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Inhibitory Control: Go Stimulus
Discriminability Affects Stopping
Behavior
Ning Ma 1 and Angela J. Yu 2*

1Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA, 2Department of

Cognitive Science, University of California, San Diego, La Jolla, CA, USA

Inhibitory control, the ability to stop or modify preplanned actions under changing task

conditions, is an important component of cognitive functions. Two lines of models of

inhibitory control have previously been proposed for human response in the classical

stop-signal task, in which subjects must inhibit a default go response upon presentation

of an infrequent stop signal: (1) the race model, which posits two independent go and

stop processes that race to determine the behavioral outcome, go or stop; and (2) an

optimal decision-making model, which posits that observers decides whether and when

to go based on continually (Bayesian) updated information about both the go and

stop stimuli. In this work, we probe the relationship between go and stop processing

by explicitly manipulating the discrimination difficulty of the go stimulus. While the race

model assumes the go and stop processes are independent, and therefore go stimulus

discriminability should not affect the stop stimulus processing, we simulate the optimal

model to show that it predicts harder go discrimination should result in longer go

reaction time (RT), lower stop error rate, as well as faster stop-signal RT. We then

present novel behavioral data that validate these model predictions. The results thus

favor a fundamentally inseparable account of go and stop processing, in a manner

consistent with the optimal model, and contradicting the independence assumption

of the race model. More broadly, our findings contribute to the growing evidence that

the computations underlying inhibitory control are systematically modulated by cognitive

influences in a Bayes-optimal manner, thus opening new avenues for interpreting neural

responses underlying inhibitory control.

Keywords: decision making, Bayesian modeling, perceptual uncertainty, inhibitory control, stop signal task

1. INTRODUCTION

The ability to cancel or modify planned actions according to changing task conditions is known as
inhibitory control, and thought to be an important aspect of human cognitive function. Inhibitory
control has been studied extensively using the stop-signal (Logan and Cowan, 1984), in which
subjects typically discriminate a go stimulus on each trial, but occasionally encounter a stop signal
following the go stimulus, which instructs the subject to withhold the go response (see Figure 1).
Two major class of models have been proposed to account for the underlying computational
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FIGURE 1 | Schematic illustration of the stop signal task. (A) Go trials: on go trials, subject is supposed to make a response to a default go response by

pressing the left or right button, based on the coherent motion direction of random dots. The go reaction time (Go RT) is defined as the time the subject takes to

respond from the onset of go stimulus. The subject makes a discrimination error if he/she chooses the wrong direction (wrong key), and an omission error if no

response is recorded within the response deadline (1100 ms). (B) Stop trials: on a small fraction of trials, a stop signal appears after the go stimulus and instructs the

subject to withhold the go response. The time delay between the go stimulus onset and the stop signal onset is called the stop-signal delay (SSD). If the subject

makes a go response in a stop trial, this trial is considered a stop error (SE) trial, otherwise it is considered a stop success (SS) trial.

and neural processes in the stop-signal task. The first is the
classical race model and its variants (Logan and Cowan, 1984;
Boucher et al., 2007), which posit a race between two independent
go and stop processes. The model assumes essentially immutable,
though noisy, termination times for the go and stop processes,
whereby the average stop process delay, known as the stop-
signal reaction time (SSRT), is generally thought to be a measure
of an individual’s inhibitory capacity. Correspondingly, SSRT
has been measured as longer in populations with presumed
inhibitory deficits (Nigg et al., 2006; Alderson et al., 2007;
Menzies et al., 2007), and neural activities in certain primate
brain regions (e.g., frontal eye field and superior colliculus) have
been interpreted to reflect components of the race model(Hanes
et al., 1998; Pare and Hanes, 2003). However, problematic for
the simple race model, various cognitive contextual factors have
been shown to systematically modulate stopping behavior, such
as the reward structure of the task (Leotti and Wager, 2009) and
the statistical frequency of stop signals (Emeric et al., 2007). In
response to these and other observed cognitive influences, we
previously proposed an alternative model of inhibitory control,
a Bayes-optimal decision-making model positing that subjects
choose when and whether to initiate a go response according to
continually (Bayesian) updated sensory beliefs about both the go
and stop stimuli, and relative to a behavioral objective function
that penalize go and stop errors as well as response delay. As
we previously showed, this optimal model can capture cognitives
influences on stopping behavior as a function of sensory statistics
at multiple timescales (Ide et al., 2013; Ma and Yu, 2015a,b) and
the reward structure of the task (Shenoy and Yu, 2011).

In this work, we explore a particular type of interaction
between go and stop processing in the stop-signal task.
Specifically, we consider the computational and behavioral
consequences of manipulating the go stimulus discrimination
difficulty. We will use simulations of the optimal model to
demonstrate that, as the go stimulus becomes noisier (harder to

discriminate), the go reaction time (RT) should get longer and
consequently the rate of stop errors to drop, as subjects have
a greater opportunity to detect the late-appearing stop signals
before initiating the go response; perhaps less obviously, SSRT
becomes longer, but does not do so sufficiently to counter the
longer go RT, as over all stop error rate still decreases. We
will then present novel experimental data from human subjects
(n = 20) performing a stop-signal task, in which the go
task is to discriminate a random-dot coherent motion stimulus
(Britten et al., 1992), and the stimulus difficulty (coherence)
is varied across blocks. The key question is whether SSRT co-
varies with stimulus coherence, as predicted by the optimal
model, or whether stopping behavior is independent of go
discriminability, as assumed by the race model. More broadly,
we will examine if the spectrum of behavioral measures—SSRT,
go RT, and stop error rate—changes systematically with respect
to go stimulus coherence as predicted by the optimal model, as
that would yield further evidence that human inhibitory control
is under sophisticated, context-sensitive, and statistically optimal
cognitive control.

In the following, we first describe the experimental procedure
(Section 2.1), then model details (Section 2.2), followed by model
simulation results and behavioral data. We conclude with some
discussions and thoughts on related work and future directions
(Section 4).

2. MATERIALS AND METHODS

2.1. Experiment
The stop signal task consists of a two alternative forced-choice
(2AFC) perceptual discrimination task, interspersed with an
occasional stop signal. Figure 1 schematically illustrates our
version of the stop-signal task: subject responds to a default go
stimulus on each trial (go trial), unless instructed to withhold the
response by an infrequent auditory stop signal (stop trial). The go
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task is either a random-dot coherent motion task (8, 15, or 85%
coherence), or a more classical square vs. circle discrimination
task. On a small fraction (25%) of trials, an additional auditory
stop signal (a beep) occurs at some time after the go stimulus
onset (known as the stop-signal delay, or SSD), which instructs
the subject to withhold the go response. The SSD is randomly and
uniformly sampled on each trial from 100, 200, 300, 400, 500, and
600 ms.

We say that the subject makes a discrimination error when
he/she incorrectly responds to the stimulus on go trials, i.e.,
choosing the opposite motion direction or incorrect shape. The
subject makes an omission error if he/she fails to make a go
response prior to the response deadline on a go trial, set to be
1100 ms in the experiment. The trials having stop signal are
called stop trials; trials without stop signal are go trials. When
the subject withholds the response until the response deadline
on a stop trial, the trial is considered a stop success (SS) trial;
otherwise, it is considered a stop error (SE) trial. Each trial is
terminated when the subject makes a response, or at the response
deadline itself if no response has been recorded. To incentivize
the subjects to be engaged in the task, and to help standardize
the relative costs of the different kind of errors across individuals,
subjects are compensated proportional to points they earn in
the task, whereby they lose 50 points for a go discrimination
or omission error, 50 points for a stop error, and 3 points for
each 100ms of response delay (so maximally 33 points for a trial
that terminates with no response, and less if the subject makes a
response prior to the response deadline).

Twenty subjects (13 females) participated in the experiment.
Each subject performed 12 blocks, 3 block for each stimulus type,
with each block containing 75 trials. Two days before the main
experiment session, subjects participated in a training session,
which contained only the 2AFC discrimination and no stop
trials. In the training session, there were 10 blocks, 3 blocks for
each random dot stimulus coherence and one block for shape
discrimination. Subjects were given the same maximal amount
of time to respond on the training session trials (1100 ms) as
in the main experiment. The purpose of the training session is
to allow subjects to familiarize themselves with the task and to
achieve stable perceptual discrimination performance. Only data

from the main experimental session are analyzed and presented
here.

This experimental protocol was approved by the University
of California San Diego Human Subjects Review Board, and all
subjects gave written informed consent.

2.2. Model
2.2.1. The Race Model
The classical race model for studying inhibitory control is shown
in Figure 2A. The subject makes a stop error when the go
response is finished processing before the stop process. The race
model also defines a subject-specific stop-signal reaction time
(SSRT), which is a measure of the average amount of time the
subject requires to process the stop signal and cancel the go
response (in practice, it is often calculated as the difference
between the median go RT and the SSD specific to each
subject for achieving 50% accuracy on stop trials). SSRT is
thought to index an individual’s stopping ability, and has been
observed to be longer in various psychiatric conditions thought
to involve inhibitory deficits (e.g., substance abuse Nigg et al.,
2006, attention-deficit hyperactivity disorder Alderson et al.,
2007, schizophrenia Badcock et al., 2002, obsessive-compulsive
disorder Menzies et al., 2007).

2.2.2. Optimal Inhibitory Control Model
Recently, we proposed a normative Bayesian Markov decision
process (MDP) model for the stop-signal task (Shenoy and Yu,
2011), which assumes that the subjects maintain continually
evolving Bayes-optimal beliefs about the sensory environment
(see Figure 2B), and that they make moment-by-moment
decisions between go andwait bymapping the current belief state
into the action space, in a manner consistent with optimizing a
global objective function an objective function (Figure 2C). The
behavioral objective function is assumed to take into account the
costs associated with go errors, stop errors, and response delay.

Figure 2B illustrates the Bayesian generative model for how
iid noisy sensory data are assumed to be generated by the
(true) hidden stimulus states. The two hidden variables d and s
correspond respectively to the identity of the go stimulus, d ∈

{0, 1} (0 for left, 1 for right), and whether or not this trial is a stop

FIGURE 2 | Model illustration. (A) Classical race model for behavior in the stop-signal task. The behavioral outcome (go or stop) is determined by a race between a

go and a stop process. The go reaction time has a broad distribution due to noise. The stop process has an average delay known as the stop signal reaction time

(SSRT). The stop error rate is the cumulative density of Go RT at SSD + SSRT. The SSRT is thus estimated from data as the difference between the median go RT

and the SSD at which 50% stop error is achieved, as SSD+SSRT=median(go RT) implies 50% of stop trials will end in error (the rest in success). (B) Bayesian

generative model of iid sampled sensory observations (x1, . . . , xt, . . .) conditioned on Go stimulus identity (d = 0 of left, d = 1 for right), and an independent stream of

observations (y1, . . . , yt, . . .) conditioned on the presence (zt = 1) or absence (zt = 0) of the Stop signal, which has a geometrically distributed onset time when it is a

stop trial s = 1 and never appears on a go trial (s = 0). (C) The decision of whether/when to Go, and which Go response to select, are modeled as sequential

decision-making, where the subject chooses at each moment whether to select a Go response, or to wait at least one more time point.
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trial, s ∈ {0, 1}. P(s = 1) and P(d = 1) are the prior probability
of a stop trial and one of two go alternatives, respectively.
Conditioned on the go stimulus identity d, a sequence of iid
sensory inputs, corresponding to noisy information about the
go stimulus, are assumed to be generated on each trial, x1, ...
,xt , ... ,where t indexes time steps within a trial. The likelihood
functions of d generating the sensory inputs are f0(x

t) = p(xt|d =

0) and f1(x
t) = p(xt|d = 1), which are assumed to be Bernoulli

distribution with respective rate parameters qd and 1 − qd.
The parameter qd specifies stimulus signal-to-noise ratio, thus
reflecting the go stimulus difficulty. The discrimination task
becomes harder (lower coherence) when qd is closer to 0.5 and
easier (high coherence) when qd is closer to 1 or 0. The dynamic
variable zt denotes the presence/absence of the stop signal. z1 =

... = zθ−1 = 0 and zθ = zθ+1 = ... = 1 if a stop signal appears at
time θ , where θ represents stop signal delay SSD. For simplicity,
we assume that θ , also known as the stop-signal delay (SSD),
follows a geometric distribution: P(θ = t|s = 1) = q(1 − q)t−1.
The expected value of θ is 1/q, which is the expected SSD,
E [SSD], within a trial. Conditioned on zt , each observation yt

is independently generated and corresponds to one unit of noisy
information about the stop signal. For simplicity, we assume the
likelihood, p(yt|zt = 0) = g0(y

t) and p(yt|zt = 1) = g1(y
t),

are Bernoulli distributions with rate parameters qs and 1 − qs,
respectively.

In the statistically optimal recognition model, Bayes’ Rule is
applied in the usual iterative manner to compute the iterative
posterior probability associated with go stimulus identity, pt

d
: =

P(d = 1|xt), the presence of the stop signal, ptz: = P(θ ≤ t|yt),
and whether the current trial is a stop trial, pts: = P(s = 1|yt),
where xt = {x1, x2, ..., xt} and yt = {y1, y2, ..., yt} denote all the
data observed so far. The belief state at time t is defined to be
the vector bt = (pt

d
, pts), which can be iteratively computed from

time step to time step via Bayes’ Rule, by inverting the generative
model (Figure 2B) as follows,

ptd =
pt−1
d

f1(x
t)

pt−1
d

f1(xt)+ (1− pt−1
d

)f0(xt)
.

To infer the stop signal, we first update ptz iteratively by

ptz =
g1(y

t)(pt−1
z + (1− pt−1

z )h(t))

g1(yt)(p
t−1
z + (1− pt−1

z )h(t))+ g0(yt)(1− pt−1
z )(1− h(t))

where h(t) is the posterior probability that the stop-signal will
appear in the next time step given that it has not appeared yet,

h(t) =
rP(θ = t|s = 1)

rP(θ > t − 1|s = 1)+ (1− r)
=

rq(1− q)t−1

r(1− q)t−1 + (1− r)

where r = P(s = 1) is the prior probability of a stop trial. The
posterior probability that the current trial is a stop trial can be
computed as

pts = P(s = 1|yt) = ptz + (1− ptz)P(s = 1|θ > t, yt)

where P(s = 1|θ > t, yt) is independent from the past
observations yt

P(s = 1|θ > t, yt) =

P(θ > t|s = 1)P(s = 1)

P(θ > t|s = 1)P(s = 1)+ P(θ > t|s = 0)P(s = 0)

=
(1− q)tr

r(1− q)t + (1− r)
.

Figure 2C illustrates the sequential decision-making process that
determines how an observer chooses whether/when to Go, and
which Go response to select. The Markov decision process
is optimized with respect to the Bayesian belief state and a
behaviorally defined cost function that captures the cost and
penalty structure of SST, based on which the observer decides
at each moment in time whether to Go (and if so, which Go
response) or Wait at least one more time step.

On each trial, if the Go action is taken by the response
deadline D, it is recorded as a Go response (correct on Go trials,
error on Stop trials); otherwise the trial is terminated by the
response deadline and a Stop response is recorded (omission
error on Go trials, correct on Stop trials). Let τ denote the trial
termination time, so that τ = D if no response is made before
the deadline D, and τ < D if a Go action is chosen. δ ∈ {0, 1}
represents the possible binary Go choices produced by making a
Go response. We assume there is a cost c incurred per unit time
in response delay (corresponding to time-dependent costs, such
as time, effort, opportunity, or attention), a stop error penalty of
cs for responding on a Stop trial, and a unit cost for making a
discrimination error or ommission error on a Go trial—since the
cost function is invariant with respect to scaling, we normalize
all cost parameters relative to the Go error cost without loss of
generality. Thus, the cost function is:

l(τ, δ; d, s, θ,D) = cτ + cs1{τ <D,s= 1} + 1{τ <D,δ 6= d,s= 0}

+ 1{τ =D,s= 0}

where 1 denotes the indicator function, which evaluates to 1
when the condition specified in the curly brackets are met, and
to 0 otherwise.

The optimal decision policy minimizes the expected (average)
loss, Lπ = E

[

l(τ, δ; d, s, θ,D)
]

,

Lπ = cE [τ ]+ csrP(τ < D|s = 1)

+ (1− r)P(τ < D, δ 6= d|s = 0)+ (1− r)P(τ = D|s = 0)

which is an expectation taken over hidden variables,
observations, and actions, and is generally computationally
intractable to minimize directly. Fortunately, by formulating the
problem as a belief state Markov decision process, we can use
standard dynamic programming (Bellman, 1952) to compute the
optimal policy and action via a recursive relationship between
the value function and the Q-factors. The value function V t(bt)
denotes the expected cost of taking the optimal policy henceforth
when starting out in the belief state bt . The Q-factors, Qt

g(b
t)

and Qw
g (b

t), denote the minimal costs associated with taking
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the action Go or Wait, respectively, when starting out with the
belief state bt , and subsequently adopting the optimal policy.
The Bellman dynamic programming principle, applied to our
problem, implies:

Qt
g(b

t) = ct + csp
t
s + (1− pts)min(ptd, 1− ptd)

Qt
w(b

t) = 1{D>t+1}E
[

V t+1(bt+1)|bt
]

bt+ 1

+ 1{D=t+1}(c(t + 1)+ 1− pts)

V t(bt) = min(Qt
g,Q

t
w)

whereby the optimal policy in state bt is to choose between Go
and Wait depending on which one has the smaller expected cost.
Note that a Go response terminates the current trial, while aWait
response lengthens the current trial by at least one more time
step, and repeatedly choosing Wait until the response deadline
constitutes a Stop response. Since the observer can no longer
update the belief state or take any action at the deadline, the value
function at t = D can be computed explicitly, without recursion,
as V t(bD) = cD + (1 − PDs ). Bellman’s equation then allows us
compute the value functions and Q factors exactly, backward in
time from t = D− 1 to t = 1.

We note that the decision problem can also be formalized as a
mathematically equivalent partially observable Markov decision
process (POMDP), whereby the hidden state is the stimulus state
(d, s), the observations are iid noisy samples conditioned on
that hidden state, and actions are chosen (Go or Wait) based
on all previous observations as well as any prior beliefs about
the hidden state. However, it is a rather trivial sort of POMDP,
as not only do the actions not affect the hidden state, but the
hidden state does not have any dynamics at all. Instead, we
chose to formulate the problem as a (belief) Markov Decision
Process, whereby the hidden state at time t is the posterior
distribution over the stimuli at time t (the initial state is just the
the prior distribution), and its (non-trivial) evolution over time is
governed exactly by Bayes’ Rule, applied to the previous posterior
state and the new observation, and is completely observed. The
only caveat is that the belief state is a continuous variable, and
thus in order to apply Bellman’s dynamic programming equation,

we have to discretize the belief state. In the simulations, we
discretize the belief state space, (pt

d
, pts), into 200× 200 bins.

Bayes rule implies the belief state bt+1 is a deterministic
function of bt and the observations. Thus, given V t+1, we
can compute E

[

V t+1
]

by averaging over all possible next
observations xt+1,yt+1.

E
[

V t+1(bt+1)|bt
]

=
∑

xt+ 1,yt+ 1

p(xt+ 1, yt+ 1|bt)

×V t+ 1(bt+ 1(bt, xt+ 1, yt+ 1))

p(xt+ 1, yt+ 1|bt) = p(xt+ 1|ptd)p(y
t+ 1|pts)

p(xt+ 1|ptd) = ptdf1(x
t+ 1)+ (1− ptd)f0(x

t+ 1)

p(yt+ 1|pts) = (ptz + (1− ptz)h(t + 1))g1(y
t+ 1)

+ (1− ptz)(1− h(t + 1))g0(y
t+ 1)

The optimal decision policy partitions the belief state into Go
and Stop regions, such that the optimal decision is to go (and
terminate the trial) if the belief state at time t, (pd, pz), falls into
a Go region (where Qg < Qw), and the optimal decision is to
wait (at least one more time point, but with the possibility of
going later before the deadline) if the belief state falls into a Wait
region (where Qw < Qg). Figure 3 shows that there are typically
two symmetric Go regions, where ps is relatively small, and pd is
close to 0 or 1 (i.e., the probability of a stop trial is small and the
confidence about go stimulus identity, left or right, is high), and
a large central Wait region, where the value of pd is close to 0.5
(go stimulus identity highly uncertain) or the value of ps is large
(probability of stop trial high). This topology makes intuitive
sense. Figure 3 also shows that the optimal decision policy is
time-dependent, such that the Go regions grow over time. This
is primarily due to the time pressure of the impending response
deadline (Frazier and Yu, 2008).

3. RESULTS

3.1. Model Predictions
Classical behavioral results in the stop signal task, such as
increases in stop error rate as a function of SSD and the generally

FIGURE 3 | Dynamic evolution of the optimal policy map. The white and black areas denote the Go and Wait regions, respectively. Note that pz denotes the

probability that the stop signal has already occurred at time t, and is monotonically related to ps, the probability that the current trial is a stop trial. The Bayesian

update algorithm produces a belief state (pd,pz ) at every time point t based on prior belief and all sensory data xt, yt observed until time t. If the belief state falls into a

Go region, a Go response is produced and the trial is terminated; otherwise, at least one more observation is obtained, and the location of the new Bayesian-updated

belief state is compared to next time point’s optimal policy map. When/whether the belief state falls into a Go region determines when/whether the subject produces a

response on that trial. The simulation shows that the Go regions expand over time, as the response deadline looms closer.
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faster SE RT compared to go RT, have been shown to be
natural consequences of such a rational decision-making process
(Shenoy and Yu, 2011), although these effects are also captured
by the race model (Logan and Cowan, 1984). However, being a
computational model in Marr’s framework of levels of analysis
(Marr, 1982), the optimal model is not only a model of the
brain processes but also of the computational task the brain must
solve—as such, it can also make normative predictions about how
experimental manipulations of different task parameters should
affect stopping behavior, since the experimental parameters are
naturally represented as parameters of the Bayesian general
model or of the objective function. In contrast, the race
model cannot make such predictions, since it has no means of
representing properties of the task itself.

Here, we specifically focus on the behavioral consequences
of changing go stimulus discrimination difficulty. The race
model does not represent stimulus difficulty explicitly and
thus would not make any obvious predictions about behavioral
consequences; moreover, since the go and stop processes are
assumed to be independent, the race model would certainly
not predict properties of the stop process, such as the SSRT,
to change with go stimulus difficulty. On the other hand, in
the optimal model, changes in the go stimulus difficulty would
change the evolution of the sensory belief state (both via the
empirical statistics and the Bayesian update rule, since we
assume subjects to have the correct generative model), as well
as the decision policy (the time-dependent mapping between
the belief state and the action set), whose computation of Qt

w

involves an expectation over future belief state, which depends
on the assumed likelihood function. Intuitively, we would expect
a noisier go stimulus to slow down the general drift of the
go stimulus posterior belief pt

d
toward 0 or 1 (depending on

which true stimulus was shown), and hit the “Go region” later
on a go trial, or avoid hitting it altogether on a stop trial
(Figure 3). Figure 4 show the simulated model predictions for
the various behavioral measures as a consequence of changing
go stimulus discrimination difficulty, parameterized by qd in
the model. We model qd as monotonically decreasing (toward
0.5, which corresponds to a stimulus containing pure noise) for
decreasing stimulus coherence. The exact values chosen for qd
in the simulations are as specified in Figure 4 caption. We find
that the qualitative, monotonic relationships between the various
predicted behavioral measures and the go stimulus coherence
hold for a large range of qd values chosen, as long as lower
coherence corresponds to smaller qd. As shown in Figures 4A–C,
we expect Go RT to decrease, and Go discrimination and
omission errors to decrease, as a function of increasing stimulus
coherence. Correspondingly, the model predicts the stop error
rate to increase as the stimulus coherence increases (Figure 4D),
with the effect present at almost the whole range of SSD tested
in the experiment (Figure 4E). Additionally, and perhaps more
surprisingly, the model predicts the SSRT to decrease as a
function of increasing go stimulus coherence. Although SSRT
is not an intrinsic parameter or entity in the optimal model,
one can nevertheless estimate SSRT as one does from empirical
data, by identifying the SSD at which approximately 50% stop

FIGURE 4 | Simulated behavioral predictions by the optimal decision-making model. (A) Simulated mean Go RT decreases with higher go stimulus

coherence (easier discrimination). Low, median, and high stimulus coherence are parameterized by different values of qd : 0.55, 0.62, and 0.70, respectively. (B)

Discrimination error rate decreases as coherence increases. (C) Omission error rate decreases with qd . (D) Stop error rate increases with the qd . (E) Average stop

error rate as a function of SSD (known as the inhibition function) for different stimulus conditions. (F) SSRT decreases with qd . Each data point is averaged over 100

simulated subjects, each performing 1000 go or stop trials. Error bars indicate standard error of the mean (sem); sem is extremely small and almost invisible for all but

the omission error simulation data. Other parameters used in the model are adapted from Shenoy and Yu (2011): r = 0.25, qs = 0.72, D = 50, cs = 0.4, c = 0.002.
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accuracy is achieved. This last prediction is particularly intriguing
for differentiating the race model and the optimal model, as the
race model would not predict that go stimulus difficulty should
influence the speed at which the stop signal is processed.

3.2. Human Behavioral Data
In this section, we show that the model predictions in Section 4
are confirmed by the human behavioral data, where 8, 15, and
85% denote different coherences of random dot motion stimulus,
while “X” represents square vs. circle go stimulus. Figure 5 shows
the behavioral results from the experiment. Figures 5A–C,F

show that subjects’ mean Go RT, discrimination error rate,
omission error rate, and SSRT decreased with coherence, as
predicted in Figure 4. Figure 5D shows that subjects’ stop error
rate increases with coherence. We used one-sided paired t-test to
test the significance of differences in behavioral measures across
different go stimulus difficulties, e.g.,H0 : mean (Go RT for 8%)=
mean (Go RT for 15%), H1 : mean(Go RT for 8%) < mean (Go
RT for 15%).We also conducted the more conservativeWilcoxon
rank test, which does not make the normality assumption that
t-test makes, for completeness. As we detail in Supplementary
Material, similar results are found using the two tests, except for
the omission error, the trial type for which we have the least
amount of data, since omission errors were rare. Here, we only
discuss the results of the paired t-tests.

We found that mean Go RT significantly decreased as the
coherence increased from 15 to 85% (p = 0.008, t = 2.63) and
8% to 85% (p = 0.012, t = 2.44), but not significant from 8% to
15% (p = 0.263, t = 0.64). In consideration of the long tail of

the RT distribution (though this was ameliorated in the current
study due to the response deadline), we computed the median
Go RT of each subjects and then conducted paired t-test, which
showed that median Go RT significantly decreased as coherence
increased from 15 to 85% (p = 0.004, t = 2.87) and 8 to 85%
(p = 0.002, t = 3.20), and showed a trend toward significance
from 8 to 15% (p = 0.09, t = 1.35).

Paired t-tests for discrimination error rates were significant
for all three cases, 8% to 15% (p < 10−6, t = 6.35), 15%
to 85% (p = 0.002, t = 3.22), and 8% to 85% (p < 10−6,
t = 6.65). The omission error rate only significantly decreased
when the coherence increased from 8% to 85% (p = 0.01,
t = 2.5), but not from 8% to 15% (p = 0.16, t = 1.00), not
from 15% to 85% (p = 0.22, 0.77). Over all, the results suggest
that Go RT, Discrimination Error and Omission Error decrease
with coherence. In addition, the stop error rate also increased
significantly when coherence increased from 8 to 85% (p = 0.03,
t = −1.89), but not from 15% to 85% (p = 0.14, t = −1.10), and
showed a trend toward significance from 8% to 15% (p = 0.06,
t = −1.61). Altogether, the results suggest that stop error rate
increases with coherence.

We used “smoothspline” function in Matlab to fit the
inhibition function of each subject in each stimulus type and
estimated the corresponding SSRT (Figure 5F) as the difference
between median Go RT and the SSD at which 50% stop error
rate is committed (Figure 5E). According to the paired t-test,
SSRT significantly decreased as the coherence increased from 8
to 85% (p = 0.02, t = 2.41), but not from 8 to 15% (p = 0.23,
t = 0.79), and showed a trend toward significance from 15 to

FIGURE 5 | Behavioral data for varying go stimulus discrimination difficulty. 8, 15, 85 denote different coherences of random dot motion stimulus. X denotes

square vs. circle discrimination task. (A) Mean Go RT decreased as the discrimination task became easier. Bar height indicates the mean of median Go RT (for each

subject) for each condition. (B) Go discrimination error rate decreased as coherence increased. (C) Go omission error rate decreased with coherence. (D) Stop error

rate increased with coherence. (E) Average inhibition function for different stimulus types. (F) SSRT decreased with coherence.
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85% (p = 0.09, t = 1.40). Over all, the results suggest that SSRT
decreases with coherence.

We also included a more classical circle vs. square go
discrimination task, because stop-signal tasks typically use highly
discriminable go stimuli such as circle vs. square. As we are
among the first to use the random-dot coherent motion stimuli
for the go task, as well as the first to systematically degrade the
go stimulus in the stop-signal task, we wanted to make sure that
the easiest condition (85% coherence) produces comparable data
to the more commonly used shape discrimination task. Figure 5
shows that this is indeed the case across the behavioral measures
we examined.

4. DISCUSSION

In this work, we investigated the computational and behavioral
consequences of manipulating stimulus discriminability in the
stop-signal task. We simulated our previously proposed optimal
decision-making model (Shenoy and Yu, 2011) to derive
behavioral predictions, and presented novel experimental data
that broadly validated these predictions. Interestingly, the SSRT,
which is thought to reflect the stopping ability of the subject,
is found to significantly decrease with increasing difficulty of
the go stimulus discrimination task. This directly contradicts
the independence assumption of the race model (Logan and
Cowan, 1984), as well as its more complex variants that assume a
simple inhibitory interaction between the go and stop processes
that is independent of the go stimulus discriminability (Boucher
et al., 2007). Together, our results imply that there exist intrinsic
and complex interactions between go and stop processing,
much as that postulated by our optimal decision-making
model for stopping behavior (Shenoy and Yu, 2011). More
generally, the broad concurrence between model predictions
and behavioral data demonstrate the normative predictive
power of the optimal model, as well as the specific model
assumptions that humans readily internalize environmental
statistics and adopt decision policies that are normative and
context-sensitive.

The difference between the race model and the optimal
decision-making model is not only that of complexity or the
nature of interactions between the stop and go processes, but
also that of levels of analysis, in the parlance of Marr (1982).
The race model is primarily an algorithmic model, while the
optimal model is primarily a computational model. That means
for a more meaningful comparison, it would be worthwhile to
consider an algorithmic description of the optimal model that
is more directly comparable to the race model (or, alternatively,
a computational description of the race model, which is harder
to obtain). Such an analysis was done in a previous paper
(Shenoy and Yu, 2011), which showed that while the model
would not be able to predict changes in stopping behavior as
a consequence of changes in the reward structure of the task,
the parameters of a diffusion-model implementation of the race
model (see Shenoy and Yu, 2011 for more details) can be fit to
different experimental conditions in a post hoc manner in order
to capture qualitative changes in behavior. Likewise, one could

fit parameters of a diffusion model equivalent of the race model
to “capture” behavioral changes as a function of go stimulus
signal-to-noise ratio, but again, it would be a post hoc result, not
a normative predictive process as the optimal decision-making
model excels in.

In the current paper, the parameter qd, which specifies the
noisiness of the sensory data related to the go stimulus, is left as
a free parameter. While we kept qd monotonically increasing as
a function of increasing stimulus coherence (a rational choice),
its values for different coherence conditions were somewhat
arbitrarily chosen. Although the qualitative nature of the model
predictions (changes in go RT, stop error rate, and SSRT as
a function of go stimulus coherence) is relatively robust with
respect to the precise choice of qd, an even better approach
would be to fit qd for each subject in a pure 2AFC task,
identical to the stop-signal task except for the total absence of
the stop signal, as 2AFC behavior is fairly well captured and
understood as a variant of the sequential probability ratio test
(Gold and Shadlen, 2002; Bogacz et al., 2006; Frazier and Yu,
2008; Dayanik and Yu, 2012; Shenoy and Yu, 2012), which
can be parameterized by essentially the same qd variable. In
that case, qd would then not be a free parameter in the stop-
signal task but one derived from a separate 2AFC session
for each subject, and we would then be able to see whether
stopping behavior really follow quantitatively from the optimal
inference and decision-making process, as predicted by the
model.

Another important direction of future research is a better
theoretical understanding of the algorithmic aspects of the
optimal model, in particular what determines SSRT in this
model. While SSRT is not intrinsic to the optimal model,
as it is in the race model, it is nevertheless possible to
“measure” SSRT for the optimal model based on simulated
trial outcomes, just as is done empirically for human data.
Related to this, it is unclear why SSRT should decrease in
the optimal model for increasing coherence, which we showed
to be both predicted by model simulations and exhibited by
human data in this paper. Specifically, as the go task gets easier,
subjects make more stop errors due to faster Go RT, even
though SSRT decreases—it just does not decrease sufficiently
to counter the faster go RT. Future work is needed to better
understand the nature of SSRT in the context of the optimal
model, as well as, in general, a better algorithmic understanding
of the relationship between the optimal model and the race
model.

Although this work was mostly focused on computational
modeling and behavioral data analysis, it has implications for
the neuroscientific study of inhibitory control as well. The race
model has helped to advance the neuroscience of inhibitory
control, by relating neural activities in various brain regions,
such as the frontal eye field (Hanes et al., 1998) and superior
colliculus (Pare and Hanes, 2003), to the go and stop processes.
But as the race model does not address how different cognitive
processes contribute to stopping behavior, it is also limited in its
ability to anticipate or explain cognitive modulations of neural
activities involved in inhibitory control. Given the ability of the
computationally more sophisticated optimal model to explain a
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wider range of behavioral data, we can expect that it will also
lead to novel and interesting interpretations of neural activation
patterns related to inhibitory control, and perhaps guide future
neuroscientific experimentation. Indeed, we have already used
the optimal model to identify a brain region (dorsal anterior
cingulate cortex) as having fMRI BOLD response consistent
with encoding an unsigned prediction error (“Bayesian surprise”)
related to the prior belief of whether the upcoming trial will
be a stop or go trial (Ide et al., 2013), and shown that this
prediction signal is altered in young adults at risk for developing
stimulant addiction (Harlé et al., 2014), a condition known to
be associated with impaired inhibitory control and specifically
stopping behavior. Prior to this model-based fMRI study, it was
thought that the anterior cingulate cortex was one of many
areas generally involved in preparing or executing the “go”
response. In the context of the optimal model, we now know
that this area, unlike the other cortical areas, is specifically
involved in reporting the surprise signal, which just happens
to be greater on stop trial than go trial on average, because
stop trials are generally rare. This provides just one example of
how a statistically sophisticated model facilitates a richer and
more theory-driven exposition of the neural basis of inhibitory
control.
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