification performance. At test time, users are asked

to judge relative similarity between a query image and various sets of images; these

general queries do not require expert-defined terminology and are applicable to other

domains and basic-level categories, enabling a flexible, efficient, and scalable system

for fine-grained categorization with humans in the loop. By leveraging these continuous

embedded similarity spaces, we exploit a vastly more powerful representation that can be

readily applied to other basic-level categories.
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Chapter 2

Background and Related Work

2.1 Visipedia

The motivating application of this work is Visipedia [81]; short for “Visual

Encyclopedia,” it is a user-generated knowledge base of visual objects, where visual

and semantic concepts can be linked. As an augmented version of Wikipedia, it enables

us to provide services that Wikipedia in its current incarnation lacks, such as improved

text-to-image search and image-to-article visual search (see Figure 2.1).

The goals of Visipedia include the creation of hyperlinked, interactive images

embedded in Wikipedia articles, scalable representations of visual knowledge, large-scale

machine vision datasets, and visual search capabilities. Visipedia, like Wikipedia, is built

on and relies on fine-grained visual categories. We discuss in Section 2.2 various areas of

research that are relevant to realizing Visipedia.

2.2 Related Work

2.2.1 Fine-Grained Categorization

Fine-grained visual categorization (FGVC) is a challenging problem that has

recently become a popular topic in computer vision. Applications include recognizing

different species of leaves [52, 5], flowers [70, 71], dogs [80, 61, 79, 49], birds [14, 34,

4
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? 

(a) Visipedia

(b)

Figure 2.1. Visipedia. 2.1(a): Short for “Visual Encyclopedia,” Visipedia is an aug-
mented version of Wikipedia, where pictures are first-class citizens alongisde text, and it
enables us to provide services such as improved text-to-image search and image-to-article
visual search. 2.1(b): Visipedia, like Wikipedia, is built on and relies on fine-grained
visual categories.
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112, 125, 57], and stonefly larvae [64, 55]. Each of these can be seen as interesting

scientific applications with a significant appeal to a specific demographic of users,

enthusiasts, or citizen scientists. In conjunction with this, many new FGVC datasets have

emerged with richer annotations, such as CUB-200-2011 [113] (birds with parts and

attributes), Columbia Dogs With Parts, Leeds Butterflies [117] (segmentations and text

descriptions), Oxford-IIIT Pets (cats and dogs with segmentations and bounding boxes),

and Stanford Dogs (bounding boxes).

Most research in FGVC is related to finding less lossy features, models, or

representations to deal with tightly related categories. The work of Yao et al. [124, 123]

and Martinez et al. [64] relates to learning features that go beyond traditional codebook-

based methods in object recognition. Nilsback et al. [71] and Chai et al. [15, 17] introduce

techniques that improve ROI for feature extraction by simultaneously segmenting and

recognizing FGVCs. Other methods focus on incorporating part/pose detectors that

supplant or augment bag-of-words methods by allowing for more strongly localized

visual features [34, 112, 80, 125, 61, 79]. Most of these methods exploit new types

of annotation. The work of Farrell et al. [34, 125] explores different methods for pose

normalization using Poselets, including an original method that is based on 3D volumetric

primitives.

2.2.2 Human-In-The-Loop Methods

An interactive algorithm that assists a human in discovering the true class is

useful and preferable to a fully automatic yet error-prone algorithm. Human-in-the-

loop methods have recently experienced a strong resurgence in popularity. Parikh et al.

introduced an innovative human debugging framework [77, 76], using human experiments

to help diagnose bottlenecks in computer vision research. This work is similar in spirit to

our work in that it involves comparing the visual capabilities of humans and computers.
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A number of exciting active learning algorithms that incorporate new types of human

interactivity have come about in recent years [107, 108, 24, 110, 91, 78, 13]. Our work

is related to this area; however, it is different in the sense that it pertains to active

classification (e.g., incorporating similar types of interactive feedback at classification

time instead of during learning).

Interactive methods for generating vocabularies of parts or attributes [62, 74, 25],

incorporating annotator rationales [24], relevance feedback methods [38, 127], and

runtime interactive computer vision systems [121, 87, 59, 67, 111] are all interesting

related lines of research. The main distinguishing feature of our work is the integration

of modern object recognition techniques with interactivity at test time, and developing

this area in more depth than prior work. This includes integrating interactive algorithms

with multiclass recognition techniques, part-based methods, attribute-based methods, and

similarity-based methods.

2.2.3 Active Classification

Our methodology for selecting which questions to pose to human users is an

instance of active testing [42, 41, 99, 3], where a sequence of questions are chosen at

runtime to minimize as much uncertainty as possible about some prediction task (e.g.,

consider the Twenty Questions Game). Similar to decision trees [83], the criterion for

choosing the next question is information theoretic; however, unlike decision trees, ques-

tions are chosen on-the-fly at runtime—precomputed decision trees would be intractably

large (i.e., due to an excessively large branching factor or depth as a result of more

complex sources of information).

This relates to the area of expert systems [69, 9], which are used for applications

such as medical diagnosis, accounting, process control, and software troubleshooting.

Expert systems attempt to answer a problem that could normally only be solved by one
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or more experts, and involve construction of a knowledge base and inference rules that

can be used to synthesize a set of steps or input queries dynamically. Our approach can

be seen as an application of expert systems to object recognition, with the key addition

that we are able to use the observed image pixels as an additional source of information.

Computationally, our method also has similarities to algorithms based on information

gain, entropy calculation, and decision trees [98, 26, 48, 83].

Active testing has been applied to computer vision to speedup object localization

and tracking problems [42, 41, 96, 95], where the active testing system sequentially

chooses locations to evaluate a detector (rather than brute force evaluate a sliding window

detector), interactively refining its belief of where the object is located. The main

difference between these methods and ours is the use of a hybrid model where computer

vision estimates are augmented with questions that are posed interactively to humans (as

opposed to a computer).

Ferecatu et al. [38, 39, 31] applied active testing to image retrieval with relevance

feedback, developing a system that intelligently selects similarity questions to pose to

human users. The main difference between this approach and ours is the incorporation of

computer vision at runtime (i.e., [38] considers the “mental matching” problem where no

image is present at runtime).
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Chapter 3

Interactive Categorization with Parts
and Attributes

3.1 Introduction

We present in this chapter an interactive, hybrid human-computer method for

object classification. The method applies to classes of problems that are difficult for

most people, but are recognizable by people with the appropriate expertise (e.g., animal

species or airplane model recognition). The classification method can be seen as a visual

version of the 20 Questions Game, where questions based on simple visual attributes are

posed interactively. The goal is to identify the true class while minimizing the number of

questions asked, using the visual content of the image. Incorporating user input drives up

recognition accuracy to levels that are good enough for practical applications; at the same

time, computer vision reduces the amount of human interaction required. The resulting

hybrid system is able to handle difficult, large multi-class problems with tightly-related

categories.

We introduce a general framework for incorporating almost any off-the-shelf

multiclass object recognition algorithm into the visual 20 questions game, and provide

methodologies to account for imperfect user responses and unreliable computer vision

algorithms. We evaluate the accuracy and computational properties of different computer

9



10

Figure 3.1. Screen capture of an iPad app for bird species recognition. A user takes
a picture of a bird she wants to recognize, and it is uploaded to a server. The server
runs computer vision algorithms to localize parts of the bird and predict bird species
(debugging output of the algorithms is shown in the image on the lower right). The
computer system intelligently selects a series of questions to ask (click on the head, what
is the primary color of the bird?) that are designed to reduce its ambiguity about the
predicted bird species as quickly as possible.

vision algorithms and the effects of noisy user responses on a dataset of 200 bird species

and on the Animals With Attributes dataset. Our results demonstrate the effectiveness and

practicality of the hybrid human-computer classification paradigm. A real-life application

of bird species recognition is shown in Figure 3.1.

3.2 Related Work

Methods based on parts [36, 37, 11, 72, 122] and attributes [33, 54, 53, 32,

116, 75] have both become popular, mainstream topics in computer vision research.

An interesting component of FGVC problems is that similarities between classes are

exploitable for transfer learning or model sharing methods (e.g., different bird species

share the same types of parts and attributes). FGVC methods that incorporate a super-

category detection model [34, 112, 80, 125, 61, 79] (e.g., running a universal bird detector

before a species classifier) implicitly use a form of part sharing. Similarly, many attribute-

based methods [54, 53, 32] are motivated as a mechanism for model sharing.

An equally important motivation for parts and attributes is that they allow richer
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(A) Easy for Humans (B) Hard for Humans (C) Easy for Humans

Chair? Airplane? … Finch? Bunting?… Yellow Belly? Blue Belly? …Chair?  Airplane? … Finch?  Bunting?… Yellow Belly?  Blue Belly? …

Figure 3.2. Examples of classification problems that are easy or hard for humans.
While basic-level category recognition (left) and recognition of low-level visual attributes
(right) are easy for humans, most people struggle with finer-grained categories (middle).
By defining categories in terms of low-level visual properties, hard classification problems
can be turned into a sequence of easy ones.

types of communication between humans and computers [75, 78, 33].

3.3 Visual Recognition with Humans in the Loop

Multi-class object recognition is a widely studied field in computer vision that

has undergone rapid change and progress over the last decade. These advances have

largely focused on types of object categories that are easy for humans to recognize, such

as motorbikes, chairs, horses, bottles, etc. Finer-grained categories, such as specific

types of motorbikes, chairs, or horses are more difficult for humans and have received

comparatively little attention. One could argue that object recognition as a field is simply

not mature enough to tackle these types of finer-grained categories. Performance on basic-

level categories is still lower than what people would consider acceptable for practical

applications (state-of-the-art accuracy on Caltech-256[45] is ≈ 45%, and the winner

of the 2009 VOC detection challenge [28] achieved only ≈ 28% average precision).

Moreover, the number of object categories in most object recognition datasets is still

fairly low, and increasing the number of categories further is usually detrimental to

performance [45].
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Computer vision is helpful Computer vision is not helpfulComputer vision is helpful Computer vision is not helpful

The bird is a 
Black‐footed 
Albatross

Is the belly 
white? yes
Are the eyes 
white? yes
Th bi d i

Is the beak cone‐shaped? yes
Is the upper‐tail brown? yes
Is the breast solid colored? no
Is the breast striped? yes
I h h hi ?The bird is a 

Parakeet Auklet
Is the throat white? yes
The bird is a Henslow’s
Sparrow

Figure 3.3. Examples of the visual 20 questions game on the 200 class Bird dataset.
Human responses (shown in red) to questions posed by the computer (shown in blue)
are used to drive up recognition accuracy. In the left image, computer vision algorithms
can guess the bird species correctly without any user interaction. In the middle image,
computer vision reduces the number of questions to 2. In the right image, computer
vision provides little help.

On the other hand, recognition of finer-grained categories is an important prob-

lem to study—it can help people recognize types of objects they don’t yet know how

to identify. We believe a hybrid human-computer recognition method is a practical

intermediate solution toward applying contemporary computer vision algorithms to these

types of problems. Rather than trying to solve object recognition entirely, we take on

the objective of minimizing the amount of human labor required. As research in object

recognition progresses, tasks will become increasingly automated, until eventually we

will no longer need humans in the loop. This approach differs from some of the prevailing

ways in which people approach research in computer vision, where researchers begin

with simpler and less realistic datasets and progressively make them more difficult and

realistic as computer vision improves (e.g., Caltech-4→ Caltech-101→ Caltech-256).

The advantage of the human-computer paradigm is that we can provide usable services

to people in the interim-period where computer vision is still unsolved. This may help

increase demand for computer vision, spur data collection, and provide solutions for the

types of problems people outside the field want solved.

Our goal is to provide a simple framework that makes it as effortless as possible

for researchers to plug their existing algorithms into the human-computer framework

and use humans to drive up performance to levels that are good enough for real-life
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applications. Implicit to our model is the assumption that lay-people generally cannot

recognize finer-grained categories (e.g., Myrtle Warbler, Thruxton Jackaroo, etc.) due

to imperfect memory or limited experiences; however, they do have the fundamental

visual capabilities to recognize the parts and attributes that collectively make recognition

possible (see Fig. 3.2). By contrast, computers lack many of the fundamental visual

capabilities that humans have, but have perfect memory and are able to pool knowledge

collected from large groups of people. Users interact with our system by answering

simple yes/no or multiple choice questions about an image or object, as shown in Fig. 3.3.

Similar to the 20-Questions Game1, we observe that the number of questions needed to

classify an object from a database of C classes is usually O(logC) (when user responses

are accurate), and can be faster when computer vision is in the loop. Our method of

choosing the next question to ask uses an information gain criterion and can deal with

noisy (probabilistic) user responses. We show that it is easy to incorporate any computer

vision algorithm that can be made to produce a probabilistic output over object classes.

Our experiments in this paper focus on bird species categorization, which we

take to be a representative example of recognition of tightly-related categories. The bird

dataset contains 200 bird species and over 6,000 images [120]. We believe that the same

types of methodologies used for birds will apply to other object domains.

In Section 3.3.1, we define the hybrid human-computer problem and basic algo-

rithm, which includes methodologies for modeling noisy user responses and incorporating

computer vision into the framework. We describe an extension to part-based models in

Section 3.4, our datasets and implementation details in Section 3.5, and present empirical

results in Section 3.6.
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Question 1: Question 2:
Computer Vision

Question 1:
Is the belly black?

A: NO

Question 2:
Is the bill hooked?

A: YES

Input Image ( )Input Image (     )

Figure 3.4. Visualization of the basic algorithm flow. The system poses questions
to the user, which along with computer vision, incrementally refine the probability
distribution over classes.

3.3.1 Algorithms and Framework

Given an image x, our goal is to determine the true object class c ∈ {1...C} by

posing questions based on visual properties that are easy for the user to answer (see

Fig. 3.2). At each step, we aim to exploit the visual content of the image and the current

history of question responses to intelligently select the next question. The basic algorithm

flow is summarized in Fig. 3.4.

Let Q = {q1...qn} be a set of random variables corresponding to all possible

questions (e.g., IsRed?, HasStripes?, etc.), and A be the set of possible answers2, such

that qi ∈A . We can also ask users to select a confidence value for each question; let ri be

a random variable corresponding to the confidence reported for question i, and V be the

set of possible confidence scores (e.g., Guessing, Probably, Definitely), such that ri ∈ V .

For convenience we define variables ui = (qi,ri); we will refer to these as “questions”

from now and it should be clear from context when we mean question/confidence pairs.

Let j ∈ {1...n}T be an array of T indices to questions we will ask the user.

U t−1 = {u j(1)...u j(t−1)} is the set of questions asked by time step t−1. At time step t

we would like to find the question j(t), that maximizes the expected information gain.

Information gain is widely used in decision trees (e.g. [83]) and can be computed from

1See for example http://20q.net.
2We model user answers as binary questions; extensions to multiple choice questions are readily

available and may be desirable in a future version of the system.

http://20q.net
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Algorithm 1. Visual 20 Questions Game

1: U0← /0
2: for t = 1 to 20 do
3: j(t) = maxk I(c;uk|x,U t−1)
4: Ask user question u j(t), and U t ←U t−1∪u j(t).
5: end for
6: Return class c∗ = maxc p(c|x,U t)

an estimate of p(c|x,U).

We define I(c;u|x,U), the expected information gain of posing the additional

question u, as follows:

I(c;u|x,U) = Eu
[
KL
(

p(c|x,u∪U) ‖ p(c|x,U)
)]

(3.1)

= ∑
u∈A×V

p(u|x,U)
(

H(c|x,u∪U)−H(c|x,U)
)

(3.2)

and H(c|x,U) is the entropy of p(c|x,U)

H(c|x,U) =−
C

∑
c=1

p(c|x,U) log p(c|x,U) (3.3)

The general algorithm for interactive object recognition is shown in Algorithm 1. In the

next sections, we describe in greater detail methods for modeling user responses and

different methods for incorporating computer vision algorithms, which correspond to

different ways to estimate p(c|x,U).

3.3.2 Incorporating Computer Vision

When no computer vision is involved it is possible to pre-compute a decision

tree that defines which question to ask for every possible sequence of question answers.

With computer vision in the loop, however, the best questions depend dynamically on the

contents of the image.
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In this section, we propose a simple framework for incorporating any multi-class

object recognition algorithm that produces a probabilistic output over classes. We can

compute the posterior as follows:

p(c|x,U) ∝ p(U |c,x)p(c|x) = p(U |c)p(c|x) (3.4)

Here we make an assumption that p(U |c,x) = p(U |c); effectively this assumes that the

types of noise or randomness that we see in user responses is class-dependent and not

image-dependent. We can still accommodate for variation in user responses due to user

error, subjectivity, external factors, and intraclass variance; however we throw away

some image-related information (for example, we lose ability to model a change in the

distribution of user responses as a result of a computer-vision-based estimate of object

pose).

In terms of computation, we estimate p(c|x) using a classifier trained offline

(more details in Section 3.5). Upon receiving an image, we run the classifier once at

the beginning of the process, and incrementally update p(c|x,U) by gathering more

answers to questions from the user. One could imagine a system where computer vision

is invoked several times during the process; as categories are weeded out by answers, the

system would use a more tuned classifier to update the estimate of p(c|x). However, our

preliminary experiments with such methods did not show an advantage. Note that when

no computer vision is involved, we simply replace p(c|x) with a prior p(c).

3.3.3 Modeling User Responses

Recall that for each question we may also ask a corresponding confidence value

from the user, which may be necessary when an attribute cannot be determined (for

example, when the associated part(s) are not visible). We estimate the distribution p(U |c)
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Ivory Gull
Bank Swallow Indigo Bunting Whip−poor−will Chuck−will’s−widow

guessing probably definitely

back color
back pattern

belly color
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Figure 3.5. Examples of user responses for each of the 25 attributes. The distribution
over {Guessing, Probably, Definitely} is color coded with blue denoting 0% and red
denoting 100% of the five answers per image attribute pair.

as follows:

p(U |c) =
t

∏
i

p(ui|c) (3.5)

In the above we assume that the questions are answered independently given the category.

If a single user is answering all of the questions, then this assumption might not hold

(responses are correlated due to per-user subjectivity); however, in other variants of

our application we may want to crowd source other users to answer these questions

for the purpose of labeling many images (similar to ReCAPTCHA [109]), in which

case answers would come from different people. It may also be possible to use a more

sophisticated model in which we estimate a full joint distribution for p(U |c); in our

preliminary experiments this approach did not work well due to insufficient training data.

To compute p(ui|c) = p(qi,ri|c) = p(qi|ri,c)p(ri|c), we assume that p(ri|c) is

uniform. Next, we compute each p(qi|ri,c) as the posterior of a multinomial distribution

with Dirichlet prior Dir
(
αr p(qi|ri)+αc p(qi|c)

)
, where αr and αc are constants, p(qi|ri)

is a global attribute prior, and p(qi|c) is estimated by pooling together certainty labels.

Incorporating prior terms is important in order to avoid over-fitting when the training
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examples for any attribute-class pair are sparse. In practice, we use a larger prior term for

Guessing than Definitely, αguess > αde f , which effectively down weights the importance

of any response with certainty level Guessing. In Figure 3.17(a), we present an example

of an attribute question posed to the user.

3.4 Extension to Part-Based Models

Vision researchers have become increasingly interested in recognition of parts

[11, 36, 118], attributes [33, 53, 54], and fine-grained categories (e.g. specific species

of birds, flowers, or insects) [5, 14, 64, 71]. Beyond traditionally studied basic-level

categories, these interests have led to progress in transfer learning and learning from

fewer training examples [35, 36, 47, 71, 118], larger scale computer vision algorithms

that share processing between tasks [71, 93], and new methodologies for data collection

and annotation [11, 27].

Parts, attributes, and fine-grained categories push the limits of human expertise

and are often inherently ambiguous concepts. For example, perception of the precise

location of a particular part (such as a bird’s beak) can vary from person to person, as

does perception of whether or not an object is shiny.

Consider for example different types of human annotation tasks in the domain

of bird species recognition. For the task “Click on the beak,” the location a human user

clicks is a noisy representation of the ground truth location of the beak. It may not in

isolation solve any single recognition task; however, it provides information that is useful

to a machine vision algorithm for localizing other parts of the bird, measuring attributes

(e.g. cone-shaped), recognizing actions (e.g. eating or flying), and ultimately recognizing

the bird species. The answer to the question “Is the belly striped?” similarly provides

information towards recognizing a variety of bird species. Each type of annotation

takes a different amount of human time to complete and provides varying amounts of
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Q1: Click on the head 
(3.656 s) 

IMAGE CLASS: Sooty Albatross 

Ground Truth Part Locations 

Sooty Albatross? yes 

Bohemian Waxwing? no 

Forster’s Tern? no 

Q2: Click on the body 
(3.033 s) 

Body 

Head 

Beak 
Wing 

Tail Breast 

Predicted Part Locations 

Q3: Is the bill black? 
yes (4.274 s) 

Black-footed Albatross? no 

Figure 3.6. Interactive visual recognition with localization. Our system can query the
user for input in the form of binary attribute questions or part clicks. In this illustrative
example, the system provides an estimate for the pose and part locations of the object
at each stage. Given a user-clicked location of a part, the probability distributions for
locations of the other parts in each pose will adjust accordingly. The rightmost column
depicts the maximum likelihood estimate for part locations.

information.

In this section, we discuss an extension to [14], with three key modifications:

• While [14] used non-localized computer vision methods based on bag-of-words

features extracted from the entire image, we use localized part and attribute detec-

tors. Thus [14] relied on experiments with test images cropped by ground truth

bounding boxes; we are able to evaluate performance on uncropped images in

unconstrained environments.

• Whereas [14] incorporated only one type of user input – binary questions pertaining

to attributes – we allow heterogeneous forms of user input including user-clicked

part locations. Users can click on any pixel location in an image, introducing

significant algorithmic and computational challenges as we must reason over
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hundreds of thousands of possible click point and part locations.

• Whereas [14] measured human effort in terms of the total number of questions

asked, we introduce an extended question selection criterion that factors in the

expected amount of human time needed to answer each type of question.

Our integrated approach builds on two areas in computer vision: part-based mod-

els and attribute-based learning, which have both been explored in depth in other works.

Specifically, we use a part representation similar to a Felzenszwalb-style deformable part

model [36, 37] (sliding window HOG-based part detectors fused with tree-structured

spatial dependencies). Whereas most attribute-based methods [33, 54] use non-localized

classifiers, [32, 116] incorporate object or part-level localization with attribute detectors.

Our methods differ from earlier work on parts and attributes by (1) the specific combina-

tion of a Felzenszwalb-style deformable part model with localized attribute detectors, (2)

the additional ability to combine part and attribute models with different types of user

input, and (3) the deployment of such methods on a dataset of larger scale, localizing 200

object classes, 13 parts, 11 aspects, and 312 binary attributes in a fraction of a second.

We introduce models and algorithms for object detection, part localization, and

category recognition that scale efficiently to large numbers of categories. Our algorithms

can localize and classify objects on a 200-class dataset in a fraction of a second, using

part and attribute detectors that are shared among classes. We introduce a formal model

for evaluating the usefulness of different types of human input that takes into account

varying levels of human error, time spent, and informativeness in a multiclass or multitask

setting. We introduce fast algorithms that are able to predict the informativeness of 312

binary questions and 13 part click questions in a fraction of a second. All such computer

vision algorithms, forms of user input, and question selection techniques are combined

into an integrated framework. We present a thorough experimental comparison of a
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number of methods for optimizing human input.

Algorithm Description

In this section, we introduce a principled framework for integrating part-based

detectors, multi-class categorization algorithms, and different types of human feedback

into a common probabilistic model. We also introduce efficient algorithms for inferring

and updating object class and localization predictions as additional user input is obtained.

We begin by formally defining the problem.

Given an image x, our goal is to predict an object class from a set of C possible

classes (e.g. Myrtle Warbler, Blue Jay, Indigo Bunting) within a common basic-level

category (e.g. Birds). We assume that the C classes fall within a reasonably homogeneous

basic-level category such as birds that can be represented using a common vocabulary

of P parts (e.g. head, belly, wing), and A attributes (e.g. cone-shaped beak, white belly,

striped breast). We use a class-attribute model based on the direct-attribute model of

Lampert et al. [54], where each class c∈ 1...C is represented using a unique, deterministic

vector of attribute memberships ac = [ac
1...a

c
A], ac

i ∈ 0,1. We extend this model to include

part localized attributes, such that each attribute a ∈ 1...A can optionally be associated

with a part part(a) ∈ 1...P (e.g. the attributes white belly and striped belly are both

associated with the part belly). In this case, we express the set of all ground truth part

locations for a particular object as Θ = {θ1...θP}, where the location θp of a particular

part p is represented as an xp,yp image location, a scale sp, and an aspect vp (e.g. side

view left, side view right, frontal view, not visible, etc.):

θp = {xp,yp,sp,vp}. (3.6)

Note that the special aspect not visible is used to handle parts that are occluded or

self-occluded.
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We can optionally combine our computer vision algorithms with human input, by

intelligently querying user input at runtime. A human is capable of providing two types

of user input which indirectly provide information relevant for predicting the object’s

class: mouse click locations θ̃p and attribute question answers ãi. The random variable

θ̃p represents a user’s input of the part location θp, which may differ from user to user

due to both clicking inaccuracies and subjective differences in human perception (Figure

3.4). Similarly, ãi is a random variable defining a user’s perception of the attribute value

ai.

We assume a pool of A+P possible questions that can be posed to a human user

Q = {q1...qA,qA+1...qA+P}, where the first A questions query ãi and the remaining P

questions query θ̃p. Let A j be the set of possible answers to question q j. At each time

step t, our algorithm considers the visual content of the image and the current history

of question responses to estimate a distribution over the location of each part, predict

the probability of each class, and intelligently select the next question to ask q j(t). A

user provides the response u j(t) to a question q j(t), which is the value of θ̃p or ãi for part

location or attribute questions, respectively. The set of all user responses up to timestep t

is denoted by the symbol U t = {u j(1)...u j(t)}. We assume that the user is consistent in

answering questions and therefore the same question is never asked twice.

Probabilistic Model

Our probabilistic model incorporating both computer vision and human user

responses is summarized in Figure 3.7(b). Our goal is to estimate the probability of each

class given an arbitrary collection of user responses U t and observed image pixels x:

p(c|U t ,x) =
p(ac,U t |x)

∑c p(ac,U t |x)
, (3.7)
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(a) Part Model (b) Part-Attribute Model

Figure 3.7. Probabilistic Model. 3.7(a): The spatial relationship between parts has a
hierarchical independence structure. 3.7(b): Our model employs attribute estimators,
where part variables θp are connected using the hierarchical model shown in 3.7(a).

which follows from the assumption of unique, class-deterministic attribute memberships

ac [54]. We can incorporate localization information Θ into the model by integrating

over all possible assignments to part locations

p(ac,U t |x) =
∫

Θ

p(ac,U t ,Θ|x)dΘ. (3.8)

We can write out each component of Eq 3.8 as

p(ac,U t ,Θ|x) = p(ac|Θ,x)p(Θ|x)p(U t |ac,Θ,x) (3.9)

where p(ac|Θ,x) is the response of a set of attribute detectors evaluated at locations

Θ, p(Θ|x) is the response of a part-based detector, and p(U t |ac,Θ,x) models the way

users answer questions. In the following sections, we describe each of these probability

distributions as well as describe inference procedures for evaluating Eq 3.8 efficiently.
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Computer Vision Model

As described in Eq 3.9, we require two basic types of computer vision algorithms:

one that estimates attribute probabilities p(ac|Θ,x) on a particular set of predicted part

locations Θ, and another that estimates part location probabilities p(Θ|x).

Attribute Detection

Using the independence assumptions depicted in Figure 3.7(b), we can write the

probability

p(ac|Θ,x) = ∏
ac

i∈ac
p(ac

i |θpart(ai),x). (3.10)

Given a training set with labeled part locations θpart(ai), one can use standard computer

vision techniques to learn an estimator for each p(ai|θpart(ai),x). In practice, we train

a separate binary classifier for each attribute, extracting localized features from the

ground truth location θpart(ai). As in [54], we convert attribute classification scores

zi = fa(x;part(ai)) to probabilities by fitting a sigmoid function σ(γazi) and learning the

sigmoid parameter γa using cross-validation. When vpart(ai) = not visible, we assume the

attribute detection score is zero.

Part Detection

We use a pictorial structure to model part relationships (see Figure 3.7(a)), where

parts are arranged in a tree-structured graph T = (V,E). Our part model is a variant of

the model used by Felzenszwalb et al. [36], which models the detection score g(x;Θ) as

a sum over unary and pairwise potentials log(p(Θ|x)) ∝ g(x;Θ) with

g(x;Θ) =
P

∑
p=1

ψ(x;θp)+ ∑
(p,q)∈E

λ (θp,θq) (3.11)
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beak belly beak belly beak belly
beak belly beak belly

breast tail breast tail breast tail
breast tail breast tail

Figure 3.8. Fully Automated Part Detection Results: 5 test images with maximum
likelihood estimates of 15 semantic parts superimposed on the image. Our system does a
good job localizing all parts for the first two images, as is typical with side and frontal
views of birds. The 3rd image is in an unusual horizontal pose; our system detects the
parts of the head correctly but flips the orientation of the body upside down. The 4th
image is an unusual bird shape; our system detects all parts more or less correctly but
with some degree of noise. The last image is an uncommon pose for which detection
fails entirely.

where each unary potential ψ(x;θp) is the response of a sliding window detector, and each

pairwise score λ (θp,θq) encodes a likelihood over the relative displacement between

adjacent parts. We use the same learning algorithms and parametrization of each term in

Eq 3.11 as in [122]. Here, parts and aspects are semantically defined, multiple aspects are

handled using mixture models, and weight parameters for appearance and spatial terms

are learned jointly using a structured SVM [100]. After training, we convert detection

scores to probabilities p(Θ|x) ∝ exp(γg(x;Θ)), where γ is a scaling parameter that is

learned using cross-validation. Examples of fully automated part detection results are

shown in Fig 3.8.

User Model

Readers interested in a computer-vision-only system with no human-in-the-loop

can skip to Section 3.4. We assume that the probability of a set of user responses U t can
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Figure 3.9. User interface for part locations input. The user clicks on his/her per-
ceived location of the breast (x̃p, ỹp), which is shown as a red X and is assumed to be
near the ground truth location (xp,yp). The user also can click a checkbox indicating part
visibility ṽp. Features ψp(x,θp) can be extracted from a box around θp.

be expressed in terms of user responses that pertain to part click locations U t
Θ
⊆U t and

user responses that pertain to attribute questions U t
a ⊆U t . We assume a user’s perception

of the location of a part θ̃p depends only on the ground truth location of that part θp, and

a user’s perception of an attribute ãi depends only on the ground truth attribute ac
i :

p(U t |ac,Θ,x) =

 ∏
p∈U t

Θ

p(θ̃p|θp)

( ∏
ãi∈U t

a

p(ãi|ac
i )

)
. (3.12)

We describe our methods for estimating p(θ̃p|θp) and p(ãi|ac
i ) as follows.

Modeling User Click Responses

Our interface for collecting part locations is shown in Figure 3.4. We represent

a user click response as a triplet θ̃p = {x̃p, ỹp, ṽp}, where (x̃p, ỹp) is a point that the

user clicks with the mouse and ṽp ∈ {visible, not visible} is a binary variable indicating

presence/absence of the part.

Note that the user click response θ̃p models only part location and visibility,
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whereas the true part location θp also includes scale and aspect. This is done in order to

keep the user interface as intuitive as possible. On the other hand, incorporating scale

and aspect in the true model is extremely important – the relative offsets and visibility

of parts in left side view and right side view will be dramatically different. We model a

distribution over user click responses as

p(θ̃p|θp) = p(x̃p, ỹp|xp,yp,sp)p(ṽp|vp) (3.13)

where the relative part click locations are Gaussian distributed

(
x̃p− xp

sp
,
ỹp− yp

sp

)
∼N (µ̃p, σ̃

2
p), (3.14)

and each p(ṽp|vp) is a separate binomial distribution for each possible value of vp. The

parameters of these distributions are estimated using a training set of pairs (θp, θ̃p). This

model of user click responses results in a simple, intuitive user interface and still allows

for a sophisticated and computationally efficient model of part localization (Section 3.4).

Fig 3.10(b) visualizes 1 standard deviation when we learned our model (Eq 3.13)

from over 26,000 clicks per part from Mechanical Turk workers. As a reference, we also

include a comparison to computer vision part predictions (Section 3.4) in Fig 3.10(c).

Attribute Question Responses

We use a model of attribute user responses similar to [14]. We estimate each

p(ãi|ai) as a binomial distribution, with parameters learned using a training set of user

attribute responses collected from MTurk. As in [14], we allow users to qualify their

responses with a certainty parameter guessing, probably, or definitely, and we incorporate

a Beta prior to improve robustness when training data is sparse.
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(a) Image-Level MTurk (b) Global MTurk (c) Computer Vision

Figure 3.10. Comparing part prediction accuracy for humans and computers: In
each case, a Gaussian distribution over scale-normalized offsets between predictions and
ground truth is estimated, and ellipses visualize 1 standard deviation from ground truth.
3.10(a): Image-level standard deviations over 5 MTurk users who labeled this particular
Black-footed Albatross image. 3.10(b): Global standard deviations over 5,794 images
and 5 users per image. Ellipses are superimposed onto an unrelated picture of a bird
for visualization purposes. Global standard deviations appear larger than image-level
ones because occasionally MTurkers click entirely on the wrong part. 3.10(c): Standard
deviations over computer vision predictions (Section 3.4) for 5,794 test images. Standard
deviations of computer vision predictions are much larger because occasionally computer
vision detects the bird entirely in the wrong location.

Inference

We now describe the inference procedure for estimating the per-class probabilities

p(c|U t ,x) (Eq 3.7), which involves evaluating
∫

Θ
p(ac,U t ,Θ|x)dΘ. While this initially

seems very difficult, we note that all user responses ãi
p and θ̃p are observed values

pertaining only to a single part, and attributes ac are deterministic when conditioned

on a particular choice of class c. If we run inference separately for each class c, all

components of Eqs 3.10 and 3.12 can simply be mapped into the unary potential for

a particular part. Evaluating Eq 3.7 exactly is computationally similar to evaluating a

separate pictorial structure inference problem for each class.

On the other hand, when C is large, running C inference problems can be ineffi-

cient. In practice, we use a faster procedure which approximates the integral in Eq 3.8 as
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a sum over K strategically chosen sample points:

∫
Θ

p(ac,U t ,Θ|x)dΘ

≈
K

∑
k=1

p(U t |ac,Θt
k,x)p(ac|Θt

k,x)p(Θt
k|x) (3.15)

= p(U t
a|ac)

K

∑
k=1

p(ac|Θt
k,x)p(U t

Θ|Θt
k,x)p(Θt

k|x).

We select the sample set Θt
1...Θ

t
K as the set of all local maxima in the probability

distribution p(U t
Θ
|Θ)p(Θ|x). The set of local maxima can be found using standard

methods for maximum likelihood inference on pictorial structures and then running

non-maximal suppression, where probabilities for each user click response p(θ̃p|θp) are

first mapped into a unary potential ψ(x;θp, θ̃p) (see Eq 3.11)

ψ(x;θp, θ̃p) = ψ(x;θp)+ log p(θ̃p|θp). (3.16)

The inference step takes time linear in the number of parts and pixel locations3 and is

efficient enough to run in a fraction of a second with 13 parts, 11 aspects, and 4 scales.

Inference is re-run each time we obtain a new user click response θ̃p, resulting in a new

set of samples. Sampling assignments to part locations ensures that attribute detectors

only have to be evaluated on K candidate assignments to part locations; this opens the

door for more expensive categorization algorithms (such as kernelized methods) that do

not have to be run in a sliding window fashion.

Selecting the Next Question

In this section, we introduce a common framework for predicting the informa-

tiveness of different heterogeneous types of user input (including binary questions and
3Maximum likelihood inference involves a bottom-up traversal of T , doing a distance transform

operation [36] for each part in the tree (takes time O(n) time in the number of pixels).
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mouse click responses) that takes into account the expected level of human error, infor-

mativeness in a multitask setting, expected annotation time, and spatial relationships

between different parts. Our method extends the expected information gain criterion

described in [14].

Let IGt(q j) be the expected information gain IG(c;u j|x,U t) from asking a new

question q j:

IGt(q j) = ∑
u j∈A j

p(u j|x,U t)
(

H(U t ,u j)−H(U t)
)

(3.17)

H(U t) =−∑
c

p(c|x,U t) log p(c|x,U t) (3.18)

where H(U t) is shorthand for the conditional class entropy H(c|x,U t). Evaluating Eq 3.17

involves considering every possible user-supplied answer u j ∈A j to that question, and

recomputing class probabilities p(c|x,U t ,u j). For yes/no attribute questions (querying a

variable ãi), this is computationally efficient because the number of possible answers is

only two, and attribute response probabilities p(U t
a|ac) are assumed to be independent

from ground truth part locations (see Eq 3.15).

Predicting Informativeness of Mouse Clicks

In contrast, for part click questions the number of possible answers to each

question is equal to the number of pixel locations, and computing class probabilities

requires solving a new inference problem (Section 3.4) for each such location, which

quickly becomes computationally intractable.

We use a similar approximation to the random sampling method used in the

inference procedure. For a given part location question q j, we wish to compute expected
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entropy:

E
θ̃p
[H(U t , θ̃p)] = ∑

θ̃p

p(θ̃p|x,U t)H(U t , θ̃p). (3.19)

This can be done by drawing K samples θ̃ t
p1...θ̃

t
pK from the distribution p(θ̃p|x,U t), then

computing expected entropy

E
θ̃p
[H(U t , θ̃p)]≈ (3.20)

−
K

∑
k=1

p(θ̃p|x,U t)∑
c

p(c|x,U t , θ̃ t
pk) log p(c|x,U t , θ̃ t

pk).

In this case, each sample θ̃ t
pk is extracted from a sample Θt

k (Section 3.4) and each

p(c|x,U t , θ̃ t
pk) is approximated as a weighted average over samples Θt

1...Θ
t
K . The full

question selection procedure is fast enough to run in a fraction of a second on a single

CPU core when using 13 click questions and 312 binary questions.

Selecting Questions By Time

The expected information gain criterion (Eq 3.17) attempts to minimize the total

number of questions asked. This is suboptimal as different types of questions tend

to take more time to answer than others (e.g., part click questions are usually faster

than attribute questions). We include a simple adaptation that attempts to minimize the

expected amount of human time spent. The information gain criterion IGt(q j) encodes

the expected number of bits of information gained by observing the random variable u j.

We assume that there is some unknown linear relationship between bits of information

and reduction in human time. The best question to ask is then the one with the largest

ratio of information gain relative to the expected time to answer it:

q∗j(t+1) = argmax
q j

IGt(q j)

E[time(u j)]
(3.21)
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where E[time(u j)] is the expected amount of time required to answer a question q j.

3.5 Datasets and Implementation Details

In this section we provide a brief overview of the datasets we used, methods

used to construct visual questions, computer vision algorithms we tested, and parameter

settings.

Birds-200 Dataset

Birds-200 [120] is a dataset of 6033 images over 200 bird species, such as Myrtle

Warblers, Pomarine Jaegars, and Black-footed Albatrosses – classes which cannot usually

be identified by non-experts. In many cases, different bird species are nearly visually

identical (see Fig. 3.15).

We assembled a set of 25 visual questions (list shown in Fig. 3.5), which

encompass 288 binary attributes (e.g., the question HasBellyColor can take on 15 different

possible colors). The list of attributes was extracted from whatbird.com [115], a bird

field guide website.

We collected “deterministic” class-attributes by parsing attributes from what-

bird.com. Additionally, we collected data of how non-expert users respond to attribute

questions via a Mechanical Turk interface. To minimize the effects of user subjectivity

and error, our interface provides prototypical images of each possible attribute response.

Screenshots of the question answering user-interface are shown in Figure 3.17.

Fig. 3.5 shows a visualization of the types of user response results we get on the

Birds-200 dataset. It should be noted that the uncertainty of the user responses strongly

correlates with the parts that are visible in an image as well as overall difficulty of the

corresponding bird species.

When evaluating performance, test results are generated by randomly selecting a
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response returned by an MTurk user for the appropriate test image.

CUB-200-2011 Dataset

In order to perform experiments on part-based models, we extended the existing

CUB-200 dataset [120] to form CUB-200-2011 [113], which includes roughly 11,800

images, nearly double the previous total. Each image is annotated with 312 binary

attribute labels and 15 part labels. We obtained a list of attributes from a bird field guide

website [115] and selected the parts associated with those attributes for labeling. Five

different MTurk workers provided part labels for each image by clicking on the image to

designate the location or denoting part absence (Figure 3.4). One MTurk worker answered

attribute questions for each image, specifying response certainty with options guessing,

probably, and definitely. They were also given the option not visible if the associated part

with the attribute was not present. At test time, we simulated user responses in a similar

manner to [14], randomly selecting a stored response for each posed question. Instead of

using bounding box annotations to crop objects, we used full uncropped images, resulting

in a significantly more challenging dataset than CUB-200 [120].

Animals With Attributes

We also tested performance on the Animals With Attributes (AwA) [54], a dataset

of 50 animal classes and 85 binary attributes. We consider this dataset less relevant than

birds (because classes are not tightly related), and therefore do not focus as much on this

dataset.

Implementation Details and Parameter Settings

Attributes-Based Only Model: For Birds-200 and AwA, our computer vision algorithms

are based on Andrea Vedaldi’s publicly available source code [106], which combines

vector-quantized geometric blur and color/gray SIFT features using spatial pyramids,
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multiple kernel learning, and per-class 1-vs-all SVMs. We added additional features

based on full image color histograms and vector-quantized color histograms. For each

classifier we used Platt scaling [82] to learn parameters for p(c|x) on a validation set. We

used 15 training examples for each Birds-200 class and 30 training examples for each

AwA class. Bird training and testing images are roughly cropped.

Additionally, we compare performance to a second computer vision algorithm

based on attribute classifiers, which we train using the same features/training code, with

positive and negative examples set using whatbird.com attribute labels. We combined

attribute classifiers into per-class probabilities p(c|x) using the method described in [54].

For estimating user response statistics on the Birds-200 dataset, we used αguess =

64, αprob = 16, αde f = 8, and αc = 8 (see Section 3.3.3).

Parts and Attributes-Based Model: For attribute detectors, we used simple linear clas-

sifiers based on histograms of vector-quantized SIFT and vector-quantized RGB features

(each with 128 codewords) which were extracted from windows around the location of an

associated part. We believe that significant improvements in classification performance

could be gained by exploring more sophisticated features or learning algorithms.

As in [36], the unary scores of our part detector are implemented using HOG

templates parametrized by a vector of linear appearance weights wvp for each part and

aspect. The pairwise scores are quadratic functions over the displacement between

(xp,yp) and (xq,yq), parametrized by a vector of spatial weights wvp,vq for each pose and

pair of adjacent parts. For computational efficiency, we assume that the pose and scale

parameters are defined on an object level, and thus inference simply involves running a

separate sliding window detector for each scale and pose. The ground truth scale of each

object is computed based on the size of the object’s bounding box.

Because our object parts are labeled only with visibility, we clustered images

using k-means on the spatial x- and y- offsets of the part locations from their parent part

whatbird.com
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Figure 3.11. Pose clusters. Images in our dataset are clustered by k-means on the spatial
offsets of part locations from parent part locations. Semantic labels of clusters were
manually assigned by visual inspection. Left/right orientation is in reference to the image.

locations, normalized with respect to image dimensions; this approach handles relative

part locations in a manner most similar to how we model part relationships (Section 3.4).

Examples of images grouped by their pose cluster are shown in Figure 3.11. Semantic

labels were assigned post hoc by visual inspection. The clustering, while noisy, reveals

some underlying pose information that can be discovered by part presence and locations.

3.6 Experiments

In this section, we provide experimental results and analysis of the hybrid-human

computer classification paradigm. Due to space limitations, our discussion focuses on

the Birds dataset. We include results (see Fig. 3.16) from which the user can verify that

trends are similar on Birds-200 and AwA.

3.6.1 Measuring Performance

We use two main methodologies for measuring performance, which correspond

to two different possible user-interfaces:

• Method 1: We ask the user exactly T questions, predict the class with highest

probability, and measure the percent of the time that we are correct.
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• Method 2: After asking each question, we present to the user a small gallery of

images of the class with highest probability and assume that the user will stop the

system when presented with the correct class. In this case, we measure the average

number of questions asked per test image.

For the second method, we assume that people are perfect verifiers, e.g., they will stop

the system if and only if they have been presented with the correct class. While this is

not always possible in reality, there is some trade-off between classification accuracy and

amount of human labor, and we believe that these two metrics collectively capture the

most important considerations.

To evaluate performance for the localized, parts-based model, we introduce a

third methodology that uses time as a measure of human effort needed to classify an

object. This metric can be considered as a common quantifier for different forms of user

input. Performance is determined by computing the average amount of time taken to

correctly classify a test image. The computer presents images of the most likely class to

the user, who will stop the system when the correct class is shown (similar to Method 2).

3.6.2 Using Binary Attribute Questions

In this section, we present our results and discuss some interesting trends toward

understanding the visual 20 questions classification paradigm.

User responses are stochastic. In Fig. 3.12, we show the effects of different models of

user responses without using any computer vision. When users are assumed to respond

deterministically in accordance with the attributes from whatbird.com, performance rises

quickly to 100% within 8 questions (roughly log2(200)). However, this assumption is

not realistic; when testing with responses from Mechanical Turk, performance saturates

at around 5%. Low performance caused by subjective answers are unavoidable (e.g.,

perception of the color brown vs. the color buff), and the probability of the correct
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Figure 3.12. Different Models of User Responses: Left: Classification performance
on Birds-200 (Method 1) without computer vision. Performance rises quickly (blue
curve) if users respond deterministically according to whatbird.com attributes. MTurk
users respond much differently, resulting in low performance (green curve). A learned
model of MTurk responses is much more robust (red curve). Right: A test image where
users answer several questions incorrectly and our learned model still classifies the image
correctly.

class drops to zero after any inconsistent response. Although performance is 10 times

better than random chance, it renders the system useless. This demonstrates a challenge

for existing field guide websites in helping lay-people identify bird species. When our

learned model of user responses (see Section 3.3.3) is incorporated, performance jumps

to 70% due to the ability to tolerate a reasonable degree of error in user responses (see

Fig. 3.12 for an example). Nevertheless, stochastic user responses increase the number

of questions required to achieve a given accuracy level, and some images can never be

classified correctly, even when asking all possible questions. In Section 3.6.2, we discuss

the reasons why performance saturates at lower than 100% performance.

Computer vision reduces manual labor. The main benefit of computer vision occurs

due to reduction in human labor (in terms of the number of questions a user has to

answer). In Fig. 3.13, we see that computer vision reduces the average number of yes/no

questions needed to identify the true bird species from 10.64 to 5.84 using responses

from MTurk users. Without computer vision, the distribution of question counts is

bell-shaped and centered around 7 questions. When computer vision is incorporated, the
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Figure 3.13. Performance on Birds-200 when using computer vision: Left Plot:
comparison of classification accuracy (Method 1) with and without computer vision
when using MTurk user responses. Two different computer vision algorithms are shown,
one based on per-class 1-vs-all classifiers and another based on attribute classifiers. Right
plot: the number of questions needed to identify the true class (Method 2) drops from
10.64 to 5.84 on average when incorporating computer vision.

distribution peaks at 0 questions but is more heavy-tailed, which suggests that computer

vision algorithms are often good at recognizing the “easy” test examples (examples

that are sufficiently similar to the training data), but provide diminishing returns toward

classifying the harder examples that are not sufficiently similar to training data. As a

result, computer vision is more effective at reducing the average amount of time necessary

to classify an image than reducing the time spent on the most difficult images.

User responses drive up performance. An alternative way of interpreting the results is

that user responses drive up the accuracy of computer vision algorithms. In Fig. 3.13, we

see that user responses improve overall performance from ≈ 27% (using 0 questions) to

≈ 72%.

Computer vision improves overall performance. Even when users answer all ques-

tions, performance saturates at a higher level when using computer vision (≈ 72% vs.

≈ 67%, see Fig. 3.13). The left image in Fig. 3.14 shows an example of an image classi-

fied correctly using computer vision, which is not classified correctly without computer

vision, even after asking 60 questions. In this example, some visually salient features

like the long neck are not captured in our list of visual attribute questions. The features
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Blackbird

Only CV
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Figure 3.14. Examples where computer vision and user responses work together:
Left: An image that is only classified correctly when computer vision is incorporated.
Additionally, the computer vision based method selects the question HasThroatColor-
White, a different and more relevant question than when vision is not used. In the right
image, the user response to HasCrownColorBlack helps correct computer vision when its
initial prediction is wrong.

used by our vision algorithms also capture other cues (such as global texture statistics)

that are not well-represented in our list of attributes (which capture mostly color and

part-localized patterns).

Different questions are asked with and without computer vision. In general, the

information gain criterion favors questions that 1) can be answered reliably, and 2)

split the set of possible classes roughly in half. Questions like HasShapePerchingLike,

which divide the classes fairly evenly, and HasUnderpartsColorYellow, which tends to be

answered reliably, are commonly chosen.

When computer vision is incorporated, the likelihood of classes change and

different questions are selected. In the left image of Fig. 3.14, we see an example where a

different question is asked with and without computer vision, which allows the computer

vision based method to hone in on the correct class using one question.

Recognition is not always successful. According the the Cornell Ornithology Website

[102], the four keys to bird species recognition are 1) size and shape, 2) color and pattern,

3) behavior, and 4) habitat. Bird species classification is a difficult problem and is not
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Least Auklet Sayornis Gray KingbirdParakeet Auklet

Q : Is the belly multi‐
colored? yes (Def.)

Figure 3.15. Images that are misclassified by our system: Left: The Parakeet Auklet
image is misclassified due to a cropped image, which causes an incorrect answer to the
belly pattern question (the Parakeet Auklet has a plain, white belly, see Fig. 3.3). Right:
The Sayornis and Gray Kingbird are commonly confused due to visual similarity.

always possible using a single image. One potential advantage of the visual 20 questions

paradigm is that other contextual sources of information such as behavior and habitat can

easily be incorporated as additional questions.

Fig. 3.15 illustrates some example failures. The most common failure conditions

occur due to 1) classes that are nearly visually identical, 2) images of a poor viewpoint

or low resolution where some parts are not visible, 3) significant mistakes made by

MTurkers, or 4) limitations in the particular set of attributes we selected.

3.6.3 1-vs-all Vs. Attribute-Based Classification

In general, 1-vs-all classifiers slightly outperform attribute-based classifiers;

however, they converge to similar performance as the number of question increases, as

shown in Fig. 3.13 and 3.16. The features we use (kernelized and based on bag-of-words)

may not be well suited to the types of attributes we are using, which tend to be localized

and associated with a particular part. One potential advantage of attribute-based methods

is computational scalability when the number of classes increases; whereas 1-vs-all

methods always require C classifiers, the number of attribute classifiers can be varied in

order to trade-off accuracy and computation time. The table below displays the average
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Figure 3.16. Performance on Animals With Attributes: Left Plot: Classification
performance (Method 1), simulating user responses using soft class-attributes (see [54]).
Right Plot: The required number of questions needed to identify the true class (Method
2) drops from 5.94 to 4.11 on average when incorporating computer vision.

number of questions needed (Method 1) on the Birds dataset using different number of

attribute classifiers (which were selected randomly):

200 (1-vs-all) 288 attr. 100 attr. 50 attr. 20 attr. 10 attr.

5.84 6.29 6.49 7.37 8.76 9.40

3.6.4 Using Part and Attribute Questions

Using our criteria for question selection (Section 3.4) and our performance

metric based on time-to-classification, we examine the average classification accuracy

for: (1) our integrated approach combining localization/classification algorithms and

part click and binary attribute questions; (2) using binary questions only with non-

localized computer vision algorithms and expected information gain to select questions

(representative of [14]); (3) using no computer vision; and (4) selecting questions at

random. We follow with observations on how the addition of click questions affects

performance and human effort required. Examples of attribute and part questions that are

posed to the user at test-time are shown in Figure 3.17.

Question selection by time reduces human effort. By minimizing human effort with

the time criterion, we are trading off between the expected information gain from a
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(a) Attribute question

(b) Part question

Figure 3.17. Attribute and Part Questions. 3.17(a): for the attribute question what
is the wing color the user selects both black and white and qualifies her answer with a
certainty definitely. 3.17(b): for the part click question click on the tail, the user provides
an (x,y) mouse location.
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(b) Time criterion

Figure 3.18. Interactive Classification Using Part and Attribute Questions. Classi-
fication accuracy as a function of time when 3.18(a) maximizing expected information
gain; and 3.18(b) minimizing amount of human labor, measured in time. Performance is
measured as the average number of seconds to correctly classify an image (described in
Section 3.6.1).

question response and the expected time to answer that question. Subsequently, we

are able to classify images in 36.6 seconds less on average using both binary and click

questions than if we only take into account expected information gain; however, the

margin in performance gain between using and not using click questions is reduced.

We note that the average time to answer a part click question is 3.01± 0.26

seconds, compared to 7.64±5.38 seconds for an attribute question; in this respect, part

questions are more likely to be asked first.

Part localization improves performance. In Figure 3.18(a), we observe that by select-

ing the next question using our expected information gain criterion, average classification

time using both types of user input versus only binary questions is reduced by 33.8 sec-

onds on average. Compared to using no computer vision, we note an average reduction

in human effort of over 40% (68.2 seconds).

Using the time criterion for selecting questions, the average classification time

for a single image using both binary and click questions is 58.4 seconds. Asking binary
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Figure 3.19. Examples of the behavior of our system. 3.19(a): The system estimates
the bird pose incorrectly but is able to localize the head and upper body region well,
and the initial class prediction captures the color of the localized parts. The user’s
response to the first system-selected part click question helps correct computer vision.
3.19(b): The bird is incorrectly detected, as shown in the probability maps displaying the
likelihood of individual part locations for a subset of the possible poses (not visible to the
user). The system selects “Click on the beak” as the first question to the user. After the
user’s click, the other part location probabilities are updated and exhibit a shift towards
improved localization and pose estimation. 3.19(c): Certain infrequent poses (e.g. frontal
views) were not discovered by the initial off-line clustering (see Figure 3.11). The initial
probability distributions of part locations over the image demonstrate the uncertainty
in fitting the pose models. The system tends to fail on these unfamiliar poses. 3.19(d):
The system will at times select both part click and binary questions to correctly classify
images.

questions only, the system takes an additional 20.4 seconds on average to correctly

classify an image (Figure 3.18(b)). Using computer vision algorithms, we are able to

consistently achieve higher average classification accuracy than using no computer vision

at all, in the same period of time.

User responses drive up performance. There is a disparity in classification accuracy

between evaluating attribute classifiers on ground truth locations (17.3%) versus pre-

dicted locations (10.3%); by using user responses to part click questions, we are able

to overcome initial erroneous part detections and guide the system to the correct class.

Figure 3.19(a) presents an example in which the bird’s pose is estimated incorrectly. After

posing one question and re-evaluating attribute detectors for updated part probability
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distributions, our model is able to correctly predict the class.

In Figure 3.19(b), we visualize the question-asking sequence and how the prob-

ability distribution of part locations over the image changes with user clicks. We note

in Figure 3.19(c) that our pose clusters did not discover certain poses, especially frontal

views, and the system is unable to estimate the pose with high certainty.

As previously discussed, part click questions take on average less time to answer.

We observe that the system will tend to ask 2 or 3 part click questions near the beginning

and then continue with primarily binary questions (e.g. Figure 3.19(d)). At this point, the

remaining parts can often be inferred reliably through reasoning over the spatial model,

and thus binary questions become more advantageous.

3.7 Conclusion

We have proposed a novel approach to object recognition of fine-grained cate-

gories that efficiently combines class attribute and part models and selects questions to

pose to the user in an intelligent manner. Our experiments, carried out on a challenging

dataset including 200 bird species, show that our system is accurate and quick. In addition

to demonstrating our approach on a diverse set of basic-level categories, future work

can include introducing more advanced image features in order to improve attribute

classification performance. Furthermore, we used simple mouse clicks to designate part

locations, and it would be of interest to investigate whether asking the user to provide

more detailed part and pose annotations would further speed up recognition.
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Chapter 4

Interactive Categorization with Simi-
larity Learning

4.1 Introduction

Within the realm of visual categorization in computer vision, humans can play

multiple roles, as we have observed. As experts, they can define a comprehensive set of

semantic parts and attributes to describe and differentiate categories, as well as provide

ground truth attribute values, such as for a field guide. As non-expert users of interactive

classification systems [14, 112], they can also supply these attribute and part annotations.

These attribute-based methods have several weaknesses, especially within fine-

grained visual categorization. Fine-grained categories comprise the set of classes (e.g.

Pembroke Welsh Corgi, Shiba Inu) within a basic-level category (e.g. dogs); each basic-

level category requires its own unique, discriminative part and attribute vocabulary.

Acquiring this vocabulary involves identifying an expert resource (e.g. a field guide) for

that basic-level category. For certain categories, such as chairs or paintings, it may be

difficult to produce an adequate vocabulary. Furthermore, one must obtain image- or

class-level annotations for these attributes. Even if the labels were crowdsourced, each

basic-level category would require a custom set of annotation tools, and building these

tools is a nontrivial task.

47
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Figure 4.1. Similarity metrics for interactive categorization. Our interactive catego-
rization system learns a perceptual similarity metric from human similarity comparisons
on a fixed training set of images and class labels. At test time, our system leverages
this learned metric, along with similarity comparisons provided by the user, to classify
out-of-sample query images.

In addition, users may have difficulty understanding the domain-specific jargon

used to articulate the semantic attribute vocabulary. The fixed-size vocabulary may

also lack sufficient discriminative attributes for recognition. Thus, the cost in obtaining

attribute vocabularies is high, making it expensive to extend an existing system to new

categories.

In this chapter, we present an approach to visual categorization (Fig. 4.1) that

is based on perceptual similarity rather than an attribute vocabulary. We assume that

we are provided with a fine-grained dataset of images that are annotated with only class

labels. In an offline stage, we collect relative similarity comparisons between images

in the dataset, and then leverage these human-provided comparisons to perform visual

categorization.

This similarity-based approach to interactive classification has several compelling
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Figure 4.2. Interface for Collecting Similarity Comparisons. An example of the
interface used for offline collection of similarity comparisons, from which we learn a
similarity metric.

advantages. First, we no longer require part and attribute vocabularies, which can be

expensive to obtain. By eliminating the need for experts to predefine these vocabularies,

we no longer constrain users by expert-defined terminology. Moreover, the continuous

embedded similarity space is a richer and vastly more powerful representation than these

typically fixed-size vocabularies. These factors facilitate the adaptation of an existing

similarity-based system to other basic-level categories.

This similarity-based paradigm enables us to incrementally improve our computer

vision models and algorithms while providing a useful service to users. Each user

response collected at test time can further refine the learned similarity metrics and

consequently improve performance. In addition, our flexible framework supports a

variety of off-the-shelf computer vision algorithms, such as SVMs, logistic regression,

and distance learning algorithms, all of which can be easily mapped into the system.

The psychology literature [101] informs us that humans judge similarity sub-

jectively based on various universal factors that may differ from person to person; in
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evaluating similarity between objects in images, these factors could be based on category,

pose, background, illumination, etc. Because of this, we also study how multiple general-

purpose similarity metrics, with respect to universal factors such as color and shape, can

be used to perform categorization.

4.2 Related Work

Recently, the computer vision community has seen a burst of interest in interactive

classification systems [14, 112, 52], several of which build on attribute-based classifica-

tion methods. Some works harvest attributes through various means [54, 33, 53, 32, 73],

while others discover attributes in an automatic or interactive manner [84, 6, 25], relying

on users to identify and name attributes [74, 50, 62, 63] or to provide feedback in order

to improve classification [22, 78].

In contrast to these attribute-centric methods, we focus on similarity. Some recent

works use similarity in feature space [53, 4]; others rely on human judgment to quantify

similarity for classifying attributes or clustering categories [75, 22, 43, 56]. We instead

learn a metric of perceptual similarity for categorization from relative comparisons [90,

1, 65, 97], specifically employing stochastic triplet embedding [104] in this work. Some

works capture multiple modalities of similarity rather than use a single metric [103, 66,

18], while we focus on learning independent metrics of perceptual similarity.

Another related area is relevance feedback-based image retrieval [89, 2, 19, 46,

127]. Some works, e.g., [88], have focused on identifying nonlinear manifolds that better

align with human perception; however, they do not adequately bridge the semantic gap

or capture perceptual measures of similarity. In particular, our work bears similarities to

the relevance feedback system presented in [39] but differs in several important ways.

First, the motivating assumption in [39] is that the user possesses only a mental image or

concept of a semantic category. We instead assume existence of the query image, such
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that we are able to incorporate computer vision at test time. Second, [39] uses a single

similarity metric derived from visual features (i.e. GIST) rather than human perception;

we conduct human experiments to generate a perceptual embedding of the data. We

combine this perceptual similarity metric along with computer vision as part of a unified

framework for recognition. Our system supports multiple similarity metrics and is able to

trade off between these metrics at test time. To our knowledge, no other existing system

combines perceptual and visual information for categorization in this integrated manner.

4.3 Perceptual Similarity Metrics for Interactive Cate-
gorization

We present in this section an efficient, flexible, and scalable system for fine-

grained visual categorization that is based on perceptual similarity and combines dif-

ferent types of similarity metrics and computer vision methods in a unified framework.

Additionally, we demonstrate the value in using a perceptual similarity metric over rele-

vance feedback-based image retrieval methods and vocabulary-dependent attribute-based

approaches.

Our visual categorization system is similar to the system in [39], with several

important distinctions. While our system shares aspects of [39]’s user and display models,

it uses similarity metrics that are derived from human perception of similarity rather

than computer vision features, which allow us to bridge the “semantic gap” of many

content-based image retrieval systems [19], including [39]. This semantic gap references

the disparity between information extracted from visual data and how the user perceives

and interprets that data [19]. Second, we assume that a query image is available at test

time, enabling us to incorporate computer vision algorithms that are evaluated on the test

image in order to initialize per-class probabilities [14]. Our system reduces human effort

(as measured by the average number of questions posed to the user) by 43%, compared
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to an implementation of [39] that has been initialized using computer vision.

In Section 4.2, we discuss relevant work. In Section 4.3.1, we introduce our

method for learning similarity metrics and describe how we integrate those metrics in our

framework. In Section 4.4, we present an extension to multiple localized region-based

similarity metrics. We discuss implementation details in Section 4.5 and present our

experimental results in Section 4.6.

4.3.1 Methods and Framework

We formulate the problem as follows. Given an image x, we wish to predict the

object class from C possible classes that fall within a common basic-level category, where

C is the set of images belonging in the true object class. We do so using a combination

of computer vision and a series of questions that are interactively posed to a user. Each

question contains a display D of images, and the user is asked to make a subjective

judgment regarding the similarity of images in D to the target image x, providing a

response u.

An image x in pixel space can also be represented as a vector z in human-

perceptual space. At train time, we are given a set of N images and their class labels

{(xi,ci)}N
i=1. We ask similarity questions to human users to learn a perceptual embedding

{(xi,zi,ci)}N
i=1 of the training data. At test time, we observe an image x and pose

questions to a human user, and we obtain probabilistic estimates of z and c that are

incrementally refined as the user answers more questions.

Learning Similarity Metrics from Triplet Constraints

In this section, we describe how we use similarity comparisons collected from

humans to learn a perceptual embedding of similarity (Sec. 4.3.1). We begin by obtaining

a set of K user similarity comparisons in an offline data collection stage; more details
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regarding this step are discussed in Section 4.5. Each collected user response is interpreted

as follows.

A user is asked to judge the similarity between a target image x and a display D

that comprises a set I of G images. From each user response uk, k = 1 . . .K, we obtain

two disjoint sets: one set {xS1,xS2, . . . ,xSn} ∈IS represents the images judged as similar

to the query image; and {xD1 ,xD2, . . . ,xDm} ∈ID includes all other images, such that

ID∪IS = I . Recall that a user response for a given query image x yields two sets ID

and IS. We broadcast this to an equivalent set of (noisy) triplet constraints T k:

T k = {(i, j, l)|xi is more similar to x j than xl}, (4.1)

where i is the target image, represented as xi; j is from set IS; and l is drawn from

set ID. Therefore, for each user response, we obtain nm triplet constraints in T k.

For a display size G = 9, this value can range from 8 to 20 triplet constraints per user

response. Constraints from each user response are then added to a comprehensive set T

of similarity triplets.

Generating a Perceptual Embedding

Let s(i, j) denote the perceptual similarity between two images xi and x j. Using

T , we wish to find an embedding Z of N training images {z1, . . . ,zN} ∈ Rr for some

r ≤ N, in which triplet comparisons based on Euclidean distances are consistent with

s(·, ·). In other words, we want the following to occur with high probability:

‖zi− z j‖2 < ‖zi− zl‖2⇐⇒ s(i, j)> s(i, l). (4.2)

The dimensionality r is empirically chosen based on minimizing generalization error (see

Sec. 4.6.1). We use the metric learning approach described in [104] and optimize for the
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embedding Z = [z1,z2, . . . ,zN ], such that for each triplet (i, j, l) the similarity of zi and

z j is large in comparison to the similarity of zi and zl according to a Student-t kernel;

we refer the reader to [104] for additional details. From the learned embedding Z, we

generate a similarity matrix S ∈ N×N with entries:

Si j = exp
(
−
‖zi− z j‖2

2σ2

)
, (4.3)

which can be directly used in our classification system. The scaling parameter σ is

learned jointly with the user response model parameters (see Sec. 4.3.1). In practice, this

matrix can be reduced to S ∈C×C, where C is the number of classes, by pooling over

images in each class (see Sec. 4.6.1).

Human-in-the-Loop Classification

Given a test image x, the goal of our human-in-the-loop classification system is

to identify the true class c as quickly as possible using a combination of computer vision

and user responses to similarity questions. At each timestep t, the system intelligently

chooses a display Dt of G images to show. The user provides a response ut , selecting the

image perceived to be most similar to the test image x. Let Ut = u1 . . .ut be the set of

responses obtained within timestep t. Our goal is to predict class probabilities p(c|x,Ut)

while exploiting the visual content of the image x and user responses Ut . We compute

class probabilities by marginalizing over all possible locations z of image x in perceptual

space:

p(c,Ut |x) =
∫

z
p(c,z,Ut |x)dz (4.4)

where p(c|x,Ut) ∝ p(c,Ut |x). Our probabilistic prediction of the location z and the class

c becomes increasingly refined as the user answers more questions. We can further
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decompose p(c,z,Ut |x) into terms:

p(c,z,Ut |x) = p(Ut |c,z,x)p(c,z|x) (4.5)

where p(Ut |c,z,x) is a model of how users respond to similarity questions, and p(c,z|x)

is a computer vision estimate.

User Response Model

We describe our probabilistic model of how users answer similarity questions as

follows. We decompose user response probabilities p(Ut |c,z,x) as such:

p(Ut |c,z,x) = p(Ut |z) =
t

∏
b=1

p(ub|z). (4.6)

Here, we assume that a user’s response to similarity questions depends only on the true

location z in perceptual space and that answers to each question are independent. Recall

that each similarity question comprises a display D of G images, and the user responds by

selecting the index i ∈D of an image that is perceived to be most similar to the test image.

A perfect user would deterministically choose the image xi for which the perceptual

similarity s(z,zi) is highest, such that:

p(u|z) = 1[s(z,zi) = max
j∈D

s(z,z j)]. (4.7)

However, real users may respond differently due to subjective differences and user error.

We thus model noisy responses probabilistically, assuming that the probability that the

user selects i is proportional to its similarity s(z,zi) to the test image x:

p(u|z) = φ(s(z,zi))

∑ j∈D φ(s(z,z j))
(4.8)
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where φ(·) is some customizable, monotonically increasing function. In practice, we use

φ(s) = max(θ ,(1−θ)s) (4.9)

where θ is a learnable parameter. This model of p(u|z) can be understood as a mixture

of two distributions: with probability θ a user selects an image at random (e.g., due

to user error); otherwise, a user selects an image with probability proportional to its

perceptual similarity. Recall from Eq 4.3 that s(z,z j) contains an additional parameter σ .

Similar to [38], the parameters σ and θ are learned by maximizing the log-likelihood of

a validation set of 200 non-Turker human user responses.

Efficient Computation

Recall that the user sequentially answers a series of similarity questions Ut =

u1 . . .ut . In this section, we derive an efficient algorithm for updating class probability

estimates p(c|x,Ut) in each timestep t.

Let wt
k be shorthand for the probability p(ck,zk,Ut |x):

wt
k =

(
t

∏
r=1

p(ur|zk)

)
p(ck,zk|x) (4.10)

where k enumerates images in the training set. Each weight wk captures how likely

location zk is the true location z. Note that wt+1
k can be efficiently computed from wt

k as:

wt+1
k = p(ut+1|zk)wt

k =
φ(Sik)

∑ j∈D φ(S jk)
wt

k (4.11)

where i is the selected image at t +1, Si j is an entry of the similarity matrix (Sec. 4.3.1),

and w0
k = p(ck,zk|x). To estimate class probabilities, we approximate the integral in
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Eq 4.4 as the sum over training examples:

p(c,Ut |x) ≈
1
N ∑

k=1...n,
ck=c

p(ck,zk,Ut |x). (4.12)

By the definition of wt
k and normalizing probabilities, it follows that p(c|x,Ut) is the sum

of the weights of training examples of class c:

p(c|x,Ut) =
∑k,ck=c wt

k

∑k wt
k

, (4.13)

resulting in an efficient algorithm where we maintain weights wt
k for each training

example: (1) we initialize weights w0
k = p(ck,zk|x) (estimated using computer vision; see

Sec. 4.3.2); (2) we update weights when the user answers a similarity question (Eq 4.11);

and (3) we update per-class probabilities (Eq 4.13).

Choosing Which Images to Display

Recall that at each timestep, our system intelligently poses a similarity question

by selecting a display D of G images. We wish to choose the set of images that maximizes

expected information gain. We follow the procedure used by Ferecatu and Geman [39],

which defines an efficient approximate solution for populating this display. We group the

images into equal-weight clusters, where each image possesses mass wt
k. This ensures

that each image in the display is equally likely to be clicked, maximizing the information

gain in terms of the entropy of p(c,zk,Ut |x). Given the clustering of images, we pick

the image within the cluster with the highest mass for the display using an approximate

solution. We refer the reader to [31, 39] for additional details. A similar procedure can be

used to instead pick a set of G classes to display, assigning each class a mass ∑k,ck=c wt
k,

maximizing the information gain in terms of the entropy of p(c|x,Ut).
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4.3.2 Incorporating Computer Vision

Recall from Eq 4.5 that we would like to train an estimator for p(c,z|x), the

probability that an observed image x belongs to a particular class c and location z

in perceptual space. In practice, our human-in-the-loop classification algorithm (as

described in Sec. 4.3.1) only requires us to estimate w0
k = p(ck,zk|x) for training examples

k = 1...N rather than for all possible values of z. In this section, we show how off-the-shelf

computer vision algorithms such as SVMs, boosting, logistic regression, and distance

learning algorithms can be mapped into this framework. We also discuss novel extensions

for designing new algorithms that are more customized to the form of p(c,z|x). For each

such method, we describe the resulting computation of w0
k .

No Computer Vision

If no computer vision algorithm is available, then we have no information toward

predicting c or z based on observed image pixels x. As such, we assume each location zk

is equally likely:

w0
k = p(ck,zk|x) =

1
N
. (4.14)

Classification Algorithms

Classification algorithms such as SVMs, boosting, and logistic regression produce

a classification score that can be adapted to produce a probabilistic output p(c|x). They

are otherwise agnostic to the prediction of z. We thus assume that zi and z j are equally

likely for examples of the same class ci = c j:

w0
k = p(ck,zk|x) =

1
Nck

p(ck|x) (4.15)



59

where Nc is the number of training images of class c. We learn parameters for p(c|x) on

a validation set [82].

Distance-Based Algorithms

Non-parametric methods (e.g., nearest neighbor and distance-learning methods)

can be adapted to produce a similarity s(xk,x) between x and the kth training example

(computed using low-level image features) but are otherwise agnostic to class:

w0
k = p(ck,zk|x) ∝ s(xk,x). (4.16)

A Gaussian kernel s(xk,x) = exp{−d(xk,x)/σ} is commonly used, where d(xk,x) is a

distance function and σ is estimated on a validation set. Note that due to normalization

in Eq 4.13, using an unnormalized probability does not affect correctness.

Pose-Based Classification Algorithms

Note that the above classification and distance-based algorithms are sub-optimal

due to not exploiting information in zk and c, respectively. We consider a simple extension

to help remedy this. We obtain a perceptual pose embedding Zo of the training data

using pose similarity questions (see Sec. 4.3.1), then cluster training examples zo
1...z

o
N

using k-means into K discrete poses. Let oi be the pose index of the ith example. We

train a separate multiclass classifier for each pose o, obtaining a pose-conditioned class

estimator for p(c|x,o). We similarly train a multiclass pose classifier that estimates pose

probabilities p(o|x). We assume our classifiers give us information about z through pose

labels o but are otherwise agnostic to the prediction of z:

w0
k = p(ck,zk|x) =

1
Nck,ok

p(ck|x,ok)p(ok|x) (4.17)
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where Nco is the number of training examples of class c and pose o. At test time, we have

the option of asking a mixture of class and pose similarity questions. In practice, we found

that pose-conditioned classification accuracy did not match that of a multiclass classifier.

This may be due to lack of (positive) training examples and lack of object localization.

However, we include this section of an example of how one might formulate novel

computer vision algorithms that are customized to a similarity-based human-in-the-loop

interface.

4.4 Extension to Multiple Localized Perceptual Metrics

Current similarity-based approaches to interactive fine-grained categorization

rely on learning metrics from holistic perceptual measurements of similarity between

objects or images. However, making a single judgment of similarity at the object level

can be a difficult or overwhelming task for the human user to perform. Secondly, a single

general metric of similarity may not be able to adequately capture the minute differences

that discriminate fine-grained categories. In this work, we propose a novel approach to

interactive categorization that leverages multiple perceptual similarity metrics learned

from localized and roughly aligned regions across images, reporting state-of-the-art

results and outperforming methods that use a single nonlocalized similarity metric.

While similarity can be holistic in nature (e.g., object utility or function, or overall

shape), it can also be highly localized, for instance, when specific corresponding regions

or parts of the object differ from one other. Especially at the fine-grained category level

in which classes tend to be visually coherent, it is likely that the small yet important

characteristics that distinguish subcategories are localizable. In these scenarios, a single

metric of perceptual similarity that is observed at the object level can be overly general,

and asking a user to make holistic nonlocalized similarity comparisons can be difficult.

By using localized similarity comparisons and constraining the user’s view to a
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portion of the image, we are able to highlight certain aspects of similarity; these localized

judgments tend to be easier for humans to perform than holistic similarity judgments (see

Figure 4.3). Moreover, we can potentially reduce the effect of nuisance factors such as

background noise and differing object poses. For each common region or part, we learn

a separate perceptual space that captures local visual information.

In order to compare common local regions between images, we must first identify

the set of relevant regions to consider, and second, we must determine spatial correspon-

dences between regions across images and objects. For many basic-level categories,

there exist field guides that specify part vocabularies for describing or discriminating

categories, but these share the same weaknesses as semantic attribute vocabularies. The

regions that are most useful for discrimination may not align with part semantics, and

moreover, additional annotation is required to localize all the regions in the images.

We propose using an unsupervised approach to discovering discriminative, visu-

ally coherent and roughly aligned regions [92, 21] in the dataset, which can be used to

localize the similarity comparisons. This method has multiple advantages: first, we can

determine spatial correspondences between images by using the discovered patches as

detectors; second, the regions are by nature common in gradient appearance; and lastly,

the discovered regions may provide implicit (albeit noisy) pose alignment.

First, we present an approach to interactive classification that leverages localized

similarity comparisons and does not rely on part or attribute vocabularies. We discover a

set of discriminative, localized and roughly aligned regions for this fine-grained visual

categorization task. Second, we provide a quantitative analysis of how human users

respond differently to nonlocalized versus localized perceptual similarity comparisons.

Finally, we demonstrate that localized similarity comparisons are more intuitive for

users to perform, and that by using independent localized metrics we can improve

categorization accuracy over using a single nonlocalized metric.
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Which of the 
two images 

is more 
similar to 

this image? 

or ? 

Nonlocalized similarity comparison 

or ? 

Localized similarity comparison 

Figure 4.3. Localized Similarity Comparisons for Interactive Categorization. We
use perceptual similarity metrics learned from localized comparisons to perform inter-
active categorization. By directing the user’s attention to localized and roughly aligned
regions, we aim to reduce both overall human effort required for categorization as well
as improve performance over using nonlocalized comparisons and metrics.

Incorporating Multiple Similarity Metrics

We consider an extension in which similarity can be decomposed into multiple

similarity metrics. These metrics can represent different visual traits; it is intended for

these traits to be broadly applicable to a wide range of basic-level categories, such as

similarity in terms of color, shape, or texture. Specifically, we consider the case where

these traits correspond to localized discriminative regions.

Our system can be modified to support two types of similarity comparisons:

nonlocalized and localized (see Figure 4.5). In the former, the images in the display each

show the whole uncropped object. For the latter, users are asked to make a localized

judgment of similarity, and all images in the grid are localized with respect to a region

r, drawn from a set of discriminative regions R. We define a region as a visually

discriminative and recurring object part that does not have to be semantically defined or

meaningful. In practice, it is a spatially localized and roughly aligned template derived

from an associated descriptor (see Figure 4.4).

Our system can support the use of multiple similarity metrics Sr, r ∈ 1 . . .R that

are represented at test time as different questions, where we direct the user’s attention to

specific visual traits (or localized regions). At train time, we obtain a separate embedding

Z1 . . .ZR for each trait (using similarity questions that are targeted toward a specific trait),
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Region 1 Region 13 Region 21 Region 23 Region 39

Figure 4.4. Discovering Discriminative Regions. We discover a set of discriminative
regions (Section 4.4) and select a subset to use in our experiments, each visualized above
as a HOG template alongside the averaged image of the highest confidence positive
detections for that corresponding detector.

yielding multiple similarity matrices S1 . . .SR.

At test time at each timestep t, we pick both a trait r and display of images

D that is likely to provide the most information gain. This amounts to finding the

trait that can produce the most balanced clustering according to the current weights wt
k.

Computation of updated class probabilities occurs identically to the procedure described

in Section 4.3.1, with a slightly modified update rule that replaces Eq 4.11:

wt+1
k = p(ut+1|zr

k)w
t
k =

φ(Sr
ik)

∑ j∈D φ(Sr
jk)

wt
k. (4.18)

Here, we update weights wt+1
k according to the similarity matrix Sr of the selected trait r.

Incorporating Localization Information

In order to utilize multiple similarity metrics with localization, we must handle

instance-level variations, specifically the presence or visibility of certain pose-aligned

parts in the image. In this section, we describe how we automatically obtain the set

of discriminative regions to localize similarity comparisons (Section 4.4) and how we

choose which images and regions to show in the display (Section 4.4).

Discovering Discriminative Regions

In order to highlight the same localized region across images for performing

localized similarity comparisons, we require instance-level region correspondences.
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We use the unsupervised approach of Singh et al. [92] to discover a set of mid-level

discriminative visual representations that are localized and roughly pose aligned. At test

time, we can use these templates as part detectors that are evaluated on input images in a

sliding window manner.

The initial candidate regions are extracted at random from uncropped images

across multiple categories. To iteratively train the discriminative classifiers, we assign

the positive set to consist of training examples belonging to a single basic-level category,

while the negative set consists of images from all other categories, drawn from the

PASCAL VOC dataset [29].

Display Model

It is likely that the localized regions discovered in Section 4.4 may not be present

in certain images; this corresponds to a low detection score for a particular region

detector. As such, we modify the display model of [114] to take part presence into

account. Intuitively, for a particular region r, we wish to include images in the display

that are highly likely to contain that localized region. Recall that we have a set R of

discriminative regions. For a given image xk in the training set, we model the probability

the region r ∈R is present in xk as p(vk|r,xk). In practice, this is determined by applying

a sigmoid function to the output of the region detector. The γ parameter is learned on a

validation set [82].

In selecting images for the display, we employ the approximate solution described

in [114, 31, 39], which groups the images into clusters to ensure that each image in the

display is equally likely to be selected, maximizing the information gain in terms of the

entropy of p(c,zr
k,Ut |x). For the display, we thus pick the image within the cluster with

the highest mass as weighted by the region presence probability wt
k p(vk|r,xk).
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(a) Localized comparison (b) Nonlocalized comparison

Figure 4.5. Comparing Localized and Nonlocalized Comparisons. Interfaces for
collecting 4.5(a) localized and 4.5(b) nonlocalized comparisons.

4.5 Dataset and Implementation Details

We perform experiments on CUB-200-2011 [113], which contains 200 bird

classes with roughly 60 images per class. We maintain the training/testing split—only

training images are seen in the data collection phase and are used to generate the embed-

ding. Test images are considered as out-of-sample input to the interactive categorization

system.

Collecting Nonlocalized Comparisons

To collect the similarity comparisons, we created an interface (Fig. 4.2) that

displays a reference image along with a grid of 3×3 images. Amazon Mechanical Turk

workers are asked to select all the images in the grid that clearly belong to a different

species, as compared to the reference image. Images for each task are sampled at the

category level without replacement, such that no two images belong to the same cate-

gory. Additional observations regarding how the collected data impacts the embedding

generation are discussed in Section 4.6.1.
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Collecting Localized Comparisons

For learning the perceptual metrics, we collect additional localized similarity

comparisons using Amazon Mechanical Turk. Collecting similarity judgments densely

over all training images for each region would be an expensive and costly process;

instead, we sample images for the displays from the distribution p(vk|r,xk), such that

noisy detections with low p(vk|r,xk) are less likely to be selected for annotation. For each

region r, we collect localized similarity comparisons using the GUI in Figure 4.5(a), in

which the display consists of a grid of G = 9 images. Some context around each region

is included.

Discriminative Region Vocabulary

In generating the set of discriminative regions, we assume that we are provided

with ground truth object bounding boxes in both training and testing. We only keep

discovered patches that have sufficient overlap (50%) with the ground truth object bound-

ing box [58]. This eliminates many noisy detections that fire in the image background,

resulting in 106 localized and roughly aligned regions. We also wish to ensure sufficient

diversity in the regions used; consequently, we apply agglomerative clustering to reduce

the set of 106 discovered regions to 23 region clusters, and we manually select 5 diverse

and representative regions from different clusters to comprise R and to use in our ex-

periments (see Figure 4.4). In practice, one could double the size of R by mirroring the

regions to ensure left/right aspect coverage.

In Figure 4.6, we visualize the discriminative regions as the averaged image of

the highest confidence positive detections for that corresponding region detector.
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Figure 4.6. Discriminative Regions. The 106 discovered discriminative regions. We
select 5 to use in our experiments.
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Computer Vision Features and Learning

We use multiclass classifiers to initialize p(c,z|x), extracting color/grayscale

SIFT features and color histograms with VLFEAT [105] that were combined with spatial

pyramids. We trained 1-vs-all SVMs using LIBLINEAR [30].The classification scores

are used to update w0
k according to Eq 4.15. At test time, we display a ranked list of

classes based on the posterior probabilities, from which users can verify the class of the

input image.

We also compare to a method that uses Fisher vector encodings (FVs) with

features extracted from the object bounding boxes, which has been demonstrated to

improve FGVC accuracy over other computer vision algorithms [40]. We extract SIFT

descriptors and use a 256-visual words GMM, applying an L2-normalization on the

Fisher vectors and learning a linear SVM with VLFEAT [105], yielding an average

classification accuracy on the testset of 34.76%, compared to 19.4% with SIFT/color

features.

4.6 Experiments

In Section 4.6.1, we describe how the embeddings are generated. In Section 4.7,

we observe how human perception differs between localized and nonlocalized similarity

judgments. In Section 4.6.3, we present our results on interactive classification.

4.6.1 Embedding Generation

Nonlocalized Metric: Using a set of triplets generated from our collected similarity

comparisons, we are able to learn an embedding (Fig. 4.8) of N nodes, where N=200 is

the number of classes. To better understand the tradeoff between dimensionality r and

embedding accuracy, we compute the generalization error as we sweep over the number
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of dimensions. The generalization error measures the percentage of held-out similarity

triplets satisfied in three-fold cross validation. With this method, we empirically estimate

r=10 as sufficient for minimizing generalization error (see Figure 4.7.

In Figure 4.8, various clusters of classes are highlighted. We observe that visually

similar classes tend to belong to coherent clusters within the embedding, for example, the

gulls, large black birds, and small brown striped birds. However, we also note that certain

species that are dissimilar to the other birds tend to fall in their own cluster, towards the

upper left portion of the embedding.

An embedding at the category level does not characterize intraclass variation,

which can be high due to differences in gender, age, season, etc. Instead, this is handled

through the noisy user model (Eq 4.8). While our method does not inherently require

it, learning a similarity metric at the category level requires much fewer annotations

and still gives a reasonable metric of similarity. In our experiments, we used roughly

93,000 triplets out of a possible 8 million to generate a category-level embedding. At the

instance level, this would be equivalent to collecting over 2 billion triplets.

Localized Metrics: or each localized region (Figure 4.4), we generate triplets from

similarity comparisons (Section 4.5) to learn an independent localized embedding of N

nodes and of dimensionality d for each region r. The comparisons are collected at the

instance level; to learn each embedding, we pool over instances in each class, such that

we obtain an embedding of N =C = 200 and d = 10 [114]. This enables us to generate a

similarity matrix Sr ∈C×C for each region r. The metric is learned independently from

all other regions; see Figure 4.10 and the supplemental material for visualizations of the

embeddings.

This pooling step helps to mitigate the effects of noise in both user similarity

responses and region detection, and we find that we do not need to filter any noisy user

responses from training in order to learn the embeddings. By pooling over classes, we
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Figure 4.7. Embedding Generalization Error. We observe the generalization error for
an embedding as we sweep over the number of dimensions. The generalization error is
the percentage of triplet constraints that are not satisfied in three-fold cross validation. At
dimensionality r = 10, the reduction in error stabilizes at roughly 2%.

assume that the visual appearance of parts are coherent within a subcategory; however in

reality, there is intraclass variation due to differences in gender, age, season, etc. While

we do not directly address this, our user response model is able to account for noise in

user responses.

In Figures 4.9, 4.10, 4.11, 4.12, and 4.13, we visualize the first two dimensions

of the embeddings for the 5 localized discriminative regions used in our experiments.

4.6.2 Using Nonlocalized Similarity Metrics

We present our results for interactive classification using the learned perceptual

metric for class similarity in Figures 4.15 and 4.16. Qualitative examples of results are

presented in Figures 4.17(a) and 4.17(b). At test time, a user is shown a display of 3×3

images and asked to select the bird that is most similar to the input class (see Figure 4.14).

The input image is drawn from the test set, and the display images are drawn strictly

from the pool of training images. As such, the system does not possess prior knowledge
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Figure 4.8. Nonlocalized Similarity Embedding. A visualization of the first two
dimensions of the 200-node category-level similarity embedding. Visually similar classes
tend to belong to coherent clusters (circled and shown with selected representative
images).

of perceptual similarity between a given input image and any possible display of images.

We use simulated user responses, which facilitates comparison to previous work as well

as allows us greater flexibility in running experiments. Playback simulations based on

real human responses are common in human-in-the-loop work [14, 112, 74, 75, 78] as

they allow algorithmic and parameter setting choices to be explored without rerunning

human experiments.

In our experiments, we measure classification accuracy as a function of the

number of questions or displays the user has seen. We use the same experimental

setup and evaluation criteria as [112], assuming that humans can verify the highest

probability class perfectly and can stop the system early. Performance is measured as

the average number of questions that a user must answer per test image to classify it

correctly. Different types of questions (similarity, attribute, or part-based) may incur

varying amounts of cognitive effort on the user’s part, which may be reflected in differing

amounts of time to answer a single question. As our test-time user responses are simulated,

we compare performance based on the number of questions posed.

Similarity comparisons are advantageous compared to attribute questions. In Fig-

ures 4.15(a) and 4.15(b), we show the effects of not using and using computer vision,
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Figure 4.9. Localized Similarity Embedding for Region 1.
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Figure 4.10. Localized Similarity Embedding for Region 13.
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Figure 4.11. Localized similarity embedding for Region 21.
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Figure 4.12. Localized similarity embedding for Region 23.
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Figure 4.13. Localized similarity embedding for Region 39.
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Figure 4.14. Test-Time Interface. An example of a test-time user interface for our
interactive classification system.
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(a) No computer vision
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(b) With computer vision

Figure 4.15. Observing Deterministic Users. We report the average number of ques-
tions asked per test image in parentheses for each method. 4.15(a): Our similarity-based
approach requires fewer questions (4.32 vs. 6.67) than [14], which uses attributes.
4.15(b): Our display mechanism reduces user effort, as compared to randomly generated
grids of images and a baseline based on the ranked classification scores.
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Figure 4.16. Observing Simulated Noisy Users. Our method outperforms a part and
attribute-based interactive classification system [112] as well as the relevance feedback-
based image retrieval system described in [39], which has been modified to utilize
computer vision in initializing per-class probabilities for fairness of comparison.

respectively. We observe performance using deterministic (perfect) users (Eq 4.7) who

are assumed to respond in accordance with the learned similarity metric. For a direct com-

parison to attribute-based approaches, we compare our method to the setting in which

users answer attribute questions deterministically in accordance with expert-defined

class-attribute values, as reported in [14]. We are able to reduce the average number of

questions needed by 2.4.

Computer vision reduces the burden on the user. We note a similar trend when

computer vision is incorporated at test time (Fig. 4.15(b)), in which users take an average

of 2.7 questions per image. The addition of computer vision (Sec. 4.3.2) reduces the

number of questions a user must answer in order to classify an image by 1.6 (Fig. 4.15(a)).

Intelligently selecting image displays reduces effort. We compare performance for

two versions of our method: the first intelligently populates each display (Sec. 4.3.1) and

the second randomly generates a display of images at each question. Using our display

model, we observe that 2.7 questions are required on average, compared to 3.3 questions

using a random display. We also compare to a baseline derived from classification scores



79

[Ranked by CV], in which the user moves down the ranked list of classes one at a time

to verify the correct class. With our model, we reduce the average number of questions

from 20.3 to 2.7.

Our system is robust to user noise. In reality, assuming deterministic users is impracti-

cal, as users are likely to have subjective differences in their perceptions of similarity.

To account for this, we incorporate a user response model that accounts for real human

behavior (see Sec. 4.3.1). Using a validation set of query images, we pose similarity

questions to real human users and estimate the parameters of a noisy user response p(u|z)

with the collected responses.

In our experiments, we simulate noisy user behavior at test time by randomly

selecting answers according to the distribution p(u|z). We compare performance directly

to the results presented in [112], a system that uses part-localized computer vision

algorithms as well as user feedback via attribute and part-click questions, obtaining a

reduction of 2.6 questions on average (Fig. 4.16).

We also improve performance significantly over an implementation of [39] that

uses a similarity metric generated from the L1 distances of concatenated feature vectors

(see Sec. 4.5). For a fair comparison, the system in [39] is modified to use computer

vision in initializing the per-class probabilities, as the query image is provided. We note

that the use of the L1 distance-based metric is unable to adequately capture perceptual

similarity, resulting in a high average number of questions needed for categorization.

4.6.3 Using Multiple Localized Similarity Metrics

We show our results on interactive classification in Figure 4.19; qualitative

examples are presented in Figure 4.18. At test time, we use an interface similar to that

used in training (Figure 4.5(a)), with the primary difference being how the reference

image is displayed. The region detections in test images can be noisy, and we wish to
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Q1: Most Similar? 
Query Image 

Q2: Most Similar? 

Vermilion 
Fly-

catcher 

(a) Category similarity metric

Q1: Most Similar? Q2: Most Similar? 

Red-
Cockaded 

Wood- 
pecker 

Query Image 

(b) Category similarity metric

Figure 4.17. Qualitative Results for Nonlocalized Metrics learned from AMT workers
(Figures 4.17(a) and 4.17(b)).

avoid highlighting an erroneous detection to the user. Instead, we show the nonlocalized

reference image, and we assume that, with some cost in human effort, the user is able

to mentally localize and align the corresponding region, based on the localized region

highlighted in the grid images.

Similar to our experiments with nonlocalized metrics as described in Section 4.6.2,

we use simulated user responses that allow us to compare to previous work more readily

as well as explore different parameter choices. We use a model for user behavior that

accounts for noisy responses, estimating parameters on a validation set of real human

responses. We refer the user to Section 4.3.1 and [114] for details on the user model.

Our experimental setup and performance metrics are the same as [112, 114], in which

the user can verify perfectly the highest probability class, and we evaluate our system

based on the average number of questions a user must answer per test image to classify it

correctly.
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Q1: Most Similar? 
Query Image 

Q2: Most Similar? 

Brandt 
Cormorant 

(a)

Q1: Most Similar? 
Query Image 

Q2: Most Similar? 

Yellow-
headed 

Blackbird 

(b)

Q1: Most Similar? Query Image Q2: Most Similar? 

Parakeet 
Auklet 

Query Image 
Q1: Most Similar? Q2: Most Similar? 

American 
Pipit 

(c)Q1: Most Similar? Query Image Q2: Most Similar? 

Parakeet 
Auklet 

Query Image 
Q1: Most Similar? Q2: Most Similar? 

American 
Pipit 

(d)

Figure 4.18. Qualitative Results for Localized Metrics. We present qualitative results
for interactive categorization using our system using only the 5 localized similarity
metrics in 4.18(a), 4.18(b), and 4.18(c), as well as using the localized metrics along with
a nonlocalized metric 4.18(d).
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Figure 4.19. Interactive Categorization Results. 4.19(a): Using both localized and
nonlocalized metrics outperforms using either type of metric alone. We compare to prior
baselines from [114]. 4.19(b) We observe performance when the initial class probability
estimates are improved by using Fisher vectors. 4.19(c): We compare performance using
each localized metric separately.
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It is advantageous to use localized and nonlocalized metrics together. We compare

performance with simulated noisy users to [114], which uses a single nonlocalized class

similarity metric, as well as to previous baselines from [114]: an interactive classification

system that uses part-localized computer vision algorithms and poses semantic part

click and binary attribute questions [112]; an implementation of a relevance feedback

system that uses a feature-based L1-distance metric [39]; and a baseline derived from

classification scores alone, in which the user moves down the ranked list of classes to

verify the correct class. Class probabilities are initialized using the CV algorithms based

on SIFT/color histograms. Results are shown in Figure 4.19(a).

By combining localized and nonlocalized metrics, we are able to classify the test

images with 9.85 questions on average, compared to 9.99 by using localized metrics

only and 11.53 from using the nonlocalized metric. In Figure 4.19(b), we observe a

similar trend when we use FV-based computer vision estimates for initializing per-class

probabilities; using both types of metrics results in 0.44 less questions on average than

using only localized metrics. This performance gain is further exaggerated when we

take into consideration that localized comparisons take on average 5.01 sec less time to

perform than nonlocalized comparisons (Section 4.7). We also compare to the Ranked

by CV baseline using the Fisher vector encoding. This baseline outperforms our system

initially but fails on more difficult images, whereas our similarity-based approach is able

to ultimately identify the correct class.

Localized comparisons are more informative than nonlocalized comparisons. In

general, our interactive categorization system will tend to ask users to make localized

comparisons in the beginning, as these questions provide the most expected informa-

tion gain. As the per-class probability estimates are refined, the system will ask more

nonlocalized similarity questions. We present the distribution of questions asked in the

supplemental material.
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Some localized regions are more useful for categorization than others. In Fig-

ure 4.19(c) we present categorization results using the localized metrics separately.

We note that using a single localized metric for Region 13 outperforms the other 4 met-

rics. This may suggest that the visual representation captured by Region 13, visualized

in Figure 4.10, is particularly useful for discriminating bird species. Nevertheless, it

can still be beneficial to use a combination of regions, as not all regions will be present

in all the images. For example, using Region 13 alone produces a boost in average

categorization accuracy initially for the first 15 questions; after that point, other localized

metrics become more informative.

In Figure 4.20, we examine the distribution of questions asked with the interactive

categorization system. Fisher vector encodings are used to initialize the computer vision

estimate. We also compute the breakdown of localized similarity and nonlocalized

similarity comparisons queried when both types of metrics are used.

4.7 Human Perception of Similarity

We first observe empirically how users respond differently to localized compared

to nonlocalized similarity questions. We generate 20 unique questions, each of which

consists of 10 images total: a reference image and a grid of G = 9 images. Each question

is seen by up to 10 AMT workers. The 200 images in the questions are selected from the

top-scoring detections across the dataset for Region 1, Region 21, and Region 39 (see

Figure 4.4).

We create two experiments from the set of 20 questions. One consists of localized

questions only, in which the detected region is highlighted in the image (Figure 4.5(a)).

The second experiment consists of the same set of questions, but the images are shown

to the user as the full uncropped version (Figure 4.5(b)). Across both experiments, the

images in the grid appear in the same position, and the user is asked to select a single
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Figure 4.20. Question Distribution. We present the distribution of questions asked,
computed as a fraction of all the test images. We simulate noisy user responses with
our user response model. Figure 4.20(a): We note that localized similarity for Region
1 is the most common first question to pose to the user. Figure 4.20(b): Initially, the
questions asked tend to be localized in nature, and as the per-class estimate is refined, the
system will choose with greater frequency to query the user for nonlocalized similarity
comparisons.
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Figure 4.21. Comparing human perception of nonlocalized vs. localized similarity.
4.21(a) Histogram of HITs with a certain maximum percentage agreement (MPA) among
10 AMT worker responses; 4.21(b) MPA vs. average worker time per question; 4.21(c)
co-occurrence rate of user-selected image location in the 3×3 grid, enumerated 1−9.

image in the grid that is most similar to the reference image. The only variable that

changes between experiments is how the images are displayed to the user. Due to how

the discriminative regions are discovered, both experiments show images that are roughly

pose aligned. We present our results in Figure 4.21.

Localized similarity comparisons require less human effort. We observe in Fig-

ure 4.21(b) the relationship between user consistency and response time. Each point

corresponds to a single question. We plot the maximum percentage agreement (MPA) of

the 10 users who agree on a single image in the grid, versus the average response time

over those users. On average, it takes a human user less time (and with lower variance)

to answer a localized comparison (11.35±10.17 sec), compared to 16.36±14.31 sec
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for a nonlocalized comparison.

Users answer both localized and nonlocalized questions with similar consistency.

In Figure 4.21(a), we plot the distribution of tasks according to the MPA. Both localized

and nonlocalized similarity questions have comparable average MPA across questions

(0.54 vs. 0.56, respectively), suggesting that users answer the two types of questions with

a similar level of consistency. With localized regions, there still exist multiple dimensions

upon which to judge similarity, such as color, shape, and pattern. As such, localization

does not remove ambiguities, but does make the comparison task easier to perform.

Responses on localized questions yield different information about similarity. We

present in Figure 4.21(c) the co-occurrence rates of selected image location in the

3×3 grid (1 to 9, enumerated in left-to-right, top-to-bottom order) for corresponding

nonlocalized and localized questions. Selections are normalized by row. Users select

the same image as the most similar for both nonlocalized and localized questions only

50.73% of the time on average, indicating that a localized similarity response provides

different visual similarity information to the system. We do note that worker noise and

bias can affect their responses [60]; for example, workers have a tendency to click on the

lower-left portion of the grid, as it is closer to the button to advance to the next question

(see Figure 4.22(c)).

In Figure 4.22, we observe AMT worker behavior on the localized similarity

comparison tasks. The statistics are generated on all data collected to learn the localized

similarity embeddings. A total of 79 workers provided responses.

4.8 Conclusion

We have presented an efficient approach to interactive fine-grained categorization

that does not rely on experts for part and attribute vocabularies and is cost-effective to
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Figure 4.22. Observing AMT worker behavior. 4.22(a): We observe the number of
workers who have completed a certain number of assignments. 4.22(b): Each point
represents a worker, and we plot the worker’s median HIT completion time versus the
total number of assignments completed. 4.22(c): The distribution in the 3×3 grid of
where AMT workers tend to click. The workers have a bias towards clicking at the
bottom left corner of the grid; the button to advance to the next screen is located below
the last row of the grid.
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deploy for new basic-level categories. As users answer similarity questions for new query

images, we can augment the training set and regenerate the perceptual similarity metric,

enabling the system to iteratively improve as more responses are collected.

Future work could involve using these perceptual embeddings to induce attributes,

parts, taxonomies, etc., which may be of educational value to a user. In addition, as

often there exists no ground truth relative similarity judgment, it would be of interest to

the computer vision community to determine best practices of eliciting consistent user

similarity comparisons.

Performance of the system is affected significantly by noisy detections, which

subsequently impact how accurately a user can judge localized similarity. To alleviate

this, we can consider using humans to automate portions of our categorization pipeline,

for instance, to clean up poor detections or select a sufficient set of useful regions to use

for the system.
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Chapter 5

Conclusion

5.1 Final Thoughts

Fine-grained visual categorization has made incredible progress in the last few

years. Three years ago, an initial baseline for classification accuracy on the CUB-200-

2011 benchmark [113] was reported as 10.3% using uncropped images, and 17.3% using

ground truth part locations. As of last year, recent works [40, 16, 8, 126, 7, 44] have

demonstrated significantly improved accuracy; the highest of which reports 57.84% [44]

mean accuracy using ground truth part annotations. Furthermore, deep convolutional

features [51, 23] have reported impressive performance for various computer vision

problems; the deep convolutional model DeCAF [23] sets the current bar for mean

classification accuracy on the dataset at 58.75% using object bounding boxes and 64.96%

using part locations.

These results are highly encouraging and demonstrate that computer vision

algorithms have come a long way in terms of automatic fine-grained categorization. As

research in fine-grained visual categorization continues to advance, the task will become

increasingly automated, until eventually we will no longer need humans in the loop.

For now, humans can still be a key part of the categorization loop. For example,

we must obtain annotated training data in order to extend existing categorization systems
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to support new basic-level categories. Through interactivity, we are able to simultaneously

collect additional training data and incrementally improve our models and algorithms,

while providing a useful service to users. Moreover, interaction can be beneficial and

desired for the user, for either educational (e.g. learning about bird species) or exploratory

purposes (e.g. in searching for visually similar shoes). Until we have pushed performance

of automatic classification algorithms to acceptable levels for deployment to real-life

applications, we can still identify a role for interactivity in the classification process.

5.2 Future Directions

We enumerate several possible directions for future work.

• Extensions to other basic-level categories. We are collaborating with various

organizations and institutions to collect additional datasets and explore using

similarity comparisons for other basic-level categories.

• Incorporating human-computer interaction models for collecting user input. We

hope to apply methods from the human-computer interaction community to the

data annotation process. This involves investigating best practices for creating

annotation tasks and querying users for different forms of input in a cost-effective

manner.

• Automating a pipeline for deploying interactive categorization paradigms. Deploy-

ing our paradigms to new basic-level categories requires some manual intervention

in discriminative region selection, cleaning up annotated data, etc. It would be

advantageous to develop an automatic pipeline to use humans for these tasks,

facilitating the deployment process.



Appendix A

CUB-200-2011 Dataset

CUB-200-2011 is an extended version of CUB-200 [120], a challenging dataset

of 200 bird species. The extended version roughly doubles the number of images per

category and adds new part localization annotations. All images are annotated with

bounding boxes, part locations, and attribute labels. Images and annotations were

filtered by multiple users of Mechanical Turk. We introduce benchmarks and baseline

experiments for multi-class categorization and part localization.

A.1 Introduction

Bird species classification is a difficult problem that pushes the limits of the visual

abilities for both humans and computers. Although different bird species share the same

basic set of parts, different bird species can vary dramatically in shape and appearance

(e.g., consider pelicans vs. sparrows). At the same time, other pairs of bird species

are nearly visually indistinguishable, even for expert bird watchers (e.g., many sparrow

species are visually similar). Intraclass variance is high due to variation in lighting

and background and extreme variation in pose (e.g., flying birds, swimming birds, and

perched birds that are partially occluded by branches).

It is our hope that CUB-200-2011 will facilitate research in subordinate catego-

rization by providing a comprehensive set of benchmarks and annotation types for one
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particular domain (birds). We would like to cultivate a level of research depth that has

thus far been reserved for a few select categories such as pedestrians and faces. Focusing

on birds will help keep research more tractable from a logistical and computational

perspective. At the same time, we believe that many of the lessons learned (in terms of

annotation procedures, localization models, feature representations, and learning algo-

rithms) will generalize to other domains such as different types of animals, plants, or

objects.

A.2 Dataset Specification and Collection

Bird Species: The dataset contains 11,788 images of 200 bird species. Each

species is associated with a Wikipedia article and organized by scientific classification

(order, family, genus, species). The list of species names was obtained using an online

field guide1. Images were harvested using Flickr image search and then filtered by

showing each image to multiple users of Mechanical Turk [119]. Each image is annotated

with bounding box, part location, and attribute labels. See Fig A.1 for example images

and Fig A.6 for more detailed dataset statistics.

Bounding Boxes: Bounding boxes were obtained using the interface in Fig. A.4.

Attributes: A vocabulary of 28 attribute groupings (see Fig A.2(b)) and 312

binary attributes (e.g., the attribute group belly color contains 15 different color choices)

was selected based on an online tool for bird species identification2. All attributes are

visual in nature, with most pertaining to a color, pattern, or shape of a particular part.

Attribute annotations were obtained for each image using the interface in Fig. A.5.

Part Locations: A total of 15 parts (see Fig A.2(a)) were annotated by pixel

location and visibility in each image using the GUI shown in Fig A.3(a). The “ground

1http://www.birdfieldguide.com
2http://www.whatbird.com

http://www.birdfieldguide.com
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truth“ part locations were obtained as the median over locations for 5 different Mechanical

Turk users per image.

A.3 Applications

CUB-200-2011 has a number of unique properties that we believe are of interest

to the research community:

Subordinate category recognition: Methods that are widely used on datasets

such as Caltech-101 [45] (e.g., lossy representations based on histogramming and bag-of-

words) are often less successful on subordinate categories, due to higher visual similarity

of categories. Research in subordinate categorization may help encourage development

of features or localization models that retain a greater level of discriminative power.

Multi-class object detection and part-based methods: Part-based methods

have recently experienced renewed interest and success [36]. Unfortunately, availability

of datasets with comprehensive part localization information is still fairly limited. Addi-

tionally, whereas datasets for image categorization often contain hundreds or thousands

of categories [45, 20], popular datasets for object detection rarely contain more than 20

or so categories [29] (mostly due to computational challenges). Methods that employ

shared part models offer great promise toward scaling object detection to a larger number

of categories. CUB-200-2011 contains a collection of 200 different bird species that

are annotated using the same basic set of parts, thus making it uniquely suited toward

research in shared part models.

Attribute-based methods: Attribute-based recognition is another form of model

sharing that has recently become popular. Most existing datasets for attribute-based

recognition (e.g. Animals With Attributes [54]) do not contain localization information.

This is an obstacle to research in attributed-based recognition, because visual attributes are

often naturally associated with a particular part or object (e.g. blue belly or cone-shaped
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beak).

Crowdsourcing and user studies: Annotations such as part locations and

attributes open the door for new research opportunities, but are also subject to a larger

degree of annotation error and user subjectivity as compared to object class labels.

By releasing annotations from multiple MTurk users per training image, we hope to

encourage research in crowdsourcing techniques for combining annotations from multiple

users, and facilitate user studies evaluating the reliability and relative merit of different

types of annotation.

A.4 Benchmarks and Baseline Experiments

We introduce a set of benchmarks and baseline experiments for studying bird

species categorization, detection, and part localization:

1. Localized Species Categorization: Given the ground truth part locations, assign

each image to one of 200 bird classes. This benchmark is intended to facilitate

studies of different localization models (e.g., to what extent does localization infor-

mation improve classification accuracy?), and also provide greater accessibility to

existing categorization algorithms. Using RGB color histograms and histograms of

vector-quantized SIFT descriptors with a linear SVM, we obtained a classification

accuracy of 17.3% (see Fig A.7(d)).

2. Part Localization: Given the full, uncropped bird images, predict the location

and visibility of each bird part. We measured the distance between predicted

part locations and ground truth, normalized on a per-part basis by the standard

deviation over part click locations for multiple MTurk users. The maximum error

per part was bounded at 5 standard deviations. This was also the error associated

with misclassification of part visibility. Using HOG-based part-detectors and a
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mixture of tree-structured pictorial structures, we obtained an average error of

2.47 standard deviations (by contrast, an average MTurk user should be off by 1

standard deviation). See Fig A.8 for example part localization results and their

associated loss.

3. Species Categorization/Detection: Using only the full, uncropped bird images,

assign each image to one of 200 bird classes. For this benchmark, one can use the

method of his/her choice (e.g., image categorization, object detection, segmentation,

or part-based detection techniques); however, since the images are uncropped, we

anticipate that the problem cannot be solved with high accuracy without obtaining

some degree of localization. Detecting the most likely part configuration using a

universal bird detector (as for benchmark 2) and then applying a localized species

classifier (as for benchmark 1), we obtained a classification accuracy of 10.3% (see

Fig A.7(b)).
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Figure A.1. CUB-200-2011 Example Images
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(a) Collected Parts

(b) Attribute Part Associations

Figure A.2. Collected Parts and Attributes. (a) The 15 part location labels collected
for each image. (b) The 28 attribute-groupings that were collected for each image, and
the associated part for localized attribute detectors.
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(a) Part GUI

Figure A.3. MTurk GUI for collecting part location labels, deployed on 11,788
images for 15 different parts and 5 workers per image.

Figure A.4. MTurk GUI for collecting bounding box labels, deployed on 11,788
images.



100

Figure A.5. MTurk GUI for collecting attribute labels, deployed on 11,788 images
for 28 different questions and 312 binary attributes.



101

(a) Class Image Count (b) Image Sizes

(c) Cropped/Uncropped Image Size Ratio (d) Average Part Labeling Time

Figure A.6. Dataset Statistics. (a) Distribution of the number of images per class (most
classes have 60 images). (b) Distribution of the size of each image in pixels (most images
are roughly 500X500). (c) Distribution of the ratio of the area of the bird’s bounding box
to the area of the entire image. (d) The average amount of time it took MTurkers to label
each part.
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(a) Predicted Locations, 5 Images/Class (b) Predicted Locations, 52 Images/Class

(c) Ground Truth Locations, 5 Images/Class (d) Ground Truth Locations, 52 Images/Class

Figure A.7. Categorization Results for 200-way bird species classification. The top
2 images show confusion matrices when using a universal bird detector to detect the
most likely location of all parts and then evaluating a multiclass classifier. The bottom 2
images show confusion matrices when evaluating a multiclass classifier on the ground
truth part locations. The 2 images on the left show results with 5 training images per
class, and the images on the right show results with 52 training images per class.
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Figure A.8. Example Part Detection Results, with good detection results on the left
and bad detection results on the right. A loss of 1.0 indicates that the predicted part
locations are about as good as the average MTurk labeler.
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