
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Cued multimodal learning in infancy: a neuro-computational model

Permalink
https://escholarship.org/uc/item/5z0406h9

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 33(33)

ISSN
1069-7977

Authors
Hannagan, Thomas
Wu, Rachel

Publication Date
2011
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5z0406h9
https://escholarship.org
http://www.cdlib.org/


1	  
	  

Cued multimodal learning in infancy: a neuro-computational model 

Thomas Hannagan (thom.hannagan@gmail.com) 
Laboratoire de Psychologie Cognitive, CNRS and Aix-Marseille University 

3, place Victor Hugo, 13331 Marseille, France 
 

Rachel Wu (r.wu@bbk.ac.uk) 
Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck, University of London 

Malet Street, London, WC1E 7HX, UK 
	  

Abstract 
We introduce a connectionist model of cued multimodal 
learning in infants. Its architecture is inspired by 
computational studies coming both from the fields of infant 
habituation and of visual attention. The model embodies in its 
simplest form the notion that the attentional system involves 
competitive networks (Lee et al., 1999). Using this model, we 
reproduce infant behavioral results from Wu and Kirkham 
(2010), which found different learning effects with social, 
non-social, and no attentional cueing. We show that these 
learning differences can be explained by the amount of 
information let through from non-cued locations. We discuss 
these results and future lines of research on this 
computational work. 

Keywords: Connectionism; multimodal learning; cognitive 
development; attentional cueing. 

Introduction 
In a busy multimodal world, infants must parse useful 

information from a swirl of perceptual events. One way to 
accomplish this is relying on attention cues to guide them to 
relevant learning events. Many attention cues can guide infants’ 
attention, but which ones help infants learn what to learn?  

Recent work has shown that following social cues can shape 
learning: Some studies have focused on word mapping (e.g., Gliga 
& Csibra, 2009; Houston-Price, Plunkett, & Duffy, 2006; Pruden, 
Hirsh-Pasek, Golinkoff, & Hennon, 2006; Yu, Smith, & Pereira, 
2008) and learning phonological patterns (Goldstein & Schwade, 
2008; Thiessen, Hill, & Saffran, 2005). For example, 15-month-
olds are able to follow a turning face to an object, and then map a 
spoken word onto that object rather than a non-cued object 
(Houston-Price, Plunkett, & Duffy, 2006).  

Wu and Kirkham (2010) – hereafter W&K – measured gaze 
behavior when infants were presented with dynamic audio-visual 
events (i.e., cats moving to a bloop sound and dogs moving to a 
boing sound) in white frames in the corners of a black background. 
An object’s appearance in a spatial location consistently predicted 
a location-specific sound. On every familiarization trial, infants 
were shown identical audio-visual events in two diagonally 
opposite corners of the screen (i.e., two valid binding locations). 
To test the effects of attentional cueing on audio-visual learning, 
either a social cue (i.e., a central turning face that used infant-
directed speech, Social Cue condition) or non-social cue (i.e., red 

flashing squares that shifted attention to the target location, Square 
condition) shifted infants’ attention to one of the two identical 
events on every trial. For the social cue, a face appeared, spoke to 
the infant, and turned to one of the lower corners containing an 
object. For the non-social cue, a red flashing square wrapped 
around the target frame appeared and disappeared at a regular 
interval (i.e., flashed continuously) without a central stimulus 
throughout the familiarization trial. In the No Cue condition, the 
two objects appeared without any attentional cues. During the test 
trials, only the four blank frames were displayed on the screen 
while one of the sounds played. Infants were shown four blocks of 
stimuli. The main finding of W&K was that by 8 months of age, 
different cues produced different learning effects: social cues 
produced specific spatial learning of audio-visual events (i.e., 
infants looked where cued multimodal events had played during 
test trials) by the second half of the experimental session (Blocks 
3-4), while non-social cues produced only general spatial learning 
(i.e., infants looked only at cued locations regardless of multimodal 
information) throughout all four blocks. Without any cues, infants 
did not display any learning (i.e., looked equally to all locations) 
throughout all four blocks. 

The purpose of this article is to characterize the neural 
mechanisms at work in infants when they are performing this task 
(where the presence and type of cue produced different types of 
learning), without losing the interaction between infants and their 
environment throughout the task. In other words, the model’s 
outputs (where it is going to “look”) should determine its next 
inputs (what it will “see” next).  

Previous computational work has dealt with isolated aspects of 
the paradigm used in W&K. The HAB model (Sirois & Mareschal, 
2004) can successfully account for robust non-linearities in infant 
preferential looking data, using two interacting auto-associator 
networks that learn under opposite principles. However, HAB 
neither incorporates multimodal learning nor attentional cueing, 
and its outputs do not determine its inputs. On the other hand, 
Mozer and Sitton (1998) proposed a computational model of visual 
attention that embodies the notion of an attentional “spotlight” and 
accounts for several cueing effects. In order to prevent interference 
when multiple objects are processed in a single hierarchical 
network, the authors used a winner-take-all network (WTA) that 
‘attended’ to one input region while filtering the others. 
Importantly, the amount of information filtered in unattended 
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regions was critical to determine attentional shifts. However, 
explaining the differences between social and non-social cues in a 
multimodal learning paradigm such as used in W&K was beyond 
the scope of this model, since it was trained exclusively in the 
visual modality. 

In an attempt to bridge this gap between the two fields we 
introduce a neuro-computational model that generates a proper 
sequence of saccades to learn from cued multimodal events. The 
main challenge in this endeavour was to connect different 
computational models without producing an intractable model.  

Model 
	  The model (illustrated in Figure 1) is essentially an adaptation 

of Sirois and Mareschal's architecture for infant habituation (Sirois 
& Mareschal, 2004), combined with Mozer and Sitton's model of 
visual attention (Mozer & Sitton, 1998). However, the model 
departs from the former in that it is capable of multimodal learning 
among distractors, and from the latter in that the WTA network is 
thought to model overt rather than covert attentional shifts. One 
novel and critical feature of the model is that it is wired in a 
feedback loop, whereby its last output determines its current 
inputs. In this way, we can attempt to simulate the processes taking 
place in the infant's brain as the sequence of visual and audio 
events unfolds during training and test trials. Figure 1 illustrates 
the W&K experiment and the proposed model, which we now 
describe in detail. 

Simulations begin with the presentation of one of two possible 
multimodal pairs at the model's input level. In W&K, the target 
events consisted of identical toy animals (cats or dogs) that moved 
synchronously at diagonally opposite corners of the screen, while 
accompanied by a repetitive sound. In the model, these inputs are 
simplified as patterns of activations distributed over visual and 
auditory units that remain clamped throughout the trial. There are 
five sets of N visual input units, each corresponding to an Area of 
Interest (AOI hereafter) in W&K’s eye-tracking study, and a single 
set of N auditory units (N = 4 in the figure and the simulations). 
The pattern of activation attributed to the cat toy is presented both 
in the bottom left and top right visual banks, while another pattern 
in the center corresponds to the face cue, which in the Social Cue 
condition was presented with the target events during training. The 
activation pattern corresponding to the sound is presented in the 
auditory input bank. 

Next, it is important to motivate these input assumptions. In 
many computational studies of multimodal learning (Althaus & 
Mareschal, in press; Mayor & Plunkett, 2010), input patterns are 
derived from actual pixilated images and Mel-scale filtered voices, 
whereas our inputs are simple arbitrary patterns in the spirit of the 
HAB model (Sirois & Mareschal, 2004). In addition (and at odds 
with the dynamical nature of the actual stimuli), our input patterns 
are randomly generated only once at the beginning of the 
simulation, and they remain clamped for every trial. These choices 
were made considering that the actual similarity between 

representations and the representational changes elicited by 
moving stimuli were not thought to be essential in the simulated 
experiment. Rather, our computational model focuses on 
understanding which information is being sent forward to 
associative structures, and on testing the nature of the attentional 
mechanisms involved. 

 

	  

 
Figure 1:	  Architecture of the model. Two auto-associator networks 
are trained to store (left network, Hopfield Network [HN]) or 
suppress (right network, Novelty Detector [ND]) the activation 
pattern elicited by some attended part of a multimodal input event 
(filtered input level). The states to which these networks converge 
are fed into a winner-take-all network of location units (WTA 
network, upper network). The winning unit determines the next 
saccade of the model: which object will be attended to and which 
one will be filtered. 

Indeed, not all visual inputs are forwarded to the associative 
networks: we assume that some attentional filtering is exerted by 
the WTA network (dynamics explained in the next section). Every 
time a saccade is made, this filtering lets information about the 
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attended AOI pass through undisturbed, whereas in other AOIs 
only a fraction of the activation is forwarded. This filtering 
mechanism and the WTA network that produces it come from 
Mozer and Sitton's model of visual attention (Mozer and Sitton, 
1998), except for the default amount of filtering exerted on 
unattended regions which was of 90% in Mozer and Sitton, 
compared to 50% in our model. This difference reflects the fact 
that attentional systems are subject to cortical maturation (Johnson, 
1990), although its precise value was arbitrary and needs to be 
investigated further. The filter only operates on visual inputs, and it 
is initialized in a state that depends on the cue and target condition. 
At the beginning of a trial, central patterns are less likely to be 
filtered, following experimental data showing that babies are more 
likely to look at the center (because of the attention getter that was 
just presented centrally). Filtered and unfiltered inputs are then 
forwarded to the auto-associator networks. 

Auditory and visual patterns then arrive in the core of the model, 
which consists of two auto-associator networks: the Hopfield 
network (HN in Figure 1) and the novelty detector (ND in Figure 
1). This dual system comes from the HAB model (Sirois and 
Mareschal, 2004), and like HAB, this is the only part of our model 
that learns by modifying connection weights during every cycle in 
each trial of the training phases. HN and ND are fully connected 
networks of 6N units each, with small connection weights initially 
generated at random. Each network is presented with full auditory 
and filtered visual patterns. However, the networks differ in the 
associative learning rule they use: whereas HN uses Hebbian 
learning to strengthen connections between active units, ND uses 
anti-Hebbian learning to decrease these same connections. Over 
the course of training, HN comes to memorize the patterns it was 
exposed to by virtue of repeated auto-associations between 
coactive parts, so much so that eventually presentation of a part 
(for instance the audio part) is sufficient to retrieve the entire 
trained pattern. Meanwhile ND progressively learns to suppress the 
activation elicited by the patterns it is being trained with, so that 
eventually trained patterns are perfectly suppressed and new 
patterns produce large activities; they are, in this sense, detected. 
Finally, HN and ND do not gate each other's inputs and outputs, as 
they do in HAB, but rather the visual units in each network sends 
their activation forward to the WTA network. 

The WTA network (Figure 1, top network) is the structure of the 
model that determines where it will "look" next. It is a standard 
WTA network (as in Mozer and Sitton, 1998) of five units, one for 
each AOI. WTA units increase their own activity by way of auto-
excitation, and also receive activation from units of the same AOI 
in HN and ND. Critically, WTA units are wired so as to compete 
with one another via inhibitory connections. The net effect of this 
entire set-up is that the unit that receives the most input will build 
activation faster and win the competition, by which we mean that 
its activity crosses a .95 threshold and triggers an ocular saccade to 
the corresponding AOI. Triggering a saccade in the model means 
changing the filter's values so as to change the flow of information 
from input to auto-associator networks. Consistent with the 

phenomenon of inhibition of return that can last for several 
seconds (Klein, 2000), we suppress activation in the winning unit 
until the next saccade is made, which favors foraging of the visual 
scene. 

Simulations 

Procedure 
The simulations procedure followed the paradigm used in 

W&K. After checking that each sub-network (HN, ND and WTA) 
was operational, 20 models were generated, similar to the average 
number of infants in each of the three conditions. Models were 
generated at random and thus differed in their input representations 
and initial connection weights. Each model was trained over four 
familiarization blocks, where one block contained six trials of 
target events (three trials per event type). Target events were 
randomized, but the same target could not be presented for more 
than two trials in a row. A trial was limited to 10 cycles, during 
any of which the connection weights in HN and ND were updated. 
Testing took place at the end of each block, and consisted of two 
trials, where the auditory pattern for each target event was 
presented alone for 10 cycles. Mean proportional looking times 
and standard errors were then calculated from output saccades to 
the five AOIs. 

We simulated 4 cueing conditions: No Cue (50% filter), Square 
Cue (70% filter), Social Cue (90% filter), and Social Cue (70% 
filter). In all conditions, the information from the attended location 
was entirely sent forward. However, in the No Cue condition, 
models were initialized with unattended filters set to 50%, meaning 
that only 50% of activation from unattended locations could 
propagate to the associative systems. By contrast, Social Cue and 
Square Cue conditions had more stringent filters for unattended 
locations (either 70% or 90% depending on the cue and the 
hypothesis being tested), meaning that less information from these 
locations was let through. The Social Cue (70%) condition acted as 
a control for our hypothesis that social cueing increases attentional 
filtering. If the improvement in learning observed for the Social 
Cue 90% relative to the Square Cue condition was not due to the 
increased filter but rather to the central presence of a visual 
stimulus, then the same improvement should be expected when the 
filter is lowered down to 70%, which was used for the Square Cue 
condition. Apart from the manipulation of this single parameter for 
the purposes of hypothesis testing, exactly the same set of 
parameters was used for all models and for all conditions (an 
exhaustive list of equations and simulation parameters is not 
specified here for lack of space, but is available upon request to the 
first author). 

Results 
We now report simulated mean percent looking time, as well as 

standard errors for the model. For each test trial (10 cycles), we 
calculated the proportion of cycles where the model attended to 
each AOI, and averaged on all networks and all trials. We believe 
this is sufficient for the purpose of showing that the model exhibits 
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a pattern of results consistent with the differences observed in 
W&K with or without cues, and between types of cues. 

Cued versus non-cued learning 
Over the four blocks in W&K’s No Cue condition, infants were 

equally likely to look at all locations when presented with the 
auditory cue. In particular, the authors failed to find any significant 
advantage of lower locations (labeled “cued” in Figure 2, for 
consistency with other conditions) over upper locations (labeled 
“non-cued”) that could have accounted for a bias in the other 
conditions. This finding is mirrored in our simulations, where cued 
and non-cued locations are indistinguishable. However, the model 
was slightly more likely to look at the center than at any other 
locations. 

By contrast, when multimodal training events were cued in 
W&K’s study, infants looked significantly more at cued locations 
(in the Square condition) or cued correct locations (in the Social 
condition, last two blocks) during test trials. The middle right and 
bottom right graphs in Figure 2 show the same advantage in the 
model for cued locations over non-cued locations. 

 
	  

Figure 2: Mean proportional looking times for the model (right) 
and for infants (center), with the corresponding typical stimuli 
used in each experiment during training (left screenshots, note that 
no visual stimuli were provided during test) in No Cue, Square 
Cue, and Social Cue conditions (resp. top, middle and bottom 
panels). Figure adapted from Wu & Kirkham (2010).	  

Differences between cues 
The main finding from W&K was that different cues produced 

different types of learning. What we might call “shallow learning” 
was observed in the Square Cue condition, where infants looked 
preferentially at locations that had been cued during training (in 

Figure 2, middle, black bars were superior to white bars), while 
disregarding the multimodal information (black bars are of equal 
height). By contrast, “deep learning” was observed in the Social 
Cue condition, but only in the last two blocks, where infants 
looked significantly more at the correct cued location than at any 
other peripheral location (in Figure 2, bottom, the correct black bar 
is higher than the incorrect black bar and both white bars). 

Table 1: Proportional looking times (Means and SE) for 
Infants and Model in the simulated conditions. 
 

Condition Infants 
Mean (SE) 

Model 
Mean (SE) 

No Cue (50%) 
Cued, correct 
Non cued, correct 
Cued, incorrect 
Non Cued, incorrect 
Central 

 
0.21 (.03)  
0.18 (.02) 
0.17 (.02) 
0.22 (.03) 
0.23 (.03) 

 
0.14(0.04)   
0.22(0.05)     
0.18(0.04)     
0.18(0.04)   
0.27(0.05)   

Square Cue (70%) 
Cued, correct 
Non cued, correct 
Cued, incorrect 
Non Cued, incorrect 
Central 

 
0.23 (.03) 
0.15 (.03) 
0.26 (.03) 
0.18 (.03)  
0.19 (.03) 

 
0.31 (.04)   
0.11 (.02)      
0.33 (.04)   
0.11 (.03)     
0.14 (.03)   

Social Cue (90%) 
Blocks 1 & 2 
Cued, correct 
Non cued, correct 
Cued, incorrect 
Non Cued, incorrect 
Central 
Blocks 3 & 4 
Cued, correct 
Non cued, correct 
Cued, incorrect 
Non Cued, incorrect 
Central 
Social Cue (70%) 
Blocks 1 & 2 
Cued, correct 
Non cued, correct 
Cued, incorrect 
Non Cued, incorrect 
Central 
Blocks 3 & 4 
Cued, correct 
Non cued, correct 
Cued, incorrect 
Non Cued, incorrect 
Central 

 
 
0.15 (.03)  
0.18 (.03)   
0.25 (.03)   
0.16 (.03)   
0.25 (.03) 
 
0.26 (.04) 
0.11 (.02) 
0.17 (.03) 
0.14 (.03) 
0.32 (.04) 
 
 
-  
- 
- 
- 
- 
 
-  
- 
- 
- 
- 

 
 
0.24 (.02)    
0.14 (.02) 
0.23 (.02) 
0.06 (.02) 
0.33 (.03) 
 
0.26 (.03)  
0.10 (.02) 
0.20 (.02) 
0.13 (.02) 
0.32 (.03) 
 
 
0.19 (.04)  
0.16 (.03) 
0.17 (.04) 
0.14 (.02)  
0.33 (.04) 
 
0.15 (.04)  
0.14 (.03) 
0.18 (.04)   
0.15 (.03)   
0.37 (.04) 

 

The “Social 90%” entry in Table 1 is divided in Blocks 1&2 and 
Blocks 3&4, to be compared to the block analysis carried out in 
W&K. We see that the model can reproduce the same late but deep 
learning effect: it is more likely to look at the correct cued location 
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only in the last two blocks, thereby showing a learning curve. The 
agreement between infants and the model on Blocks 3&4 is 
illustrated in Figure 2, bottom panel. However, note that in the first 
two blocks, the model exhibits the same pattern of results as in the 
Square Cue condition (preferential looking to both cued locations, 
in equal proportion), whereas infants tended to look at cued 
incorrect locations. 

This behavior can be contrasted with the looking times observed 
in the “Social Cue 70%” condition, which was a control for our 
hypothesis that social cueing increases attentional filtering (as 
shown in Table 1, these simulations do not have a counterpart in 
infant data). Table 1 shows that no preference for cued object 
locations was apparent in the Social Cue 70% condition, and cued 
locations were only marginally superior to non-cued locations. 
This suggests that the improvement in learning observed for the 
Social Cue 90% condition relative to the Square Cue 70% 
condition was due to the increased filter, rather than the presence 
of a central stimulus. 

General Discussion 
Although a true understanding of this model can only be 

achieved through a detailed enquiry into training saccades and the 
mechanisms behind them, here we wish to provide the reader with 
elements of explanation that might shed some light on our main 
results. 

Explaining the impact of cueing 
Cueing in the model is achieved by letting through more 

activation from the location that is being cued, than would 
normally be allowed. That is, if the model is “looking”, say, at the 
upper right location while the lower right location is cued, 70% 
activation from the lower right is forwarded to the associative areas 
rather than the usual 50% when there is no cue.  

This simple mechanism means first, that in the auto-associator 
networks, some learning will occur for cued locations even if the 
model actually never “looks” at them, and second, that the model 
in fact will be biased to look at these cued locations. This is 
because the increase of activity drives the HN auto-associator into 
a state that resembles more and more the cued location, so that the 
corresponding unit in the WTA network would be fed more 
activation and would tend to win the competition more often. As 
training proceeds, these two effects reinforce each other and help 
the model associate auditory patterns to cued objects, which 
explains how it is able to account for experimental differences 
between cued and non-cued conditions. However this mechanism 
alone cannot explain why the model fails to distinguish between 
cued correct and cued incorrect locations in the Square condition 
and succeeds only in the last two blocks of the Social condition. 
Instead, with only this mechanism, the model treats all cues 
equally.  

Explaining social cues versus square cues 
We have tested the hypothesis that the superior learning 

observed with social cues resulted from a kind of narrowing of the 
infant’s receptive fields. While maintaining the original cueing 
mechanism, this narrowing was modeled by more stringent filters 
for every other location than the fixated and the cued locations 
(that could possibly differ). Instead of the usual 50%, only 30% 
activation would be forwarded in the Square Cue 70% condition, 
against 10% in the Social Cue 90% condition. 

The net effect of this assumption is to minimize interference in 
HN: the network is equally biased to attend to the cued locations in 
the Square Cue and the Social Cue conditions (as in W&K) during 
familiarization, but only in the latter can it associate precisely the 
cued visual information to the auditory patterns during test. In the 
former condition, the unfiltered activation that comes from the 
non-cued location gets involved in the association, so that during 
test trials, part of the activation pattern for the non-cued correct 
location is retrieved, which disturbs the WTA network. 

Role of different parts of the model in this account 
In this account, it would appear that the best part is played by 

the HN network, while ND appears to have no explanatory power. 
This is not so, but the role of the ND is obscured by the fact that in 
this model ND is much more active in early phases of training. 
When training begins, ND has not yet learned how to suppress 
activation for training input patterns. Thus, through ND every 
unfiltered piece of information can contribute to the competition in 
the WTA. As training unfolds, however, ND learns to suppress 
activation for known patterns, thereby ensuring that unfiltered 
information cannot use this path anymore to drive the model’s 
output. This difference between early and late training might be the 
reason for the learning effect observed in the Social Cue 90% 
condition, although this cannot explain why the same effect was 
not found in the Square condition.  

Size of auditory input 
One unexpected clue to understanding the network that might be 

of significance is the size of the auditory input pattern. The tuning 
phase of the network revealed that large auditory formats were 
detrimental to the model’s learning capacity, while the best 
performance was obtained when it was equal to N (the size of one 
set of visual units). The reason for this is as follows. Auto-
associator networks are known to be very sensitive to the 
correlation between the patterns to be stored, and this is especially 
true of the kind of Hebbian learning rule used in HAB and in this 
model. When the patterns of activity that are to be memorized are 
too close from one another, as they are when the auditory units 
vastly outnumber the set of active visual units, interference occurs, 
and the network can converge to wild configuration states, often 
called “spurious attractors” (Hopfield et al., 1983). Therefore, 
limiting auditory inputs to the same format as a single visual 
location makes multimodal patterns more different to one another 
and makes for better learning. It would be interesting to investigate 
how this prediction of the network could be tested in the lab. 
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Conclusion 
We have presented a neuro-computational model that builds on 

two successful predecessors coming from different fields of 
cognitive science. The model can account for new infant data 
involving cued multimodal learning in the presence of distractors. 
In particular, we have found a candidate mechanism that might 
underlie largely observed differences between social and non-
social cues in infancy. This mechanism holds that infants make use 
of more stringent attentional filters when they are exposed to social 
cues than to non-social cues. 

Prospects 
Future research should aim to better understand how the 

network behaves, presumably by tracking down the evolution of 
proportional looking times as training unfolds, and by lesioning 
parts of the network one at a time to assess whether and how its 
behavior is affected. In the long term, the model could also be 
improved by strengthening its links to the brain. For instance, 
Sirois and Mareschal related HN and ND to the cortex and the 
hippocampus, respectively, and the model might be improved by 
reinstating the interaction that was originally present between these 
two systems in HAB. More generally, the cortex, hippocampus, 
and superior colliculus all perform more than one function that 
might well be relevant in this model, for instance coding for 
auditory maps in the case of the colliculus (King et al,, 1996), or 
input recoding (Levy et al., 2005), and interleaved learning 
(McClelland et al., 1995) in the case of the hippocampus. A model 
that could recode input patterns for better storage and present them 
repeatedly to the infant during less active periods could offer new 
perspectives into how infants succeed universally in learning what 
to learn. 
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