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Abstract

Essays on Consumer Behavior and the Environment

by Jason Maier

There is increasing awareness of the key role that consumers play in creating a

more sustainable future. While both regulations and eco-efficiency improvements

have been proposed as levers to solve environmental challenges, a significant focus of

recent research has been on understanding the environmental impacts of consumption

and identifying the opportunities to reduce environmental impacts through changes

in consumption patterns. This research agenda, covered by the field of sustainable

consumption, has applied the tools and techniques of industrial ecology, in particular

attributional life cycle assessment, to the quantification of individual and household

environmental impacts (often called footprints) and the identification of sustainable

consumption patterns. However, in practice, reducing environmental impacts through

changes in consumption requires demand-side interventions - actions taken by individ-

uals, companies, governments, or organizations that shift consumer demand. These

interventions may be such things as a consumer deciding to adopt greener products, a

company labeling their product with environmental information, a restaurant nudg-

ing consumer’s towards meatless options, or the development and marketing of a

novel product alternative. Understanding the potential of demand-side interventions

to achieve desirable environmental outcomes requires a detailed understanding of how
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interventions affect consumer behavior and, as a result, the environment.

The scope of this dissertation is captured by a simple question: what role does

consumer behavior play in determining the environmental consequences of demand-

side interventions? Such a question might seem simple on its face, or perhaps not

wholly important. However, how consumers respond to interventions is critical in

understanding a solution’s environmental merit. Economic activities are linked to-

gether into an interdependent system by consumers. As such, interventions that

affect consumers ripple throughout the economy in unexpected ways, determining

the environmental consequences of the interventions along the way. While this is

true broadly, these effects are particularly salient when the proposed environmental

benefits are demand mediated - that is, the anticipated environmental benefit is solely

a function of a change towards more sustainable consumption patterns. Such inter-

ventions are rampant, and their environmental consequences relatively unexplored.

The extent to which information that affects consumer choices, interventions that

affect the costs and benefits of particular household behaviors, or even new product

introductions cause environmental benefits or damages is a result of how consumer

demand responds to the particular intervention. What follows is a set of three essays

that illuminates the importance of considering consumer behavior in the context of

environmental sustainability and provides key contributions to both the theoretical

and empirical understanding of the relationship between consumer behavior and the

environment.

The first chapter of this dissertation, The Role of Prices in Determining the En-

vironmental Impacts of Product Choice, explores how a consumer’s choice between

product alternatives affects his aggregate carbon footprint. The extent to which any

product choice reduces environmental impacts is, at least in part, determined by the

alternative streams of consumption that the consumer faces in his decision. His pref-
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erences, constraints, and beliefs, as well as the decision-making context determine

these paths. Here we focus specifically on the role that prices and the consumer’s

budget constraint play in determining the environmental impacts of product choice.

We present five case studies where commonly proposed environmental behaviors are

found to cause additional environmental impacts as a result of price differences across

salient choices.

The second chapter, Curbside Recycling Increases Household Consumption, uses

econometric methods of causal inference to better understand how consumers respond

to curbside recycling programs. Historically, recycling has been justified on environ-

mental grounds by the comparing the environmental impacts of recycled product to

the impacts of similar products made from primary materials; Since, in general, re-

cycling products is less environmentally intensive than producing them from virgin

sources, recycling interventions have been proposed as an environmental solution.

In practice, the extent to which recycling interventions affect the composition and

level of consumption is important in understanding the resulting the environmental

consequences. We leverage variation in the regional adoption of curbside recycling

programs in North Carolina (from 1999-2019) to compare similar communities with

and without recycling programs, finding that household solid waste generation (and,

thus, material consumption) increases by 7-10% in the presence of curbside recycling.

This increase in consumption likely reduces the environmental benefits of recycling

programs.

The third chapter, Demand-driven Conservation, takes a broader perspective on

demand-side interventions. We focus on understanding to what extent demand-side

interventions can lead to conservation outcomes. We concern ourselves with the

general case of demand-driven conservation by developing a new statistic called the

demand elasticity of conservation, which represents the percentage change in a desired
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conservation outcome that results from a percentage shift in demand. We build

a theoretical bio-economic model of a fishery to analyze the potential for demand-

driven conservation in the context of marine fisheries, then parameterize the model for

4,713 fish stocks to estimate the demand elasticity of conservation for 27 fish product

classes. We then perform a case study to investigate the extent to which cell-based

seafood, a novel food product in development, may lead to conservation benefits for

wild bluefin tuna stocks.

Together, these chapters provide the basis for a deeper understanding of sustain-

able consumption, expand and solidify the methodology for evaluating the environ-

mental merits of demand-side interventions and develop key insights about when and

where consumer behavior can be leveraged for environmental gain. In all, this work

is just the beginning of a larger conversation. It is my hope that it spurs additional

research on consumer behavior and the environment, that it inspires readers to think

deeply and think differently about how to make environmental choices, and that it

opens the door just a fraction more to the possibility of an ecologically sound future.
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Chapter 1

The Role of Prices in

Determining the Environmental

Impacts of Product Choice

Authors: Jason Maier, Roland Geyer

1.1 Abstract

The general practice used to identify the product choice with the least environmental

impact is to compare product alternatives based on their environmental footprint.

However, such a framework overlooks the effects of purchasing decisions on household

consumption as a whole. This paper outlines a general framework for considering the

effects of product choice on a consumer’s subsequent stream of consumption, with

a specific focus on the effect of a price difference between alternatives on the net

environmental impacts of the choice. We present five case studies that exemplify

the need to consider the environmental impacts of product choice from the broader
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perspective of household consumption: consumer goods purchases, convenience item

purchases, the use of reusable vs. single use products, product lifetime extensions, and

commercial air travel seat selection. Each case study suggests that simple product-

to-product comparisons are insufficient to identify the product choice with the least

environmental impact, calling for broader reforms in our understanding of ‘green’

goods, pro-environmental behaviors, and demand-side interventions for sustainable

consumption.

1.2 Introduction

Households are responsible for a significant portion of global environmental impacts,

and these impacts are expected to increase [1, 2]. Significant research has investi-

gated the potential for voluntary changes in household purchasing decisions to reduce

the environmental impacts of consumption, whether the changes are motivated by

environmental concern or otherwise [3–9]. The dominant analytical framework used

to understand the relative environmental impacts of goods (or bundles of goods) is

to compare and contrast the goods’ environmental profiles, or footprints, often called

comparative life cycle assessment [10–12]. The framework of product-to-product com-

parisons results in a common decision-making rule proposed by research, environmen-

tal organizations, and the media: the choice with the least environmental impact is

the product with the smallest environmental footprint. Such intuition is used to de-

rive stoplight labels, carbon certifications, and recommendations for effective environ-

mental actions [13–15]. However, simply comparing product environmental profiles

does not provide sufficient information on which to determine whether a particular

consumer choice reduces the total environmental impact of the decision-maker.

Attempts have been made to modify the framework of comparative life cycle as-
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sessment to address factors that affect the environment outside of the product systems

in question - typically framed around the idea of accounting for rebound effects [16–

18]. In the case of product choice, where a product with a smaller environmental

impact is chosen, the direct environmental benefit is a function of the reduction in im-

pact per unit of service [19]. In response to such a change, rebound effects may occur

along several dimensions, including price rebounds, time rebounds, other spillovers,

or macro-scale effects [17, 18, 20, 21]. Several notable studies have attempted to

extend the framework of life cycle assessment to include such rebounds. Weidema

(2003a) outlines the need for market information in life cycle assessment. Theisen

et al. (2008) assesses a price rebound in comparative life cycle assessment using the

case study of cheese. Girod et al. (2011) proposes a general framework for including

direct and indirect rebound effects in life cycle assessment, arguing that the implicit

constant demand assumption in the ISO standards for LCA should be replaced with

a “consumption-as-usual” assumption. Our paper here builds upon the logic of Girod

(2011), Weidema (2003a, 2003b, 2019), Thiesen (2008) and applies such thinking to

the case of individual product choices and the effects of such choices on household

consumption broadly. Here we focus on the importance of considering the impacts

of product choice from the broader perspective of the household as a whole. We

first present a general treatment of the environmental impacts of product choice for a

household. Then, we present five case studies where comparative life cycle assessment

is insufficient to determine the choice most likely to reduce household environmental

impact. The results show the need for a broader perspective regarding the impacts

of product choice and illustrate how much of our environmental intuition relies on

the simple comparison of alternatives on environmental grounds. We suggest that

commonly proposed ‘environmental’ behaviors can lead to increased environmental

impacts - for instance product reuse and product lifetime extension considered in case

3



study 3 (Section 1.5.3) and case study 4 (Section 1.5.4), respectively. Our goal is not

to strictly prove which choice leads to the least environmental impact, but rather to

use case studies as a medium to investigate the environmental impacts of product

choice.

1.3 Understanding the environmental impacts of product choice

When consumers consider a purchase, the choice is between two alternative streams

of consumption, the stream of goods and services consumed given the choice of good

A as compared to the stream of goods and services consumed when good A is not

purchased. In the most general sense, these alternative streams of consumption are

not limited to the consumption of the decision maker, but are the future pathways

of all consumption, though here we focus solely on the environmental footprint of

the decision-maker. A consumer may face a salient choice between two alternatives

(or alternative bundles), say a choice between two iPhone models (see case study 1 -

Section 1.5.1). Alternatively, the consumer may consider whether or not to purchase

a single product (such as a new pair of shoes), with no particular alternative in mind

(see case study 4 - Section 1.5.4).
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Figure 1.1: outlines two choice decisions a consumer may face. The top panel illustrates
a choice between two salient alternatives; the bottom panel illustrates a choice to purchase
or not to purchase a single good.

Figure 1.1 presents two hypothetical streams of goods and services. In both cases

the decision to purchase product A or not (or B) affects the subsequent stream of

consumption. While the consumption stream goes on further, we assume Figure 1.1

captures all differences between the compared product streams in question, and in-

clude product D and E (and C in the top panel) in the comparison for clarity. Why

would the choice affect the subsequent stream of consumption? In the case of A vs.

B, the services provided by product A relative to product B matters in understanding

the subsequent stream of consumption. For instance, if product A is a smartphone

with a camera and product B does not have a satisfactory camera, then the consumer

may want to buy a camera in path B. Such an effect is a result of the difference in

product characteristics between alternatives. Additionally, path A and path B will
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differ if the prices of good A and good B differ, since this affects the potential for

future consumption. The question of whether or not the choice of product A has

a lower environmental impact requires, to the best of our ability, comparing the al-

ternative streams of consumption and assessing their environmental impacts. In our

illustrative example the net environmental impacts of choosing path A are as follows,

with Ei being the environmental impact in product system i that results from the

decision maker’s choice to purchase that product:

product A vs. product B

∆E = (EA + EC + ED + EE) − (EB + EC + EX + ED + EE) = EA − (EB + EX) (1.1)

product A vs. not product A

∆E = (EA +EC +ED +EE)−(EZ +EC +ED +EE) =)(EA +EC)−(EY +EZ) (1.2)

In both instances, the choice of product A has a lower environmental impact if

∆E < 0. The equations above can be re-written as:

∆Esubseq =
∑

i

EA
i −

∑
i

EB
i (1.3)

∆E = (EA − EB) + ∆Esubseq (1.4)

where∑i EA
i is the sum of the impacts of goods consumed in the subsequent stream

of consumption given the choice of product A and ∑i EB
i is the sum of the impacts of

goods consumed in the subsequent stream of consumption given the choice of prod-
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uct B. Here, ∆Esubseq can be used to directly evaluate the environmental impacts of

product choice. Such equations point to the general possibility that accounting for

the impacts associated with product system A and product system B is insufficient

to determine the net environmental impacts of the choice. Notably, for EA < EB,

if −(EA − EB) < ∆Esubseq the choice of product A increases environmental impacts

compared to the choice of product B even though product A has a smaller environ-

mental impact than B. However, how might we uncover ∆Esubseq? While many factors

may affect ∆Esubseq (such as individual preferences, decision-making context, salient

information, network effects, etc), here we focus on one particular effect, the effect of

a price difference between goods, which is sufficient to prove the need to consider the

subsequent stream of consumption in assessing the environmental impacts of product

choice. Here we estimate this impact as the impact per dollar of spent savings times

the price difference. Let’s assume we know the environmental impact per dollar of

spent savings, esavings:

esavings = environmental impact per dollar of spent savings (1.5)

When product A is cheaper than product B, choosing A will incur an additional

environmental impact of esavings(pB − pA), where esavings(pB − pA) = ∆Eprice, and we

assume that ∆Eprice = ∆Esubseq. In the case of product A vs. not product A, then

pB = 0. Notably, savings may be spent on additional units of either A or B, as long

as that is appropriately accounted for in esavings. We can write the environmental

comparison, including prices, as follows:

EA + esavings(pA − pB) ≶ EB (1.6)
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In this sense, the choice is articulated as a choice about how to spend a fixed

sum of money, pB, since pA + (pB − pA) = pB. Such a comparison is equivalent

to comparing the entire household consumption bundle given the assumption that

∆Eprice = ∆Esubseq, since products consumed in both subsequent streams do not

influence ∆Esubseq. The results can be summarized in the following table:

EA > EB EA < EB

pA > pB

B only better if:

EA − EB > esavings(pA − pB)
A is always better

pA < pB B is always better
A only better if:

EB − EA > esavings(pB − pA)

Table 1.1: outlines the framework for identifying the choice with the least environmen-
tal impact between two alternatives, given environmental impacts of the products,
prices of the products, and the environmental impact of spent savings.

As outlined in Table 1.1, the choice of an alternative always has lower net impacts

when it is less impactful and more expensive. However, when the less impactful

alternative is also cheaper, then the net environmental outcome depends on whether

or not the impact of the spent savings is greater or less than the difference between

the impact of the alternatives.

1.4 The GHG per dollar of spent savings, esavings

To exemplify this framework, we focus on greenhouse gas emissions of spent sav-

ings, though this framework applies to other impacts as well. When consumers save

money from a particular decision, they may spend that savings on a variety of goods

or services directly or indirectly related to the outcome of the choice. How consumers
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spend savings may differ, so rather than being opinionated about this spending we

estimate the greenhouse gas emissions per dollar of spending in a broad range of con-

sumption categories, including the category of marginal expenditure (the bundle of

goods consumed as a result of marginal increases in income). Estimates of environ-

mental impacts per dollar are constructed using Exiobase 3’s 2011 environmentally

extended input-output tables and are presented in 2020 US purchaser dollars, inclu-

sive of trade and transportation margins (Figure 1.2). Details of the environmentally

extended input-output methodology and the estimation of the average impact of

marginal expenditure are presented in the supplemental information (Section 1.7.1).
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Figure 1.2: presents kgCO2e
$ for a range of consumption categories for U.S. consumers.

1.5 Case studies

The following sections present five case studies that illustrate the importance of the

subsequent stream of consumption in determining the choice with the least envi-

ronmental impact, with particular focus on the global warming potential (GWP) of

the outcomes. Rather than present deterministic outcomes for any particular case
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study, we calculate the break-even impact per dollar that would make the alternative

consumption paths equivalent on a kgCO2e basis.

1.5.1 Case study 1: conspicuous consumption?

A consumer faced with the choice between iPhone models may be choosing between

the new Apple iPhone 11 and the Apple iPhone Xr. Table 1.2 reports the carbon

footprint of each product according to Apple’s internal investigation [22]. Also re-

ported is the retail sale price of both products in September of 2019, once the iPhone

11 was released.

Price kgCO2e
kgCO2e

$

iPhone Xr (64gb) $599 68 0.11

iPhone 11 (64gb) $699 72 0.10

Table 1.2: reports the carbon footprint and price of the iPhone 11 (64gb) and the
iPhone Xr (64gb).

In choosing the iPhone Xr the consumer saves $100. If these savings are allocated

to goods and services that in combination have an environmental impact greater than

4kg (∆Esubseq > −(EiP honeXr − EiP hone11)), then choosing the iPhone 11 has lower

net environmental impact. In other words, if the spent savings are allocated in such

a way that the impact per dollar is greater than 0.04kg/$, then the iPhone 11 has

lower net impact (Figure 1.3):
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Figure 1.3: presents the breakdown of which choice results in less environmental impact
as a function of the impact per dollar of spent savings.

First, why might the prices of the two goods be different? Surely, the service

provided to the consumer by each alternative is different. For instance, the iPhone

11 has a better camera and is more water resistant. The consumer is likely also

paying for intangibles. If smartphones are viewed as a status symbol this may drive

the $100 price difference. In purchasing the benefits attributable to the $100 price

premium, the consumer avoids the consumption of the goods that would have been

purchased had the $100 been saved and spent elsewhere. Simply considering the

carbon footprint of the products, the iPhone Xr appears to have lower environmental

impact, assuming equal use and disposal impacts (68kgCO2e vs. 72kgCO2e). When

prices are included, the decision involves a choice about how to allocate $699. Net

environmental impact is co-determined by the prices and the production impacts of

the goods, not simply the environmental profiles of the goods in question. Where

conspicuous consumption has been lamented as a driver of environmental impact, as

it often has [23], critics must contend with the acknowledgement that more expensive

goods avoid larger baskets of alternative consumption.
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1.5.2 Case study 2: pre-made or do-it-yourself (DIY)?

A recent peer-reviewed study compared the environmental performance of sandwiches

made at home as compared to store bought sandwiches [24]. The authors do note

that due to the difference in things like cost and taste, a direct comparison of the

sandwiches may be unwarranted. Still, choosing the homemade sandwich is suggested

to have a ‘significantly’ lower carbon impact, with the nuance lost in press reporting.

Price $kgCO2e
kgCO2e

$

Homemade H & C $2 0.622 0.311

Commercial-made H & C $7.52 1.35 0.18

Table 1.3: reports the carbon footprint and price of a homemade and a commercially
made ham and cheese sandwich, as reported by Espinoza-Orias and Azapagic (2018).

Again, why might the prices of a homemade and a store bought sandwich be dif-

ferent? For one, convenience is a utility often monetized in consumer goods. The

original paper focuses on understanding the climate impacts of convenience foods.

The price of a pre-made sandwich purchased at the store includes consumers’ will-

ingness to pay for a sandwich on the go and without the need to prepare the food.

Noting that the homemade sandwich has a smaller carbon footprint (0.622kgCO2e vs.

1.35kgCO2e) once again misses the implications of spending the savings associated

with choosing to make the sandwich at home. In this case, if the savings of $5.52

are spent in aggregate on goods and services with a combined footprint greater than

0.73kg, then the purchase of the store-bought sandwich leads to less environmental

impact. As such, the break-even impact per dollar is 0.132kg
$ (Figure 1.4).

13



Figure 1.4: presents the breakdown of which choice results in less environmental impact
as a function of the impact per dollar of spent savings.

This example brings to light an important consideration about the margins on

which consumers adjust when making daily decisions. While it is true that the home-

made sandwich is cheaper, it is also likely that making a sandwich at home is more

time consuming than buying a convenience option. As a result, how the consumer

allocates the time savings associated with the purchase of the store-bought sandwich

may also have important environmental implications [18].

1.5.3 Case study 3: reusable or single use goods?

The use of reusable products in place of disposable, single-use alternatives is a com-

monly proposed environmental solution. In fact, one of the principal publications

of comparative life cycle assessment was Hocking 1991’s comparison of paper to

polystyrene cups, with a follow up comparing reusable and disposable cups in 1994 [25,

26]. There is significant discussion in the literature regarding the environmental im-

pacts of single use and multi-use cups [27, 28]. The question of interest has historically

been “does the increased burden of production of reusable cups pay off environmen-
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tally as a function of reuse?” or alternatively “how many times must a reusable cup

be reused for it to start accruing environmental benefits?”. Some research has sug-

gested that impacts of washing reusable cups alone outweigh the production impacts

of disposable cups, indicating no payback period exists [29], here we ignore use phase

impacts for clarity and simplicity. Let the lifetime of the reusable cup be quantified

by n, the total number of single uses. The single use product has a price of psu,

while the reusable product has a price of pre. We assume that reusing the cup has

no additional cost. Let ∆E be the difference in environmental impact between the

reusable cup and n single use cups. We can describe the environmental trade off

between single use and reusable cups as follows, where ∆E is the net environmental

impact of choosing the reusable option:

∆E = Ere + esavings(npsu − pre) − nEsu (1.7)

If ∆E < 0, then the choice of the reusable cup leads to less environmental impact.

We can also characterize equation 1.7 using the per dollar environmental impact of

the reusable cup and the single use cup, ere and esu, respectively.

∆E = pre(ere − esavings) − npsu(esu − esavings) (1.8)

The number of uses n for which impacts are equal is

n = pre(ere − esavings)
psu(esu − esavings)

(1.9)

As a result, there are four different cases:
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esu − esavings < 0

∆E increases with n

esu − esavings > 0

∆E decreases with n

pre(ere − esavings) > psu(esu − esavings)
Single use cup

always better

Single use better for low n,

at some point reusable

is better

pre(ere − esavings) < psu(esu − esavings)

Reusable better for low n,

at some point single use

is better

Reusable cup

always better

Table 1.4: outlines the framework for identifying the choice with the least envi-
ronmental when one product functionally replaces more than one unit of the other
product, given environmental impacts of the products, prices of the products, and
the environmental impact of spent savings.

To parameterize this choice matrix, we compare a composite reusable cup with a

paper single use cup using the life cycle impact results of KeepCup’s recent sustain-

ability report performed by Edge Environment [30]:

Price kgCO2e
kgCO2e

$

Resusable cup (The Original) $13 0.5 0.038

Single use cup (paperboard with plastic lid) & C $0.2 0.034 0.17

Table 1.5: reports the carbon footprint and price of a single use cup and a reusable
cup, as reported by Almeida et al. (2018).

Table 1.5 shows that the reusable cup has a greater production impact than the

single use cup. If the subsequent stream of consumption was to be completely unaf-

fected by cup choice, using the reusable cup at least 15 times would be sufficient for

the higher initial impact of the reusable cup to be less than the recurring impact of

the single use product (common idea of ‘break-even’ number of uses).
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nbreak-even
without spent savings = 0.5kfCO2e

0.034kgCO2e
= 15 (1.10)

However, this ignores the effects of spent savings. Including the effect of spent

cost savings not only changes the break-even number of uses, but also leads to some

rather non-intuitive results.

Figure 1.5: presents the graphical relationship between the number of uses of the KeepCup
and the per dollar environmental impact of spent savings. ∆E < 0 implies that the choice
of the reusable bottle leads to less environmental impact, while ∆E > 0 implies that the
choice of the single use bottle leads to less environmental impact.

Figure 1.5 presents a graphical representation of equation 1.7, given the parame-

ters in table 1.5. Whether the choice of the reusable cup leads to lower environmental

impacts depends on the number of displaced single use cup uses and the environ-

mental impact of spent savings. The recurring choice of the single use cup leads to
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less environmental impact under two sets of conditions. First, if the environmental

impact of spent savings is relatively high, and the number of uses of the reusable

alternative is relatively high, then the impacts of the spent savings dominate the en-

vironmental comparison, leading to the single use cup being preferred - as the savings

from many uses of the reusable cup are spent on highly impactful goods. Conversely,

if the environmental impact of spent savings is very low and the number of uses of

the reusable cup is very low, then the single use cup leads to less environmental im-

pact. This condition is consistent with the typical logic of the “break-even number of

uses”. If the environmental impact of spent savings is 0.34kgCO2e
$ , consistent with the

average impact of marginal expenditure the reusable cup has lower net environmental

impacts only if it is used less than 116 times. As the consumer saves money on each

additional use of the reusable cup, this money is spent in a way that incurs more

environmental impact than had that money been spent on a single use cup. With

additional uses, the net environmental impact of choosing the reusable cup increases

(∆E increases with n in equation 1.7 when esu < esavings). After 116 uses, the cost

savings of using the reusable cup incurs enough environmental impact to more than

negate the environmental benefits of avoiding the production of 116 single use cups

in the first place.

1.5.4 Case study 4: building products that last?

There is an intuitive appeal to the idea that longer lasting products are better for

the environment since fewer units are needed to satisfy the same consumer needs.

As a result, production lifetime extension (PLE) has been prescribed in sustainable

design principles, suggestions for pro-environmental behavior, and environmental poli-

cies [31, 32]. Where research has addressed PLE and the environment, it has typically

focused on optimal lifetime as a function of use phase environmental burdens [33].
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Imagine a consumer purchased a pair of Allbirds wool runners three months ago and

is contemplating replacing them with an identical pair. Is it better for the environ-

ment to make these shoes last another three months or buy a new pair? Table 1.6

summarizes data from a recently published sustainability report from Allbirds [34].

Shoes Allbirds

price $95

carbon footprint (production) 6.8kgCO2e

carbon footprint per dollar 0.072kgCO2e
$

Table 1.6: reports relevant information about Allbirds wool runners [34].

The intuitive comparison in this example is to imagine that, on one hand, buying

a new pair of shoes results in 6.8 kg, while, on the other, not buying a new pair of

shoes avoids this impact. However, when prices are included it becomes clear that

spending $95 dollars on a pair of Allbirds must be compared to the equal allocation

of income elsewhere. If the $95 is spent on goods and services with a total impact

greater than 6.8kg, then buying a new pair of shoes leads to a lower net environmental

impact. This is equivalent to the average impact per dollar of spent savings being

greater than 0.072kgCO2e
$ (Figure 1.6).
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Figure 1.6: presents the breakdown of which choice results in less environmental impact
as a function of the impact per dollar of spent savings.

Including prices in choice about extending product lifetime leads to a simple de-

cision rule. Only when the impact per dollar of the good in question is higher than

the impact per dollar of spent savings (ei > esavings) does product lifetime extension

lead to lower environmental impacts.

1.5.5 Case study 5: first class or coach?

The carbon impact of air travel is notoriously high. A number of reports have claimed

that flying first class is significantly worse for the environment than flying in an

economy seat [35, 36]. The typical argument is that first class seats take up more

space on the plane, so first class passengers should be responsible for more emissions

than a person in coach. In fact, typically the space used by a single first class seat is

sufficient to displace between 2 and 3 economy class seats [36]. If the environmental

burdens of flying are allocated by floor space, then the carbon footprint of a first class

seat is greater than an economy seat, but that doesn’t always make the choice of the
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economy seat less environmentally impactful (Table 1.7).

Displaced

Economy Seats

First Class

Emissions

First Class

Price

Economy

Emissions

Economy

Price

Break even

impact of savings

s = 1 465kgCO2e $3486 465kgCO2e $587 0kgCO2e
$

s = 2 930kgCO2e $3486 465kgCO2e $587 0.16kgCO2e
$

s = 3 1395kgCO2e $3486 465kgCO2e $587 0.32kgCO2e
$

Table 1.7: reports the emissions of a first class seat and an economy seat for a
direct flight from Los Angeles to London as calculated by the ICAO flight emissions
calculator, with prices taken from Kayak.com [37]).

Table 1.7 reports the break-even impact of spent savings for three seat displace-

ment scenarios. The table suggests that (depending on your accounting methods) it is

wholly likely that the choice of a first class ticket leads to less environmental impact.

Even where first class seats are worse, such a price effect attenuates the benefits of

flying coach substantially. Notably, this result ignores long-run general equilibrium

effects of seat choice, as discussed in Bofinger and Strand (2013), who conclude that

the carbon impacts of a first class seat is 9 times worse than an economy seat, though

their model ignores any environmental effects of spent savings [35]. Even in the case

where each first class seat displaces three economy seats, the first class seat is en-

vironmentally preferred when spent savings has the impact of marginal expenditure

(0.34kgCO2e).

1.6 Conclusion

The prevailing logic in identifying the consumer choice with the least environmental

impact has been to compare products based on their environmental profile and se-

lect the product with the smaller environmental footprint. The issue with such an
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approach is that isolating decisions as choices between alternatives ceteris paribus

over-simplifies the environmental impacts of product choice to the point of pathology.

Identifying the alternative with the smaller environmental profile is not the same

as identifying the environmental choice because the real context of decision-making

means other factors are at play that will affect the environmental impact of the de-

cision maker. When decisions are economic in nature, prices are one such factor

that plays a vital role in determining which choice has a lower environmental impact.

When prices differ between alternatives, the choice cannot simply be between alter-

native A and alternative B (or not A) all else equal, since the savings of choosing the

cheaper option will be used to buy other goods and services. Besides prices, product

characteristic effects may also play an important role if alternatives have differing

complementarity and substitutability with other goods. Decision making biases and

heuristics may also be important, if for example decision makers experience moral li-

censing with regard to perceived environmental benefits of choices, the environmental

benefits may be unwound in contexts where moral licensing occurs [38].

We consider the use of the environmental impact of spent savings as a useful

approximation of the net environmental impacts that ensue from consumer choices

outside the direct impacts of the products in question. Such an approximation could

be improved by considering the preferences and characteristics of a subset of the

population likely to be considering a particular choice, such as people with strong

environmental preferences [39, 40]. Due to the general nature of this work, the im-

plications are wide reaching. For instance, in product eco-labeling, we need clarity

about how labels affect consumers’ subsequent stream of consumption; and when mo-

tivating ‘green’ choices, we should be wary of the commonly proposed ‘win-win’ of

environmental benefits and cost savings. One might ask, what can be done to avoid

the potential complications of re-spent savings? First, decision makers can account
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for the impacts of re-spent savings in product choice. Second, savings can be spent

on environmental goods, or goods with low environmental impacts per dollar, such

as carbon offsets or services. Third, in the long run, income may be adjusted to

account for significant cost savings. While it is outside the scope of this work, how

and when consumers can be motivated to take the actions outlined above deserves

further consideration and research.

In all, this work makes abundantly clear the insufficiency of our current under-

standing of the environmental impacts of product choice. Without understanding and

quantifying the net effects on the subsequent stream of consumption, clear and per-

sistent errors are made in evaluating the environmental impacts of consumer choices.

Here we focus on one factor that influences ∆Esubseq, the difference in prices between

choice alternatives, which we propose as a reasonable proxy for the total effect in

absence of more robust estimates. The inclusion of just this one effect is sufficient to

show that all is not well in our current understanding of the environmental impacts

of product choice. We believe the investigation of Esubseq and the underlying factors

and mechanisms that determine this net effect is a significant research opportunity for

sustainability science at large. One such approach may be the empirical study of how

interventions that influence product choice affect household environmental footprints.

Our paper presents a framework for considering subsequent streams of consumption,

which brings to bear the household-level perspective on product choice, since indi-

vidual choices are placed in the context of their effect on household consumption and

household impact as a whole. This is meant as a first step towards a more complete

and robust theory of sustainable consumption, which is urgently needed to inform

households, businesses, and environmental policy makers.
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1.7 Supplemental information

The supplemental information for “The Role of Prices in Determining the Environ-

mental Impacts of Product Choice” proceeds in two parts. First, we discuss the use

of environmentally extended input-output LCA to estimate the GHG impacts per

dollar of various product categories. Second, we discuss the estimation of the GHG

impact per dollar of marginal expenditure.

1.7.1 Calculating GHG impacts per dollar

We use environmentally extended input-output life cycle assessment (EE-IOA) as the

basis of our calculation of the GHG impacts per dollar of a modified set of COICOP

(classification of individual consumption according to purpose) consumption cate-

gories, and supplement using other data sources as necessary. In the context of this

research, EE-IOA is preferred because it produces environmental impacts per mone-

tary unit, consistent with the needs of the current work. To do so, we rely on Exiobase

3, a multi-regional temporally environmentally extended input-output database [41].

We use Exiobase’s 2011 model, as it is the most recent year available. We use the

product x product characterization, as it is consistent with the classification structure

for COICOP categories and the margin table’s structure. As such, we rely on the

product technology assumption [42] and constant returns to scale consistent with the

underlying assumptions of EE-IOA in the product x product structure.

1.7.2 Environmentally-extended input output LCA methodology

We use the basic framework of EE-IOA to calculate impacts in each COICOP con-

sumption category. First we calculate the total environmental impact for U.S. house-

holds for each product category x country as:
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E = F (I − A)−1ydiag
hh,U.S. (1.11)

WhereE is then the matrix of total resources uses and emissions associated with

final demand by U.S. households, given F per unit direct factor requirements matrix,

I is the identity matrix, and A is the technological coefficients matrix, and yhh,U.S.diag

is the diagonalized matrix of final demands by U.S. households. We then aggregate

matrix E along two dimensions – first we sum the impacts over products in each

COICOP category to generate total impacts by category, and second we aggregate

emissions by contribution to climate change using the characterization factors of Traci

2.1 [43]:

EGHG
COICOP = C · E · T (1.12)

Where C is the COICOP to Exiobase products concordance matrix, and T is the

Exiobase emissions to Traci 2.1 GHG impacts concordance matrix. This transforma-

tion creates a vector total GHG emissions for each COICOP category of interest. The

concordance matrices are available upon request. Using the same logic, we create a

final demand by COICOP category as follows:

FCOICOP = C · F diag
hh,U.S. (1.13)

Thus, we can create a GHG impact per unit of expenditure for COICOP categories

as eCOICOP,GHG = ECOICOP,GHG · FCOICOP . However, before we do so, we must

add the direct emissions by households, in accordance with their contribution to

each COICOP. As Exiobase does not differentiate the source of direct household

emissions, we disaggregated direct emissions into two categories “Shelter: Electricity
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and Fuels” and “Mobility: Transportation fuels, with ratio of 2.31:8.92 is accordance

with Kammen and Jones (2014) [44]. The resulting vector of GHG impact per unit of

expenditure are in 2011 producer euros. However, before we adjust to 2020 dollars,

we must account for the margins of trade and transportation. We use Exiobase 2

trade and transportation margins due to their detailed nature, and assume these

margins are consistent across the years. However, it is not a simple as just adjusting

the expenditure, since trade and transportation margins have GHG impacts of their

own. We use the margin tables to calculate the fraction of each dollar that goes to

the COICOP category j, transportation industries trans, trade industries trade, and

taxes and subsidies ts using the Exiobase 2 margin tables, then create purchaser price

impacts per euro as follows:

eGHG
j,pp = αje

GHG
j + αtranse

GHG
trans + αtradee

GHG
trade + αtse

GHG
ts (1.14)

Where it is assumed that taxes and subsides have no environmental impact, and

thus eGHG
ts = 0. Finally we adjust eGHG

j,pp into 2020 U.S. dollars using average U.S. to

Euro conversions for 2011 (European Central Bank) and average U.S. CPI (Bureau

of Labor Statistics) [45]. The resulting measures are presented in Figure 1.2 of the

main text.

1.7.3 Calculating the GHG impact per dollar of marginal expenditure

As an alternative to the GHG intensities of consumption categories, we also derive

the overall GHG impact per dollar of marginal expenditure for the average American

consumer from an estimate of the GHG impact elasticity of income, GWP, which

describes the percentage change in the GHG emissions of a consumer as a function

of a percentage change in income:
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ϵGW P = ∂GWP

∂I
· I

GWP
(1.15)

From this equation, we can estimate the average GHG emissions per dollar of

marginal expenditure for the average American household as:

emarginal expenditure = ∂GWP

∂I
= I

GWP
· ϵGW P (1.16)

For the GHG elasticity of income, we use GWP = 0.73, implying a 1% increase

in income increases emissions by 0.73% an estimate by Fremstad et al. (2018) [46].

For GW P
I

, we use the average impact per dollar of expenditure by U.S. households

(0.46kgCO2e
$ ) calculated using the EE-IOA methods described above. The result is

a GHG impact per dollar of marginal expenditure equal to 0.34kgCO2e
$ , presented

alongside other results in Figure 1.2 of the main text.
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Chapter 2

Curbside Recycling Increases

Household Consumption

Authors: Jason Maier, Roland Geyer, Doug Steigerwald

2.1 Abstract

The proposed environmental benefits of recycling rely on the assumption that total

material throughput is unchanged by access to recycling programs. We leverage

variation in the regional adoption of curbside recycling programs to compare similar

communities with and without recycling programs, finding that household solid waste

generation (and, thus, material consumption) increases by 7-10% in the presence

of curbside recycling. This result shows that reducing the consumption of primary

resources, not increasing secondary production through recycling, should be the focus

of recycling programs and other circular economy activities.

28



2.2 Main

Recycling is perhaps the quintessential pro-environmental behavior, and it’s presence

in the public consciousness has only grown with the proliferation of the so called

“circular economy” [47, 48]. There is an intuitive environmental appeal to the idea of

closing material loops - since for many materials primary production is environmen-

tally intensive compared to reprocessing activities [49]. As a result, a significant focus

of policy and research has been on the mechanisms by which to increase secondary

production (i.e. recycling), including but not limited to curbside recycling policies

and program [50–52]. The assumed environmental benefits of recycling, however,

depend on the assumption that material throughput is unaffected by recycling [53,

54]. In practice, recycling interventions may affect total material throughput, an idea

termed circular economy rebound [53]. If, as we find here, total household material

consumption increases as a result of access to curbside recycling, then the environ-

mental merits of recycling are uncertain.

Households play a crucial role in the recycling supply chain - post-consumer re-

cycling currently amounts to more than 40% by mass of the recycling waste stream

in the United States, with much of this stream coming from curbside collection [55].

Across the United States, 59% of households have access to a curbside recycling

program [56]. There is no fundamental reason to believe that household material

consumption and solid waste generation are unaffected by the presence of a blue bin.

In fact, there is literature to suggest otherwise. First, there is evidence that consumers

experience a ‘warm glow’ from pro-environmental behavior [57, 58] and that this can

affect consumption decisions [59]. Secondly, it has been noted anecdotally that the

plastics industry considers recycling to be a ‘guilt eraser’ that allows consumers to

purchase single-use plastic products without concern about waste generation [60].
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The academic literature concurs that guilt can play a significant role in consumption

decisions and that ‘being wasteful’ induces guilt [61, 62]. Finally, there is theoretical

and experimental evidence that people consume more in the presence of recycling

streams. Catlin and Wang (2013) demonstrate, in both a lab and a field experiment,

that paper consumption increases in the presence of a recycling bin [63]. Ma et al.

(2019) come to a similar conclusion using an online survey of Chinese consumers [64].

Sun and Trudel (2017) support these conclusions using a microeconomic model of

consumer behavior and experimental evidence [65]. All together, previous research

points to recycling being used as a justification for increased material consumption

and solid waste generation. However, to date no study has empirically estimated the

effect of curbside recycling on the levels of household material consumption and solid

waste generation in an observational, real world setting.

The work here is possible due to a North Carolinian mandate beginning in 1999

compelling each municipality to report comprehensive information about their waste

management practices annually to the North Carolina Department of Environment

and Natural Resources (NCDENR). We leverage variation in the regional adoption of

recycling programs and data on waste generation at the municipality level in North

Carolina between 1999-2019. Since we cannot disaggregate the solid waste data into

residential, commercial, or industrial sources, we analyze two different samples. First,

we consider the whole sample, comprised of all municipalities regardless of the pres-

ence of industrial and commercial operations. Second, we consider a “households-

only” sub-sample that only contains municipalities without industrial or commercial

waste or recycling collection. This is done to isolate the effect of recycling programs

on household material consumption and solid waste generation. More details on the

data employed are presented in Supplemental Information Section 2.6.

The logic of the empirical model is to investigate the effect of the introduction of
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recycling programs on total solid waste generation, which we consider an imperfect

proxy for material consumption. We employ fixed effects estimation where we control

for municipality-specific effects and year-specific effects. The dependent variable of

interest is total solid waste generation (i.e. municipal solid waste (MSW) + recy-

cling). We apply this modeling approach to both the whole NCDENR sample and

the “households-only” sub-sample. Given recent developments in causal inference

using difference-in-differences (DID) methods, several robustness checks including

additional sample restrictions, alternative estimators, and the estimation of dynamic

treatment effects are presented in the supplemental information [66, 67]. As with all

difference-in-differences designs, the causal interpretation of the estimates rely on the

parallel trends assumption. Additional discussion of this assumption and suggestive

tests are presented in Supplemental Information section 2.7. Table 2.1 presents the

results of the DID estimation for the two sample sizes and one additional sample

restriction. Model 1 shows the results for the full sample of North Carolinian mu-

nicipalities. Model 2 shows the results for the “households-only” sample restriction,

and model 3 presents the results for the “households-only” sample restriction under

synthetic staggered adoption - only municipalities that are untreated at the beginning

of the sample are considered, and municipalities are dropped if they remove curbside

programs. This additional restriction of considering municipalities where adoption is

staggered over time is used as robustness check to control for the potential concerns

of heterogeneous treatment effects [66].
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model 1 model 2 model 3

any recycling program 0.0813** (0.0393) - -

residential curbside - 0.0733*(0.0371) 0.0986* (0.0549)

residential drop-off - 0.028 (0.0356) 0.0354 (0.0597)

time fe yes yes yes

municipality fe yes yes yes

cluster-robust se yes yes yes

effective clusters 168 94 76

n 9648 4025 1653

restriction full sample

municipalities with no

industrial or commercial

collection

model 2 + only

staggered adoption

Table 2.1: shows regression results from several model and data specifications from
the NCDENR panel. The dependent variable in all cases was the log of total municipal
waste (disposal + recycling). *, **, *** correspond to significance at the 10%, %5,
%1

Table 2.1 points to a strong relationship between recycling programs and total

waste generation. Model 1 estimates the relationship between the presence of any

type of recycling program (curbside or drop-off) and total waste generation - finding

an 8.13% increase in solid waste generation for municipalities that start recycling

programs. Whether this is driven by industrial, commercial, or residential collection

is unclear. Model 2 presents the results of the same estimation, but for the sub-

sample of data with no commercial or industrial MSW or recycling collection (i.e.

municipalities where waste and recycling collection only occurs at the household).

Here we see that curbside recycling programs are associated with a 7.33% higher level

of total waste generation by households, controlling for residential drop-off programs.
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In model 3, we repeat the analysis of model 2, finding a 9.86% increase, under the

restriction that we only consider programs where the adoption is staggered (details

about why staggered adoption may be important are presented in the SI). These

results suggest that curbside recycling programs increase total solid waste generation

of households, which reduces the environmental merits of recycling. As a robustness

check, we perform the same analysis with the dependent variable as the log of per

capita municipal solid waste and find qualitatively similar results (SI Section 2.7).

While this work provides compelling evidence that total solid waste generation

increases in the presence of curbside recycling programs, it does little to help us

understand why this might be the case. Future work should investigate the underly-

ing mechanisms at play here. Additionally, which materials are consumed more and

which are consumed less in the presence of curbside recycling affects the net environ-

mental consequence of recycling programs, and future work should seek to investigate

this. In a related sense, it is important to point out that this work does not answer

the question of whether curbside recycling programs are a net benefit or cost to the

environment. It’s possible that even with increased consumption and waste gener-

ation, curbside programs still lead to environmental benefits, though this claim is

harder to make given the above findings. In the presence of increased consumption,

recycling must be that much more effective to lead to substantive benefits. The fact

that household waste production increases in the presence of recycling waste streams

should be taken in the context of recent work about circular economy rebound [53];

even without increases in consumption at the household level the merits of recycling

rely on displaced production, which has limited empirical support [68, 69]. Future

work may consider how best to avoid increasing household consumption when imple-

menting recycling programs, though arguably efforts would be better spent focusing

on shifting consumers towards more sustainable consumption patterns to begin with.
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2.3 Methods

The data used for this study comes from the NCDENR and is a comprehensive self-

reported annual survey of each municipality, generally completed by the municipality’s

waste management director. The data includes information about implemented MSW

programs, including recycling, solid waste, composting, e-waste, and hazardous waste

programs. Also included is information about the total weight of collection from each

one of these streams. Since the data is self-reported, each form is not necessarily

complete, and some forms are missing from the data. Relevant sample statistics are

presented in Supplemental Information Section 2.6.

The survey reports curbside recycling programs, drop-off recycling programs, and

‘other’ recycling programs. Also, the data indicates whether residential, commercial,

and industrial actors have access to curbside and/or drop-off recycling and MSW

collection. Notably, programs may be run by government employees, or contracted

with private haulers, and waste weights are reported in both cases. There are addi-

tional potentially relevant covariates worth detailing, see SI Table 1 and 2. At this

time we do not investigate more detailed questions, such as the effect of single-stream

recycling vs. multi-stream, but doing so may be fruitful.

We employ a difference-in-differences program evaluation design to estimate the

effect of recycling programs on waste generation. Here, we present the results of a

two-way fixed effects model of the form:

Yit = βDit + αi + δt + ϵit (2.1)

where Yit is the log of total waste generation (i.e trash + recycling in mass) in mu-

nicipality i at time t, Dit is the treatment dummy, αi is municipality level fixed effect,
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δt is a time fixed effect. This model will be applied to both the whole sample and

the "households-only" sample. Given recent developments in causal inference using

DID methods, several robustness checks including additional sample restrictions, al-

ternative estimators, and the estimation of dynamic treatment effects are presented

in the supplemental information [66, 67]. The identification strategy in this con-

text is to compare similar municipalities with and without curbside recycling. We

use fixed effects to control for time and municipality specific effects, thus allowing

us to reasonably make a comparison between municipalities with and without curb-

side recycling over time. Equation 1 combines the comparisons between treated and

untreated municipalities into an average treatment effect. The basis of causal infer-

ence for difference-in-differences estimation is the assumption of parallel trends. This

means that a causal interpretation of the resulting coefficient is only valid under the

assumption that in the absence of the programs’ implementation treated and control

municipalities would see similar trends in waste generation.

As a robustness check in the main text, we provide model 3 which presents the

results for the “household-only” sub-sample under the restriction of staggered adop-

tion. This means that only municipalities that either are never treated or go from

untreated (no curbside program) to treated (curbside program) and remain treated

are included. This is done to control for the known, but relatively new, concerns

about causal inference in the presence of treatment effect heterogeneity [66].
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2.4 Supplemental information

2.5 Introduction

This section of the document is the supplemental information for the paper entitled

"Curbside Recycling Increases Household Consumption". The document is organized

as follows. First, we introduce additional background on the concept of circular

economy rebound. The we describe the empirical setting of the study in more detail,

including additional presentation of the data and sample statistics. Next we detail

the empirical strategy. And finally, we present several alternative specifications and

robustness checks.

2.5.1 Circular Economy Rebound

Typical engineering models of recycling simply assume secondary production displaces

primary production on a one-to-one basis, akin to assuming that material throughput

is unaffected by recycling. There is no a priori reason to believe this is the case,

however. In practice, recycling interventions may affect total material throughput,

since the relationship between secondary and primary production is market-mediated

and subject to the context and specifics of the intervention in question, be it a policy,

a new product, an information campaign, etc.

The idea that circular economy activities may change total material throughput

is termed circular economy rebound (CER), due to its parallels to energy efficiency

rebound [53]. A small but significant body of literature has focused on the theoretical

and empirical underpinnings of CER. In particular, Zink et al. (2016, 2017a, 2017b)

make foundational contributions to the concept by outlining the potential for circular

economy rebound, describing a partial equilibrium framework for understanding CER,
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and applying it to the case of the U.S. aluminum industry [53, 68, 69]. In a similar

vein, Dussaux and Glachant (2019) analyze the effects of domestic recycling of metals

on domestic primary metal production and imports, finding that domestic metal

recycling reduces the import of secondary materials, but has no conclusive effect on

primary production [70]. Palazzo et al. (2019) outlines possible empirical frameworks

for estimating CER, with a focus on introducing quasi-experimental methods to the

discussion and Maier et al. (2021) provides the first quasi-experimental estimate of

CER in the context of wastewater recycling [49, 71]. In general these approaches have

focused on understanding and estimating circular economy rebound at the market-

level, with a limited focus on understanding the underlying causal chain that might

determine the observed outcomes. To date, no work has focused on the role that

households may play in mediating CER.

2.6 Empirical Setting

In 1998, North Carolina passed 130A-309.09A, a general statute on local government

waste responsibilities. Among the requirements of the statute is the yearly reporting

by local governments on the state of solid waste management programs and waste

reduction activities. This amounts to a form being submitted by every local govern-

ment in North Carolina from 1999 to present. The form reports extensive information

about recycling and municipal solid waste programs. The result of this reporting is a

panel of information regarding recycling programs implemented by local governments

over a 21 year period. The reporting is from 655 local governments (100 county and

555 municipal). Notably, there is not a single policy requiring curbside recycling or

any recycling intervention, but a vantage point on a sequence of municipal policies,

where curbside recycling is rolled out to residents, commercial entities, and industry
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across the state over time. The North Carolina Department of Energy and Natural

Resources (NCDENR)’s annual report from 2018 suggests that between 2004 and

2018 there have been the addition of approximately 125 curbside recycling programs

in North Carolina (Figure 2.1) [72]. It is worth highlighting that there is not a spe-

cific policy intervention that occurs affecting treated municipalities, and as a result

it is important to consider the potential endogeneity of recycling programs with the

outcome measures of interest. If areas where solid waste is increasing choose to adopt

curbside programs because, for example, these areas are developing more quickly, this

endogeneity challenges the causal interpretation of the result. It is also worth noting

that recent results in causal inference call into question the causal interpretation of

two-way fixed effects models in the context of treatment effect hetereogeneity [66, 67],

which is the basis for our use of a staggered adoption sub-sample as an additional

data specification. Future work should consider the specific context of each program

adoption, which is possible given the extensive reporting on the program specifics.

Figure 2.1: Panel A: Recycling programs over time (1999-2019). Panel B: Residential
curbside recycling programs over time (1999-2019)
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2.6.1 NCDENR Data

The data from the NCDENR is a comprehensive self-reported annual survey of each

municipality, generally completed by the municipality’s waste management director.

The data includes information about implemented MSW programs, including recy-

cling, solid waste, composting, e-waste, and hazardous waste programs. Also included

is information about the total weight of collection from each one of these streams. Fur-

thermore, there is information about waste reduction programs, such as programs to

reduce ‘junk mail’, recycling brochures, and backyard composting programs. Program

funding information is also available including the use of local or regional government

grants to support programs and the use of (or absence of) tipping or collection fees.

Since the data is self-reported, each form is not necessarily complete, and some forms

are missing from the data. Relevant sample statistics are presented below in Table 2.2

for the whole sample and Table 2.3 for the “household-only” sample:

39



All
Recycling

(any type)

No recycling

(any type)

Recycling curbside

(any type)

No curbside

(any type)

n (reported) 9648 9140 508 5167 4481

# municipalities 653 551 108 387 368

Years 21 21 21 21 21

garbage (MT)
16710

(+/ 367948)

19525

(398118)

802

(2276)

10939

(50737)

27303

(565879)

recycling (MT)
1511

(9000)

1702

(9610)

6

(32)

1620

(10298)

1787

(8473)

Compost (MT)
2919

(57319)

3375

(62147)

396

(1005)

3789

(72436)

2725

(44980)

ln(population)
7.99

(1.99)

9.10

(2.05)

6.54

(1.07)

8.37

(1.71)

7.70

(2.12)

Table 2.2: shows sample statistics from the whole NCDENR panel. Standard devia-
tions are shown below mean estimates in parentheses.
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All
Recycling

(any type)

No recycling

(any type)

Recycling curbside

(any type)

No curbside

(any type)

n (reported) 4025 3747 278 2084 1941

# municipalities 492 482 85 326 289

Years 21 21 21 21 21

garbage (MT)
5746

(+/ 9384)

6108

(9602)

866

(2573)

4089

(6625)

7526

(11373)

recycling (MT)
546

(1433)

587

(1477)

1.48

(15)

600

(1551)

488

(1291)

Compost (MT)
1765

(26935)

1814

(27393)

339

(756)

2146

(36268)

1328

(6907)

ln(population)
9.05

(2.05)

9.10

(2.05)

6.73

(1.10)

8.69

(1.93)

9.06

(2.78)

Table 2.3: shows sample statistics from the constrained household from the NCDENR
panel. Standard deviations are shown below mean estimates in parentheses.

There are some additional points worth making regarding the NCDENR panel.

There are several ‘types’ of recycling programs, some of which are outlined in Ta-

ble 2.2. We know whether residential, commercial, and industrial actors have access

to curbside and/or drop-off recycling. In Table 2.2 we denote ‘any type’, which im-

plies that curbside or drop-off recycling was available for residential, commercial, or

industrial activities. Notably, programs may be run by government employees, or

contracted with private haulers, and waste weights are reported in both cases. There

are additional potentially relevant covariates worth detailing, see Table 2.4. At this

time we do not investigate more detailed questions, such as the effect of single-stream

recycling vs. multi-stream, but doing so may be fruitful.
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Statistic Value Description

Percentage Mandatory CSR 19%

Steam type 50% Carts bins, carts, bags, other

Has waste reduction programs 11% Junk mail, source reduction program

Has solid waste ordiance 47% Disposal Bans, Illegal dumping, Littering,

C+D, other

single stream 73%

Precentage private contracting 77%

Table 2.4: shows some additional information from the NCDENR panel

2.6.2 Empirical Strategy

We employ a difference-in-differences design in this scenario. While simple two-way

fixed effects models will be tested, we will also employ novel estimators that contend

with issues of treatment effect heterogeneity and dynamic treatment effects. Addi-

tionally, several sample restrictions will be used to investigate the data. The primary

two-way fixed effects model will take the following form:

Yit = βDit + αi + δt + ϵit (2.2)

where Yit is the log of total waste generation (i.e trash + recycling) in municipality

i at time t, Dit is the treatment dummy, αi is municipality level fixed effect, δt is

a time fixed effect. This model will be applied to both the whole sample and the

"households only" sample. There are notable concerns with the causal interpretation

of this method, which will be discussed below. To overcome the issues with treatment

effect heterogeneity in two-way fixed effects models, and given recent work showing the
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causal interpretation of the two-way fixed effects estimator with staggered adoption,

a staggered panel is also selected, and eq. 2.6.2 is used to estimate the effect of

treatment [66].

Second, a recent set of estimators will be deployed based on the work of De

Chaisemartin and d’Haultfoeuille [67]. This estimation will be performed using the

did_multiplegt function in stata. The purpose is to estimate the dynamic treat-

ment effect without the assumption of a homogeneous treatment effect. Additional

estimators of similar design may be employed at a future date. In all cases the

identifying assumption is that in the absence of the initiated recycling programs the

treated municipality (households) would have had similar trends in waste generation

(consumption) to the municipalities (households) that are yet to be treated.

2.7 Alternative specification and results

As a first alternative set of specifications, we start by reporting the results of main

text model specifications (Table 1) but with the dependent variable as the log of

per capita municipal solid waste (garbage + recycling), presented in Table 2.5. The

results are qualitatively similar to the results in the main text.
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model 1 model 2 model 3

any recycling program 0.0557** (0.0403) - -

residential curbside - 0.0588**(0.0271) 0.0566 (0.0471)

residential drop-off - 0.028 (0.0269) -0.0192 (0.0485)

time fe yes yes yes

municipality fe yes yes yes

cluster-robust se yes yes yes

effective clusters 168 94 76

n 9648 4025 1653

restriction full sample

municipalities with no

industrial or commercial

collection

model 2 + only

staggered adoption

Table 2.5: shows regression results from several model and data specifications from
the NCDENR panel. The dependent variable in all cases was the log of per capita
municipal waste (disposal + recycling). *, **, *** correspond to significance at the
10%, %5, %1

Second, Figure 2.2 presents the findings from the dynamic treatment effect estima-

tion using the estimator of De Chaisemartin and d’Haultfoeuille [67]. This estimator

is chosen because it controls for the challenges in estimating an average treatment

effect in the presence of treatment effect heterogeneity, while still allowing for the

use of the entire data sample - the estimator estimates the average treatment effect

across all units whose treatment changes between time t and t − 1. Other similar es-

timators have been proposed, and could be considered for additional robustness [65,

73]. The left panel presents the effect of any recycling program on the log of total

waste generation, consistent with model 1 in Table 2.1, while the right panel presents

the effect of curbside recycling on the log of total waste generation in the ‘households
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only’ sub-sample, consistent with model 2 in main text Table 1.

Figure 2.2: presents the results of the dynamic De Chaisemartin and d’Haultfoeuille
estimator. The left panel investigates the effect of any recycling program on total
waste generation. The right panel investigates the effect of curbside recycling on
total waste generation in the ‘households only’ sub-sample.

Figure 2.2 does not show a statistically significant effect at the 5% level for any

period in the whole sample, but does show significance during some following periods

of the “households” only sample. This provides compelling evidence of a dynamic

treatment effect. Future work should consider the possible implications of a dynamic

effect.
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Chapter 3

Demand-driven Conservation

Authors: Jason Maier, Michael Weir, Christopher Costello, Andrew Plantinga, Mar-

tin Quaas

3.1 Main

Achieving conservation outcomes requires implementing conservation interventions.

The conservation planner’s instinct is often to rely on regulatory interventions. While

regulatory interventions can clearly produce conservation benefits, there is increasing

awareness of their limitations [74, 75]. Extraction limits, development restrictions,

taxes, and technology constraints can force a certain amount of conservation, but

may be limited to situations with well-measured stocks, formal markets, technological

capacity, and in particular, good governance [76]. Since these interventions typically

require formal policy action by governments, the significant and well-documented

challenges of collective political action apply [77], as well as some conservation specific

political challenges such as multi-lateral, migratory or even geographically shifting

resource stocks [78]. Where regulations are implemented, conservation may be under-

provided as a result of corruption, insufficient regulation, the beliefs of those with
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political power, or actors that aim to circumvent rules [79]. And while citizens may

be able to create political change within their own country, a disconnect may arise

between those who participate in a market and those who have any capacity to

influence conservation regulations. As a result, the class of regulatory interventions

may fall short in delivering conservation outcomes. This broad realization raises the

question if other approaches can help improve conservation outcomes.

A promising alternative to regulatory interventions is the idea that a shift in

consumer demand could incentivize conservation. This approach relies on individ-

ual consumers changing behavior – essentially by decreasing demand for products

that rely on exploitation of natural resources. Under this mechanism, for example,

people in the United States could plausibly protect the Amazon rainforest (by reduc-

ing consumption of Brazilian beef), reduce the extraction of primary materials (by

buying recycled products), or reduce carbon emissions from electricity production

(by switching to LED lights). To drive these demand shifts, individuals, commu-

nities, and corporations can pursue demand-side interventions, which often come in

the form of information campaigns or new product introductions. This decentralized

form of conservation intervention can create substantive change without the need for

collective political action.

With this mechanism in mind, demand-side interventions have been introduced

in a variety of markets: synthetic rhino horns a have been developed to decrease

poaching [80], certified shade-grown coffee promotes biodiversity in tropical regions

[81], water conservation campaigns are common, especially in draught-risk areas of the

globe [82], totoaba are farmed for their swim bladder to reduce pressure on totoaba

stocks and the ecologically linked vaquita [83, 84], and paper recycling seeks to reduce

our need for primary forests [85]. All of these interventions rely on changes in demand

as the vehicle for conservation.
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Despite these, and countless other examples, the effectiveness of demand-side con-

servation interventions is difficult to ascertain. To our knowledge, no study fully

captures the causal chain from demand-side intervention to conservation benefits to

estimate the drivers, and efficacy, of a demand-side conservation intervention. Some

environmental problems may be easily solved with a demand-side intervention, while

others may find this approach utterly unproductive. But the scientific literature pro-

vides little to no guidance about which kinds of interventions are likely to be effective.

For this reason, consumers who wish to pursue the demand-side mechanism are likely

uninformed about the conservation implications of their actions. In this paper, we

develop a general theory of the conservation efficacy of demand-side interventions,

and apply that theory to a contemporary and salient real-world example.

While they surely differ in the details, all demand-side interventions require three

steps to achieve conservation benefits. First, consumer demand must shift: a cam-

paign warning of the ecological consequences of using tiger bones to treat ulcers must

actually decrease demand for tiger bones. Shifting consumer demand can be challeng-

ing and research is mixed on the efficacy of demand-side interventions in motivating

persistent changes in demand [86–88]. Second, the demand shift must interact with

supply in a way that demonstrably changes price, and this price change must be

passed through to resource extractors. Third, observing this reduction in price, re-

source extractors must change behavior and consequently the resource stock (or more

broadly, environmental quality) must recover. In all, this causal chain is determined

by the prevailing economic conditions of the resource stock and the market in which

extraction occurs. For example, the extent to which extraction effort is affected by

price is in part determined by the efficacy of current management. As a result, when

a consumer chooses not to buy illegal tiger derivatives, it is unlikely that as a conse-

quence one additional tiger is left to roam the forests. This framing applies equally
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to the case of renewable and nonrenewable resources, though in the renewable case

the relationships are arguably more complex as stock growth dynamics complicate

the relationship between extraction and conservation.

This paper attempts to shed light on this complex, but pervasive challenge. We

aim to make three contributions to the discussion of demand-driven conservation.

First, we propose a new statistic, called the “demand elasticity of conservation”, or

conservation elasticity (CE), which conveys the efficacy of a demand shift at producing

a conservation outcome. It combines the underlying ecosystem dynamics with the

supply and demand dynamics of relevant products to determine the efficacy of a

demand shift at delivering a conservation improvement. Our second contribution is

to apply the CE model to the case of marine fisheries as an exemplary case of the

potential for demand-drive conservation. In that application, the conservation benefit

is measured as the stock biomass of global marine fish. We estimate the CE for 27

classes of fish products, representing 83% of global marine fish catch. There, we find

more than an order of magnitude difference in CE across these classes, suggesting that

the same kind of demand side conservation intervention is likely to have dramatically

different effects across fish classes. These empirical estimates of the CE allow us

to estimate the demand shift required for each product class to reach a benchmark

conservation outcome. While this analysis sheds light on how large demand shifts need

to be, little evidence exists about how responsive consumers are to these interventions.

Thus, our third contribution is to empirically estimate, using a choice experiment

conducted on 969 fish consumers, the magnitude of the demand shift that is likely

from a contemporary, real-world demand-side intervention. The specific case we study

is the introduction of cellular seafood, meant to be a conservation-friendly alternative

to eating wild-caught fish.

We begin by summarizing our model of the causal chain for a demand-side inter-

49



vention to achieve a conservation outcome. This model gives rise to CE statistic, ϵC,α,

which is interpreted as the percentage change in a conservation outcome that results

from a one percent shift in demand. The derivation of this statistic is provided in the

supplemental information (section 1.2), and the final statistic is given by:

ϵC,α = ϵD,α

ϵS,p − ϵD,p

· ϵC,p (3.1)

The conservation elasticity, ϵC,α, depends on three terms: First ϵD,α, which shows

how responsive the demand shift is to a conservation intervention α; second the bal-

ance of price elasticities of demand and supply, ϵD,p−ϵS,p, determines how sensitive the

market equilibrium price responds to a demand shift; and third ϵC,p, which captures

the conservation elasticity with respect to price. All these elasticities dynamically

evolve over time, and especially the price elasticity of supply captures effects of pos-

sible regulatory interventions. We evaluate these elasticities at steady state, which

allows for the interpretation of the CE as the long-run effect of a shift in demand on

conservation. The parameter α can represent any exogenous demand shifter, includ-

ing things like the price of a substitute, an information treatment, or an income shock.

Further details are provided in the supplemental information (section 1.2). Any given

conservation intervention (captured by α) will have a different set of relevant elastici-

ties on the right hand side, and will thus give rise to a different conservation elasticity.

In the special case of non-renewable resource, the result simplifies to ϵC,p = ϵS,p (see

SI 1.2).

While demand-side interventions are found in a variety of markets, we demon-

strate the use of our framework in the context of global fisheries, where these inter-

ventions are extensively implemented. Consumers make purchase decisions at the fish

counter based on sustainability status, seafood sustainability ratings help guide your
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restaurant order, and retailers regularly make commitments to purchase only sus-

tainably caught fish. While many conservation outcomes could be considered, here,

we measure conservation as the biomass of the fish population in the ocean. Using

this metric, we can interpret the conservation elasticity as the percentage change in

stock biomass that results from a one percentage change in demand for that fish. To

understand demand-driven conservation for the particular case of fisheries, we first

build a structural model of a fishery subject to regulatory interventions (SI 1). This

model assumes that fisheries are, in part, driven by economic forces, so supply and

demand influence the level of harvest and the price received.Not all fisheries operate

in this manner. Consider for instance the case of fisheries managed through individ-

ual transferable quotas (ITQs) with a fixed cap. Barring significant demand changes

that leave the quota non-binding, equilibrium fishing effort is fixed, and as a result,

changes in demand will not affect equilibrium harvest or biomass (proof in SI sec-

tion 1.3). To proceed, we parameterize the model for 4,713 global fish stocks, which

we group into product categories using the International Standard Classification of

Aquatic Animals and Plants (ISCAAP), and estimate the equilibrium steady-state

supply curve for each fishery and product category (SI section 2.1). We then param-

eterize a demand curve for each product category (SI section 2.2.3) and estimate the

conservation elasticity for each product class which we present alongside measures of

current status ( B
BMSY

)in Figure 3.6.
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Figure 3.1: Vertical axis shows the demand elasticity of conservation for each ISS-
CAAP category. Horizontal axis measures the conservation status (biomass relative
to a widely used benchmark) of each ISSCAAP category. CE values above 1.0 in-
dicate that a 1% decrease in demand leads to a larger than 1% increase in biomass,
where CE values below 1.0 indicates that a 1% decrease in demand leads to a less
than 1% (but greater than 0%) increase in biomass. Stocks for which B/Bmsy<1.0
may indicate the stocks most in need of conservation interventions.

Figure 3.6 shows the CE for each ISCAAP product class, ranging from 0.16 to 1.6,

with CE on the vertical axis and conservation status ( B
BMSY

) on the horizontal axis.

According to FAO [89], values of B
BMSY

< 1 indicate over-exploitation. This shows

that the existing formal, regulatory efforts fail to achieve the desired conservation

outcomes for many fish stocks. ISSCAAP categories are colored by a smaller set of

‘consumer categories’ for exposition. For most fish in the world, the conservation

elasticity is well-below 1.0. This implies that even if an intervention can significantly

shift demand, the ultimate conservation consequences will be somewhat muted. The
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average ϵC,α across ISCCAAP categories is 0.55. However, there is significant hetero-

geneity in the CE across product classes. This suggests that demand interventions

can be up to an order of magnitude more effective if targeted at a high-CE product

class as compared to a low-CE product class. This finding points to the need to

target demand interventions at product classes that will be highly affected, and sug-

gests that our framework can provide valuable insight in contexts where interventions

propose to maximize conservation benefits. The product categories fall into three

quadrants: (I) stocks that are over-exploited and responsive to demand intervention,

(III) stocks that are over-exploited but unresponsive to demand intervention, and

(IV) stocks that are neither over-exploited nor responsive. To most effectively in-

duce conservation, demand-side interventions should focus on stocks in quadrant (I)

that are in need of conservation and amenable to changes in demand. Notably, for

all over-exploited product types, the average demand shift required to induce max-

imum sustainable yield is 61.9%. This suggests that while certain product classes

are amenable to demand intervention, significant shifts in demand are still necessary

for a full recovery. In order to investigate which bio-economic parameters contribute

most significantly to the determination of the CE, we perform a sensitivity analysis,

presented in table 3.1. To do so we consider the a generic fishery parameterized with

median values of all necessary modeling parameters. The median fishery CE, ϵC,α, is

0.28, resulting from a price elasticity of supply, ϵS,p, equal to 0.148, a price elasticity

of demand, ϵD,p, equal to -1.15, and a price elasticity of conservation, ϵC,p equal to

-0.38. The sensitivity analysis presented in table 3.1 shows the sensitivity of the me-

dian fishery CE to percentage changes in the several key modeling parameters. The

results show that the effect of demand-side interventions strongly depends on ecolog-

ical factors (growth rate and carrying capacity), as well as on economic parameters

and the effectiveness of regulatory conservation interventions (fishery management).
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parameter percentage change in CE
price elasticity of demand, pelast,D -0.93%
management effectiveness, µ 0.01%
stock growth rate, g -5.45%
marginal cost of fishing, c 1.85%
stock carrying capacity, k -5.55%

Table 3.1: presents the results of the sensitivity analysis of the CE with regard to key
modeling parameters. The results are calculated as the percentage change in the CE
that results from a 1% change in the parameter of interest.

Stocks with low (marginal) costs and low management effectiveness are particularly

prone to over-use, and general fisheries with less elastic demand, higher growth rate,

and higher carrying capacities are more responsive to demand interventions. The re-

sults in table 3.1 that fisheries with these conditions are well suited for demand-side

interventions.

We have shown that the efficacy of a demand-side conservation intervention de-

pends on a complex interplay of economic, behavioral, and ecological effects, as well

as pre-existing regulatory intervention. We have derived and empirically estimated

the CE statistic for the near universe of commercially harvested global marine fish-

eries. But a significant question still remains: how large of a demand shift can we

expect from real-world conservation interventions? To answer this question, we con-

ducted a first-of-its-kind choice experiment with 969 fish consumers to estimate the

demand shift for wild-caught bluefin tuna that would arise from a demand-side inter-

vention. The intervention we chose is not hypothetical, it is a real-world technology

called cellular seafood, which grows edible flesh from cellular cultures in a laboratory

setting. Cellular seafood is a novel technology, currently under development by a va-

riety of start-ups, that is touted as a conservation-promoting mechanism that works
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by providing lab-grown seafood alternatives to wild-caught products.

Our choice experiment presented consumers with realistic food consumption al-

ternatives, where wild-caught bluefin steaks were presented alongside comparable

cellular bluefin alternatives. Consumers were instructed to consider the alternatives

to be qualitatively similar in taste, texture, etc. Cellular seafood alternatives were

available at a range of retail prices similar to current prices for fresh bluefin tuna.

More details about the consumer survey and the model estimation framework are

given in the supplemental information (section 2.7). Figure 3.2 shows the estimated

supply and demand curves for this bluefin choice experiment. The supply curve (in

red) is based on stock assessment, catch, and price data and is derived based on the

model presented above. The four demand scenarios (in blue) are estimated from the

responses of consumers in the choice experiment. The demand scenarios are: (1)

bluefin demand without a cell-based alternative, (2) bluefin demand with high price

cell-based alternative, (3) bluefin demand with a medium price cell-based alternative,

and (4) bluefin demand with a low price cell-based alternative. The current CE, ϵC,α,

of bluefin is 0.5, resulting from a price elasticity of supply, ϵS,p, equal to 0.63, a price

elasticity of demand, ϵD,p, equal to -1.15, and a price elasticity of conservation, ϵC,p

equal to -0.89. Table 3.2 reports the equilibrium price, harvest and biomass that

result from the introduction of cellular seafood at the three price points. For each

demand scenario we use the resulting equilibrium price and quantity to determine

the underlying biomass, consistent with an aggregation over the CE for the estimated

demand shift.
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Figure 3.2: Supply and demand for bluefin tuna under alternative assumptions about
a cell-based alternative.

Scenario

Cell-based

Price Point

($/kg)

Bluefin

Dock Price

($/kg)

Bluefin Harvest

(1000 MT)

Bluefin Biomass

(1000 MT)

Percent Change

in Biomass

Current Demand N/A 5.73 94.8 1,590 NA

High Priced

Cell-based
91.98 5.24 88.5 1710 8%

Medium Priced

Cell-based
61.98 4.99 84.1 1790 13%

Low Priced

Cell-based
37.98 4.66 77.0 1910 20%

Table 3.2: presents the equilibrium price, harvest, and biomass that result from the
various cell-based Bluefin introductions, as compared to current levels
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Consider the scenario in which cell-based bluefin is available at the medium price

(benchmarked to the median price of bluefin today, $61.98/kg). There, the introduc-

tion of cellular bluefin has the potential to reduce demand for wild-caught bluefin

by about 30%, leading to a 13% increase in wild-caught bluefin biomass. The high,

medium, and low price scenarios correspond to a 8%, 13%, and 20% increase in the

biomass of wild-caught bluefin stocks. These results suggest that as the price for cellu-

lar bluefin tuna is reduced, ecologically meaningful conservation benefits could ensue.

However, at price parity, the conservation benefits are still modest. Future work

investigating demand-side interventions should consider the drivers of consumers’

willingness to substitute as well as levers that may be used to increase substitution.

Recognizing that formal regulatory policy solutions for environmental conserva-

tion are often elusive, there is great interest in demand-side interventions. Yet the

scientific literature has little to offer about the efficacy of this increasingly wielded

tool for conservation. We developed a general bioeconomic framework within which

to study the efficacy of demand-side interventions in delivering conservation outcomes

beyond preexisting regulatory interventions. In so doing, we developed a theoretically

grounded new statistic, called the demand elasiticty of conservation, which can be

calculated for nearly any conservation setting, and provides a summary statistic of

the efficacy of a demand shift in achieving conservation outcomes. We applied that

framework to the case of global fisheries, and uncovered a tremendous amount of

heterogeneity; many of the world’s fisheries are likely to be immune to demand-side

interventions, while a few, which tend to be the most over-exploited, are likely to

respond quite elastically to interventions that shift their demand.This indicates that

demand-side conservation might be particularly useful when the conservation success

of preexisting regulatory intervention is poor. Our choice experiment case study of

bluefin tuna and its cell-based alternative showed that, at least for this iconic species,
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significant benefits may be possible. Outside of fisheries, we think a fruitful next

step would be to empirically estimate the magnitude of the conservation elasticity.

These, and subsequent results can help illuminate and guide the increasing practice

of demand-side conservation interventions to tackle some of society’s greatest envi-

ronmental challenges.
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3.2 Supplemental theory

The supplemental theory section covers in detail the theoretical model used as the

basis for the results in the paper. We start by considering our definition of a shift

in demand, the definition and derivation of the demand elasticity of conservation,

ϵC,α. We then build the steady-state bio-economic model of a generic fishery under

exogeneous imperfect management. Along the way we present important results and

insights that underpin the conclusions of our work.

3.2.1 Definition of a demand shift

To consider the effects of demand interventions most generally, we specify the quantity

demanded as a function of an arbitrary shift parameter α, which is affected by a

demand intervention of interest:

D = f(p, xD, α) (3.2)

where p is price and xD are other conventional demand shifters like income and the

price of conventional substitute goods. We define a demand shift as occurring when

an exogenous factor affects the level of α and thus affects the demand function, D.

One can write the α elasticity of demand as dD
dα

· α
D

3.2.2 Example: the price of a substitute as a demand shifter

We can imagine the case that we are interested in the ability of a product substitute

to shift demand. As such we might consider α as follows:

D = f(p, xD, α(pϵs
s )) (3.3)
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In such a case,

dD

dpϵs
s

· pϵs
s

D
= dD

dα
· α

D
· dα

dpϵs
s

· pϵs
s

α
(3.4)

=⇒ ϵC,pϵs
s

= ϵD,α · ϵα,pϵs
s

(3.5)

3.2.3 Definition of the demand elasticity of conservation, ϵC,α

To inspect the conservation potential of demand shifts we first decompose the con-

servation elasticity of demand into two distinct effects: the effect of a change in

equilibrium price on biomass and the effect of a change in α on equilibrium price.

Since since the measure of conservation (think biomass) can be written as a function

of price and constant parameters, where price is partially determined by the value of

α, we have:

ϵC,α = dC

dα
· α

C
(3.6)

= ∂C

∂p

∂p

∂α
· α

C
(3.7)

= ∂C

∂p

∂p

∂α
· α

p

p

C
(3.8)

ϵC,α = ϵC,p · ϵp,α (3.9)

Furthermore, let’s consider an arbitrary market equilibrium defined by D(p(α), α, xD) =

S(p(α), xS). We can define the elasticity of price with respect to α as follows:
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S(p(α)) = D(p(α), α)) (3.10)

=⇒ ∂S

∂p

∂p

∂α
− ∂D

∂α
− ∂D

∂p

∂p

∂α
= 0 (3.11)

=⇒ ∂p

∂α

α

p
=

∂D
∂α

α
p

p
D

∂S
∂p

p
S

− ∂D
∂p

p
D

(3.12)

=⇒ ϵp,α = ϵD,α

ϵS,p − ϵD,p

(3.13)

Thus,

ϵC,α = ϵC,p · ϵD,α

ϵS,p − ϵD,p

(3.14)

3.2.4 Definition of the conservation elasticity of demand, ϵC,α for non-

renewable resources

The case of non-renewable resources is trivial in comparison to the renewable resource

problem, in particular because conservation is more clearly related to supply in the

case on nonrenewable resources. In the non-renewable case, the a decrease in sup-

ply is equivalent to an increase in conservation, since there is no growth and thus,

conservation is simply avoided extraction. Such an intuition can be mathematized

by the idea that for non-renewable resources ϵC,p = ϵS,p, that the price elasticity of

conservation is equal to the price elasticity of supply. And hence,

ϵC,α = ϵS,p · ϵD,α

ϵS,p − ϵD,p

(3.15)
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3.2.5 The general conditions for a conservation-demand relationship

We are interested in how demand-side interventions ultimately affect the conserva-

tion, which we consider here to be represented by the level of the stock. We focus

specifically on the case of renewable resources, though this thinking could be applied

to non-renewable resources as well. Increased stock size (over time) is our measure

of conservation. The conservation mechanism we have in mind is that a demand-side

intervention affects prices, and thus changes the incentives for extractors to exert

more or less effort. We therefore assume that economic factors affect stock size only

through their effect on extraction effort. This effect operates explicitly through the

price channel, where extractors respond to changes in price by adjusting effort. For-

mally, the stock in time t is characterized by its stock size, Bt, harvest, Ht, and

corresponding mortality rate, F (t) = H(t)/B(t). Stock growth is given by the func-

tion G(Bt, xB) which is concave in B and where α /∈ xB. The growth of the stock

depends on the level of the stock (Bt) and other biological and environmental pa-

rameters (xB), but not directly on economic factors such as α. For all xB there is

a biomass Bmsy(xB) that maximizes G(B), i.e. G′(Bmsy(xB)) = 0. Mortality is a

choice that is made partly by managers, and partly by extractors themselves. Thus,

we generally describe mortality as a function Ft = f(Bt, pt(α), xF) that depends on

contemporaneous biomass and price of the resource, that latter of which is itself in-

fluenced by demand parameters α and xF. The change in stock is equal to the growth

of the stock minus the harvest in period t: Ḃ = G(Bt) − Ht = G(Bt) − FtBt, and

steady-state is defined by Ḃ = 0.

Under this setup, which conforms to the standard assumptions of bioeconomic

models, we can derive a fairly simple result about demand-driven conservation:
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Proposition 1: Steady-state size of a stock is responsive to changes

in demand if and only if effort is responsive to changes in demand,

where effort is responsive to changes in demand iff effort is responsive

to changes in price.

proof: Since Ḃ = G(Bt) − FtBt, where steady-state is Ḃ = 0, then for every level

of effort Ft there exists a steady-state biomass B̄ such that G(B̄) − FtB̄ = 0. Thus,
dB̄
dα

= B̄
dFt
dα

G′(B̄)− G(B̄)
B̄

. Since G′(B̄) − G(B̄)
B̄

< 0 by the concavity of G(B̄) , dB̄
dα

̸= 0 iff
dF
dα

̸= 0. Furthermore, dB̄
dα

< 0 iff dF
dα

> 0. Since dF
dα

= ∂F
∂pt

∂pt

∂α
, then dB̄

dα
̸= 0 iff ∂F

∂pt
̸= 0

and ∂pt

∂α
̸= 0.

Proposition 1 shows that for stocks to be responsive to changes in demand, it

must be that changes in demand influence the market price and that effort responds

to changes in price. Since extractors control biomass through changes in effort, if

effort is unaffected by changes in α, then biomass will remain unchanged. Notably,

there are stocks where harvest rules are not economic in nature. Consider for instance

the case of fisheries managed through individual transferable quotas (ITQs) - barring

significant demand changes that leave the quota non-binding, equilibrium fishing

effort is fixed since effort is fixed. In such a case, changes in demand will clearly not

effect equilibrium harvest or biomass.

3.2.6 A general model of an economic fishery under exogenous man-

agement effectiveness

In order to derive the general model of an economic fishery under exogenous man-

agement effectiveness we first consider next the case of an optimally managed fishery.

We define a simple fisheries model where the underlying growth function is concave

in biomass and described by G(Bt) - growth is a function of the current biomass and
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other parameters which we exclude from the notation for convenience, with harvest,

Ht = FtBt, and the following economic model. Using the notation from the previous

section, profits from the fishery are given by:

πt =ptHt − c
Ht

Bt

(3.16)

where c is the marginal cost of effort. The current value Hamiltonian for the infinite-

horizon optimal control problem is written as follows:

H = ptHt − c
Ht

Bt

+ λt(G(Bt) − Ht) (3.17)

with the following necessary conditions:

λt = pt − c

Bt

(3.18)

cHt

B2
t

+ λtG
′(B) = −λ̇t + ρ λt (3.19)

Ḃt = G(B) − Ht (3.20)

The optimal steady-state conditions are as follows, where we drop the superscript

bar denoting steady-state for convenience, since all values are hereafter defined in

steady-state:

λ∗ = p − c

B∗ (3.21)
cH∗

(B∗)2 + λ∗G′(B∗) = ρ λ∗ (3.22)

H∗ = G(B∗) (3.23)
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Combining these equations, we get the following condition for the optimal steady-

state resource stock

p =
(

1 + G(B∗)
B∗ (ρ − G′(B∗))

)
c

B∗ (3.24)

In this equation, the term G(B∗)
B∗ (ρ−G′(B∗)) captures the resource rent as a fraction of

marginal harvesting costs. It is strictly decreasing in the steady-state stock size,

d

dB∗

(
G(B∗)

B∗ (ρ − G′(B∗))

)
= (G′(B∗) B∗ − G(B∗)) (ρ − G′(B∗)) + G(B∗) B∗ G′′(B∗)

(B∗ (ρ − G′(B∗)))2 < 0,

(3.25)

due to the concavity of G(B), i.e. G′′(B) < 0 and G′(B) < G(B)/B. Implicitly

differentiating (3.24) with respect to p, we thus conclude

B∗ d
dB∗

((
1 + G(B∗)

B∗ (ρ−G′(B∗))

)
c

B∗

)
(
1 + G(B∗)

B∗ (ρ−G′(B∗))

)
c

B∗︸ ︷︷ ︸
<0

p

B∗
dB∗

dp
= 1. (3.26)

This implies that, under optimal management, dB∗
dp

< 0 (i.e., the steady-state stock

sizes decreases with the price).

Since we are not concerned here specifically with an optimally managed fishery,

but a fishery subject to some exogenous level of management, we define µ as the level

of management effectiveness equal to the fraction of the external cost of fishing that

is internalized by fishing behavior, rewriting equation 3.21 consistent with Quaas et

al. 2016:
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µλt = pt − c

Bt

(3.27)

The harvest quantity is determined by the condition that the price (marginal

benefit of catch) equals the marginal cost of catch, which is the sum of marginal

harvesting cost and a fraction µ ∈ [0, 1] of the external costs of fishing. Equation 3.27

determines the supply of fish. In market equilibrium, supply is equal to demand, such

that

P (Ht) = pt = c

Bt

+ µ λt (3.28)

The external costs of fishing λt captures the dynamic stock externality, i.e. the

opportunity costs of catching fish, i.e. the present value of future catches enabled by

leaving an extra fish in the water.

3.2.7 Quantifying the value of the dynamic stock externality

There are (at least) three alternative possibilities to quantify the value of the dynamic

stock externality:

1. λF
t is the value for the fishery that takes only a fraction µ of the externality into

account.

2. λ⋆
t is the value for a social planner who would optimize catches. (with derivation

presented above).

3. λµ
t is the value for a social planner when the fishery internalizes only a fraction

µ of λµ.
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While we consider each of these alternatives below. But focus here on option 1,

which we believe is most consistent with the modeling framework presented above,

and as a result, it is the approach we have used in throughout the main text. The

interpretation of this modeling choice is that the fishery is managed under imperfect

management, and the external cost of fishing λt are determined under the acknowl-

edgement of this imperfect management. We describe the mathematical formulation

of this approach in Section 3.2.8

3.2.8 Value of dynamic stock externality for the fishery that takes only

a fraction µ of the externality into account

Using V F (Bt) to denote the value of fish stock of size Bt for the fishery. The value

of the dynamic stock externality is the marginal present value of next period’s stock,

i.e. the derivative of the value function, λF
t = δ V F ′(Bt+1), where δ = 1/(1 + ρ) is the

discount factor.

In a discrete-time setting, the value function for the fishery is determined by the

Bellman equation

V F (Bt) = pt Ht − c Ht

Bt

+ µ δ V F (Bt + G(Bt) − Ht) , (3.29)

where we have considered that the fishery takes into account only a fraction µ of the

future value of the fishery.

Differentiating (3.29) with respect to Bt, and using (3.23) with λt = λF
t =

δ V F ′(Bt+1), we get

V F ′(Bt)︸ ︷︷ ︸
=λF

t−1/δ

= c Ht

B2
t

+ µ δ V F ′ (Bt + G(Bt) − Ht)︸ ︷︷ ︸
=λF

t /δ

(1 + G′(Bt)) . (3.30)
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Solving for λ and using this in (3.22), along with the steady-state condition H =

G(Bµ), we obtain the following condition for the steady-state resource stock Bµ under

limited management effectiveness:

λF = δ c G(BF )
(BF )2 (1 − µ δ (1 + G′(BF )))

(3.31)

Using this in (3.27), we get the steady-state supply function

pF =
(

1 + µ
G(BF )

BF (ρ + 1 − µ − µ G′(BF ))

)
c

BF
(3.32)

In this equation, the term that captures the resource rent is scaled by µ. For

µ = 1, we obtain Bµ = B∗, for µ = 0 we obtain Bµ = BOA. In between, for any

given price p, Bµ is monotonically increasing with µ. This is found by implicitly

differentiating 3.32 with respect to µ:

Bµ
d

dBµ

((
1 + µ G(Bµ)

Bµ (ρ−G′(Bµ))

)
c

Bµ

)
(
1 + µ G(Bµ)

Bµ (ρ−G′(Bµ))

)
c

Bµ︸ ︷︷ ︸
<0

µ

Bµ

dBµ

dµ
+ G(Bµ)

Bµ (ρ − G′(Bµ))
c

Bµ︸ ︷︷ ︸
>0

= 0. (3.33)

3.2.9 Value of dynamic stock externality for the social planner who

would optimize catches

Using V ⋆(Bt) to denote the value of fish stock of size Bt for the social planner who

optimizes catches. Again, the value of the dynamic stock externality is the marginal

present value of next period’s stock, i.e. the derivative of the value function, λ⋆
t =

δ V ⋆′(Bt+1).

The social planner maximizes net social surplus, i.e. the difference between con-

sumer benefit and fishing costs. The value function for the fishery is determined by
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the Bellman equation

V ⋆(Bt) =
∫ Ht

0
P (h) dh − c Ht

Bt

+ δ V ⋆ (Bt + G(Bt) − Ht) , (3.34)

where optimal catches are determined by

P (Ht) = c

Bt

+ δ V ⋆′ (Bt + G(Bt) − Ht) (3.35)

Differentiating (3.34) with respect to Bt, and using (3.35) with λt = λ⋆
t =

δ V ⋆′(Bt+1), we get

V ⋆′(Bt)︸ ︷︷ ︸
=λ⋆

t−1/δ

= c Ht

B2
t

+ δ V ⋆′ (Bt + G(Bt) − Ht)︸ ︷︷ ︸
=λ⋆

t /δ

(1 + G′(Bt)) . (3.36)

In steady state, λ⋆
t−1 = λ⋆

t = λF , HF = G(BF ) , and

λ⋆ = δ c G(B⋆)
(B⋆)2 (1 − δ (1 + G′(B⋆)))

= c G(B⋆)
(B⋆)2 (ρ − G′(B⋆))

(3.37)

Using this in 3.23, we get the steady-state supply function

p⋆ =
(

1 + µ
G(B⋆)

B⋆ (ρ − G′(B⋆))

)
c

B⋆
(3.38)

3.2.10 Value of dynamic stock externality for the social planner antic-

ipating future limited management effectiveness

Using V µ(Bt) to denote the value of fish stock of size Bt for the social planner who

takes for granted that future management effectiveness will be µ < 1. Again, the

value of the dynamic stock externality is the marginal present value of next period’s
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stock, i.e. the derivative of the value function, λµ
t = δ V µ′(Bt+1).

The social planner maximizes net social surplus, i.e. the difference between con-

sumer benefit and fishing costs. The value function for the fishery is determined by

the Bellman equation

V µ(Bt) =
∫ Ht

0
P (h) dh − c Ht

Bt

+ δ V µ (Bt + G(Bt) − Ht) , (3.39)

where catches are determined by (3.23) with λt = λµ
t .

Differentiating (3.39) with respect to Bt, and using (3.23) with λt = λµ
t =

δ V µ′(Bt+1), we get

V µ′(Bt)︸ ︷︷ ︸
=λµ

t−1/δ

= c Ht

B2
t

+ δ V µ′ (Bt + G(Bt) − Ht)︸ ︷︷ ︸
=λµ

t /δ

(1 + G′(Bt)) − (1 − µ) λµ
t

dHt

dBt

. (3.40)

This equation contains the feedback of the stock on catches, dHt/dBt, which can

be obtained by differentiating (3.28) with respect to Bt,

P ′(Ht)
dHt

dBt

= − c

B2
t

+ δ V µ′′(Bt+1)
(

1 + G′(Bt) − dHt

dBt

)
. (3.41)

To determine steady-state supply, the full dynamic problem needs to be solved.

This can be done numerically by applying value function approximation to (3.39)

and (3.23).

3.2.11 General model results

The results presented below use the modeling framework above and the definition of

the dynamic stock externality presented in section 3.2.8
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Proposition 2: For economic fisheries (ones that are responsive to

price signals), along a given supply curve, a lower (higher) equilibrium

price implies higher (lower) steady-state biomass

proof: By eq. 3.32, for any given µ, Bµ is monotonically decreasing in the price p:

Bµ
d

dBµ

((
1 + µ G(Bµ)

Bµ (ρ−G′(Bµ))

)
c

Bµ

)
(
1 + µ G(Bµ)

Bµ (ρ−G′(Bµ))

)
c

Bµ︸ ︷︷ ︸
<0

p

Bµ

dBµ

dp
= 1. (3.42)

The steady-state biomass Bµ can be larger or smaller than the maximum sustain-

able yield biomass, depending on the price level. The critical price pmsy
µ is determined

by

pmsy
µ =

(
1 + µ

G(Bmsy)
Bmsy (ρ + 1 − µ − µG′(Bmsy))

)
c

Bmsy
=
(

1 + µ

ρ + 1 − µ

G(Bmsy)
Bmsy

)
c

Bmsy
.

(3.43)

However, while decreases in price lead to biomass benefits, the effect is ambiguous

for harvest:

Corollary 2: For economic fisheries (ones that are responsive to price

signals), a lower equilibrium price implies higher or lower equilibrium

levels of harvest depending on whether the current price is above or be-

low pmsy
µ

proof: Since H = G(B), dH
dp

= dG(B)
dp

= G′(B) · dB
dp

. Thus, dH
dp

≶ 0 if and only if

Bµ ≶ Bmsy(xB), since dB
dp

< 0 . In turn, Bµ ≶ Bmsy(xB) if and only if p ≷ pmsy
µ .

Corollary 2 implies the potential for the supply curve of the fishery to “bend back-
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wards”. We can imagine several potential shapes of resulting supply curves, including

a supply curve that bends backwards as first described by Copes 2007. Notably,

the existence of a backward-bending supply curve, does not affect the monotonic

and decreasing nature of the relationship between price and biomass described by

proposition 2.

Using p(H) to denote inverse demand, whereas (3.32) determines (inverse) supply

in steady state, the full steady-state condition becomes

p(G(Bµ); α) =
(

1 + µ
G(Bµ)

Bµ (ρ + 1 − µ − G′(Bµ))

)
c

Bµ

(3.44)

Stability requires that, at Bµ, inverse demand is steeper than inverse supply, both

taken as functions of Bµ:

p′(G(Bµ); α) G′(Bµ) >
d

dBµ

((
1 + µ

G(Bµ)
Bµ (ρ + 1 − µ − G′(Bµ))

)
c

Bµ

)
(3.45)

3.3 Supplemental data and empirics

This section details the construction of a parameterized model of global fisheries

capable of estimating the demand elasticity of conservation for relevant fish products,

as well as the detailed information regarding the bluefin tuna case study. We start

discussing the parameterization of supply and curves for global fisheries, the proceed

to discuss the case study experimental design and details, calibration and additional

results.
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3.3.1 Parameterizing supply and demand for global fisheries

The theory above confirms that reductions in demand manifest as increases in stock

biomass. However, the extent to which any given shift increases biomass is unclear,

given that the change in underlying biomass depends on biological, economic, and

institutional factors that are stock and market dependent. We then ask - for a given

stock or product class, how large would a shift in demand need to be for significant

conservation benefits to be realized? To answer this question we link the most recent

stock-level fisheries data from Costello et al. (2016) to a bio-economic supply and

demand model capable of estimating the changes in biomass that result from decreases

in demand.

3.3.2 Data

We parameterize supply curves for the worlds fisheries using data from Costello et al.

(2016) which provides the following parameters (including appropriate adjustments)

for 4,713 global fisheries. The parameters provided by this analysis are presented and

described in table 3.3

parameter description value

c harvest cost parameter fishery specific

ϕ Pella-Tomlinson scaling parameter0.188

Bcurrent current level of biomass fishery specific

Fcurrent current fishing effort fishery specific

Hcurrent current harvest fishery specific

k stock carrying capacity fishery specific

Table 3.3: Table outlining the parameters in Costello et al. 2016
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3.3.3 Building the supply curve

We consider fish stocks to abide by a Pella-Tomlinson growth model[75], as follows:

Bt+1 = Bt + θ + 1
θ

gBeq(1 − (Beq

k
)θ) − Ht . (3.46)

Furthermore, we define the fishers’ profit function to be as follows:

π = pkHk − ckF (3.47)

for stock k. In order to understand how the underlying biomass of fish stocks

responds to changes in demand, we parameterize the equilibrium supply and demand

curves for global fisheries. There are approximately 4,713 unique fish stocks in the

world’s oceans. However, consumers do not view all of these stocks as being indepen-

dent. Accordingly, we group stocks using the International Standard Classification of

Aquatic Animals and Plants (ISSCAAP) structure in order to represent fish stocks

as general consumer product categories. Stocks within a product class are treated

as perfect substitutes in demand. We use the biological model and stock parameters

from Costello et al. (2016) for each stock. To realistically represent current fish-

eries we must conceptualize and estimate current management status in a coherent

manner. While several recent papers estimate management effectiveness for specific

stocks [90] or report levels for a set of global stocks [91], to date there is no compre-

hensive measure available for stocks globally. We estimate and implement a measure

of management effectiveness, µk, consistent with Quaas et al. (2016), where µk repre-

sents the fraction of the external cost of fishing that is internalized by current fishing

behavior [92]. The calculation of µk and its integration into the estimation of the
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supply curve for a given stock under current management is discussed in detail in the

supplemental information.

We estimate the equilibrium steady-state supply curve for each ISSCAAP category

under three management scenarios: perfect economic management, open-access, and

current management (see the supply curves in Figure 3.3 for an example considering

the tunas, bonitos, and billfishes product category).

3.3.4 Management effectiveness, µ

To conceptualize a stock specific measure of management status we use Quass et

al.’s (2016) management effectiveness. Management effectiveness is a measure of the

fraction of external cost of fishing that is internalized in private fishing behavior. The

external cost of fishing is equal to the shadow price, λk, where the shadow price can

be derived from the first order condition that states the price as equal to the marginal

cost of fishing (the private cost of harvesting plus the external cost of fishing). We

estimate a fixed value for µ by determining the shadow value of the stock at it’s

current state as follows. For optimal control a manager maximizes:

πt =
T −1∑
t=0

[
ptHt − c(Ht

Bt

)
]

s.t. Bt+1 = Bt + Gt − Ht, Bt=0 = B0, pt = ( A

Ht

)
1

ϵp (3.48)

The resulting solution defines B(t), H(t), λ(t), τ(t) = λk

pk
. However, this simply

defines the optimal policy function given a stating state of the stock. The first order

condition of the optimal control problem thus states:

pt = cHt

B
+ λt (3.49)

As in Quaas et al. (2015), we then consider the dimensionless value-added shadow
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price, τt = λt

pt
with management effectiveness measure µ measuring the fraction of the

external cost of fishing that is internalized:

pt(1 − µτt) = c

Bt

(3.50)

So we can solve for the supply curve given a known level of management effectiveness

using equation 3.3.4 and equation 3.3.3. For instance, to estimate the open-access

supply curve for any fishery we must simply sole equation 3.3.4 given µ = 0, since in

open-access the external cost of fishing is not considered in harvesting decisions.

Costello et al. (2016) does not report a measure of management effectiveness for

stocks. We estimate a fixed level of µ for each stock k, by using the observed level

of effort in time t = 0 and the parameters at time t = 0 from the optimal control

problem as follows:

µk = 1
λ0

[
p0 − cF β−1

0
B0

]
(3.51)

Notably, such a calculation can also be framed as comparsion of the observed level

of effort exerted in period t = 0 as compared to the level of effort that would have

been excerted under optimal control:

1 − µk = 1
λ0

 A

B0

1
ϵ

(F̂0
− 1

ϵ − F̄0
− 1

ϵ )
 (3.52)

where F̂0 is the effort exerted in t = 0 under optimal control and F̄0 is the observed

level of effort in t = 0.

76



3.3.5 Aggregation of ISSCAAP categories

We group stocks to the level of International Standard Statistical Classification of

Aquatic Animals and Plants (ISSCAAP) categories. In order to aggregate the supply

curves of stocks within a given category, the fundamental assumption is that the

resulting products within each ISSCAAP category are perfect substitutes in demand.

Under this assumption the aggregate supply curve of any ISSCAAP category is the

horizontal aggregation of the individual stock supply curves.

3.3.6 Building the demand curve

We parameterize an iso-elastic demand curve using an assumed price elasticity of

demand of -1.15 [89], with high and low price elasticity of demand scenarios considered

in the supplemental information. The general demand function can be written as

follows, for ISSCAAP category j:

Hj = Ajp
ϵj

j (3.53)

We calibrate current demand (estimate Aj) using the most recently observed price

and harvest and the assumed price elasticity. More details about the calibration of

the demand curve is presented in SI Section 3.3.6. The result of the model described

above is the estimate of an equilibrium supply curve under current management and

a demand curve for each ISSCAAP product category. Further details regarding this

procedure are presented in the supplemental information (SI). Equilibrium supply and

demand allow us to consider steady-state outcomes from changes in demand. Since

the results of this model rely on steady state equilibrium outcomes, we estimate

current equilibrium price, harvest, and biomass (peq,j, Heq,j, Beq,j) as the intersection
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of current demand and supply curves given current management, which may not

represent the current state of the fisheries.
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supply − current management

supply − open−access

Figure 3.3: supply and demand for the tunas, bonitos, billfishes ISSCAAP category.
current demand is presented alongside supply under current management, supply
under open access, and supply under perfect economic management.

We conceptualize a shift in demand as a proportional shift in an isoelastic demand

curve. As such, we define a demand shift parameter, α, where a 1% shift in α leads

to a 1% change in quantity demanded:

Hj = αAjp
ϵj

j (3.54)

The purpose of describing a demand shift parameter in this way is to understand

how a percentage change in demand manifests as changes in equilibrium biomass. In

reality, a shift in demand may occur for many reasons, such as a change in income of

the population, newly available products or information, or the change in the price

of a substitute or complement product (see discussion in Section 3.2.1).
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Given our estimation of current supply and demand curves, we can estimate the

change in equilibrium biomass that results from a given shift in demand. Figure 3.6

presents the biomass elasticity of demand, ϵC,α, for each ISSCAAP category. This

measure represents the percentage change in biomass induced by a 1% change in

demand. The figure suggests that while it is possible that shifts in demand have

proportional or magnified effects on biomass, for the majority of ISSCAAP categories,

the biomass elasticity of demand is far below 1. The average ϵB,D across ISCCAAP

categories is 0.51. We investigate factors that contribute to the estimated biomass

elasticity of demand (such as management effectiveness, and current status) in the

supplemental discussion.

3.3.7 Demand curves

We assume the demand for the ISSCAAP categories to be isoelastic with the func-

tional form:

Hi = Aip
ϵi
i (3.55)

We assume a constant price elasticity of -1.15, consistent with Costello et al.

(2016), though we vary this assumption in the sensitivity analysis. Accordingly to

parameterize demand for each ISSCAAP category we must simply estimate current

price and harvest.

3.3.8 Estimating the demand multiplier AJ

Given current price and harvest for ISSCAAP category , we can simply estimate Ai:
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AJ = HJ

pϵJ
J

(3.56)

The most recently reported price and harvest for a stock provided by version of

Costello et al. (2016) is used to estimate AJ . Price for each ISSCAAP category is

estimated as the median price of the stocks in the given ISSCAAP cateory, while

harvest is estimated as the sum of the harvest over the stocks in the category:

pJ = median(pi, ..., pn) for i ∈ J (3.57)

and

HJ =
J∑
i

Hi (3.58)

3.3.9 Shifts in demand

In order to understand how possible shifts in consumer demand manifest as conserva-

tion benefits to wild fisheries we must conceptualize a shift in demand. As such, given

isoelastic demand we can define a demand shift parameter, α, and define a demand

shift by as a constant horizontal shifter of the iso-elastic demand function:

Hj = (α)Ajp
ϵj

j (3.59)

To uncover the resulting change in biomass of the aggregated ISSCAAP product

categories due to systematic shifts in the current demand curve, we estimate the

resulting equilibrium price and harvest due to a shift in demand, pJ,α, HJ,α, then we

equation 3.3.3 to solve for the equilibrium biomass.
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3.3.10 Sensitivity of the model to key parameters

To perform the sensitivity analysis, reported in Table 1 of the main text, we do the

following. First we define the median over-exploited fishery, as the fishery subject to

the median value of all base modeling parameters, defined in table 3.3. Next we inde-

pendently change key parameters by 1%, and report the change in the conservation

elasticity, as a percentage change relative to the conservation elasticity of the median

fishery.

3.3.11 Case study methods: experimental design

We designed our choice experiment to simulate a seafood purchase scenario for wild-

caught bluefin tuna (Thunnus thynnus) before and after the introduction of cellular

seafood. In both states of the world, information campaigns are present to communi-

cate which tuna products are sustainably produced using a "traffic-light" color-scheme

similar to Monterey Bay Aquarium Seafood Watch information program. Attribute

levels were chosen based on current market availability prior to survey distribution.

We first designed the two choice experiments using a full factorial design. In

the wild-caught choice experiment, there were four sustainability recommendation

levels (None, Avoid, Good choice, Best choice) and five price levels ($18.99, $25.99,

$30.99, $35.99, $45.99) while the second experiment included an additional produc-

tion method attribute with two levels (wild-caught, cellular). Given these attribute

levels, each experiment has twenty and forty total attribute combinations in a full

factorial design, respectively. In the experiment that included cellular as an attribute,

we eliminated choice questions in which one of the alternatives was a cellular tuna

steak that was also assigned an "Avoid" sustainability recommendation. We made

this decision based on the fact that cellular technology is expected to have minimal
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impact on the environment and would not likely be classified as unsustainable. This

procedure reduced the number of total attribute combinations to thirty. We used the

full factorial design in the wild-caught experiment.

Since fifty total choice questions (twenty in the wild-caught experiment and thirty

in the cellular experiment) is far more than a single respondent could answer in one

survey, we blocked the two designs to reduce the cognitive burden on our respondents.

Each block contained five and six questions, respectively, in the wild-caught and

cellular experiments. Each respondent was randomly assigned to one block in each

experiment for a total of eleven choice questions. Each question included two choice

alternatives plus a no purchase alternative. The order of each question in a given

block was randomized for each respondent.

3.3.12 Case study methods: sample

We collected data in November 2020 from a sample of diverse food consumers via

Amazon Mechanical Turk ("Mturk"). We specifically recruited Mturk workers with

greater than zero approved tasks, task approval rating greater than 98%, and located

in the United States. Only Mturk workers that fit the initial screening criteria saw

the announcement for a “15-minute Academic Study”. Participants were asked to

answer a screener questionnaire to confirm eligibility prior to gaining access to the

full the survey. Eligible participants were aged 18 years or older and lived in the

United States. We paid participants $1.50 upon completion of the survey.

In addition to the screener questionnaire, we used methods to screen out respon-

dents that attempted to take the survey from outside the United States. Recent stud-

ies identified a spike in workers using a Virtual Private Server (VPS), Virtual Private

Network (VPN), or proxy server so that their internet activity cannot be traced ge-

ographically [93–95]. The majority of the VPS/VPN/proxy use cases on Mturk are
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international workers purposely running their activity through server farms or data

centers in the United States to access tasks only made available to workers in the

United States [93]. As an initial deterrent for those using some form of proxy server,

we disclosed to potential respondents that we were screening IP addresses. If poten-

tial respondents did not leave the survey at this point, their IP address was screened

using the protocol developed by Winter et al. 2019 and were deemed ineligible to

participate in the survey if their IP address was flagged as being outside the United

States and/or associated with known server farms.

We collected a total of 1,022 responses. We removed responses that either did not

fully complete both sets of choice questions in the survey or completed the full survey

in less than one-third the median completion time for the sample. This filtering

procedure left a final sample of 969 for analysis. Summary statistics for the final

sample are presented below.

Characteristic Sample estimates (N = 969) Population estimates3

Age1 (years) 35.00 (11.25) 38.5

Sex2 (%)

Male 57.8 49.2

Female 42.1 50.8

Other 0.1 Not reported

Race2 (%)

White 77.5 60.0

Asian 6.40 5.6

Under-represented minority 11.1 32.0

Two or more races 5.1 2.5

Education2 (%)

Did not complete high school 0.2 9.6

High school graduate or GED 12.7 27.9
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Characteristic Sample estimates (N = 969) Population estimates3

Some college 27.9 31.5

Bachelor’s or higher 59.2 31.0

Income2 (%)

Less than $50,000 48.1 59.5

$50,000 to $74,999 26.0 16.9

$75,000 to $99,999 14.0 9.2

$100,000 to $149,999 8.6 8.4

$150,000 or higher 3.3 6.1

Household size2 (%)

1 20.9 28.3

2 31.7 34.3

3 22.0 15.3

4 or more 25.5 22.1

Political affiliation2 (%)

Republican 23.8 31.0

Democrat 49.0 36.0

Independent 23.7 31.0

Something else 3.4 2.0

1 Statistics presented: Mean (SD)
2 Category percentages are rounded and may not add exactly to 100.
3 2019 American Community Survey estimates except for "Political affiliation" which came from

Gallup Poll Social Series interviews conducted on October 16-27, 2020.

Table 3.4: Sample summary statistics
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3.3.13 Case study methods: Random parameter logit specification and

results

We use a random utility framework to analyze our data and assume individual i makes

choices between J alternatives in T choice situations by considering all available

alternatives and chooses the alternative with the highest utility. The expression,

Uijt = Vijt + ϵijt, characterizes the indirect utility associated with alternative J for

individual i in choice situation T , where Vijt = β′
ixijt is the deterministic portion of

utility with the individual parameter vector βi assumed to be drawn from a population

distribution, g(β|θ), and the error term ϵijt is independent and identically distributed

extreme value type-1. Since each participant answered more than one choice question,

we account for the panel structure of our data in the choice probability as discussed

in Train (2009). We use maximum-likelihood methods to numerically evaluate the

choice probability integral using 200 Halton draws.

We estimate two separate random parameter logit ("RPL") models for each of

the two experimental designs to capture the with-in subject difference in demand for

wild-caught bluefin after the introduction of cellular bluefin. The empirical models

control for each alternative attribute (price, production method, and sustainability

recommendation). Each parameter is assumed to follow a normal distribution which

allows us to account for unobserved individual heterogeneity and also allows us to

derive the demand curves discussed below as in Caputo et al. (2020). Price is

specified as continuous while the other attributes are specified as dummy variables

with no sustainability recommendation being the reference category in both models

and additionally wild-caught being the reference category for production method in

the "Post-Cellular" model. We also include an alternative specific constant to capture

utility derived from selecting a "purchase" alternative ("ASC-Buy"). The coefficient
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for this parameter represents the utility derived from purchasing a wild-caught tuna

steak with no sustainability recommendation in our experimental designs, and serves

as the baseline for the demand curve derivation.

Table 3.3.14 presents the results of the two RPL models. Consistent with eco-

nomic theory the price coefficient is negative indicating a downward sloping demand

curve for bluefin steaks. The sustainability recommendations are also consistent with

the expected effects in that a bluefin steak carrying an "Avoid" recommendation is

associated with a negative marginal utility while a bluefin steak carrying either a

"Good choice" or "Best choice" recommendation are associated with positive marginal

utility. The relative ranking of the "Good choice" and "Best choice" are also consistent

with expectations with the marginal utility of "Best choice" being strictly greater than

the marginal utility of a "Good choice" recommendation since a "Best choice" recom-

mendation requires more sustainable practices than a "Good choice." These results

are consistent across both models. Focusing on the "Post-Cellular" model we find

that cellular bluefin provides less utility to our respondents than wild-caught bluefin

similar to previously proposed novel seafood products, such as genetically modified

salmon [99].

3.3.14 Demand curve derivation and calibration

Using the two sets of RPL model parameters, we follow the methods of Lusk and

Tonsor (2016) and Caputo et al. (2020) to derive the demand curves for fresh, wild-

caught bluefin in the absence and presence of a cellular alternative. This is achieved by

substituting the estimated RPL coefficients into probability equations with the prices

of products of interest varied over the range of ex-vessel prices from the empirical

demand estimates rescaled to retail price per pound, while the other choice experiment

alternatives have price held constant at $30.99/lb. This exercise results in a vector

86



of market shares for the product of interest relative to the other CE alternatives

(including the outside option) at each price level. We determined the scaling factor for

the empirical supply prices by dividing the median choice experiment price ($30.99)

by the median ex-vessel price per pound ($3.35). Thus, we multiplied each ex-vessel

price by 6.9 to adjust the prices to retail level for the market share simulation. This

is necessary since the RPL estimates rely on choices made at retail price levels.

We next utilize the methods discussed in Section 3.3.7 to empirically derive the

global demand curve for all bluefin tuna products (fresh, frozen, or live) coming from

any of the three species (Atlantic bluefin (Thunnus thynnus), Pacific bluefin (Thunnus

orientalis) and Southern bluefin (Thunnus maccoyii)). From here, we combine the

market share estimates and the empirical global demand curve by multiplying the

estimated market share of wild-caught bluefin products (relative to the outside option

and/or cellular options) by the quantity demanded at each given price. The resulting

curve represents the quantity demanded of fresh, wild-caught bluefin tuna. This

procedure allows us to estimate the feasible demand shift given the introduction of

cellular bluefin tuna products as measured by the percentage change in market share

of wild-caughtbluefin products before and after the introduction of cellular bluefin.

Pre-Cellular Post-Cellular

ASC-Buy 4.77∗∗∗ 5.67∗∗∗

(0.26) (0.26)

Price ($) −0.12∗∗∗ −0.15∗∗∗

(0.01) (0.01)

’Avoid’ recommendation −5.23∗∗∗ −4.41∗∗∗

(0.39) (0.62)
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’Good choice’ recommendation 1.21∗∗∗ 1.47∗∗∗

(0.12) (0.10)

’Best choice’ recommendation 3.76∗∗∗ 2.71∗∗∗

(0.20) (0.14)

Cell-based −1.55∗∗∗

(0.16)

SD ASC-Buy 2.58∗∗∗ 2.43∗∗∗

(0.18) (0.22)

SD Price ($) 0.06∗∗∗ 0.10∗∗∗

(0.01) (0.01)

SD ’Avoid’ recommendation 3.60∗∗∗ 3.81∗∗∗

(0.34) (0.56)

SD ’Good choice’ recommendation 1.75∗∗∗ 0.74∗∗∗

(0.20) (0.19)

SD ’Best choice’ recommendation 2.09∗∗∗ 1.52∗∗∗

(0.24) (0.17)

SD Cell-based 3.57∗∗∗

(0.19)

Log-Likelihood −3276.90 −3983.05

AIC 6573.79 7990.09

BIC 6638.65 8070.11

Number of choices 4845 5814

Sample size 969 969

∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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3.4 Supplemental Discussion

Figure 3.4: Figure 1 from main text but with the shadow value of the stock calculated
using the social planners external cost of fishing. The absolute value of the conser-
vation elasticity for each ISSCAAP category. Since biomass is decreasing in demand
parameter, A, a measure above 1 indicates a 1% decrease in demand leads to a larger
than 1% increase in biomass, where a measure below 1 indicates that a 1% decrease
in demand leads to a less than 1% (but greater than 0%) increase in biomass. B

BMSY

is considered a standard measure of exploitation where a measure below 1 indicates
the stock is over-exploited.
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Figure 3.5: Figure 1 from main text but with an inelastic price elasticity of demand,
epsilonp,D = −0.9. The absolute value of the conservation elasticity for each ISS-
CAAP category. Since biomass is decreasing in demand parameter, A, a measure
above 1 indicates a 1% decrease in demand leads to a larger than 1% increase in
biomass, where a measure below 1 indicates that a 1% decrease in demand leads
to a less than 1% (but greater than 0%) increase in biomass. B

BMSY
is considered

a standard measure of exploitation where a measure below 1 indicates the stock is
over-exploited.
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Figure 3.6: Figure 1 from main text but with an inelastic price elasticity of demand,
epsilonp,D = −1.5 The absolute value of the conservation elasticity for each ISSCAAP
category. Since biomass is decreasing in demand parameter, A, a measure above 1
indicates a 1% decrease in demand leads to a larger than 1% increase in biomass,
where a measure below 1 indicates that a 1% decrease in demand leads to a less than
1% (but greater than 0%) increase in biomass. B

BMSY
is considered a standard measure

of exploitation where a measure below 1 indicates the stock is over-exploited.
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