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Abstract

Numerous solutions have been proposed to address the replication crisis, in which numerous

high-profile empirical research studies cannot be replicated by other research teams. One pos-

sible explanation is that researchers have the option to adjust their data analyses after viewing

the results, inflating false positive rates. One popular solution is study preregistration, the prac-

tice of developing the data analysis plan before the data is collected. However, preregistrations

only alleviate replication problems if researchers are held accountable to their analysis plans.

Across two related studies, we explore the effectiveness of preregistration in its current form.

In Study 1, we audit recent preregistered publications from a major psychology journal and

observe deviations in 19 of 32 papers. In Study 2, we simulate the effects of generic deviations

on the false-positive rate. We find that deviations that run more or more varied tests cause

larger changes, tripling the false-positive rate in the most extreme case. We note that auditing

preregistrations requires an inconsistent amount of time depending on their length and format,

which we suspect contributes to the enforcement issues we observe. We suggest that researchers

and journals alike adopt the asPredicted.org template for preregistrations.
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1 Introduction

The academic community has known for decades that empirical papers reporting

statistically significant results are more likely to be published than those reporting null results

(Sterling 1959; Rosenthal 1979). Journals are incentivised to focus on publishing novel results

to grow their readerships and sell subscriptions. Combined with the direct financial or indirect

career-related incentives most researchers face to publish frequently in prestigious journals

(Gibson, Anderson, and Tressler 2014), it is not surprising that the published literature has

been affected. Recent studies continue to show evidence of the file-drawer effect and

publication bias, the tendency for researchers not to submit null results for publication and

the tendency for journals not to publish the null results that are submitted, respectively

(Turner et al. 2008; Camerer et al. 2016; Dwan et al. 2013).

These observed defects in the published literature are often the result of ‘p-hacking,’

faulty research techniques that artificially induce significance by running multiple tests and

selectively reporting desirable results. Previous work suggests that researcher degrees of

freedom (RDFs), the implicit optionality researchers leverage to conduct multiple tests, can

seriously inflate the false-positive rate despite nominally significant p-values (Ioannidis 2005;

Simmons, Nelson, and Simonsohn 2011; Huntington-Klein et al. 2021). This provides a

mechanism by which the individual incentives to publish statistically significant results affect

the false-positive rate of the entire published literature.

Published false-positives are difficult to retract from the academic canon, waste

resources on subsequent research and policies, and lower the credibility of future publications

in the field. However, well-calibrated tests will always have some probability of producing a

false-positive finding. Assuming that there exists some threshold for p which strikes the

1



optimal balance between false-positive and false-negative findings, we can consider the excess

false-positive rate caused by RDFs a negative externality generated by individual researchers

optimizing the tradeoff between producing functionally significant research that advances their

field and nominally significant research that advances their careers.

Numerous solutions have been proposed. Simply lowering the p-value threshold for

statistical significance does reduce the probability that a given study results in a false-positive

but necessarily increases the probability of a false-negative result. Additionally, tightening the

significance threshold backfires by increasing the false-positive rate conditional on publication

unless the underlying bias for nominally significant results is eliminated (Williams 2019).

More promising solutions include the use of registered reports and results-blind

manuscript evaluation, systems where editors review and select submissions on the merit of

the study design and methodology before any results are reported. This approach targets

publication bias and the file-drawer effect by reducing the incentive for researchers to p-hack

their studies in search of positive results (Locascio 2017). However, these systems have not

been adopted outside of a small number of journals.

In contrast, study preregistrations are a strict requirement in clinical trials and have

seen widespread adoption by other disciplines as well, specifically psychology and economics.

To preregister a study, researchers create a timestamped document describing the data

collection process and pre-analysis plan (PAP) before the study is conducted. Instead of

targeting the incentive to publish positive results, the PAP prevents researchers from making

biased choices by forcing them to make those choices before the data is collected. To truly

remove RDFs, PAPs should contain all of the information another researcher would need to

replicate the analysis.

However, some fields suffer from performative reproducibility, where “open-science
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practices [have] become just another hoop to jump through, a form of virtue signaling or a

smokescreen” (Buck 2021). This is likely the case in economics, where a Nobel Memorial

laureate and the members of the AEA RCT registry’s committee have publicly supported

vague PAPs (Banerjee et al. 2020).

Even with a detailed PAP, preregistration fails to contain RDFs unless researchers are

held accountable to their PAPs; if there are no consequences to deviating from a PAP, the

RDFs persist. This paper explores the nature and possible effects of these deviations across

two related studies.

Study 1 is a descriptive analysis of recent publications by the Journal of Social

Psychology and Personality (JPSP) that identifies a set of RDFs associated with commonly

observed PAP deviations. Study 2 explores the impact of these RDFs through Monte Carlo

simulation.
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2 Literature Review

COMPare: a prospective cohort study correcting and monitoring 58 misreported

trials in real time (Goldacre et al. 2019)

A team of researchers checked the preregistrations of all new clinical trials in the top

five medical journals for about six months. They counted preregistered outcomes that weren’t

reported in the final publication and unregistered outcomes that were silently added.

Of the 67 trials they checked, only nine abstained from outcome switching of any kind.

On average, each trial reported just 58.2% of its specified outcomes and silently added 5.3 new

outcomes. Overall, the results suggest that even the top medical journals routinely fail to hold

researchers accountable to their PAPs.

Study 1 replicates the spirit of this paper in a new sample with an expanded scope.

Instead of tracking switched outcomes only, we track all deviations from PAPs.

False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis

Allows Presenting Anything as Significant (Simmons, Nelson, and Simonsohn

2011)

In this paper, the effect of specific RDFs on the false-positive rate are estimated by

testing hypotheses on a simulated dataset under the null model. Since the tested hypotheses

are known to be false, any positive result can be interpreted as a false-positive.

The results are striking: simple RDFs, such as outcome switching and sample size

manipulations, lead to sizable increases in the false-positive rate. The effect is especially

pronounced when the RDFs are combined.

Study 2 extends the simulation work in this paper to a new set of RDFs. Additionally,
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we increase the number of experiments simulated per RDF for increased precision in our

Monte Carlo estimates.
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3 Study 1: Common Deviations Observed in Recent

JPSP Papers

3.1 Methodology

Our preregistered (aspredicted.org/cg6cd.pdf) study audited recent JPSP publications

with public preregistrations. For each study in the sample, we manually compared the

preregistered analysis plans to the published analysis and noted any deviations. As they were

discovered, we identified common types and grouped the deviations accordingly. This

occasionally involved retroactively recoding a deviation after a new type was identified.

Additionally, we tracked whether deviations were disclosed as required by the JPSP

submission guidelines. We also tracked whether disclosed deviations were justified, but did not

assess the validity of the justifications.

3.2 Data

The study sample consists of all JPSP publications published between

August-December 2021 which claimed to have at least one preregistered component. This

amounts to 98 studies across 32 papers.

While 10 papers reported the results of only a single study, most reported the results of

4-7 related studies. Often, only some of the studies would be preregistered. For example,

many papers identified potential effects in an exploratory study, then replicated the results in

preregistered confirmatory studies.

When designing the study, we also considered American Economic Association (AEA)

journals and Nature Human Behavior (NHB), other journals with nominal rules about
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preregistering empirical work. Upon cursory examination, we found that preregistration was

not common practice in AEA journals. Preregistration was common practice in applicable

NHB publications, namely those reporting trial results, but these papers are only a small

subset of all NHB publications. We selected JPSP to avoid both issues.

3.3 Results

We discovered some kind of deviation in almost two-thirds of papers and one-third of

studies. More often than not, discovered deviations were disclosed in the final text of the

paper1. With one exception, the disclosures were always paired with some justification; the

most common were that the deviation did not meaningfully change the results, or that the

deviation led to a more valid, intuitive, or otherwise ‘better’ model.

Table 1: Audit results at the study and paper levels. We find that deviations are not uncommon,
although most discovered deviations were disclosed.

Study Paper

Total 98 32

Could Not Assess 7 4

No Deviation 62 19

Deviated 29 19

Not Disclosed 10 4

1There is some selection bias at play here; we do not know how many undiscovered, undisclosed deviations
exist in the sample.
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We identified four types of deviations that captured all observations:

• Outcome, in which dependent variables were added, changed, or dropped entirely

• Covariate, in which covariates were added or dropped

• Sample, in which the sample changed. This includes unreasonable changes to the sample

size, unregistered exclusion criteria, and other changes to the - sampling methodology

• Model, in which the underlying regression model or analysis methodology changed

Table 2: Discovered deviations by type

Count

Outcome 18

Covariate 4

Sample 9

Model 8
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4 Study 2: Type-I Error Rates of Common RDFs

through Monte Carlo Estimation

4.1 Background

The Type-I error rate, or ‘false-positive’ rate commonly, quantifies how often we would

expect the null hypothesis to be rejected were it actually true. In the absence of a true causal

relationship between the treatment and response variables, any statistically significant result

can be interpreted as a false-positive. Equivalently, false-positive rates represent how likely an

experiment yields statistically significant results in the absence of a true effect; we expect 5%

of these experiments to reach the standard significance threshold of p = .05. However, the

optionality of RDFs let researchers test multiple models and select the lowest p-value from

among them. Since they’re choosing between the original p-value and potentially lower

p-values from the alternative analysis, we expect false-positive rates to rise.

This study estimates the effects of individual RDFs using a Monte Carlo approach. For

each of 50,000 simulated experiments, we conduct both the baseline analysis and the

alternative analysis allowed with a specific RDF, take the p-values from each experiment, and

calculate the percentage yielding significant results to estimate the false-positive rate. We

attribute any difference to the RDF.

Additionally, observed p-values under a valid null model should be uniformly

distributed to maintain their usual frequentist interpretations. We fit bounded kernel density

estimates of our observed p-values using the bde R package (Santafe et al. 2015) to explore

how introducing RDFs affects p-value distribution.

We test four RDFs in this study. The first three are generic examples of the Outcome,
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Covariate, and Sample type deviations identified in Study 12: the option to swap outcomes

between the original outcome, an independent alternative, or a mixture of the two; the option

to add a binary covariate; and the option to manipulate the sample size by adding observations

and retesting until the results are significant, limited to double the original sample size. The

final RDF tested is a specific form of an Outcome type deviation: the option to drop an

uncorrelated item from an otherwise correlated composite index of responses on the Likert

scale. We tested this additional RDF because it was frequently observed during Study 1.

4.2 Data Generating Process

In each simulated experiment, we generate 60 i.i.d. standard normal observations

y1, ..., y60 to represent the experimental yield. Then, we set cell1, ..., cell30 = 0 and

cell31, ..., cell60 = 1 to represent the experimental condition. We fit the model y ∼ β0 + β1cell

and report the p-value associated with β1 as the baseline result.

For the outcome swapping RDF, we generate another 60 i.i.d. standard normal

observations z1, ..., z60 and calculate a mixture variable y∗ = z+y
2 . We then fit z ∼ β0 + β1cell

and y∗ ∼ β0 + β1cell and extract the p-values associated with β1. Finally, we compare the two

new p-values with the baseline result and report the lowest as the result with the RDF.

For the binary covariate RDF, we generate an indicator column x such that xi = 1 for a

specified n observations per cell and xi = 0 in the rest. We then fit the model

y ∼ β0 + β1cell + β2x and extract the p-value associated with β1. Finally, we compare the new

p-value with the baseline result and report the lower of the two as the result with the RDF.

We simulate with covariate incidence specifications of 5, 15, and 25 observations per cell.
2While the form of all types of deviations varied case-by-case, Model type deviations were especially context-

specific. We could not come up with adequately generic examples to test.
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For the sample size manipulation RDF, we first check whether the baseline result is

significant. If so, we report the baseline results as the result with the RDF. Otherwise, we

generate a specified n additional observations of y per cell and repeat the baseline analysis

until a significant result is achieved or the total sample size reaches double the original. We

report the latest p-value after meeting our stopping criteria (the first significant result if one is

found, otherwise the result with 60 observations per cell) as the result with the RDF. We

simulate with retest interval specifications of 1, 10, and 30 observations per cell.

Simulating the drop item from index RDF requires implementing a different baseline

analysis. As before, we set cell1, ..., cell30 = 0 and cell31, ..., cell60 = 1 to represent the

experimental condition. We use the R package faux (DeBruine 2021) to generate four

standard normal columns w, x, y, z with a specified correlation coefficient r, then generate a

fifth standard normal column drop independent from the others. After converting the five

columns to centered Binomial(7, 0.5) columns through inversion sampling, we calculate the

composite column mix = w+x+y+z+drop
5 and fit the model mix ∼ β0 + β1cell. We report the

p-value associated with β1 as the baseline result.

Next, we remove the independent column from the composite to recalculate

mix = w+x+y+z
4 and refit mix ∼ β0 + β1cell. We compare the new p-value with the baseline

result and report the lower of the two as the result with the RDF.

4.3 Results

First, we assess the validity of the null model for our baseline analysis. About 4.8% of

observations cross the standard significance threshold, which translates directly to an

estimated false-positive rate of 4.8%. We expect 5% under a valid null model, so our results

suggest that our baseline p-values are approximately uniformly distributed.
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Figure 1: Bounded kernel density estimate for baseline results (black) before any RDFs are
introduced. The uniform distribution (dashed) is provided for comparison. 4.8% of the proba-
bility mass is in the significant region (left of the red line p = 0.05). Overall, the results support
the validity of the baseline null model.
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We find that the effect on the false-positive rate varies significantly by RDF tested. For

example, the binary covariate RDF adds about one-tenth of a percentage point to the

false-positive rate3, invariant across incidence specifications, while the sample size

manipulation RDF nearly triples it when retesting after every pair of observations added.

Even a single retest after doubling the sample size is enough to add three percentage points.
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Figure 2: Bounded kernel density estimates for results after introducing the option to add a
binary covariate, split by covariate incidence (color) with the uniform distribution (dashed)
for comparison. 4.9% of the probability mass is in the significant region (left of the red line
p = 0.05), invariant across covariate incidence specifications. Although split by how many
observations of the covariate per cell are true, all results are visually indistinguishable from the
baseline.

3It may be tempting to conclude from the nominal false-positive rate of 4.9% that the RDF had no effect.
However, the p-values reported with the RDF are never greater than the baseline result, so the change caused
by the RDF must be weakly positive. It follows that the very existence of a non-zero change confirms that the
RDF increases the false-positive rate. Whether the effect is meaningful is a separate question.
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Figure 3: Bounded kernel density estimates for results with the option to add a specified number
of observations per cell and retest until significant results are found or the sample size reaches
double the original, split by retest interval (color) with the uniform distribution (dashed) for
comparison. Much more of the probability mass is in the significant region (left of the red line
p = 0.05), with the larger changes for lower retest interval specifications. The local peaks are a
consequence of the optional stopping criteria; the simulations report the first significant result
and do not try to improve them. This does not affect the final significance rates. The results
suggest the null model is no longer valid.
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We observe a similar spread of results between our two Outcome type RDFs. The

generic swap outcome RDF doubles the false-positive rate while the specialized drop item from

index RDF only adds between one and two percentage points, depending on the correlation

specification.
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Figure 4: Bounded kernel density estimates for results after introducing the option to swap
outcomes (black) with the uniform distribution (dashed) for comparison. 9.6% of the probability
mass is in the significant region (left of the red line p = 0.05). The results suggest the null model
is no longer valid.
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Figure 5: Bounded kernel density estimates for results after introducing the option to drop
an uncorrelated column from the calculation of a composite response variable, split by the
correlation between the remaining four columns (color) with the uniform distribution (dashed)
for comparison. Slightly more of the probability mass is in the significant region (left of the
red line p = 0.05), with slightly larger changes for lower correlation specifications. The results
suggest the null model is no longer valid.
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In general, the increase in the false-positive rate depends on the magnitude of the

optionality inherent in the RDF tested. This intuitive trend is best illustrated by comparing

the results of the sample size manipulation RDF by retest interval specification; it is not

surprising that running more tests increases the chance of finding significant results. The

results of the two Outcome type deviations provide another example; it is not surprising that

an entirely new outcome is more impactful than modifying a composite index. This general

principle seems to hold when comparing different RDFs as well, but these comparisons are less

intuitive.

Table 3: Study 2 results by RDF, further split by parameter specification when applicable. We
report the baseline false-positive rates, new false-postive rates after introducing the RDF, and
the difference, all reported in exact terms

baseline RDF change

Swap outcome 0.048 0.096 0.048

Add covariate, incidence = 5 0.048 0.049 0.001

Add covariate, incidence = 15 0.048 0.049 0.001

Add covariate, incidence = 25 0.048 0.049 0.001

Sample size manipulation, retest interval = 1 0.048 0.142 0.094

Sample size manipulation, retest interval = 10 0.048 0.103 0.055

Sample size manipulation, retest interval = 30 0.048 0.082 0.033

Drop item from index, correlation coefficient = 0.25 0.050 0.067 0.018

Drop item from index, correlation coefficient = 0.5 0.050 0.064 0.015

Drop item from index, correlation coefficient = 0.75 0.050 0.064 0.013
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5 Discussion

Not every study needs to be preregistered. Exploratory studies should not lock

themselves into an analysis plan; flexibility in the analysis is what leads to serendipitous

discoveries. For example, Study 1 was not intended to confirm any hypotheses and does not

gain much from being preregistered. Confirmatory studies designed to test a specific

hypothesis and draw conclusions should be preregistered, as these results are expected to be

reliable and replicable tests for true effects.

We recognize that there can be valid reasons to deviate from preregistrations, but the

results of Study 2 highlight the importance of disclosure policies. Deviations should affect how

we judge the reliability of the results. The inconsistent enforcement of disclosure policies

prevent preregistration from being a consistent reliability indicator. We suspect that lowering

the difficulty of auditing preregistrations could lead to consistent enforcement.

JPSP does not provide guidelines for how preregistrations should be written, so some

were easier to audit than others. In the worst cases, researchers submitted a research proposal

in the place of a preregistration. These 20+ page documents include research justifications,

literature reviews, and other background information alongside methodology and analysis

plans. Sifting through these documents added unnecessary time to the auditing process,

especially since the relevant information was rarely collected in one place. While making the

full research proposal publicly available is commendable in terms of transparency and

openness, creating a separate and concise PAP greatly facilitates the auditing process.

In the best cases, preregistrations were hosted at aspredicted.org. This 8-item template

leaves some room for background information, but is focused on defining the research

methodology and analysis plan. Additionally, the template suggests a one-page limit and
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enforces a strict two-page limit. Preregistrations following the template were easy to check

item-by-item.

Researchers do not necessarily know where their studies will be published when

preregistering their studies, so it may not be feasible for journals to require the use of a

specific template. However, journals should provide guidelines about the length and breadth

of the preregistrations, and researchers themselves should consider ease of auditing when

writing their preregistration documents. Overall, we should not expect consistent enforcement

of existing disclosure rules until the preregistrations themselves can be audited regularly.
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6 Conclusion

Taken together, the results of our studies suggest that preregistration in its current

form does not fully address the replicability concerns that spawned the practice. The

descriptive analysis in Study 1 suggests that deviation from PAPs is not uncommon, even in a

publication with nominal rules on disclosing deviations. Study 2 suggests that these deviations

can severely impact the reliability of the results.

It should be noted that the false-positive rates found in Study 2 differ from

false-positive discovery rates: false-positive rates are conditional on the null hypothesis, but

false-positive discovery rates incorporate uncertainty about the null hypothesis. Future work

assessing RDFs in empirical datasets would introduce the possibility of true effects. On the

topic of future work, there are plenty of leads to follow: the right statistical framework could

replace our estimated effect sizes with exact solutions, and there are always more RDFs to test.

Additionally, the publication mechanism adds another layer between false-positive

discovery rates and false-positive incidence in published literature. For these and other

reasons, we do not use the results of Study 2 to draw conclusions about the sample of Study 1.

Stronger enforcement of existing rules would increase the reliability of preregistered

studies but cannot contain other instances of foul play. The quality of the entire published

literature would benefit if the academic publication process could solve the underlying

incentive mismatch between individual researchers and the broader research community.
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