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Chapter 1

Introduction

1. Motivation

Wave breaking is a common phenomenon in nature. Along any coastline one can be
impressed by the dramatic transformation of water waves as they advance onto a beach.
The waves with a relatively smooth water surtace offshore transtorm to those with rough
white fronts of spray and bubbles when they arrive at the shoreline. Although there is no
exact definition of wave breaking. the term “wave breaking’ is generally used to describe
the transformation process from a smooth wave to the quasi-steady state with a white-

water front rather than to any particular instant within the transition.

An approximate classification of breaker types was first made by Mason (1932). He
divided breakers into two types: spilling and plunging. The generally employed
classification, described by Galvin (1968. 1972) according to empirical knowledge of the
breaking process. has four types of breakers according to their initial motion: spilling.
plunging. collapsing and surging. Of course. this division is approximate. and there often
seems to be a smooth gradation between them. On the other hand. because of the
existence of various environments. it is not difficult to find occasions when waves do not

fit well into one of these descriptions.
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There are a variety of reasons to study breaking waves. They play a significant role in
numerous aspects of air-water interactions. such as energy transfer from wind to sea
surface, momentum transfer from waves to currents. etc. [t is believed that wave breaking
serves to limit the height of surface waves. mix the surface waters. generate ocean
currents. and enhance air-sea fluxes of heat. mass. and momentum through the generation
of turbulence and the entrainment of air. Melville (1996) made a survey and review on
the role of wave breaking in air-sea interaction. In addition. breaking waves are
hydrodynamic sources of noise near a beach or a harbor. They also are responsible tor
large hydrodynamic loads on coastal marine structures. such as levee. harbor and

platforms.

Breaking waves are of particular importance to naval architecture tor several reasons.
The motion of ships is almost always accompanied by spilling breakers in the
surrounding water. both at the bow and elsewhere. The white water thus produced. which
surrounds the ship and trails aft. is one of the most easily observed features of the ship
disturbance. The breaking waves before and near the bow of the ship hull can contribute
appreciably to the ship’s wave resistance (Baba, 1969: Dagan & Tulin. 1970. 1972: Tulin
1979: Inui. 1981). On the other hand. modern ships are not immune to severe damage. or
even total loss due to breaking waves. Smaller ships such as yachts and trawlboats may
capsize. while larger ships may suffer structure damage that may cause loss of lives. Ina
harbor. breaking waves can make loading and unloading of docked ships difficult. and

can cause collisions between ships and a dock if sufficient protection is not provided.

(18]
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In view of this, there is obviously a need to understand and study wave breaking,
including its process. its mechanism, and its kinematic and dynamics properties.
Actually. the study of wave breaking has continued for more than one hundred vears.
Unfortunately, because of its complexity. advancement towards understanding wave
breaking has been relatively slow. Wave breaking remains one of the most challenging
problems in hydrodynamics. As pointed out by Bonmarin (1989). there are several
reasons for the difficulties arising in the study of wave breaking. From a theoretical point
of view. the equations of motion and the toundary conditions are tully nonlinear: in
addition, these equations and conditions must be applied at the free surface whose
location is not known beforehand and varies with time. From an experimental point of
view. observations and measurements are not easy. First, wave breaking is an unsteady
phenomenon occurring intermittently. starting suddenly and evolving rapidly. Second. it
presents three-dimensional and multiphase aspects. Third. the experimental conditions
are extremely adverse in the field. while in the laboratory. measurements can not always
be strictly extended to sea conditions because they may not easily be scaled-up due to the
relatively great importance of surface tension and viscosity at small scale. From a
numerical point of view, direct calculation of wave breaking is completely impossible at
this time. and will probably be so far into the future for all of the reasons enumerated
above. However. with the development of computing technology. especially during the
last three decades, it is possible to numerically calculate more and more complicated
“simplified” problems. Thus numerical simulation plays an increasingly important role in

the study of wave breaking. Experimental. theoretical. and numerical methods are the

(¥3)
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primary tools in the study of wave breaking. However. because of the complexity of

wave breaking, any method will involve some kind of simplification.

The study of breaking waves on a beach up to the early eighties of twentieth century
was reviewed by Peregrine (1983). Among these numerous works. the systematic
experiments of Duncan (1981. 1983). who uses a towed hydrofoil to produce a steady
breaker. for the first time provided not only careful qualitative observation but also a set
of measurements relating breaker and wave dimensions. The ground-breaking work by
Longuet-Higgins & Cokelet (1976) provided the numerical simulation of the wave
overturning for the first time. Since then. many papers have been published to calculate
the overturning otf'a wave crest with different forms of the free surface boundary
conditions: Longuet-Higgins & Cokelet (1978). Cokelet (1978). Peregrine et al. (1980).
Mclver & Peregrine (1981). A review of the methodology in this period may be found in

Yeung (1982).

In the last two decades. great progress has been made in both experimental and
theoretical studies of breaking waves. By means of a visualization technique. Bonmarin
(1989) observed the time space evolution of a steep water wave reaching the breaking
stage. especially the asymmetry of the wave profile in the near-breaking region. He also
observed the shape evolution of a plunging crest after breaking and the related splash-up
phenomenon. His measurements at breaking onset on a sample of breaking waves show a
relation between the rate of asymmetry growth and the breaker type. Groscnbaugh &

Yeung (1989). in an experimental and numerical study. correlated the unsteady breaking
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of waves in front of a blunt bow with difterent bow shapes. Even the etfects of viscosity
and surface tensions were considered in the gencration of breaking bow waves (Yeung
1991) and in the wave generation by a translating body (Yeung & Ananthakrishnan
1997). At the same time, since instability of wave crest plays a very important role in the
analysis of wave breaking. many efforts have been made on the study of instabilities of
wave crests. and many papers have been published: Tanaka (1983. 1986. 1995). Longuet-
Higgins & Cleaver (1994). Longuet-Higgins. Cleaver & Fox (1994). Longuet-Higgins &

Dommermuth (1997).

As reviewed by Peregrine (1983). there are two major theoretical approaches to the
problem of finding where waves break on a beach: shallow-water steepening & refraction
and waves of limiting steepness. In his review. the origination and development ot the
theories are described in detail. In summary. shallow-water steepening is based on the
work of Airy (1843) in response to Russell’s (1834) observation of the existence of the
solitary wave, and lends to the well-known Boussinesq equations. The Retraction method
is based on the existence of a limiting wave steepness for traveling waves. which has

been well known since Stokes (1880) studied the flow near the crest of such a wave. that

is. the well-known and oft-quoted Stokes 120° corner flow.

Shallow-water steepening and limiting-steepness waves have provided a starung
point for theoretical studies of wave breaking. However. both of the approaches are
appropriate only under certain assumptions. For instance. shallow-water steepening

theory is obtained by assuming that the water-surface slopes are sufficiently gentle that
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water-particle accelerations are negligible compared with gravity. With wave steepening.
the water accelerations will increase, and to certain degree they will have a significant
effect on the pressure so that this must be taken into consideration. Then a “near-linear”
approximation is made in order to handle the problem analytically. that is. only the “first”
nonlinear terms are included. With this approximation, the resulting equations are the
Boussinesq equations. Studies show that either refraction methods or integration of the
Boussinesq equations will fail or become unreliable as waves approach the steepness that

limits periodic waves. or the maximum solitary-wave height.

A completely different method has been proposed by Green and Naghdi in 1974,
which is originated from techniques often used in analysis of solid shell-like structures.
Since the appearance of this method. so-called Green-Naghdi theory or the theory of
directed fluid sheets. many problems have been solved through this unique method. In
particular. the Green-Naghdi method of fluid sheets has been used successtully for a
variety of two-dimensional problems where nonlinear effects play a critical role. The
success of the Green-Naghdi method in these large-amplitude wave problems provided
the motivation to attempt to use it to study the wave-breaking problem. Before going
further. it is useful to discuss the differences between the classical perturbation method.

and Green-Naghdi method.
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2. Perturbation method & Green-Naghdi method

As mentioned in above section. the limiting-steeping wave theory and the shallow-
water steepening theory are the major analytical methods to study wave breaking. The
former method relies on the expansion series of Stokes™ corner-tlow: and the latter
applies the "near-linear™ approximation and results in the Boussinesq equations. In
essence. both of them are perturbation methods. e.g.. Boussinesq equation is a
perturbation or asymptotic method based on two non-dimensional parameters: the ratio of

wave height to water depth. and the ratio of depth to wavelength.

In general, perturbation methods. both ordinary and singular. introduce some
mathematical approximation to reduce the complexity of the model to the point where it
can be solved. One advantage of these methods is that one obtains governing equations
for the flow. and from those both specific solutions can be obtained and generalizations

of the behavior of the flow can be made.

In perturbation analyses. reference scales appropriate for the particular problem at
hand are introduced. These scales are used to non-dimensionalize the variables and to
identify a non-dimensional perturbation parameter (or parameters) that can be considered
small (or large). For time invariant problems. the flow is decomposed into a sequence of
flows of presumably decreasing importance. each of which is a correction to the sum of

the previously computed flows. The assumed sequence is inserted into the field equations
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and boundary conditions and the perturbation parameters are used to segregate these into
a corresponding sequence of perturbation problems. Typically. each of these problems is
linear in the unknowns at its level. although it may involve higher-order terms ot
quantities determined already in previous (lower-order) solutions. At the same time.
although it is implicitly assumed that this sequence is convergent this is almost never
proven. In some flow problems. such as two-dimensional water waves in both shallow
and deep water. there is ample evidence of the convergence. while in problems such as
the flow about thin airfoils, the lack of convergence is well known. Theoretically. one can
obtain solutions to whatever level of accuracy one wants. if the perturbation sequence
converges. A particular advantage of the perturbation approach is that. since perturbation
parameters are used to size quantities. the ingredients of this parameter give an insight
into the types of problems for which the approximation is appropriate. However. it does
not vield quantitative measures of the accuracy to be expected tor a particular problem.
This information can only be obtained from an analysis of higher order problems or from

comparison with experiments.

In addition. Green and Naghdi (1974. 1976a. 1976b) pointed out that the perturbation
methods results in a model that is not consistent in a physical sense. Frequently. neither
mass nor momentum is conserved. nor are the surface boundary conditions exactly
satisfied. since parts of the exact problem are thrown away (i.e.. the higher-order terms).
Moreover. some of these even violate the principle of invariance. that is. any order of the
perturbation theory is not Galilean invariant. As a result. difterent results can be obtained

for the same problem depending on the frame or reference from which it is analyzed.
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As an alternative to the perturbation methods. Green and Naghdi have proposed a
completely different scheme for obtaining approximate governing equations for three-
dimensional problems. Green-Naghdi theory originated from techniques often used in
analysis of solid shell-like structures and was initially called the “Theory ot Cosserat
surfaces™ or the “Theory of Directed Fluid Sheets.™ According to Green & Naghdi. thin
deformable media can be modelled by a surface embedded in a Euclidean 3-space.
together with K ( K >1) directors (i.e. deformable vectors) assigned to every point ot the
surface. This surface. called Cosserat surface or directed surtace. is three-dimensional in

character. but depends only on two space variables and time.

Green. Laws & Naghdi (1974) proposed a direct formulation of a theory of water
waves when the fixed bottom of the stream is level and used a Lagrangian frame. [n
1986. Green & Naghdi recast this theory in an Eulerian frame so that it is much easier to

apply to fluid flow problems and suitable for deep waters.

A new derivation of the direct sheet theory was given by Shields & Webster (1988).
which employed a variational procedure due to Kantorovich called “the method for
reduction to ordinary differential equations™. This derivation does not use the concept of
directors. which is included in the physically motivated derivations given by Green and
Naghdi. It is presented as a straightforward approximation of the three-dimensional
equations of motion. In this derivation. the dependence of the kinematic structure ot the

solutions along one coordinate direction is prescribed. This direction is usually the
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vertical direction for shallow water flows. This makes it feasible to study higher-order
approximations of the theory. beyond the most basic “restricted theory™ by Green and

Naghdi. As a result. this theory produces approximate field equations. but satisfies

boundary conditions exactly.

Other than involving any simplifications. one can directly solve the original problem
by purely numerical techniques. Finite difference. finite element and panel methods are
such schemes. These methods are comparable to physical experiments in that each
computation vields another result corresponding to a single realization of the flow.
Generalization about the behavior of the flow requires induction from many of these

specific solutions.

Green-Naghdi fluid sheet theory lies in the middle of the spectrum. It achieves
simplification by reducing the dimensionality from three dimensions to two. This theory
yields governing equations for the flow and these are more efficient to solve numerically

than those from three-dimensional finite element or finite difference models.

Shields and Webster (1988) used this method ---Green-Naghdi method. to study
waves in shallow water. Their results are compared well with experimental data. Later
on. Demirbilek and Webster (1992) studied shoaling of a random wave train passing over
submerged bar. Green-Naghdi Level II theory was used to vield the wave elevation at
three locations: before the bar. at the bar and beyond the bar. Their results show that the

wave patterns after passing over the bar are much different as a result of the nonlinear
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interaction. Webster & Wehausen (1995) studied the retlection of a train of regular waves
from a sinuous bottom. This reflection is due entirely to nonlinear interaction within the
wave system. That is. linear theories do not predict reflection trom either this type of
bottom or as a result of shoaling. Application of Green-Naghdi theory to this problem
vields predictions that match very closely those from careful laboratory experiments. As
a result. these studies demonstrated Green-Naghdi theory s capability to reproduce
several kinds of nonlinear behavior in complex wave systems. Thus the Green-Naghdi
theory of fluid sheets appears to be attractive for the prediction of wave breaking.
whereby nonlinear interactions play a critical role. However. when Demirbilek and
Webster(1992) studied wave shoaling. their numerical calculation broke down at the
moment when the velocity of a particle at the wave crest is nearly equal to the wave
velocity. That is the computation broke down when according to the generally employed
criterion. wave breaking should start. The same thing happens to the limiting steepening
wave theory and the shallow water steepening theory. In order to calculate the

overturning of a breaking wave. a new method or some modification is clearly necessary.

3. Application of Green-Naghdi Methods to Breaking Waves

Before we proceed further, imagine the picture of a typical plunging wave. An
element of the water surface becomes vertical: a portion of the surface then overturns.
projects forward. and forms a jet of water. We find that at this jet of water. the water
surface is a multi-valued function of a horizontal coordinate. However. for the Green-

Naghdi model. just as in shallow-water theory, variables must be single-valued functions
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of the underlying coordinate system. Recall that in the Green-Naghdi model. the
continuum representing the fluid flow has been reduced to the horizontal variables only.
For the two-dimensional wave system under consideration. this means that the variables
describing the flow kinematics are functions of one horizontal coordinate (say. x) and
time. t. As a result, the water surface must be single valued. Theretore. the place where
wave breaking occurs is where Green-Naghdi model breaks down. This was confirmed
by Demirbilek & Webster (1992) when they studied the wave shoaling. However. this
does not mean that it is not possible to calculate the overturning of a breaking wave by
means of the Green-Naghdi model. Recall the picture of a steady plunging breaker. it
consists of a relative smooth water surface before the crest and a jet of water. After the
projection point of the jet. the water surface returns to be smooth. In view of this. we can
divide the whole flow region of water into two regions by the point whose tangent is
vertical. as shown in Figure 1.1. The advantage of this division is obvious. After the
division. in each region the fluid is bounded by a top and a bottom surface. and both
surfaces are single functions of space. Then. we can apply Green-Naghdi method to the
two regions separately. Note that the intertace used to divide the tlow region has the
kinematic properties. that is. there are transfers ot mass. momentum and energy across
this interface. and the intertace varied with time during the unsteady development ot the

wave breaking.
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Figure 1.1 Schematic of Division of
Plunging Breaker into two parts
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Application of this division requires a criterion for detection of breaking. Shields
(1986) had shown that the exact criterion for breaking (crest particle velocity equal to the
phase velocity) is also the criterion for existence of a solution of the shallow water
Green-Naghdi model at any level. Since both crest particle velocity and phase velocity
are known everywhere at any instant of time in Green-Naghdi models. it is possible to
use this criterion to apply the division. However. there exists an easily observed visual
criterion for the onset of plunging waves: the breaking begins with the occurrence ot a
vertical crest front. Usually. the elevation of the water surface is what we want to know
and this also known at any instant of time in Green-Naghdi models. Thus. it is much

better to use this criterion as a trigger for invoking the division.

There. however. arises another problem. 1.¢.. how to join the solutions for each region
together again after calculation of each region. since what we pursue is a uniform
solution for the whole region. These solutions do not make sense unless these solutions
can match with each other at the joint. In the development of the Green-Naghdi theory. it
was recognized early on that situations would arise similar to the bifurcation ot the
breaking wave described above. A procedure for dealing with these. called jump
conditions was introduced by Naghdi and Rubin (1981) to deal with the bow wave of'a
planning boat. It appears attractive therefore to try to expand this approach to deal with
the breaking wave phenomenon. Therefore, the study of jump conditions associated with

Green-Naghdi theory becomes our main concern in this dissertation. Besides the breaking
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waves. there are many problems that need the jump conditions to obtain a uniform

solution throughout the flow region. as we will discuss later.

The jump conditions are associated with the integral balance laws ot Green-Naghdi
theory. The idea of jump conditions in fluid mechanics is not new but very common in
dealing with many other problems in hydrodynamics and aerodynamics. A well-known
case in aerodynamics is shock waves. across which there exist discontinuities of velocity.
pressure. density. special entropy and temperature. The hydraulic jump is an oft-quoted
example in hydraulics of jump conditions. It is instructive to examine some of these

common applications to get a sense of the approach that is required.

Application of jump conditions is usually associated with discontinuities of one or
more physical characters. We can learn this very clearly from the history of the study of
shock waves. At the beginning of nineteenth century. Poison (1808) determined what
was. in effect. a simple wave solution of the differential equation of flow in an isothermal
gas. However. after forty years Challis (1848) observed that such an equation can not
always be solved uniquely for the velocity u. To solve this uniqueness problem. Stokes
(1848) proposed to assume that a discontinuity in the velocity begins at the time when the
slope of velocity becomes infinite. Then he deduced two discontinuity conditions for an
isothermal gas by means of the laws of conservation of mass and momentum. Stokes
argued physically that discontinuities would never occur since viscous forces would
smooth out any tendency toward a discontinuity. Furthermore he indicated that tflows

involving a discontinuity must also involve some phenomena of retlection.
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Earnshaw (1858) and Riemann (1860) developed the theory of shocks independently.
Unfortunately. Riemann made the incorrect assumption that the transition across a shock
is adiabatic and reversible. Rankine (1869) showed that no steady adiabatic process in
which the only forces are pressure forces can represent a continuous change over a small
finite region from one constant state to another. He proposed instead that across this
region a non-adiabatic process occurs subject to the condition that heat may be
communicated from one particle to another but no heat is received trom outside.
Rankine’s condition agrees with the principle of conservation of energy. But Rayleigh
(1910) and Hugoniot (1887) were the first to point out clearly that an adiabatic reversible
transition in a shock would violate the principle of conservation of energy. From the
conservation of energy Hugoniot deduced the third shock condition in its customary
form. which is preferable to Rankine’s form. although in the case of a perfect gas.
Rankine’s three shock conditions are equivalent to those of Hugoniot. Rayvleigh (1910)
pointed out that the entropy must increase in crossing a shock front and that for this
reason a rarefaction shock cannot occur in a perfect gas. Thus proper jump conditions
across shock waves have been set up. and as a part of solution of shock waves. this has
been proved a great advance in mathematics and fluid mechanics. especially for

supersonic flows in aerodynamics.
Jump conditions for shock waves are derived from the “caloric equation of state.”™ and

the basic laws of physics: 1) conservation of mass. 2) conservation of momentum. 3)

conservation of energy. and 4) increase or conservation of entropy. Taking into account
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the assumptions that the fluid in hydrodynamics is incompressible. inviscid and
homogenous. then the latest law. that is. increase or conservation of entropy. can be

dropped. The others form the foundation to derive jump conditions in hydrodynamics.

Jump conditions involving overall concepts such as energy and momentum are much
easier to apply in Green-Naghdi models than in other classical methods. because integral
momentum and energy are basic variables in Green-Naghdi models while detailed tlow
kinematics are basic ingredients in other classical methods. Once the Green-Naghdi
method was introduced in 1974, Green and Naghdi (1976) tried to solve the classic
hydraulic jump problem with this method. where the simplest jump conditions have been
applied. Since then. the jump conditions with various generality have been obtained and
applied to various problems: Caulk (1976) to solve the problem of tluid under a sluice
gate. Naghdi & Rubin (1981) to solve the planing of a boat. and Naghdi & Rubin (1981)
to solve the free waterfall from a flat bottom. We need to point out that these jump
conditions are derived for a theory with only one “director™ from the Lagrangian form ot
the integral balance equations. After having realized the limitation ot Green-Naghdi
method in Lagrangian form. Green & Naghdi recast the governing equations in Eulerian
form and established a one-to-one correspondence between the Lagrangian and Eulerian
formulations. At the same time. the associated general jump conditions with K
~directors” have been obtained with the limitation to steady flow and with the use of the

rectangular Cartesian coordinates.
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Recall that our primary need is to develop the jump conditions for Green-Naghdi
theory in order to continue the numerical calculation of a plunging wave after it starts to
break. In latest decade, there are many publications regarding the numerical calculation
of a plunging wave as we have discussed in above sections. However. these calculation
based on classical methods can only be valid just before the tip of the projection jet
touches the front trough. Having realized the advantage of Green-Naghdi method over
other classical methods on integral properties. we expect that the numerical calculation
based on Green-Naghdi method may continue even after the projection of the jet. We
shall not attempt to go so far here. but rather focus our attention to the derivation of the
general jump conditions for Green-Naghdi theory. Then we will apply the jump
conditions on various problems and further understand the advantages and disadvantages
of the jump conditions in Green-Naghdi models. which we believe will form a solid

foundation to solve more complicated problems such as breaking waves.

Recall that the plunging breaker can be divided into two parts to avoid the multi-
valued problem. as shown in Figure 1.1. Even at the first glance. we can find that part [ is
very similar to the flow over a vertical weir. while part 2 is somehow like the flow under
a sluice gate. Figure 1.2 shows the likeness between the plunging breaker and the weir
flow and the flow through a sluice gate. This likeness is the motivation to study the weir

flow and sluice gate to validate the jump conditions.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



fY

incoming wave

incoming flow

Incoming flow

Figure 1.2 Schematic of Plunging Breaker
and Weir Flow and Sluice Flow
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In the research that follows, we first attempt to derive the general jump conditions for
Green-Naghdi method. Based on their formula of directed sheet theory. Green and
Naghdi (1986) derived the general jump conditions for steady. two-dimensional
problems. Here we will use the formula introduced by Shields & Webster. rather than
adopt the formula of Green & Naghdi. Although the derivation given by Green & Naghdi
may be elegant from a physical viewpoint. we find that the equivalent derivation by
Shields & Webster (1986. 1988) is more straightforward and easier to understand. as well
as obtained through a strictly mathematical approach. After having obtained the Green-
Naghdi theory, Webster & Shields applied it to many problems. such as wave shoaling.
However. jump conditions are not considered in their problems. and thus their derivation
and applications do not include this development. Theretore. the jump conditions based

on Shields & Webster's approach needs to be derived first.

After the governing equations and jump conditions based on ditterent level of Green-
Naghdi methods have been obtained. we will apply them to various problems. The main
concern in this dissertation is the flow under a sluice gate and the flow over a weir.
Before discussing these problems. we first consider some simple problems. such as the
free waterfall problem. which form theoretical foundation to solve more complicated
problems. The comparison between current results with those ot Naghdi or others will be

made when these results are available.
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Chapter 2

Green-Naghdi Model

The Green-Naghdi model is a continuum model in which the kinematic character of
the flow is prescribed in one direction beforehand. say. in the vertical direction in this
thesis. This approach always yields a three-dimensional. unsteady model for particular
flows. With the restriction of velocity profile. the equations for modeling a flow can
satisfy the boundary conditions exactly. satisfy conservation of mass exactly. Moreover.

the governing equations obtained through Green-Naghdi model are Gallilean invariant.

The governing equations derived by Green-Naghdi method are composed of: an exact
statement of the conservation law of mass. an approximate statement of the conservation
law of momentum. and exact statements for various boundary conditions. As a result of
the formulation. the vertical coordinate no longer appears in the governing equations and
all quantities are functions of horizontal coordinates and time. Theretore the obtained
governing equations are two-dimensional in form and still three-dimensional in character.

which is a great advantage of Green-Naghdi theory.

For later convenience. we derive briefly the governing equations for Green-Naghdi
model. following the approach introduced by Shields & Webster (1988). For detail
derivation. please refer to the paper of Shields & Webster (1988). or the Ph.D.
dissertation of Shields (1986). In §2.1, we state clearly the idea of Green-Naghdi method

and give out the general Green-Naghdi equations without detail derivations and
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explanations. In §2.2, based on the assumed profile of the velocity (2.15). we obtain the
particular Green-Naghdi equations for shallow water problems. which are the main
concern in this thesis. Then in §2.3 and §2.4 we will obtain the Green-Naghdi Level [ and

[ governing equations respectively.

§2.1 Derivation of the general Green-Naghdi equations

Before the derivation. we need to explain the notation adopted here. Letx = x, (1 = .
2. 3) be a system of fixed Cartesian coordinates in Euclidian space with base vectors e, .
where e is oriented vertically upward. For convenience. we shall denote x, by J in

the subsequent development because this dimension plays a much difterent role than the
other two dimensions. In the following we shall use standard Cartesian tensor notation.
with the summation convention implied for repeated indices. Latin indices are used for
quantities having three spatial components and take on values of 1. 2. 3. Greek indices
take on the values of 1. and 2 only. A comma in the subscript denotes ditferentiation by
the following variable or that corresponding to the subsequent index. The fluid velocity

vector at a point X and time tis givenby v = v(X. 1) = v, .

Here we adopt the common assumption in hydrodynamics that the fluid is inviscid.
incompressible and homogenous. Note that when Shields (1986) derived the directed
theory. he did not restrict the property of the fluid. But in this dissertation we only
consider the inviscid and incompressible fluid. The fluid is assumed to be bounded by

two smooth and non-intersecting material surfaces. The material surfaces are given by
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L=a(X,.X,.t) and {=PB(x,,X,,t), B>a. respectively (see Fig. 2.1). Then the three-
dimensional (Euler) equations resulting from the conservation laws of mass and

momentum are

pv,, +(pVv,Vv)),=—p,—Pge;. (2.2)

/—— Top surface 2=5(x,.x,t)

Y

A% (D) pressure on the top surface ?J(x,.xz.t)

Fluid thickness

Sy " ol ‘ 0o=p-u
% \ Mid-surface Z =(a - )2
>
O X Bottom surface Z=a(X,. X,t)

Pressure on the bottom p(X,.x,.t)

Fig. 2.1 Sketch of a fluid body bounded by two material surtaces

Since o and B are material surfaces. then the kinematic (“no leak™) boundary

conditions on these surfaces are:

D
—15[% =[v.3 -B,-v, B'.!]‘;zﬂ =0.

9
W
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=0. (2.3a.b)

D ) ..
where -6—— denotes the material derivative.
t

We now introduce a kinematic assumption that the velocity field of tluid can be

approximately described as

K
VXX 5 0= WX, DR, (S) (i=1.2.3) (2.4)

n=(
(&) is ashape” function which depends upon C only. and is specified a priori. For
instance. tor particular problems such as shallow water problems. the polynomial
weighing function A (Z)=C" is chosen. The coetficients W are unknown. time
dependent vectors to be determined as part ot the solution. The W, correspond with the
“directors™ in the work of Green and Naghdi. For each choice of K. a complete. closed
set of equations is developed which is independent from those for a different value of K.
Thus. the kinematic models form a hierarchy depending on K and increasing in
complexity with K. Since this hierarchy is different from a perturbation expansion. we
adopt the terminology suggested by Shields & Webster (1988) to describe the complexity
of the theory. We refer to a particular member of this hierarchy as the "K" level

approximation™. or “Level K theory™.

With the adoption of (2.4). the form of the solution is prescribed a priori in the
vertical direction while is unknown in the other two directions. In addition. it is assumed

that the vertical variation of the velocity field may be represented to a tolerable degrec of

24
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accuracy by the sum of different shape functions A (Z). Consequently. the otherwise

three-dimensional governing equations are reduced to two-dimensional equations.

Then under this assumption. the kinematic boundary conditions. (2.3a. b). may be

rewritten as

K N

S Wk (@)=a,+Y Wi (@a,. (2.5)
n=0 n=0

K . N .

S W R, (B)=B, +) Wk, (BB, (v=1.2) (2.6)
n=0 n={)

The continuity equation (2.1) likewise becomes

m=0

m=0

[t is convenient at this point to restrict the weighting function to those which possess

the following property
hp.=D.alh, . (n<m) (2.8)

where the a, are arbitrary constants. (2.8) means that the derivative of the shape tunction
can be represented with the lower order of the polynomial function of the shape tunctions
themselves. Here (2.8) is introduced in order to simplity the continuity equation ¢2.7).
Because the shape function A (Z) is specified a priori. we can intently choose a function
with the property of (2.8). There are many function sets that satisty (2.8). such as

exponential functions and polynomial functions. On the other hand. this property is not

28]
W
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essential in Green-Naghdi theory. [f the chosen A (&) does not satisty (2.8). then the

Kryvlov-Kantorovich method can be emploved. as done by Shields (1986).

The function set {A_} is therefore a finite closed set under differentiation. Inserting

(2.8) into (2.7) we can express continuity equation as

K K
Z{W,‘Q+ZWlf,a‘,"}}-,(§)=0. (2.9)
r=0 ‘ m=0
or. since the terms in braces are not a function of J
K -
W/, +) W al=0. forr=0..... K. (2.10)
m=0

This is therefore the statement of conservation of mass for the tlow given by the

kinematic approximation (2.4).

Now let us turn to the conservation law of momentum. [t we were to substitute (2.4)
into the momentum equation (2.2). and require that the resulting cocetticients of 2. (J) be
cqual to zero (as we did for the continuity equation). we would obtain 3(K~1) cquations.
Remember that we have already obtained (K-1) equations from (2.10). then we would
have 4(K~1) equations. However. we have only 3(K~1) unknown velocity components.
i.e.. W! . and the unknown pressure p. Theretore. we would have many more equations
than unknowns. Consequently. the Krylov-Kantorovich method is employed. That is. the
shape functions A () are used as weighting functions to develop 3(K~1) approximate
equations that express the conservation of momentum in some integral sense. At the same

time. K=1 new unknowns. i.e.. the integral pressure P, . are introduced in this procedure.
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As pointed out by Shields (1986). this procedure is equivalent to the weak formulation of
a variational problem discussed by Yeung (1982). and it is cquivalent to setting the
depth-integrated weighted residuals ot the field equations to zero. We multiply (2.2) by

A, (Z) and integrate through the vertical direction obtaining

B f
[lov.), +bvv,) Jo@de = [[=p, -pee,Ji ez, 210

forn=0..... K.

We insert the kinematic assumption (2.4) into the above expression. and after a

straightforward but tedious derivation. finally we can obtain

i{ pw:nl ymﬂ +ipw:nl \VF' ymrn +i p w‘:‘n w’-" y:nll} = (2'12)

(_Pn +f);\'n(B)Bf _Ekn(a)a.y )e'r +(p'n _pgyn() _ﬁ)}'n([}) +5}‘n(a) )C-‘.
forn=0.....K.andi=1.2.3
where

p and p are the pressures on the top and bottom surfaces respectively. and

P and P', are the n" integrated pressures:

Pn=ujpxndq, P'n=uj'p}‘n'dC_. (2.13)
and

p p B
You= ke @Ce Yoo = [h b hgdS vh = [ro o 2,dz. (2.14)
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Here the prime denotes the derivative with regard to £ . For detail derivation. please reter

to Shields & Webster(1988).

We have now completed the derivation of the general Green-Naghdi equations for an
inviscid. incompressible fluid bound by two smooth. non-intersecting material surfaces.
The governing equations for an inviscid tlow are then: the two kinematic boundary
conditions (2.5) and (2.6): the K+1 conservation ot mass equations (2.10): and the

3(K+1) approximate conservation of momentum equations (2.12). The variables include
3(K+1) unknown components of W, . K+ integrated pressures. P, . and two conditions
on the bounding surfaces. On the top surface either § or p is unknown. depending on the
problem. Similarly on the bottom surface either « or p is unknown. Thus. we have

4(K+1)+2 unknowns and the same number ot equations. and the system is closed.

We can make several observations about the results so far. The equations depend only
on X,. X, and t and do not have any explicit dependence on the variable J. Thus the
result of the derivation has been to reduce the dimensionality of the three-dimensional
equations to a set of two-dimensional equations in X,. X, and t. As such. these equations
are reminiscent of equations for a membrane although. unlike a membrane. this “tluid
sheet”™ has a much greater kinematic complexity. For instance. a membrane has only one
kinematic variable, that is, the location of the membrane for a given x,. x,. The fluid
sheet has variables W, one of which may be identified as the “location™ of the sheet. but

the others of which are clearly kinematic ingredients which have no counterparts as a

membrane.
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Recall that after the initial assumption of the form of the velocity distribution in the Z

direction was introduced. no terms were thrown out. Therefore. the governing equations.
like the conservation laws from which they were derived, are Galilean invariant. Because
no scale was introduced there is no explicit flow situation for which this theory is most
applicable. Due to that assumption. the governing equations derived this way are. to be
sure. an approximation. However. the limits of this approximation are implicit and must
be determined by numerical or physical experiments. Even for the lowest level theory.
the governing equations are nonlinear because both the conservation of momentum laws

and the boundary conditions are.

As pointed out by Webster (1991). because the governing equations are approximate.
they do not exactly satisty Kelvin's theorem and the tflow computed trom these equations
does not remain irrotational. Shields and Webster (1989) showed that the K" level
shallow water fluid sheet theory does satisfy conservation of circulation in an average
sense across the fluid domain and the tlow does remain approximately irrotational in an
initial value problem when the initial state was quiescent. However. the treatment of
steady flow (time invariant) problems does require some additional specifications ot the

average circulation (or of the vorticity distribution).
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§2.2 Governing equations for shallow water

In the above section we have obtained the general Green-Naghdi equations for an
inviscid. incompressible fluid. However. the general Green-Naghdi governing equations
require that the shape function. or say. weighting function. 2 (Z) should be given a
priori. Different shape functions will vield different realizations of the theory that will
vield different answers to a given problem. That is. the solutions are not unique due to
ditferent chosen A (&) . It is assumed. however. that the answers from two such
realizations will not be fundamentally ditferent for a given problem if the shape functions
are appropriate to the problem. For shallow water problems. the study of Shields and
Webster (1988) shows that the adoption of the polynomial weighting function is

relatively simply and yields satisfactory results.

With the choice of the polynomial weighting function. thatis » (2)=2". which
satisfies the property (2.8). it is possible to reduce the general equations further. Then

according to (2.4) and (2.5). the velocity field is given by

K K
v, =Y WIEh, vi=y Wion. (2.15)
n=0

n=t

Note that y ranges from 1 to 2.

Then the kinematic boundary conditions (2.6a. b) become

K K
ZWH’ a"=a, +ZW,;" a'a,.
n=0

n=0
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K N
D WiBT =B, +> WIB"B,. (2.16a. b)
n=0 n=0

The continuity equation becomes

K
W, 2" +Y W/ nZ"" =0, (2.17)

After separating the K™ term in the first summation and changing the index n to n+1.

we obtain
. LSl 3 )
Wy, 2R Y W2 s )W g = 0. (2.18)
n=0

If (2.18) is to hold everywhere. we may set each coefticient of Z" to zero. that is.

-

W, =0. (2.19)

W, +(n+D)W.,=0. forn=0.1....K-l. (2.20)

We need to point out that (2.19) is related to the so-called “restricted theory™ When
Green & Naghdi introduced their theory. they restricted the last component ot the director
so that it remains vertical at all times. With this “restricted theory™. Green & Naghdi
make their theory self-consistent in its internal structure. Shields (1986) set W =0
(corresponding to a restricted director) in order to satisty the continuity equations.
However. Webster (1993) found that the restricted theory is needed in order to model

shallow water problems whose tluid field is considered as irrotational. In the later
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chapters. we introduce the “restricted theory™ for particular problems. which we will

discuss in detail later.

Finally the conservation law of momentum states

i{ p\’vm,l H(m»n; +ip\vm.‘!wr? Hlm»r-m +ZK: pmw'.n\vr: H«r-n-m-lx}L =
m=0 r=0 r=t ;
(—P" +pp" B,-pa"a, )e_, +(P'n -pgH, -pp" +pa” )e., (2.21)
forn=0.....K
where
B 1
H, = [¢" dg=— (" o) (2.22)
: n+l

Therefore a closed system has been obtained. which consists of governing equations
(2.16a. b). (2.19). (2.20) and (2.21). Note that in this governing system we did not include
the restricted theory. as Shields (1986) did. However. the restricted theory will be applied
in this thesis for simplification. As we will discuss later. under certain circumstance.

(2.19) are equivalent to the restricted theory.

From the above derivation of Green-Naghdi governing equations. the total number of
variables and equations depends on the assumed profile ot the tluid velocity. For the
governing system of shallow water flow. it depends on the highest order of the
polynomial function. that is. the index K. Thus we can identity the level of Green-Naghdi
model by means of the index K. When K=1. this responds Green-Naghdi Level-[ theory.

which is the simplest model. The higher the level is. the higher number of equations and
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variables appears. as a result the more complicated the governing system becomes and
more accurate results we can obtain. Notice that the appearance of the momentum
equations in (2.21) is deceptively simple but note that there are two levels of summation.
Actual evaluation of the equations is sufficiently tedious that it is impractical to carry out
any but the first one or two levels without the use ot computer programs to perform the
calculus and the algebra. In the following two sections. we summarize the governing
equations for Level-1 and II for later convenience. We will focus our attention on two-
dimensional problems. The governing equations for three-dimensional problems are

similar. but more tedious.

§2.3 Green-Naghdi Level-I theory

According to Green-Naghdi method (Level-I). that is. the index K is set to 1.
according to (2.15) the velocity profile (u. v) is assumed to be ot the form:

ul(x.Z.
( (2.3.1a. b)

gy
Land

S—

]

-

[=}

on)

P

:

—

—

+

Eol

—

/

~

A A

v(x.
where. C denotes the vertical coordinate and x the horizontal coordinate. The

corresponding restricted theory is

u, =0. (

1o
(9%)
to

Hence we will get rid of u, from the governing system. Conscequently. in this level. the
horizontal velocity is uniform in the vertical direction. while the vertical velocity is

assumed to be linear in the vertical direction (see Fig. 2.2).

(V9]
(93]
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Vo * v,

C

Vo +v,a

Fig. 2.2 Sketch of the velocity protile for Green-Naghdi Level-I theory

The fluid is assumed to be bounded by two smooth and non-intersecting material
surfaces. The material surfaces. so called top and bottom surtaces. are denoted by
Z=a(x.t) and Z=p(x.1). B> . respectively. No matter whether they are given or
unknown free surfaces. in principle. since they are material surfaces. then they will

satisty the kinematic (“'no leak™) boundary condition. that is.

D

B? =[v, =B, -v, B, ]::u =0. (2.3.3)
%:vS-al—v.,a., . =0 (2.3.4)
Dt fi5a

Here f, and f, denote %tl— and _:éi respectively. From now on. we will use this
ox

notation.
[n two-dimensional system. say x horizontal and y (or ) vertical. with use of the
assumed velocity profile. the kinematic boundary conditions can be reduced to:

Vo F VA =0, +UQ s

(2.3.5a. b)
Vo t VIB = B( + uoBv
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where B =f(x,t) and o = a(x.t) represent the top and bottom surfaces respectively.

After applying the conservation law ot mass and taking into account the velocity
protile. we can obtain the continuity equation:

Uy +v,=0. (2.3.6)

As for the conservation law of momentum. recall that there are two levels of
summation in (2.21). The derivation is straightforward. but a little tedious. Without re-

deriving them in detail. we just list the results as follows:

1 . _
Uy by +9, ugu,, =E(-Pu\ +pB\ -pa,)

1 . _
Uy, +o,u,uy, =E(_Pu +pfB, —pua )

Voo F 0oy Voe TOVovy +V 0, +0u,v o +0,V,Y,
1 . (2.3.7a-d)
= —{-pgé, -p+p)
P

Vo b, +dugvy +0,vv + Vb, +d.uv +d,v v,

. P
= ;(Po—pg¢l—pB+pa)

where.

p and P are the pressures on the top and bottom surfaces respectively. and

0, =B-a

9, =%(Bz —a’); (2.3.8)
| [

(b: = (B) - )

3
J

(V9]
W
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B
P, = [pg"dc. (n=0.1.2...)

Equations (2.3.5a. b). (2.3.6). and (2.3.7a-d) form the governing system with seven

equations and nine variables. that is. a. B. u,. v,. v,. P,. P,. p and p. Two additional

equations (or boundary conditions) are needed in order to torm a ciosed governing
system. We suppose that the remaining two equations will appear when particular

problem is introduced. Thus. a well-posed governing system can be obtained.

Here we have to point out that. since P only exists in equation (2.3.7b). it is then a
dependent variable and need not be solved simultaneously with the other variables.
Theretore. in practice. we will omit the governing equation (2.3.7b) together with the

variable P, from the governing system
§2.4 Green-Naghdi Level I theory
According to Green-Naghdi Level-II method. that is. when the index K=2. in two

dimensional system, say X horizontal and £ vertical. the protiles of horizontal and

vertical components of velocity (2.4) become:

v=v,+v, C+v, 57, respectively. (2.4.1a.b)

where & denotes the vertical position. And the corresponding restricted theory is
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u,=0.

(2.4.2)

From now on, we will get rid of u, from the governing system. As a result. the profile of

the velocity is illustrated in Fig. 2.3.

Ay Ay

R
Ug+ U8 Vo ¥ Vi + VB
p B
o — a >
0 U, + ua ! 0 2 v
0 1 Vo T V& + Vo
Fig. 2.3 Sketch of the velocity protile for Green-Naghdi Level-II theory
The kinematic boundary conditions on the top and bottom surtaces are:
Df :
=0=>B, +uB, +uPB, =v,+v,p+v,p:
Dt
Da 2 o) -
—=0=a, +u,a +uaa =v,+v,o+v.a. (2.4.3a.b)
Dt .
The continuity equation states:
u, +v, =0,
u, +2v,=0. (2.4.4a.b)

The application of conservation law of momentum (2.21) leads to:
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n=0. in horizontal direction.

1 .
(B—Ol)(um +Ugly, +U;V, )"";(Bl —as Xun FU U FUMU,F UV, )

| . P p
+:(B"‘0‘)XU1U|‘+U|V:)=—L+EB\-Ea\
3
n=1. in horizontal direction.

l 3 4 l 1 3
:(B— _a-xum TUpUy, +ul\'0)+?(B' - Xun FU U, UL UV
2 3

+1(B“-a‘luluh+ulv:)= pBB -Loa
4 p p

n=2. in horizontal direction.
L(as 3 1 ( 4 4X N ) . )
—\B" —a” Ry, +ugug, +u,Vl,)+1 B —a” fku, +uu, +u,u +u,v,

+

C P B
(B’—a'Xu‘uh+u!v:)=—+‘+BB‘B\—Ea‘a\
)

| —
o |
©

n=0. in vertical direction.

Ly s .
(B"axvm +u0v0\ +\'IVO )+;(B- —(I-X\'“ +ulvl)\ +U0\'l\ +vl 4"2\"1)\': )

l 3 3 ~
+§(B -« XV:: UV FUG VL FOV :)

+l(ﬁ4—a‘Xul\':‘+2v::)=—g( —a)-é+E
3 ‘ PP

n=1. in vertical direction.

1 2 2 3 X 2
;(B - XVO‘+U0VU‘+\,\0 -3 =’ v Fupv a2V Y

-

1
+—(B4 —aJ Xv’l +ul\' Ix +u0\'.2( +3\’l\'l )

| -y Pl . N F D
+—(B' —aSXu,v:‘ +2v, )=?’—5g(ﬁ‘ -’ )—§B+%a

n=2. in vertical direction.
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33 Ts . 2
(B"‘a XVOI+uOVO\+VlVO)+I(B -« lel+ulvl)‘+u()le+vl +2v0\':)

U2 | —

+‘l:(35—asxvh+ulv,‘+u0v3‘+3v|v:)
+l(ﬁﬁ_a61u,vl\+-v3:)=35—lg([3 —u )-EB'J*EQ'
6 p 3 0

There are twelve variables in the Green-Naghdi Level Il governing equations. that is.
«. B.u,.u,. vy, V. v, Ppo PO P, p and p. However. we have only ten equations.
that is. (2.4.3a. b). (2.4.4a. b) and (2.4.53a-f). This means two extra conditions are needed
to construct a well-posed system. These two extra conditions will depend on the
particular problem in question and will be introduced in our discussion of each problem.
For instance. for a free watertall problem as we will discuss later. in the downstream the
bottom surface and the pressure on the top surface is known. then only eleven variables

are left. Thus a closed governing system can be set up.

Therefore. we have obtained both Green-Naghdi Level [ governing equations and
Level II equations for shallow water problems. [n order to obtain the solutions. boundary
conditions and initial conditions are need. These conditions must be specified tor
particular problems. Theretore. in the following chapters. application of these equations
to particular problems will be demonstrated. and under particular problems. these

governing equations can be further simplified.
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Chapter 3

Jump Conditions for Green-Naghdi Theory

[n chapter 2 we have obtained the general Green-Naghdi governing equations for an
inviscid, incompressible fluid. simplified equations for shallow water problems. and the
governing equations for Green-Naghdi Level I and II theory. For those problem where a
set of governing equations are valid throughout the whole tflow region and the variables
are continuous everywhere. the governing equations. together with the particular
boundary and initial conditions. are sufticient to obtain the solutions. However. under
certain circumstances. different sets of governing equations are needed for ditterent flow
regions. For instance. the free watertall over a clift can be divided into two parts with
distinct characteristics: part 1 is bounded by a given bottom and an unknown free surface:
part 2 is bounded by two unknown free surfaces (sec Fig. 4.1). Then it is convenient to
derive ditferent governing equations for them respectively. seek separate solutions for
each region. and match these solutions where they join to obtain a uniform solution valid
throughout both regions. Therefore. the jump conditions. or so-called matching
conditions. become essential part of the solutions. Another possible application of jump
conditions is when there are variables with discontinuity at certain discrete points. that is.
there exist jumps on the values of some variables in the flow region. Both the tlow overa
weir and the flow through a sluice gate fall into this category. Obviously. because of the
presence of the weir or the sluice gate. there exists a jump of the thickness of the tluid
between upstream and downstream. as well as jumps of other variables as we will discuss

later. When there are real physical jumps. the Green-Naghdi governing equations. which
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require continuity of all variables involved. cannot be valid throughout the flow region.
In this case. the Green-Naghdi theory must be applied separately to upstream and
downstream flows respectively. even though the obtained governing equations are same
in character, e.g. for sluice gate problems. Since the magnitudes of the jumps are
unknown beforehand and the Green-Naghdi theory is a complex nonlinear theory at all

levels. application of the jump conditions is a real challenge. as we will discuss in later

chapters.

Green & Naghdi realized the importance of the jump conditions when they introduced
the directed sheet theory. Jump conditions have been obtained with various degrees of
generality by Green & Naghdi (1976. 1977). Caulk (1976) and Naghdi & Rubin (1981)
for the theory with one director in the Lagrangian form. When they recast the directed
fluid sheet theory in Eulerian frame in 1986. Green and Naghdi derived the general

formula of jump conditions directly from the general governing equations.

In this thesis we have adopted the formula introduced by Shields and Webster (1988).
as we presented in chapter 2. Their method appears much easier to understand from
hydrodynamic point of view. However. they did not derive the jump conditions
associated with their method. because the jump conditions are not needed for those
problems they considered. such as wave shoaling. Therefore. we here need to derive the
jump conditions based on their formula. which are different from. but equivalent to. those
of Green and Naghdi. In the interest of simplicity. we restrict our attention only to jump

conditions for steady two-dimensional flows. similar to what Green & Naghdi did. First
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we derive the jump conditions associated with the general Green-Naghdi equations. Since
this has never done before. we will present the derivation in detail. The results form the

theoretical foundation of further application to a variety of problems.
§3.1 General formula of jump conditions for steady two-dimensional flows

We employ standard two-dimensional Cartesian coordinates with x horizontal and v
(or 2 ) vertical. We suppose that an inviscid. incompressible tluid is bounded by two non-

intersecting material surfaces. According to the kinematic assumption. the velocity

profile of the fluid is assumed to be

K K
V(x.;)=2un(x);"e\+Zvn(x)C_"c\. (3.1)

n=9 n =0
where. J denotes the vertical coordinate instead of y: u, (x) and v, (x) are dependent

on the horizontal coordinate x only since the tlow is steady.

Then from the results obtained in chapter 2. tor steady. two-dimensional flows. the

kinematic boundary conditions for the bottom and top surfaces are given by

K K
no_ n

dvoat=du,a"a,

n=0 n=0

K K

s no__ n . ) SN

Z\nB -Zun[} B, . respectively. (3.2a. b)
n=0 n=0

The continuity equations become
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u, +(m+Dv,

Note that here we do not use the restricted theory. that is. we do not assume that u, =0.

Then. from (3

Subtracting (3.2a) from (3.2b). we can obtain

K
Zvn (Bn -a” )=

n=4

forn=

K
Du, (BB, ~a" )

n=0

=0, for n=0, ..

. K-1.

. K.

(3.3a. b)

.3b) after changing the index n+1 to n. we have

(P9)
th

S l nel nel
=2 U, —— (@ -a")
n+l

n=t

[nserting (3.4) into the left-hand side of (3.5). we have

K
LHS of(3.5) =v,(8° ——a”)+Z——u“_l_‘ B"-au")

&1
=—znunlx(B —CX.)
1
Zn nl\(B -a"

K
n=l
K

L nl_ n-l
Z +1 e “)

n=0

l 1 UK_‘ (Bnol _anvl)

where, (3.3a) has been used. Then (3.5) becomes

Z ——l.l (Bml nol _l_u

n=0 n() 1

K

(Bnol _an~l )20 )

Finally we obtain a very simple formula
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i %[ B! —a")] =0. (3.7)

n=0

Obviously. (3.7) can be integrated. After integrating (3.7) with regard to x. we can

obtain
o l n+l n~l -
Z n+1[u"(B —¢ )]:Q_ (3.8)

where Q is a constant of integration. Q here has its own physical meaning. and actually is
the flow flux across a vertical interface between the two material surfaces  and «.

Recall that the horizontal velocity is assume to be

K
w(x.2)=> u, (x)5". (3.9)

n=0

The flow flux across a vertical intertace between the material surfaces f and « is

B
Q= [u(x.2)dg. (3.10)

Inserting (3.9) into (3.10) and integrating yields

e & n o y» & 1 [ nel n-l] -~
szg;un(x)c_ dg=§mun(ﬁ "], (3.11)

Note that (3.11) is exactly same as (3.9). As a result. (3.9) implies that the tlow flux

across any vertical interface between B and « keeps constant. This result is consistent

with the conservation law of mass.
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Now we suppose that there is a discontinuity at x =x,. for instance. there exists a
jump on the value of the location of the bottom at x=x,. Then the kinematic boundary
condition for the bottom surface (3.2a) is not valid at x=x,,. However. the conservation
law of mass is still valid across x=x,. In other words. here the flow tlux Q keeps

constant across X =X,. Consequently. we can obtain that

1Q

.. =0. 3.12)

where in the above formula the double bars. |

. indicates the magnitude of the jump

defined by

x=vgy

I

= (3.13)
X =X() N =X

Making use of (3.11). we obtain finally

| K
> o -a]

I n=0

=0. (3.14)

dx=x,
Before consideration of the conservation law of momentum. we derive some relations

from the kinematic boundary conditions (3.2a. b). which will prove to be very usetul to

simplify the Green-Naghdi governing equations later. especially when Green-Naghdi

Level I theory is applied.

Inserting (3.4) into (3.2a, b) respectively. we have
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(3.16)

Making use of (3.3a) and applying same process as we did in (3.6). from (3.13). we

obtain
K
| |
vo=) —fu, o) . (3.17)
,,=(,n+1( ) >
And similarly. (3.16) becomes
K
V=Y ——(u, p), (3.18)
Ton+l
Adding (3.17) and (3.18) together. we also obtain
(3.19)

Z_l_.( n- l+un B"" )‘

on+1

ul-—-

n=
This equation will prove to be very useful to eliminate the variable v, from the
governing equations.

Now we return to the conservation law of momentum. For steady. two-dimensional

flow. in the Green-Naghdi theory the conservation law of the horizontal and vertical

momentum states that
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K K K
Z{ zpum.xur H(m»rvn) +Z pmumvr Hu»n—m—l)} = (320)
m=0

r=0 r=0

-P,  +PB" B, -pu’a,

i{ ipvm.xur H|m~r~m +i pmvmvr Htr—n—m-li¥ =. (321)
J

r=0 r=i)
1 ~ n by N
P’ —pgH, -pp" +pu

forn=0.,....K.

Integrating the above formulae between x=x, -3 and x=x,, +J. and taking the

limit as d = 0. we obtain

lim ‘:]:o i{ ) pu, u, H.... +ZK: pmu_v, H,,,n,m_,,}fdxﬂ\ P, “\\ =
[}

3}
x=x, -9 m=0 | r= r=0

LR )

lim  [(pp" B, ~Foc’ i

X=X, -0

(3.22)

ARASCIN K K L

!)I_IB I ) Z{ zpvm.xur Htmvr.n) +z pmvmvr le~n~m-l|J dX =
x=x,-5 m=0{ r=0 r=()
lim  [(P', -peH, ~pB" +Pa’ Jdx
(3.25)
n=0.1.....K
47
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To this point, we have obtained jump conditions (3.14) derived from the conservation
of mass. and (3.22) and (3.23). which are derived directly from the conservation law of
momentum. These jump conditions (3.14). (3.22) and (3.23) are general formula that can

be further simplified once the level of the Green-Naghdi theory is set.

Before further consideration of the jump conditions is applied in the context of a
particular application in later chapters. we need to emphasize that the derivation of the
jump conditions above is carried out in Eulerian frame. and the so-called “restricted
theory™ is not applied. These jump conditions seem difterent trom what Green & Naghdi
obtained. however, they are equivalent in principle. especially once the level of the

Green-Naghdi theory is set. as we will find out later.
§3.2 Jump conditions for Green-Naghdi Level I theory

Now we proceed to obtain the jump conditions corresponding to Green-Naghdi Level
[ theory by specialization of the general results obtained in the above section. We apply

the jump conditions to the location x = x,. where discontinuities may exist such as the

joint peint between different regions. When the index level K=1. then (3.14) becomes

|

|

This is the jump condition associated with the conservation law of mass.

[UQ(B_Q)]’*‘%[‘J](B: _a:)]i

{

=0. (3.24)

X=x,
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If the restricted theory is applied. that is. u, =0 instead of u,  =0. then we can

obtain a very simple formula

“ uo(B_a)l

=0. (3.25)

X=X,

For later convenience. we define

Q=U,)(B—a). (

(9]

.26)
Q corresponds the flow flux that. by continuity. is independent of x. Thus (3.25) can be

rewritten

1Qj,.. =0. (3.27)

X=X,

which states that the flow flux keeps constant across the discontinuity interface.

Now we turn to the jump conditions derived from the law of conservation of
momentum. The simplification of these jump conditions is more difticult and tedious and
some manipulations are required. First we consider the conservation law of horizontal

momentum. When K=1 and n=0. (3.22) becomes

lim pup, v, B-codx + [0, [ =lim [(B ~Faddx. (328

where the restricted theory and (3.18) have been used.

Note that since the flow rate is constant at the joint point. thatis. u, (B-a) =Q

everywhere. then (3.28) can be further simplitied. With the help of (3.27). we can

integrate the left-hand side of (3.28) as follows:
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Xy +8

LHSof (3.28) = lim [pug, u, (B-co)dx + |, |

= lox—r'xg _[Puo‘ Qdx + | P, .
=[eQu, |, + 1P ...,
Then we can arrive at
[pQu, +Py [ =lim  [(3B,-F a,)dx. (3.29)

The right-hand side of (3.29) still contains the integral form and the limit. but they cannot

be treated with right now because they are dependent on the jump conditions at x = x,,.

In the same way. when K=1. n=1.(3.22) becomes

X, *9d

lim | =pQu,, (B+a)dx + IP, ||“ = lim

S0} A
A PR ]

I (PP, -paa )dx. (3.30)

=X, -

Unfortunately. the left-hand side of this equation cannot be integrated.

Now let us consider the vertical component of conservation law of momentum.

Before further proceeding. we define two new variables as

¢=p-u
E_:;—(B+a). (3.31a. b
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where. ¢ denotes the thickness of the fluid sheet. and Z the center line of the fluid. On

occasion it will be convenient to replace the variables o and  with the alternate

representation £ and ¢.

In Green-Naghdi Level-I model. the kinematic boundary conditions on the top and

bottom material surfaces are assumed to be

V, V0= U0

vy + VlB = UOB('

(3.32a.b)

Adding (3.32a) and (3.32b) together and applying the definition (3.31b). we obtain

v, +viZ=u,g . (3.33)
Recall that v, =—u, . Using this we obtain a usetul relation
A =(u0 E_)‘ . (3.34)

Actually. (3.34) can be obtained directly from (3.19) when K = 1. and the restricted

theory is used.

Let us turn back to the vertical component of the conservation law of momentum.

When K=1 and n=0. (3.23) becomes

X, -3

lim |

Ny -9
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This equation looks very complicated because there are two levels of summation in

(3.23). However. with the results we have obtained to date. we can simplify the left-hand

side of (3.33).

With the definition of (3.31a. b). we rewrite (3.35) in terms of new variables ¢ and 2
as follows:

X, + 8

lim f[pva‘uow+va‘uowi+pvzwnp+pw\wwékx

“lim [ [-p+B-peoldx

& —el)
X, -8

Recall that u, (B—«) = Q everywhere. that is. u, ¢ = Q. Using this. we can further

simplify the left-hand side of (3.35a).
LHSof (3.35a)=1im I [PVo,‘ Q+pv, Q&+ pv, @(v,+ v, i_)]dx

5—0 :
X, -d

Jtim [ [pQu,. +pQu.. 2+ oy, ou, 2, Jix

\, -8

4 4o

where (3.33) has been used.

Actually. with the help of (3.27) and (3.33). we can integrate the above expression as

follows:

w
9
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X, +8

LHSof (3.352)=lim j[vao,‘ +pQlv, S+ pv, i.‘)]dx

Xy -6
=Li_r'r01\"j.‘j[va0“ +pQ(v, &), ]dx
=[6ivr'r01‘vqf{pQ[v0" + (v, i_)‘[}dx
-tim | pofu, 2.1 e
’—'“PQUO £,

X=X,

where. (3.27) and (3.33) have been used again.

Finally. (3.35) becomes

1pQu, 2, | =lim [[-p+B-peoldx. (3.36)
There still exists a limit in the right hand side of (3.36). This limit and the integral cannot

be handled here. because they depend on the nature of the jump of the variables at the

joint intertace.

When K=1 and n=1. we have already obtained the jump condition (3.30). which is
derived from the horizontal momentum. With the definition (3.31a. b). we rewrite (3.30)

as

lim [ [pQua, glac+P] =lim [ (BB, ~porcr,)dx: (3.37)

When K=1 and n=1. (3.23) becomes

w
(¥3)
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lim

3-0

e L Lo,
[pvo_‘uo;(B'—a‘)+pvl,‘u0§(B —o)+ ViV, o <B ~at)epv,y, £ 3 B -a )Jd

X, e
. ! ' 1 h h - —
=lim _[ [P ,—pg— (B -a”)-pB +pa}dx
50 . 2
This equation cannot be integrated. However. we can simplify it to certain extent

With the help of (3.31a. b). (3.38) can be rewritten as

lnm {pvo,‘ Ug @S +p Vv, U, (T—?Hpéf]w“ PV, V, QI +pV, v, (%Hoé: de

50 .
Xy =0
X, +0

=lim [P, -pgoz-pp +padx

Using u, ¢ = Q. the left-hand side of (3.39) can be simplitied:

3 H
(p_- +V =1 . z P 2 1o .
u, +v,  u,9g 1.\l\x)(p“:'*'l_.,\l V) P3 X

X, *d
LHSof (3.39)=lim Jp[ Vo (UgQE + v, |
=0 75 ' N ‘ 3
[T |
=lim l:Q\o\—'f' Qv, . +— II+Q\I\ - \(0_(\\+\-)ldx
3—+0)
X, -8 - ]

With the help of (3.33). the above expression becomes

LHSof (3.39)=lim | [ Quy +o> v+ QY 3+ Qy E +\.<o‘u,,xldx

(p Qv'l4‘+(p vl +Q\'1)x’+Q (\" :+\l: )}‘\

=lim JP 1 2
o F el @ : N
_!)1_;3 Jp 5 Qv"‘+l‘7\l +Qv, 2 +Q&(v,2). j‘d.\

x, -4 L
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After re-arranging the above expression, we have

Xy +d 2 3
LHSOf(3.39)=leg '[ P[%Qvl_‘ +(p_"]: +QE_(VO + V|i_)\ de

12 12

st s , (3.40)

“tim [ ol ®0v. +2 v 02wz ) Wy

"LI_KI)I ‘{p[lz QVl,x + 12 Vi +Q$(U0‘:x)‘}1-\

where (3.33) has been used again.
Since v, =-u, . the left-hand side of (3.39)

LHSof (3.39) = lim j p[Qé_(u(,E_‘) -2 _Qu,.. +9—uu\:hx. (3.41)

-0 Y12 12 ]

Before further simplifying (3.41). we need to derive a particular relation. We

differentiate the equation u, @=Q with respect to x and obtain

ul)‘ (p+u() (p‘ =0' (342)

Thus.

Uy, == Qq,)‘ (3.43)
0

Differentiating (3.43) again. we obtain

_ 0 58 (3.44)
¢’ 0

UO\.\

wn
w
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With these results. we can further simplify equation (3.39). Inserting (3.43) and (3.44)

into (3.41). we have

X, -6

LHSof (3.39)=lim | p{ Q(

\, -0

\
R e TR e

=
o
Jw
”
~
— | B
hle)
VR
~ |
.5
%
+
9
o
5 | S
l®) ~
e +
=|°
—
|
(e
*G' =
P
/

3—+0

“tim [ p| Qelu,2.), + Lo, - Q"""}sx

3—0 2
- X, =9 1"' = (p

S—s0

. s . . 1 i W \: 1
=lim I P QC_(UQ;,‘)‘ +——Q'(P(9_—(::)_;]|le
/

s 12 [0)

=9 L

=lim‘”jdp Qz(u,z.) +LQ3(pl 9 | X
30 ’ > 0= x /¢ 12 (p :

Recall the definition of the integral pressure P_. as well as the kinematic assumption
of velocity. thatis. A_(Z)=C". then we have
P' =nP . forn=1..... K. (3.43)

where. the prime denotes the derivation with respect to Z.

Finally. we obtain

X, -3

lim {pQE_(u@i‘)n‘*—lecp(%] }dx =lim [ [P, -paoi-pp +paldx.

(3.46)
Now we have completed the derivation of jump conditions for Green-Naghdi Level-I

theory. that is. (3.27). (3.29). (3.36). (3.37) and (3.46). In the similar way. we can obtain
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jump conditions for any level of Green-Naghdi theory. although the formulae are very

complicated for higher levels.

We need to point out that although the momentum equations and energy are
equivalent under our assumption that the fluid is inviscid and incompressible. sometimes
it is more convenient 1o use energy cquation rather than momentum cquations to obtain
jump conditions. The reason is that due to certain discontinuity. the jump ol momentum
across the joint interface is unknown a priori. but the mechanical energy may keep
constant across the discontinuous point. We will not derive the general form of energy

equation for Green-Naghdi theory in this chapter. instead. we will derive them for

particular level of Green-Naghdi model as we will seen in later chapters.

We record below the jump conditions for Green-Naghdi Level [ theory since they will

often be used in the following chapters.

| uy(B-a)] o, =0:0r I Qi‘z‘” =0:
lpQuy+P, | =lim [ (5B, -B o, )dx:
[PQu, ..., =lim [[-p+B-pgoldx:
lim [ [pQu, glax+|P ] =lm [(@BB, ~Faa,)dx:
) X, ~8 i } l , ['(p‘ L Ned ] . B '
lim | |{pQ&(u,2,), +—=pQ 0 —) dx =lim | [P, -pgoz-pP +puldx.
=0 X, -0 ) 12 k (‘p < o9 \, -9
57
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It is of interest to provide a direct comparison between the jump conditions we
obtained here and those obtained by Green & Naghdi (1987). First let us list their results
here. The jump conditions Green & Naghdi obtained for Level [ theory are equations

(4.15). (4.16). (4.17). (4.18). (4.19) in their paper:

k[ =0. (4.15)
ﬂp'kuil=—ﬂp\|+ F,. (4.16)
|40 koo =F; . (4.17)
H%p.kqﬁm“-%léi_r.r(}‘”Ji'::)'cp‘m:dx:Lz. (4.18)
Lo kiu® + 1% + gol|=|- pul-®. (4.19)

where.

F, =lim J"f)q)'dx .
F, = -lim [p-prx. (4.20)

L3=-161_IB jpd)dx.

L]

and @ is the rate of energy dissipation.

We need to point out that (4.18) and (4.19) are derived from the law of conservation

of moment of momentum and the law of conservation of energy. respectively. Since we
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do not use them here. we will ignore these two jump conditions during comparison.

Before proceeding further, we introduce the following definition:

F, = lim ]‘(ﬁ)B‘—ﬁ o, )dx. (3.47)
F;=lim ”“—f)+'§—pg(p]dx. (3.48)

Then the jump conditions (3.29) and (3.36) become

HpQui) +P() i

= F .and (3.49)

=vg

|pQu, 2, |

. F, . respectively. {

[UF]
I
o

X=X

Now let us compare our results with those of Green & Naghdi. Taking into
consideration the different set of notations adopted. we can easily tind that (3.27) and
(3.49) are exactly same as (4.15) and (4.16) of Green & Naghdi respectively. (3.30) looks
different from (4.17) of Green & Naghdi. but recall the definition of ® in Green &
Naghdi's paper:

w=ko'/ %, (+.14)
where the prime denotes the derivative with respect to x. Plugging (4.14) into (4.17) and
keeping in mind that the central line of the fluid sheet is one half of the thickness of the
fluid sheet when the bottom surface is flat. we can finally show the equivalence between

(3.50) and (4.17) of Green & Naghdi.
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After brief comparison between our results and those of Green & Naghdi. we find
that the jump conditions obtained here are equivalent to what Green & Naghdi obtained.

and both sets of jump conditions are based on Eulerian frame.

Now that we have obtained both the Green-Naghdi governing equations and the
corresponding jump conditions. in the following chapters we will demonstrate the

application of this method to a variety of problems.
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Chapter 4

Steady Inviscid Free Waterfall

This chapter is concerned with two-dimensional motion of an incompressible.
inviscid fluid in a waterfall under the action of gravity. The general Green-Naghdi
governing equations and the associated jump conditions are specialized for this situation.
The equations and jump conditions obtained will form the basis for the investigation of
the flow through a sluice gate and the weir flow in the following two chapters. Before
proceeding further. we summarize the problem in the following paragraph for later

reference.

Consider the steady two-dimensional flow of an inviscid. incompressible tluid under
the action of gravity over a cliff leading to a free watertall (as shown in Fig. 4.1). The
effect of surface tension is assumed negligible. As shown in Fig. 4.1. we identify two
distinct regions of tlow are associated with this problem: the upstream region (region I)
characterized by a free top surface and a smooth bottom. and the downstream region
(labeled as III) where both the top and bottom surfaces of the tluid are free. Far upstream
the fluid is assumed to flow as a uniform stream. while downstream the fluid falls freely
under the action of gravity. Of particular interest in analyzing the problem is the
prediction of the fluid height along the whole flow region and the determination of the
downstream solution. i.e., the location of the free surfaces and the distribution of the

vertical thickness of the jet.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



AY

Region | Region |l

,,COTOEOEOEET
N \ NAMS8S *\\\\\:;~5\\\‘\\\ . A
H

s
s

N R }\\\<\~\\\\\

Fig. 4.1.1 Illustration of waterfall over a flat bottom

This problem seems very simple at the first glance. However. the unknown free
surface and unknown velocity of particles on the free surface compose the rather complex
nature of the flow. Moreover. in the downstream region. both top and bottom surfaces are
free and unknown. As a result, although this problem is well-studied. the exact analytical
solution of the problem has not been possible so far with the use of the three-dimensional
equations of an incompressible. inviscid fluid. Instead. numerical procedures or
asymptotic techniques are applied by previous researchers. Keller & Weitz (1937) have
developed a series in powers of the jet thickness and obtained a solution for the region
downstream of the fluid bed only. Clarke (1965) has solved the problem of watertall for
large Froude numbers with the use of matched asymptotic techniques and by utilizing an
asymptotic expansion based on the reciprocal of Froude number in the upstream region
and another expansion based on the thinness of the tall in the downstream region. A
further discussion of the problem of overtall is included in a paper of Keller & Geer

(1973). who consider asymptotic solutions of a class of problems based on the
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slenderness ratio of the stream. An early numerical solution of the problem. employing
relaxation, was given by Southwell & Vaisey (1946); and further results. again by
relaxation method, were obtained by Markland (1965). Chow & Han (1979) obtained a
numerical solution of the problem via the three-dimensional equations of an inviscid.
incompressible fluid along with hodograph transformation. Later on. numerical solutions
have been obtained by Smith and Abd-El-Malek (1983). Vanden-Broeck and Keller

(1987), Dias et al. (1988) and Dias and Tuck (1991).

The first analytical solution of the waterfall problem was obtain by Naghdi & Rubin
(1981). who employed a special case of the system ot ditferential equation ot'a Cosserat
(or a directed) fluid sheet, developed by Green & Naghdi (1976). The analytical solution.
employing Green-Naghdi method. is quite simple, contrasted with the fairly intricate
numerical work of Chow & Han (1979) or the asymptotic solution ot Clarke (1963)
which is valid only for large Froude numbers. Moreover. it proved that the upstream tlow
cannot be subcritical. which confirmed a speculative remark made by Chow & Han to the

etfect that ‘the existence of subcritical case is doubtful in steady inviscid tlow".

In the paper of Naghdi & Rubin (1981), they gave the solution only for the waterfail
problem with a flat bed. Actually. an analytical solution can be obtained only under this
condition, as we will see later. Moreover, the Green-Naghdi governing equations they
used are based on Lagrangian frame. In this chapter. we will use the governing equation
and jump conditions, derived in previous chapters based on Eulerian frame. to solve the

free waterfall problem with a smooth bottom, rather than the tlat bottom. In addition. the
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free waterfall problem with non-smooth a bottom is discussed and a simple case is

illustrated.

§4.1 General solution through Green-Naghdi Level-I theory

From the statement of problem. we know that there are two distinct regions with
different characters (see Fig. 4.1.1): the upstream region [ associated with a unknown free
surface and a smooth bottom: and the downstream region III bounded by two free
surfaces. both of which are unknown. Recall that we have obtained a Green-Naghdi
governing system in Chapter 2 for an unsteady. two-dimensional flow. Now we will

specialize the system with the use of particular features associated with each region.

4.1.1 Governing equations for region I (flow over a smooth bottom)

First we consider the upstream region. that is. region [ with a unknown free surtace
and a given smooth bottom. The pressure everywhere at the top free surface should be
equal to the atmospheric pressure. which is assumed to be constant. Without loss of
generality. we have the atmospheric pressure to be zero. that is. p=0 everywhere. For
Green-Naghdi Level-I theory. the restricted theory states that

u, =0. (4.1.1)

From the continuity equation. we have

ug +v,=0. (4.1.2)
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Since the flow is steady, with the help of the restricted theory. the kinematic boundary

conditions on the top and bottom surfaces become

Vo + VA= Ul (+.1.3)

vy + Vv B=ugB.. +.1.4)

For steady. two-dimensional flow. the governing equations (2.27a. c. d) derived from

the conservation law of momentum become

1 _ .
douguy =—(-Py, —pat,); (4.1.3)
P
1 _
douy vy +d, Vv, FOuv, O VvV = 5(—Pg¢,, +p)- (4.1.6)
1 _
diugvy, +0,VeVv +d,uv +0,vV = E(P(, -pgd, +pa). (+.1.7)

where the restricted theory and p=0 have been used. And we do not use equation (2.27b)

since the variable P, only appears in this equation. This implies that P, is dependent on

other variables.

Since the bottom surface o(x) is given beforehand. then equations (4.1.2)-(4.1.7)
form a closed governing system with six differential equations and six variables. that is.

B. u,. v,. v,. P, and p. Once appropriate boundary conditions are applied. as

discussed in section 4.1.4, these governing equations for region [ can be solved.

[«
w
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After observing these governing equations obtained above. we find that they are
coupled, quasi-linear first order differential equations, which can be solved numerically.
However, in this particular case and with some manipulations. we can further simplify
this governing system. Under certain condition. we can even obtain the analytical
solutions for this governing system. Recall that for Green-Naghdi Level-I theory. the

statement that the flow rate is constant everywhere is
u, (B-a)=Q. (4.1.8)

where Q denotes the constant rate of fluid flow.

Since the bottom is given. we can replace the top surface variable B with the variable
¢, . which stands for the thickness of the fluid according to its definition. Then (4.1.8)
becomes

u, ¢,=Q. (+.1.9)

From (4.1.3). with the help of (4.1.2). we can obtain

vo=(u, a), . (4.1.10)

Inserting (4.1.2). (4.1.9) and (4.1.10) into (4.1.5) to eliminate u,. v, . v,.and using
(4.1.6) and (4.1.7) to replace P, and p. finally we obtain after a tedious derivation a

second-order differential equation in ¢, only:
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where R, is integral constants and can be determined by appropriate upstream boundary

conditions.

Once equation (4.1.11) is solved. from (4.1.7) and (4.1.6) we can obtain P, and p

through the following equations:

(+.1.12)
P 1 1Q* 1 a1 ha b, 1 20,0
—°=¢0[R,-;g¢n—ga—;Q—z—;Q- Lt gl
P < =0y 2 b - b, 6 ¢,
£=g¢0_Q ¢(1\ _Q Cl.:(b‘ +Q ¢0x.\ +Q a\,\ . (4113)
p 20; b5 20, 9,

respectively.

To this point, we have obtained the very simple governing system for region | of the
waterfall problem, which includes (4.11). (4.12) and (4.13). [f appropriate boundary

conditions are specified. (4.1.11) can be solved so to determine ¢, . the distribution of the
thickness of fluid in region [. By means ot (4.1.9). (4.1.10). (4.1.12) and (4.1.13). u,.

v,. P, and P can be obtained respectively.

When we derived the governing equations. we emphasized that the bottom should be
smooth. In (4.1.11). the second-order derivative of the bottom surtace appears. Hence. for

Green-Naghdi Level I theory, we can define that the bottom is smooth enough if at least
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the bottom surface is continuous through the second derivative. [f under certain
circumstance, this requirement may not be met. then jump conditions must be applied at

the point where discontinuity appears. We will discuss this problem in some detail later.

Now let us discuss a particular case. that is, the bottom is flat. Without loss of
generality. in this case we can set up the coordinate system so that the bottom surface

function a(x)=0 inregion I. Then « can be eliminated from the solution equations

(4.1.11). (4.1.12) and (4.1.13) and the corresponding simplified equations are as follows:

Oou Lo 31 e, SR, (4.1.14)
¢0 2 ¢0- 2¢0- Q- Q-

P 1 1QY 1 .o, )
_0=¢0 RI__gd)n__g—w _'_Q- .,U‘~ : (+.1.13)
p 2 2¢,” 6 9,

B=g¢o_Q-¢(:x +Q_¢0“ (4.1.16)
p 20, 29,

These equations derived here are different from what Naghdi & Rubin (1981) used
when they dealt with same problem. However. when same far upstream boundary

conditions are employed. we can recover their results by means of these equations. as we

will discuss later.

4.1.2 Discussion of the restricted theory

From the derivation of the governing equations. we know that the application ot the

restricted theory, that is, u, = 0. simplifies the Green-Naghdi level [ governing equations
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significantly. When Shields first used the restricted theory. he just pointed out that this
theory corresponds to a restricted director employed by Green & Naghdi, but did not give
out any further reasons. Here in this problem we can see the necessity of the restricted
theory and we can even derive the restricted theory from the continuity equation and the
far upstream boundary conditions. Recall that in Green-Naghdi Level [ theory. the

velocity profile is assumed to be

)=u,(x)+u, (x)Z

)=v,(x)+ vi(x) &

u(x.

\I\‘

(4.1.17a. b)
v(x.

JX

[n the statement of problem. we have assumed that the flow at tar upstream is

uniform. Then. we can obtain that at far upstream.

u,(-)=0. (4.1.18a. b)

Uy +Vv, =0. (+.1.19a. b)

From equation (4.1.19a) we know that u, =0 everywhere. while from (4.1.18b) we

know that the far upstream boundary condition for u, states that u,(~=)=0. Thus we
can deduce that
u, (x)=0 , everywhere, (4.1.20)

which is exactly the assumption of the restricted theory.
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4.1.3 Governing equations for region I1I (free waterfall)

Now let us consider the right region. that is. region III bounded by two unknown free
surfaces. The pressure at both top and bottom surfaces are equal to the atmospheric
pressure. As we did before. without loss of generality. we set the atmospheric pressure be
equal to zero. Thus. in region IIl p=0 and p=0 everywhere. In Green-Naghdi Level-]
theory. the kinematic boundary conditions on the top and bottom surtaces are

Vo +VviB=uyB; (+.1.21)

vV, FVia= U, ' (+.1.22)

where the restricted theory has been applied.

The continuity equation states that

Uy +v, =0. (4.1.23)
Taking into account that p=0 and p=0 everywhere. as well as the restricted theory

u,(x)=0. for steady. two-dimensional flow. we can obtain the momentum conservation

laws for Green-Naghdi Level [ theory:

1
0o Uy g, =——Pg 3 (+.1.24)
p
DoUgVoe +OoVeV, +O UV +0,vV, = =20, (+.1.25)
1
O UgVo +O, VoV, +0,u,v +O, vV = ‘p‘(Po -pgd,)- (4.1.26)
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Therefore, a closed governing system has been obtained. which is composed of six
coupled. quasi-linear differential equations (4.1.21)-(4.1.26) and six variables c. B. u,.
v,. v, and P,. With appropriate boundary conditions. this governing system for region

[1I is well posed.

Although the governing equations can be solved numerically. we prefer to obtain the
analytical solution if possible. Before proceeding further. we replace a. B with ¢, (which
is. as before. the thickness of the fluid) and another variable.y. which is height of center
of the tluid sheet. These are defined as

o, =p-a; (+.1.27)

y=—(B+a). (4.1.28)

| —

Subtracting (4.1.21) from (4.1.22) and using (4.1.23). we can derive that (4.1.9) still

holds in region IIl. that is

u,9,=Q. (+.1.29)

Adding (4.1.21) and (4.1.22) and by means of (4.1.23). we can get

v, =(u, \u)‘. (4.1.30)

Substituting (4.1.23). (4.1.29) and (4.1.30) into (4.1.24). (4.1.25) and (4.1.26)
respectively, to eliminate u,. v, and v,. and replacing a. p with ¢, and . after

integrating and multiplying, finally we can obtain
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1 R 3 5
1_,;Q-¢(-)x =Q" -2S,4, +2R 0, (4.1.31)

P Q. (4.1.32)

p do

Ql(y—‘] =~gd,. (4.1.33)
by /.

where R;and S, are integral constants that can be determined by appropriate boundary
conditions. Thus the simplified Green-Naghdi Level [ governing equations for region Il
of the waterfall problem has been obtained. and only three variables are involved. that is,

,. P, and w. Once the distribution of the thickness of the fluid is obtained through
(4.1.31). P, and w can be obtained through (4.1.32) and (4.1.33) together with

appropriate boundary conditions.

After comparing these results with what Naghdi & Rubin (1981) obtained. we tind
that (4.1.31). (4.1.32) and (4.1.33) are exactly same as (4.1.2). (4.1.1) and (3.4c)
respectively in the paper of Naghdi & Rubin (1981). who used the directed theory with

one restricted director.

4.1.4 Boundary conditions

Now that we have obtained the governing equations for regions | and [I[ ot the

waterfall problem, we need to consider the boundary conditions necessary to solve the

governing equations. Since the flow is assumed to be steady. initial conditions are not
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needed. Let us first consider the left boundary conditions in region [. Recall that we have
assumed that the flow is uniform at the tar upstream. then the far left boundary conditions

in region I can be described as follows:

as X —» —w,

, 4.1.34
0, = Hy, ¢ 0. uy > U,. Pp - +pgH;. ( )

where H, denotes the thickness of the fluid at tar upstream. and U, denotes the uniform
velocity of the tlow at far upstream. Both H, and U, are given betorehand. In addition.

we suppose that the bottom is flat at far upstream and is equal to zero. that is. a=0.

As for the right boundary conditions in region [Il. the only force acting on the tluid
after departing tfrom the cliff is the gravity and this force acts only in the vertical
direction. As a result. we expect that the horizontal velocity of the fluid will approach a
constant. and that the pressure inside the fluid will approach that on the free surfaces. i.e..

atmospheric pressure. Therefore the far right boundary conditions in region III can be
described as

as X — +o,
¢, > H,. ¢;, 20, u,->U,. P, =0. (4.1.33)

where H, denotes the thickness of the fluid at far downstream. and U, the horizontal

velocity of the fluid at far downstream. Both of these variables are unknown and need to
be determined as a part of the solution. This assumption about the far downstream

conditions is same as that of Naghdi & Rubin (1981).
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With these boundary conditions, we can determine several integral constants
appearing in the governing equations for both regions [ and III. First. let us consider

region I. Obviously, Q can be determined immediately from (4.1.9). that is.

Q=U,H,. (+.1.36)

Usually a non-dimensional number. so called Froude number. is introduced to replace

the velocity. Here we define the Froude number as

Fr=———r. (4.1.37)

Then we can obtain Q in terms of the thickness of fluid and the given Froude number:

Q=Fr./gH, H,. (4.1.36a)

Then we can determine R, in terms of H, and Q from equation (4.1.11) since the

bottom is flat at far left of region I:

+

R, =gH, ++-L_. (4.1.38)
2H

)

1

[n the same way, in region III. substituting the boundary conditions (4.1.35) into

(4.1.32). we can get S, interms of H,and Q:

S, = (4.1.39)

Inserting (4.1.35) and (4.1.39) into (4.1.31), we tind R in terms of H,and Q:
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R, =2 . (4.1.40)
H

However, contrary to the integral constants in region . S; and R, are still unknown

since H, is to be determined. Once H, is given. both of them can be found. Even so. we
still lack sufficient conditions to solve the governing equations in region [II. Recall that
region I and region I1I have different characters and thus the governing equations are
different. However, both of the solutions of the governing equations must be valid at the
junction between region [ and III. Therefore. the so-called jump conditions. or matching
conditions. must be set up to match the solutions at the junction. In this problem. the
constants of integration are also determined by the application of jump conditions. and
the jump conditions will provide the conditions to solve the governing equations in

Region III.

Before we advance to the jump conditions. we can simplity equation (4+.1.31) by
means of (4.1.39) and (4.1.40). Substituting (4.1.39) and (4.1.40) into (4.1.31). (+.1.31)
vields the following differential equation for the vertical thickness of the fluid:

1

1—7Hf¢o,f=(¢o—H4):- (4.1.41)

Integrating (4.1.41) and making use of the assumption of far downstream boundary

conditions (4.1.35), we arrive at

0,=H,+Ae™, (4.1.42)
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K

where the constant B = ,and A is a constant of integration to be determined as part

of the solution. Thus the governing equations for Region [II become (4.1.42). (4.1.32)
and (4.1.33). Obviously., when the constants in (4.1.42) are determined. what we obtain is

an analytical solution for Region III for the waterfall problem.

4.1.5 Jump conditions

As we have pointed out. in order to obtain the constants of integration. as well as a
solution which holds throughout the whole flow. connection between two regions must
be set up and the solutions in region [ and Il must be matched at the joint point. say x =
0. We have obtained the general Green-Naghdi jump conditions derived trom the integral
physical laws. Now we need to apply these general jump conditions to the watertall

problem to link two regions together.

Recall that we have obtained the physical jump conditions tor Green-Naghdi Level-I

theory in Chapter 3. Then in this waterfall problem. we can rewrite these jump conditions

as follows:
I Qll,.,=0. (4.1.43)
lPQuy +Py |, = lim I(p B.~pa,)dx. (4.1.44
leQu, v, |, =lim [[-b+5—pg<p]dxe (4.1.43)
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lim floQuo, wlax+|P |, =tim [(3BB, ~percr, Jdx. (+.1.46)

lim 'jij\u(uo\v‘)x +pQ* q{%j }dx - lim ’E[Po —pggw-pB +Paldx.
(4.1.47)
Before simplifying the jump conditions further. we turn to the geometric relations
between region I and [II at the junction x=0. For steady tlow. since the bottom is smooth.
we expect that the fluid departs from the clift smoothly. Therefore. the top and bottom

surfaces are continuous at the joint point x=0. that is.

=0.

x=0

8]

o, =0. (4.1.48a. b)

Then from the definition of ¢, and y. we have

iil¢(l !‘:0 =0'

lw]._, =0. (4.1.49a. b)

According to (4.1.43). from (4.1.49a) we can deduce that

lue .., =0. (4.1.50)

Since we have set the pressure at the top free surface p=0 everywhere. then (4.1.44)

becomes
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lpQuy+Po |, =tim [(-F a)dx. (4.1.51)

For 0 <x < 3§, the integrand, ~p « . in (4.1.51) is identically zero. If the integrand
remains bounded for -6 < x <0. the right-hand side of (4.1.51) is equal to zero. even it

there exists a jump in —p «_ at the joint point. Thus we have

HpQuo'*'Poi

o =0 (4.1.52)

Substituting (4.1.43) and (4.1.50) into (4.1.52). (4.1.52) vields

[P

In the same way. the right-hand side of (4.1.45) is equal to zero and we arrive at

=0. (4.1.33)

x={)

lpQu,w., ||, =0.o0r (4.1.54)

fwol.,=0. (4.1.55)

where (4.1.50) and (4.1.43) have been applied.

Using (4.1.43). (4.1.49a. b). (4.1.50). (+.1.53) and (4.1.533). (4.1.47) yields

| 9ou ]|, =0 (4.1.36)

x=0
At the same time, from (4.1.46) we can deduce that the first order integral pressure. P,.
remains unchanged across the joint point x=0. However. this jump condition is not

necessary to solve the governing equations for region I and Ill. since we have eliminated

this variable from the governing systems.
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Therefore, we have finished the derivation of the necessary jump conditions at the
joint point x=0 between the two regions of the overfall problem. For later convenience.

we summarize the jump conditions as follows:

x=0

=0.

x=(}

nuo‘po

o

=0 Bl =0 [
...O~

x=0 - “PO

(4.1.537)

o =0 ot ,

We need to point out that the above jump conditions (+.1.57) are based on the
assumption that the flow departs from the cliff smoothly. Under certain circumstances.
this assumption may not be valid. Then these jump conditions are not applicable to that

problem and new jump conditions are needed.

With the help of these jump conditions. along with the boundary conditions. we can
solve the waterfall problem throughout the whole region. In the following sections. we

discuss several cases to illustrate the development of solutions.

§4.2 Free waterfall over a flat bottom

First we consider a very simple case. that is. the bottom surface in region [ is tlat.
Naghdi & Rubin solved this problem with the directed fluid sheet theory with one
director and obtained the analytical solutions for the first time. Their method is based on
Lagrangian frame since the Eulerian form of Green-Naghdi theory had not been
developed vet. Now we will solve this problem with the Green-Naghdi Level I theory

developed above, which is in Eulerian form.
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4.2.1 Solution of the problem

Because the general form of the governing equations for such problems has been
obtained. it is relatively easy to obtain analytical solutions. In this case the bottom in
region [ is flat. then we can set up the coordinates such that the bottom surface tunction
a =0 everywhere in region I. Recall that we have obtained the governing equations tor

such cases. Using the assumption on the far upstream. (4.1.34). then in region [. these

governing equations are:

¢{)\_\ _l¢0’(1 +_'_)__l_:“_+ig_’_¢')_3R_]‘=0‘ (4:1)
d)o 2 ¢0- 2 q)O Q- Q-

P I 1Q° 1 50,

_°=¢0 Rl__gd)n_;Q_«' -=Q ¢)‘* (+.2.2)
p 2 - (bo- 6 ¢u- g

E—gd)o Q-d)(i‘ +Q-¢o“ (4.2.3)
p =0, 29,

where. the constants of integration are

Q=FrygH, H,. (+.2.4)
R, =gH, + -, (4.2.5)
9 H,-

- 1

In this case. the second order differential equation (4.2.1) can be integrated.

Substituting (4.2.5) into (4.2.1). multiplying by ¢, /¢, . integrating and multiplying the

resulting expression by 2(1)02 , we finally obtain
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1 2 2 2 2
EQ-%‘ +g0,” =2R,0,° +28,6, -Q*=0. (4.2.6)

where S, is another constant of integration, and can be determined by boundary

conditions.

With the help of far upstream boundary conditions (4.1.34). from (4.2.6) we can

obtain the constant of integration

gH, " +—. (4+.2.7)

After substituting (4.2.7) into (4.2.6). we can reduce the differential equation (4.2.6)

to the following form:

71.'Q2¢m2 =LQ_.«“E¢0J(¢0'HI)Z~ (+.2.8)
R} H.~

1

This differential equation can be integrated again. and thus the analytical solution can
be obtained. However. since (4.2.8) involves the boundary conditions at negative infinity.
we need the jump conditions to determine a constant that will appear when integrating
(4.2.8). Before proceeding further, we consider the governing equations in region [IL.

From the above section. we know that they are

¢0=H4+Ae_8"; (+.2.9)
&=_%+53; (4.2.10)
p 0

8l
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Q{&J =—g0,. (4.2.11)

by
where,

A=H,-H,. (4.2.12)
‘) -~

B=“\/:. (4.2.13)
H4

S-,=Q—- (+.2.14)
H,

H . here denotes the thickness of the tluid at the joint point x =0. and needs to be

determined as a part of the solution.

In this case. the jump conditions (4.1.57) imply that at the joint point x = 0.

. n . _ . o ) ; .
o, =¢, =H;. ¢, =9, =K. y =y =;'H:~ W, =Y, =%l\~and

Q" =Q =Q. 8 =§". (4.2.13a-)
where Q represents the constant rate of flow. K is the slope of the thickness of the tluid at
the joint point x=0.

The constant H, in (4.2.9) can now be determined by using (4.2.7). (4.2.14) and

jump condition (4.2.15f) and is given by

So the constants B and S; are determined as well:
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9) , :
B='ﬁ[%ng'+Q—]. (4.2.17)

S, =1gH +>. (4.2.18)

After evaluating (4.2.6) and differentiating (4.2.9) at x=0. with the use of the jump
conditions (4.2.13a. b) to eliminate the constant K. along with (4.2.16). (4.2.17) and

(4.2.18). finally we obtain the cubic equation

3

gH.,"+(is—‘,——2R,)H.,:—6S,H,+SQl=O (4.2.19)
s

\

for the determination of the vertical thickness H.. Although three roots can be obtained
from (4.2.19). only one has physical meaning. Once H. is determined. the constant A

can be determined too. From (4.2.9) we can obtain the distribution ot the thickness of the
fluid in region III. Once the distribution of the fluid thickness in region III is determined.
with the help of jump conditions (4.2.15¢) and (4.2.15d). we can integrate (4.2.11) twice

to obtain the function of central line of the fluid in region [1l. that is.

Py

' H o
\p:———gH‘, x‘+CH4x+gA Lye o _8A T m _AC

2Q° QB 2Q°B* B

e™+D. (4220

where. C and D are constants of integration. and can be determined through the jump

conditions (4.2.15¢) and (4.2.15d).

Once the terms in (4.2.9) are determined, the integral pressure P, can be easily

determined through (4.2.10) together with (4.2.14). Thus the solution for region 1II has

been obtained.
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Now let us turn back to Region I. With the help of the jump conditions (4.2.15).
(4.2.8) can be integrated and the solution for region [ thus can be obtained. The integral

pressure P, and the bottom pressure p can be obtained through (4.1.15) and (4.1.16)

respectively. Thus, the analytical solution for the whole region of the waterfall problem

has been obtained.

4.2.2 Results and discussion

Here we do not give the results in detail because the solutions obtained are exactly
same as those of Naghdi & Rubin. although their method was based on the Lagrangian
frame while our method is based on Eulerian form. Comparing these results with the
paper of Naghdi and Rubin (1981). we find that equations (4.2.8). (4.2.9). (4.2.10) and
(4.2.11) are just same as (4.10). (4.5a). (4.1) and (3.4c) in their paper respectively. The
only difference is that they did not obtain explicitly the formula to calculate the integral

pressure P, and the bottom pressure P in region [. that is. equations (4.2.2) and (4.2.3)

here.

By way of illustration, Fig. 4.2.1 shows the solution for three values of the Froude
number Fr=1.25. 2.0 and 4.0 and for an upstream height H, = Im. Fig. 4+.2.2 shows the

comparison between our solution. the experimental results ot Rouse (1936). and the

numerical solution of Southwell & Raisey (1946) using relaxation method tor the Froude

number Fr = | and H, = Im. After comparison. we find that the results are in good
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agreement with the experimental results of Rouse (1936). [n particular. our calculation

predicts that the brink depth y, =0.717. which is quite close to the experimental mean

value 0.716 reported by Rouse (1936). At the same time. as pointed out by Naghdi &
Rubin (1981). in the full range of Froude numbers. the predictions of the present solution

for the height H, at the edge of the cliff are almost identical to those obtained

numerically from the three-dimensional equations by Markland (1963).

On the other hand. through our calculation we find that there are no solutions when
the Froude number. say Fr. is less than 1. In other words. there are only supereritical
solutions for the free watertall problem. This is consistent with the results obtained by
Dias and Tuck (1991). who emploved a completely ditterent method. i.c.. the conformal
mapping. Their study showed that wave-free watertall exists only tor Fr > 1. Note that
this result should not be confused with the physical results due to the adopted assumption
that the fluid is inviscid. In reality there do exist physical solutions for the Froude number
Fr < 1 due to the viscosity of the fluid and fraction of the bottom. In fact. tor the steady
flow. the gravity will be balanced with the friction. and thus the {luid far upstream cannot
be uniform stream. This condition completely changes the nature of the waterfall problem
because difterent boundary conditions are applied. and needs turther etfort to study. Thus

it is beyond the discussion in this dissertation.

Fig. 4.2.3 depicts the distribution of the integral pressure P, throughout the tlow

region for three different values of Froude number. and Fig. 4.2.4 illustrates the

corresponding distribution of the bottom pressure p in the upstream. From Fig. 4.2.3 we
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find that the integral pressure P, is continuous everywhere in the tflow region. However.
Fig. 4.2.4 indicates that the bottom pressure p is discontinuous at the departure point x=
0. since the bottom pressure is zero in the downstream. This result is consistent with the
claim of Naghdi and Rubin (1981). that is. although the jump conditions require the
continuity of various quantities at the edge of the clift' x = 0. certain discontinuities
remain with Green-Naghdi method. Both the present solution and that ot Naghdi & Rubin
(1981) indicate that the bottom pressure is discontinuous at the departure point x =0. The
reason is unclear. Naghdi & Rubin (1981) did not make any comments when they pointed

out this discontinuity.

Fig. 4.2.1 A plot of the solution exhibiting profiles of the fluid sheet for an
upstream height H, = 1 meter and for three values of the Froude number Fr. that is.
Fr=1.25. 2.0, and 4.0.
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Fig. 4.2.2 Comparison between present solution. experimental results of Rouse (1936)

and the solution of Southwell & Raisey (1946) forFr=1land H, =1 m.
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Fig. 4.2.3 The integral pressure throughout the flow region for different values of Fr
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Fig. 4.2.4 The bottom pressure in the upstream for ditferent values ot Fr
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§4.3 Free waterfall over an arbitrary, smooth bottom

Region | ]y

incoming flow

Region Il|

—

Fig 4.3.1 Schematic of waterfall over a smooth bottom

As we pointed out before. Naghdi and Rubin (1981) only obtained the solutions for
the free waterfall problem with a flat bottom. as we did in §4.2. Now we consider the
general case. that is. the bottom is smooth rather than flat (as shown in Fig 4.3). which
will complicate the problem. Recall that for Green-Naghdi Level I theory we have
defined that the bottom is smooth if its second derivative is continuous everywhere. For
simplification. we still suppose that at far upstream the bottom is flat and assume that the

upstream flow is uniform.

4.3.1 Solution of the problem

We still divide the whole flow region into two regions (shown in Fig. 4.3): region [

where the fluid is bounded by a smooth bottom surface. which is given. and a unknown
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free surface; and region III where the fluid is bounded by two unknown free surfaces.

Then from above sections, we can obtain the governing equations for region [ as follows:

. . o R R
ow 1o Sy o L 38 Laye28e 30w
b, 2 by 2 by Q° 2 ¢, Q-
P, 1 Q* a s by 1 50,0
—=0, l:Rl -——gb,-gt-———-——-Q —-=Q —— Q -
p - 2 ¢o- = ¢o- = ¢4)- 6 ¢‘,
(4.3.2)
B_ =g¢r) _Q ¢Clx _Q-a:q)x + Q-¢0\\ + Q-a“ . (433)
p 20, o, 29, b,
where.
Q=FrygH, H,. (4.3.4)
1 Q° . e
Rlngl'i':;E{—:. (4.)3)

Compared with (4.2.1), (4.3.1) is more complicated since there are several items
arising from the smooth bottom surface in region I. As a result. (4.3.1) can not be
integrated as we did in §4.2. It does not seem possible to obtain the analytical solution to

this problem. Instead, numerical calculation will be employed.

Now we consider the governing equations for region III. Here we still adopt the
assumption that because the only acting force on the free waterfall is the gravity. at the
far downstream the variables do not change along the vertical direction. Under this
assumption and with the associated boundary conditions at far downstream. the

governing equations are as follows:
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P 2

—°=—Q—+83 (4.3.7)

P b,

QZ[&] = —gb, (43.8)
oo J,

where.

A=H,-H,. (4.3.9)
2./7

B=2Y2 (4.3.10)
H,

5, =" (4.3.11)
H,

Here the variables and notations have the same meaning as in §4.2.

Now that we have obtained the governing equations for region I and region III. we
need to consider the jump conditions to obtain the uniform solution. Just as in §4.2. in
order to obtain these constants of integration. jump conditions must be applied at the
junction. which we will locate. as before. at x=0. As long as the bottom in region [ is
smooth. we still adopt the assumption that the fluid departs tfrom the cliff smoothly. Then

the jump conditions (4.1.57) are still valid in this problem. that is.

|Ql, =0 B

=0 e,

=0 Bl =0
=0.  [B]| , =0.

o

x=0 x=0

When we replace « and B with ¢, and , the jump conditions (4.3.12) become
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“U0¢0 x=0 =0’ “¢0 x=0 =O’ l|¢0.\
lwlo=0  Jwd., =0 [P

=0.

x=0

x=0

(4.3.13)

Considering the notation we adopted. we can deduce from the jump conditions

(4.3.13a-e) that

¢0- =¢0_=H3~ ¢O_x.=¢0.‘_= <.
1 . (4.3.14)
\p’:\p’z;H.,-kHb. v, =y, =—K+K,
and
Q =Q =Q, (4.3.13)

where K denotes the slope of thickness of the fluid at the junction. and H, the thickness
of the tluid at the junction. while H, denotes the height of the bottom at the joint point
and K, the slope of the bottom at the joint point. K and H, are to be determined while

H, and K, are specified beforehand.

The jump condition (4.2.15f) is not valid here because of the etfect of the non-flat
bottom. However, by means of (4.3.13f). we can deduce the corresponding jump
condition to (4.2.15f). Inserting (4.3.5) into (4.3.2) and plugging (4.3.11) into (4+.3.7). and
substituting the equations into the jump condition (+.3.13f) and with the help of other
jump conditions (4.3.14) and (4.3.15). finally we can obtain the following nonlinear
algebraic equation relating the critical heights (H;. Ha. H3). the slopes at the junction (K.

Ks) and the tlow rate Q.
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Since the constant flux of fluid Q. the far upstream thickness H, and the slope of

bottom at x = 0~ are given. from above expression we know that the slope of fluid

thickness K. the thickness of the fluid at x=0 H, and the thickness at far downstream H,

are related. Once two of them are determined. the other is determined by (4.3.16).

Note that jump conditions (4.3.14¢) and (4.3.14d) involve the value and the slope of
the central line at x = 0. At x = 0. these values are related with the thickness since the
bottom surface is specified in region [. However in region [1I both top and bottom surface
are free and to be determined. so we need to get the equations with regard of the central
line of fluid and its slope. Recall that only (4.3.8) involves the central line. and actually it
is a second-order differential equation. However. with the help ot (4.3.6). we can
integrate (4.3.8). Substituting (4.3.6) into (4.3.8) and integrating. we can obtain

-

gH,

Q

‘<+gAH4 e-B\ +CH _gAHJ ,I—B\Jl_g"l\:
K 3 Q:B

Q:B Q-

Y, =- e+ ACe™ (4.3.17)

where C is a constant of integration to be determined. and is given by

C=&_+gH24 x_BgA: o
6 Q Qe (4.3.18)
_K,+K/72 gA
H, BQ’

(4.3.17) can be integrated again. After integrating (4.3.17). we arrive at
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H : 2 H : 2Bx
W:—L‘-’—-X'+CH4X+gA, 2 xe-B‘— gf} 36_'8\ —A—CC-B\ +D. (4319)
Q’ QB 2B B

where D is another constant of integration to be determined. and given by

D=y| ,+ gA_, AC
=0 2Q°B° B
| ] c (4.3.20)
=—-H3+Hb+$+i—
2 2Q°B- B

Obviously, the constants of integration C and D are to be determined through the

application of jump conditions (4.3.14c¢) and (4.3.14d).

4.3.2 Results and discussion

To date. we have obtained enough equations and jump conditions. together with
boundary conditions. to solve the free waterfall problem over an arbitrary smooth bottom.
However. explicit results cannot be obtained. as we did for the flat bottom case. As a
result. numerical calculation is employed for non-flat smooth bottom cases. By way of’
illustration. several solutions are computed for different Froude numbers and different
bottom shapes in region [. For all of the computations the thickness of the tluid tar
upstream H, is set equal to unity. Unfortunately. we have not found any experimental

data to make a comparison.

Fig. 4.3.2 shows the numerical results of the flows for three ditferent far upstream

Froude numbers over the same smooth bottom. that is. Fr = 1.25. 2.0 and 4.0. The bottom

profile is: =0 for x < -3. a(x)=0.0037x’ +0.033x* +0.1x+0.1 for -3<x<0. An
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enlarged figure is showed in Fig. 4.3.3 for the region near the lip of the waterfall. We tind
from these figures that the thickness of the fluid at the junction increases with the
upstream Froude number. Meanwhile, we find that the highest elevation of the free
surface is located before the junction for small Froude numbers. i.e.. Fr = 1.25. while for

higher Froude numbers it moves forward and is behind x = 0 for Fr = 4.0.

Fig. 4.3.4 shows the flows of the same Froude number. Fr = 2.0. over different
smooth bottoms. Three different smooth bottoms corresponding to «(x). 3 a(x) and
5 a(x) have been considered. It is obvious that the elevation of the tree surtace depends
on the shape of the bottom surface in region I. The higher the bottom is. the higher the
elevation of the free surface becomes. as shown in Fig. 4.3.4. On the other hand. the
horizontal velocity and the local Froude number will change sharply due to the steep
slope of the bottom. Fig. 4.3.5 shows the distribution of the horizontal velocity along the
x-axis over different bottoms. and Fig. 4.3.6 depicts the local Froude number throughout
the tlow region. After observation of Fig. 4.3.5 and Fig. 4.3.6. we find that the steeper the
bottom is. the more rapidly the horizontal velocity and local Froude number change along
the x-axis. in particular in the neighborhood of the junction. At the same time. after
observing Fig. 4.3.6. we find that the local Froude number decreases initially when the
flow approaches the non-flat part of the bottom. and increases again in the neighborhood
of the junction and approach a constant far downstream. Another result we need to point
out is that the Froude number downstream decreases as the non-tlat smooth bottom

becomes steeper, as shown in Fig. 4.3.6. When the bottom in region [l is 5 a(x) . the

Froude number downstream is less than that at far upstream. while for other two cases.
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the Froude number downstream is greater than that at far upstream. It is easy trom these
results to conclude that the steeper non-flat smooth bottom has more effect on the tree

waterfall.

Fig. 4.3.2 A plot of the solution exhibiting protiles of the fluid sheet tor an upstream
height H, = | meter and the bottom surface «=0 when x <-3. and

a=0.0037x’+0.033x" +0.1x+0.1 when -3.0<x<0. for different
Froude numbers. Fr = 1.25. 2.0. and 4.0 respectively.
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Fig. 4.3.3 Close look near the junction x = 0 tor Fig. 4.3.2
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Fig. 4.3.4 Plot of waterfall over different smooth bottoms at Fr =2.0
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Fig. 4.3.5 Plot of the horizontal velocity u,, for ditferent bottoms
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Fig. 4.3.6 Local Froude number for different non-flat smooth bottoms
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From the numerical calculation, we also found that the existence of solutions depends
on the Froude number at far upstream. Our numerical results show that there is no
solution if the Froude number Fr < 1.0 at far upstream. which is consistent with the
results of flat bottom case. Moreover. the actual minimum Froude number upstream

depends on the shape of the bottom surface. and maybe 1s greater than 1. For instance.
when we calculated the solution for the bottom «(x)=0.0111 x'=0.1x"-0.3x~-0.3
tor —=3<x<0.and o =0 for x <-3. We found that when the Froude number Fr < 1.282.

there were no solutions at all. Thus we concluded that the minimum Froude number tor

this case is Fr__ =1.282.

mn

With a try to explain this phenomenon. we plotted the local Froude number along the
top and bottom surfaces (see Fig. 4.3.7) and the vertical component of the fluid velocity
on the top and bottom surfaces (see Fig. 4.3.8). when the Froude number far upstream is
minimum. Fig. 4.3.7 indicates that the local Froude number decreases first and reaches a
minimum value, and increases again. The initial decrease of the local Froude number is
due to the upward non-flat smooth bottom in region II. which slows down the velocity of
the fluid and transfers part of horizontal momentum into the pressure on the bottom.
While the increase is due to the action of the gravity. which accelerates the tlow in the
neighborhood of the junction. Fig. 4.3.8 shows that on the bottom surtace the vertical
velocity is positive and corresponds to the shape of the bottom. while on the top surface
the vertical velocity increases due to the effect of the upward bottom and then decrease
again due to the action of the gravity. It is surprising that the minimum local Froude

number is less than 1. As shown in Fig. 4.3.7. the minimum local Froude number is near
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0.8. and there is little difference between the local Froude number on the top and bottom
surfaces. Actually it is still arguable whether the minimum Froude number for free
waterfall problem is greater than 1, and various results have been achieved by different
researchers. Chow & Han (1979) have computed a solution for a Froude number ot 0.9
while admitting that the existence of subcritical waterfalls was doubtful in steady inviscid
flow. Smith & Abd-el-Malek (1983) have computed a solution for a Froude number of
0.8 without comments about the validity of such a solution. Later on. Dias & Tuck (1991)
claimed that wave-free waterfalls exist only for Fr > 1. We need to point out that all of
the mentioned results are based on the watertall over a tlat bottom. Our results show that
for the waterfalls over a flat bottom, the claim of Dias & Tuck is corroborated. that is.
only supercritical solutions exist. However. for the waterfalls over a smooth. non-flat
bottom. the local Froude number can be less than 1. although the Froude number far
upstream still must be greater than 1. After observing the difference between the
waterfalls over a flat bottom and over a smooth upward bottom. we noticed that for the
waterfall over a flat bottom. due to the effect of the gravity. the tluid velocity in region |
is accelerated and the free surface is “pulled down™. Consequently. the local Froude
number is always greater than that far upstream. and is always greater than [ to obtain a
solution. On the contrary, for the waterfall over a smooth bottom. the presence of a steep
bottom will “slow down™ the flow somewhat and “lift up™ the free surface in region I
before the action of the gravity becomes dominant. say near the lip of the waterfall. Asa
result. the local Froude number will decrease somewhat and increase again as the flow
accelerates under the action of the gravity. as shown in Fig. 4.3.7. Therefore. the local

Froude number is less than that at far upstream in the neighborhood of the non-flat
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portion of the bottom. This makes it possible that the local Froude number may be less

than 1.

Fig. 4.3.9 depicts the distribution of the bottom pressure p in the tlow region. and
Fig. 4.3.10 shows the distribution of the integral pressure P, throughout the region. tor
the bottom surface a(x)=0.0111x’~0.1x"-03x~03 tor =3<x<0.and o =0 torx
< -3 when the Froude number £r = 1.282. From Fig. 4.5.10 we find that P, is continuous
throughout the region and decreases to zero rapidly in the downstream region. Fig. 4.3.9
indicates that p is continuous in the upstream region. but there exists a jump at x =0,

which is consistent with what we obtained for the waterfall problem over a tlat bottom.

13
12 : e S

11

Fr

0.9 S S PP PIU TS SUPUUPRITSUPIPUSCUII VSO RPN SR
Fr (bottom)

— =— Fr{(top) , .
0.8 ' ' ’ X

-8 7 6 5 4 3 -2 -1 0

Fig. 4.3.7 Local Froude number when the Froude number upstream is minimum
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Fig. 4.3.8 Vertical velocity on the top and bottom in region [ when the Froude number

upstream is minimum
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Fig. 4.3.9 The distribution of the bottom pressure when the Froude number Fr = 1.282.

and the bottom a(x)=0.0111x>+0.1x*+0.3 x+ 0.3 for ~3<x<0.and «=0 forx <-3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10000

8000

6000

4000

2000

-8 -6 -4 2 0 2
Fig. 4.3.10 The distribution of the integral pressure when the Froude number Fr = 1.282.

and the bottom a(x)=0.0111x*+0.1x*+0.3x+0.3 for -3 <x<0.and «=0 forx <-3
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§4.4 Free waterfall over a non-planar bottom

In the statement of the waterfall problem, we have assumed that the bottom is smooth.
The derived governing equations are all based on this assumption. and by means of these
governing equations, together with appropriate jump conditions. we have solved these
free waterfall problems either analytically or numerically in the two previous sections.
However. the waterfall over a continuous. but non-planar cliff may exist in practice. In
this section we will consider the free waterfall over a continuous. but non-planar bottom.
As we will see later. because of the existence of the non-planar bottom. the watertall
problem becomes much more complicated. and special jump conditions are needed to
consider the discontinuities in the process of the solution. On the other hand. just because
there exist “real” discontinuities in this problem. it becomes a good example to test and
apply the jump conditions derived in Chapter 3. As far as we know. no paper has dealt
with such waterfall problems. especially with Green-Naghdi method. We will illustrate
how to solve this problem with Green-Naghdi method and associated jump conditions by
solving a simple case. Before further proceeding. we summarize the problem in the

following paragraph for later convenience.

Consider the steady, two-dimensional flow of an inviscid. incompressible fluid under
the action of gravity over a cliff leading to a free overfall. The bottom is flat at far lett
upstream and becomes steep with a constant slope at some distance from the departure
point of the waterfall (as shown Fig 4.4.1). Here the effect of surface tension is assumed

negligible. Far upstream the fluid is assumed to flow as a uniform stream. while in the
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downstream the fluid falls freely only under the action of the gravity. Of particular
interest in analyzing the problem is the prediction of the height of the whole flow region
and the determination of the downstream solution. i.e.. the location of the free surfaces

and the distribution of the vertical thickness of the jet.
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Fig. 4.4.1 Schematic of waterfall over a non-planar bottom

4.4.1 Formulation of the problem

Obviously. if we still divide the whole flow into two regions as we did before. that is.
upstream region characterized by a free surface and a continuous but non-planar bottom.
and downstream region bounded by two free surfaces. then the governing equations
(4.1.42), (4.1.32) and (4.1.33) are still valid for the downstream region. while the
governing equations (4.1.11), (4.1.12) and (4.1.13) are not valid any longer for the
upstream region since they are derived on the basis of the assumption that the bottom is

smooth. In order to apply these equations, we divide the upstream again into two separate
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regions by the point where the discontinuity of the slope of the bottom is located. i.e.. x =
-a. Then we have three different regions: region I characterized with a free surface and a
flat bottom: region II associated with a free surface and a steep bottom with constant
slope; and region III with two free surfaces (see Fig. 4.4.1). Consequently. two sets of
jump conditions need to be applied at two points. say x=-a and x=0. respectively. in order

to link the solutions in three regions.

This problem is much more complex than the previous two cases. First three distinct
regions exist, and we need to develop different governing equations for ditferent regions.
Secondly. in order to obtain the uniform solution. two sets of jump conditions are needed
to apply to two junctions between three regions. Moreover. there exist discontinuities at
x=-a, which implies that the jump conditions are not only used to link the solutions in
different regions. but also to take into account the real jump of variables at x=-a. This is
always difficult because the jumps of some variables are usually unknown beforehand.
As we will see later. another jump condition. which can be obtained through the law of

conservation of energy, is needed to solve this problem.

First we derive the governing equations for three different regions. Based on the
results obtained in previous sections, we can easily state the governing equations without

detail derivation. Obviously. region I and region III here are exactly same as the regions

in §4.2. According to the statement of problem, the far upstream is uniform. then we

have the same far upstream boundary conditions in region [ as in §4.2. In addition. as for

the tree waterfall region, we still adopt the same assumption about the tar downstream as
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in 84.3. Therefore, we can use the simplified governing equations obtained in §4.2 and

84.3 for region [ and region III here. Recall that the Green-Naghdi governing equations

for region [ are as follows

l ) b 2 i
- Q 0, ={Q—g_g¢o](¢o _Hl) . (+.4.1)
S5 HI
P 1 1QF 1 .,0,°
—=9, Rx_;gq)o_;g'f -—Q° 9)—3—\‘ (+.4.2)
P = "'¢0 6 ‘bo J
B _gg, - Lo Q00 (4.4.3)
p 24, 20,
where
Q=FrygH, H,. (4.4.4)
R, =gH, RV (4.4.5)
21,
And in region IIl. the governing equations are
o =H,+Ae™™: (4.4.6)
R Q.. (4.4.7)
P g
U=— gH4’- x° +CH4\+gA,HJ xe-B‘ _ g‘/?- - e—le ___A_ge-B\ +D. (448)
2Q° : 2Q°B- B
where
2.3
B ="‘/;, (4.4.9)
H,
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S, ==, (4.4.10)

H,
C ‘U‘ gHz-tx_BgAl -Bx
% Q Q (4.4.11)
_K,+K/2 gA
H, BQ’
A AC
P=¥l o 2gm B
- (4.4.12)
lH +H, +——— gA” i\E
2Q°B* B

Now we need to derive the particular form of governing equations for Region [l.
which is bounded by a free surtace and an inclined bottom. Note that in this region. the
bottom is still smooth and thus the general Green-Naghdi governing equations are still
valid in region II. For simplification we have specified that the slope of the bottom in
region Il is constant. although clearly we could have assumed a more general torm.

Taking this background into account. from the general Green-Naghdi Level [ governing
equations obtained in §4.1, that is. (4.1.11). (4.1.12) and (4.1.13). we can obtain the

governing equations for region II:

q)__o‘;\__l%‘ "( K* )—+ g(q) +a)—3R§=O. (4.4.13)
% ¢0 2 (bo Q Q

P 1 1QY 1 LK 1 L,0,°

— =0, [Rz__gq)o—ga_—g{_;Q- 2——0-20_:— : (4414
p 2 29, 2 ¢, 6 9,
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_Qe’ QKb Q0
2%, 6 20,

P -g9, (4.4.15)
P

where K denotes the constant slope of the bottom in region [I. and R, is a constant of

integration needed to be determined as part of solution.
4.4.2 Application of jump conditions

Now that we have obtained the governing equations for three regions that have taken
into consideration the boundary conditions at far upstream and downstream. we now
consider the jump conditions to determine the constants of integration in the governing
equations. and to obtain the conditions to determine the solutions. First we consider the
jump conditions at the junction between region Il and region III. i.e. at x=0. We still

assume that the fluid departs smoothly from the clitf. Then the jump conditions are just

same as those in §4.3:

!IQ - =0 "ﬁ o =(: B‘ o = (4.4.16)
"(1. =0 =0; Ia‘ x=0 =0 HPO”(=() =0. . h
or
"U0¢0 x=0 = O’ "¢0Hx=0 = 0’ n¢0‘l x=0 = 0. (4 4 17)
lwlo=0 v, =0 [P] =0
With particular notation at x = 0. we have
¢, =0, =Hj, ¢0.x’ =0,, =K.
1 (4.4.18)

-

) o] ’
yo=y =sH +H, L v sy =0k +K
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and

Q" =Q =Q, (4.4.19)
where K, denotes the slope of thickness of the fluid at the junction at x = 0. and H; the
thickness of the fluid and H, denotes the height of the bottom at this junction. K, and

H, are to be determined.

Another jump condition derived from (4.4.17f) is

L gHH, H, gH’ gHH, 1K' KK, K/

H, Q 2H° 2Q° @ 2H, 2H, 2H, G6H,

=0. (4.4.20)

where. H, denotes the thickness of the fluid at tar downstream. and is to be determined

as part of the solution.

Up to this point we have completed the derivation of the jump conditions at x = 0. It
is relatively easy since we already have had the results from §4.2 and §4.3. Now we have

to consider the jump conditions at the junction between region [ and region [l at x = -a.
These require a development further than that above and this development is the major

emphasis of this section.

First we apply the general jump conditions for Green-Naghdi Level-I theory to the
joint point x = -a. After having set the atmospheric pressure equal zero. we can obtain the

following jump conditions:

|Ql...=0. (4.4.21)

X = -1
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-a+d

lpQu,+Py | . = lim f(-ﬁ o )dx. (4.4.22)
[pQuyw. |, =lim [[B-peoldx. (4.4.23)
lim j[pQuo_‘ wlax+|P, ] __, = lim (-Paa, )ds. (44.24)
H e 1 2 (p\ ‘
lim | |pQu(uow, ), +—5pQ w[?J }dx
L ' (4.4.25)
=lim [[P,-pgoy +puldx

However. all of these conditions except (4.4.21) involve the limits. Unlike betore.
these limits are not identically zero and this makes it ditticult to apply these jump
conditions directly. Before proceeding further. we tirst consider the geometric relations
near the junction at x = -a. There exists an obvious discontinuity of the slope of the

bottom at x=-a. that is,

e, =K. (+.4.26)

x=-2

Because of the discontinuity of the slope of the bottom. a hydraulic jump may occur.
However. what we pursue here is a steady solution with a smooth free surface. so we
expect that the top and bottom surtaces to remain continuous at this junction. Then we

have the following geometric relations at x = -a:

1P|

\=-a =0’

11
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laf, .., =0: (4.4.27a.b)
or

i|¢o s =05

Jwil,.., =0 (4.4.28a. b)

In addition. we expect that the top surface is smooth at this junction. that is.

B,

e = 0. (4.4.29)

Since the slope of the bottom is discontinuous at the joint point x=-a. then the second-
order derivative of the bottom with respect to x may be unbounded there. Consequently.
in view of equations (4.4.2). (4.4.3) for region I and (4.4.14). (4.4.13) for region II. the

bottom pressure p may be unbounded at x=-a as well. while the integral pressure P, will

remain bounded. Keeping this background in mind. we introduce the following
definitions in conjunction with the jump conditions (4.4.22)~(4.4.24):

-a+d

F, = lim !{—5 o )dx.

~3-9

F, = 115}[[5 Jdx.
-a+d
L=ljrrg J.[Ea]dx . (4+.4.30a. b. c)

Thus the jump conditions at x=-a become

“ ugd, .L=_a =0, (4.4.31)
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lpQuy+Py | . =F, (4.4.32)
lpQuyw. |, =F. (4.4.33)
) -a+d 1 , /(p‘ .
lim I pQuluew . ), +—pQ’ @ dx=L. (4.4.34)
-0 s 12 0} .

In addition, from (4.4.26) and (4.4.29) we have

[0, |

“K. (4.4.33)

X==3

lw. ] ., =K. (4.4.36)

N==1

However. since F,. F, and L are all unknown. the jump conditions (4.4.32)-(4.4.34)

are of little help before the solution is obtained. On the other hand. in addition to the
jump conditions derived from the geometric relations at x =-a. that is. (+.4.28a. b).
(4.4.35) and (4.4.36). another jump condition is needed. Recall that when we assumed
that the fluid is incompressible. inviscid and homogeneous. we noted that the
conservation laws of energy and momentum are identical and thus we omitted the energy
equation in the derivation of jump conditions for Green-Naghdi method. However. in
present problem there are changes of momentum across X = -a due to the effect of
discontinuity of the slope of the bottom, that is. some part of momentum will be

transformed to the forces. These forces. say F, and F;. are part of the solution and

unknown beforehand. On the other hand. because the fluid is assumed to be inviscid and
incompressible and no hydraulic jumps occur, it is expected that there is no changes of

mechanical energy across x = -a. Consequently. the jump conditions based on the law of
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conservation of momentum are of little help to solve this problem. Therefore. we now
derive jump conditions based on the energy equation for Green-Naghdi Level-I theory.
Because we did not give any results regarding of the energy equation. we have to start

from the very beginning. The detail derivation is presented in Appendix A.

In Appendix A. we have obtained the general form ot jump condition associated with

the energy equation, that is.

i hi b 1 9 hl
%‘puo ‘1’0(“0.'*’“0.“}«-'*"{Z,"Ur)~ (bo\-""zg‘V)'*'uoPu, =0. (A.13a)
- - N
or
1 2 ST S S » E -
;pQ Uy +ug Y, +Y;u0 do +28y | +u, P, =0. (A.13b)

Now we return to our original problem. Before we consider the jump condition
(A.13). we consider the jump condition with respect to u, . Actually. from the jump

conditions (4.4.28a) and (4.4.31). we can immediately obtain

u,

|, =0. (+.4.37)

Then taking into account the jump conditions (4.4.28b). (4.4.31) and (4.4.37). from

(A.15) we obtain

H
o

bl 2 1 2 2 -
pQ(uO‘\p"+l—_’u0'¢O"j+u0P0! (4.4.38)

1o | —

n
!

This is the desired remaining jump condition.

X=-4
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With the help of (4.4.38), we can obtain a relation between the constants of

integration R, and R, in the governing equations (4.4.2) and (4.4.14). First let us

consider the formula of (4.4.38) at the left side of x=-a. thatis. x =—a . Substituting

(4.4.2) into (4.4.38). we have

1 A 2
[;pQ(uo W, +1—7u0 by j"'uopo}

X=-3

. ’ ’ (4.4.39)
1 Q- Q- > Q° 2
=pQ| R~ g9, ~ 2+ =Sy P -2, J
( ST 28 20 T 8T
In the same way, substituting (4.4.14) into (4.4.38) vields
1 2 o2 b 2
EPQ Ug Wy +Euu Gy | TU,Py .
e (4.4.40)

2 : 2 : \
=pQ[R2_—};g¢U_ga_ Q 2 - Q 2 K:+ Q 3\U\-—Q—3¢U\1J
= 2¢0 2¢l) 2¢0 8¢)u Niedl

With the use of jump conditions (4.4.28a. b). (4.4.31). (4.4.35) and (4.4.36). trom

(4.4.39) and (4.4.40) finally we can obtain

R h

R,=R,+—L K'-— Ko, . (4441
: H®  2H,

where H, denotes the thickness of the fluid at x=-a. and ¢, " the slope of the thickness

at the left side of x=-a.

Now we have obtained sufficient jump conditions at the joint point x=-a. For later

convenience, we summarize them in the following:
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Geometric jump conditions:

19, =0 vl

:0_

Xx=-a

[90c s ==K5 v ]

+K.

X=-3a

Physical jump conditions:

lQf,..,=0:

X=-3

=0.
12 t

1 > o2 1 2 2
—;pQ(uo YUy 0y, )+L10P0

N==3

Then with the help of the jump conditions and the governing equations. we can

completely solve this problem by numerical calculation.

4.4.3 Results and discussion

By way of illustration. we calculated a case where the thickness of the fluid far
upstream is H, = lm. and the inclined bottom starts from x = -3m with a constant slope K
=(.1. Fig. 4.4.2 depicts the numerical results for three values ot the Froude number Fr =
1.365. 2.0 and 3.0. It is clear from the figure that the fluid is “lifted up™ due to the
existence of the inclined bottom. and the inclined bottom appears to have more eftect on
lower Froude number cases. At the same time. Fig. 4.4.3 shows the distribution of local
Froude number throughout the flow region. After observing Fig. 4.4.3. we tind that
although the local Froude number is continuous at x = -3m. the first-order derivative is

discontinuous, where the discontinuity of the slope of bottomn occurs. As a result. there is
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a “corner’” at X = -3.0m. as shown in Fig. 4.4.3. The higher the Froude numbers at far

upstream. the sharp the corner becomes and the bigger the discontinuity is at this
junction. Fig. 4.4.4 and Fig. 4.4.5 depict the integral pressure P, and the bottom pressure
p throughout the flow region respectively. Here the Froude number far upstream Fr =
1.363. and the inclined bottom starts from x =-3m with the slope K = 0.1. From both
figures. we find clearly that there exist sharp jumps on the value of P, and p at x =-3m.
These jumps are obviously due to the discontinuous slope of bottom. At the same time.

Fig. 4.4.4 indicates that the integral pressure P, is continuous at x = 0. while Fig. 4.4.5

shows that the bottom pressure p atx = 0" is not equal to zero. that is. p is not

continuous at X =0. This result is consistent with what Naghdi & Rubin (1981) obtained

when they dealt with the waterfall over a flat bottom.

Furthermore. during the calculation. we found that the minimum upstream Froude
number for which a numerical solution was possible is greater than 1. which is consistent
with what we concluded in §4.3. For instance. in this particular case we found that the
minimum upstream Froude number Fr, is around 1.365. Again. this result is different
from the free waterfall problem. where the minimum Froude number is 1. [t seems that
more energy is needed to “overcome™ the inclined bottom than the flat bottom. Under this
particular case the minimum local Froude number is slightly below 1 (see Fig. 4.4.3). The
minimum upstream Froude number was also obtained for another case. where the slope
of the inclined bottom was half of that above. i.e.. K = 0.05. We tound that the minimum

Froude number at far upstream for this case is Fr,,, = 1.175. as shown in Fig. 4.4.7. Fig

4.4.6 indicates that the minimum local Froude number in this case is near 0.9. This result
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is consistent with what we obtained for smooth bottoms in §4.3. That is. for free
waterfalls over a non-flat bottom, the local Froude number may be less than 1. In our

knowledge. this conclusion has not been obtained before.

Fig. 4.4.8,4.4.9 and 4.4.10 describe the numerical results for difterent slopes of the
bottom under the same Froude number at far upstream. that is. K = 0.25. 0.50 and 0.95.
The distance in region Il is set to be 1m and the Froude number far upstream Fr = 2.0.
Investigation of these figures indicates that the steeper the slope K. the higher and steeper
the elevation of the free surface. Under the same circumstance. in Fig. 4.4.11. the local
Froude numbers throughout the region for different K are illustrated. From Fig. 4.4.11.
we find that the Froude number downstream is greater than that upstream when K=0.25.
However. when K = 0.5 and 0.95. the Froude number downstream is less than that
upstream. This result means that the loss of momentum is higher for larger K. More
precisely. more momentum is transferred to the force acting on the bottom for the steeper

bottom in region II. which results in the decrease of the Froude number.

Actually, here the inclined bottom can be regarded as the inclined weir. thus this
problem becomes the flow over a inclined weir in a channel with a tinite depth. To our
knowledge. supercritical solutions with an inclined weir in water of finite depth have not
been calculated in the past. Of particular interest for the inclined weir problem is the
thickness of the water over the top of the inclined weir. say H, here. Fig. 4.4.12 depicts
the elevation of the free surface relative to the elevation of the top of the weiras a

function of the slope of the inclined weir. During this calculation the Froude number is
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fixed at Fr = 2.0 and the distance of the weir in the horizontal coordinate is fixed ata =

1.0m. In the range of the inclined weirs we calculated. the thickness of water H;

increases with the slope K. However, limited by the nature of Green-Naghdi Level |
theory. we can only calculate small values of K. When the slope is too steep. the
assumption of the profile ot the velocity is not valid any longer. thus the numerical
calculation is perhaps not valid. Actually. the calculation breaks down when K is larger

than a certain value. For instance. in this case the maximum value of K'is K = 1.0. Fig.

4.4.10 shows the top and bottom surfaces when K is close to the maximum slope. that is.
K =0.95. In Fig. 4.4.11 the local Froude number throughout the region is illustrated.
From Fig. 4.4.11 we find that the minimum local Froude number is below 0.7. and occurs
somewhere after x = -1.0m. while for K=0.25 and 0.5 the minimum local Froude number
is greater than 1 and occurs at X = -1m. Moreover. the Froude number far downstream is
less than 1. although the Froude number far upstream is greater than 1. This means that
the downstream flow is subcritical while the far upstream flow is supercritical. Actually.
from Fig. 4.4.11 we can find that even from some distance before x = -1m. the flow has
already become subcritical. Although the Froude number increases in the neighborhood

of the lip of the waterfall. i.e.. x =0. the flow keeps subcritical.
When the inclined bottom becomes vertical, this problem becomes the classical weir
problem. A special approach needs to be employed in this case because the jump

conditions at x=0 are not valid any longer. This problem will be discussed in a

subsequent chapter.
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Fig. 4.4.2 Numerical results for flow over an inclined bottom for difterent Fr
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Fig. 4.4.3 Distribution of local Froude number under different Fr far upstream
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Fig. 4.4.6 Plot of local Froude number tor the minimum Fr (K=0.05. a=3m)
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Fig. 4.4.7 Minimum upstream Froude number for different slopes of bottom K
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Fig. 4.4.9 Plot of top and bottom surfaces for K =0.5
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Fig. 4.4.10 Plot of the top and bottom surfaces for K = 0.93
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Fig. 4.4.12 The elevation of the tree surface over the top of the inclined weir as a tunction

of the slope of bottom K. and the triangle symbol indicates the data we caleulated.
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Chapter 5

Steady Inviscid Flow under a Sluice Gate

In Chapter 4 we have discussed the problems of free waterfall departing from
different kinds of bottom surfaces by means of Green-Naghdi method and associated
jump conditions. The results showed that the jump conditions are necessary and crucial to
determine the solution of free waterfall problem. The application of jump conditions is
required due to the characteristics of the bottom of the flow field. i.e.. the sudden
disappearance of the bottom or the discontinuities of the slope of the bottom at certain
points. In this chapter. jump conditions will be applied due to ditterent characteristics of
top surfaces of the flow field. The flow under a sluice gate is a typical of this kind of flow
and is the focus of this chapter. Another reason to consider the flow under a sluice gate is
that the downstream part of the flow is similar in principle to the second region of the
breaking wave (see Fig. 1.1). At the same time. other flows related to the flow under a

sluice gate are also discussed.

The sluice gate problem, involving a free surface in the presence of gravity. is
extremely difficult from the point of view of three-dimensional inviscid fluid theory. It is
a typical hydraulic problem and is well studied. Mostly. conformal mapping is employed
to solve this problem (Pajer1937. Marchi 1953. Birkhoff & Zarantonello 1937. Klassen
1967. Milne-Thomson 1968). Benjamin (1956) improved this method by considering
separately a region in the vicinity of the sluice gate starting from a point somewhat

downstream. After employing a different approximation of the three-dimensional
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equations in each region, he joined the respective free surface lines at the selected point

of division.

Caulk (1976) employed a completely different method. the two-dimensional theory of
the directed fluid sheet. to solve this sluice problem without a priori restriction on the
shape of the free surface. To date, this appears to be the only paper employing the
directed theory to solve the sluice gate problem. However. due to the early stage of the
development of the directed theory (Green-Naghdi theory). the method Caulk used is
posed in Lagrangian frame. In this chapter we will use the Green-Naghdi governing
equations and associated jump conditions to solve the same problem in an Eulerian
frame. [n addition. some particular problems related to the sluice gate problem are

discussed and solved by means of Green-Naghdi method.

§5.1 Flow under a vertical sluice gate

A sluice gate is a frequently employed means of open channel control. As a resuit. it
is well studied by means of classical theories. such as conformal mapping. Here we will
study this problem with the Green-Naghdi theory and the jump conditions developed
Chapter 2 and 3. At the same time. the results of previous chapters will be applied
directly if appropriate. In this section. the sluice gate is restricted to be vertical. Before

going further, it is expedient to explicitly state the problem for later reference.

o
=
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Consider the steady two-dimensional flow of an inviscid. incompressible fluid
through a fixed vertical sluice gate in the presence of gravity (see Figure 5.1.1). For the
purpose of simplification. we suppose that on both sides of the sluice the fluid is flowing
over flat bottom. and the top surface is free. The lower edge of the sluice is raised a
distance d from the flat bottom. In addition, here we assume that the flow extends to a

uniform stream at infinity in both directions.

Region | Region Il

9

Fig. 5.1.1 Schematic of flow under a vertical sluice gate

From Fig. 5.1.1, we tind that the tlow region is divided into two parts by the vertical
sluice gate. At the same time. due to the existence of the sluice gate. the free surfaces at
sides of the gate are discontinuous. Before deriving the governing equations for each
region, we choose a coordinate system such that the x-axis lies on the flat bottom surtace
and the origin of the x coordinate coincides with the position of the sluice gate. as shown

in Fig 5.1.1. Then we distinguish the two regions as: (i) upstream region [. x<0: and (ii)
downstream region II. x>0 . We can find that both of the regions are characterized with a
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free surface and a flat bottom. The difference relies only on the boundary conditions.
Therefore, their governing equations are expected to be similar. For simplification. we
may just derive the Green-Naghdi governing equations for region [. Then we apply the
obtained governing equations to region [l by replacing the boundary conditions in region

[ with those in region II.

5.1.1 Governing equations for region I and 1l

At the top free surtace. the pressure is equal to the atmospheric pressure. Without loss
of generality. we set the atmospheric pressure to be equal to zero. Then the pressure at the
top surface for both regions is zero. that is. p=0 everywhere. On the other hand. because

we chose the x-axis to lie on the tlat bottom. the bottom can be denoted by

As for the boundary conditions, we have assumed that the flow far upstream is

uniform. Then we can have the boundary conditions far upstream:

as X — —o©,
2 (3.1.2)

b, 2> H,. ¢,, 0. u, »>U,. Py - ipgH;

ra|—

where, H, denotes the thickness of the fluid at far upstream. and U, denotes the unitorm

velocity of the flow at far upstream. The values of H, and U, are given beforehand.

Then. based on the results of previous chapter. the governing equations of region [

can be derived as:
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1 . s 2 ) )
”3-Q~¢0‘- =[['Q{12 _g¢0](¢0_Hl)-‘ (5.1.3)
P, 1 1Q0 1 2t )
—=¢,| R, —=g¢—-—~--Q —+ |- (5.1.4)
p¢{'2¢ 2¢, 6 %'}

P Qld,,” . Q9. .
Z=gb, - 4 X (5.1.5)
o ShT Toer T2,

where the constants of integration are

Q=U, H,. (5.1.6)

1o (5.1.7)

Now we consider the governing equations of region [I. Recall that we have assumed
that the flow far downstream approaches uniform. Then the boundary conditions far

downstream can be described as:

as X —> +x0,

¢, » H,. ¢, »0.u,»U,. P, >LpgH, (3.1.8)
where H, denotes the thickness of the fluid at far downstream. and U, the unitorm

velocity of the fluid at far downstream. Both of them are unknown and need to be

determined as a part of the solution.

Since region II has similar characteristic to region L. then we can easily obtain the

governing equations of region [I:

I-QI;2 _g¢0](¢0—H4)2‘ (3.1.9)

%Q:¢0\: =(
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= -_;gq)o_——: ——Q — 1. (51]0)

_ de)o‘- + Q2¢0“

26, 29,

(5.1.11)

where. R, is a constant of integration to determined as part of the solution.

5.1.2 Jump conditions

Now that we have obtained the governing equations of region [ and [1. However. due
to the unknown constants of integration involved in the equations. we cannot solve them
until the constants are determined and boundary conditions are specified. Thus the jump
conditions become crucial to determine the solution. since they can not only determine
the constants, but also provide the necessary boundary conditions. Different from the free
waterfall problems discussed in the previous chapter. the sluice gate problem involves a
dramatic jump in the variables due to the existence of the sluice gate. For instance. the
free surface is discontinuous at the location of the sluice gate. x=0. Before turning to the
jump conditions associated with physical laws. we investigate the geometric relation

between the sides of the sluice gate. Limited by the sluice gate. the free surface at x =0~

is equal to the distance of the low end of the sluice gate from the flat bottom. that is.

Bl =d- (5.1.12)
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At the same time, the bottom surface is unchanged across the sluice gate. Then we

can have
al\:O' = x=0 :0 (51 13)
a‘l\:O' =a‘L=0’ =O' (5[14)

Now we consider the jump conditions associated with the laws of conservation of

mass and momentum. Recall that the general jump conditions are

| Q.= 0, (5.1.15)
[pQu, +P ||, =lim [ (5B, -P o, )dx. (5.1.16)
lpQuw, [, =lim [ [-p+P-peo, Jdx. (5.1.17)

T L ot [ O
llggf PQU(uow. ), +770Q ¢u(¢_

0

J j|dx = 1333'][9,) —pgd,w-ph +pudx.

(5.1.18)

Due to the approximate nature of the theory utilized here. from (5.1.9) we anticipate
that at the right side of sluice gate the slope of the top surface may be finite. instead of
being infinite as would be the case in the exact treatment. Then we expect that there is a
finite jump in the slope of the thickness at x=0 in addition to a discontinuity of the
thickness of the fluid there. In the event that ¢, is discontinuous at x=0. an examination
of (3.1.10) and (53.1.11) reveals that the bottom pressure p may be unbounded there.

while the integral pressure P, will remain bounded. Keeping this background in mind. in

conjunction with the jump conditions (5.1.16). (5.1.17) and (5.1.18). we introduce the

following definitions:
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lim [(pB,-P «,)dx=F, (5.1.19)
-5

80

la_i_r,r(}‘j[—ﬁwﬁ—pgd)o]dx:FJ. (5.1.20)
lim [P, -ped,w-pB +Padx=L. (5.1.21)

where F,. F; and L represent the total horizontal torce on the sluice gate. the additional
vertical force on the bottom near the sluice gate and arising from its disturbance ot the

flow. and the z-moment on the sluice gate, respectively. The jump conditions (5.1.15)-

(5.1.18) become

| Ql,.,=0. (5.1.22)
“pQuo +P, ““(, =F. (5.1.23)
lpQuew, |, =F;- (3.1.24)
lim I pQu(uey ), +Lsz(p((p‘j }dx =L. (5.1.25)
a~-»0-‘5 12 0] )

Up to this point, we have obtained the geometric relations (3.1.12). (3.1.13) and
(5.1.14), and the jump conditions (5.1.22)-(5.1.25). However. F,. F, and L are all
unknown and can be determined only after the solutions have been obtained. Thus
(5.1.23)-(5.1.25) are provide no additional information to solve the problem. An
additional jump condition is needed. Recall that the momentum equations are identical to
the energy equations for the incompressible. inviscid fluid. However. in the sluice gate

problem, due to the existence a force on of the sluice gate (F). the x-momentum across
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the juncture x=0 will change. But according to the conservation law of energy. the

mechanical energy across x = 0 are still equal. since the fluid is assumed to be inviscid
and incompressible and no work is done on the sluice gate. Thus it is desirable to apply
the jump condition associated with the energy equation. The general form of this jump

condition is described as

—l-puotbo(uoz +u,ty +—1—u02 0, +2g\ﬂ +uUP,,‘1 =0. (3.1.26)
2 12 J -
Since the bottom is flat everywhere, then we have
1 1 <1

\p=—7—¢0.and \u\=;¢0‘. (3.1.27a.b)
Inserting (5.1.27a. b) into (5.1.26). we arrive at

1 2 1 2 2 \ -
',;puo‘bo Uy”+ Tuy 0y 89 +u,P, =0. (5.1.28)

Z J <=0

Now with help of (5.1.28). we have sufficient conditions to link the solutions of

region [ and II.

5.1.3 Solutions

Before solving this problem, we compare these equations and jump conditions with

those of Caulk (1976). In order to make a comparison, we first non-dimensionalize the
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governing equations (5.1.9) and (5.1.3) and introduce the definition of the Froude number

far downstream:

Fr, = U;I : (5.1.29)
gH,

Introducing the notation

_ - X
n:n(x):%o—_ xzﬁ—-, (3.1.30)
1 1

then (5.1.9) can be non-dimensionalized as

1 M 2 2 B
SFrz'(n')‘=(Fr3'—n)(n—l)'. (3.1.31

In the same way. by defining the Froude number at tar upstream

U
Fri=—. (5.1.32)
gH,
the governing equation of region [ (5.1.3) can be written as
l h b A 3
—Fr,”(0")" =(Fr,” -0)(8-1)". (5.1.33)
J
where,
6=9(?)=¢—°- EE{L (3.1.34)

We find that (5.1.31) and (5.1.33) are exactly same as (+.22) and (4.31). respectively.
in the paper of Caulk (1976). In addition. the jump conditions (5.1.22) and (5.1.28) are

equivalent to (3.7a) and (3.15) respectively in Caulk’s paper. It is clear then that our
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method is equivalent to the directed theory employed by Caulk. although our theory is
based on the Eulerian frame. Due to the equivalent equations and jump conditions we
obtained. we will not repeat in detail the calculation of the flow under a vertical sluice
gate, as Caulk did. Instead. we make a comparison between our results and the numerical
results of Isaacs (1977) using tinite element technique. In addition. we compare both
solutions with the experimental results of Smetana (1948). Here the experimental results
of Smetana are obtained tfrom Figure 3-64 in [{vdraulics of Open Channel Flow by
Montes (1998). Fig. 5.1.2 depicts these results for the vertical sluice gate problem. where.
the flow flux Q = 1.3 ft* /s. the gate opening d = 0.3 ft. and H, =1.0 ft. Superimposed
on the experimental data is the theoretical profile obtained trom the classical gravity-free
inviscid theory of Kirchoft (Montes. 1998). and the theoretical profile is slightly adjusted
to take into account the empirical contraction ratio ot 0.64. The comparison shows that
our analysical solution is in good agreement with the numberical results of [saacs (1977).
When compared with the experimental results of Smetana (1948). there exists some
ditference for both theoretical solutions when x > 0.15. These ditterence between
theoretical and experimental results may be explained by the existence ot a boundary
layer near the bottom. where the viscocity of the tluid plays an important role in reality.
However. both our solution and that of Isaacs neglect the eftect the viscocity by assuming
that the fluid is inviscid. However. same as the watertall problem. in reality the unitorm
flows in far upstream and downstream do not exist for invicid Hlows. because the gravity

will be balanced with the friction.
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Fig. 5.1.2 Protile of the water surtace below a vertical gate. comparison of present

solution. numerical results ot Isaacs and the experimental results of Smetana (1948).

In the following sections we will consider a few particular problems related to the

sluice gate problem. The first problem we consider is the tlow through a horizontal sluice

gate. In other word. we consider the flow departing from confined parallel flat surtaces.
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§5.2 Flow departing from confined paraliel flat surfaces

In this section we consider a relatively simple problem. that is. the flow departs trom
the confined parallel top and bottom surfaces. As we said in above section. this problem
can be regarded as a particular case of the sluice gate problem. that is. when the sluice
gate is horizontal. Before further proceeding, it is expedient to explicitly state the

problem for later convenience.

Consider the steady. two-dimensional flow of an inviscid. incompressible fluid

departing from two confined parallel surfaces (as shown in Fig. 5.2.1). Here the eftect of

surface tension is assumed negligible. From Fig. 5.2.1. we can find that two distinct
regions of flow are associated with this problem. The upstream region is characterized by
two fixed flat surfaces. In the downstream the top surtace is tree and the bottom is tlat.
Far upstream the fluid is assumed to flow as uniform stream. Of particular interest in
analyzing this problem is the prediction of the location of the free surface downstream.
Here it is assumed that a hydraulic jump does not occur. We expect that the fluid departs
smoothly from the upstream region. and the free surface remains smooth in the
downstream region. Contrary to the vertical sluice gate problem. we do not adopt the

assumption that the far downstream flow is uniform. As a result. waves may occur in the

downstream region.
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Region | Region I

0 X

Fig. 5.2.1 Schematic of the flow departing from contined parallel flat surtaces

5.2.1 Governing equations for region I

The upstream is an interesting region. where the tluid is bounded by two contined
parallel surfaces. We set up a coordinate system such that the bottom surface « =0 and
the joint interface is located at x = 0. Since the top and bottom surfaces are confined and
flat. and the far upstream is uniform. then according to the classical hydrodynamic
method. that is. Euler equation. we expect that the flow in region [ will keep unitorm.
Consequently, everything is determined, i.e.. unchanged from the far downstream.
However here we would like to solve this problem by means ot Green-Naghdi Level |

theory. We will derive the governing equations strictly following the method to see what

results.

Recall that for Green-Naghdi Level-I theory. we have obtained in chapter 2 the

governing equations for kinematic boundary conditions on material surfaces, continuity
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equations and the conservation law for momentum. For two-dimensional, steady flow. the
kinematic boundary conditions on top and bottom surfaces are

Vo + V0= Ul

(5.2.1a. b)
vy + VB =ugB,.
The continuity equations are
u, =0
Uy, +v, =0 (5.2.2a. b)

The conservation law of momentum states:

1 . _
um‘bo +¢0u0u0‘ = E(_PO\ '*'PB‘ -pa,)
1 . _

¢lu0u0‘ =E(_Pl\ +pBBx —paa‘)
\ .-

BoUgVo +hoVoV, +Ougv, +O vV, = g(_pg‘bo -p+p).
1 = <~ A

O\ UgVo, +O, VoV, FOu Vv Vv = E(Po -pgd, - pB +pa). (5.2.3a-d)

In region I. both the top and bottom surfaces are flat. and we have set up the

coordinate system such that « = 0 everywhere. and B = H, everywhere in region . H,

denotes the distance between the top and bottom surfaces in region I. Then with the help
of these conditions, from (5.2.1a. b) we have

v, =0, and (5.2.4)
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v,=0. (
(5.2.4) and (5.2.5) demonstrate that the vertical velocity of the fluid in region [ is zero

everywhere.

And from (5.2.2b) we have
u, =0. (5.2.6)

X

which means that the horizontal velocity of the fluid in region I remains constant.

With the use of (5.2.4). (5.2.5) and (5.2.6). and taking into account that « = 0 and

B = H, . we can obtain the conservation law of momentum as follows:

-—=0 (5.2.7)

- =0 (5.2.8)
P

- pgd, ~p+p=0 (3.2.9)

P, —pgd, —pH, =0. (5.2.10)

By means of these equations we can obtain the distribution of p. p and P, in region
[. Actually, from (5.2.7) and (5.2.8), we can easily conclude that the integral pressure P,
and P, remains constant throughout region [. Then by means of (5.2.9) and (5.2.10). we

can find that the bottom pressure p and the top pressure p keep constant in region L.

Thus. these results are consistent with those obtained from the classical method.
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5.2.2 Governing equations for region Il

Region Il is characterized with a flat bottom and a free top surface. Because we did
not adopt the assumption that the flow far downstream is uniform. we cannot use the
governing equations obtained in above section. Thus we derive briefly the governing
equations of region II. As usual. we set the atmospheric pressure be equal to zero. then

from Chapter 2. we can obtain the Green-Naghdi governing equations as follows:

u, =0 (3.2.11)
Uy +v, =0 (3.2.12)
v, =0 (3.2.13)
v, +vB=u,p.. (3.2.14)
b, u, U,y = ——I-PO‘. (3.2.15)
p
PolUgVo, +9oVoVy TOUV +O VvV, = é(—pgd),] +P). (5.2.16)
du,vy. +O, VeV, +0,ugv, +0.V vV, = é(Pﬂ -pgd,). (3.2.17)

Here (5.2.11) is the restricted theory. and (5.2.12) is the continuity equation. (3.2.13) and
(5.2.14) are the kinematic boundary conditions on the flat bottom and the free surface

respectively. (3.2.15)-(5.2.17) are the conservation law of momentum.

Inserting (5.2.13) into (5.2.16) and (5.2.17). we can have

I _ _
dupv,, +o,vv,= ‘p‘("Pg‘bo +P). (5.2.18)
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1 -
b ugVy +,vy v, = E(Po -pgd,). (3.2.19)

respectively.

Substituting (5.2.12) into (5.2.14). and integrating and replacing § with ¢, . we can
obtain the familiar equation:
u, 9, =Q. (5.2.20)

where. Q is a constant of integration. and denotes the constant flux rate of the fluid.

Then with the help of (5.2.20). (5.2.15) can be integrated and a decent equation can

be obtained:

where S, is another constant of integration to be determined. This equation can be

obtained due to the flat bottom in region II.

Substituting (5.2.21) into (5.2.19). and with the help of (5.2.12). finally we obtain a

second-order differential equation with regards to ¢, only:

Ql QZ

= Gpbow ——— b + =20, —S,0, +Q7 =0. (5.2.22)
J

1
3 2

This equation is different from (3.1.9). and is a second-order differential equation. We

downstream.
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At the same time, with the use of (5.2.12) and (5.2.20). from (3.2.18) we can obtain

the bottom pressure in region II:

de)O\2 +Q:¢0t\
20; 20,

P =g0, -
p

Thus once the distribution of the thickness of the fluid in region II is obtained. the bottom

pressure can be calculated through (5.2.23).

that we derived the governing equation with a different strategy from that used in the
previous chapter. Here we make full use of the assumption that the is flat bottom when
we derive these equations. while in previous chapter we derived the governing equations

from the general point of view. making the derivation much more complex.
5.2.3 Jump conditions
Up to this point we have obtained the governing equations for region [ and II. Then

jump conditions are necessary to match the solutions at the juncture point x=0. Recall

that for Green-Naghdi Level-I theory. the jump conditions are as follows:

| Ql..,=0- (5.2.24)
lPQue+P, [, = lim [,35‘ dx., (5.2.23)
loQuw, |, =lim [[-p+F-peoldx, (5.2.26)
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!si_l"x(}i“pQuo.‘\u]dxﬂ]Pl l,o = lim ij?f)BB‘dx, (5.2.

.t I 5 (o, 8 X )
lim I {pQ\u(uow‘ ) +Q w(—(’;udx = lim f [P, -peow -5 Jdx.

(5.2.28)
Here the condition that the bottom is flat has been used. In addition. we expect that
the fluid departs from the flat top surface smoothly. As a result. in addition to the
physical jump conditions listed above. we have the geometric relations at the juncture
point x = 0. namely.

IBl.., =0. (3.2.29)

8.

=0 (5.2.30)
From the governing equation. we know that pressure on the top surface on the left
side of x = 0 is bounded. The pressure on the free surface in region Il is equal to zero.
Meanwhile, because of the smooth departure of the fluid at x = 0. from (5.2.23) we can
conclude that the bottom pressures are bounded. Therefore. the limits in (5.2.25- 28) are
equal to zero even if there are finite jumps on p and p between sides of x = 0. Thus. we

have the following jump conditions:

lusdoll._, =0 (5.2.31)
lpQu, +P, |, =0. (5.2.32)
lpQuow. | ,=0. (5.2.33)
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Since the bottom is flat throughout the flow region. then the equivalent jump

conditions to (5.2.29)-(5.2.33) are:

=0; doc Il =0:
H¢0 “‘=0 ” 0 =0 (5 234)
”Q"‘:o =O; “ PO ”\:O =0.
These jump conditions imply that at the joint point x=0.
“=B" =H;: "= =0
P™=p" =4, B" B‘_ (5.2.35)
Q =Q": o = Fo

These jump conditions provide enough information to solve the governing equations

integration S, can be determined through (5.2.21). Jump condition (3.2.33¢) assures that

the flux rate Q is constant throughout the region. Then (5.2.35a) and (5.2.35b) act as the
boundary conditions at x = 0 for the governing equation (5.2.22). Thus the distribution of’
the fluid thickness in region Il is obtained. and the integral pressure and bottom pressure

in region I are determined through (5.2.21) and (3.2.23). Therefore. the solution of this

problem is obtained.
5.2.4 Results and discussion

Before we discuss the result. we introduce the definition of the Froude number in this

problem as:
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Fr= UIl-l . (3.2.36)
gn,

where, U, denotes the velocity of the fluid at far upstream. and H, the thickness of the

fluid at far upstream and also the distance between the flat top and bottom surtaces.

In order to solve the problem. the pressure at tar upstream must be specitied
beforehand. According to the governing equations in region l. once the top pressure tar

upstream is given. other pressures. such as the integral pressure P, and P,.and the
bottom pressure p. are determined. Thus we denote the top pressure far upstream by p,,.

and we will discuss the results using the value of p, as an input variable. in addition to

the Froude number.

First of all. we consider the case p, = 0. that is. the top pressure far upstream is equal
to the atmospheric pressure. In this case. the results are very interesting. After calculation
of the governing equations in region II. we find that only one solution exists. no matter
the flow far upstream is supercritical. critical. or subcritical. This solution is that the tlow
throughout the region is uniform. In other words. the flow keeps unchanged throughout
the whole region. This result is obviously consistent with practical experiments and

common sense.

Then we discuss the case p, > 0. that is. the top pressure at far upstream is greater
than the atmospheric pressure. Then according to governing equations in region . the top

pressure is constant in region . that is. p=p,. However. in region Il the top pressure on
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the free surface is equal to the atmospheric pressure. that is. p=0. Consequently. in our
computation model. there will be a discontinuity of the top pressure across x = 0. By way
of illustration, Fig. 5.2.2 depicts the obtained solutions for three values of the Froude
number Fr =0.5, 1.0 and 1.5. Here the distance between the parallel confined plates is

Im. and the top pressure far upstream is p,/(pgH,)=0.051m. Inspection of Fig. 5.2.2

indicates that waves always appear in the downstream. no matter the tlow in the upstream
is supercritical, critical or subcritical. And given same conditions. the higher the Froude
number. the larger the magnitude and the length of the wave in the downstream. For the
supercritical flow. the magnitude of the wave downstream is so high that we may expect

that hydraulic jump will occur.

25

05 | e e e R . —Fr=0 5

VP I PR IR 2R R R R NN N P S N DI DLAARAA

-2 o] 2 4 6 8 10

Fig. 5.2.2 Plot of the free surface in the downstream when p, >0
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Finally we consider the case when p, <0, that is. the top pressure far upstream is less
than the atmospheric pressure. Similar to the case p, > 0. there is a jump on the value of

the top pressure across x = 0. After calculation for ditferent Froude numbers at far
upstream, we found that there are no solutions for the supercritical and critical flows.
Under certain conditions, the solution for subcritical flows can be obtained. Two
solutions are illustrated in Fig. 5.2.3. where the Froude number Fr = 0.3 and 0.5. and the

top pressure far upstream is p,/(pg H,)=—-0.051m. The distance between two flat plates

is still Im. In the practical problems. due to the negative pressure on the top surface in
region I (compared to the atmospheric pressure). the flow will become unstable and
probably will not stay attached to the top plate in region [. Consequently. in this case may

not reflect a practical situation.

1.2

0.8
06
04
0.2 .4........... .............. Fr=03 .
' f j : Fr=05
0 777 //////'/ LI T T X
-2 0 2 4 6 8 10

Fig. 5.2.3 Plot of the free surface in the downstream when p, <0
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level in the waves in the downstream is below the top surface in region 1. thatis. v =
1.0m. whereas when p, > 0, the mean water level in the waves is above y = Im. When
p, = 0. the free surface in the downstream is flat and is equal to v = Im. This implies that

the top pressure far upstream determines the pattern of the free surface in the

downstream.

Region [

Region |l

%
P 72277 r7rriz uidaiuizzisiz

Incoming flow

,,/

Fig. 5.2.4 Steady. two-dimensional flow past a semi-intinte tlat-bottomed body

in finite-depth water

Actually. this problem can also be regarded as the steady. two-dimensional tlow past
a semi-infinite flat-bottomed body in finite-depth water. as shown in Fig. 3.2.4. Vanden-
Broeck (1977. 1980) studied the steady two-dimensional tlow past a semi-infinite tlat-
bottomed body in infinite-depth water. As he pointed out. there are two possible solutions

for this problem. By using the conformal mapping. Vanden-Broeck (1980) obtained a
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smoothly from the corner bottom. Based on an expansion in powers of the Froude

number F =U /(g H)% (H is the draft ot the body in his paper). Vanden-Broeck (1977)
obtained another kind of solutions with a stagnation point on the side of the body (as
shown in Figure 8 in Vanden-Broeck (1977). This solution was confirmed by Yeung
(1991). However, the latter solutions are only physically satistactory tor small values of
the Froude number. and become physically unreasonable since the ratio of the elevation
of the stagnation point to the draft tends to infinity as F — o2, For instance. when he
calculated the profile of the free surface for F = 6.3. the elevation of the stagnation point

is 20 times of the draft ot the body.

[n both papers. Vanden-Broeck did not consider the effect of the bottom by assuming
the water depth is infinite. Here we obtained the solutions in finite-depth water. Note that
here the stern waves are noticeably nonlinear with sharp peaks and broad troughs (sec
Fig. 5.2.2). which is consistent with the first kind of solutions of Vanden-Broeck (1980).
The second kind of solutions with a stagnation point (Vanden-Broeck 1977) yield stem
waves very close to sine waves. as point out by Vanden-Broeck (1980). Both of the
present solutions and those of Vanden-Broeck do not take into consideration the viscosity
and surtace-tension effects. Yeung (1991) studied both stern and bow waves taking into
consideration the effect of viscosity. Recently. Yeung & Ananthakrishnan (1997) studied
the viscosity and surface-tension eftects on wave generation by a translating body in
infinite-depth water. Nevertheless. the problem is very complicated and beyvond the

discussion in present dissertation.
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§5.3 Flow departing from confined non-smooth top surface

Now with the results obtained in the above section. we can deal with much more
complicated problems. On the basis of the problem solved above. we expand the flat top
surface with a confined inclined part. as shown in Fig. 5.3.1. This problem was
mentioned by Benjamin (1956) when he studied the flow under a sluice gate. Before

proceeding further, we state the problem explicitly in the following for later convenience.

Y
4
Region | >l Region Il" Region |l »
H
1 H2 H3 H4

x=-a 0
X

Fig. 5.3.1 Schematic of the flow departing from a non-smooth top surface

Consider the steady. two-dimensional flow of an inviscid. incompressible fluid
departing from two confined surfaces (as shown in F ig. 5.3.1). The bottom surtace is tlat.
while the confined top surface becomes inclined some distance from the departure point.
Here the effect of surface tension is assumed negligible. Far upstream the fluid is
assumed to flow as uniform stream. Of particular interest in analyzing this problem is the

prediction of the location of the free surface in the downstream.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



With the experience of solving the waterfall problem with a non-smooth bottom. we
will divide the whole flow region into three distinct regions since the confined top surface
is not smooth. As shown in Fig. 5.3.1. region [ is characterized by two confined parallel
flat surfaces, and region II is bounded by an inclined top surface and a flat bottom
surface. while region III is characterized with a free surface and a flat bottom. [n the

following the governing equations for each region will be derived.

5.3.1 Governing equations for three regions

Comparing with the problem in the above section. we know that region [ and region
I1I here are just same as region I and region I of above problem respectively. Thus we
can use these governing equations for these regions. We summarize them in the following

without further explanation.

In region I. the Green-Naghdi Level-I governing equations are:

<

]

[en]
(W ]]
(V3]
19

c
f=1
”~<

]

[a]
—_
(W]
(V3]
(99

|

1]
(=)
U
(95
th
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-pgB-p+p=0, (5.3.6)

1 , A - A
PO_T).pr- -pB=0. (5.3.7)

[n region III, the governing equations are

: ’ 2 1 3 ) -
QT‘buq’o“ _9,—‘1)0‘ +;g¢0 —S:¢’0+Q-=O~ (3.3.8)
J J 2z
P_‘J:—-g;_{,.s_' (D 3 9)
p 0
B=g¢0—Q-¢‘i‘ + L (5.3.10)
P 2¢; 20,

Now we need to derive the governing equations for region Il. which is bounded by a
flat bottom and an inclined top surface. Since the bottom surface is tlat. then from the

kinematic boundary conditions. we obtain

The continuity equations state that

u, =0, (3.3.13)
u,, +v, =0. (5.3.14)

From the conservation law of momentum. and taking (3.3.11) into account. we can

obtain
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1
Buouo»‘ =_—P0x +EB‘9 ( LD,
p P

(9]
LI
—
wn

1

: 1 1 . .
UV +Bviv= S(cpep-p P (5.3.16)

1 | 1 5 oA
—Blu,v, +=B’v,v, = =(P, —=pgh’ - ). (5.3.17)
Jd J p

[89]

Substituting (3.3.14) into (5.3.12). and integrating. we obtain

th

u, p=Q. (3.3.18)

where Q is a constant of integration. and denotes the constant flux rate of the tluid.

With the help of (5.3.18). (5.3.15). (5.3.15) and (3.3.17) become

o1 R )
PQ'(—] =pPB, - Py,. (5.3.19)
B, "
Lo (B —-pep-p+p (5.3.20)
5 B ). pep—p+p. 5.3.2
1 2 /B\ 2 ol 219
3PP\ =R-gpeb b (5.3.20)
3 B /. 2
respectively.

From (5.3.20)., we have

. 1 (B, ,
p=p+pr+EpQ (?] : (3.

(]
(98]
12
19

And from (5.3.21) we get
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N 1 2 l ) X = a4 e
Py=pB+-pgh +<pQP Bl (5.3.23)
2 3 B/,
Inserting (5.3.23) into (5.3.19), and integrating. we obtain
IS 1 2 1 1 2 Bxl 1 2 B“ =~
==B-gf--Q —=+-Q —=---Q —=. (5.3.24)
P 2 p 6 B 3B

where. B is a constant of integration, and to be determined as part ot solution.

[nserting (5.3.24) into (5.3.23), we obtain

P . QY Q'BS°

Po _pp-lep L QP (5.3.25)
p 27 2B 6P

[n the same way, substituting (5.3.24) into (5.3.22). we have
P_=B_1_Q_:__1_Q3[P_‘_] +1Q1 By . (3.3.26)
p 2B 5 B 6 B

Since the top surface is given. then only thing needed to be determined is the constant
of integration B. Once the constant of integration B is determined. we can calculate the
top pressure through (5.3.24). At the same time. the integral pressure and the bottom
pressure can be obtained from (5.3.25) and (5.3.26). respectively. The determination of B
depends on the application of jump conditions at the junction point x = -a discussed in the

following section.
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5.3.2 Boundary conditions and jump conditions

Now that we have obtained the governing equations in three regions. we need to
consider appropriate boundary conditions to solve these equations. As before. we assume
that the stream is uniform at far left boundary. Besides. we need to specify the integral
pressure. or the top pressure at far left boundary because the top surface is confined
instead of being free. Therefore the boundary conditions at tar lett boundary are

B=H,: u,=U;:P, =P _,.asx>-wo. (5.3.27)

Since the fluid flux Q remains constant throughout the whole tlow region. Q is

determined as

Q=UH,. (5.

W
(O3]
19
o0

Recall that the fluid is bounded by two confined parallel tlat surtaces. Then in region

I the thickness of the fluid keeps constant. that is.

B=H,. (3.3.

hn
(93 ]
1o
O
-

Thus the distribution of the integral pressure. top pressure and bottom pressure can be
determined through (5.3.4). (5.3.7) and (5.3.6). respectively. Then we have obtained the
solution for region [. Actually. all of these variables are constant in region I according to

our computational model.
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Now we consider region 1I and III, which are much more complex than region I.
However. in order to solve the governing equations in region II and III. we must apply
jump conditions at x = -a and x = 0 to determine the constants of integration in these
equations. [n addition, the jump conditions will yield the boundary conditions needed for
the calculation of the differential equations. We first consider the jump conditions at the
junction point between region [ and [I. say x = -a. where a jump on the slope ot the top
surface occurs. This means that the top surface is continuous at x=-a. while the slope of
the top surface is discontinuous there. Thus the second order derivative of the top surface
may be unbounded. After observing (5.3.24) and (5.3.26). we find that the top pressure p

and bottom pressure p may be unbounded as well. However. from (5.3.25) we know that

the integral pressure P, is bounded across the joint interface x = -a.

As before. we first consider the geometric relations at x = -a. Obviously. the thickness

and the central line of the fluid is continuous across X = -a. that is.

|6, =0.and (3.

N
o
I
[a]

lvl..,=0. <

X=-a

(¥ 1}
(]
o

—

Since the bottom is flat. we can just use one equivalent jump condition. that is.

18]

., =0. (3.

w
(U9
(U%)
19

Another geometric jump condition at x = -a is the discontinuity of the slope of the top

surface. that is,
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IR

s =K (3.3.

(V]
)
(93]
(%]

where. K denotes the slope of the top surface in region Il. and is specified beforehand.

Next we consider the jump conditions associated with physical laws. Before further

proceeding, we define as before

lim [ (pB, P a,)dx=F. (5.3.34)
lim j[-f)+5-pg<p]dx=F3. (3.3.33)
l_irr(} I [P0 —pgoy -pp +paldx=L. (3.3.36)

Recall that we have obtained the general jump conditions tor Green-Naghdi Level |
method in chapter 3. Now we apply them to this particular problem. Making use of the

above definition. we can obtain

|Q...=0. (5.3.37)
HpQuO +Py Hu-a =F. (5.3.38)
lpQuew, | .., =F;- (5.3.39)
lim f[pQw(uow‘)ﬁLpQ:w(w‘J }dx =L. (5.3.40)
= 2, 1277 e ),
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However, since F,. F; and L are unknown beforehand. we need another jump

condition, that is. the energy equation. Recall that the general energy jump condition for

Green-Naghdi Level-I theory is:

=0. (3.3.41)

1 2 1 2
;puod)o Uy U W T F U 9,

This jump condition can be simplified. From (5.3.37) and (3.3.32). we can deduce
that u, is continuous across X = -a. At the same time. since the bottom is flat throughout

the flow region. then (5.3.41) can be simplified as

=0. (2.

()
(9]
4=
(]

” bl b
léQuo- Bx- +uO &_

X=-4a

Now with the jump conditions (5.3.28) and (3.3.33). together with the geometric
jump conditions at x =-a. that is. (5.3.32) and (5.3.33). we can determine the constant of
integration B in the governing equations (5.3.24). (5.3.25) and (5.3.26). Therefore the

solution for region I can be obtained through these equations.

Finally we consider region III. where the governing equations have been obtained.
that is. (5.3.8), (5.3.9) and (5.3.10). To solve these equations. the crucial point is to solve
(3.3.8) to obtain the distribution of the thickness of the tluid. Equation (5.3.8) is a second-
order differential equation. which requires appropriate boundary conditions to be solved.
In addition, there exist two constants of integration (5.3.8). which need to be determined

before the solution of (5.3.8) is obtained. In other words. four conditions are needed to
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determine the solution in region III. All of these conditions can be obtained by the
application of jump conditions at the joint point between region Il and IIL. say x = 0.
Then let us focus on the jump conditions at x = 0. We suppose that the stream departs
smoothly from the joint interface, which requires that the top surface and the slope of the

top surface are continuous. that is,

1Bl =0- (5.3.43)
B.]. =0 (5.3.44)

As before, from the general jump conditions obtained before. we have

1Ql,.,=0. (5.3.43)
ipouo'*'Po ”‘:o =0. (3.3.46)
[pQuyw., |, =0. (5.3.47)

The equivalent jump conditions at x = 0 are as follows:

By means of (5.3.48c) and (5.3.48d). the constants of integration Q and S, in (5.3.9)
can be determined. Then (5.3.48a, b) will act as the boundary conditions at x = 0 for
(5.3.8). and thus the location of free surface in region Il is obtained. Consequently. the

integral pressure P, and the bottom pressure p are obtained through (5.3.9) and (5.3.10)
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respectively, and thus the solution for region III can be obtained. This means the solution

throughout the flow region is obtained.
5.3.3 Results and discussion

Same as in the above section, we define the Froude number far upstream as

Ul

Fr= ~ (5.3.49)
veH,

where. U, denotes the velocity of the fluid at far upstream. and H, the thickness of the

fluid far upstream., i.e.. the distance between the flat top and bottom surfaces in region [.
Then given the top pressure at far upstream. H, and U, (or the Froude number Fr). we

can determine the solution for the whole region through the equations and jump

conditions obtained above.

Fig. 5.3.2 depicted the free surface in region III for different Froude numbers while
other conditions are same. Here the top pressure at far upstream p, is equal to zero. The
thickness of the fluid far upstream H, = 1.0m and the thickness of the fluid at departure
point (x =0) H, =0.6m. The length of region Il isa = Im. Once H,. H, and aare

specified. the slope of the top surface in region II. say K. is determined. Inspection of Fig.
5.3.2 indicates that the higher the Froude number. the longer the wave length. The
magnitude of the wave appears not to change much with the Froude number up to kr =
0.5. But Fig. 5.3.3 indicates that the Height (magnitude) of the waves will increase

rapidly when the Froude number is greater that 0.4.
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Fig. 5.3.3 Plot of the wave height in region [II as a tunction of Froude number
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Fig. 5.3.4 shows the effect of the top pressure far upstream on the waves in region IIl.

Here the given data are: H,=1.0m; H;=0.6m: a = 1.0m: and Fr = 0.5. The results

indicates that the higher the top pressure far upstream p,,. the larger the magnitude of the

waves and the smaller the wave length.

15

05

Fig. 5.3.4 Plot of waves in region III for different top pressures far upstream
Next we consider effect of the slope of the top surtace in region [l on the waves
appearing in region III. Fig. 5.3.5 and Fig. 5.3.6 show the eftects on the wave length and

height in region III, respectively. From these results. we found that the wave length and

height of waves in region III increase with the slope of the top surface in region IL.
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Fig. 5.3.5 Plot of the wave length in region II[ as a tunction of the slope K of the top

surface
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Fig. 5.3.6 Plot of the wave height in region III for different slopes K of top surface

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To date, all of the results show that waves always occur in region IIl. However,
further study found that solutions other than waves are possible if particular conditions
are sought. An interesting solution is one where the flow in region [II will approach
uniform flow at far downstream. We now discuss the possibility of this solution. Recall
that when we solved this problem above. we did not assume that the flow far downstream
is uniform. If so. we would find that this problem is over-determined. But. on the other

hand. this also means that more than enough conditions have been given.

With the assumption that the flow in region Il becomes uniform at far downstream.
we can integrate the governing equation (3.3.8). After the integration as we did before.
we can obtain the tamiliar equation

a

',I,_Qz¢0x:=[ Q-g -g¢0](¢0'H4)2~ {
3 H,

50)

wh
(S}
(4]

where. H, denotes the constant thickness in region Il at far downstream. Thus the

second-order differential equation is simplitied to first-order ditterential equation. The

integral pressure can be obtained through

P, Q°

_0'=__+SZ' (3.
p b,

W
()
i
—
~

where. S, is a constant of integration. Due to the uniform tlow tar downstream. we can

deduce the relation between S, and H,. that is.
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After observing (5.3.50)-(5.3.52). we find that three conditions are needed to
determine the solution in region III. In detail. two are needed to determine Q and H,. and
another one is needed to act as the boundary condition to solve (5.3.50). However. there
are four jump conditions at x = 0. say (3.3.48a-d). As discussed above. two possibilities
are associated with this case, that is. this problem is over-determined. or more than
enough conditions are given. In other words, some given conditions are related. rather
than independent. For instance. if we specify H,. H;. the slope K. and the Froude

number far upstream. then unlike what we did before. we cannot specify the value of the

top pressure at far upstream.

Fig. 5.3.7 illustrates the result of one case. where H,=1.0m. H.=0.5m. Fr=10.5 and

the inclined angle is equal to 30°. Once these data are given. the corresponding top
pressure far upstream is determined and thus a unique solution. if exists. can be obtained.
More results are given in Fig. 5.3.8 for difterent values of Froude number while other
conditions are same. After observing Fig. 5.3.8. we tind that the constant thickness of the
fluid tar downstream increases with the Froude number. However. H, varies little with
the Froude number after Fr is greater than 0.7. Note that the vertical coordinate is

enlarged to see clearly the solutions for different Froude numbers.

To date. we have obtained both solutions with waves and without waves for this flow
problem. Usually, waves occur after the fluid departs from the confined tep surtace.
However under certain circumstances, we are able to obtain the solution that the tlow in

region III approaches uniform at far downstream.
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Fig. 5.3.8 Plot of the free surface in region III for ditferent Froude numbers
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Chapter 6

Steady Inviscid Flow over a Weir

In Chapter 4 we have solved the waterfall problem over a slanted bottom. that is. the
flow over an inclined weir. When the inclined weir becomes vertical. this problem
becomes a classical thin weir problem. which is the main concern of this chapter. More
precisely, we consider a flow in a channel of finite depth that is uniform ftar upstream and
ends with a vertical weir. There are usually two types of weirs: thin weirs (sharp crested

weirs) and broad crested weirs. Both of them will be considered in this chapter.

The use of weirs as flow control devices in dams and open channels can be traced
back to 325 BC from the archeological studies of the remaining portions of some dams in
the Middle East. Smith (1971). Large numbers of experiments. both at laboratory and in
the field. have been made during last several centuries. However. theoretical results are
rare. The first theoretical prediction of the flow over a rectangular sharp crested weir
appears to have been made by Boussinesq (1907). The weir problem. same as the tree
waterfall problem. is complex due to one or more unknown free surfaces. whose shape
must be found as part of the solution and on which the boundary conditions to be satistied
is highly nonlinear. What differentiates the weir problem from the waterfall problem is
the presence of the vertical weir. which causes a jump in the thickness of the fluid and
this makes it more difficult to solve. In the following sections. we will discuss both sharp

crested weirs and broad crested weirs.
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§6.1 Thin weirs

The thin weirs have remained one of the simplest. most accurate and useful gauging
structures under laboratory and controlled field conditions. The interesting characteristic
of weir flows is that given the height of the weir. the Froude number and the height of the
fluid far upstream are not independent. Although a large number of experiments have
been made. analytical solutions are rare and even numerical solutions are ditficult to
obtain due to the complex nature of weir flows. By means ot conformal mapping method.
Vanden-Broeck & Kell (1987) obtained numerical thin-weir solutions for small Froude
numbers. Dias & Tuck (1991) extended their calculation to larger Froude numbers with
limited success. However. to our knowledge. the study of weir tlows with Green-Naghdi
theory has not been done yet. Before further processing. it is desirable for later reference

to provide here the following statement of the thin weir problem.

The steady two-dimensional flow of an incompressible. inviscid tluid over a thin weir
is considered. The flow is uniform far upstream in a channel of finite depth. which ends
with a thin weir. After the thin weir, the flow forms a jet bounded by two free surfaces.
which falls under the effect of gravity. From Fig. 6.1.1 we can find that two distinct
regions of flow are associated with this problem. The upstream region ahead of the weir
is characterized by a free top surface and a flat bottom. In the downstream behind the
weir a jet is bounded by two unknown free surfaces. Of particular interest in analyzing
this problem is to compute the relation between the upstream flow, the geometry of the

weir. and the location of two free surfaces of the free jet after the weir.
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Fig. 6.1.1 Schematic ot flow over a thin weir

6.1.1 Formulation of the problem

We choose a coordinate system with the x-axis along the bottom of the channel and
y-axis up the vertical weir. Then the y-axis divides the flow into two parts: Region |
(upstream) is bounded by a free surface and a flat bottom: while Region Il (downstream)
is bounded by two free surfaces. As in the waterfall problem. we assume that the tlow is
uniform in the horizontal direction and the horizontal component of the velocity
approaches constant far downstream. Then the far downstream boundary conditions are.

as in Chapter 4 for the waterfall problem,

as X — +o,
o, > H,. ¢,, 0. uy,>U,. P, >0. (6.1.1)
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Since the flow is uniform far upstream and the bottom is flat in region I. then the far

upstream boundary conditions are

as X — —o©,

.. 6.1.2
¢, > H,. 9o, >0. u, > U,. P, = 5pgH; ( )

With these boundary conditions and the characteristics of the tflow. the governing
equations obtained in Chapter 4 are valid here. Thus in Region I the governing equations

of Green-Naghdi Level [ theory are:

l 4 b : 2
:Q-‘bo\ =[Q_3_g¢0}(¢0*Hl) . {6.1.4)
J H, )
E&=——-—+311 (6.1.3)
p bo
R=g¢o—Q-¢‘i‘ + L . (6.1.6)
P 265 24,

where
Q=FrygH H,. (6.1.7)

1o Q

Si""z"ng + H, . (6.1.8)

Here we adopt the same notation as in previous chapters. And in region [ the

governing equations are

0,=H, +Ae™; (6.1.9)
Eo_z_%ys}; (6.1.10)
P 0
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_—gH‘, x3+CH4x+gA,H e ® -8 _oom _AC b 6l

2Q° Q’ 2Q°B’ B
where

A=H,-H,. (6.1.12)
7./7

g3 (6.1.13)
H,

5.=2 (6.1.14)

T

C and D are constants of integration to be determined.

6.1.2 Jump conditions

Now that the governing equations for Region [ and II have been obtained. which are
same as those in the waterfall problem. then the jump conditions become the crucial part
of the solution. What difterentiates the weir flow from the watertfall problem is the
presence of the vertical weir, which results in a jump in the thickness ot the {luid at x = 0.
Before considering the jump conditions associated with physical laws. we analyze the
jump conditions from the geometric point of view. We expect that the top surface across
the weir is smooth, although hydraulic jumps are possible due to the existence of the

weir. Then we have the geometric relations across the weir x = 0:

|8

‘=0=0, (6.1.15)

8. ]

‘=0=0. (6.1.16)
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=W, or. ||, |

| =W, 6.1.17)

x=0

where W denotes the height of the weir.

With the help of these geometric jump conditions. we can handle the physical jump

conditions much easier. Recall that the jump conditions tor Green-Naghdi Level [ theory

are:
| Ql..,=0. (6.1.18)
lpQu, +P; |, =lim iJ:'va‘dX- (6.1.19)
HpQuoW‘L=O=Lifgj[-b+5—pgcp]d& (6.1.20)
lsiggijj[pQ U, wldx+|P ], = lim :j:f;mz‘ dx. (6.1.21)

0 o

lim | [pQw(uo\u‘)‘ +=pQ w[‘p—J }dx = lim | [P, -pgow-pp Jdx.
§— L 12 ® . §—o0)

-0

-

(6.1.22)
As a result of the discontinuity of the thickness of the fluid. the first and second order

derivatives of ¢, may be unbounded at the left side of the weir. According to (6.1.5) and
(6.1.6). the integral pressure P, is bounded while the bottom pressure p may be

unbounded as well at the left side of the weir. So we define that

lim [ B, -P o )dx=F, (6.1.23)
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gl_’rfg_![—p-\‘-p—pg(p]dx:[: , (6.1.24)

%
l’l_[}g I[PO -pgoy—-pB +Ea]dx=L. (6.1.25)

Then the jump conditions (6.1.18)-(6.1.21) becomes

I Ql..,=0. (6.1.26)
lpQu, +Py | _, = F. (6.1.27)
leQuy v, |, =F. (6.1.28)
lim J{pQw(uo\v‘)‘ +‘1—PQ: cp[(p—‘j }dx =L. (6.1.29)
05 12 SN

Here F,. F; and L have real physical meanings. That is. F; is clearly the horizontal

force on the face of the weir in the x direction. F; is the vertical force on the bottom of
the channel. and L is the moment on the face of the weir and bottom of the channel. Due
to the presence of the weir. some part of momentum has been transferred to the forces on

the weir. The challenge is thatF,. F; and L are part of the solution and not known

beforehand. Thus. these jump conditions introduce three new variables and. as such.
these jump conditions cannot be used to determine the solution. We need alternative
jump conditions that do not involve any unknown variables. Obviously. the jump

condition associated with the energy equation meets this requirement. Recall that the

general energy jump condition for Green-Naghdi Level-I theory is:
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1 2 o2 b
“;puo‘bo(uo +tUp Wy +l_7u0 Poe +2g‘U)+uopo

=0. (6.1.50)

f

x=0

Unfortunately, due to two unknown free surfaces in region Il. (6.1.30) cannot be
simplified as we did in Chapter 4. To date. we have obtained all of the jump conditions
associated with physical laws. After observing these jump conditions. however. we find
that only the geometric jump conditions (6.1.15)-(6.1.17) and physical jump conditions
(6.1.26) and (6.1.30) are helpful to seek the solution. Thus. at this point we do not have
enough jump conditions to complete the solution. The tollowing sections then are aimed

at determining an additional condition needed for obtaining the solution.

6.1.3 Solutions

Now we have obtained the governing equations and jump conditions for the weir

flow. First let us consider the region [, where the governing equation about the thickness

of the fluid is:

%Q%bof =[ Q} -g¢oJ(¢o -H,)". (6.1.4)

Before solving (6.1.4). we non-dimensionalize it. Recall that we have defined the

Froude number as

Fr: 0 N (613)

where V, denotes the uniform velocity at far upstream.
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Introducing the notation

-~ P ~ X
= X)y=—, X=—.
=) H, H,

and making use of (6.1.3). (6.1.4) may be written as

1

S
J

Fr* (n')* =(Fr’ =n)n-1). (6.1.32)

The responding boundary conditions become

n—>ln'—>0 as X>-=. (6.1.33)

After observing (6.1.32). we find that two kinds of solutions exist depending on the

value of the Froude number. One of the possibilities is that the Froude number Fr is less
than \/—ﬁ . Under this condition. the term (Fr: —n) is negative while the other terms in

(6.1.32) are all positive or zero. As a result. the only solution of (6.1.32) when Fr<11is

n= 1 identically.

Clearly, if 1 is not identically equal to 1. since all of the terms in (6.1.32) are

positive. it is required that

Fr’>n. (6.1.34)

Taking (6.1.33) into consideration, we can find that if we want 1 to be difterent from

1, then we must require that
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Fr>1. (6.1.35)
Up to this point, we can conclude that the solution of (6.1.4) depends on the Froude

number far upstream. If Fr < 1, the only possible solution is n=1. or
¢, =H,, (6.1.36)

in the upstream region. [f Fr>1. solutions other than uniform flows are possible.

Now we consider the governing equations for region [I. The solutions tor the
downstream can be easily obtained if we can determine the constants of integration in
(6.1.11). Through the jump conditions the solution for region [l must match the solution
of region [ at their junction. As a result. the solution for downstream depends on the
Froude number far upstream too. Thus we will treat the two cases Fr>1 and Fr <1

separately.

First we consider the case when the Froude number Fr > 1. that is. the flow in
upstream region is supercritical. Under this condition. solutions other than the unitorm
flow in region [ are possible. The solution can only be determined with the help of jump
conditions. Recall that only the geometric jump conditions (6.1.15)-(6.1.17) and physical
jump conditions (6.1.26) and (6.1.30) are helpful to seek the solution. Upon inspection of

the governing equations in region I and II, we find that there are five unknowns to be
determined, that is. Bl‘z ,- - and the constants of integration A. B. C and D. However. we
have only four jump conditions to apply. that is. (6.1.13)-(6.1.17) and (6.1.30).
(Remember that the jump condition (6.1.26) has been used in deriving the governing

equations.) Obviously, one more conditions is needed to close the system. Recall that the
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fluid is assumed to be incompressible and inviscid and the flow is two-dimensional and

steady. Then Bernoulli’s equation is valid along any streamline in the entire fluid. that is.

Lt eviyrgy+R=lviign,. (6.1.37)
2 p 2

Here the uniform flow far upstream has been taken into account. (6.1.37) can also be

regarded as the dynamic boundary condition on the bottom free surface in region II.

Then we can apply Bernoulli’s equation along the bottom line. and at the departure

point of the weir we have

1 1, 1
— +_\"+QW=— ’+gH . (6.1.“8)
2, -w) T e J

That is. the solution must satisfy (6.1.38) at the departure point of the weir. Now we have

enough conditions to determine the unknowns. Given the Froude number and the
thickness of the fluid at far upstream. and the height of the weir. the solution for the

whole region is determined.

Now we consider the case when the Froude number Fr < 1. that is. the tlow in
upstream region is subcritical. As we discussed above. when Fr < 1. the only possible
solution in region I is the uniform flow. that is. ¢, =H, (n=1). Then we only need to
seek the solution for region II with the help of jump conditions. Due to the limitation of

uniform flow in region I. then the thickness at the left side of the weir is known. that is.

B

=H,. (6.1.39)

x=0"

Thus, we have only four unknowns to be determined. that is, A. B, C and D. As discussed

above, we have already obtained four jump conditions (6.1.15)-(6.1.17) and (6.1.30).
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However, the dynamic boundary condition, Bernoulli’s equation. (6.1.38) should be still
valid. So now we have five conditions. This implies that the Froude number and the
thickness of the fluid at far upstream, and the height of the weir are not independent. This
result is consistent with the experimental results and numerical study ot many others. By

numerical calculation. results can be obtained for small Froude numbers.

6.1.4 Results and discussions

Now we have sufficient conditions to determine the solutions for both regions. As
pointed out in above section. two possibilities of the solutions exist depending on the

Froude number. First we consider the case where the Froude number is less than 1.

By way of illustration. Fig. 6.1.2 depicts a tlow over a thin weir for the value of the
Froude number Fr = 0.1 and the thickness of the fluid at far upstream H, =1.0m. The
numerical results show that a unique value of the height of the weir is determined. and
the corresponding ratio H/W is equal to 0.79. Therefore. with this method. we can tind a
unique subcritical flow for a thin weir of height W in a channel of finite depth H,. which
is equal to H + W. However. the ratio H/W is different from the result of Vanden-Broeck
& Keller (1987), whose responding result is H/W = 0.42. It is not surprising because the
method here requires that the flow upstream of the weir be uniform and the free surface
elevation flat. In Vanden-Broeck & Keller’s solution the free surface elevation decreases

as it approaches the weir. Another reason for the difference is the application of
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Bernoulli’s equation, which is not compatible with Green-Naghdi theory. as we will

discuss later.

Our calculation also shows that solutions can be obtained only for small Froude
numbers. Fig. 6.1.2 through Fig. 6.1.5 show the numerical results at the values of the
Froude number Fr=0.1.0.2. 0.3 and 0.4 respectively. From these figures we find that the
corresponding height of the thin weir decreases rapidly with the increase of the Froude
number. When the Froude number is equal to 0.4. the weir height W is equal to 0.0098.
very close to zero. In other words. the ratio H/W will increase rapidly with the Froude
number. Fig. 6.1.6 depicts the ratio H/W varies with the Froude number. Our calculation
shows that the H/W will approach infinity for some value of Fr greater than 0.4. and the
calculation will break down. Once the weir height W is equal to zero. the weir problem
becomes the free waterfall over a flat bottom. Recall that there are no subcritical
solutions for free waterfalls. as we obtained in Chapter 4. FFig. 6.1.7 depicts the

distribution of the integral pressure P, in the downstream tor Fr = 0.1 and H, = 1.0m. We
find that P, decreases to zero rapidly. Due to the uniform tlow in the upstream. the
integral pressure P, and the bottom pressure p are constant in the upstream region.

Therefore. jumps on both P, and p occur across the location ol the thin weir,
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Fig. 6.1.2 Computed free surface profile for the flow over a thin weir. here the Froude

number Fr =0.1. and the thickness of fluid far upstream H, = 1.0m.
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Fig. 6.1.3 Computed free surface profile at Fr = 0.2
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Fig. 6.1.4 Computed free surface profile at Fr = 0.3
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Fig. 6.1.5 Computed free surface profile at Fr=0.4
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Fig. 6.1.7 The distribution of the integral pressure P; in the downstream when Fr=0.1

and H, =1.0m
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Now we turn to the case when Fr > 1. Based on the governing equations and jump
conditions obtained in above section, our numerical calculation shows that there are no
solutions for supercritical flows. This result is not surprising. although theoretically. there
is a tamily of supercritical flows over a thin weir in a channel of finite depth. When
Vanden-Broeck & Keller (1987) studied the weir flow. they did not give out any
solutions for the Froude numbers larger than 0.3. as pointed out by Dias & Tuck (1991).
Later on. although Dias & Tuck (1991) extended their calculation. they could only obtain
supercritical flows up to Fr = 1.6. On the other hand. experimental data are only available

for small Froude numbers. Hydraulic jumps will occur at large Froude numbers.

Note that in Fig. 6.1.2 the slope of the bottom free surface at the right side ot the weir
is not vertical. in contrast to a three-dimensional analysis of this problem that takes into
consideration the exact kinematic boundary on the tace of the weir. Recall that when we
derived the jump conditions at the location of the weir. we could not obtain enough
conditions to determine the solution. Only after the application of Bernoulli's equation at
the top of the weir, we could determine the slope of the bottom surface and thus obtain a
unique solution throughout the whole region. Here we fully realize that it is not
appropriate to apply Bernoulli’s equation at a particular point in the region. Bernoulli’s
equation is associated with the Euler integral equation. and is valid along a streamline.
On the contrary. although Green-Naghdi governing equations are derived from the Euler
equations, they are valid in the sense of the integration of variables along the vertical

coordinate. In other words, the Green-Naghdi theory is associated with the integral
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properties of physical laws, and the integral properties are refer to the integral values of
variables along the vertical coordinate, say y here. Thus. from Green-Naghdi method’s
point of view, there really is no concept of streamlines as would exist in a tull. three-
dimensional fluid. The fluid is considered as the “sheet-like™ model bounded by two
material surfaces, on which exact kinematic boundary conditions are imposed. The
dynamic boundary conditions have been taken into consideration in the governing

equations.

We also need to point out that there does exist a kinematic condition at the joint point.
that is. the slope of the fluid bottom surtface at the top edge of the weir should be vertical.
This condition implies that the horizontal component of the velocity of tluid at the top of
the weir is zero. Recall the assumed profile of velocity in Green-Naghdi Level [ theory.

From this we can deduce that u, is equal to zero at x=0. Thus the flux ot the fluid would

be zero. which would violate the conservation law of mass. As a result. we cannot make
use of this kinematic condition. Due to lack of the jump conditions. we “borrowed™
Bernoulli's equation and applied it at the top of the weir to determine the slope of the
bottom surface, which was unknown and free. From the classical theory’s point of view.
Bemnoulli’s equation is valid in the entire fluid because the two-dimensicnal tlow is
steady and is assumed to be uniform far upstream. Thus the shape of the bottom surface
at x=0 is actually restricted by this condition, which is the motivation to use Bernoulli’s

equation.
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Recall that our purpose to study weir tlows is to make theoretical preparation for the
study of breaking waves. Fortunately, the horizontal component of the velocity of the
fluid at the dividing location is not zero, as in the weir flow. Moreover. the variables at
the joint interface are expected to be continuous. This will simplify the derivation and
application of jump conditions. Thus, as far as jump conditions are considered. the weir
flow is more complicated than the breaking wave. As a result. the study of weir flows is a
challenge to the versatility of Green-Naghdi theory and its associated jump conditions.

and thus is worthy of study in its own right.
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§6.2 Broad crested weirs

Thin weirs have proved to be too fragile to be considered reliable gauging structures
in open channels. especially in irrigation channels. Thus broad-crested weirs have been
developed. These are referred to horizontal broad-crested weirs. ones whose cross
sections along the flow direction are rectangular. Considering the cases ot flood tlow
over embankments and levees. then the study of broad crested weirs has practical
importance. Experiments have shown that the water surface protile over broad-crested

weirs is surprisingly complex. In the following we describe the statement of problem tor

later reference.

Consider a two-dimensional steady tlow over a broad-crested weir in a channel with a
finite depth. The fluid is assumed to be incompressible and inviscid. The flow tar
upstream is uniform. and after passing over the broad crested weir. the tluid torms a jet
falling down freely forever under the effect of gravity. As shown in Fig. 6.2.1. the broad
crested weir divided the tflow into three parts: the upstream before the weir. say region .
is bounded by a flat bottom and a free surface: the central stream on top of the weir. say
region Il. is also characterized by a flat bottom and a free surface: and the downstream
after the weir, called region III. is distinct from the other regions by the jet bounded by

two free surfaces.
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Fig. 6.2.1 Schematic of the flow over a broad crested weir

6.2.1 Formulation of the problem

Before further processing. we choose a

system such that the x-axis is along the

bottom of the channel and y-axis points upward along the right side of the broad-crested

weir. as shown in Fig. 6.2.1. The width of the weir is assumed to be L and the height W.

In the chosen system. the channel ends at x

= -L. There are three regions associated with

this problem, but regions [ and II are qualitatively the same. As before. we assume that

the flow at far upstream is uniform and far downstream the tlow is uniform in the

horizontal direction and the horizontal component of the velocity approaches constant.

Thus based on previous results. we can list the governing equations in region [ and region

[1I.

In Region [ the governing equations of Green-Naghdi Level I theory are:
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%QZ%S =(Q—3—g¢oj(¢o ~H,). (6.2.1)

HI
B Q. (6.2.2)
p 0
E =~—¢0 _Q-d)‘.:‘ +Q-¢Ou . (623)
P 20, 24,
where.

Q=FrygH, H,. (6.2.4)
s =ter+ L. (6.2.5)

2 H,

Here we adopt the same notations as in previous chapters. And in region I[ the

governing equations are

o, =H, +Ae™: (6.2.6)
&=—g+53: (6.2.7)
p 0
w___gﬂ;_’:_xz +CH4X+gA,I.{J X -Bx g‘A:" -1Bx A_C_ B\+D (628)
2Q° QB 2Q°B* B
where
A=H,-H,. (6.2.9)
g3 (6.2.10)
H,
.- (6.2.11)
3 H4
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C and D are constants of integration to be determined.

Although region I and [ are same in principle. because the flow at the left boundary
in region II is not uniform. the governing equations cannot be integrated. Thus the

governing equations in region Il are:

: 2 1 3 3
93-¢0¢0“ _QT¢O\- +_.)-g¢0 _SI¢0+Q- =O' (6:12)
&=-9;+S, (6.2.13)
P 0
B‘:gd)o_Q-(b(lx +Q-¢0xx . (6.2.14)
P 2¢; 29,

Here S, is a constant of integration.

6.2.2 Jump conditions

There are two points to apply the jump conditions. that is. x = -L and x = 0. First we
consider the jump conditions at x = -L. where the existence of the weir results in the jump
of the thickness of the fluid between region I and [I. Again we expect that the top surface
at x =-L is smooth, although hydraulic jumps are possible due to the existence of the

weir. Thus the geometric jump conditions are:

|B]

e =0, (6.2.13)

8.

. =0. (6.2.16)
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lof..., =W, orfo,|_, =-W (6.2.17)

x=~L

Making use of the definition of (6.1.23)-(6.1.25 ). we can obtain the jump conditions

associated with the conservation law of the momentum:

|Ql,...=0. (6.2.18)

”pQuO +Pj . =F. (6.2.19)

lpQu,w, | =F.. (6.2.20)
“Led N

lim I{pQw(uow‘)ﬁLpQ:(o(E‘—J }dx =L. (6.2.21)

70 s 12 ¢/,

Here we still need the jump condition associated with the energy equation. Recall that

the general energy jump condition for Green-Naghdi Level-I theory is:

0. (6.2.22)

1 2 2 2 1 2 2
;puoq)o U™ +Uy Wy, +1—7u0 by +28w | +u,P,

x=-L

This expression can be simplified since the bottoms at both sides of x =-L are flat. Then

i LI B 2 |
;puo‘bo(uo +§uo ¢0x '*'Zng +u0P0

x=-L

Now that we have obtained the jump conditions at x =-L. we consider the jump
conditions at x=0, where the fluid departs from the broad crested weir. We expect that the
departure is smooth so that both the top and bottom surfaces are smooth at x =0. Thus the

geometric jump conditions at X = 0 are the same as the waterfall problem in Section 4.
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1B, =0. (6.2.23)
181l =0, (6.2.24)
e, =0, (6.2.25)
lot fl oo =0 (6.2.26)

With the help of above jump conditions, we can derive the jump conditions associated
with the physical laws. After observing the governing equations in region [l and [II. and
taking the jump conditions (6.2.23)-(6.2.26) into account. we can deduce that the integral
pressure and bottom pressure at both sides of x =0 are bounded. Then the limits in the

physical jump conditions are equal to zero and we obtain

lQl..,=0. (6.2.27)

|PQu, +P |, =0. (6.2.28)

lpQu,w. ||, =0- (6.2.29)
x=0

lim J‘{pQ\u(uO\u‘)\ +——1~le (p(i’i‘—] de =0. (6.2.30)

80 < 12 ® ).

We can express the jump conditions at x = 0 succinctly as their equivalent

luot, o =0 ”B“no =0; |
x=0 = 0. l =0 = O:

B‘“‘:O =0:
P, =0.

x=0

(6.2.51)

o]

o

Because of the smoothness of the top and bottom surface. the jump condition
associated with the energy equation are equivalent to the jump conditions associated with
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the conservation law of momentum. Thus in this case there is no need to consider the

energy equation.

To date we have obtained sufficient conditions at two joint point x =-L and x =0
respectively. With the help of these jump conditions. we can solve the governing

equations in three regions to obtain a uniform solution throughout the flow.

6.2.3 Solutions

Before processing further. we recall the definition of the Froude number.

\%
Fr=—= (6.2.32)

JeH,

where V, denotes the uniform velocity at far upstream. We also non-dimensionalize

(6.2.1) as before

1

—Fr’ (M) =(Fr* -n)n-1)". (6.2.33)
J
where
v ¢0 v X 2
=n(X)=—,X=—. (6.2.34)
n=n(x) TRRT]
The responding boundary conditions far upstream become
n—->1Ln—>0 as X—»>-x. (6.2.33)

Clearly. if 7 is not identically equal to 1. it is required that
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Taking (6.1.35) into consideration, we find that it we want n not to be identically 1.
then we must require that

Fr>1. (6.2.37)

Up to this point. we can conclude that the solution of (6.2.1) depends on the Froude

number far upstream. If Fr < 1. the only possible solution is n=1. or
o, =H, (6.2.38)
in the upstream region. If Fr2>1. solutions other than uniform tlow are possible.

Obviously. the final solution depends on the value of the Froude number at tar upstream.

First we consider the case when the Froude number Fr > 1. that is. the flow in the
upstream region is supercritical. Under this condition. solutions other than the unitorm
flow in region I are possible. The solution can only be determined with the help of jump
conditions. and the governing equations in all of three regions must be considered

together. We define that the Froude number in region Il as

Fr=—. (6.2.39)

where u denotes the horizontal component of the velocity. and H, " the thickness ot the
fluid at x =—L". From the geometric jump conditions at x=-L. we know that

H,”=H, -W. (6.2.40)
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The flow in region [ is supercritical. that is. Fr > 1. then with the help of (6.2.40) and
the continuity equation. we can deduce that the flow in region II is supercritical as well.
Recall that in the free waterfall problem it is required that the flow in upstream region be
supercritical. Here region II and III also form a free watertall problem. Therefore this

condition is necessary to obtain a solution.

Then we consider the case when the Froude number Fr < 1. According to (6.2.23). the
flow in region [ is uniform. which is the only solution of (6.2.23). At the same time. the
Froude number defined in (6.2.39) must be larger than 1 in order to obtain a solution.
This condition will restrict the range of the Froude number far upstream and the ratio
H/W. where H is equal to H, - W. Due to the tflow in region [ is uniform. with help ot the
jump conditions at x = -L. both the thickness of the fluid and the slope of the free surface

atx =-L° are determined. That is.

Then by means of the jump condition (6.2.22). we can obtain the constant of
integration S,in (6.2.12) and (6.2.13). Consequently. the governing equation (6.2.12) in
region Il can be solved, given the boundary conditions (6.2.41) and (6.2.42). Once the
solution in region II is obtained. by means of the jump conditions at x = 0. we can easily

obtain the solution in region III, as we did in free waterfall problems.
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6.2.4 Results and discussion

First we consider the supercritical flow over a broad crested weir. [n our knowledge.
supercritical solutions with a broad crested weir have not been computed in the past. Here
both the Froude number and the height of the fluid far upstream must be specified tor a
given broad crested weir. that is. the height and length of the weir are given. For the sake
of illustration, Fig. 6.2.2 shows a steady. two-dimensional flow over a broad crested weir
for the value of the Froude number Fr = 1.5 far upstream and the thickness of fluid H, =

1.0m. and the width and height of the weir L = 5.0m and W = 0.1m respectively.

25

05 o A

weir, and approaches to the top point and then is ““pulled down™ by the gravity because of
the sudden end of the weir. When Dias and Tuck (1991) studied the supercritical flow

over a thin weir. they obtained a so-called “solitary-wave-type™ solution. When
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comparing with their results, we find our results are similar in principle. although the
weirs are different. However, we have not obtained the so-called “watertall-type™

solutions as they did in dealing with the thin weir flow.

Fig. 6.2.3 depicts the solutions of the flow over the same broad crested weir for

different values of the Froude number. i.e.. Fr = 1.5. 2.0 and 2.5. while H, = 1.0m. and

the width and height of the weir L = 5.0m and W = 0.1m respectively. From Fig. 6.2.3.
we find that the elevation of the top free surface increases extremely with the Froude

number.

Fig. 6.2.4 shows the effect of the height of the weir on the elevation of the top free
surface. Here the conditions upstream keep unchanged. i.e.. H, = 1.0m and Fr = 2.0. and

the length of the weir is L = 3.0m. Three values of the height of the broad crested weir
are considered. i.e.. W = 0.2, 0.4 and 0.6 respectively. From Fig. 6.2.4. we find that the
highest elevation of the free surface above the weir decreases with the weir height W.

Fig. 6.2.5 shows the thickness of the fluid at the end of the weir. i.e.. H,.asa function of
the weir height, while Fig. 6.2.6 depicts the thickness ot the tluid at positive infinity. i.c..
H,. as a function of the weir height. The conditions are Fr =2.0. H, = 1.0mand L =
5.0m. After observing these figures, we find that both H; and H, increase with the weir
height. and H, seems to increase linearly with W. In other words. the velocity will

decrease with the increase of the weir height. as shown in Fig. 6.2.7.
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Fig. 6.2.4 Plot of solutions for different heights of the weir at Fr =2.0
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Fig. 6.2.5 Plot of H; as a function of the weir height W atFr=2.0and H, =1.0m
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Fig. 6.2.6 Plot of H, as a function of the weir height W at Fr=2.0 and H, =1.0m
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Fig. 6.2.7 Plot of u, at infinity as a tunction of the weir height W

The observation of Fig. 6.2.3 indicates the clevations of the tree surface above the

surface is slightly over 6.0m. This value is larger than the corresponding total head of this
flow. i.e.. h, =4.125m here for Fr = 2.5. The straight lines in Fig. 6.2.3 denotes the wtal
heads for different Froude numbers. From Fig. 6.2.3 we tind that when Fr = 1.5, the
highest elevation of the free surface is slightly less than the total head. i.c. h, = 2.125m
for Fr = 1.5 and H, = 1.0m. However. when Fr = 2.0 and 2.3, the highest clevations ot the
free surface are greater than the corresponding total heads. as shown in Fig. 6.2.3. This 1s
physically impossible. On the other hand. we find from Fig. 6.2.4 that the highest

clevation of the free surface above the weir decreases with the height of the weir.
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Actually. when the height of the weir W reaches 0.723. the highest elevation of the free

surtace drops slightly below the total head. say h, = 3.0m. This shows that the method

used here is not appropriate. or at least the level the Green-Naghdi theory is too low. That
is. the assumption that the horizontal velocity is uniform in the vertical direction is not
valid due to the sudden change of the bottom. More complicated protfile of the velocity

should be imposed.

Then we consider the subcritical flow over a broad crested weir. As discussed in
above section. the only solution for subcritical tflows in region I is the uniform flow. Then
we only need to consider the solutions for region Il and IlI. At x =-L. the joint point
between region [ and II, taking into account the solution in region I. application of jump

conditions (6.2.15) and (6.2.16) vields

Bl =H,.orggf . =H -W. (6.2.43)

B.

x=-L" =¢0‘L=-L' =O' (6244)

With these boundary conditions. together with the condition that the tlow in region |
is uniform. the broad crested weir problem becomes the free watertall problem. The only
difference is that it is required that the Froude number in region [ be less than 1 and the
corresponding Froude number in region II should be larger than 1. Since we have studied
the waterfall problem in Chapter 4. it is no need discussing this problem again. However.
we need to point out that this solution is reasonable for those broad crested weirs

satisfying the requirement L /H>> 1, although we did not use this requirement during the
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process of solving the broad crested weir problem. Actually. when L/H <<I. the weir

becomes a thin weir. which we have discussed in the above section.

In summary, with the help of the jump conditions, we have obtained both subcritical
and supercritical solutions for the flow over a broad crested weir by means of Green-
Naghdi theory. In our knowledge. it is the first time that the supercritical solution for
broad-crested weir flow is obtained theoretically. although the existence of the steady

supercritical flow is doubtful.

(18]
[
W
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Chapter 7

Summary and Conclusion

Based on the Green-Naghdi theory derived by Shields & Webster (1988). we
developed the general form of the jump conditions associated with an arbitrary level of
Green-Naghdi theory. These jump conditions are different from what Green & Naghdi
obtained. but they are equivalent to each other in principle. In addition. particular form of
jump conditions for Green-Naghdi Level-I theory is derived. including the jump

condition associated with the energy equation.

A variety of problems are studied in order to demonstrate the validation of the jump
conditions associated with the Green-Naghdi theory. [n Chapter 4. we studied free
waterfall problems, which involve double free surfaces. Two regions with distinct
characteristic are associated with this problem. and the jump conditions are applied at the
departure point. The bottom surface in upstream can be flat. or arbitrary as long as it is
smooth. When the bottom is flat, analytic solution has been obtained and the results are
same as what Naghdi & Rubin (1981) obtained and are in good agreement with the
experimental data reported by Rouse (1936). At the same time. numerical solutions were
obtained for an arbitrary smooth bottom. Furthermore. the free waterfall over a non-
smooth bottom was studied with the help of the jump conditions. in particular. the jump
condition associated with the energy equation. Our results confirmed that only

supercritical solutions exist for free waterfalls over a flat bottom. Furthermore. it is found
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for the first time that the local Froude number can be less than 1 for waterfalls overa

non-flat smooth bottom or non-smooth bottom.

In Chapter 3, we considered the flow under a sluice gate. where a dramatic jump on
the thickness of the fluid occurs. Our results are equivalent to what Caulk (1976)
obtained. although our method is based on Eulerian frame while the method Caulk
employed is in Lagrangian frame. The analytical solutions are in good agreement with the
numerical results of [saacs (1977). The case of a horizontal sluice gate was also studied.
In addition. the flow departing from a confined non-smooth top surface was studied. Our
results showed that solutions with waves and without waves are possible in the
downstream. In Chapter 6. we studied the flow over a weir. and both a thin weir and a
broad crested weir were considered. For the flow over a thin weir. the solutions tor small
Froude numbers are obtained. For the flow over a broad crested weir. both subcritical
solutions and supercritical solutions are obtained. Under the subcritical case. the solution
is similar to those of free waterfall problem. Under the supercritical case. the solutions
are similar to the so-called “solitary-wave-type™ solution by Dias and Tuck (1991). who
studied the supercritical flow over a thin weir by means of conformal mapping. [n our
knowledge, supercritical solutions with a broad crested weir have not been computed in

the past.
In conclusion, the Green-Naghdi theory has proved to be a very powertul

approximate method for shallow-water problems. With the development of the jump

conditions associated with the Green-Naghdi theory, the application of this theory has
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been largely expanded. That is, the problems including rapid or discontinuous changes in
rigid boundaries can now be solved with the help of the jump conditions. Unlike the
classical methods such as conformal mapping. the application of the jump conditions

involves clear physical meaning and sticks to the concepts of hydrodynamics.

By solving the free waterfall problems. and the flows under a sluice gate and over a
weir. the jump conditions have demonstrated their versatility and power in solving
problems involving rapid or discontinuous changes. Furthermore. these studies have built
a solid theoretical foundation for more complicated problems. such as the breaking wave.
Due to the limitation of the Green-Naghdi Level-I theory. application of higher levels of

Green-Naghdi method to these problems appears an appropriate next step.
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Appendix A

Derivation of the Jump Condition Associated with the Energy Equation

First let us consider the general form of the conservation law of energy for inviscid

fluid. It can be written in the tollowing form:

%J‘H%pf/zdot—ﬁ(pﬁ)-?ds+”ﬁ-?dc (A1)
Q - o« Q

We apply it into the very narrow region near the joint point x=-a, as shown in the

following figure.

Fig. A.1 Schematic for derivation of jump condition associated with the
energy equation at X = -a.

For steady problems. the energy equation (A.1) becomes:

_1[))? m%pvzd": mgg(%PVZ)dGJrﬁ(V-ﬁ)(%pvl )ds = (e (S8
Q < a 2 P4 3 5 |

393
=-§ (pa) vds+ [[[ - 7do
& Q

(A.2)

(18]
—
(29 ]
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Considering our present two-dimensional problems and the assumed protile of fluid
velocity in Green-Naghdi Level I theory. applying the above expression to the small
region —a—3<x<-a+3 as shown in Fig. 4.6. we can obtain the left hand side ot (A.2)

as follows:

- l -2 ﬁ l - B‘ l -1
if(v A)(5pv)ds = Jus (=D (GPV)dy+ qu (3P )dy

A
Juo (5p%%)dy

a

X=-3

where we have taken the limitas 8 = 0.

Keeping the assumed velocity profile in mind. we can integrate the above expression.
Then the left hand side of (A.2) becomes:
B

1 _,
J‘uo (—7—pV')dy

a

B
I%puo [uoz +(vo + v, ¥) ]dyll

Ny=-y

X==21

2 2 2 o1 : ‘ﬂ]
;puotbo[uo +V, T F 2V V0, W+ T d, +l_7vl b, J|

i
|
!
J\:—J

(A.4)

In the same way. the first term of the right hand side of the energy equation becomes

: o
_ﬁ(pﬁ)-\‘/ds =—B‘[p(—l)u0 dy - jp u,dy
Q a’ a’ )

= _“uo P,

Xx=-a

and the second term is

(18]
—
(V3]
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1y g
H f-vdo=- Idx ng(v0+vly)dy
Q x” a

X

=- fpg\rod)o dx - J'pgvl(po ydx

Both (A.4) and (A.5) are simple functions. but (A.6) is ditficult to apply since it still
involves integral items. which prevent direct application. We have to integrate these
items for application of this jump condition. Before proceeding lurther. we collect the

results obtained so far

|

ll ( h h b Al s \
l;puo b, \uo- +V T F2Vvviw YT oye +'1";V1- ¢l)—)+uﬁpl)||

(A7)

=0

+ ngv,, 0, dx + J.pgv!dp0 ydx

tx=-2a x=-a

Now we try to eliminate these troublesome integral terms in equation (A.7). Recall
that in Green-Naghdi Level I theory. for steady. two-dimensional problems. the Kinematic
boundary conditions on the top and bottom surfaces are

Vo + V0= UeQ s

(A.8a. b)
v, +Vv,B=ugB,.

where both surfaces are supposed to be material surfaces.

Adding two equations together, and replacing « and B with ¢, and w . then we can
obtain:

Ve=—ViY+uy, . (A9)
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Substituting (A.9) into these integral items in (A.7). we have

foavio,dy  + fogvidowdy  =pg 6, (~viwru,w v p)ds
A x=-a ¥ l&:-a N
=pg [, u,w, dx
(A1)
Recall that the conservation law of mass requires that
¢, u, =Q. (A1)

And thus with the help of (A.11). we can integrate these integral items as:

=pg\jQ\u‘dx

pEV, 0, dx
\j 0o (A.12)

+ fpavi ¢, wdx

X==1 X==-a

=lp2Qui,_,

Inserting (A.12) into (A.7). we tinally obtain an elegant formula for the jump

condition associated with the energy equation:

i
5

! 2 2 voa o b [ -
;puoq)o[uo +V, +2vviW+yVT Yy +—5v, 0, -4—253\;1}+u,)P0!2 =0.(A.13)

llx=-a

When we apply the Green-Naghdi Level I theory. we usually get rid of the variables

v, and v, from the governing equations. Then we would rather obtain the jump

9
—
W
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condition which does not involve v, and v,. Recall that in Chapter 2 from the continuity
equation we have obtained

v|=—u0\' (‘3\14)

Substituting (A.14) and (A.9) into (A.13). we can obtain an alternate statement of

(A.13)
il h 2 2 l bl M : -
i;puoq)o U,  +u, Y, +—1;u0'¢0"+2g\u +u,P,| =0. (A.13a)
or
‘ 2 22 b 14 b 3
';pQ Uy +Ug g Jf-—l—_;u0 by T8y +u0P',‘ =0. (A.15b)

N =g

Thus. we have obtained the jump condition from the conservation law of energy for
Green-Naghdi Level I theory. We need to point out that (A.15) is the general form of the
jump condition for Green-Naghdi Level I theory since no approximation is introduced
and no simplification is made during the derivation. Moreover. (A.135) is valid no matter
whether there exist discontinuities or not. as long as there is no loss of energy. This
demand is always met since we assume the fluid is incompressible and inviscid. We note
that when Green & Naghdi applied the directed sheet method to many problems the jump
condition associated with the energy equation was necessary tor some of those problems.
However. this general form of the jump condition was not obtained. Rather. they only

presented particular forms of this jump condition for problems with a flat bottom. In

contrast, (A.15) can be applied to problems with any kind of top and bottom surface. no
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matter whether they are smooth or not, continuous or not. As we will discuss later. when
the flat bottom is taken into account, the jump condition (A.15) can be reduced to the

form Naghdi & Rubin obtained.
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