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Abstract

Evaluating Optimal Individualized Treatment Rules

by

Alexander Ryan Luedtke

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Mark J. van der Laan, Chair

Suppose we observe baseline covariates, a binary indicator of treatment, and an outcome
occuring after treatment. An individualized treatment rule (ITR) is a treatment rule which
assigns treatments to individuals based on their measured covariates. An optimal ITR is the
ITR which maximizes the population mean outcome. The mean outcome of the optimal ITR
is referred to as the optimal value. This dissertation considers three inferential challenges
related to these parameters in the large semiparametric model that at most places restrictions
on the probability of receiving treatment given covariates.

The first is to develop confidence intervals for the optimal value. Constructing valid confi-
dence intervals for this quantity is surprisingly difficult when the stratum specific treatment
effect, also called the blip function, is null with positive probability. This null treatment
effect seems possible in many studies. While it has been claimed in the literature that no
regular and asymptotically linear (RAL) estimator exists in this case, we prove that RAL
estimators of the optimal value can exist in a slightly more general setting. We then de-
scribe an approach to obtain root-n rate confidence intervals for the optimal value even when
regular estimation is not possible. We also provide sufficient conditions under which our es-
timator is RAL and asymptotically efficient – a necessary condition is of course that regular
estimation is possible under the data generating distribution.

We have thus far assumed that treatment is an unlimited resource so that the entire
population can be treated if this strategy maximizes the population mean outcome. In the
second part of this dissertation, we consider optimal ITRs in settings where the treatment
resource is limited so that there is a maximum proportion of the population that can be
treated. We give a general closed-form expression for an optimal stochastic ITR in this
resource-limited setting, and a closed-form expression for the optimal deterministic ITR
under an additional assumption. We also present an estimator of the mean outcome under
the optimal stochastic ITR and give conditions under which our estimator is efficient among
all RAL estimators.

Both of the first two inferential challenges considered give parametric-rate confidence
intervals for finite-dimensional parameters in our large semiparametric model. In the third
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part of this dissertation we focus on developing hypothesis tests and confidence sets for
infinite-dimensional parameters that one typically estimates using data adaptive techniques.
Parametric-rate inference is not typically expected in this setting. Our primary motivating
example concerns the blip function, which is closely related to the optimal ITRs in both
the resource-unconstrained and constrained settings. For any fixed function, we give valid
hypothesis tests that the blip function is equal to this fixed function. These tests can then
be inverted to develop a confidence set for the blip function. Surprisingly, the hypothesis
test achieves a parametric rate in the sense that it is consistent against local alternatives
converging to the data generating distribution at the rate of one divided by the square root
of sample size. We prove the validity of this procedure in great generality that applies far
beyond this particular inference problem, and reference several other examples to which it
applies. The results in this third component of the dissertation have been developed using
the theory of higher-order influence functions.
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Chapter 1

Introduction

We first give an overview of the problems considered in this dissertation. We then present
our data structure and the key notation that is common across chapters.

1.1 Overview

Suppose one wishes to maximize the population mean of some outcome using some binary
point treatment, where for each individual clinicians have access to measured baseline co-
variates. Such a treatment strategy is termed an individualized treatment regime ITR, and
the (counterfactual) population mean outcome under an ITR is referred to as the value of
the ITR (Neyman, 1990; Rubin, 1974; Robins, 1986; Pearl, 2009). An ITR with maximal
value is referred to as an optimal ITR or the optimal rule, and the value of an optimal ITR
is referred to as the optimal value. One can show that any optimal ITR assigns treatment
to individuals falling in strata in which the stratum specific average treatment effect, also
termed the “blip function”, is positive and does not assign treatment to individuals for which
this quantity is negative. This problem has received much attention in the statistics liter-
ature over the last two decades (see, e.g., Murphy, 2003; Robins, 2003, 2004; Chakraborty
and Moodie, 2013). Most of this earlier work in ITRs has worked in restricted statistical
models in which the blip function is parameterized by a finite-dimensional parameter. In
this work, we answer several questions arising in individualized medicine in a nonparametric
model which at most places restrictions on the probability of a patient receiving treatment
given covariates.

Chapter 2: Inference for the Optimal Value

Suppose one wishes to know the impact of implementing an optimal ITR in the population,
i.e. one wishes to know the optimal value. Inference about this quantity can be used to inform
practitioners as to what benefits are possible if the delivery of a treatment is optimized in
the population at a strata-specific level. Before estimating the optimal value, one typically
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estimates the optimal rule. Recently, researchers have suggested applying machine learning
algorithms to estimate the optimal rules from large classes which cannot be described by a
finite-dimensional parameter (see, e.g., Zhang et al., 2012a; Zhao et al., 2012; Luedtke and
van der Laan, 2014a).

Inference for the optimal value has been shown to be difficult at exceptional laws, i.e.
probability distributions where there exists a stratum of the baseline covariates that occurs
with positive probability and for which treatment is neither beneficial nor harmful (Robins,
2004; Robins and Rotnitzky, 2014). Inference is similarly difficult in finite samples if the
treatment effect is very small in all strata, even though valid asymptotic estimators exist in
this setting (van der Laan and Luedtke, 2014a). Zhang et al. (2012b) considered inference for
the optimal value in restricted classes in which the ITRs are indexed by a finite-dimensional
vector. At non-exceptional laws, they outlined an argument showing that their estimator
is (up to a negligible term) equal to the estimator that estimates the value of the known
optimal ITR under regularity conditions. The implication is that one can estimate the
optimal value and then use the usual sandwich technique to estimate the standard error
and develop Wald-type confidence intervals (CIs). Van der Laan and Luedtke (2014a) and
van der Laan and Luedtke (2014b) developed inference for the optimal value when the ITR
belongs to an unrestricted class. Van der Laan and Luedtke (2014b) provide a proof that the
efficient influence curve for the parameter which treats the optimal rule as known is equal
to the efficient influence curve of the optimal value at non-exceptional laws. One of the
contributions of Chapter 2 is to present a slightly more precise statement of the condition
for the pathwise differentiability of the mean outcome under the optimal rule. We will show
that this condition is necessary and sufficient.

Restricting inference to non-exceptional laws is limiting as there is often no treatment
effect for people in some stratum of baseline covariates. Chakraborty et al. (2014) propose
using the m-out-of-n bootstrap, which draws samples of size m patients with replacement
from the data set of size n, to obtain inference for the value of an estimated ITR using an
inverse probability weighted (IPW) estimator. This yields valid inference when the treatment
mechanism is known or is estimated according to a correctly specified parametric model.
They also discuss an extension to a double robust estimator. In non-regular problems, this
method yields valid inference if m,n → ∞ and m = o(n). The CIs for the value of an
estimated regime shrink at a root-m (not root-n) rate. In addition to yielding wide CIs,
this approach has the drawback of requiring a choice of the important tuning parameter m,
which balances a trade-off between coverage and efficiency. Chakraborty et al. propose using
a double bootstrap to select this tuning parameter.

Goldberg et al. (2014) instead consider truncating the criteria to be optimized, i.e. the
value under a given rule, so that only individuals with a clinically meaningful treatment
effect contribute to the objective function. These authors then propose proceeding with
inference for the truncated value at the optimal ITR. For a fixed truncation level, the esti-
mated truncated optimal value minus the true truncated optimal value, multiplied by root-n,
converges to a normal limiting distribution. Laber et al. (2014a) propose instead replacing
the indicator used to define the value of a ITR with a differentiable function. They discuss
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situations in which the estimator minus the smoothed value of the estimated ITR, multiplied
by root-n, would have a reasonable limit distribution.

Chapter 2 develops CIs for the value of the optimal ITR. This chapter carefully studies
why standard approaches fail in these settings, and proposes a novel solution which (i) yields
asymptotically valid CIs even if the blip function is zero with positive probability and (ii) is
asymptotically efficient when the efficiency bound is well-defined. This is the first and only
solution satisfying these criteria presented in the literature to date.

Chapter 3: Individualized Treatments Under Limited Resources

In Chapter 2, we aimed to estimate the value of the optimal ITR. If treatment is even slightly
beneficial to all subsets of the population, then this ITR would suggest treating the entire
population. There are many realistic situations in which such a treatment strategy, or any
strategy that treats a large proportion of the population, is not feasible due to limitations on
the total amount of the treatment resource. In a discussion of Murphy (2003), Arjas observed
that resource constraints may render optimal ITRs of little practical use when the treatment
of interest is a social or educational program, though no solution to the constrained problem
was given (Arjas et al., 2003).

The mathematical modeling literature has considered the resource allocation problem to
a greater extent. Lasry et al. (2011) developed a model to allocate the annual CDC budget
for HIV prevention programs to subpopulations which would benefit most from such an
intervention. Tao et al. (2012) consider a mathematical model to optimally allocate screening
procedures for sexually tranmitted diseases subject to a cost constraint. Though Tao et al.
do not frame the problem as a statistical estimation problem, they end up confronting
similar optimization challenges to those that we will face. In particular, they confront the
(weakly) NP-hard knapsack problem from the combinatorial optimization literature (Karp,
1972; Korte and Vygen, 2012). We will end up avoiding most of the challenges associated
with this problem by primarily focusing on stochastic treatment rules, which will reduce to
the easier fractional knapsack problem (Dantzig, 1957; Korte and Vygen, 2012). Stochastic
ITRs allow the treatment to rely on some external stochastic mechanism for individuals in
a particular stratum of covariates.

Chapter 3 first formulates the statistical estimation problem in this setting, which itself
was a new contribution as of the publishing of Luedtke and van der Laan (2015). It then
describes how to estimate the value of the optimal resource-constrainted ITR.

Chapter 4: Inference for Infinite-Dimensional Parameters

Previous works have demonstrated how one can obtain consistent point estimates of the blip
function in mean-square or in value of the resulting optimal rule estimate (see, e.g., Zhao
et al., 2012; Luedtke and van der Laan, 2014a). Despite exhibiting strong point estimation
schemes for this function (infinite-dimensional parameter), the statistical community has
not yet considered how one might obtain inference for this parameter. Chapter 4 develops
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a hypothesis test that the blip function is equal any given fixed function. Astoundingly,
this yields valid confidence sets for this infinite-dimensional parameter: one merely needs
to invert the test to check if a given function belongs to the confidence set. The hypoth-
esis tests presented in this chapter are developed using the maximum mean discrepancy
(MMD) parameter first presented in Gretton et al. (2006), which represents a discrepancy
measure between distributions. While Gretton et al. (2006) focused on the MMD between
the distributions of observed random variables, we apply the MMD to measure the discrep-
ancy between the distribution of the (unknown but estimable) blip function applied to the
observed covariates minus a fixed function (also applied to the observed covariates) and
compare the distribution of this difference to the point mass at zero. While we use inference
about the blip function as the primary motivation in this chapter, we present the results
in general for a rich class of infinite-dimensional parameters. Inference is usually extremely
difficult for infinite-dimensional parameters when smoothing approaches are used to estimate
the unknown function because the resulting estimators tend to be highly irregular.

To develop our approach, we use techniques from the higher-order pathwise differentiabil-
ity literature (see, e.g., Pfanzagl, 1985; Robins et al., 2008; van der Vaart, 2014; Carone et al.,
2014). Despite the elegance of the theory presented by these various authors, it has been
unclear whether these higher-order methods are truly useful in infinite-dimensional models
since most functionals of interest fail to be even second-order pathwise differentiable in such
models. This is especially troublesome in problems in which under the null the first-order
derivative of the parameter of interest (in an appropriately defined sense) vanishes, since then
there seems to be no theoretical basis for adjusting parameter estimates to recover paramet-
ric rate asymptotic behavior. At first glance, the MMD parameter seems to provide one
such disappointing example, since its first-order derivative indeed vanishes under the null.
The latter fact is a common feature of problems wherein the null value of the parameter is
on the boundary of the parameter space. It is also not an entirely surprising phenomenon
given that the MMD achieves its minimum of zero under the null hypothesis. Nevertheless,
we are able to show that this parameter is indeed second-order pathwise differentiable un-
der the null hypothesis – this is a rare finding in infinite-dimensional models. As such, we
can employ techniques from the recent higher-order pathwise differentiability literature to
tackle the problem at hand. To the best of our knowledge, this is the first instance in which
these techniques are directly used (without any form of approximation) to resolve an open
methodological problem.

1.2 Notation and data structure

Let O = (W,A, Y ) ∼ P0 ∈ M, where W represents a vector of covariates, A a binary
intervention, and Y a real-valued outcome. The model M for P0 is nonparametric, beyond
possible knowledge about the probability of treatment given covariates. We observe an
independent and identically distributed (i.i.d.) sample O1, ..., On from P0. Let W , A, Y ,
and O denote the support of W , A, Y , and O, respectively. For a distribution P , define the
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treatment mechanism g(P )(A|W ) , PrP (A|W ). We will refer to g(P0) as g0 and g(P ) as g.
For a function f , we will use EP [f(O)] to denote

∫
f(o)dP (o). We will also use E0[f(O)] to

denote EP0 [f(O)] and Pr0 to denote the P0 probability of an event.
Throughout we make the positivity assumption that Pr0(0 < g0(1|W ) < 1) so that Ψ(P0)

is well-defined. Let

Q̄(P )(A,W ) , EP [Y |A,W ],

Q̄b(P )(W ) , Q̄(P )(1,W )− Q̄(P )(0,W ).

We will refer to Q̄b(P ) as the blip function for the distribution P . We will denote to the
above quantities applied to P0 as Q̄0 and Q̄b,0, respectively. We will often omit the reliance
on P altogether when there is only one distribution P under consideration: Q̄(A,W ) and
Q̄b(W ). We also let Ψd(P ) , EP Q̄(d(W ),W ) denote the value of the rule d. Under causal
assumptions, Ψd(P ) is equal to the counterfactual mean outcome if, possibly contrary to fact,
the rule d were implemented in the population (Pearl, 2009). As the focus of this manuscript
is statistical in nature, all of the results we present will hold regardless of the validity of the
causal assumptions.

The objectives of Chapters 2 through 4 can now be formulated using this notation. In
Chapter 2, we wish to develop confidence intervals for the optimal value, defined as

Maximize Ψd(P ) over all d :W → {0, 1}.

In Chapter 3, we wish to develop confidence intervals for the optimal resource-constrained
value, defined as

Maximize Ψd(P ) subject to EP0 [d(V )] ≤ κ,

where κ ∈ (0, 1) is a resource constraint representing the restriction on the proportion of
the population able to receive treatment. The definition of Ψd is modified very slightly in
Chapter 3 to allow d to be a stochastic rule – we refer the reader to that chapter for further
details, though we note that in most cases the maximal value over stochastic rules satisfying
the constraint is the same as the maximal value over deterministic rules in the above. In
Chapter 4, we wish to test

H0 : Q̄b,0(W ) = f(W ) almost surely

for a given fixed function f : W → R against the complementary alternative. From a
confidence set perspective, Chapter 4 aims to develop a set of functions CSn such that

Pr0

(
Q̄b,0 ∈ CSn

)
→ 1− α

for a user-defined confidence level 1− α.
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Chapter 2

Inference for the Optimal Value

2.1 Introduction

In this chapter, we develop root-n rate inference for the optimal value under reasonable con-
ditions. Our approach avoids any sort of truncation, and does not require that the estimate
of the optimal rule converge to a fixed quantity as the sample size grows. We show that
our estimator minus the truth, properly standardized, converges to a standard normal lim-
iting distribution. This allows for the straightforward construction of asymptotically valid
CIs for the optimal value. Neither the estimator nor the inference rely on a complicated
tuning parameter. We give conditions under which our estimator is asymptotically efficient
among all regular and asymptotically linear (RAL) estimators when the optimal value pa-
rameter is pathwise differentiable, similar to those we presented in van der Laan and Luedtke
(2014a). However, they do not require that one knows that the optimal value parameter is
pathwise differentiable from the outset. Implementing the procedure only requires a minor
modification to a typical one-step estimator.

We believe the value of the unknown optimal rule is an interesting target of inference
because the treatment strategy learned from the given data set is likely to be improved
upon as clinicians gain more knowledge, with the treatment strategy given in the popula-
tion eventually approximating the optimal rule. Additionally, the optimal rule represents an
upper bound on what can be hoped for when a treatment is introduced. Nonetheless, as we
and others have argued in the references above, the value of the estimated rule is also an
interesting target of inference (Chakraborty et al., 2014; Laber et al., 2014a; van der Laan
and Luedtke, 2014b,a). Thus, although our focus is on estimating the optimal value, the
confidence interval presented in this chapter provides proper coverage for the data adaptive
parameter which gives the value of the rule estimated from the entire data set under reason-
able conditions. We omit these conditions here for brevity, but they can be found in Luedtke
and van der Laan (2016).

As in the rest of this dissertation, we focus on the single time point setting in this
chapter. We refer the reader to the appendix of the full published paper for the extension



CHAPTER 2. INFERENCE FOR THE OPTIMAL VALUE 7

to the multiple time point setting Luedtke and van der Laan (2016).
We now give a brief outline of the chapter. Section 2.2 formulates the statistical problem

of interest. Section 2.3 gives necessary and sufficient conditions for the pathwise differen-
tiability of the optimal value. Section 2.4 outlines the challenge of obtaining inference at
exceptional laws and gives a thought experiment that motivates our procedure for estimating
the optimal value. Section 2.5 presents an estimator for the optimal value. This estimator
represents a slight modification to a recently presented online one-step estimator for pathwise
differentiable parameters. Section 2.6 discusses computationally efficient implementations of
our proposed procedure. Section 2.7 discusses each condition of the key result presented in
Section 2.5. Section 2.8 describes our simulations. Section 2.9 gives our simulation results.
Section 2.10 closes with a summary and some directions for future work.

All proofs can be found in Section 2.11.

2.2 Problem formulation

Let Ψ :M→ R be defined by Ψ(P ) , Ψd(P )(P ), where

d(P ) , argmaxdEPEP (Y |A = d(W ),W )

is an optimal treatment rule under P . We will resolve the ambiguity in the definition of d
when the argmax is not unique later in this section. We can identify d(P ) with a causally
optimal rule under causal assumptions Pearl (2009). As the focus of this chapter is statistical
in nature, all of the results will hold when estimating the parameter Ψ(P0) whether or not
the causal assumptions needed for identifiability hold.

Consider the efficient influence curve of Ψd at P :

D(d, P )(O) =
I(A = d(W ))

g(A|W )
(Y − Q̄(A,W )) + Q̄(d(W ),W )−Ψd(P ).

Let B(P ) , {w : Q̄b(w) = 0}. We will refer to B(P0) as B0. An exceptional law is defined as
a distribution P for which PrP (W ∈ B(P )) > 0 (Robins, 2004). We note that the ambiguity
in the definition of d(P ) occurs precisely on the set B(P ). In particular, d(P ) must almost
surely agree with some rule in the class{

w 7→ I(Q̄b(w) > 0)I(w 6∈ B(P )) + b(w)I(w ∈ B(P )) : b
}
, (2.1)

where b :W → {0, 1} is some function. Consider now the following uniquely defined optimal
rule:

d∗(P )(W ) , I(Q̄b(W ) > 0).

We will let d∗0 = d∗(P0). We have Ψ(P ) = Ψd∗(P )(P ), but now d∗(P ) is uniquely defined for
all W . More generally, d∗(P ) represents a uniquely defined optimal rule. Other formulations
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of the optimal rule can be obtained by changing the behavior of the rule B0. Our goal is
to construct root-n rate CIs for Ψ(P0) that maintain nominal coverage, even at exceptional
laws. At non-exceptional laws we would like these CIs to belong to and be asymptotically
efficient among the class of regular asymptotially linear (RAL) estimators.

2.3 Conditions for pathwise differentiability of the

optimal value parameter

In this section we give a necessary and sufficient condition for the pathwise differentiability of
the optimal value parameter Ψ. When it exists, the pathwise derivative in a nonparametric
model can be written as an inner product between an almost surely unique mean zero, square
integrable function known as the canonical gradient and a score function. The canonical
gradient is a key object in nonparametric statistics. We remind the reader that an estimator
Φ̂ is asymptotically linear for a parameter mapping Φ at P0 with influence curve IC0 if

Φ̂(Pn)− Φ(P0) =
1

n

n∑
i=1

IC0(Oi) + oP0(n
−1/2),

where E0[IC0(O)] = 0. The pathwise derivative is important because, when Φ is pathwise
differentiable in a nonparametric model, any regular estimator Φ̂ is asymptotically linear
with influence curve IC0(Oi) if and only if IC0 is the canonical gradient (Bickel et al., 1993).
We discuss negative results for non-pathwise differentiable parameters and formally define
“regular estimator” later in this section.

The pathwise derivative of Ψ at P0 can be defined as follows. Define paths {Pε : ε ∈
R} ⊂ M that go through P0 at ε = 0, i.e. Pε=0 = P0. In particular, these paths are given by

dQW,ε = (1 + εSW (W ))dQW,0,

where E0[SW (W )] = 0 and sup
w
|SW (w)| <∞;

dQY,ε(Y |A,W ) = (1 + εSY (Y |A,W ))dQY,0(Y |A,W ),

where E0[SY |A,W ] = 0 and sup
w,a,y
|SY (y|a, w)| <∞. (2.2)

Above QW,0 and QY,0 are respectively the marginal distribution of W and the conditional
distribution of Y given A,W under P0. The parameter Ψ is not sensitive to fluctuations of
g0(a|w) = Pr0(a|w), and thus we do not need to fluctuate this portion of the likelihood. The
parameter Ψ is called pathwise differentiable at P0 if

d

dε
Ψ(Pε)

∣∣∣∣
ε=0

=

∫
D∗(P0)(o)(SW (w) + SY |A,W (y|a, w))dP0(o)

for some P0 mean zero, square integrable function D∗(P0) with E0[D∗(P0)(O)|A,W ] almost
surely equal to E0[D∗(P0)(O)|W ]. We refer the reader to Bickel et al. (1993) for a more
general exposition of pathwise differentiability.
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In van der Laan and Luedtke (2014b), we showed that Ψ is pathwise differentiable at
P0 with canonical gradient D(d∗0, P0) if P0 is a non-exceptional law, i.e. Pr0(W 6∈ B0) = 1.
Exceptional laws were shown to present problems for estimation of optimal rules indexed
by a finite dimensional parameter by Robins (2004), and it was observed by Robins and
Rotnitzky (2014) that these laws can also cause problems for unrestricted optimal rules.
Here we show that mean outcome under the optimal rule is pathwise differentiable under a
slightly more general condition than requiring a non-exceptional law, namely that

Pr0

{
w ∈ W : w 6∈ B0 or max

a∈{0,1}
σ2

0(a, w) = 0

}
= 1, (2.3)

where σ0(a, w) ,
√

VarP0(Y |A = a,W = w). The upcoming theorem also gives the converse
result, i.e. the mean outcome under the optimal rule is not pathwise differentiable if the
above condition does not hold.

Theorem 1. Assume Pr0(0 < g0(1|W ) < 1) = 1, Pr0(|Y | < M) = 1 for some M < ∞,
and VarP0(D(d∗0, P0)(O)) < ∞. The parameter Ψ(P0) is pathwise differentiable if and only
if (2.3) holds. If Ψ is pathwise differentiable at P0, then Ψ has canonical gradient D(d∗0, P0)
at P0.

In the proof of the theorem we construct fluctuations SW and SY such that

lim
ε↑0

Ψ(Pε)−Ψ(P0)

ε
6= lim

ε↓0

Ψ(Pε)−Ψ(P0)

ε
(2.4)

when (2.3) does not hold. It then follows that Ψ(P0) is not pathwise differentiable. The left-
and right-hand sides above are referred to as one-sided directional derivatives by Hirano and
Porter (2012).

This condition for the mean outcome differs slightly from that implied for unrestricted
rules in Robins and Rotnitzky (2014) in that we still have pathwise differentiability when the
Q̄b,0 is zero in some strata but the conditional variance of the outcome given covariates and
treatment is also zero in all of those strata. This makes sense, given that in this case the blip
function could be estimated perfectly in such strata in any finite sample with treated and
untreated individuals observed in those strata. Though we do not expect this difference to
matter for most data generating distributions encountered in practice, there are cases where
it may be relevant. For example, if no one in a certain stratum is susceptible to a disease
regardless of treatment status, and researchers are unaware of this a priori so that simply
excluding this stratum from the target population is not an option, then the treatment effect
and conditional variance are both zero in this stratum.

In general, however, we expect that the mean outcome under the optimal rule will not be
pathwise differentiable under exceptional laws encountered in practice. For this reason, we
often refer to “exceptional laws” rather than “laws which do not satisfy (2.3)”. We do this
because the term “exceptional law” is well-established in the literature, and also because we
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believe that there is likely little distinction between “exceptional law” and “laws which do
not satisfy (2.3)” for many problems of interest.

For the definitions of regularity and local unbiasedness we let Pε be as in (2.2), with
g0 also fluctuated. That is, we let dPε = dQY,ε × gε × dQW,ε, where gε(A|W ) = (1 +
εSA(A|W ))g0(A|W ) with E0[SA(A|W )|W ] = 0 and supa,w |SA(a|w)| < ∞. The estimator

Φ̂ of Φ(P0) is called regular if the asymptotic distribution of
√
n(Φ̂(Pn) − Φ(P0)) is not

sensitive to small fluctuations in P0. That is, the limiting distribution of
√
n(Φ̂(Pn,ε=1/

√
n)−

Φ(Pε=1/
√
n)) does not depend on SW , SA, or SY , where Pn,ε=1/

√
n is the empirical distribution

O1, ..., On drawn i.i.d. from Pε=1/
√
n. The estimator Φ̂ is called locally unbiased if the limiting

distribution of
√
n(Φ̂(Pn,ε=1/

√
n) − Φ(Pε=1/

√
n)) has mean zero for all fluctuations SW , SA,

and SY , and is called asymptotically unbiased (at P0) if the bias of Φ̂(Pn) for the parameter
Φ(P0) is oP0(n

−1/2) at P0.
The non-regularity of a statistical inference problem does not typically imply the nonex-

istence of asymptotically unbiased estimators (see Example 4 of Liu and Brown, 1993 and
the discussion thereof in Chen, 2004), but rather the nonexistence of locally asymptotically
unbiased estimators whenever (2.4) holds for some fluctuation (Hirano and Porter, 2012). It
is thus not surprising that we are able to find an estimator that is asymptotically unbiased at
a fixed (possibly exceptional) law under mild assumptions. Hirano and Porter also show that
there does not exist a regular estimator of the optimal value at any law for which (2.4) holds
for some fluctuation. That is, no regular estimators of Ψ(P0) exist at laws which satisfy the
conditions of Theorem 1 but do not satisfy (2.3), i.e. one must accept the non-regularity of
their estimator when the data is generated from such a law. Note that this does not rule out
the development of locally consistent confidence bounds similar to those presented by Laber
and Murphy (2011) and Laber et al. (2014b), though such approaches can be conservative
when the estimation problem is non-regular.

In this chapter we present an estimator Ψ̂ for which Γn
√
n(Ψ̂(Pn)−Ψ(P0)) converges in

distribution to a standard normal distribution for a random standardization term Γn under
reasonable conditions. Our estimator does not require any complicated tuning parameters,
and thus allows one to easily develop root-n rate CIs for the optimal value. We show that
our estimator is RAL and efficient at laws which satisfy (2.3) under conditions.

2.4 Inference at exceptional laws

The challenge

Before presenting our estimator, we discuss the challenge of estimating the optimal value
at exceptional laws. Suppose dn is an estimate of d∗0 and Ψ̂dn(Pn) is an estimate of Ψ(P0)
relying on the full data set. In van der Laan and Luedtke (2014a) we presented a targeted
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minimum loss-based estimator (TMLE) Ψ̂dn(Pn) which satisfies

Ψ̂dn(Pn)−Ψ(P0) = (Pn − P0)D(dn, P
∗
n) + Ψdn(P0)−Ψ(P0)︸ ︷︷ ︸

oP0 (n−1/2) under conditions

+ oP0(n
−1/2),

where we use the notation Pf = EP [f(O)] for any distribution P and the second oP0(n
−1/2)

term is a remainder from a first-order expansion of Ψ. The term Ψdn(P0) − Ψ(P0) being
oP0(n

−1/2) relies on the optimal rule being estimated well in terms of value and will often
prove to be a reasonable condition, even at exceptional laws (see Theorem 5 in Section 2.7).
Here P ∗n is an estimate of the components of P0 needed to estimate D(dn, P0). To show
asymptotic linearity, one might try to replace D(dn, P

∗
n) with a term that does not rely on

the sample:

(Pn − P0)D(dn, P
∗
n) =(Pn − P0)D(d∗0, P0) + (Pn − P0)(D(dn, P

∗
n)−D(d∗0, P0))︸ ︷︷ ︸

empirical process

.

If D(dn, P
∗
n) belongs to a Donsker class and converges to D(d∗0, P0) in L2(P0), then the

empirical process term is oP0(n
−1/2) and

√
n(Ψ̂dn(Pn)− Ψ(P0)) converges in distribution to

a normal random variable with mean zero and variance VarP0(D(d∗0, P0)) (van der Vaart
and Wellner, 1996). Note that D(dn, P

∗
n) being consistent for D(d∗0, P0) will typically rely

on dn being consistent for the fixed d∗0 in L2(P0), which we emphasize is not implied by
Ψdn(P0)−Ψ(P0) = oP0(n

−1/2). Zhang et al. (2012b) make this assumption in the regularity
conditions in their Web Appendix A when they consider an analogous empirical process term
in deriving the standard error of an estimate of the optimal value in a restricted class. More
specifically, Zhang et al. assume a non-exceptional law and consistent estimation of a fixed
optimal rule. Van der Laan and Luedtke (2014a) also make such an assumption. If P0 is
an exceptional law, then we likely do not expect dn to be consistent for any fixed (non-data
dependent) function. Rather, we expect dn to fluctuate randomly on the set B0, even as the
sample size grows to infinity. In this case the empirical process term considered above is not
expected to behave as oP0(n

−1/2).
Accepting that our estimates of the optimal rule may not stabilize as sample size grows,

we consider an estimation strategy that allows dn to remain random even as n→∞.

A thought experiment

First we give an erroneous estimation strategy which contains the main idea of the approach
but is not correct in its current form. A modification is given in the next section. For
simplicity, we will assume that one knows vn , VarP0(D(dn, P0)) given an estimate dn and,
for simplicity, that vn is almost surely bounded away from zero. Under reasonable conditions,

v−1/2
n

(
Ψ̂dn(Pn)−Ψ(P0)

)
= (Pn − P0)v−1/2

n D(dn, P
∗
n) + oP0(n

−1/2).
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The empirical process on the right is difficult to handle because dn and vn are random
quantities that likely will not stabilize to a fixed limit at exceptional laws.

As a thought experiment, suppose that we could treat {v−1/2
n D(dn, P

∗
n) : n} as a deter-

ministic sequence, where this sequence does not necessarily stabilize as sample size grows.
In this case the Lindeberg-Feller central limit theorem (CLT) for triangular arrays (see, e.g.,
Athreya and Lahiri, 2006) would allow us to show that the leading term on the right-hand
side converges to a standard normal random variable. This result relies on inverse weighting
by
√
vn so the variance of the terms in the sequence stabilizes to one as sample size gets

large.
Of course we cannot treat these random quantities as deterministic. In the next section

we will use the general trick of inverse weighting by the standard deviation of the terms
over which we are taking an empirical mean, but we will account for the dependence of the
estimated rule dn on the data by inducing a martingale structure that allows us to treat
a sequence of estimates of the optimal rule as known (conditional on the past). We can
then apply a martingale CLT for triangular arrays to obtain a limiting distribution for our
estimator.

2.5 Estimation of and inference for the optimal value

In this section we present a modified one-step estimator Ψ̂ of the optimal value. This esti-
mator relies on estimates of the treatment mechanism g0, the stratum-specific outcome Q̄0,
and the optimal rule d∗0. We first present our estimator, and then present an asymptotically
valid two-sided CI for the optimal value under conditions. Next we give conditions under
which our estimator is RAL and efficient, and finally we present a (potentially conservative)
asymptotically valid one-sided CI which lower bounds the mean outcome under the unknown
optimal treatment rule. The one-sided CI uses the same lower bound from the two-sided
CI, but does not require a condition about the rate at which the value of the optimal rule
converges to the optimal value, or even that the value of the estimated rule is consistent for
the optimal value.

The estimators in this section can be extended to a martingale-based TMLE for Ψ(P0).
Because the primary purpose of this chapter is to deal with inference at exceptional laws, we
will only present an online one-step estimator and leave the presentation of such a TMLE
to future work.

Estimator of the optimal value

In this section we present our estimator of the optimal value. Our procedure first estimates
the needed features g0, Q̄0, and d∗0 of the likelihood based on a small chunk of data, and
then evaluates a one-step estimator with these nuisance function values on the next chunk
of the data. It then estimates the features on the first two chunks of data, and evaluates
the one-step estimator on the next chunk of data. This procedure iterates until we have
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a sequence of estimates of the optimal value. We then output a weighted average of these
chunk-specific estimates as our final estimate of the optimal value. While the first chunk
needs to be large enough to estimate the desired nuisance parameters, i.e. large enough to
estimate the features, all subsequent chunks can be of arbitrary size (as small as a single
observation).

We now formally describe our procedure. Define

D̃(d, Q̄, g)(o) ,
I(a = d(w))

g(a|w)
(Y − Q̄(a, w)) + Q̄(d(w), w).

Let {`n} be some sequence of nonnegative integers representing the smallest sample on which
the optimal rule is learned. For each j = 1, ..., n, let Pn,j represent the empirical distribution
of the observations (O1, O2, ..., Oj). Let gn,j, Q̄n,j, and dn,j respectively represent estimates
of the g0, Q̄0, and d∗0 based on (some subset of) the observations (O1, ..., Oj−1) for all j > `n.
We subscript each of these estimates by both n and j because the subsets on which these
estimates are obtained may depend on sample size. We give an example of a situation where
this would be desirable in Section 2.6.

Define

σ̃2
0,n,j , VarP0

(
D̃(dn,j, Q̄n,j, gn,j)(O)

∣∣∣O1, ..., Oj−1

)
.

Let σ̃2
n,j represent an estimate of σ̃2

0,n,j based on (some subset of) the observations O1 through
Oj−1. Note that we omit the dependence of σ̃n,j and σ̃0,n,j on dn,j, Q̄n,j, and gn,j in the
notation. Our results apply to any sequence of estimates σ̃2

n,j which satisfies Conditions C1)
through C5), which are stated later in this section. Also define

Γn ,
1

n− `n

n∑
j=`n+1

σ̃−1
n,j.

Our estimate Ψ̂(Pn) of Ψ(P0) is given by

Ψ̂(Pn) , Γ−1
n

1

n− `n

n∑
j=`n+1

σ̃−1
n,jD̃n,j(Oj) =

∑n
j=`n+1 σ̃

−1
n,jD̃n,j(Oj)∑n

j=`n+1 σ̃
−1
n,j

, (2.5)

where D̃n,j , D̃(dn,j, Q̄n,j, gn,j). We note that the Γ−1
n standardization is used to account

for the term-wise inverse weighting so that Ψ̂(Pn) estimates Ψ(P0) = E0[D̃(d∗0, Q̄0, g0)]. The
above looks a lot like a standard augmented inverse probability weighted (AIPW) estimator,
but with d∗0 estimated on chunks of data increasing in size and with each term in the sum
given weight proportional to an estimate of the conditional variance of that term. Our
estimator constitutes a minor modification of the online one-step estimator presented in
van der Laan and Lendle (2014). In particular, each term in the sum is inverse weighted
by an estimate of the standard deviation of D̃n,j. For ease of reference we will refer to the
estimator above as an online one-step estimator.
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This estimation scheme differs from sample split estimation, where features are estimated
on half of the data and then a one-step estimator is evaluated on the remaining half of the
data. While one can show that such estimators achieve valid coverage using Wald-type CIs,
these CIs will generally be approximately

√
2 times larger than the CIs of our proposed

procedure (see the next section) because the one-step estimator is only applied to half of the
data. Alternatively, one could try averaging two such estimators, where the training and the
one-step sample are swapped between the two estimators. Such a procedure will fail to yield
valid Wald-type CIs due to the non-regularity of the inference problem: one cannot replace
the optimal rule estimates with their limits because such limits will not generally exist, and
thus the estimator averages over terms with a complicated dependence structure.

Two-sided confidence interval for the optimal value

Define the remainder terms

R1n ,
1

n− `n

n∑
j=`n+1

σ̃−1
n,jE0

[(
1− g0(dn,j(W )|W )

gn,j(dn,j(W )|W )

)
×
(
Q̄n,j(dn,j(W ),W )− Q̄0(dn,j(W ),W )

)]
,

R2n ,
1

n− `n

n∑
j=`n+1

Ψdn,j(P0)−Ψ(P0)

σ̃n,j
.

The upcoming theorem relies on the following assumptions:

C1) n− `n diverges to infinity as n diverges to infinity.

C2) Lindeberg-like condition: for all ε > 0,

1

n− `n

n∑
j=`n+1

E0

[ (D̃n,j(O)

σ̃n,j

)2

Tn,j(O)

∣∣∣∣∣∣O1, ..., Oj−1

]
= oP0(1),

where Tn,j(O) , I
(
|D̃n,j(O)|
σ̃n,j

> ε
√
n− `n

)
.

C3) 1
n−`n

∑n
j=`n+1

σ̃2
0,n,j

σ̃2
n,j

converges to 1 in probability.

C4) R1n = oP0(n
−1/2).

C5) R2n = oP0(n
−1/2).

The assumptions are discussed in Section 2.7. We note that all of our results also hold with
R1n and R2n behaving as oP0(1/

√
n− `n), though we do not expect this observation to be of

use in practice as we recommend choosing `n so that n− `n increases at the same rate as n.
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Theorem 2. Under Conditions C1) through C5), we have that

Γn
√
n− `n

(
Ψ̂(Pn)−Ψ(P0)

)
 N(0, 1),

where we use “ ” to denote convergence in distribution as the sample size converges to
infinity. It follows that an asymptotically valid 1− α CI for Ψ(P0) is given by

Ψ̂(Pn)± z1−α/2
Γ−1
n√

n− `n
,

where z1−α/2 denotes the 1− α/2 quantile of a standard normal random variable.

We have shown that, under very general conditions, the above CI yields an asymptotically
valid 1− α CI for Ψ(P0). We refer the reader to Section 2.7 for a detailed discussion of the
conditions of the theorem. We note that our estimator is asymptotically unbiased, i.e. has
bias of the order oP0(n

−1/2), provided that Γn = OP0(1) and n − `n grows at the same rate
as n.

Interested readers can consult the proof of Theorem 2 in Section 2.11 for a better under-
standing of why we proposed the particular estimator given in Section 2.5.

Conditions for asymptotic efficiency

We will now show that, if P0 is a non-exceptional law and dn,j has a fixed optimal rule limit
d0, then our online estimator is RAL for Ψ(P0). The upcoming corollary makes use of the
following consistency conditions for some fixed rule d0 which falls in the class of optimal
rules given in (2.1):

1

n− `n

n∑
j=`n+1

E0

[
(dn,j(W )− d0(W ))2

∣∣O1, ..., Oj−1

]
= oP0(1) (2.6)

1

n− `n

n∑
j=`n+1

E0

[(
Q̄n,j(d0(W ),W )− Q̄0(d0(W ),W )

)2
∣∣∣O1, ..., Oj−1

]
= oP0(1) (2.7)

1

n− `n

n∑
j=`n+1

E0

[
(gn,j(d0(W )|W )− g0(d0(W )|W ))2

∣∣O1, ..., Oj−1

]
= oP0(1). (2.8)

It also makes use of the following conditions, which are, respectively, slightly stronger than
Conditions C1) and C3):

C1’) `n = o(n).

C3’) 1
n−`n

∑n
j=`n+1

∣∣∣ σ̃2
0,n,j

σ̃2
n,j
− 1
∣∣∣→ 0 in probability.
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Corollary 1. Suppose that Conditions C1’), C2), C3’), C4), and C5) hold. Also suppose
that Pr0(δ < g0(1|W ) < 1− δ) = 1 for some δ > 0, the estimates gn,j are bounded away from
zero with probability 1, Y is bounded, the estimates Q̄n,j are uniformly bounded, `n = o(n),
and that, for some fixed optimal rule d0, (2.6), (2.7), and (2.8) hold. Finally, assume that
VarP0(D̃(d0, Q̄0, g0)) > 0 and that, for some δ0 > 0, we have that

Pr0

(
inf
j,n
σ̃2
n,j > δ0

)
= 1,

where the infimum is over natural number pairs (j, n) for which `n < j ≤ n. Then we have
that

Γ−1
n → VarP0(D̃(d0, Q̄0, g0)) in probability as n→∞. (2.9)

Additionally,

Ψ̂(Pn)−Ψ(P0) =
1

n

n∑
i=1

D(d0, P0) + oP0(1/
√
n). (2.10)

That is, Ψ̂(Pn) is asymptotically linear with influence curve D(d0, P0). Under the condi-
tions of this corollary, it follows that P0 satisfies (2.3) if and only if Ψ̂(Pn) is RAL and
asymptotically efficient among all such RAL estimators.

We note that (2.9) combined with C1’) implies that the CI given in Theorem 2 asymp-
totically has the same width (up to an oP0(n

−1/2) term) as the CI which treats (2.10) and
D(d0, P0) as known and establishes a typical Wald-type CI about Ψ̂(Pn).

The empirical averages over j in (2.6), (2.7), and (2.8) can easily be dealt with using
Lemma 1, presented in Section 2.7. Essentially we have required that dn,j, Q̄n,j, and gn,j
are consistent for d0, Q̄0, and g0 as n and j get large, where d0 is some fixed optimal rule.
One would expect such a fixed limiting rule d0 to exist at a non-exceptional law for which
the optimal rule is (almost surely) unique. If g0 is known then we do not need Q̄n,j to be
consistent for Q̄0 to get asymptotic linearity, but rather that Q̄n,j converges to some possibly
misspecified fixed limit Q̄.

Lower bound for the optimal value

It would likely be useful to have a conservative lower bound on the optimal value in practice.
If policymakers were to implement an optimal individualized treatment rule whenever the
overall benefit is greater than some fixed threshold, i.e. Ψ(P0) > v for some fixed v, then
a one-sided CI for Ψ(P0) would help facilitate the decision to implement an individualized
treatment strategy in the population.

The upcoming theorem shows that the lower bound from the 1−2α CI yields a (potentially
conservative) asymptotic 1− α CI for the optimal value. If d∗0 is estimated well in the sense
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of Condition C5), then the asymptotic coverage is exact. Define

LBn(α) , Ψ̂(Pn)− z1−α
Γ−1
n√

n− `n
.

Theorem 3. Under Conditions C1) through C4), we have that

lim inf
n→∞

Pr0 (Ψ(P0) > LBn(α)) ≥ 1− α.

If Condition C5) also holds, then

lim
n→∞

Pr0 (Ψ(P0) > LBn(α)) = 1− α.

The above condition should not be surprising, as we base our CI for Ψ(P0) on a weighted
combination of estimates of Ψdn,j(P0) for j < n. Because Ψ(P0) ≥ Ψdn,j(P0) for all such j,
we would expect that the lower bound of the 1−α CI given in the previous section provides
a valid 1− α/2 one-sided CI for Ψ(P0). Indeed this is precisely what we see in the proof of
the above theorem.

2.6 Computationally efficient estimation schemes

Computing Ψ̂(Pn) may initially seem computationally demanding. In this section we discuss
two estimation schemes which yield computationally simple routines.

Computing the features on large chunks of the data

One can compute the estimates of Q̄0, g0, and d∗0 far fewer than n − `n times. For each j,
the estimates Q̄n,j, gn,j, and dn,j may rely on any subset of the observations O1, ..., Oj−1.
Thus one can compute these estimators on S increasing subsets of the data, where the first
subset consists of observations O1, ..., O`n and each of the S − 1 remaining samples adds a
1/S proportion of the remaining n − `n observations. Note that this scheme makes use of
the fact that, for fixed j, the feature estimates, indexed by n and j, e.g. dn,j, may rely on
different subsets of observations O1, ..., Oj−1 for different sample sizes n.

Online learning of the optimal value

Our estimator was inspired by online estimators which can operate on large data sets that
will not fit into memory. These estimators use online prediction and regression algorithms
which update the intial fit based on previously observed estimates using new observations
as they are read into memory. Online estimators of pathwise differentiable parameters were
introduced in van der Laan and Lendle (2014). Such estimation procedures often require
estimates of features of the likelihood, which can be obtained using modern online regression
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and classification approaches (see, e.g., Zhang, 2004; Langford et al., 2009; Luts et al., 2014).
Our estimator constitutes a slight modification of the one-step online estimator presented by
van der Laan and Lendle (2014), and thus all discussion of computational efficiency given in
that chapter applies to our case.

For our estimator, one could use online estimators of Q̄0, g0, and d∗0, and then update
these estimators as the index j in the sum in (2.5) increases. Calculating the standard error
estimate σ̃n,j will typically require access to an increasing subset of the past observations,
i.e. as sample size grows one may need to hold a growing number of observations in memory.
If one uses a sample standard deviation to estimate σ̃0,n,j based on subset of observations
O1, ..., Oj−1, the results we present in Section 2.7 will indicate that one really only needs that
the number of points on which σ̃0,n,j is estimated grows with j rather than at the same rate
as j. This suggest that, if computation time or system memory is a concern for calculating
σ̃n,j, then one could calculate σ̃n,j based on some o(j) subset of observations O1, ..., Oj−1.

2.7 Discussion of the conditions of Theorem 2

For ease of notation we will assume that, for all j > `n, we do not modify our feature estimates
based on the first j−1 data points as the sample size grows. That is, for all sample sizes m,n
and all j ≤ min{m,n}, dn,j = dm,j, Q̄n,j = Q̄m,j, gn,j = gm,j, and σ̃n,j = σ̃m,j. One can easily
extend all of the discussion in this section to a more general case where, e.g., dn,j 6= dm,j for
n 6= m. This may be useful if the optimal rule is estimated in chunks of increasing size as
was discussed in Section 2.6. To make these object’s lack of dependence on n clear, in this
section we will denote dn,j, Q̄n,j, gn,j, σ̃n,j, and σ̃0,n,j as dj, Q̄j, gj, σ̃j and σ̃0,j. This will also
help make it clear when oP0 notation refers to behavior as j, rather than n, goes to infinity.

For our discussion we assume there exists a (possibly unknown) δ0 > 0 such that

Pr0

(
inf
j>`n

σ̃2
0,j > δ0

)
= 1, (2.11)

where the probability statement is over the i.i.d. draws O1, O2, ... . The above condition is
not necessary, but will make our discussion of the conditions more straightforward.

Discussion of Condition C1)

We cannot apply the martingale CLT in the proof of Theorem 2 if n − `n does not grow
with sample size. Essentially this condition requires that a non-negligible proportion of the
data is used to actually estimate the mean outcome under the optimal rule. One option is
to have n− `n grow at the same rate as n grows, which holds if e.g. `n = pn for some fixed
proportion p of the data. This allows our CIs to shrink at a root-n rate. One might prefer
to have `n = o(n) so that n−`n

n
converges to 1 as sample size grows. In this case we can

show that our estimator is asymptotically linear and efficient at non-exceptional laws under
conditions, as we did in Corollary 1.
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Discussion of Condition C2)

This is a standard condition that yields a martingale CLT for triangular arrays (Gaenssler
et al., 1978). The condition ensures that the variables which are being averaged have suffi-
ciently thin tails. While it is worth stating the condition in general, it is easy to verify that
the condition is implied by the following three more straightforward conditions:

• (2.11) holds.

• Y is a bounded random variable.

• There exists some δ > 0 such that Pr0(δ < gj(1|W ) < 1 − δ) = 1 with probability 1
for all j.

Indeed, under the latter two conditions |D̃n,j(O)| < C is almost surely bounded for some
C > 0, and thus (2.11) yields that |D̃n,j(O)σ̃−1

n,j| < Cδ−1
0 < ∞ with probability 1. For

all ε > 0, ε
√
n− `n > Cδ−1

0 for all n large enough under Condition C1). Thus Tn,j from
Condition C2) is equal to zero with probability 1 for all n large enough.

Discussion of Condition C3)

This is a rather weak condition given that σ̃0,j still treats dj as random. Thus this condition
does not require that dj stabilizes as j gets large. Suppose that

σ̃2
j − σ̃2

0,j = oP0(1) (2.12)

By (2.11) and the continuous mapping theorem, it follows that

σ̃2
0,j

σ̃2
j

− 1 = oP0(1). (2.13)

The following general lemma will be useful in establishing Conditions C3), C4), and C5).

Lemma 1. Suppose that Rj is some sequence of (finite) real-valued random variables such
that Rj = oP0(j

−β) for some β ∈ [0, 1), where we assume that each Rj is measurable with
respect to the sigma-algebra generated by (O1, ..., Oj). Then,

1

n

n∑
j=1

Rj = oP0(n
−β).

Applying the above lemma with β = 0 to (2.13) shows that Condition C3) holds provided
that (2.11) and (2.12) hold. We will use the above lemma with β = 1/2 when discussing
Conditions C4) and C5).
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It remains to show that we can construct a sequence of estimators such that (2.12) holds.
Suppose we estimate σ̃2

0,j with

σ̃2
j , max

δj, 1

j − 1

j−1∑
i=1

D̃2
j (Oi)−

(
1

j − 1

j−1∑
i=1

D̃j(Oi)

)2
 , (2.14)

where {δj} is a sequence that may rely on j and each D̃n,j = D̃j for all n ≥ j. We use δj
to ensure that σ̃−2

j is well-defined (and finite) for all j. If a lower bound δ0 on σ̃2
0,j is known

then one can take δj = δ0 for all j. Otherwise one can let {δj} be some sequence such that
δj ↓ 0 as j →∞.

Note that σ̃2
j is an empirical process because it involves sums over observations O1 through

Oj−1, and functions D̃j which were estimated on those same observations. The following
theorem gives sufficient conditions for (2.12), and thus Condition C3), to hold.

Theorem 4. Suppose (2.11) holds and that
{
D̃(d, Q̄, g) : d, Q̄, g

}
is a P0 Glivenko-Cantelli

(GC) class with an integrable envelope function, where d, Q̄, and g are allowed to vary over
the range of the estimators of d∗0, Q̄0, and g0. Let σ̃2

j be defined as in (2.14). Then we have
that σ̃2

j − σ̃2
0,j = oP0(1). It follows that (2.13) and Condition C3) are satisfied.

We thus only make the very mild assumption that our estimators of d∗0, Q̄0, and g0 belong
to GC classes. Note that this assumption is much milder than the typical Donsker condition
needed when attempting to establish the asymptotic normality of a (non-online) one-step
estimator. An easy sufficient condition for a class to have a finite envelope function is that
it is uniformly bounded, which occurs if the conditions discussed in Section 2.7 hold.

Discussion of Condition C4)

This condition is a weighted version of the typical double robust remainder appearing in the
analysis of the AIPW estimator. Suppose that

E0

[(
1− g0(dj(W )|W )

gj(dj(W )|W )

)(
Q̄j(dj(W ),W )− Q̄0(dj(W ),W )

)]
= oP0(j

−1/2). (2.15)

If g0 is known (as in an RCT without missingness) and one takes each gj = g0 then the above
ceases to be a condition as the left-hand side is always zero. We note that the only condition
on Q̄j appears in Condition C4), so that if R1n = 0 as in an RCT without missingness
then we do not require that Q̄j stabilizes as j grows. A typical AIPW estimator require
the estimate of Q̄0 to stabilize as sample size grows to get valid inference, but here we have
avoided this condition in the case where g0 is known by using the martingale structure and
inverse weighting by the standard error of each term in the definition of Ψ̂(Pn).
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More generally, Lemma 1 shows that Condition C4) holds if (2.13) and (2.15) hold and
Pr0(0 < gj(1|W ) < 1) = 1 with probability 1 for all j. One can apply the Cauchy-Schwarz
inequality and take the maximum over treatment assignments to see that (2.15) holds if

max

{
‖gj(a|W )− g0(a|W )‖2,P0

∥∥Q̄j(a,W )− Q̄0(a,W )
∥∥

2,P0

gj(a|W )
: a = 0, 1

}

is oP0(j
−1/2). If g0 is not known, the above shows that then (2.15) holds if g0 and Q̄0 are

estimated well.

Discussion of Condition C5)

This condition requires that we can estimate d∗0 well as sample size gets large. We now give
a theorem which will help us to establish Condition C5) under reasonable conditions. The
theorem assumes the following margin assumption: for some α > 0,

Pr0(0 < |Q̄b,0(W )| ≤ t) . tα ∀t > 0, (2.16)

where “.” denotes less than or equal to up to a nonnegative constant. This assumption
is a direct restatement of Assumption (MA) from Audibert and Tsybakov (2007) and was
considered earlier by Tsybakov (2004). Note that this theorem is similar in spirit to Lemma 1
in van der Laan and Luedtke (2014a), but relies on weaker, and we believe more interpretable,
assumptions.

Theorem 5. Suppose (2.16) holds for some α > 0 and that we have an estimate Q̄b,n of
Q̄b,0 based on a sample of size n. If

∥∥Q̄b,n − Q̄b,0

∥∥
2,P0

= oP0(1), then

|Ψdn(P0)−Ψd∗0
(P0)| .

∥∥Q̄b,n − Q̄b,0

∥∥2(1+α)/(2+α)

2,P0
,

where dn is the function w 7→ I(Q̄b,n(w) > 0). If
∥∥Q̄b,n − Q̄b,0

∥∥
∞,P0

= oP0(1), then

|Ψdn(P0)−Ψd∗0
(P0)|

≤
∥∥Q̄b,n − Q̄b,0

∥∥
∞,P0

Pr0

(
0 <

∣∣Q̄b,0(W )
∣∣ ≤ ∥∥Q̄b,n − Q̄b,0

∥∥
∞,P0

)
.
∥∥Q̄b,n − Q̄b,0

∥∥1+α

∞,P0
.

The above theorem thus shows that Ψdj(P0) − Ψd∗0
(P0) = oP0(j

−1/2) the distribution
of |Q̄b,0(W )| and our estimates of Q̄b,0 satisfy reasonable conditions. If additionally σ̃0,j is
estimated well in the sense of (2.13), then an application of Lemma 1 shows that Condition
C5) is satisfied.

The first part of the proof of Theorem 5 is essentially a restatement of Lemma 5.2 in
Audibert and Tsybakov (2007). Figure 2.1 shows various densities which satisfy (2.16) at
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α = 2
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α = 1
Needed L2 rate: oP0(n−3 8)
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Figure 2.1: Examples of three densities of |Q̄b,0(W )| whose corresponding cumulative distri-
bution functions satisfy (2.16). If the rate of convergence of Q̄b,n − Q̄b,0 to zero in L2(P0)
or L∞(P0) attains the rates indicated above indicated above, then Condition C5) will be
satisfied for the plug-in optimal rule estimate considered in Theorem 5.

different values of α, and also the slowest rate of convergence for the blip function estimates
for which Theorem 5 implies Condition C5). As illustrated in the figure, α > 1 implies that
pb,0(t)→ 0 as t→ 0. Given that we are interested in laws where Pr0(Q̄b,0(W ) = 0) > 0, it is
unclear how likely we are to have that α > 1 when W contains only continuous covariates.
One might, however, believe that the density is bounded near zero so that (2.16) is satisfied
at α = 1.

If
∥∥Q̄b,n − Q̄b,0

∥∥
∞,P0

= oP0(1) then the above theorem indicates an arbitrarily fast rate

for Ψdn(P0)− Ψd∗0
(P0) when there is a margin around zero, i.e. Pr0(0 < |Q̄b,0(W )| ≤ t) = 0

for some t > 0. In fact, Ψdn(P0)−Ψd∗0
(P0) = 0 with probability approaching 1 in this case.

Such a margin will exist when W is discrete.

2.8 Simulation methods

We ran four simulations. Simulation D-E is a point treatment case, where the treatment
may rely on a single categorical covariate W . Simulations C-NE and C-E are two different
point treatment simulations where the treatment may rely on a single continuous covariate
W . Simulation C-NE uses a non-exceptional law, while simulation C-E uses an exceptional
law.

Each simulation setting was run over 2000 Monte Carlo draws to evaluate the performance
of our new martingale-based method and a classical (and for exceptional laws incorrect) one-
step estimator with Wald-type CIs. Table 2.1 shows the combinations of sample size (n) and
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Simulation (n, `n)
D-E (1000, 100), (4000, 100)
C-NE, C-E (250, 25), (1000, 25), (4000, 100)

Table 2.1: Primary combinations of sample size (n) and initial chunk size (`n) considered in
each simulation. Different choices of `n were considered for C-NE and C-E to explore the
sensitivity of the estimator to the choice of `n.

initial chunk size (`n) considered for each estimator. All simulations were run in R (R Core
Team, 2014).

Simulation D-E: discrete W

Data

This simulation uses a discrete baseline covariate W with four levels, a dichotomous treat-
ment A, and a binary outcome Y . The data is generated by drawing i.i.d. samples from the
distribution with W ∼ Uniform{0, 1, 2, 3}, A|W ∼ Binomial(0.5 + 0.1W ), and Y |A,W ∼
Binomial (0.4 + 0.2I(A = 1,W = 0)). This is an exceptional law because Q̄b,0(w) = 0 for
w 6= 0. The optimal value is 0.45.

Estimation methods

For each j = `n+1, ..., n, we used the nonparametric maximum likelihood estimator generated
by the first j−1 samples to estimate P0 and the corresponding plug-in estimators to estimate
all of the needed features of the likelihood, including the optimal rule. We used the sample
standard deviation of D̃n,j(O1), ..., D̃n,j(Oj−1) to estimate σ̃0,j.

Simulations C-NE and C-E: continuous univariate W

Data

This simulation uses a single continuous baseline covariate W ∼ Uniform(−1, 1) and di-
chotomous treatment A with conditional distribution A|W ∼ Binomial(0.5 + 0.1W ). We
consider two distributions for the binary outcome Y . The first distribution (C-NE) is a
non-exceptional law with Y |A,W drawn from a binomial distribution with probability of
success Q̄n-e

0 (A,W ), where

Q̄n-e
0 (A,W )− 3

10
,


−W 3 +W 2 − 1

3
W + 1

27
, if A = 1 and W ≥ 0

3
4
W 3 +W 2 − 1

3
W + 1

27
, if A = 1 and W < 0

0, if A = 0.
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The optimal value of approximately 0.388 was estimated using 108 Monte Carlo draws.
The second distribution (C-E) is an exceptional law with Y |A,W drawn from a binomial
distribution with probability of success Q̄e

0(A,W ), where for W̃ , W + 5/6 we define

Q̄e
0(A,W )− 3

10
,


−W̃ 3 + W̃ 2 − 1

3
W̃ + 1

27
, if A = 1 and W < −1/2

−W 3 +W 2 − 1
3
W + 1

27
, if A = 1 and W > 1/3

0, otherwise.

The above distribution is an exceptional law because Q̄e
0(1, w) − Q̄e

0(0, w) = 0 whenever
w ∈

[
−1

2
, 1

3

]
. The optimal value of approximately 0.308 was estimated using 108 Monte

Carlo draws.

Estimation methods

To show the flexibility of our estimation procedure with respect to estimators of the optimal
rule, we estimated the blip functions using a Nadaraya-Watson estimator, where we behave
as though g0 is unknown when computing the kernel estimate. For the next simulation
setting we use the ensemble learner from Luedtke and van der Laan (2014a) that we suggest
using in practice. Here we estimated

Q̄h
b,n(w) ,

∑n
i=1 yiaiK

(
w−wi
h

)∑n
i=1 aiK

(
w−wi
h

) − ∑n
i=1 yi(1− ai)K

(
w−wi
h

)∑n
i=1(1− ai)K

(
w−wi
h

) ,

where K(u) , 3
4
(1 − u2)I(|u| ≤ 1) is the Epanechnikov kernel and h is the bandwidth.

Computing Q̄h
b,n for a given bandwidth is the only point in our simulations where we do not

treat g0 as known. For a candidate blip function estimate Q̄b, define the loss

LQ̄0,g0(Q̄b)(o) ,

([
2a− 1

g0(a|w)
(y − Q̄0(a, w)) + Q̄0(1, w)− Q̄0(0, w)

]
− Q̄b(w)

)2

.

To save computation time we behave as though Q̄0 and g0 are known when using the above
loss. We selected the bandwidth Hn using 10-fold cross-validation with the above loss func-
tion to select from the candidates h = (0.01, 0.02, ..., 0.20). We also behave as though Q̄0

and g0 are known when estimating each D̃n,j, so that the function D̃n,j only depends on
O1, ..., Oj−1 through the estimate of the optimal rule. This is mostly for convenience, as it
saves on computation time and our estimate of the optimal rule d∗0 will still not stabilize,
i.e. our optimal value estimators will still encounter the irregularity at exceptional laws.
Note that g0 is known in an RCT, and subtracting and adding Q̄0 in the definition of the
loss function will only serve to stabilize the variance of our cross-validated risk estimate. In
practice one could substitute an estimate of Q̄0 and expect similar results. We update our
estimates dn,j and σ̃0,n,j using the method discussed in Section 2.6 with S = n−`n

`n
.

To explore the sensitivity to the choice of `n we also considered (n, `n) pairs (1000, 100)
and (4000, 400), where these pairs are only considered where explicitly noted. To explore
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the sensitivity of our estimators to permutations of our data, we ran our estimator twice on
each Monte Carlo draw, with the indices of the observations permuted so that the online
estimator sees the data in a different order.

2.9 Simulation results

Online one-step compared to classical one-step

Figure 2.2 shows the coverage attained by the online and classical (non-online) one-step
estimates of the optimal value. The two-sided CIs resulting from the online estimator (nearly)
attains nominal coverage for all simulations considered, whereas the non-online estimator
only (nearly) attains nominal coverage for the non-exceptional law in C-NE. The one-sided
CIs from the online one-step estimator attain proper coverage for all simulation settings.
The one-sided CIs from the non-online one-step estimates do not (nearly) achieve nominal
coverage in any of the simulations considered because the rule is estimated on the same data
as the optimal value. Thus we expect to need a large sample size for the positive bias of the
non-online one-step to be negligible. In van der Laan and Luedtke (2014a) we avoided this
finite sample positive bias at non-exceptional laws by using a cross-validated TMLE for the
optimal value.

Figure 2.3 displays the squared bias and mean CI length across the 2000 Monte Carlo
draws. The online estimator consistently has lower squared bias across all of our simulations.
The online estimator was negatively biased in all of our simulations, whereas the non-online
estimator was positively biased in all of our simulations. This is not surprising: Theorem 3
already implies that the online estimator will generally be negatively biased in finite samples,
whereas the non-online estimator will generally be positively biased as we have discussed.

2.10 Discussion

We have accomplished two tasks in this chapter. The first was to establish conditions under
which we would expect that regular root-n rate inference is possible for the mean outcome
under the optimal rule. In particular, we completely characterize the pathwise differentia-
bility of the optimal value parameter. This characterization on the whole agrees with that
implied by Robins and Rotnitzky (2014), but differs in a minor fringe case where the condi-
tional variance of the outcome given covariates and treatment is zero. This fringe case may
be relevant if everyone in a stratum of baseline covariates is immune to a disease (regardless
of treatment status) but are still included in the study because experts are unaware of this
immunity a priori. In general, however, the two characterizations agree.

The remainder of our work shows that one can obtain an asymptotically unbiased estimate
of and a CI for the optimal value under reasonable conditions. This estimator uses a slight
modification of the online one-step estimator presented by van der Laan and Lendle (2014).
Under reasonable conditions, this estimator will be asymptotically efficient among all RAL
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Figure 2.2: Coverage of 95% two-sided and one-sided (lower) CIs. The online one-step
estimator achieves near-nominal coverage for all of the two-sided CIs and attains better
than nominal coverage for the one-sided CI. The classical one-step estimator only achieves
near-nominal coverage for C-NE. Error bars indicate 95% CIs to account for Monte Carlo
uncertainty.

estimators of the optimal value at non-exceptional laws in the nonparametric model where
the class of candidate treatment regimes is unrestricted. The main condition for the validity
of our CI is that the value of one’s estimate of the optimal rule converges to the optimal
value at a faster than root-n rate, which we show is often a reasonable assumption. The
lower bound in our CI is valid even if this condition does not hold.

We confirmed the validity of our approach using simulations. Our two-sided CIs attained
near-nominal coverage for all simulation settings considered, while our lower CIs attained
better than nominal coverage (they were conservative) for all simulation settings considered.
Our CIs were of a comparable length to those attained by the non-online one-step estimator.
The non-online one-step estimator only attained near-nominal coverage for the simulation
which used a non-exceptional data generating distribution, as would be predicted by theory.

There is still more work to be done in estimating CIs for the optimal rule. While we have
shown that the lower bound from our CI maintains nominal coverage under mild conditions,
the upper bound requires the additional assumption that the optimal rule is estimated at
a sufficiently fast rate. We observed in our simulations that the non-online estimate of the
optimal value had positive bias for all settings. This is to be expected if the optimal rule is
chosen to maximize the estimated value, and can easily be explained analytically under mild
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Figure 2.3: Squared bias and 95% two-sided CI lengths for the online and classical one-step
estimators, where the mean is taken across 2000 Monte-Carlo draws. The online estimator
has lower squared bias than the non-online estimator, while its mean CI length is only slightly
longer. Error bars indicate 95% CIs to account for Monte Carlo uncertainty.

assumptions. It may be worth replacing the upper bound UBn in our CI by something like
max{UBn, ψn(dn)}, where ψn(dn) is a non-online one-step estimate or TMLE of the optimal
value. One might expect that the upper bound ψn(dn) will dominate the maximum precisely
when the optimal rule is estimated poorly.

Our estimation strategy is not limited to unrestricted classes of optimal rules. One could
replace our unrestricted class with, e.g., a parametric working model for the blip function
and expect similar results. This is because the pathwise derivative of P 7→ EP0 [Yd(P )], which
treats the P0 in the expectation subscript as known, will typically be zero when d(P ) is an
optimal rule in some class and does not fall on the boundary of that class (with respect to
some metric). Such a result does not rely on d(P ) being a unique optimal rule. When the
pathwise derivative of P 7→ EP0 [Yd(P )] is zero, one can often prove something like Theorem
5, which shows that the value of the estimated rule converges to the optimal value at a faster
than root-n rate under conditions.

Here we considered the problem of developing a confidence interval for the value of an
unknown optimal treatment rule in a non-parametric model. Under reasonable conditions,
our proposed optimal value estimator provides an interpretable and statistically valid ap-
proach to gauging the effect of implementing the optimal individualized treatment regime in
the population.
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2.11 Proofs

Proofs of results from Section 2.3

Proof of Theorem 1. Let d′(P ) represent the function w 7→ I(Q̄b(P )(w) > 0). For any P , let
Ψ(P ) , EPEP [Y |A = d(P )(W ),W ]. Note that

Ψ(P )− EPEP [Y |A = 0,W ] = EP
[
d∗(P )(W )Q̄b(P )(W )

]
= EP

[
d′(P )(W )Q̄b(P )(W )

]
,

where we used the fact that d∗(P )(w) = d′(P )(w) on the set where Q̄b(P )(w) 6= 0. Let the
fluctuation submodel {Pε : ε} through P0 be as defined in Section 2.3 of the main text, where
we note that P0 = Pε=0. Telescoping shows that, for fixed ε,

Ψ(Pε)−Ψ(P0) =EPε
[(
I(Q̄b,ε > 0)− I(Q̄b,0 > 0)

)
Q̄b,ε

]
+ Ψd′0

(Pε)−Ψd′0
(P0). (2.17)

It is well known that Ψd(P ) , EPEP [Y |A = d(W ),W ] is pathwise differentiable for fixed d.
Thus dividing the second line above by ε and taking the limit as ε→ 0 yields the pathwise
derivative that treats the rule d′0 as known. For a given SY , the fluctuated Q̄b,0 at w ∈ W is
given by

Q̄b,ε(w) ,
∫
y (dQY,ε(y|A = 1,W = w)− dQY,ε(y|A = 0,W = w))

= Q̄b,0(w) + ε
(
E0 [Y SY (Y |1,W )|A = 1, w]− E0 [Y SY (Y |0,W )|A = 0, w]

)
, Q̄b,0(w) + εh(w), (2.18)

where we note that supw |h(w)| <∞ because Y and SY are uniformly bounded.
Pathwise differentiable if (2.3).

Suppose (2.3). Let B1 , {w : Q̄b,0(w) = 0} and B2 , {w : Q̄b,0(w) = 0,maxa σ0(a, w) = 0}.
Noting that B2 ⊆ B1 shows

EPε
[(
I(Q̄b,ε > 0)− I(Q̄b,0 > 0)

)
Q̄b,ε

]
=

∫
W\B1

(
I(Q̄b,ε > 0)− I(Q̄b,0 > 0)

)
Q̄b,εdQW,ε

+

∫
B1\B2

(
I(Q̄b,ε > 0)− I(Q̄b,0 > 0)

)
Q̄b,εdQW,ε

+

∫
B2

(
I(Q̄b,ε > 0)− I(Q̄b,0 > 0)

)
Q̄b,εdQW,ε. (2.19)

Because Q̄b,0 6= 0 on W\B2, the first term above is o(|ε|) by a slight generalization of
Lemma 2 in van der Laan and Luedtke (2014b) to finite measures (since Pr0(W\B2) may
be less than 1). The second term is zero because Pr0(B1\B2) = 0 by (2.3). Let f(a, w) ,
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E0 [Y SY (Y |1,W )|A = 1,W = w]. For the third term, note that, for (a, w) ∈ {0, 1} ×B2,∫
B2

(
I(Q̄b,ε > 0)− I(Q̄b,0 > 0)

)
Q̄b,εdQW,ε

= ε

∫
B2

(
I(Q̄b,ε > 0)− I(Q̄b,0 > 0)

)
(f(1, w)− f(0, w)) dQW,ε

Note that f(a, w) = CovP0(Y, SY (Y |A,W )|A = a,W = w) for a = 0, 1 because E[SY |A,W ]
is equal to zero, and thus f(a, w) = 0 for (a, w) ∈ {0, 1}×B2 since Y has conditional variance
0 given A = a and W = w. This shows that the third term in (2.19) is exactly zero. Hence,

lim
ε→0

1

ε
EPε

[(
I(Q̄b,ε > 0)− I(Q̄b,0 > 0)

)
Q̄b,ε

]
= 0.

Thus Ψ has canonical gradient D(d′0, P0), i.e. the same canonical gradient as the parameter
Ψd′0

. Recall that

D(d, P )(O) =
I(A = d(W ))

g(A|W )
(Y − Q̄(A,W )) + Q̄(d(W ),W )−Ψd(P ).

If (2.3) holds, then either i) Y = Q̄(A,W ) or ii) d∗0 = d′0 with P0 probability 1. Thus
D(d∗0, P0) = D(d′0, P0) almost surely if (2.3) holds. It follows that Ψ has canonical gradient
D(d∗0, P0).

Not pathwise differentiable if not (2.3).
We wish to construct a submodel so that (2.4) holds. Let SW (w) = 0 for all w. Without
loss of generality, suppose that

P0

(
Q̄b,0(W ) = 0, σ0(1,W ) > 0

)
> 0. (2.20)

Let

R(w) ,
Pr0(Y ≤ Q̄0(1,W )|A = 1,W = w)

Pr0(Y > Q̄0(1,W )|A = 1,W = w)
,

where we let R(w) =∞ when Pr0(Y > Q̄0(1,W )|A = 1,W = w) = 0. Define SY as follows:

SY (y|a, w) ,


min{1, R(w)}, if a = 1 and y > Q̄0(1, w)

−min{1, 1/R(w)}, if a = 1 and y ≤ Q̄0(1, w)

0, if a = 0.

Above we let min{1, 1/R(W )} = 0 when R(W ) = ∞ and min{1, 1/R(W )} = 1 when
R(W ) = 0. Note that supw,a,y |SY (y|a, w)| ≤ 1 and E[SY |A = a,W = w] = 0 for all a, w.
We define B+ and B− as follows:

B+ , B0 ∩ {w : h(w) > 0}
B− , B0 ∩ {w : h(w) < 0} ,
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where h is defined in (2.18). By (2.20), Pr0(Q̄b,0(W ) = 0, 0 < R(W ) < ∞) > 0, and hence
Pr0(B+) > 0 and Pr0(B−) > 0. Let m(w) , (I(Q̄b,ε(w) > 0) − I(Q̄b,0(w) > 0))Q̄b,ε(w).
Below we omit the dependence of m, QW,0, and h on w. The first term in (2.17) yields the
following limit for ε−1

∫
W mdQW,0 as ε ↓ 0:

lim
ε↓0

1

ε

∫
B+

mdQW,0 + lim
ε↓0

1

ε

∫
B−

mdQW,0 + lim
ε↓0

1

ε

∫
W\(B+∪B−)

mdQW,0

= lim
ε↓0

∫
B+

I(εh > 0)h dQW,0 + lim
ε↓0

∫
B−

I(εh > 0)h dQW,0 + lim
ε↓0

1

ε

∫
W\(B+∪B−)

mdQW,0

=

∫
B+

h dQW,0 > 0, (2.21)

where the integral over B− is equal to zero because the indicator in m is 0 for all ε > 0 and
the integral over W\(B+ ∪B−) is o(|ε|) because

lim
ε↓0

1

ε

∫
W\(B+∪B−)

mdQW,0 = lim
ε↓0

1

ε

∫
W\B0

mdQW,0 + lim
ε↓0

1

ε

∫
{w:h=0}∩B0

mdQW,0 = 0,

where we used that the first term is 0 by a slight generalization of Lemma 2 in van der
Laan and Luedtke (2014b) to finite measures and the second term is 0 because Q̄b,ε = 0 on
{w : h = 0} ∩ B0. The inequality in (2.21) is strict because Pr0(B+) > 0 and h > 0 on B+.
Similarly,

lim
ε↑0

1

ε

∫
mdQW,0 =

∫
B−

h dQW,0 < 0.

Contrasting the above with (2.21) shows that there exists a path about P0 which results in
a fluctuation h for which the limit of the first term in (2.17) divided by ε does not exist as
ε → 0. But then Ψ cannot be pathwise differentiable: one of the limits in the sum on the
right-hand side of (2.17) exists, so the limit on the left-hand side cannot exist. Specifically,
suppose cn has a limit as n → ∞ and an = bn + cn. If bn does not have a limit, then
an does not have a limit, since an having a limit implies that bn = an − cn has a limit,
contradiction.
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Proofs of results from Section 2.5

Proof of Theorem 2. We have that

Γn

(
Ψ̂(Pn)−Ψ(P0)

)
=

1

n− `n

n∑
j=`n+1

σ̃−1
n,j

(
D̃n,j(Oj)−Ψ(P0)

)
(2.22)

=
1

n− `n

n∑
j=`n+1

σ̃−1
n,j

([
D̃n,j(Oj)−Ψdn,j(P0)

]
+
[
Ψdn,j(P0)−Ψ(P0)

])
(2.23)

=
1

n− `n

n∑
j=`n+1

σ̃−1
n,j

(
D̃n,j(Oj)−Ψdn,j(P0)

)
+ oP0(n

−1/2) (2.24)

=
1

n− `n

n∑
j=`n+1

σ̃−1
n,j

(
D̃n,j(Oj)− E0

[
D̃n,j(Oj)|O1, ..., Oj−1

])
+R1n + oP0(n

−1/2) (2.25)

=
1

n− `n

n∑
j=`n+1

σ̃−1
n,j

(
D̃n,j(Oj)− E0

[
D̃n,j(Oj)|O1, ..., Oj−1

])
+ oP0(n

−1/2). (2.26)

Above (2.22) is a result of moving the Ψ(P0) into the summation in the defintion of Γn,
(2.23) adds zero to the line above, (2.24) follows by C5), (2.25) is a consequence of the fact

that Ψd(P0) = P0D̃(Q̄, g, d)−E0[(1− g0(d(W )|W )
g(d(W )|W )

)(Q̄(d(W ),W )− Q̄0(d(W ),W ))] for any fixed

Q̄, g, and d, and (2.26) follows by C4).
For j = 1, ..., n− `n, let

Mn,j ,
1√

n− `n

(
D̃(dn,j+`n)(Oj+`n)− E0

[
D̃(dn,j+`n)(Oj+`n)|O1, ..., Oj+`n

])
σ̃n,j+`n

.

Note that, for each n, {Mn,j : j = 1, ..., n− `n} is a discrete-time martingale with respect to
the filtration Fj, where each Fj is the sigma-field generated by O1, ..., Oj+`n . In particular,

we have that, for all j ≥ 1, E0[Mn,j|Fj−1] = 0. We also have that
∑n−`n

j=1 E0[M2
n,j|Fj−1] =

1
n−`n

∑n−`n
j=1

σ̃2
0,n,j+`n

σ̃2
n,j+`n

→ 1 by C3). Because the conditional Lindeberg condition in C2) holds,

the martingale CLT for triangular arrays (see, e.g., Theorem 2 in Gaenssler et al., 1978)
shows that

n−`n∑
j=1

Mn,j  N(0, 1). (2.27)

Plugging this into (2.26) gives that Γn
√
n− `n

(
Ψ̂(Pn)−Ψ(P0)

)
 N(0, 1). The asymptot-

ically valid 1− α CI is now constructed in the usual way.
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Proof of Corollary 1. In this proof we use “.” to denote less than or equal to up to a posi-
tive multiplicative constant. Let Fj represent the sigma-field generated by O1, . . . , Oj. Let
D̃0 , D̃(d0, Q̄0, g0) and s2

0 , VarP0(D̃(d0, Q̄0, g0)(O)). The proof can be broken into four
parts, which show that: (1) D̃n,j approximates D̃0 in mean-square; (2) Γ−1

n → s0 in prob-

ability; (3) Γn(Ψ̂(Pn) − Ψ(P0)) behaves like an empirical mean of the normalized efficient
influence curve; (4) Ψ̂(Pn) is RAL and efficient.

Part 1: D̃n,j approximates D̃0. Note that

1

n− `n

n∑
j=`n+1

E0

[(
D̃n,j − D̃0

)2
∣∣∣∣Fj−1

]

≤ 1

n− `n

n∑
j=`n+1

E0

[(
D̃(dn,j, Q̄n,j, gn,j)− D̃(d0, Q̄n,j, gn,j)

)2
∣∣∣∣Fj−1

]

+
1

n− `n

n∑
j=`n+1

E0

[(
D̃(d0, Q̄n,j, gn,j)− D̃(d0, Q̄n,j, g0)

)2
∣∣∣∣Fj−1

]

+
1

n− `n

n∑
j=`n+1

E0

[(
D̃(d0, Q̄n,j, g0)− D̃(d0, Q̄0, g0)

)2
∣∣∣∣Fj−1

]

.
1

n− `n

n∑
j=`n+1

E0

[
(dn,j(W )− d0(W ))2

∣∣Fj−1

]
+

1

n− `n

n∑
j=`n+1

E0

[
(gn,j(d(W )|W )− g0(d(W )|W ))2

∣∣Fj−1

]
+

1

n− `n

n∑
j=`n+1

E0

[(
Q̄n,j(d0(W ),W )− Q̄0(d0(W ),W )

)2
∣∣∣Fj−1

]
=oP0(1) (2.28)

where the constant in the second inequality relies on the bounds on Y , Q̄n,j, g0, and gn,j.

Part 2: Γ−1
n → s0 in probability. We have that

(Γn − s−1
0 )2 ≤

(
1

n− `n

n∑
j=`n+1

σ̃−1
n,js

−1
0 |σ̃n,j − s0|

)2

.

(
1

n− `n

n∑
j=`n+1

|σ̃n,j − s0|

)2

.
1

n− `n

n∑
j=`n+1

(σ̃n,j − s0)2, (2.29)

where the second inequality on the first line holds by the assumed bounds on σ̃n,j and the
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final inequality holds by Cauchy-Schwarz. Note that, for any positive real numbers x1, x2,

(x1 − x2)2 ≤ 2|x2
1 − x2

2|. (2.30)

By the above and Condition C3’) , we have that

1

n− `n

n∑
j=`n+1

(σ̃n,j − σ̃0,n,j)
2 .

1

n− `n

n∑
j=`n+1

∣∣σ̃2
n,j − σ̃2

0,n,j

∣∣
.

1

n− `n

n∑
j=`n+1

∣∣∣∣ σ̃2
0,n,j

σ̃2
n,j

− 1

∣∣∣∣ = oP0(1).

We also have that

1

n− `n

n∑
j=1

(σ̃0,n,j − s0)2 ≤ 2

n− `n

n∑
j=1

|σ̃2
0,n,j − s2

0|

=
2

n− `n

n∑
j=`n+1

∣∣∣∣E0

[
D̃2
n,j − D̃2

0|Fj−1

]
+ E0

[
D̃n,j|Fj−1

]2

− E0

[
D̃0|Fj−1

]2
∣∣∣∣

.
1

n− `n

n∑
j=`n+1

E0

[∣∣∣D̃n,j − D̃0

∣∣∣ |Fj−1

]

.

√√√√ 1

n− `n

n∑
j=`n+1

E0

[(
D̃n,j − D̃0

)2

|Fj−1

]
,

where: the first inequality holds by (2.30); the equality holds by the definition of conditional
variance; the second inequality holds by twice using that x2

1 − x2
2 = (x1 + x2)(x1 − x2), the

strong positivity assumption, and the bounds on Y and Q̄n,j; and the final inequality holds
by the Cauchy-Schwarz inequality applied to the expectations and the concavity of x 7→

√
x.

By (2.28), the upper bound above is oP0(1). By the triangle inequality and the previous two
indented equations,

1

n− `n

n∑
j=`n+1

(σ̃n,j − s0)2 ≤ 1

n− `n

n∑
j=`n+1

[
(σ̃n,j − σ̃0,n,j)

2 + (σ̃0,n,j − s0)2
]

= oP0(1). (2.31)

Plugging this into (2.29) shows that Γn = s−1
0 +oP0(1). By the continuous mapping theorem,

Γ−1
n = s0 + oP0(1).

Part 3: Γn(Ψ̂(Pn) − Ψ(P0)) behaves like an empirical mean. For each n > 1 and
j = `n + 1, ..., n, define

M ′
n,j ,

D̃n,j(Oj)− E0

[
D̃n,j(O)|Fj−1

]
σ̃n,j

−
D̃0(Oj)− E0

[
D̃0(O) | Fj−1

]
s0

.



CHAPTER 2. INFERENCE FOR THE OPTIMAL VALUE 34

We first show that 1√
n−`n

∑n
j=`n+1M

′
n,j → 0 in probability. Note that

V ′n,j ,VarP0

(
M ′

n,j

∣∣Fj−1

)
= E0

(D̃n,j(Oj)

σ̃n,j
− D̃0(Oj)

s0

)2
∣∣∣∣∣∣Fj−1


≤E0

(D̃n,j(Oj)

σ̃n,j
− D̃0(Oj)

σ̃n,j

)2
∣∣∣∣∣∣Fj−1

+ E0

(D̃0(Oj)

σ̃n,j
− D̃0(Oj)

s0

)2
∣∣∣∣∣∣Fj−1


.E0

[(
D̃n,j(Oj)− D̃0(Oj)

)2
∣∣∣∣Fj−1

]
+ E0

[
(σ̃n,j − s0)2

∣∣Fj−1

]
where the constants in the second inequality rely on the bounds on gn,j, g0, Q̄n,j, Y , σ̃0,n,j,
and s0. By (2.28) and (2.31),

1

n− `n

n∑
j=`n+1

V ′n,j = oP0(1). (2.32)

Fix ε, δ > 0 and let vε,δ , ε2

log(4/δ)
. We will show that there exists some N such that

Pr0

(
1√

n− `n

n∑
j=`n+1

M ′
n,j ≥ ε

)
< δ for all n ≥ N. (2.33)

Note that

Pr0

(
1√

n− `n

n∑
j=`n+1

M ′
n,j ≥ ε

)

= Pr0

(
1√

n− `n

n∑
j=`n+1

M ′
n,j ≥ ε,

1

n− `n

n∑
j=`n+1

V ′n,j ≤ vε,δ

)

+ Pr0

(
1√

n− `n

n∑
j=`n+1

M ′
n,j ≥ ε,

1

n− `n

n∑
j=`n+1

V ′n,j > vε,δ

)
.

We will bound the terms on the right separately. By our bounding assumptions, there exists
some m∗ ∈ (0,∞) such that Pr0(supj≤n |Mn,j| < m∗) = 1. By Bernstein’s inequality for
martingale difference sequences with bounded increments (see, e.g, Steiger, 1969; Theorem
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1.6 of Freedman, 1975), we have that

Pr0

(
1√

n− `n

n∑
j=`n+1

M ′
n,j ≥ ε,

1

n− `n

n∑
j=`n+1

V ′n,j ≤ vε,δ

)

≤ Pr0

(
1√

n− `n

ñ∑
j=`n+1

M ′
n,j ≥ ε,

1

n− `n

ñ∑
j=`n+1

V ′n,j ≤ vε,δ for some ñ ∈ {`n + 1, ..., n}

)

≤ Pr0

(
ñ∑

j=`n+1

M ′
n,j

m∗
≥ ε
√
n− `n
m∗

,

ñ∑
j=`n+1

V ′n,j
(m∗)2

≤ vε,δ(n− `n)

(m∗)2
for some ñ ∈ {`n + 1, ..., n}

)

≤ exp

(
− ε2

√
n− `n

2(m∗ε+ vε,δ
√
n− `n)

)
n→∞−→ δ/4.

It follows that there exists some N1 such that the upper bound above is less than or equal
to δ/2 for all n ≥ N1. We also have that

Pr0

(
1√

n− `n

n∑
j=`n+1

M ′
n,j ≥ ε,

1

n− `n

n∑
j=`n+1

V ′n,j > vε,δ

)
≤ Pr0

(
1

n− `n

n∑
j=`n+1

V ′n,j ≥ vε,δ

)
.

By (2.32), there exists some N2 so that the upper bound above is no greater than δ/4 for
all n ≥ N2. Combining the previous two sets of inequalities shows that (2.33) is satis-
fied for N , max{N1, N2}. Thus 1

n−`n

∑n
j=`n+1M

′
n,j = oP0(

√
n− `n). Because `n = o(n),

1
n−`n

∑n
j=`n+1M

′
n,j = oP0(n

−1/2). Combining this with (2.26) shows that

Γn

(
Ψ̂(Pn)−Ψ(P0)

)
=

1

n− `n

n∑
j=`n+1

D̃n,j(Oj)− E0[D̃n,j(O)|Fj−1]

σ̃n,j
+ oP0(n

−1/2)

= s−1
0

1

n− `n

n∑
j=`n+1

(
D̃0(Oj)− E0

[
D̃0(O)

])
+

1

n− `n

n∑
j=`n+1

M ′
n,j + oP0(n

−1/2)

= s−1
0

1

n− `n

n∑
j=`n+1

(
D̃0(Oj)− E0

[
D̃0(O)

])
+ oP0(n

−1/2)

= s−1
0

1

n

n∑
j=1

(
D̃0(Oj)− E0

[
D̃0(O)

])
+ oP0(n

−1/2),

where the final equality uses that `n = o(n) and that D̃0 is bounded.
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Part 4: Ψ̂(Pn) is RAL and efficient. Combining Parts 2 and 3 shows that

Ψ̂(Pn)−Ψ(P0) = Γ−1
n Γn

(
Ψ̂(Pn)−Ψ(P0)

)
= (s0 + oP0(1))Γn

(
Ψ̂(Pn)−Ψ(P0)

)
=

1

n

n∑
j=1

(
D̃0(Oj)− E0

[
D̃0(O)

])
+ oP0(n

−1/2).

Thus Ψ̂(Pn) is an asymptotically linear estimator of Ψ(P0) with influence curve D(d0, P0) =

D̃0(Oj)−E0

[
D̃0(O)

]
. If P0 satisfies (2.3) so that D(d0, P0) = D(d∗0, P0) almost surely, then

Theorem 1 shows that D(d∗0, P0) is the efficient influence curve of Ψ. By Proposition 1 of
Section 3.3 in Bickel et al. (1993), it follows that (2.3) holds if and only if Ψ̂(Pn) is a RAL
estimator and is asymptotically efficient among all RAL estimators.

Proof of Theorem 3. The below is an abbreviated version of (2.22) through (2.26) and (2.27),
with an added inequality which holds because R2n ≤ 0:√

n− `nΓn

(
Ψ̂(Pn)−Ψ(P0)

)
=

1√
n− `n

n∑
j=`n+1

σ̃−1
n,j

([
D̃n,j(Oj)−Ψdn,j(P0)

]
+
[
Ψdn,j(P0)−Ψ(P0)

])
≤ 1√

n− `n

n∑
j=`n+1

σ̃−1
n,j

(
D̃n,j(Oj)−Ψdn,j(P0)

)
=

1√
n− `n

n∑
j=`n+1

σ̃−1
n,j

(
D̃n,j(Oj)− E0

[
D̃n,j(Oj)|O1, ..., Oj−1

])
+ oP0(1),

which converges to a standard normal by the central limit theorem. Thus,

lim inf
n→∞

Pr0

(√
n− `nΓn

(
Ψ̂(Pn)−Ψ(P0)

)
≤ z1−α

)
≥ 1− α.

The first result follows by rearranging terms in the probability statement. The second result
is an immediate corollary of Theorem 2.

Proofs of results from Section 2.7

Proof of Lemma 1. By the almost sure representation theorem (see, e.g., Theorem 1.10.3
in Billingsley, 1999), there exists a probability space (Ω′,F ′, P ′) and a sequence of random

variables R′n : Ω′ → R such that nβR′n
d
=nβRn and nβR′n(ω′) → 0 for all ω′ ∈ Ω′. Fix ε > 0

and ω′ ∈ Ω′. There exists some N that, for all n ≥ N , nβ|R′n(ω′)| < (1−β)ε
2

. Also note that

1

n1−β

n∑
j=1

j−β ≤ 1

n1−β

∫ n

1

(j − 1)−βdj =
1

1− β
.
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Hence, for all n ≥ N ,

1

n1−β

n∑
j=1

|R′j(ω′)| =
1

n1−β

N−1∑
j=1

|R′j(ω′)|+
1

n1−β

n∑
j=N

1

jβ
jβ|R′j(ω′)|

<
1

n1−β

N−1∑
j=1

|R′j(ω′)|+
(1− β)ε

2n1−β

n∑
j=N

1

jβ

≤ 1

n1−β

N−1∑
j=1

|R′j(ω′)|+
ε

2
.

It follows that 1
n1−β

∑n
j=1 |R′j(ω′)| < ε for all n large enough, and thus that 1

n1−β

∑n
j=1 R

′
j(ω
′)

converges to 0 as n → ∞. Noting that 1
n1−β

∑n
j=1Rj

d
= 1

n1−β

∑n
j=1R

′
j(ω
′) for all n, we have

that 1
n

∑n
j=1Rj = oP0(n

−β).

Proof of Theorem 4. Let D̃1 , {D̃(d, Q̄, g) : d, Q̄, g}, D̃2 , {D̃2(d, Q̄, g) : d, Q̄, g}, and
j∗ , min{j : δj ≤ δ0}. The class D̃1 is P0 Glivenko-Cantelli (GC) by assumption, and D̃2 is
GC by Theorem 2 of van der Vaart and Wellner (2000). For all j ≥ j∗, we have that

∣∣σ̃2
j − σ̃2

0,j

∣∣ ≤ ∣∣∣∣∣ 1

j − 1

j−1∑
i=1

D̃2
j (Oi)− E0

[
D̃2
j (O)

∣∣∣O1, ..., Oj−1

]∣∣∣∣∣
+

∣∣∣∣∣∣
(

1

j − 1

j−1∑
k=1

D̃j(Ok)

)2

− E0

[
D̃j(O)

∣∣∣O1, ..., Oj−1

]2

∣∣∣∣∣∣ . (2.34)

The first term on the right converges to 0 in probability because D̃2 is GC. For the second
term, the mean value theorem shows that(

1

j − 1

j−1∑
k=1

D̃j(Ok)

)2

− E0

[
D̃j(O)

∣∣∣O1, ..., Oj−1

]2

= 2mj

(
1

j − 1

j−1∑
k=1

D̃j(Ok)− E0

[
D̃j(O)

∣∣∣O1, ..., Oj−1

])
︸ ︷︷ ︸

,‖Pj−P0‖D̃1

,

where mj is an intermediate value between the two squared values on the first line. Using
that D̃1 is a GC class, we have that mj converges to E0[D̃j(O)|O1, ..., Oj−1] in probability
and ‖Pj − P0‖D̃1

= oP0(1). Thus the above is oP0(1), and plugging this into (2.34) shows that
|σ̃2
j − σ̃2

0,j| = oP0(1). The continuous mapping theorem shows that (2.13) is also satisfied.
Combining this with Lemma 1 with β = 0 shows that Condition C3) is satisfied.
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Proof of Theorem 5. In this proof we will omit the dependence of d∗0, dn, Q̄b,0, and Q̄b,n on
W in the notation. Suppose that

∥∥Q̄b,n − Q̄b,0

∥∥
2,P0

= oP0(1). This part of the proof mimics

the proof of Lemma 5.2 in Audibert and Tsybakov (2007). For any t > 0,

|Ψdn(P0)−Ψd∗0
(P0)|

= E0[|Q̄b,0|I(d∗0 6= dn)]

= E0[|Q̄b,0|I(d∗0 6= dn)I(0 < |Q̄b,0| ≤ t)] + E0[|Q̄b,0|I(d∗0 6= dn)I(|Q̄b,0| > t)]

≤ E0[|Q̄b,n − Q̄b,0|I(0 < |Q̄b,0| ≤ t)] + E0[|Q̄b,n − Q̄b,0|I(|Q̄b,n − Q̄b,0| > t)]

≤
∥∥Q̄b,n − Q̄b,0

∥∥
2,P0

Pr0(0 < |Q̄b,0| ≤ t)1/2 +

∥∥Q̄b,n − Q̄b,0

∥∥2

2,P0

t

≤
∥∥Q̄b,n − Q̄b,0

∥∥
2,P0

C
1/2
0 tα/2 +

∥∥Q̄b,n − Q̄b,0

∥∥2

2,P0

t
,

where the first inequality holds because d∗0 6= dn implies that |Q̄b,n−Q̄b,0| > |Q̄b,0|, the second
inequality holds by the Cauchy-Schwarz and Markov inequalities, and the third inequality
holds by (2.16). The first result follows by optimizing over t to find that the upper bound is

minimized when t = C
∥∥Q̄b,n − Q̄b,0

∥∥2(1+α)/(2+α)

2,P0
for a constant C which depends on C0 and

α.
Now suppose that

∥∥Q̄b,n − Q̄b,0

∥∥
∞,P0

= oP0(1). Note that

|Ψdn(P0)−Ψd∗0
(P0)| = E0

∣∣I(dn 6= d∗0)Q̄b,0

∣∣
≤ E0

[
I(0 < |Q̄b,0| ≤ |Q̄b,n − Q̄b,0|)|Q̄b,0|

]
≤ E0

[
I
(

0 < |Q̄b,0| ≤
∥∥Q̄b,n − Q̄b,0

∥∥
∞,P0

)
|Q̄b,0|

]
≤
∥∥Q̄b,n − Q̄b,0

∥∥
∞,P0

Pr0

(
0 < |Q̄b,0| ≤

∥∥Q̄b,n − Q̄b,0

∥∥
∞,P0

)
.

By (2.16), |Ψdn(P0)−Ψd∗0
(P0)| .

∥∥Q̄b,n − Q̄b,0

∥∥1+α

∞,P0
.
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Chapter 3

Individualized Treatments Under
Limited Resources

3.1 Introduction

In this chapter, we consider a resource constraint under which there is a maximum proportion
of the population that can be treated. Given this constraint, we develop a root-n rate
estimator for the optimal R-C value and corresponding confidence intervals. We show that
our estimator is efficient among all regular and asymptotically linear estimators in our model
M under conditions. When the baseline covariates are continuous and the resource constraint
is active, i.e. when the optimal R-C value is less than the optimal unconstrained value, these
conditions are far more reasonable than the non-exceptional law assumption needed for
regular estimation of the optimal unconstrained value discussed in Chapter 2.

We now give a brief outline of the chapter. Section 3.2 defines the statistical estimation
problem of interest, gives an expression for the optimal deterministic rule under a condition,
and gives a general expression for the optimal stochastic rule. Section 3.3 presents our es-
timator of the optimal R-C value. Section 3.4 presents conditions under which the optimal
R-C value is pathwise differentiable, and gives an explicit expression for the canonical gradi-
ent under these conditions. Section 3.5 describes the properties of our estimator, including
how to develop confidence intervals for the optimal R-C value. Section 3.6 presents our
simulation methods. Section 3.7 presents our simulation results. Section 3.8 closes with a
discussion and areas of future research. All proofs are given in Section 3.9.

3.2 Optimal resource-constrained rule and value

In this chapter we assume that the outcome Y has support in the closed unit interval. Little
generality is lost with the bound on Y , given that any continuous outcome bounded can
be rescaled to the unit interval via a linear transformation. Suppose that the treatment
resource is limited so that at most a κ ∈ (0, 1) proportion of the population can receive the
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treatment A = 1. A deterministic treatment rule d̃ takes as input a covariate vector w ∈ W
and outputs a binary treatment decision d̃(w). The stochastic treatment rules considered in
this chapter are maps from U ×W to {0, 1}, where U is the support of some random variable
U ∼ PU . If d is a stochastic rule and u ∈ U is fixed, then d(u, ·) represents a deterministic
treatment rule. Throughout this chapter we will let U be drawn independently of all draws
from P0. We will be consistent with the use of the tilde to represent deterministic rules and
lack of tilde to represent stochastic rules so that throughout d̃ :W → R and d : U ×W → R.

An optimal R-C deterministic regime at P is defined as a deterministic regime d̃ which
solves the optimization problem

Maximize Ψd̃(P ) subject to E0[d̃(W )] ≤ κ. (3.1)

We call the optimal value under an R-C deterministic regime Ψ̃(P ). For a stochastic regime
d, let Ψd(P ) , EPU [Ψd(U,·)(P )] represent the value of d. An optimal R-C stochastic regime
at P is defined as a stochastic treatment regime d which solves the optimization problem

Maximize Ψd(P ) subject to EPU×P [d(U,W )] ≤ κ. (3.2)

We call the optimal value under a R-C stochastic regime Ψ(P ). Because any deterministic
regime can be written as a stochastic regime which does not rely on the stochastic mechanism
U , we have that Ψ(P ) ≥ Ψ̃(P ).

Let SP represent the survival function of the blip function Q̄b,P , i.e. τ 7→ PrP (Q̄b,P (W ) >
τ). Let

ηP , inf {τ : SP (τ) ≤ κ}
τP , max {ηP , 0} . (3.3)

For notational convenience we let S0 , SP0 , η0 , ηP0 , and τ0 , τP0 .
Define the deterministic treatment rule d̃P as w 7→ I(Q̄b,P (w) > τP ), and for notational

convenience let d̃0 , d̃P0 . We have the following result.

Theorem 6. If PrP (Q̄b,P (W ) = τP ) = 0, then the d̃P is an optimal deterministic rule
satisfying the resource constraint, i.e. Ψd̃P

(P ) attains the maximum described in (3.1).

One can in fact show that d̃P is the P almost surely unique optimal deterministic regime
under the stated condition. We do not treat the case where PrP (Q̄b,P (W ) = τP ) > 0 for
deterministic regimes, since in this case (3.1) is a more challenging problem: for discrete
W with positive treatment effect in all strata, (3.1) is a special case of the 0 − 1 knapsack
problem, which is NP-hard, though is considered one of the easier problems in this class
(Karp, 1972; Korte and Vygen, 2012). In the knapsack problem, one has a collection of items,
each with a value and a weight. Given a knapsack that can only carry a limited weight, the
objective is to choose which items to bring so as to maximize the value of the items in the
knapsack while respecting the weight restriction. Considering the optimization problem over
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stochastic rather than deterministic regimes yields a fractional knapsack problem, which is
known to be solvable in polynomial time (Dantzig, 1957; Korte and Vygen, 2012). The
fractional knapsack problem differs from the 0 − 1 knapsack problem in that one can pack
partial items, with the value of the partial items proportional to the fraction of the item
packed.

Define the stochastic treatment rule dP by its distribution with respect to a random
variable drawn from PU :

PrPU (dP (U,w) = 1) =

{
κ−SP (τP )

PrP (Q̄b,P (W )=τP )
, if Q̄b,P (w) = τP and τP > 0

I(Q̄b,P (w) > τP ), otherwise.

If PrP (Q̄b,P (W ) = τP ) = 0, then the first case occurs with probability zero, and this the
division by this quantity will not prove problematic. We will let d0 , dP0 . Note that d̃P (W )
and dP (U,W ) are PU × P almost surely equal if PrP (Q̄b,P (W ) = τP ) = 0 or if τP ≤ 0, and
thus have the same value in these settings. It is easy to show that

EPU×P [dP (U,W )] = κ if τP > 0. (3.4)

The following theorem establishes the optimality of the stochastic rule dP in a resource-
limited setting.

Theorem 7. The maximum in (3.2) is attained at d = dP , i.e. dP is an optimal stochastic
rule.

Note that the above theorem does not claim that dP is the unique optimal stochastic
regime. For discrete W , the above theorem is an immediate consequence of the discussion
of the knapsack problem in Dantzig (1957).

In this chapter we focus on the value of the optimal stochastic rule. Nonetheless, the
techniques that we present in this chapter will only yield valid inference in the case where
the data are generated according to a distribution P0 for which Pr0(Q̄b,0(W ) = τ0) = 0.
This is analogous to assuming a non-exceptional law in settings where resources are not
limited (Robins, 2004; Luedtke and van der Laan, 2014b), though we note that for contin-
uous covariates W this assumption is much more likely if τ0 > 0. It seems unlikely that
the treatment effect in some positive probability stratum of covariates will concentrate on
some arbitrary (determined by the constraint κ) value τ0. Nonetheless, one could deal with
situations where Pr0(Q̄b,0(W ) = τ0) > 0 using similar martingale-based online estimation
techniques to those presented in Chapter 2.

3.3 Estimating the optimal resource-constrained value

We now present an estimation strategy for the optimal R-C rule. The upcoming sections
justify this strategy and suggest that it will perform well for a wide variety of data generating
distributions. The estimation strategy proceeds as follows:
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1. Obtain estimates Q̄n, Q̄b,n, and gn of Q̄0, Q̄b,0, and g0 using any desired estimation
strategy which respects the fact that Y is bounded in the unit interval.

2. Estimate the marginal distribution of W with the corresponding empirical distribution.

3. Estimate S0 with the plug-in estimator Sn given by τ 7→ 1
n

∑n
i=1 I

(
Q̄b,n(wi) > τ

)
.

4. Estimate η0 with the plug-in estimator ηn , inf {τ : Sn(τ) ≤ κ}.

5. Estimate τ0 with the plug-in estimator given by τn , max{ηn, 0}.

6. Estimate d0 with the plug-in estimator dn with distribution

PrPU (dn(U,w) = 1) =

{
κ−Sn(τn)

PrPn (Q̄b,n(W )=τn)
, if Q̄b,n(w) = τn and τn > 0

I(Q̄b,n(w) > τn), otherwise.

7. Run a TMLE for the parameter Ψdn(P0):

a) For ã ∈ {0, 1}, define H(a, w) ,
PrPU (dn(U,w)=a)

gn(a|w)
. Run a univariate logistic regres-

sion using:

Outcome: (yi : i = 1, ..., n)

Offset:
(
logit Q̄n(ai, wi) : i = 1, ..., n

)
Covariate: (H(ai, wi) : i = 1, ..., n) .

Let εn represent the estimate of the coefficient for the covariate, i.e.

εn , argmax
ε∈R

1

n

n∑
i=1

[
Q̄ε
n(ai, wi) log yi +

(
1− Q̄ε

n(ai, wi)
)

log(1− yi)
]
,

where Q̄ε
n(a, w) , logit−1

(
logit Q̄n(a, w) + εH(a, w)

)
.

b) Define Q̄∗n , Q̄εn
n .

c) Estimate Ψdn(P0) using the plug-in estimator given by

Ψdn(P ∗n) ,
1

n

n∑
i=1

1∑
a=0

Q̄∗n(a, wi) PrPU (dn(U,wi) = a).

We use Ψdn(P ∗n) as our estimate of Ψ(P0). We will denote this estimator Ψ̂, where we
have defined Ψ̂ so that Ψ̂(Pn) = Ψdn(P ∗n). Note that we have used a TMLE for the data
dependent parameter Ψdn(P0), which represents the value under a stochastic intervention
dn. Nonetheless, we assume that PrP0(Q̄b,0(W ) = τ0) = 0 for many of the results pertaining

to our estimator Ψ̂, i.e. we assume that the optimal R-C rule is deterministic. We view
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estimating the value under a stochastic rather than deterministic intervention as worthwhile
because one can give conditions under which the above estimator is (root-n) consistent for
Ψ(P0) at all laws P0, even if non-negligible bias invalidates standard Wald-type confidence
intervals for the parameter of interest at laws P0 for which PrP0(Q̄b,0(W ) = τ0) > 0.

We will use P ∗n to denote any distribution for which Q̄P ∗n = Q̄∗n, gP ∗n = gn, and P ∗n has the
marginal empirical distribution of W for the marginal distribution of W . We note that such
a distribution P ∗n exists provided that Q̄∗n and gn fall in the parameter spaces of P 7→ Q̄P (W )
and P 7→ gP , respectively.

In practice we recommend estimating Q̄0 and Q̄b,0 using an ensemble method such as
super-learning to make an optimal bias-variance trade-off (or, more generally, minimize cross-
validated risk) between a mix of parametric models and data adaptive regression algorithms
(van der Laan et al., 2007; Luedtke and van der Laan, 2014a). If the treatment mechanism
g0 is unknown then we recommend using similar data adaptive approaches to obtain the
estimate gn. If g0 is known (as in a randomized controlled trial without missingness), then
one can either take gn = g0 or estimate g0 using a correctly specified parametric model,
which we expect to increase the efficiency of estimators when the Q̄0 part of the likelihood
is misspecified (van der Laan and Robins, 2003; van der Laan and Luedtke, 2014a).

There is typically little downside to using data adaptive approaches to estimate the
needed portions of the likelihood, though we do give a formal empirical process condition
in Section 3.5 which describes exactly how data adaptive these estimators can be. If one is
concerned about the data adaptivity of the estimators of the needed portions of the likelihood,
then one can consider a cross-validated TMLE approach such as that presented in van der
Laan and Luedtke (2014a). This approach makes no restrictions on the data adaptivity of
the estimators of Q̄0, Q̄b,0, or g0.

We now outline the main results of this chapter, which hold under appropriate consistency
and regularity conditions.

• Asymptotic linearity of Ψ̂:

Ψ̂(Pn)−Ψ(P0) =
1

n

n∑
i=1

D0(Oi) + oP0(n
−1/2),

with D0 a known function of P0.

• Ψ̂ is an asymptotically efficient estimate of Ψ(P0).

• One can obtain a consistent estimate σ2
n for the variance of D0(O). An asymptotically

valid 95% confidence intervals for Ψ(P0) given by Ψ̂(Pn)± 1.96σn/
√
n.

The upcoming sections give the consistency and regularity conditions which imply the above
results.
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3.4 Canonical gradient of the optimal

resource-constrained value

The pathwise derivative of Ψ will provide a key ingredient for analyzing the asymptotic
properties of our estimator. We refer the reader to Pfanzagl (1990) and Bickel et al. (1993) for
an overview of the crucial role that the pathwise derivative plays in semiparametric efficiency
theory. We remind the reader that an estimator Φ̂ is an asyptotically linear estimator of a
parameter Φ(P0) with influence curve ICP0 provided that

Φ̂(Pn)− Φ(P0) =
1

n

n∑
i=1

ICP0(Oi) + oP0(n
−1/2).

If Φ is pathwise differentiable with canonical gradient ICP0 , then Φ̂ is RAL and asymptoti-
cally efficient (minimum variance) among all such RAL estimators of Φ(P0) (Pfanzagl, 1990;
Bickel et al., 1993).

For o ∈ O, a deterministic rule d̃, and a real number τ , define

D1(d̃, P )(o) ,
I(a = d̃(w))

gP (a|w)

(
y − Q̄P (a, w)

)
D2(d̃, P )(o) , Q̄P (d̃(w), w)− EP Q̄P (d̃(W ),W ),

where gP (a|W ) , PrP (A = a|W ). We will let g0 , gP0 . We note that D1(d̃, P ) + D2(d̃, P )
is the efficient influence curve of the parameter Ψd̃(P ).

Let d be some stochastic rule. The canonical gradient of Ψd is given by

ICd(P )(o) , EPU [D1(d(U,w), P )(o) +D2(d(U,w), P )(o)].

Define

D(d, τ, P )(o) , ICd(P )(o)− τ (EPU [d(U,w)]− κ) .

For ease of reference, let D0 , D(d0, τ0, P0). The upcoming theorem makes use of the
following assumptions.

C1) g0 satisfies the positivity assumption: Pr0(0 < g0(1|W ) < 1) = 1.

C2) Q̄b,0(W ) has density f0 at η0, and 0 < f0(η0) <∞.

C3) S0 is continuous in a neighborhood of η0.

C4) Pr0(Q̄b,0(W ) = τ) = 0 for all τ in a neighborhood of τ0.

We now present the canonical gradient of the optimal R-C value.
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Theorem 8. Suppose C1) through C4). Then Ψ is pathwise differentiable at P0 with canon-
ical gradient D0.

Note that C3) implies that Pr0(Q̄b,0(W ) = τ0) = 0. Thus d0 is (almost surely) determin-
istic and the expectation over PU in the definition of D0 is superfluous. Nonetheless, this
representation will prove useful when we seek to show that our estimator solves the empirical
estimating equation defined by an estimate of D(d0, τ0, P0).

When the resource constraint is active, i.e. τ0 > 0, the above theorem shows that
Ψ has an additional component over the optimal value parameter when no resource con-
straints are present (van der Laan and Luedtke, 2014b). The additional component is
τ0 × (EPU [d0(U,w)]− κ), and is the portion of the derivative that relies on the fact that
d0 is estimated and falls on the edge of the parameter space. We note that it is possible that
the variance of D0(O) is greater than the variance of ICd0(P0)(O). If τ0 = 0 then these two
variances are the same, so suppose τ0 > 0. Then, provided that Pr0(Q̄b,0(W ) = τ0) = 0, we
have that

VarP0 (D0(O))− VarP0 (ICd0(P0))

= τ0κ(1− κ)
(
τ0 − 2E0

[
Q̄0(1,W )

∣∣ d̃0(W ) = 1
]

+ 2E0

[
Q̄0(0,W )

∣∣ d̃0(W ) = 0
])
.

For any κ ∈ (0, 1), it is possible to exhibit a distribution P0 which satisfies the conditions of
Theorem 8 and for which VarP0(D0(O)) > VarP0(ICd0(P0)(O)). Perhaps more surprisingly,
it is also possible to exhibit a distribution P0 which satisfies the conditions of Theorem 8 and
for which VarP0(D0(O)) < VarP0(ICd0(P0)(O)). We omit further the discussion here because
the focus of this chapter is on considering the estimating the value from the optimization
problem (3.2), rather than discussing how this procedure relates to the estimation of other
parameters.

3.5 Results about the proposed estimator

We now show that Ψ̂ is an asymptotically linear estimator for Ψ(P0) with influence curve D0

provided our estimates of the needed parts of P0 satisfy consistency and regularity conditions.
Our theoretical results are presented in Section 3.5, and the conditions of our main theorem
are discussed in Section 3.5.

Inference for Ψ(P0)

For any distributions P and P0 satisfying positivity, stochastic intervention d, and real
number τ , define the following second-order remainder terms:

R10(d, P ) , EPU×P0

[(
1− g0(d|W )

g(d|W )

)(
Q̄P (d,W )− Q̄0(d,W )

)]
R20(d) , EPU×P0

[
(d− d0)(Q̄b,0(W )− τ0)

]
.
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Above the reliance of d and d0 on (U,W ) is omitted in the notation. Let R0(d, P ) ,
R10(d, P ) +R20(d). The upcoming theorem will make use of the following assumptions.

C5) g0 satisfies the strong positivity assumption: Pr0(δ < g0(1|W ) < 1 − δ) = 1 for some
δ > 0.

C6) gn satisfies the strong positivity assumption for a fixed δ > 0 with probability ap-
proaching 1: there exists some δ > 0 such that, with probability approaching 1,
Pr0(δ < gn(1|W ) < 1− δ) = 1.

C7) R0(dn, P
∗
n) = oP0(n

−1/2).

C8) E0

[
(D(dn, τ0, P

∗
n)(O)−D0(O))2] = oP0(1).

C9) D(dn, τ0, P
∗
n) belongs to a P0-Donsker class D with probability approaching 1.

C10) 1
n

∑n
i=1D(dn, τ0, P

∗
n)(Oi) = oP0(n

−1/2).

We note that the τ0 in the final condition above only enters the expression in the sum as a
multiplicative constant in front of −EPU [d(U,wi)]− κ.

Theorem 9 (Ψ̂ is asymptotically linear). Suppose C2) through C10). Then Ψ̂ is a RAL
estimator of Ψ(P0) with influence curve D0, i.e.

Ψ̂(Pn)−Ψ(P0) =
1

n

n∑
i=1

D0(Oi) + oP0(n
−1/2).

Further, Ψ̂ is efficient among all such RAL estimators of Ψ(P0).

Let σ2
0 , VarP0(D0). By the central limit theorem,

√
n
(

Ψ̂(Pn)−Ψ(P0)
)

converges in

distribution to a N(0, σ2
0) distribution. Let σ2

n ,
1
n

∑n
i=1D(dn, τn, P

∗
n)(Oi)

2 be an estimate
of σ2

0. We now give the following lemma, which gives sufficient conditions for the consistency
of τn for τ0.

Lemma 2 (Consistency of τn). Suppose C2) and C3). Also suppose Q̄b,n is consistent for Q̄b,0

in L1(P0) and that the estimate Q̄b,n belongs to a P0 Glivenko Cantelli class with probability
approaching 1. Then τn → τ0 in probability.

It is easy to verify that conditions similar to those of Theorem 9, combined with the
convergence of τn to τ0 as considered in the above lemma, imply that σn → σ0 in probability.
Under these conditions, an asymptotically valid two-sided 1− α confidence interval is given
by

Ψ̂(Pn)± z1−α/2
σn√
n
,

where z1−α/2 denotes the 1− α/2 quantile of a N(0, 1) random variable.
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Discussion of conditions of Theorem 9

Conditions C2) and C3). These are standard conditions used when attempting to esti-
mate the κ-quantile η0, defined in (3.3). Provided good estimation of Q̄b,0, these conditions
ensure that gathering a large amount of data will enable one to get a good estimate of the
κ-quantile of the random variable Q̄b,0. See Lemma 2 for an indication of what is meant
by “good estimation” of Q̄b,0. It seems reasonable to expect that these conditions will hold
when W is continuous and η0 6= 0, since we are assuming that Q̄b,0 is not degenerate at the
arbitrary (determined by κ) point η0.

Condition C4). If τ0 > 0, then C4) is implied by C3). If τ0 = 0, then C4) is like as-
suming a non-exceptional law, i.e. that the probability of a there being no treatment effect
in a stratum of W is zero. Because τ0 is not known from the outset, we require something
slightly stronger, namely that the probability of any specific small treatment effect is zero in
a stratum of W is zero. Note that this condition does not prohibit the treatment effect from
being small, e.g. Pr0(|Q̄b,0(W )| < τ) > 0 for all τ > 0, but rather it prohibits there existing
a sequence τm ↓ 0 with the property that Pr0(Q̄b,0(W ) = τm) > 0 infinitely often. Thus this
condition does not really seem any stronger than assuming a non-exceptional law. If one is
concerned about such exceptional laws then we suggest adapting the methods in (Luedtke
and van der Laan, 2014b) to the R-C setting.

Condition C5). This condition assumes that people from each stratum of covariates have
a reasonable (at least a δ > 0) probability of treatment.

Condition C6). This condition requires that our estimates of g0 respect the fact that
each stratum of covariates has a reasonable probability of treatment.

Condition C7). This condition is satisfied if R10(dn, P
∗
n) = oP0(n

−1/2) and R20(dn) =
oP0(n

−1/2). The term R10(dn, P
∗
n) takes the form of a typical double robust term that is

small if either g0 or Q̄0 is estimated well, and is second-order, i.e. one might hope that
R10(dn, P

∗
n) = oP0(n

−1/2), if both both g0 and Q̄0 are estimated well. One can upper bound
this remainder with a product of the L2(P0) rates of convergence of these two quantities
using the Cauchy-Schwarz inequality. If g0 is known, then one can take gn = g0 and this
term is zero.

Ensuring that R20(dn) = oP0(n
−1/2) requires a little more work but will still prove to be

a reasonable condition. We will use the following margin assumption for some α > 0:

Pr0

(
0 < |Q̄b,0 − τ0| ≤ t

)
. tα for all t > 0, (3.5)

where “.” denotes less than or equal to up to a multiplicative constant. This margin assump-
tion is analogous to that used in Audibert and Tsybakov (2007) and to the condition used
in Theorem 5 in the previous chapter. The following result relates the rate of convergence
of R20(dn) to the rate at which Q̄b,n − τn converges to Q̄b,0 − τ0.
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Theorem 10. If (3.5) holds for some α > 0, then

i) |R20(dn)| .
∥∥(Q̄b,n − τn)− (Q̄b,0 − τ0)

∥∥2(1+α)/(2+α)

2,P0

ii) |R20(dn)| .
∥∥(Q̄b,n − τn)− (Q̄b,0 − τ0)

∥∥1+α

∞,P0
.

The proof of this lemma is similar to that of Theorem 5 from Chapter 2 so is omitted. In-
terested readers can find a complete proof of this lemma in Luedtke and van der Laan (2015).
If S0 has a finite derivative at τ0, as is given by C2), then one can take α = 1. The above
theorem then implies that R20(dn) = oP0(n

−1/2) if either
∥∥(Q̄b,n − τn)− (Q̄b,0 − τ0)

∥∥
2,P0

is

oP0(n
−3/8) or

∥∥(Q̄b,n − τn)− (Q̄b,0 − τ0)
∥∥
∞,P0

is oP0(n
−1/4).

Condition C8). This is a mild consistency condition which is implied by the L2(P0)
consistency of dn, gn, and Q̄∗n to d0, g0, and Q̄0. We note that the consistency of the intial
(unfluctuated) estimate Q̄n for Q̄0 will imply the consistency of Q̄∗n to Q̄0 given C6), since
in this case εn → 0 in probability, and thus

∥∥Q̄∗n − Q̄n

∥∥
2,P0
→ 0 in probability.

Condition C9). This condition places restrictions on how data adaptive the estimators
of d0, g0, and Q̄0 can be. We refer the reader to Section 2.10 of van der Vaart and Wellner
(1996) for conditions under which the estimates of d0, g0, and Q̄0 belonging to Donsker
classes implies that D(dn, τ0, P

∗
n) belongs to a Donsker class. This condition was avoided for

estimating the value function using a cross-validated TMLE in van der Laan and Luedtke
(2014a), and using this technique will allow one to avoid the condition here as well.

Condition C10). Using the notation Pf =
∫
f(o)dP (o) for any distribution P and function

f : O → R, we have that

PnD(dn, τ0, P
∗
n) = PnD1(dn, P

∗
n) + PnD2(dn, P

∗
n)

− τ0

(
1

n

n∑
i=1

EPU [dn(U,wi)]− κ

)
.

The first term is zero by the fluctuation step of the TMLE algorithm and the second term on
the right is zero because P ∗n uses the empirical distribution of W for the marginal distribution
of W . If τ0 = 0 then clearly the third term is zero, so suppose τ0 > 0. Combining (3.4) and
the fact that dn is a substitution estimator shows that the third term is 0 with probability
approaching 1 provided that τn > 0 with probability approaching 1. This will of course occur
if τn → τ0 > 0 in probability, for which Lemma 2 gives sufficient conditions.

3.6 Simulation methods

We simulated i.i.d. draws from two data generating distributions at sample sizes 100, 200,
and 1000. For each sample size and distribution we considered resource constraints κ = 0.1



CHAPTER 3. INDIVIDUALIZED TREATMENTS UNDER LIMITED RESOURCES 49

and κ = 0.9. We ran 2000 Monte Carlo draws of each simulation setting. All simulations
were run in R (R Core Team, 2014).

We first present the two data generating distributions considered, and then present the
estimation strategies used.

Data generating distributions

Simulation 1

For our first data generating distribution, the baseline covariate vector W = (W1, ...,W4) is
four dimensional and

W1,W2,W3,W4
i.i.d.∼ N(0, 1)

A|W ∼ Bernoulli(1/2)

logit (E0 [Y |A,W,H = 0]) = 1−W 2
1 + 3W2 + A

(
5W 2

3 − 4.45
)

logit (E0 [Y |A,W,H = 1]) = −0.5−W3 + 2W1W2 + A (3|W2| − 1.5) ,

where H is an unobserved Bernoulli(1/2) variable independent of A,W . For this distribution
E0[Q̄0(0,W )] ≈ E0[Q̄0(1,W )] ≈ 0.464.

We obtained estimates of the approximate optimal R-C optimal value for this data gen-
erating distribution using 107 Monte Carlo draws. When κ = 0.1, Ψ(P0) ≈ 0.511. When
κ = 0.9, Ψ(P0) ≈ 0.563. We note that the resource constraint is not active (τ0 = 0) when
κ = 0.9.

Simulation 2

For the second data generating distribution, W ∼ Uniform(−1, 1), A|W ∼ Bernoulli(1/2),
and Y |A,W ∼ Bernoulli(Q̄0(A,W )), where for W̃ , W + 5/6 we define

Q̄0(A,W )− 6

10
,


0, if A = 1 and − 1/2 ≤ W ≤ 1/3

−W̃ 3 + W̃ 2 − 1
3
W̃ + 1

27
, if A = 1 and W < −1/2

−W 3 +W 2 − 1
3
W + 1

27
, if A = 1 and W > 1/3

− 3
10
, otherwise.

For this distribution E0[Q̄0(0,W )] = 0.3 and E0[Q̄0(1,W )] ≈ 0.583. This simulation is
an example of a case where Q̄b,0(W ) > 0 almost surely, so any resource constraint will
reduce the optimal value from its unconstrained value of 0.583. In particular, we have that
Ψ(P0) ≈ 0.337 when κ = 0.1 and Ψ(P0) ≈ 0.572 when κ = 0.9.

Estimating nuisance functions

We treated g0 as known in both simulations and let gn = g0. We estimated Q̄0 using
the super-learner algorithm with the quasi-log-likelihood loss function (family=binomial)
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and a candidate library of data adaptive (SL.gam and SL.nnet) and parametric algorithms
(SL.bayesglm, SL.glm, SL.glm.interaction, SL.mean, SL.step, SL.step.interaction,
and SL.step.forward). We refer the reader to Table 2 in the technical report Luedtke
and van der Laan (2014a) for a brief description of these algorithms. We estimated Q̄b,0

by running a super-learner using the squared error loss function and the same candidate
algorithms and used W to predict the outcome Ỹ , 2A−1

g0(A|W )
(Y −Ȳn)+Ȳn, where Ȳn represents

the sample mean of Y from the n observations. See Luedtke and van der Laan (2014a) for
a justification of this estimation scheme.

Once we had our estimates Q̄n, Q̄b,n, and gn we proceeded with the estimation strategy
described in Section 3.3.

Evaluating performance

We used three methods to evaluate our proposed approach. First, we looked at the coverage
of two-sided 95% confidence intervals for the optimal R-C value. Second, we report the
average confidence interval widths. Finally, we looked at the power of the α = 0.025 level
test H0 : Ψ(P0) = µ0 against H1 : Ψ(P0) > µ0, where µ0 , E0[Q̄0(0,W )] is treated as a
known quantity. Under causal assumptions, µ0 can be identified with the counterfactual
quantity representing the population mean outcome if, possibly contrary to fact, no one
receives treatment. If treatment is not currently being given in the population, one could
substitute the population mean outcome (if known) for µ0. Our test of significance consisted
of checking of the lower bound in the two-sided 95% confidence interval is greater than µ0.
If an estimator of Ψ(P0) is low-powered in testing H0 against H1 then clearly the estimator
will have little practical value.

3.7 Simulation results

The proposed estimation strategy performed well overall. Figure 3.1 demonstrates the cov-
erage of 95% confidence intervals for the optimal R-C value. Our method performed well in
all settings for the highly constrained setting where κ = 0.1. The results were more mixed
for the resource constraint κ = 0.9. All methods performed well at the largest sample size
considered. This supports our theoretical results, which were all asymptotic in nature. For
Simulation 1, in which the resource constraint was not active, the coverage dropped off at
lower sample sizes. Coverage was somewhat below nominal (80% when n = 100 and 84%
when n = 200) for small sample sizes, but improved when the sample size increased. In
Simulation 2, the coverage was better (>91%) for the smaller sample sizes. We note that
the resource constraint was still active (τ0 > 0) when κ = 0.9 for this simulation, and also
that the estimation problem is easier because the baseline covariate was univariate.

Figure 3.2 gives the power of the α = 0.025 level test H0 : Ψ(P0) = µ0 against the
alternative H1 : Ψ(P0) > µ0. Overall our method appears to have reasonable power in this
statistical test. We see that power increases with sample size, the key property of consistent
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Figure 3.1: Coverage of two-sided 95% confidence intervals. As expected, coverage increases
with sample size. The coverage tends to be better for κ = 0.1 than for κ = 0.9, though the
estimator performed well at the largest sample size (1000) for all simulations and choices of
κ. Error bars indicate 95% confidence intervals to account for uncertainty from the finite
number of Monte Carlo draws.
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Figure 3.2: Power of the α = 0.025 level test of H0 : Ψ(P0) = µ0 against H1 : Ψ(P0) > µ0,
where µ0 = E0[Q̄0(0,W )] is treated as known. Power increases with sample size and κ. Error
bars indicate 95% confidence intervals to account for uncertainty from the finite number of
Monte Carlo draws.
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statistical tests. We also see that power increases with κ, which is unsurprising given that Y
is binary and g0(a|w) is 1/2 for all a, w. We note that power will not always increase with κ,
for example if P0 is such that g0(1|w) is very small for individuals with covariate w who are
treated at κ = 0.9 but not at κ = 0.1. This observation is not meant as a criticism to the
estimation scheme that we have presented because we assume that κ will be chosen to reflect
real resource constraints, rather than to maximize the power for a test H ′0 : Ψ(P0) = µ′

versus H ′1 : Ψ(P0) > µ′ for some fixed µ′.
We also implemented an estimating equation based estimator for the optimal R-C value

and found the two methods performed similarly. We would recommend using the TMLE
in practice because it has been shown to be robust to near positivity violations in a wide
variety of settings (van der Laan and Rose, 2011). We note that g0(1|w) = 1/2 for all w
in both of our simulations, so no near positivity violations occurred. We do not consider
the estimation equation approach any further here because the focus of this chapter is on
considering the optimization problem (3.2), rather than on comparing different estimation
frameworks.

3.8 Discussion and future work

We have considered the problem of estimating the optimal resource-constrained value. Under
causal assumptions, this parameter can be identified with the maximum attainable popula-
tion mean outcome under individualized treatment rules which rely on measured covariates,
subject to the constraint that a maximum proportion κ of the population can be treated.
We also provided an explicit expression for an optimal stochastic rule under the resource
constraint.

We derived the canonical gradient of the optimal R-C value under the key assumption
that the treatment effect is not exactly equal to τ0 in some stratum of covariates which
occurs with positive probability. The canonical gradient plays a key role in developing
asymptotically linear estimators. We found that the canonical gradient of the optimal R-C
value has an additional component when compared to the canonical gradient of the optimal
unconstrained value when the resource constraint is active, i.e. when τ0 > 0.

We presented a targeted minimum loss-based estimator for the optimal R-C value. This
estimator was designed to solve the empirical mean of an estimate of the canonical gradient.
This quickly yielded conditions under which our estimator is RAL, and efficient among all
such RAL estimators. All of these results rely on the condition that the treatment effect
is not exactly equal to τ0 for positive probability stratum of covariates. This assumption
is more plausible than the typical non-exceptional law assumption when the covariates are
continuous and the constraint is active because it may be unlikely that the treatment effect
concentrates on an arbitrary (determined by κ) τ0 > 0. We note that this pseudo-non-
exceptional law assumption has implied that the optimal stochastic rule is almost surely
equal to the optimal deterministic rule.
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Some resource constraints encountered in practice may not be of the form E[d(U,W )]
less than or equal to κ. For example, the cost of distributing the treatment to people may
vary based on the values of the covariates. If c : W → [0,∞) is a cost function, then
this constraint may take the form E[c(W )d(U,W )] ≤ κ. The optimal rule takes the form
(u,w) 7→ I(Q̄b,0(w) > τc(w)) for w for which Q̄b,0(w) 6= τ0c(w) or c(w) = 0, and randomly
distributes the remaining resources uniformly among all remaining w. We leave further
consideration of this more general resource constraint problem to future work.

Further work is needed to generalize this chapter to the multiple time point setting.
Before generalizing the procedure, one must know exactly what form the multiple time
point constraint takes. For example, it may be the case that only a κ proportion of the
population can be treated at each time point, or it may be the case that treatment can only
be administered at a κ proportion of patient-time point pairs. Regardless of which constraint
one chooses, it seems that the nice recursive structure encountered inQ-learning may not hold
for multiple time point R-C problems. While useful for computational considerations, being
able to express the optimal rule using approximate dynamic programming is not necessary
for the existence of a good optimal rule estimator, especially when the number of time points
is small.

We have not considered the ethical considerations associated with allocating limiting
resources to a population. The debate over the appropriate means to distribute limited
treatment resources to a population is ongoing (see, e.g., Brock and Wikler, 2009; Macklin
and Cowan, 2012; Singh, 2013, for examples in the treatment of HIV/AIDS). Clearly any
investigator needs to consider the ethical issues associated with certain resource allocation
schemes. Our method is optimal in a particular utilitarian sense (maximizing the expected
population mean outcome with respect to an outcome of interest) and yields a treatment
strategy which treats individuals who are expected to benefit most from treatment in terms
of our outcome of interest. One must be careful to ensure that the outcome of interest truly
captures the most important public health implications. Unlike in unconstrained individual-
ized medicine, inappropriately prescribing treatment to a stratum will also have implications
for individuals outside of that stratum, namely for the individuals who do not receive treat-
ment due to its lack of availability. We leave further ethical considerations to experts on the
matter. It will be interesting to see if there are settings in which it is possible to transform
the outcome or add constraints to the optimization problem so that the statistical problem
considered in this chapter adheres to the ethical guidelines in those settings.

We have looked to generalize previous works in estimating the value of an optimal indi-
vidualized treatment regime to the case where the treatment resource is a limited resource,
i.e. where it is not possible to treat the entire population. The results in this chapter should
allow for the application of optimal personalized treatment strategies to many new problems
of interest.
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3.9 Proofs

Proofs for Section 3.2

We first state a simple lemma.

Lemma 3. For a distribution P and a stochastic rule d, we have the following representation
for Ψd:

Ψd(P ) , EPU×P
[
d(U,W )Q̄b,P (W )

]
+ EP [Q̄P (0,W )].

Proof of Lemma 3. We have that

Ψd(P ) = EPU×P [d(U,W )Q̄P (1,W )] + EPU×P [(1− d(U,W ))Q̄P (0,W )]

= EPU×P [d(U,W )(Q̄P (1,W )− Q̄P (0,W ))] + EP [Q̄P (0,W )]

= EPU×P [d(U,W )Q̄b,P (W )] + EP [Q̄P (0,W )].

Proof of Theorem 6. This result will be a consequence of Theorem 7. If PrP (Q̄b,0(W ) =
τP ) = 0, then dP (U,W ) is PU×P almost surely equal to d̃P (W ), and thus Ψd̃P

(P ) = ΨdP (P ).

Thus (u,w) 7→ d̃P (w) is an optimal stochastic regime. Because the class of deterministic
regimes is a subset of the class of stochastic regimes, d̃P is an optimal deterministic regime.

Proof of Theorem 7. Let d be some stochastic treatment rule which satisfies the resource
constraint. For (b, c) ∈ {0, 1}2, define Bbc , {(u,w) : dP (u,w) = b, d(u,w) = c}. Note that

ΨdP (P )−Ψd(P ) = EPU×P
[
(dP (U,W )− d(U,W )) Q̄b,0(W )

]
= EPU×P

[
Q̄b,0(W )I((U,W ) ∈ B10)

]
− EPU×P

[
Q̄b,0(W )I((U,W ) ∈ B01)

]
(3.6)

The Q̄b,0(W ) in the first term in (3.6) can be upper bounded by τP , and in the second term
can be lower bounded by τP . Thus,

ΨdP (P )−Ψd(P ) ≥ τP [PrPU×P ((U,W ) ∈ B10)− PrPU×P ((U,W ) ∈ B01)]

= τP [PrPU×P ((U,W ) ∈ B10 ∪B11)− PrPU×P ((U,W ) ∈ B01 ∪B11)]

= τP (EPU×P [dP (U,W )]− EPU×P [d(U,W )]) .

If τP = 0 then the final line is zero. Otherwise, EPU×P [dP (U,W )] = κ by (3.4). Because
d satisfies the resource constraint, EPU×P [d(U,W )] ≤ κ and thus the final line above is at
least zero. Thus ΨdP (P )− Ψd(P ) ≥ 0 for all τP . Because d was arbitrary, dP is an optimal
stochastic rule.
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Proofs for Section 3.4

Proof of Theorem 8. The pathwise derivative of Ψ(Q) is defined as d
dε

Ψ(Q(ε))
∣∣
ε=0

along
paths {Pε : ε} ⊂ M. In particular, these paths are chosen so that

dQW,ε = (1 + εHW (W ))dQW ,

where EHW (W ) = 0 and CW , sup
w
|HW (w)| <∞;

dQY,ε(Y | A,W ) = (1 + εHY (Y | A,W ))dQY (Y | A,W ),

where E(HY | A,W ) = 0 and sup
w,a,y
|HY (y | a, w)| <∞.

The parameter Ψ is not sensitive to fluctuations of g0(a|w) = Pr0(a|w), and thus we do
not need to fluctuate this portion of the likelihood. Let Q̄b,ε , Q̄b,Pε , Q̄ε , Q̄Pε , dε , dPε ,
ηε , ηPε , τε , τPε , and Sε , SPε . First note that

Q̄b,ε(w) = Q̄b,0(w) + εhε(w) (3.7)

for an hε with

sup
|ε|<1

sup
w
|hε(w)| , C1 <∞. (3.8)

Note that C4) implies that d0 is (almost surely) deterministic, i.e. d0(U, ·) is almost surely
a fixed function. Let d̃ represent the deterministic rule w 7→ I(Q̄b,0(w) > 0) to which d(u, ·)
is (almost surely) equal for all u. By Lemma 3,

Ψ(Pε)−Ψ(P0) =

∫
w

(
EPU [dε(U,W )]− d̃0(W )

)
Q̄b,εdQW,ε

+

∫
w

d̃0(W )
(
Q̄b,εdQW,ε − Q̄b,0dQW,0

)
+ EPεQ̄ε(0,W )− E0Q̄0(0,W )

=

∫
w

(
EPU [dε(U,W )]− d̃0(W )

) (
Q̄b,ε − τ0

)
dQW,ε

+ τ0

∫
w

(
EPU [dε(U,W )]dQW,ε − d̃0(W )dQW,0

)
− τ0

∫
w

d̃0(W ) (dQW,ε − dQW,0) + [Ψd0(Pε)−Ψd0(P0)] . (3.9)

Dividing the fourth term by ε and taking the limit as ε → 0 gives the pathwise deriva-
tive of the mean outcome under the rule that treats d0 as known. The third term can
be written as −ετ0

∫
w
d̃0(W )HWdQW,0, and thus the pathwise derivative of this term is

−
∫
w
τ0d̃0(W )HWdQW,0. If τ0 > 0, then EPU×P0 [d̃0(W )] = κ. The pathwise derivative of

this term is zero if τ0 = 0. Thus, for all τ0,

lim
ε→0
−1

ε
τ0

∫
w

d̃0(W ) (dQW,ε − dQW,0) =

∫
w

(
−τ0(d̃0(w)− κ)

)
HW (w)dQW,0(w).
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Thus the third term in (3.9) generates the w 7→ −τ0(d̃0(w) − κ) portion of the canonical
gradient, or equivalently w 7→ −τ0(EPU [d0(U,w)] − κ). The remainder of this proof is used
to show that the first two terms in (3.9) are o(ε).

Step 1: ηε → η0.
We refer the reader to (3.3) for a definition of the quantile P 7→ ηP . This is a consequence
of the continuity of S0 in a neighborhood of η0. For γ > 0,

|ηε − η0| > γ implies that Sε(η0 − γ) ≤ κ or Sε(η0 + γ) > κ. (3.10)

For positive constants C1 and CW ,

Sε(η0 − γ) ≥ (1− CW |ε|) Pr0

(
Q̄b,ε > η0 − γ

)
≥ (1− CW |ε|)S0(η0 − γ + C1|ε|).

Fix γ > 0 small enough so that S0 is continuous at η0 − γ. In this case we have that
S0(η0 − γ + C1|ε|)→ S0(η0 − γ) as ε→ 0. By the infimum in the definition of η0, we know
that S0(η0 − γ) > κ. Thus Sε(η0 − γ) > κ for all |ε| small enough.

Similarly, Sε(η0 + γ) ≤ (1 + CW |ε|)S0(η0 + γ − C1|ε|). Fix γ > 0 small enough so that
S0 is continuous at η0 + γ. Then S0(η0 + γ − C1|ε|) → S0(η0 + γ) as ε → 0. Condition C2)
implies the uniqueness of the κ-quantile of Q̄b,0, and thus that S0(η0 + γ) < κ. It follows
that Sε(η0 + γ) < κ for all |ε| small enough.

Combining Sε(η0 − γ) > κ and Sε(η0 + γ) < κ for all ε close to zero with (3.10) shows
that ηε → η0 as ε→ 0.

Step 2: Second term of (3.9) is 0 eventually.
If τ0 = 0 then the result is immediate, so suppose τ0 > 0. By the previous step, ηε → η0,
which implies that τε → τ0 > 0 by the continuity of the max function. It follows that τε > 0
for ε large enough. By (3.4), PrPU×Pε(dε(U,W ) = 1) = κ for all sufficiently small |ε| and
Pr0(d̃0(W ) = 1) = κ. Thus the second term of (3.9) is 0 for all |ε| small enough.

Step 3: τε − τ0 = O(ε).
Note that κ < Sε(ηε−|ε|) ≤ (1 +CW |ε|)S0(ηε− (1 +C1)|ε|). A Taylor expansion of S0 about
η0 shows that

κ < (1 + CW |ε|) (S0(η0) + (ηε − η0 − (1 + C1)|ε|)(−f0(η0) + o(1)))

= κ+ (ηε − η0 − (1 + C1)|ε|)(−f0(η0) + o(1)) +O(ε)

= κ− (ηε − η0)f0(η0) + o(ηε − η0) +O(ε). (3.11)

The fact that f0(η0) ∈ (0,∞) shows that ηε − η0 is bounded above by some O(ε) sequence.
Similarly, κ ≥ Sε(ηε + |ε|) ≥ (1− CW |ε|)S0(ηε + (1 + C1)|ε|). Hence,

κ ≥ (1− CW |ε|) (S0(η0) + (ηε − η0 + (1 + C1)|ε|)(−f0(η0) + o(1)))

= κ− (ηε − η0)f0(η0) + o(ηε − η0) +O(ε).
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It follows that ηε−η0 is bounded below by some O(ε) sequence. Combining these two bounds
shows that ηε − η0 = O(ε), which immediately implies that τε − τ0 = max{O(ε), 0} = O(ε).

Step 4: First term of (3.9) is o(ε).
We know that

Q̄b,0(W )− τ0 +O(ε) ≤ Q̄b,ε(W )− τε ≤ Q̄b,0(W )− τ0 +O(ε).

By C4), it follows that there exists some δ > 0 such that sup|ε|<δ Pr0(Q̄b,ε(W ) = τε) = 0.

By the absolute continuity of QW,ε with respect to QW,0, sup|ε|<δ PrPε(Q̄b,ε(W ) = τε) = 0. It

follows that, for all small enough |ε| and almost all u, dε(u,w) = I(Q̄b,ε(w) > τε). Hence,∫
w

(EPU [dε(U,W )]− d0(W ))
(
Q̄b,ε − τ0

)
dQW,ε

=

∣∣∣∣∫
w

(
I(Q̄b,ε > τε)− I(Q̄b,0 > τ0)

) (
Q̄b,ε − τ0

)
dQW,ε

∣∣∣∣
≤
∫
w

∣∣I(Q̄b,ε > τε)− I(Q̄b,0 > τ0)
∣∣ (∣∣Q̄b,0 − τ0

∣∣+ C1|ε|
)
dQW,ε

≤
∫
w

I(|Q̄b,0 − τ0| ≤ |Q̄b,0 − τ0 − Q̄b,ε + τε|)
(∣∣Q̄b,0 − τ0

∣∣+ C1|ε|
)
dQW,ε

=

∫
w

I(0 < |Q̄b,0 − τ0| ≤ |Q̄b,0 − τ0 − Q̄b,ε + τε|)
(∣∣Q̄b,0 − τ0

∣∣+ C1|ε|
)
dQW,ε

≤ O(ε)

∫
w

I(0 < |Q̄b,0 − τ0| ≤ O(ε))dQW,ε

≤ O(ε)(1 + CW |ε|) Pr0

(
0 < |Q̄b,0 − τ0| ≤ O(ε)

)
,

where the penultimate inequality holds by Step 3 and (3.7). The last line above is o(ε)
because Pr(0 < X ≤ ε) → 0 as ε → 0 for any random variable X. Thus dividing the
left-hand side above by ε and taking the limit as ε→ 0 yields zero.

Proofs for Section 3.5

We give the following lemma before proving Theorem 9.

Lemma 4. Let P0 and P be distributions which satisfy the positivity assumption and for
which Y is bounded in probability. Let d be some stochastic treatment rule and τ be some
real number. We have that Ψd(P )−Ψ(P0) = −E0[D(d, τ0, P )(O)] +R0(d, P ).



CHAPTER 3. INDIVIDUALIZED TREATMENTS UNDER LIMITED RESOURCES 58

Proof of Lemma 4. Note that

Ψd(P )−Ψ(P0) + E0[D(d, τ0, P )(O)]

= Ψd(P )−Ψd(P0) +
2∑
j=1

EPU×P0 [Dj(d(U, ·), P )(O)]

+ Ψd(P0)−Ψd0(P0)− τ0EPU×P0 [d(U,W )− κ].

Standard calculations show that the first term on the right is equal to R10(d, P ) (van der
Laan and Robins, 2003). If τ0 > 0, then (3.4) shows that τ0EPU×P0 [d − κ] = τ0EPU×P0 [d −
d0]. If τ0 = 0, then obviously τ0EPU×P0 [d − κ] = τ0EPU×P0 [d − d0]. Lemma 3 shows that
Ψd(P0)−Ψd0(P0) = EPU×P0 [(d− d0)Q̄b,0]. Thus the second line above is equal to R20(d).

Proof of Theorem 9. We make use of empirical process theory notation in this proof so that
Pf = EP [f(O)] for a distribution P and function f . We have that

Ψ̂(Pn)−Ψ(P0)

= −P0D(dn, τ0, P
∗
n) +R0(dn, P

∗
n) (by Lemma 4)

= (Pn − P0)D(dn, τ0, P
∗
n) +R0(dn, P

∗
n) + oP0(n

−1/2) (by Condition C10))

= (Pn − P0)D0 + (Pn − P0)(D(dn, τ0, P
∗
n)−D0) +R0(dn, P

∗
n).

The middle term on the last line is oP0(n
−1/2) by C5), C6), C8), and C9) (van der Vaart and

Wellner, 1996), and the third term is oP0(n
−1/2) by C7). This yields the asymptotic linearity

result. Proposition 1 in Section 3.3 of Bickel et al. (1993) yields the claim about regularity
and asymptotic efficiency when conditions C2), C3), C4), and C5) hold (see Theorem 8).

Proof of Lemma 2. We will show that ηn → η0 in probability, and then the consistency of
τn follows by the continuous mapping theorem. By C3), there exists an open interval N
containing η0 on which S0 is continuous. Fix η ∈ N . Because Q̄b,n belongs to a Glivenko-
Cantelli class with probability approaching 1, we have that

|Sn(η)− S0(η)| =
∣∣PnI(Q̄b,n > η)− P0I(Q̄b,0 > η)

∣∣
≤
∣∣P0

(
I(Q̄b,n > η)− I(Q̄b,0 > η)

)∣∣+
∣∣(Pn − P0)I(Q̄b,n > η)

∣∣
≤
∣∣P0

(
I(Q̄b,n > η)− I(Q̄b,0 > η)

)∣∣︸ ︷︷ ︸
,Tn(η)

+oP0(1), (3.12)

where we use the notation Pf = EP [f(O)] for any distribution P and function f . Let
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Zn(η)(w) ,
(
I(Q̄b,n(w) > η)− I(Q̄b,0(w) > η)

)2
. The following display holds for all q > 0:

Tn(η) ≤ P0Zn(η)

= P0Zn(η)I(|Q̄b,0 − η| > q) + P0Zn(η)I(|Q̄b,0 − η| ≤ q)

= P0Zn(η)I(|Q̄b,0 − η| > q) + P0Zn(η)I(0 < |Q̄b,0 − η| ≤ q) (3.13)

≤ P0Zn(η)I(|Q̄b,n − Q̄b,0| > q) + P0Zn(η)I(0 < |Q̄b,0 − η| ≤ q) (3.14)

≤ Pr0

(
|Q̄b,n − Q̄b,0| > q

)
+ Pr0

(
0 < |Q̄b,0 − η| ≤ q

)
≤ P0|Q̄b,n − Q̄b,0|

q
+ Pr0

(
0 < |Q̄b,0 − η| ≤ q

)
.

Above (3.13) holds because C3) implies that Pr0(Q̄b,0 = η) = 0, (3.14) holds because Zn(η) =
1 implies that |Q̄b,n−Q̄b,0| ≥ |Q̄b,0−η|, and the final inequality holds by Markov’s inequality.
The lemma assumes that E0|Q̄b,n− Q̄b,0| = oP0(1), and thus we can choose a sequence qn ↓ 0
such that

Tn(η) ≤ Pr0

(
0 < |Q̄b,0 − η| ≤ qn

)
+ oP0(1).

To see that the first term on the right is o(1), note that Pr0(Q̄b,0 = η) = 0 combined with
the continuity of S0 on N yield that, for n large enough,

Pr0

(
0 < |Q̄b,0 − η| ≤ qn

)
= S0(−qn + η)− S0(qn + η).

The right-hand side is o(1), and thus Tn(η) = oP0(1). Plugging this into (3.12) shows that
Sn(η)→ S0(η) in probability. Recall that η ∈ N was arbitrary.

Fix γ > 0. For γ small enough, η0−γ and η0 +γ are contained in N . Thus Sn(η0−γ)→
S0(η0−γ) and Sn(η0+γ)→ S0(η0+γ) in probability. Further, S0(η0−γ) > κ by the definition
of η0 and S0(η0 + γ) < κ by Condition C2). It follows that, with probability approaching
1, Sn(η0 − γ) > κ and Sn(η0 + γ) < κ. But |ηn − η0| > γ implies that Sn(η0 − γ) ≤ κ or
Sn(η0 + γ) > κ, and thus |ηn − η0| ≤ γ with probability approaching 1. Thus ηn → η0 in
probability, and τn → τ0 by the continuous mapping theorem.
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Chapter 4

Inference for Infinite-Dimensional
Parameters

4.1 Introduction

In this chapter, we present a general confidence procedure for testing that a possibly un-
known (but estimable function) has the same distribution as another possibly unknown (but
estimable) function when applied to the observed data structure. To reduce the risk of deriv-
ing misleading conclusions due to model misspecification, it is appealing to employ flexible
statistical learning tools to estimate these unknown functions. Unfortunately, inference is
usually extremely difficult when such techniques are used, because the resulting estimators
tend to be highly irregular. In the context of individualized medicine, this procedure can
be used to test whether or not the conditional average treatment effect function, which is
unknown but estimable from a sample of i.i.d. observations, is equal almost surely to zero.
We will formally define the conditional average treatment effect, also known as the blip
function, later in this Introduction. Throughout this chapter, we refer to this example as
our Motivating Example. In fact, the methods of this chapter can be used to test if the blip
function is almost surely equal to any fixed function f . Thus, as we note in the discussion,
this allows the user to construct a confidence set for this infinite-dimensional parameter.

Because most of this chapter is written in a more general setting than previous chapters,
we change a few of the notation restrictions introduced in Chapter 1. We still assume
that the observed data is given by O1, . . . , On drawn i.i.d. from some distribution P0, but
we now assume that the model M to which P0 belongs is fully (locally) nonparametric.
Furthermore, we remove the restriction that O must take the form (W,A, Y ) for covariates
W , binary treatment A, and outcome Y : while the support O of O takes this form in the
examples we consider in this chapter, our general presentation of this approach does not
make any assumptions on O.

We now formulate the problem that this chapter considers statistically. Suppose that
P 7→ SP and P 7→ RP are parameters mapping from M onto the space of univariate
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bounded real-valued measurable functions defined on O. For brevity, we will write R0 , RP0

and S0 , SP0 . Our objective is to test the null hypothesis

H0 : R0(O)
d
= S0(O)

versus the complementary alternative H1 : not H0, where O follows the distribution P0 and

the symbol
d
= denotes equality in distribution. We note that R0(O)

d
=S0(O) if R0 ≡ S0, i.e.

R0(O) = S0(O) almost surely, but not conversely. The case where S0 ≡ 0 is of particular
interest since then the null simplifies to H0 : R0 ≡ 0. Because P0 is unknown, R0 and S0 are
not readily available. Nevertheless, the observed data can be used to estimate P0 and hence
each of R0 and S0. The approach we propose will apply to functionals within a specified
class described later.

Before presenting our general approach, we describe some motivating examples. Consider
the data structure O = (W,A, Y ), where W is a collection of covariates, A is binary treatment
indicator, and Y is a bounded outcome, and suppose that O is distributed according to P .

Example 1 (Motivating Example): Testing a null conditional average treatment
effect.

We have already briefly introduced this example, but now we do so with notation. Let
RP be the blip function, i.e.

RP (o) , EP (Y | A = 1,W = w)− EP (Y | A = 0,W = w) ,

and let SP ≡ 0. In this case the null hypothesis corresponds to the absence of a
conditional average treatment effect.

Example 2: Testing for equality in distribution of regression functions in two popula-
tions.

Suppose the setting of the previous example, but where A represents membership to
population 0 or 1. Let

RP (o) , EP (Y | A = 1,W = w) ,

SP (o) , EP (Y | A = 0,W = w) .

In this case the null hypothesis corresponds to the outcome having the conditional mean
functions, applied to a random draw of the covariate, having the same distribution
in these two populations. We note here that our formulation considers selection of
individuals from either population as random rather than fixed so that population-
specific sample sizes (as opposed to the total sample size) are themselves random. The
same interpretation could also be used for the previous example, now testing if the two
regression functions are equivalent.
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Example 3: Testing a null covariate effect on average response.

Suppose now that the data unit only consists of O , (W,Y ). If RP (o) is defined as
EP (Y | W = w) and SP ≡ 0, the null hypothesis corresponds to the outcome Y having
conditional mean zero in all strata of covariates. This may be interesting when zero
has a special importance for the outcome, such as when the outcome is the profit over
some period.

Example 4: Testing a null variable importance.

Suppose again that O , (W,Y ) and W , (W (1),W (2), . . . ,W (K)). Denote by
W (−k) the vector (W (i) : 1 ≤ i ≤ K, i 6= k). Setting RP (o) , EP (Y | W = w)
and SP (o) , EP (Y | W (−k) = w(−k)), the null hypothesis corresponds to W (k) hav-
ing null variable importance in the presence of W (−k) with respect to the conditional
mean of Y given W in the sense that EP (Y | W ) = EP (Y | W (−k)) almost surely.

This is true because if R0(W )
d
=S0(W (−k)), the latter random variables have equal

variance and so

E0 {VarP0 [R0(W ) | W (−k)]} = VarP0 [R0(W )]− VarP0 {E0 [R0(W ) | W (−k)]}
= VarP0 [R0(W )]− VarP0 [S0(W (−k))] = 0 ,

implying that VarP0 [R0(W ) | W (−k)] = 0 almost surely. Thus, a test of RP (O) equal
in distribution to SP (O) is equivalent to a test of almost sure equality between RP and
SP in this example. We will show in Section 4.6 that our approach cannot be directly
applied to this example, but that a simple extension yields a valid test.

Gretton et al. (2006) investigated the related problem of testing equality between two
distributions in a two-sample problem. They proposed estimating the maximum mean dis-
crepancy (hereafter referred to as MMD), a non-negative numeric summary that equals zero
if and only if the two distributions are equal. In this chapter, we also utilize the MMD as a
parsimonious summary of equality but consider the more general problem wherein the null
hypothesis relies on unknown functions R0 and S0 indexed by the data-generating distribu-
tion P0.

Other investigators have proposed omnibus tests of hypotheses of the form H0 versus H1

in the literature. In the setting of our Motivating Example, the work presented in Racine
et al. (2006) and Lavergne et al. (2015) is particularly relevant. The null hypothesis of interest
in these papers consists of the equality E0[Y |A,W ] = E0[Y |W ] holding almost surely. If
individuals have a nontrivial probability of receiving treated in all strata of covariates, this
null hypothesis is equivalent to H0. In both of these papers, kernel smoothing is used
to estimate the required regression functions. Therefore, key smoothness assumptions are
needed for their methods to yield valid conclusions. The method we present does not hinge
on any particular class of estimators and therefore does not rely on this condition.

The chapter is organized as follows. In Section 4.2, we formally present our parameter
of interest, the squared MMD between two unknown functions. In Section 4.3 we estab-
lish asymptotic representations for this parameter based on its higher-order differentiability,
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which, as we formally establish, holds even when the MMD involves estimation of unknown
nuisance parameters. In Section 4.4, we discuss estimation of this parameter, discuss the
corresponding hypothesis test and study its asymptotic behavior under the null. We study
the consistency of our proposed test under fixed and local alternatives in Section 4.5. We
revisit our Motivating Example in Section 4.6. In Section 4.7, we present results from a
simulation study to illustrate the finite-sample performance of our test, and we end with
concluding remark in Section 4.8.

All proofs of our results can be found in Section 4.9.

4.2 Definition of the maximum mean discrepancy

For a distribution P and mappings T and U , we define

ΦTU(P ) ,
∫∫

e−[TP (o1)−UP (o2)]2dP (o1)dP (o2) (4.1)

and set Θ(P ) , ΦRR(P ) − 2ΦRS(P ) + ΦSS(P ). The MMD between the distributions of
RP (O) and SP (O) when O ∼ P is given by

√
Θ(P ) and is always well-defined because

Θ(P ) is non-negative. Indeed, denoting by θ0 the true parameter value Θ(P0), Theorem 3
of Gretton et al. (2006) establishes that θ0 equals zero if H0 holds and is otherwise strictly
positive. Though the study in Gretton et al. (2006) is restricted to two-sample problems,
their proof of this result is only based upon properties of Θ and therefore holds regardless
of the sample collected. Their proof relies on the fact that two random variables X and Y
with compact support are equal in distribution if and only if E[f(Y )] = E[f(X)] for every
continuous function f , and uses techniques from the theory of Reproducing Kernel Hilbert
Spaces (see, e.g., Berlinet and Thomas-Agnan, 2011, for a general exposition). We invite
interested readers to consult Gretton et al. (2006) – and, in particular, Theorem 3 therein
– for additional details. The definition of the MMD we utilize is based on the univariate
Gaussian kernel with unit bandwidth, which is appropriate in view of Steinwart (2002). The
results we present in this chapter can be generalized to the MMD based on a Gaussian kernel
of arbitrary bandwidth by simply rescaling the mappings R and S.

4.3 Differentiability of the parameter of interest

Review of first- and second-order pathwise differentiability

We review the definitions of first- and second-order pathwise differentiability before showing
that the MMD parameter Θ is sufficiently smooth to have these derivatives exist. Define the
following fluctuation submodel:

dPt(o) ,
(
1 + th1(o) + t2h2(o)

)
dP0(o),

where P0hj = 0 and sup
o∈O
|hj(o)| <∞, j = 1, 2.
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The function h1 is a score, and the closure of the linear span of all such scores yields the
unrestricted tangent space L2

0(P0), i.e. the set of P0 mean zero functions in L2(P0).
Let θt , Θ(Pt). The parameter Θ is called (first-order) pathwise differentiable at P0 if

there exists a DΘ
1 ∈ L2

0(P0) such that

θt − θ0 = tP0D
Θ
1 h1 + o(t).

We call DΘ
1 the first-order canonical gradient of Θ at P0, where we note that DΘ

1 (O) is almost
surely unique because M is nonparametric. The canonical gradient DΘ

1 depends on P0 but
this is omitted in the notation because we will only discuss pathwise differentiability at P0.

A function f : O2 → R is called (P ) one-degenerate if it is symmetric and Pf(o, ·) = 0.
We will use the notation P 2f = EP 2 [f(O1, O2)]. The parameter Θ is called second-order
pathwise differentiable at P0 if there exists some symmetric, one-degenerate, P 2

0 square
integrable function DΘ

2 such that

θt − θ0 =tP0D
Θ
1 h1 +

1

2
t2P0D

Θ
1 h2 +

1

2
t2
∫ ∫

DΘ
2 (o1, o2)h1(o1)h1(o2)dP0(o2)dP0(o1) + o(t2).

First-order differentiability

To develop a test of H0, we will first construct an estimator θn of θ0. In order to avoid
restrictive model assumptions, we wish to use flexible estimation techniques in estimating
P0 and therefore θ0. To control the operating characteristics of our test, it will be crucial
to understand how to generate a parametric-rate estimator of θ0. For this purpose, it is
informative to first investigate the pathwise differentiability of Θ as a parameter fromM to
R.

So far, we have not specified restrictions on the mappings RP and SP . However, in
our developments, we will require these mappings to satisfy certain regularity conditions.
Specifically, we will restrict our attention to elements of the class S of all mappings T for
which there exists some measurable function XT defined on O such that

(S1) TP is a measurable mapping with domain {XT (o) : o ∈ O} and range contained in
[−b, b] for some 0 ≤ b <∞ independent of P ;

(S2) there exists some δ > 0 and a set O1 ⊆ O with P0(O1) = 1 such that, for all (o, t1) ∈
O1× (−δ, δ), t 7→ TPt(x

T ) is twice differentiable at t1 with uniformly bounded first and
second derivatives;

(S3) for any P ∈M and submodel dPt/dP = 1 + th for uniformly bounded h with Ph = 0,
there exists a function DT

P : O → R uniformly bounded (in P and o) such that∫
DT
P (o)dP (o|xT ) = 0 for almost all o ∈ O and

d

dt
TPt(x

T )

∣∣∣∣
t=0

=

∫
DT
P (o)h(o)dP (o|xT ) .
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Condition (S1) ensures that T is bounded and only relies on a summary measure of an
observation O. Condition (S2) ensures that we will be able to interchange differentiation and
integration when needed. Condition (S3) is a conditional (and weaker) version of pathwise
differentiability in that the typical inner product representation only needs to hold for the
conditional distribution of O given XT under P0. This concept is discussed further below.
We will verify in Section 4.6 that these conditions hold in the context of the motivating
examples presented earlier.

Remark 1. As a caution to the reader, we warn that simultaneously satisfying (S1) and (S3)
may at times be restrictive. For example, if the observed data unit is O , (W (1),W (2), Y ),
the parameter

TP (o) , EP [Y | W (1) = w(1),W (2) = w(2)]− EP [Y | W (1) = w(1)]

cannot generally satisfy both conditions. Section 4.6 provides a means to tackle this problem
using the techniques we have developed. In concluding remarks, we discuss a weakening of
our conditions, notably by replacing S by the linear span of elements in S. Consideration
of this larger class significantly complicates the form of the estimator we propose in Section
4.4. 2

We are now in a position to discuss the pathwise differentiability of Θ. For any elements
T, U ∈ S, we define

ΓTUP (o1, o2) ,

[
2 [TP (o1)− UP (o2)]

[
DU
P (o2)−DT

P (o1)
]

+ 1

−
{

4 [TP (o1)− UP (o2)]2 − 2
}
DT
P (o1)DU

P (o2)

]
e−[TP (o1)−UP (o2)]2 .

and set ΓP , ΓRRP − ΓRSP − ΓSRP + ΓSSP . Note that ΓP is symmetric for any P ∈ M. For
brevity, we will write ΓTU0 and Γ0 to denote ΓTUP0

and ΓP0 , respectively. The following theorem
characterizes the first-order behavior of Θ at an arbitrary P ∈M.

Theorem 11 (First-order pathwise differentiability of Θ overM). If R, S ∈ S, the parameter
Θ :M→ R is pathwise differentiable at P ∈M with first-order canonical gradient given by
DΘ

1 (P )(o) , 2
[∫

ΓP (o, o2)dP (o2)−Θ(P )
]
.

Under some conditions, it is straightforward to construct an asymptotically linear esti-
mator of θ0 with influence function DΘ

1 (P0), that is, an estimator θn of θ0 such that

θn − θ0 =
1

n

n∑
i=1

DΘ
1 (P0)(Oi) + oP0(n

−1/2) .

For example, the one-step Newton-Raphson bias correction procedure (see, e.g., Pfanzagl,
1982) or targeted minimum loss-based estimation (see, e.g., van der Laan and Rose, 2011) can
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be used for this purpose. If the above representation holds and the variance of DΘ
1 (P0)(O)

is positive, then
√
n (θn − θ0)  N(0, σ2

0), where the symbol  denotes convergence in
distribution and we write σ2

0 , P0

[
DΘ

1 (P0)2
]
. If σ0 is strictly positive and can be consistently

estimated, Wald-type confidence intervals for θ0 with appropriate asymptotic coverage can
be constructed.

The situation is more challenging if σ0 = 0. In this case,
√
n (θn − θ0)→ 0 in probability

and typical Wald-type confidence intervals will not be appropriate. Because DΘ
1 (P0)(O) has

mean zero under P0, this happens if and only if DΘ
1 (P0) ≡ 0. The following lemma provides

necessary and sufficient conditions under which σ0 = 0.

Corollary 2 (First-order degeneracy under H0). If R, S ∈ S, it will be the case that σ0 = 0
if and only if either (i) H0 holds, or (ii) R0(O) and S0(O) are degenerate with DR

0 ≡ DS
0 .

The above results rely in part on knowledge of DR
0 and DS

0 . It is useful to note that, in
some situations, the computation of DT

P (o) for a given T ∈ S and P ∈M can be streamlined.
This is the case, for example, if P 7→ TP is invariant to fluctuations of the marginal distribu-
tion of XT , as it seems (S3) may suggest. Consider obtaining i.i.d. samples of increasing size
from the conditional distribution of O given XT = xT under P , so that all individuals have
observed XT = xT . Consider the fluctuation submodel dPt(o|xT ) , [1 + th(o)] dP (o|xT ) for
the conditional distribution, where h is uniformly bounded and

∫
h(o)dP (o|xT ) = 0. Sup-

pose that (i) P 7→ TP (xT ) is differentiable at t = 0 with respect to the above submodel and
(ii) this derivative satisfies the inner product representation

d

dt
TPt(x

T )

∣∣∣∣
t=0

=

∫
D̃T
P (o|xT )h(o)dP (o|xT )

for some uniformly bounded function o 7→ D̃T
P (o|xT ) with

∫
D̃T
P (o|xT )dP (o|xT ) = 0. If the

above holds for all xT , we may take DT
P (o) = D̃T

P (o|xT ) for all o with XT (o) = xT . If DT
P is

uniformly bounded in P , (S3) then holds.
In summary, the above discussion suggests that, if T is invariant to fluctuations of the

marginal distribution of XT , (S3) can be expected to hold if there exists a regular, asymptot-
ically linear estimator of each TP (xT ) under i.i.d. sampling from the conditional distribution
of O given XT = xT implied by P .

Remark 2. If T is invariant to fluctuations of the marginal distribution of XT , one can
also expect (S3) to hold if P 7→

∫
TP (XT (o))dP (o) is pathwise differentiable with canonical

gradient uniformly bounded in P and o in the model in which the marginal distribution of
X is known. The canonical gradient in this model is equal to DT

P . 2

Second-order differentiability and asymptotic representation

As indicated above, if σ0 = 0, the behavior of Θ around P0 cannot be adequately character-
ized by a first-order analysis. For this reason, we must investigate whether Θ is second-order



CHAPTER 4. INFERENCE FOR INFINITE-DIMENSIONAL PARAMETERS 67

differentiable. As we discuss below, under H0, Θ is indeed second-order pathwise differen-
tiable at P0 and admits a useful second-order asymptotic representation.

Theorem 12 (Second-order pathwise differentiability under H0). If R, S ∈ S and H0 holds,
the parameter Θ : M → R is second-order pathwise differentiable at P0 with second-order
canonical gradient DΘ

2 (P0) , 2Γ0.

It is easy to confirm that Γ0, and thus DΘ
2 , is one-degenerate under H0 in the sense

that
∫

Γ0(o, o2)dP0(o2) =
∫

Γ0(o1, o)dP0(o1) = 0 for all o. This is shown as follows. For any
T, U ∈ S, the law of total expectation conditional on XU and fact that

∫
DU

0 (o)dP0(o|xU) = 0
yields that∫

ΓTU0 (o, o2)dP0(o2) =

∫ {
1− 2 [T0(o)− U0(o2)]DT

0 (o)
}
e−[T0(o)−U0(o2)]2dP0(o2) ,

where we have written ΓTU0 to denote ΓTUP0
. Since

∫
f(R0(o))dP0(o) =

∫
f(S0(o))dP0(o) for

each measurable function f when S0(O)
d
=T0(O), this then implies that

∫
ΓRS0 (o, o2)dP0(o2) =∫

ΓRR0 (o, o2)dP (o2) and
∫

ΓSR0 (o, o2)dP0(o2) =
∫

ΓSS0 (o, o2)dP0(o2) under H0. Hence, it fol-
lows that

∫
Γ0(o, o2)dP0(o2) = 0 under H0 for any o.

If second-order pathwise differentiability held in a sufficiently uniform sense overM, we
would expect

RemΘ
P , Θ(P )−Θ(P0)− (P − P0)DΘ

1 (P ) +
1

2
(P − P0)2DΘ

2 (P ) (4.2)

to be a third-order remainder term. However, second-order pathwise differentiable has only
been established under the null, and in fact, it appears that Θ may not generally be second-
order pathwise differentiable under the alternative. As such, DΘ

2 may not even be defined
under the alternative. In writing (4.2), we either naively set DΘ

2 (P ) , 2ΓP , which is not
appropriately centered to be a candidate second-order gradient, or instead take DΘ

2 to be the
centered extension (o1, o2) 7→ 2

[
ΓP (o1, o2)−

∫
ΓP (o1, o)dP (o)−

∫
ΓP (o, o2)dP (o) + P 2ΓP

]
.

Both of these choices yield the same expression above because the product measure (P−P0)2

is self-centering. The need for an extension renders it a priori unclear whether as P tends
to P0 the behavior of RemΘ

P is similar to what is expected under more global second-order
pathwise differentiability. Using the fact that Θ(P ) = P 2ΓP , we can simplify the expression
in (4.2) to

RemΘ
P = P 2

0 ΓP − θ0 . (4.3)

As we discuss below, this remainder term can be bounded in a useful manner, which allows
us to determine that it is indeed third-order.

For all T ∈ S, P ∈M and o ∈ O, we define

RemT
P (o) , TP (o)− T0(o) +

∫
DT
P (o1)

[
dP (o1|xT )− dP0(o1|xT )

]
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as the remainder from the linearization of T based on the conditional gradient DT
P . Typically,

RemT
P (o) is a second-order term. Further consideration of this term in the context of our

motivating examples is described in Section 4.6. Furthermore, we define

LRSP (o) , max
{
|RemR

P (o)|, |RemS
P (o)|

}
MRS

P (o) , max {|RP (o)−R0(o)|, |SP (o)− S0(o)|} .

For any given function f : O → R, we denote by ‖f‖p,P0
,
[∫
|f(o)|pdP0(o)

]1/p
the Lp(P0)-

norm and use the symbol . to denote ‘less than or equal to up to a positive multiplicative
constant’. The following theorem provides an upper bound for the remainder term of interest.

Theorem 13 (Upper bounds on remainder term). For each P ∈ M, the remainder term
admits the following upper bounds:

Under H0 : |RemΘ
P | . K0P ,

∥∥LRSP ∥∥2,P0

∥∥MRS
P

∥∥
2,P0

+
∥∥LRSP ∥∥2

1,P0
+
∥∥MRS

P

∥∥4

4,P0

Under H1 : |RemΘ
P | . K1P ,

∥∥LRSP ∥∥1,P0
+
∥∥MRS

P

∥∥2

2,P0
.

To develop a test procedure, we will require an estimator of P0, which will play the
role of P in the above expressions. It is helpful to think of parametric model theory when
interpreting the above result, with the understanding that certain smoothing methods, such
as higher-order kernel smoothing, can achieve near-parametric rates in certain settings. In
a parametric model, we could often expect

∥∥LRSP ∥∥p,P0
and

∥∥MRS
P

∥∥
p,P0

to be OP0(n
−1) and

OP0(n
−1/2), respectively, for p ≥ 1. Thus, the above theorem suggests that the approximation

error may be OP (n−3/2) in a parametric model under H0. In some examples, it is reasonable
to expect that LRSP ≡ 0 for a large class of distributions P . In such cases, the upper bound on

RemΘ
P simplifies to

∥∥MRS
P

∥∥4

4,P0
under H0, which under a parametric model is often OP0(n

−2).

4.4 Proposed test: formulation and inference under

the null

Formulation of test

We begin by constructing an estimator of θ0 from which a test can then be devised. Using
the fact that Θ(P ) = P 2ΓP , as implied by (4.3), we note that if Γ0 were known, the U-
statistic UnΓ0 would be a natural estimator of θ0, where Un denotes the empirical measure
that places equal probability mass on each of the n(n − 1) points (Oi, Oj) with i 6= j. In
practice, Γ0 is unknown and must be estimated. This leads to the estimator θn , UnΓn,
where we write Γn , ΓP̂n for some estimator P̂n of P0 based on the available data. Since a
large value of θn is inconsistent with H0, we will reject H0 if and only if θn > cn for some
appropriately chosen cutoff cn.
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In the nonparametric model considered, it may be necessary, or at the very least desirable,
to utilize a data-adaptive estimator P̂n of P0 when constructing Γn. Studying the large-
sample properties of θn may then seem particularly daunting since at first glance we may
be led to believe that the behavior of θn − θ0 is dominated by P 2

0 (Γn − Γ0). However, this
is not the case. As we will see, under some conditions, θn − θ0 will approximately behave
like (Un − P 2

0 ) Γ0. Thus, there will be no contribution of P̂n to the asymptotic behavior
of θn − θ0. Though this result may seem counterintuitive, it arises because Θ(P ) can be
expressed as P 2ΓP with ΓP a second-order gradient (or rather an extension thereof) up to a
proportionality constant. More concretely, this surprising finding is a direct consequence of
(4.3).

Remark 3. As further support that θn may indeed be expected to have good properties,
even when a data-adaptive estimator P̂n of P0 has been used, we note that θn could also have
been derived using a second-order one-step Newton-Raphson construction, as described in
Robins et al. (2008). The latter is given by

θn,NR , Θ(P̂n) + PnD
Θ
1 (P̂n) +

1

2
UnD

Θ
2 (P̂n) ,

where we use the centered extension of DΘ
2 as discussed in Section 4.3. Here and throughout,

Pn denotes the empirical distribution. It is straightforward to verify that indeed θn =
θn,NR. 2

Inference under the null

Asymptotic behavior

For each P ∈M, we let Γ̃P be the P0-centered modification of ΓP given by

(o1, o2) 7→ Γ̃P (o1, o2) , ΓP (o1, o2)−
∫

ΓP (o1, o)dP0(o)−
∫

ΓP (o, o2)dP0(o) + P 2
0 ΓP

and denote Γ̃P0 by Γ̃0. While Γ̃0 = Γ0 under H0, this is not true more generally. Below, we
use RemΘ

n and Γ̃n to respectively denote RemΘ
P and Γ̃P evaluated at P = P̂n. Straightforward

algebraic manipulations allows us to write

θn − θ0 = UnΓn − θ0 = UnΓn − P 2
0 Γn + P 2

0 Γn − θ0

=
(
Un − P 2

0

)
Γn + RemΘ

n

= UnΓ0 + 2 (Pn − P0)P0Γn + Un

(
Γ̃n − Γ0

)
+ RemΘ

n . (4.4)

Our objective is to show that n (θn − θ0) behaves like nUnΓ0 as n gets large under H0. In
view of (4.4), this will be true, for example, under conditions ensuring that

C1) n(Pn − P0)P0Γn = oP0(1) (empirical process and consistency conditions);
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C2) nUn

(
Γ̃n − Γ0

)
= oP0(1) (U -process and consistency conditions);

C3) nRemΘ
n = oP0(1) (consistency and rate conditions).

We have already argued that C3) is reasonable in many examples of interest, including those
presented in this chapter. Nolan and Pollard (1987, 1988) developed a formal theory that
controls terms of the type appearing in C2). In the Supplementary Material of Luedtke
et al. (2015), we restate specific results from these authors which are useful to to study C2).
Finally, the following lemma gives sufficient conditions under which C1) holds. We first set

K1n ,
∥∥∥LRS

P̂n

∥∥∥
1,P0

+
∥∥∥MRS

P̂n

∥∥∥2

2,P0

.

Lemma 5 (Sufficient conditions for C1)). Suppose that o1 7→
∫

Γn(o1, o)dP0(o)/K1n, defined
to be zero if K1n = 0, belongs to a P0-Donsker class with probability tending to 1. Then,
under H0,

(Pn − P0)P0Γn = OP0

(
K1n√
n

)
and thus C1) holds whenever K1n = oP0(n

−1/2).

The following theorem describes the asymptotic distribution of nθn under the null hy-
pothesis whenever conditions C1), C2) and C3) are satisfied.

Theorem 14 (Asymptotic distribution under H0). Suppose that C1), C2) and C3) hold.
Then, under H0,

nθn = nUnΓ0 + oP0(1) 
∞∑
k=1

λk
(
Z2
k − 1

)
,

where {λk}∞k=1 are the eigenvalues of the integral operator h(o) 7→
∫

Γ0(o1, o)h(o)dP0(o1)
repeated according to their multiplicity, and {Zk}∞k=1 is a sequence of independent standard
normal random variables. Furthermore, all of these eigenvalues are nonnegative under H0.

We note that by employing a sample splitting procedure – namely, estimating Γ0 on
one portion of the sample and constructing the U -statistic based on the remainder of the
sample – it is possible to eliminate the U -process conditions required for C2). In such a case,
satisfaction of C2) only requires convergence of Γ̃n to Γ0 with respect to the L2(P 2

0 )-norm.

Estimation of the test cutoff

As indicated above, our test consists of rejecting H0 if and only if θn is larger than some
cutoff cn. We wish to select cn to yield a non-conservative test at level α ∈ (0, 1). In view
of Theorem 14, denoting by q1−α the 1− α quantile of the described limit distribution, the
cutoff cn should be chosen to be q1−α/n. We thus reject H0 if and only if nθn > q1−α. As
described in the following corollary, q1−α admits a very simple form when SP ≡ 0 for all P .
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Corollary 3 (Asymptotic distribution under H0, S degenerate). Suppose that C1), C2) and
C3) hold, that SP ≡ 0 for all P ∈M, and that σ2

R , VarP0

[
DR

0 (O)
]
> 0. Then, under H0,

nθn
2σ2

R

 Z2 − 1,

where Z is a standard normal random variable. It follows then that q1−α = 2σ2
R(z2

1−α/2 − 1),

where z1−α/2 is the (1− α/2) quantile of the standard normal distribution.

The above corollary gives an expression for q1−α that can easily be consistently estimated
from the data. In particular, one can use q̂1−α , 2(z2

1−α/2 − 1)PnD
R(P̂n)2 as an estimator

of q1−α, whose consistency can be established under a Glivenko-Cantelli and consistency
condition on the estimator of DR

0 . However, in general, such a simple expression will not
exist. Gretton et al. (2009) proposed estimating the eigenvalues νk of the centered Gram
matrix and then computing λ̂k , νk/n. In our context, the eigenvalues νk are those of the
n× n matrix G , {Gij}1≤i,j≤n with entries defined as

Gij , Γn(Oi, Oj)−
1

n

n∑
k=1

Γn(Ok, Oj)−
1

n

n∑
`=1

Γn(Oi, O`) +
1

n2

n∑
k=1

n∑
`=1

Γn(Ok, O`) . (4.5)

Given these n eigenvalue estimates λ̂1, ..., λ̂n, one could then simulate from
∑n

k=1 λ̂k(Z
2
k − 1)

to approximate
∑∞

k=1 λk(Z
2
k − 1). While this seems to be a plausible approach, a formal

study establishing regularity conditions under which this procedure is valid is beyond the
scope of this chapter. We note that it also does not fall within the scope of results in Gretton
et al. (2009) since their kernel does not depend on estimated nuisance parameters. We refer
the reader to Franz (2006) for possible sufficient conditions under which this approach may
be valid.

In practice, it suffices to give a data-dependent asymptotic upper bound on q1−α. We
will refer to q̂ub1−α, which depends on Pn, as an asymptotic upper bound of q1−α if

lim sup
n→∞

Pr0

(
nθn > q̂ub1−α

)
≤ 1− α . (4.6)

If q1−α is consistently estimated, one possible choice of q̂ub1−α is this estimate of q1−α – the
inequality above would also become an equality provided the conclusion of Theorem 14 holds.
It is easy to derive a data-dependent upper bound with this property using Chebyshev’s
inequality. To do so, we first note that

VarP0

[
∞∑
k=1

λk
(
Z2
k − 1

)]
=

∞∑
k=1

λ2
k VarP0

(
Z2
k

)
= 2

∞∑
k=1

λ2
k = 2P 2

0 Γ2
0 ,

where we have interchanged the variance operation and the limit using the L2 martingale
convergence theorem and the last equality holds because λk, k = 1, 2, . . ., are the eigenvalues
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of the Hilbert-Schmidt integral operator with kernel Γ̃0. Under mild regularity conditions,
P 2

0 Γ2
0 can be consistently estimated using UnΓ2

n. Provided P 2
0 Γ2

0 > 0, we find that

(
2UnΓ2

n

)−1/2
nθn  

(
2P 2

0 Γ2
0

)−1/2
∞∑
k=1

λk
(
Z2
k − 1

)
, (4.7)

where the limit variate has mean zero and unit variance. The following theorem gives a valid
choice of q̂ub0.95.

Theorem 15. Suppose that C1), C2) and C3) hold. Then, under H0 and provided UnΓ2
n →

P 2
0 Γ2

0 > 0 in probability, q̂ub0.95 , 6.2 · (UnΓ2
n)

1/2
> q0.95 is a valid upper bound in the sense of

(4.6).

The proof of the result follows immediately by noting that P (X > t) ≤ (1 + t2)−1 for any
random variable X with mean zero and unit variance in view of the one-sided Chebyshev’s
inequality. This illustrates concretely that we can obtain a consistent test that controls type
I error. In practice, we recommend either using the result of Corollary 3 whenever possible
or estimating the eigenvalues of the matrix in (4.5). Nonetheless, we generally recommend
either using the result of Corollary 3 whenever possible or estimating the eigenvalues of the
matrix in (4.5).

We note that the condition σ2
R > 0 holds in many but not all examples of interest.

Fortunately, the plausibility of this assumption can be evaluated analytically. In Section 4.6,
we show that this condition does not hold in Example 4 and provide a way forward despite
this.

4.5 Asymptotic behavior under the alternative

Consistency under a fixed alternative

We present two analyses of the asymptotic behavior of our test under a fixed alternative.
The first relies on P̂n providing a good estimate of P0. Under this condition, we give an inter-
pretable limit distribution that provides insight into the behavior of our estimator under the
alternative. As we show, surprisingly, P̂n need not be close to P0 to obtain an asymptotically
consistent test, even if the resulting estimate of θ0 is nowhere near the truth. In the second
analysis, we give more general conditions under which our test will be consistent under H1.

Nuisance functions have been estimated well

As we now establish, our test has power against all alternatives P0 except for the fringe cases
discussed in Corollary 2 with Γ0 one-degenerate. We first note that

θn − θ0 = UnΓn − θ0 = 2(Pn − P0)P0Γn + UnΓ̃n + RemΘ
P .
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When scaled by
√
n, the leading term on the right-hand side follows a mean zero normal

distribution under regularity conditions. The second summand is typically OP0(n
−1) under

certain conditions, for example, on the entropy of the class of plausible realizations of the
random function (o1, o2) 7→ Γn(o1, o2) (Nolan and Pollard, 1987, 1988). In view of the
second statement in Theorem 13, the third summand is a second-order term that will often be
negligible, even after scaling by

√
n. As such, under certain regularity conditions, the leading

term in the representation above determines the asymptotic behavior of θn, as described in
the following theorem.

Theorem 16 (Asymptotic distribution under H1). Suppose that K1n = oP0(n
−1/2), that

UnΓ̃n = oP0(n
−1/2), and furthermore, that o 7→

∫
Γn(o1, o)dP0(o) belongs to a fixed P0-

Donsker class with probability tending to 1 while ‖P0 (Γn − Γ0)‖2,P0
= oP0(1). Under H1, we

have that
√
n (θn − θ0) N (0, τ 2), where τ 2 , 4 VarP0

[∫
Γ0(O, o)dP0(o)

]
.

In view of the results of Section 4.2, τ 2 coincides with σ2
0, the efficiency bound for regular,

asymptotically linear estimators in a nonparametric model. Hence, θn is an asymptotically
efficient estimator of θ0 under H1.

The following corollary is trivial in light of Theorem 16. It establishes that the test
nθn > q̂ub1−α is consistent against (essentially) all alternatives provided the needed components
of the likelihood are estimated sufficiently well.

Corollary 4 (Consistency under a fixed alternative). Suppose the conditions of Theorem 16.
Furthermore, suppose that τ 2 > 0 and q̂ub1−α = oP0(n). Then, under H1, the test nθn > q̂ub1−α
is consistent in the sense that

lim
n→∞

Pr0

(
nθn > q̂ub1−α

)
= 1 .

The requirement that q̂ub1−α = oP0(n) is very mild given that q1−α will be finite whenever
R, S ∈ S. As such, we would not expect q̂ub1−α to get arbitrarily large as sample size grows, at
least beyond the extent allowed by our corollary. This suggests that most non-trivial upper
bounds satisfying (4.6) will yield a consistent test.

Nuisance functions have not been estimated well

We now consider the case where the nuisance functions are not estimated well, in the sense
that the consistency conditions of Theorem 16 do not hold. In particular, we argue that
failure of these conditions does not necessarily undermine the consistency of our test. Let
q̂ub1−α be the estimated cutoff for our test, and suppose that q̂ub1−α = oP0(n). Suppose also
that P 2

0 Γn is asymptotically bounded away from zero in the sense that, for some δ > 0,
Pr0 (P 2

0 Γn > δ) tends to one. This condition is reasonable given that P 2
0 Γ0 > 0 under H1

and P̂n is nevertheless a (possible inconsistent) estimator of P0. Assuming that UnΓn =
OP0(n

−1/2), which is true under entropy conditions on Γn (Nolan and Pollard, 1987, 1988),
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we have that

Pr0

(
nθn > q̂ub1−α

)
= Pr0

(√
nUnΓn >

q̂ub1−α√
n
−
√
nP 2

0 Γn

)
−→ 1 .

We have accounted for the random n−1/2q̂ub1−α term as in the proof of Corollary 4. Of course,
this result is less satisfying than Theorem 16, which provides a concrete limit distribution.

Consistency under a local alternative

We consider local alternatives of the form

dQn(o) =
[
1 + n−1/2hn(o)

]
dP0(o),

where hn → h in L2
0(P0) for some non-degenerate h and P0 satisfies the null hypothesis H0.

Suppose that the conditions of Theorem 14 hold. By Theorem 2.1 of Gregory (1977), we
have that

nUnΓ0
Qn 

∞∑
k=1

λk
[
(Zk + 〈fk, h〉)2 − 1

]
,

where Un is the U -statistic empirical measure from a sample of size n drawn from Qn, 〈·, ·〉
is the inner product in L2(P0), Zk and λk are as in Theorem 14, and fk is the eigenfunction
corresponding to eigenvalue λk described in Theorem 14. By the contiguity of Qn, the
conditions of Theorem 14 yield that the result above also holds with UnΓ0 replaced by
UnΓn, our estimator applied to a sample of size n drawn from Qn.

If each λk is non-negative, the limiting distribution under Qn stochastically dominates the
asymptotic distribution under P0, and furthermore, if 〈fk, h〉 6= 0 for some k with λk > 0, this
dominance is strict. It is straightforward to show that, under the conditions of Theorem 14,
the above holds if and only if lim infn

√
nΘ(Qn) > 0, that is, if the sequence of alternatives is

not too hard. Suppose that q̂1−α is a consistent estimate of q1−α. By Le Cam’s third lemma,
q̂1−α is consistent for q1−α even when the estimator is computed on samples of size n drawn
from Qn rather than P0. This proves the following theorem.

Theorem 17 (Consistency under a local alternative). Suppose that the conditions of The-
orem 14 hold. Then, under H0 and provided lim infn→∞

√
nΘ(Qn) > 0, the proposed test is

locally consistent in the sense that limn→∞Qn (nθn > q̂1−α) > α.

4.6 Illustrations

We now return to each of our examples. We first show that Examples 1, 2 and 3 satisfy
the regularity conditions described in Section 4.2. Specifically, we show that all involved
parameters R and S belong to S under reasonable conditions. Furthermore, we determine
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explicit remainder terms for the asymptotic representation used in each example and de-
scribe conditions under which these remainder terms are negligible. For any T ∈ S, we will
use the shorthand notation Ṫt̃(x

T ) , d
dt
TPt(x

T )
∣∣
t=t̃

for t̃ in a neighborhood of zero.

Example 1 (Motivating Example) (Continued).
The parameter S with SP ≡ 0 belongs to S trivially, with DS

P ≡ 0. Condition (S1) holds
with xR(o) = w. Condition (S2) holds using that

Rt(w) =
1∑

a=0

(−1)a+1

∫
y

{
1 + th1(w, a, y) + t2h2(w, a, y)

1 + tE0[h1(w,A, Y )] + t2E0[h2(w,A, Y )]

}
dP0(y|a, w) . (4.8)

Since we must only consider h1 and h2 uniformly bounded, for t sufficiently small, we see that
Rt(w) is twice continuously differentiable with uniformly bounded derivatives. Condition
(S3) is satisfied by

DR
P (o) ,

2a− 1

P (A = a | W = w)
{y − EP [Y | A = a,W = w]}

and DS
P ≡ 0. If mina P (A = a | W ) is bounded away from zero with probability 1 uniformly

in P , it follows that (P, o) 7→ DR
0 (o) is uniformly bounded.

Clearly, we have that RemS
P ≡ 0. We can also verify that RemR

P (o) equals

1∑
ã=0

(−1)ãE0

{[
1− P0 (A = ã | W )

P (A = ã | W )

]
[EP (Y | A,W )− E0 (Y | A,W )]

∣∣∣∣ A = ã,W = w

}
.

The above remainder is double robust in the sense that it is zero if either the treatment
mechanism (i.e., the probability of A given W ) or the outcome regression (i.e., the expected
value of Y given A and W ) is correctly specified under P . In a randomized trial where the
treatment mechanism is known and specified correctly in P , we have that RemR

P ≡ 0 and
thus LRSP ≡ 0. More generally, an upper bound for RemR

P can be found using the Cauchy-
Schwarz inequality to relate the rate of

∥∥RemR
P

∥∥
2,P0

to the product of the L2(P0)-norm for

the difference between each of the treatment mechanism and the outcome regression under
P and P0.

Example 2 (Continued).
For (S1) we take xR = xS = w. Condition (S2) can be verified using an expression similar

to that in (4.8). Condition (S3) is satisfied by

DR
P (o) ,

a

P (A = a | W = w)
[y − EP (Y | A = a,W = w)]

DS
P (o) ,

1− a
P (A = a | W = w)

[y − EP (Y | A = a,W = w)] .
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If mina P (A = a | W ) is bounded away from zero with probability 1, both (P, o) 7→ DR
0 (o)

and (P, o) 7→ DS
0 (o) are uniformly bounded.

Similarly to Example 1, we have that RemR
P (o) is equal to

E0

{[
1− P0 (A = 1 | W )

P (A = 1 | W )

]
[EP (Y | A,W )− E0 (Y | A,W )]

∣∣∣∣ A = 1,W = w

}
.

The remainder RemS
P (o) is equal to the above display but with A = 1 replaced by A = 0.

The discussion about the double robust remainder term from Example 1 applies to these
remainders as well.

Example 3 (Continued).
The parameter S is the same as in Example 1. The parameter R satisfies (S1) with

xR(o) = w and (S2) by an identity analogous to that used in Example 1. Condition (S3) is
satisfied by DR

P (o) , y−EP (Y | W = w). By the bounds on Y , (P, o) 7→ DR
P (o) is uniformly

bounded. Here, the remainder terms are both exactly zero: RemR
P ≡ RemS

P ≡ 0. Thus, we
have that LRSP ≡ 0 in this example.

The requirement that V arP0

[
DR

0 (O)
]
> 0 in Corollary 3, and more generally that there

exist a nonzero eigenvalue λj for the limit distribution in Theorem 14 to be non-degenerate,
may at times present an obstacle to our goal of obtaining asymptotic control of the type I
error. This is the case for Example 4, which we now discuss further. Nevertheless, we show
that with a little finesse the type I error can still be controlled at the desired level for the
given test. In fact, the test we discuss has type I error converging to zero, suggesting it may
be noticeably conservative in small to moderate samples.

Example 4 (Continued).
In this example, one can take xR = w and xS = w(−k). Furthermore, it is easy to show

that

DR
P (o) = Y − EP [Y |W = w]

DS
P (o) = Y − EP [Y |W (−k) = w(−k)] .

The first-order approximations for R and S are exact in this example as the remainder terms
RemR

P and RemS
P are both zero. However, we note that if EP (Y | W ) = EP (Y | W (−k))

almost surely, it follows that DR
P ≡ DS

P . This implies that Γ0 ≡ 0 almost surely under H0.
As such, under the conditions of Theorem 14, all of the eigenvalues in the limit distribution
of nθn in Theorem 14 are zero and nθn → 0 in probability. We are then no longer able to
control the type I error at level α, rendering our proposed test invalid.

Nevertheless, there is a simple albeit unconventional way to repair this example. Let A
be a Bernoulli random variable, independent of all other variables, with fixed probability of
success p ∈ (0, 1). Replace SP with o 7→ EP (Y | A = 1,W (−k) = w(−k)) from Example 2,
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yielding then

DS
P (o) =

a

p
[y − EP (Y | A,W (−k) = w(−k))] .

It then follows that DR
0 6≡ DS

0 and in particular Γ0 is no longer constant. In this case, the
limit distribution given in Theorem 14 is non-degenerate. Consistent estimation of q1−α thus
yields a test that asymptotically controls type I error. Given that the proposed estimator
θn converges to zero faster than n−1, the probability of rejecting the null approaches zero as
sample size grows. In principle, we could have chosen any positive cutoff given that nθn → 0
in probability, but choosing a more principled cutoff seems judicious.

Because p is known, the remainder term RemS
P is equal to zero. Furthermore, in view of

the independence between A and all other variables, one can estimate E0 (Y | A = 0,W (−k))
by regressing Y on W (−k) using all of the data without including the covariate A.

4.7 Simulation studies

In simulation studies, we have explored the performance of our proposed test in the context
of our Motivating Example, and have also compared our method to the approach of Racine
et al. (2006) for which software is readily available – see, e.g., the R package np (Hayfield
and Racine, 2008). We report the results of our simulation studies in this section.

Simulation scenario 1

We use an observed data structure (W,A, Y ), where W , (W1,W2, . . . ,W5) is drawn from
a standard 5-dimensional normal distribution, A is drawn according to a Bernoulli(0.5)
distribution, and Y = µ(A,W ) + 5ξ(A,W ), where the different forms of the conditional
mean function µ(a, w) are given in Table 4.1, and ξ(a, w) is a random variate following a
Beta distribution with shape parameters α = 3 logit−1(aw2) and β = 2 logit−1[(1 − a)w1]
shifted to have mean zero.

We performed a test of the null in which µ(1,W ) is equal to µ(0,W ) almost surely as
presented in our Motivating Example. Our estimate P̂n of P0 was constructed using the
knowledge that P0 (A = 1 | W ) = 1/2, as would be available, for example, in the context
of a randomized trial. The conditional mean function µ(a, w) was estimated using the
ensemble learning algorithm Super Learner (van der Laan et al., 2007), as implemented in the
SuperLearner package (Polley and van der Laan, 2013). This algorithm was implemented
using 10-fold cross-validation to determine the best convex combination of regression function
candidates minimizing mean-squared error using a candidate library consisting of SL.rpart,
SL.glm.interaction, SL.glm, SL.earth, and SL.nnet. We used the results of Corollary 3
to evaluate significance.

We ran 1000 Monte Carlo simulations with samples of size 125, 250, 500, 1000, and 2000,
except for the np package, which we only ran for 500 Monte Carlo simulations due to its
burdensome computation time. For our Motivating Example we compared our approach
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µ(a, w)
a.s.
=

Simulation 1a m(a, w) ×
Simulation 1b m(a, w) + 0.4[aw3 + (1− a)w4]
Simulation 1c m(a, w) + 0.8aw3

Table 4.1: Conditional mean function in each of three simulation settings within simulation
scenario 1. Here, m(a, w) , 0.2 (w2

1 + w2 − 2w3w4), and the third and fourth columns indi-
cate, respectively, whether µ(1,W ) and µ(0,W ) are equal in distribution or almost surely.
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Figure 4.1: Empirical probability of rejecting the null when testing the null hypothesis that
µ(1,W )− µ(0,W ) is equal in probability to zero in Simulation 1.

with that of Racine et al. (2006) using the npsigtest function from the np package. This
requires first selecting a bandwidth, which we did using the npregbw function, specifying
that we wanted a local linear estimator and the bandwidth to be selected using the cv.aic

method (Hayfield and Racine, 2008).
Figure 4.1 displays the empirical coverage of our approach as well as that resulting from

use of the np package. At smaller sample sizes, our method does not appear to control type
I error near the nominal level. This is likely because we use an asymptotic result to compute
the cutoff, even when the sample size is small. Nevertheless, as sample size grows, the type
I error of our test approaches the nominal level. We note that in Racine et al. (2006), unlike
in our proposal, the bootstrap was used to evaluate the significance of the proposed test. It
will be interesting to see if applying a bootstrap procedure at smaller sample sizes improves
our small-sample results. At larger sample sizes, it appears that the method of Racine et al.
slightly outperforms our approach in terms of power in simulation scenarios 1a and 1b.

Simulation scenario 2: higher dimensions

We also explored the performance of our method as extended to tackle higher-dimensional
hypotheses, as discussed in Section 4.8. To do this, we used the same distribution as
for Simulation 1 but with Y now a 20-dimensional random variable. Our objective here
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Figure 4.2: Probability of rejecting the null when testing the null hypothesis that µ(1,W )−
µ(0,W ) is equal in probability to zero in Simulation 2.

was to test µ(1,W ) − µ(0,W ) is equal to (0, 0, . . . , 0) in probability, where µ(a, w) ,
(µ1(a, w), µ2(a, w), . . . , µ20(a, w)) with µj(a, w) , E0 (Yj | A = a,W = w). Conditional on
A and W , the coordinates of Y are independent. We varied the number of coordinates that
represent signal and noise. For signal coordinate j, given A and W , 20Yj was drawn from
the same conditional distribution as Y give A and W in Simulation 1c. For noise coordinate
j, given A and W , 20Yj was drawn from the same conditional distribution as Y given A and
W in Simulation 1a.

Relative to Simulation 1, we have scaled each coordinate of the outcome to be one
twentieth the size of the outcome in Simulation 1. Apart from the Gaussian kernel with
bandwidth one, which we have adopted throughout this chapter, we considered defining the
MMD with a Gaussian kernel with bandwidth 1/2. Alternatively, this could be viewed as
considering bandwidths 1/20 and 1/40 if the outcome had not been scaled by 1/20.

We ran the same Super Learner to estimate µ(1, w) as in Simulation 1, and we again
treated the probability of treatment given covariates as known. We evaluated significance
by estimating all of the positive eigenvalues of the centered Gram matrix for n = 125 and
the largest 200 positive eigenvalues of the centered Gram matrix for n > 125.

In Figure 4.2, the empirical null rejection probability is displayed for our proposed MMD
method based on bandwidths 1 and 1/2. Our proposal appears to control type I error well
at moderate to large sample sizes (i.e., n ≥ 500). We did not include the results for sample
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size 125 in the figure because type I error control was too poor. In particular, for zero signal
coordinates, the probability of rejection was 0.24 for bandwidth 1 and 0.33 for bandwidth
1/2. For a signal of 5, the empirical probability of rejection decreases between a sample size
of 250 and 500, likely due to the poor type I error control at sample size 250. Nonetheless,
this simulation shows that, overall, our method indeed has increasing power as sample size
grows or as the number of coordinates j for which µj(1,W )− µj(0,W ) not equal to zero in
probability increases. This figure also highlight that the bandwidth may be an important
determinant of finite-sample power, therefore warranting further scrutiny in future work.

4.8 Concluding remarks

We have presented a novel approach to test whether two unknown functions are equal in
distribution. Our proposal explicitly allows, and indeed encourages, the use of flexible, data-
adaptive techniques for estimating these unknown functions as an intermediate step. Our
approach is centered upon the notion of maximum mean discrepancy, as introduced in Gret-
ton et al. (2006), since the MMD provides an elegant means of contrasting the distributions
of these two unknown quantities. In their original paper, these authors showed that the
MMD, which in their context tests whether two probability distributions are equal using n
random draws from each distribution, can be estimated using a U - or V -statistic. Under
the null hypothesis, this U - or V -statistic is degenerate and converges to the true parame-
ter value quickly. Under the alternative, it converges at the standard n−1/2 rate. Because
this parameter is a mean over a product distribution from which the data were observed,
it is not surprising that a U - or V -statistic yields a good estimate of the MMD. What is
surprising is that we were able to construct an estimator with these same rates even when
the null hypothesis involves unknown functions that can only be estimated at slower rates.
To accomplish this, we used recent developments from the higher-order pathwise differentia-
bility literature. This appears to be the first use of these developments to address an open
methodological problem. Our simulation studies indicate that our asymptotic results are
meaningful in finite samples, and that in specific examples for which other methods exist,
our methods generally perform at least as well as these established, tailor-made methods. Of
course, the great appeal of our proposal is that it applies to a much wider class of problems.

We conclude with several possible extensions of our method that may increase further
its applicability and appeal.

1. Although this condition is satisfied in our Motivating Example and two of the three
other examples discussed in the introduction, requiring R and S to be in S can be
somewhat restrictive. Nevertheless, it appears that this condition may be weakened by
instead requiring membership to S∗, the class of all parameters T for which there exist
some M < ∞ and elements T 1, T 2, . . . , TM in S such that T =

∑M
m=1 T

m. While the
results in our paper can be established in a similar manner for functions in this general-
ized class, the expressions for the involved gradients are quite a bit more complicated.
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Specifically, we find that, for T, U ∈ S∗ with T =
∑M

m=1 T
m and U =

∑L
`=1 U

`, the
quantity ΓTUP (o1, o2) equals

e−[TP (o1)−UP (o2)]2 +
L∑
`=1

EP

{
2 [TP (o1)− UP (O)] e−[TP (o1)−UP (O)]2

∣∣∣XU` = xU
`

2

}
DU`

P (o2)

−
M∑
m=1

EP

{
2 [TP (O)− UP (o2)] e−[TP (O)−UP (o2)]2

∣∣∣XTm = xT
m

1

}
DTm

P (o1)

−
L∑
`=1

M∑
m=1

EP 2

[ {
4 [TP (O1)− UP (O2)]2 − 2

}
× e−[TP (O1)−UP (O2)]2

∣∣∣XT `

1 = xT
`

1 , XUm

2 = xU
m

2

]
DT `

P (o1)DUm

P (o2) .

In particular, we note the need for conditional expectations with respect to XRm and
XSm in the definition of Γ, which could render the implementation of our method more
difficult. While we believe this extension is promising, its practicality remains to be
investigated.

2. While our paper focuses on univariate hypotheses, our results can be generalized to
higher dimensions. Suppose that P 7→ RP and P 7→ SP are Rd-valued functions on O.
The class Sd of allowed such parameters can be defined similarly as S, with all original
conditions applying componentwise. The MMD for the vector-valued parameters R
and S using the Gaussian kernel is given by Θd(P ) , ΦRR

d (P ) − 2ΦRS
d (P ) + ΦSS

d (P ),
where for any T, U ∈ Sd we set

ΦTU
d (P ) ,

∫∫
e−‖TP (o1)−UP (o2)‖2dP (o1)dP (o2) .

It is not difficult to show then that, for any T, U ∈ Sd(P0), ΓTUd,P (o1, o2) is given by[
2 [TP (o1)− UP (o2)]′

[
DU
P (o2)−DT

P (o1)
]

+ 1

− 2DT
P (o1)′

{
2 [TP (o1)− UP (o2)] [TP (o1)− UP (o2)]′ − Id

}
DU
P (o2)

]
e−‖TP (o1)−UP (o2)‖2 ,

where Id denotes the d-dimensional identity matrix and A′ denotes the transpose of a
given vector A. Using these objects, the method and results presented in this chapter
can be replicated in higher dimensions rather easily.

3. Our results can be used to develop confidence sets for infinite-dimensional parameters
by test inversion. Consider a parameter T satisfying our conditions. Then one can test
if R0 , T0 − f is equal in distribution to zero for any fixed function f that does not
rely on P . Under the conditions given in this chapter, a 1− α confidence set for T0 is
given by all functions f for which we do not reject H0 at level α. The blip function
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from our Motivating Example is a particularly interesting example, since a confidence
set for this parameter can be mapped into a confidence set for the sign of the blip
function, i.e. the optimal individualized treatment strategy. We would hope that the
omnibus nature of the test implies that the confidence set does not contain functions
f that are “far away” from T0, contrary to a test which has no power against certain
alternatives. Formalization of this claim is an area of future research.

4. To improve upon our proposal for nonparametrically testing variable importance via
the conditional mean function, as discussed in Section 4.6, it may be fruitful to consider
the related Hilbert Schmidt independence criterion (Gretton et al., 2005). Higher-order
pathwise differentiability may prove useful to estimate and make inferences about this
discrepancy measure.

4.9 Proofs

For any T ∈ S, we will use the shorthand notation Tt , TPt ,
d
dt
Tt
∣∣
t=t̃
, Ṫt̃ and d2

dt2
Tt

∣∣∣
t=t̃
,

T̈t̃. Throughout the this section we use the following fluctuation submodel through P0 for
pathwise differentiability proofs:

dPt(o) ,
(
1 + th1(o) + t2h2(o)

)
dP0(o),

where P0hj = 0 and sup
o∈O
|hj(o)| <∞, j = 1, 2. (4.9)

Proofs for Section 4.2

We give two lemmas before proving Theorem 11.

Lemma 6. For any T, U ∈ S and any fluctuation submodel dPt = (1 + th1 + t2h2) dP0, we
have that, for all t̃ in a neighborhood of zero, Φ̇TU

t̃
is equal to∫ [∫

e−[Tt̃(x
T
1 )−Ut̃(xU2 )]2dPt̃(x

T
1 )

] [
h1(o2) + 2t̃h2(o2)

]
dP0(o2)

+

∫ [∫
e−[Tt̃(x

T
1 )−Ut̃(xU2 )]2dPt̃(x

U
2 )

] [
h1(o1) + 2t̃h2(o1)

]
dP0(o1)

− 2

∫∫ [
Tt̃(x

T
1 )− Ut̃(xU2 )

] [ d
dt
Tt(x

T
1 )

∣∣∣∣
t=t̃

− d

dt
Ut(x

U
2 )

∣∣∣∣
t=t̃

]
e−[Tt̃(x

T
1 )−Ut̃(xU2 )]2dPt̃(x

U
2 )dPt̃(x

T
1 ).
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Proof of Lemma 6. We have that

Φ̇TU
t̃ =

d

dt

∫∫
e−[Tt(xT1 )−Ut(xU2 )]2

{
2∏
j=1

[
1 + th1(oj) + t2h2(oj)

]}
dP0(o2)dP0(o1)

∣∣∣∣∣
t=t̃

=

∫∫
d

dt
e−[Tt(xT1 )−Ut(xU2 )]2

{
2∏
j=1

[
1 + th1(oj) + t2h2(oj)

]}∣∣∣∣∣
t=t̃

dP0(o2)dP0(o1) ,

where the derivative is passed under the integral in view of (S2). The result follows by the
chain rule.

For each T, U ∈ S, define

DTU(o) , −2ΦTU(P0) +

∫ {
2 [U0(o1)− T0(o)]DT

0 (o) + 1
}
e−[T0(o)−U0(o1)]2dP0(o1)

+

∫ {
2 [T0(o1)− U0(o)]DU

0 (o) + 1
}
e−[T0(o1)−U0(o)]2dP0(o1) .

We have omitted the dependence of DTU on P0 in the notation. We first give a key lemma
about the parameter ΦTU .

Lemma 7 (First-order canonical gradient of ΦTU). Let T and U be members of S. Then
ΦTU has canonical gradient DTU at P0.

Proof of Lemma 7. To consider first-order behavior it suffices to consider fluctuation sub-
models in which h2(o) = 0 for all o. We first derive the first-order pathwise derivative of the
parameter ΦTU at P0. Applying the preceding lemma at t̃ = 0 yields that

d

dt
ΦTU(Pt)

∣∣∣
t=0

=

∫ [∫
e−[T0(xT1 )−U0(xU2 )]2dP0(xT1 )

]
h1(o2)dP0(o2)

+

∫ [∫
e−[T0(xT1 )−U0(xU2 )]2dP0(xU2 )

]
h1(o1)dP0(o1)

− 2

∫ ∫
(T0(xT1 )− U0(xU2 ))(Ṫ0(xT1 )− U̇0(xU2 ))e−[T0(xT1 )−U0(xU2 )]2dP0(xU2 )dP0(xT1 ).

The first two terms in the last equality are equal to

First term =

∫ (
E0

[
e−[T0(XT )−U0(xU )]2

]
− EP 2

0

[
e−[T0(XT

1 )−U0(XU
2 )]2
])
h1(o)dP0(o)

Second term =

∫ (
E0

[
e−[T0(xT )−U0(XU )]2

]
− EP 2

0

[
e−[T0(XT

1 )−U0(XU
2 )]2
])
h1(o)dP0(o).
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We now look to find the portion of the canonical gradient given by the third term. We have
that

−2

∫ ∫
(T0(xT1 )− U0(xU2 ))Ṫ0(xT1 )e−[T0(xT1 )−U0(xU2 )]2dP0(xU2 )dP0(xT1 )

=

∫
2E0

[
(U0(XU)− T0(xT ))e−[T0(xT )−U0(XU )]2

]
DT

0 (o)h1(o)dP0(o)

2

∫ ∫
(T0(xT1 )− U0(xU2 ))U̇0(xU2 )e−[T0(xT1 )−U0(xU2 )]2dP0(xU2 )dP0(xT1 )

=

∫
2E0

[
(T0(XT )− U0(xU))e−[T0(XT )−U0(xU )]2

]
DU

0 (o)h1(o)dP0(o).

Collecting terms, a first-order Taylor expansion of t 7→ ΦTU(Pt) about t = 0 yields that

ΦTU(Pt)− ΦTU(P0) = tE0

[
DTU(O)h1(O)

]
+ o(t).

Thus ΦTU has canonical gradient DTU at P0.

The proof of Theorem 11 is simple given the above lemma.

Proof of Theorem 11. Lemma 7, the fact that Θ(P ) , ΦRR(P ) − 2ΦRS(P ) + ΦSS(P ), and
the linearity of differentiation immediately yield that the canonical gradient of Θ can be
written as DRR − 2DRS +DSS. Straightforward calculations show that this is equivalent to
o 7→ 2[P0Γ0(o, ·)− θ0].

We will use the following lemma in the proof of Corollary 2 to prove that R0(O) and
S0(O) are degenerate if DΘ

1 ≡ 0 and H0 does not hold. Because we were unable to find
the proof that the U -statistic kernel for estimating the MMD of two variables X and Y is
degenerate if and only if H0 holds or X and Y are degenerate, we give a proof here that
applies in a more general setting than that which we consider in this paper.

Lemma 8. Let Q be a distribution over (X, Y ) ∈ Z2, where Z is a compact metric space.
Let (x, y) 7→ k(x, y) be a universal kernel on this metric space, i.e. a kernel for which the
resulting reproducing kernel Hilbert space H is dense in the set of continuous funtions on Z
with respect to the supremum metric. Further, suppose that EQ

√
k(X,X) and EQ

√
k(Y, Y )

are finite. Finally, suppose that the marginal distribution of X under Q is different from the
marginal distribution of Y under Q.

There exists some fixed constant C such that∫
〈φ(x1)− φ(y1), φ(x2)− φ(y2)〉HdQ(x2, y2) = C (4.10)

for (Q almost) all (x1, y1) ∈ Z2 if and only if the joint distribution of (X, Y ) under Q is
degenerate at a single point. Above 〈·, ·〉H and φ(z) , k(z, ·) are the inner product and the
feature map in H, respectively.
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Proof. If Q is degenerate then clearly (4.10) holds.
If (4.10) holds, then our assumption that X has a different marginal distribution than Y

tells us that C > 0 (Gretton et al., 2012). Hence, for almost all (x1, y1),

〈φ(x1)− φ(y1), µX − µY 〉H − 〈µX − µY , µX − µY 〉H = 0,

where µX and µY in H have the property that 〈µX , f〉H = EQf(X) and 〈µY , f〉H = EQf(Y )
for all f ∈ H (Lemma 3 in Gretton et al., 2012). The above holds if and only if φ(x1)−φ(y1) =
µX − µY . Noting that µX − µY does not rely on x1, y1, it follows that φ(x1) − φ(y1) must
not rely on x1, y1 for all (x1, y1) in some Q probability one set D ⊆ Z2.

Fix a continuous function f : Z → R and x1, y1 ∈ D. For any ε > 0, the universality of
H ensures that there exists an fε ∈ H such that ‖fε − f‖∞ ≤ ε. By the triangle inequality,

|f(x1)− f(y1)− fε(x1) + fε(y1)| ≤ 2ε.

Because φ(x1) − φ(y1) is constant and f ∈ H, 〈φ(x1) − φ(y1), fε〉H = fε(x1) − fε(y1) does
not rely on x1, y1 for any ε. Furthermore, the fact that fε converges to f in supremum norm
ensures that |fε(x1)− fε(y1)| converges to a fixed quantity K (which does not rely on x1 or
y1) as ε→ 0. Applying this to the above yields that f(x1)− f(y1) = K.

As f was an arbitrary continuous function and X1 6≡ Y1, we can apply this relation to
z 7→ z and z 7→ z2 to show that x1− y1 and x1 + y1 do not rely on the choice of (x1, y1) ∈ D.
Hence (x1− y1 + x1 + y1)/2 = x1 and (x1 + y1− y1 + x1)/2 = y1 do not rely on the choice of
(x1, y1) ∈ D. This can only occur if (x1, y1) are constant over the probability 1 set D, i.e. if
Q is degenerate.

For the two-sample problem in Gretton et al. (2012), one can take Q to be a product
distribution of the marginal distribution of X and the marginal distribution of Y .

Proof of Corollary 2. We first prove sufficiency. If (i) holds, then 2DRS = DRR + DSS. It
follows that DΘ

1 ≡ 0 under H0. Now suppose (ii) holds. It is a simple matter of algebra to
verify that DRR

1 ≡ DRS
1 ≡ DSS

1 ≡ 0. Hence DΘ
1 ≡ 0, yielding the sufficiency of the stated

conditions.
We now show the necessity of the stated conditions. Suppose that σ0 = 0 and H0 does

not hold. It is easy to verify that

D̃Θ
1 , E0

[
e−[R0(O)−R0(o)]2

]
+ E0

[
e−[S0(O)−S0(o)]2

]
− E0

[
e−[R0(O)−S0(o)]2

]
− E0

[
e−[R0(o)−S0(O)]2

]
− θ0

is a first-order gradient in the model where R0 and S0 are known (possibly an inefficient
gradient depending on the form of R and S). Call the variance of this gradient σ̃0. As
the model where R0 and S0 are known is a submodel of the (locally) nonparametric model,
σ̃0 ≤ σ0, and hence σ̃0 = 0 and D̃Θ

1 ≡ 0. Now, if σ̃0 = 0 and H0 does not hold, then Lemma 8
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shows that R0(O) and S0(O) are degenerate. Finally, D̃Θ
1 ≡ 0 and the degeneracy of R0(O)

and S0(O) shows that for almost all o,

DΘ
1 (o) = 2DRS(o) = 2(s0 − r0)

(
DR

0 (o)−DS
0 (o)

)
e−[r0−s0]2 ,

where we use r0 and s0 to denote the (probability 1) values of R0(O) and S0(O). The above
is zero almost surely if and only if DR

0 ≡ DS
0 . Thus σ0 = 0 only if (i) or (ii) holds.

We give the following lemma before proving Theorem 12. Before giving the lemma, we
define the function Π : S→ R. Suppressing the dependence on P0 and h1, h2, for all V ∈ S

and t 6= 0 we define

Π(V ) , 2

∫ ∫ [
2(V0(o2)− V0(o1))V̇0(o2)h1(o2) + 2(V0(o2)− V0(o1))2V̇0(o2)2

+ h2(o2)− V̇0(o2)2 + (V0(o2)− V0(o1))V̈0(o2)
]
e−[V0(o2)−V0(o1)]2dP0(o2)dP0(o1).

Lemma 9. For any fluctuation submodel consistent with (4.9), T, U ∈ S with T0(O)
d
=U0(O),

and t ∈ R sufficiently close to zero, we have that

d2

dt2
ΦTU(Pt)

∣∣∣
t=0

= 2

∫ ∫
ΓTU0 (o1, o2)h1(o1)h1(o2)dP0(o2)dP0(o1) + Π(T ) + Π(U).

Proof. Let Ht(o) , 1 + th1(o) + t2h2(o) and Ḣt(o) , h1(o) + 2th2(o).

d2

dt2
ΦTU(Pt)

∣∣∣
t=0

=
d

dt

∫ ∫ [
Ht(o1)Ḣt(o2) + Ḣt(o1)Ht(o2)

− 2(Tt(o1)− Ut(o2))
(
Ṫt(o1)− U̇t(o2)

)
Ht(o1)Ht(o2)

]
× e−[Tt(o1)−Ut(o2)]2dP0(o2)dP0(o1)

∣∣∣
t=0

(4.11)

We will pass the derivative inside the integral using (S2) and apply the product rule. The
first term we need to consider is

d

dt

[
Ht(o1)Ḣt(o2) + Ḣt(o1)Ht(o2)− 2(Tt(o1)− Ut(o2))

(
Ṫt(o1)− U̇t(o2)

)
Ht(o1)Ht(o2)

]∣∣∣
t=0

= 2 [h2(o1) + h1(o1)h1(o2) + h2(o2)]− 2
(
Ṫ0(o1)− U̇0(o2)

)2

− 2(T0(o1)− U0(o2))
(
T̈0(o1)− Ü0(o2)

)
− 2(T0(o1)− U0(o2))

(
Ṫ0(o1)− U̇0(o2)

)
(h1(o1) + h1(o2)) .

The second is

d

dt
e−[Tt(o1)−Ut(o2)]2

∣∣∣∣
t=0

= −2(T0(o1)− U0(o2))
(
Ṫ0(o1)− U̇0(o2)

)
e−[T0(o1)−U0(o2)]2 .



CHAPTER 4. INFERENCE FOR INFINITE-DIMENSIONAL PARAMETERS 87

Returning to (4.11), this shows that d2

dt2
ΦTU(Pt)

∣∣∣
t=0

is equal to

2

∫ ∫ [
− 2(T0(o1)− U0(o2))Ṫ0(o1)h1(o1) + 2(T0(o1)− U0(o2))2Ṫ0(o1)2

+ h2(o1)− Ṫ0(o1)2 − (T0(o1)− U0(o2))T̈0(o1)
]
e−[T0(o1)−U0(o2)]2dP0(o2)dP0(o1)

+ 2

∫ ∫ [
2(T0(o1)− U0(o2))U̇0(o2)h1(o2) + 2(T0(o1)− U0(o2))2U̇0(o2)2

+ h2(o2)− U̇0(o2)2 + (T0(o1)− U0(o2))Ü0(o2)
]
e−[T0(o1)−U0(o2)]2dP0(o2)dP0(o1)

+ 2

∫ ∫ [
2(T0(o1)− U0(o2))

(
U̇0(o2)h1(o1)− Ṫ0(o1)h1(o2)

)
−
(
4(T0(o1)− U0(o2))2 − 2

)
Ṫ0(o1)U̇0(o2) + h1(o1)h1(o2)

]
e−[T0(o1)−U0(o2)]2dP0(o2)dP0(o1).

The expression inside the second pair of integrals only depends on o1 through T (o1). Thus
we can rewrite this term as E0[f(T (O1))] for a fixed function f that relies on P0, h1, h2, and
U . Under H0, we can rewrite this term as E0[f(U(O1))]. That is, we can replace each T (O1)
in the second pair of integrals with U(O1). This yields Π(U). Switching the roles of o1 and
o2 in the first pair of integrals above and applying Fubini’s theorem shows that

2

∫ ∫ [
2(T0(o2)− U0(o1))Ṫ0(o2)h1(o2) + 2(T0(o2)− U0(o1))2Ṫ0(o2)2

+ h2(o2)− Ṫ0(o2)2 + (T0(o2)− U0(o1))T̈0(o2)
]
e−[T0(o2)−U0(o1)]2dP0(o2)dP0(o1).

By the same arguments used to for the second pair of integrals, the above expression is equal
to Π(T ) under H0. By (S3), the third pair of integrals can be rewritten as

2

∫ ∫ [
2(T0(o1)− U0(o2))

(
DU

0 (o2)−DT
0 (o1)

)
−
(
4(T0(o1)− U0(o2))2 − 2

)
DT

0 (o1)DU
0 (o2) + 1

]
× e−[T0(o1)−U0(o2)]2h1(o1)h1(o2)dP0(o2)dP0(o1).

Proof of Theorem 12. We start by noting that 1
2
d2

dt2
θt

∣∣∣
t=0

is equal to

1

2

[
d2

dt2
ΦTT (Pt)

∣∣∣∣
t=0

+
d2

dt2
ΦUU(Pt)

∣∣∣∣
t=0

− d2

dt2
ΦTU(Pt)

∣∣∣∣
t=0

− d2

dt2
ΦUT (Pt)

∣∣∣∣
t=0

]
=

∫ ∫ [
ΓRR0 (o1, o2) + ΓSS0 (o1, o2)− ΓRS0 (o1, o2)− ΓSR0 (o1, o2)

]
h1(o1)h1(o2)dP0(o2)dP0(o1)

=
1

2

∫ ∫
DΘ

2 (o1, o2)h1(o1)h1(o2)dP0(o2)dP0(o1),
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where the penultimate equality makes use of Lemma 9. It is easy to verify that DΘ
2 (o1, o2) =

DΘ
2 (o2, o1) for all o1, o2. The arguments given below the theorem statement in the main text

establish the one-degeneracy of Γ0 under H0 show that E0[DΘ
2 (O, o)] = E0[DΘ

2 (o,O)] = 0 for
all o ∈ O under H0. Condition (S2) ensures that

∥∥DΘ
2

∥∥
2,P 2

0
<∞, and thus DΘ

2 is P 2
0 square

integrable and one-degenerate.
Because the first pathwise derivative is zero under the null, we have that

θt − θ0 =
1

2
t2
∫ ∫

DΘ
2 (o1, o2)h(o1)h(o2)dP0(o1)dP0(o2) + o(t2).

Thus DΘ
2 is a second-order canonical gradient of Θ at P0.

We give a lemma before proving Theorem 13.

Lemma 10. Fix P ∈M. For all T, U ∈ S, let

RemΦTU

P ,
∥∥LTUP ∥∥2,P0

∥∥MTU
P

∥∥
2,P0

+
∥∥RemT

P

∥∥
1,P0

∥∥RemU
P

∥∥
1,P0

+
∥∥MTU

P

∥∥4

4,P0
.

There exists a mapping ζ(P, P0, ·) : S→ R such that, for all T, U ∈ S for which T0(O is equal
in distribution to U0(O),∣∣∣P 2

0 ΓTUP − ΦTU(P0)− ζ(P, P0, T )− ζ(P, P0, U)
∣∣∣ . RemΦTU

P

Proof of Lemma 10. In this proof we use F (P, P0, T, U) to denote any constant which can be
written as ζ̃(P, P0, T ) + ζ̃(P, P0, U) for expressions ζ̃(P, P0, T ) and ζ̃(P, P0, U) which satisfy
ζ̃(P, P0, T ) = ζ̃(P, P0, U) whenever T = U . We will write

c1F (P, P0, T, U) + c2F (P, P0, T, U) = F (P, P0, T, U)

for any real numbers c1, c2. We then fix ζ to be the final instance of ζ̃ upon exiting the proof.
Fix T, U ∈ S. Let b0(o1, o2) , T0(o1) − U0(o2) and b(o1, o2) , TP (o1) − UP (o2) for any

o1, o2. For ease of notation, in the expected values below we will write B and B0 to refer to
b(O1, O2) and b0(O1, O2), respectively. We also write T for TP (O1), T0 for T0(O1), RemT

P for
RemT

P (O1), U for UP (O2), U0 for U0(O2), and RemU
P for RemU

P (O2).
We have that

P 2
0 ΓTUP − ΦTU(P0) = EP 2

0

[
e−B

2 − e−B2
0

]
+ EP 2

0

[
2B
(
DU
P (O2)−DT

P (O1)
)
e−B

2
]

− EP 2
0

[(
4B2 − 2

)
DT
P (O1)DU

P (O2)e−B
2
]

= EP 2
0

[
e−B

2 − e−B2
0

]
− EP 2

0

[
2B (B0 −B) e−B

2
]

+ EP 2
0

[
2B
(
RemU

P −RemT
P

)
e−B

2
]

− EP 2
0

[(
4B2 − 2

)
[T − T0] [U − U0] e−B

2
]

− EP 2
0

[(
4B2 − 2

) (
[T − T0] RemU

P + RemT
P [U − U0]

)
e−B

2
]

− EP 2
0

[(
4B2 − 2

)
RemT

P RemU
P e
−B2
]
.
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A third-order Taylor expansion of b0 7→ exp(−b2
0) about b0 = b yields that e−b

2−e−b20 is equal
to

2b(b0 − b)e−b
2 −

(
2b2 − 1

)
(b0 − b)2e−b

2

+
2

3
b
(
2b2 − 3

)
(b0 − b)3e−b

2

+O
(
(b0 − b)4

)
,

where the magnitude of the O((b0 − b)4) term is uniformly bounded above by C(b0 − b)4 for
some constant C > 0 when b0 and b fall in [−1, 1]. For the second-order term, we have

EP 2
0

[
−
(
2B2 − 1

)
(B0 −B)2e−B

2
]

= EP 2
0

[(
4B2 − 2

)
(T − T0) (U − U0) e−B

2
]

− EP 2
0

[(
[T − T0]2 + [U − U0]2

) (
2B2 − 1

)
e−B

2
]
.

Thus we have that

P 2
0 ΓTUP − ΦTU(P0) =EP 2

0

[
2B
(
RemU

P −RemT
P

)
e−B

2
]

+O
(
‖B −B0‖4

4,P0

)
− EP 2

0

[(
4B2 − 2

)
RemT

P RemU
P e
−B2
]

− EP 2
0

[(
[T − T0]2 + [U − U0]2

) (
2B2 − 1

)
e−B

2
]

+
2

3
E0

[
B
(
2B2 − 3

)
(B0 −B)3e−B

2
]
. (4.12)

A Taylor expansion of f1(z) = 2ze−z
2

shows that there exists a B̃1(o1, o2) that falls between
B(o1, o2) and B0(o1, o2) for all o1, o2 such that

EP 2
0

[
2B
(
RemU

P −RemT
P

)
e−B

2
]

= EP 2
0

[(
RemU

P −RemT
P

) (
2B0e

−B2
0 + (B −B0)ḟ1(B̃)

)]
= F (P, P0, T, U) + EP 2

0

[(
RemU

P −RemT
P

)
(B −B0)ḟ1(B̃)

]
, (4.13)

where the second equality holds under H0. The boundedness of ḟ1 in [−2, 2], the triangle
inequality, and the Cauchy-Schwarz inequality yield

EP 2
0

∣∣∣(RemU
P −RemT

P

)
(B −B0)ḟ1(B̃)

∣∣∣ . EP 2
0

∣∣(RemU
P −RemT

P

)
(B −B0)

∣∣
. EP 2

0

∣∣LTUP (O1)MTU
P (O2)

∣∣+ E0

∣∣LTUP ∣∣E0

∣∣MTU
P

∣∣ . ∥∥LTUP ∥∥2,P0

∥∥MTU
P

∥∥
2,P0

. (4.14)

A Taylor expansion of f2(z) = (2z2 − 1)e−z
2

yields that there exists a B̃2 that falls between
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B and B0 such that

EP 2
0

[(
[T − T0]2 + [U − U0]2

) (
2B2 − 1

)
e−B

2
]

=EP 2
0

[(
[T − T0]2 + [U − U0]2

) (
2B2

0 − 1
)
e−B

2
0

]
+ 2EP 2

0

[(
[T − T0]2 + [U − U0]2

)
(B −B0)

(
B(2B2 − 3)

)
e−B

2
]

+ EP 2
0

[(
[T − T0]2 + [U − U0]2

)
(B −B0)2 f̈2(B̃2)

2

]
.

The first line on the right is equal to F (P, P0, T, U) under H0. By the triangle inequality
and the boundedness of f̈2 on [−2, 2], the third line satisfies

EP 2
0

[(
[T − T0]2 + [U − U0]2

)
(B −B0)2 f̈2(B̃2)

2

]
.

4∑
k=0

EP 2
0

∣∣∣[T − T0]k [U − U0]4−k
∣∣∣

.
4∑

k=0

E0

∣∣[MTU
P ]k

∣∣E0

∣∣[MTU
P ]4−k

∣∣ . ∥∥MTU
P

∥∥4

4,P0
. (4.15)

The final inequality above holds by the FKG inequality (Fortuin et al., 1971). It follows that

EP 2
0

[(
[T − T0]2 + [U − U0]2

) (
2B2 − 1

)
e−B

2
]

+
2

3
E0

[
B
(
2B2 − 3

)
(B0 −B)3e−B

2
]

=
4

3
EP 2

0

[(
[T − T0]3 − [U − U0]3

)
B(2B2 − 3)e−B

2
]

+ F (P, P0, T, U) +O(
∥∥MTU

P

∥∥4

4,P0
)

=F (P, P0, T, U) +O(
∥∥MTU

P

∥∥4

4,P0
), (4.16)

where the final equality holds under H0 by a Taylor expansion of z 7→ z(2z2 − 3)e−z
2

and
analogous calculations to those used in (4.15). We note that the second equality above uses
a different F and a different big-O term than the line above, and that the big-O term can

be upper bounded by C
∥∥MTU

P

∥∥4

4,P0
for a constant C > 0.

Plugging (4.13), (4.14), and (4.16) into (4.12), applying the triangle inequality, and using
the bounds on B gives the result.

We give a lemma before proving Theorem 13.

Lemma 11. Let KP ,
∥∥LRSP ∥∥1,P0

+
∥∥MRS

P

∥∥2

2,P0
for all P ∈ M. If H0 holds, then for all

P ∈M,

sup
o1∈O′

|P0ΓP (o1, ·)| . KP ,

where O′ ⊆ O is some P0 probability 1 set. More generally, for all P0 ∈M,∣∣P 2
0 ΓP − θ0

∣∣ . KP .
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Proof of Lemma 11. For T, U ∈ S, we have that ΓTUP is equal to[
1 + 2(TP − UP )DU

P

]
e−[TP−UP ]2 − 2

[
(TP − UP ) +

(
2(TP − UP )2 − 1

)
DU
P

]
DT
P e
−[TP−UP ]2 .

Above we have omitted the dependence of ΓTU on (o1, o2), T and DT
P on o1, and U and DU

P

on o2. For P0 almost all o1 ∈ O, P0ΓTUP (o1, ·) is equal to

P0 [1 + 2(TP (o1)− UP )(UP − U0)] e−[TP (o1)−UP ]2 +O
(∥∥RemU

P

∥∥
1,P0

)
− 2P0

[
(TP (o1)− UP ) +

(
2(TP (o1)− UP )2 − 1

)
(UP − U0)

]
DT
P (o1)e−[TP (o1)−UP ]2

where the magnitude of the big-O remainder term is upper bounded by C
∥∥RemU

P

∥∥
1,P0

for a

constant C > 0 which does not depend on o1. Taylor expansions of the first and third terms
above yield

P0ΓTUP (o1, ·) =P0e
−[TP (o1)−U0]2 − 2P0(TP (o1)− U0)DT

P (o1)e−[TP (o1)−U0]2

+O
(∥∥RemU

P

∥∥
1,P0

)
+O

(
‖UP − U0‖2

2,P0

)
,

where the magnitude of the big-O term can be upper bounded by C ‖UP − U0‖2
2,P0

. If

T0(O)
d
=U0(O), then

P0ΓTUP (o1, ·) =P0e
−[TP (o1)−T0]2 − 2P0(TP (o1)− T0)DT

P (o1)e−[TP (o1)−T0]2

+O
(∥∥RemU

P

∥∥
1,P0

)
+O

(
‖UP − U0‖2

2,P0

)
.

Recall that T, U ∈ S were arbitrary. Using that ΓP , ΓRRP − ΓRSP − ΓSRP + ΓSSP and applying
the triangle inequality gives the first result.

We now turn to the second result. For any T, U ∈ S and P ∈M, we have that

P 2
0 ΓTUP =

[
2(TP − UP ) (U0 − UP − T0 + TP ) + 1

−
(
4(TP − UP )2 − 2

)
(UP − U0)(TP − T0)

]
e−[TP−UP ]2 +O

(∥∥LTUP ∥∥1,P0

)
= [2(TP − UP ) (U0 − UP − T0 + TP ) + 1] e−[TP−UP ]2

+O
(∥∥LTUP ∥∥1,P0

)
+O

(∥∥MTU
P

∥∥2

2,P0

)
=ΦTU(P0) +O

(∥∥LTUP ∥∥1,P0

)
+O

(∥∥MTU
P

∥∥2

2,P0

)
,

where the final equality holds by a first-order Taylor expansion of (t, u) 7→ e−[t−u]2 . The fact
that ΓP , ΓRRP − 2ΓRSP + ΓSSP yields the result.

Proof of Theorem 13. Fix P ∈M and let P0 satisfy H0. We have that

P 2
0 ΓP − θ0

= P 2
0 ΓRRP − ΦRR(P0) + P 2

0 ΓSSP − ΦSS(P0)−
[
P 2

0 ΓRSP − ΦRS(P0) + P 2
0 ΓSRP − ΦSR(P0)

]
.
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Taking the absolute value of both sides, applying the triangle inequality, and using Lemma
10 yields∣∣P 2

0 ΓP − θ0

∣∣
. RemΦRR

P + RemΦSS

P +2 RemΦRS

P .
∥∥LRSP ∥∥2

1,P0
+
∥∥MRS

P

∥∥4

4,P0
+
∥∥LRSP ∥∥2,P0

∥∥MRS
P

∥∥
2,P0

,

where the final inequality uses the maximum in the definition of LRSP and MRS
P .

The inequality for when P0 satisfies H1 is proven in Lemma 11.

Proofs for Section 4.4

Proof of Lemma 5. By the first result of Lemma 11, |P0Γn(o1, ·)| . Kn for P0 almost all
o1 ∈ O′. We have that

|(Pn − P0)P0Γn| = Kn

∣∣∣∣(Pn − P0)

(
P0Γn
Kn

)∣∣∣∣ .
The fact that

{
o1 7→ P0Γn(o1,·)

Kn
: P̂n

}
belongs to a P0 Donsker class with probability approach-

ing 1 yields that (Pn−P0)
(
P0Γn
Kn

)
= OP0(n

−1/2) (van der Vaart and Wellner, 1996), and thus

the right-hand side above is OP0(Kn/
√
n). If Kn = oP0(n

−1/2), then this yields that the
right-hand side above is oP0(n

−1).

Proof of Theorem 14. Plugging C1), C2), and C3) into (4.4) yields

θn − θ0 = UnΓ0 + oP0(n
−1). (4.17)

By Section 5.5.2 of Serfling (1980) and the fact that Γ0 is P0 degenerate and uniformly
bounded, nUnΓ0  

∑∞
k=1 λk(Z

2
k − 1).

We now prove that all of the eigenvalues of h(o) 7→ E0

[
Γ̃0(O, o)h(O)

]
are nonnegative.

Consider a submodel {Pt : t} with first-order score h1 ∈ L2(P0) and second-order score
h2 ≡ 0. By the second-order pathwise differentiability of Θ,

θt − θ0

t2
=

1

2

∫ ∫
DΘ

2 (o1, o2)h1(o1)h1(o2)dP0(o1)dP0(o2) + o(1).

The left-hand side is nonnegative for all t 6= 0 since θt ≥ 0 = θ0 under H0. Thus taking the
limit inferior as t→ 0 of both sides shows that

1

2

∫ ∫
DΘ

2 (o1, o2)h1(o1)h1(o2)dP0(o1)dP0(o2) ≥ 0.

Using that Γ̃0 = Γ0 under H0 and Γ0 = 1
2
DΘ

2 , we have that 〈o 7→ E0[Γ̃0(O, o)h1(O)], h1〉 ≥ 0,
where the inner product is that of L2(P0). For any h1 ∈ L2(P0), it is well known that one can
choose a submodel Pt with first-order score h1 ∈ L2(P0). Hence the above relation holds for

all h1 ∈ L2(P0) and all of the eigenvalues of h(o) 7→ E0

[
Γ̃0(O, o)h(O)

]
are nonnegative.
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Proof of Corollary 3. In this case Γ0(o1, o2) = 2DR
0 (o1)DR

0 (o2) under H0. The central limit
theorem yields that σ−1

1

√
n(Pn − P0)DR

0  Z. By the continuous mapping theorem,

σ−2
1 n(Pn − P0)2Γ0/2 Z2.

Now use that

nUnΓ0

2σ2
1

=
n

2σ2
1(n− 1)

[
n(Pn − P0)2Γ0 −

1

n

n∑
i=1

Γ0(Oi, Oi)

]

=
n

2σ2
1(n− 1)

[
n(Pn − P0)2Γ0 −

2

n

n∑
i=1

DR
0 (Oi)

2

]
.

The above quantity converges in distribution to Z2 − 1 by the weak law of large numbers
and Slutsky’s theorem.

Proof of Theorem 16. We have

θn = 2(Pn − P0)P0Γn + P 2
0 Γn + UnΓ̃n

= 2(Pn − P0)P0Γ0 + P 2
0 Γn + UnΓ̃n + 2(Pn − P0)P0 (Γn − Γ0) .

By assumption, UnΓ̃n = oP0(n
−1/2). The final term is oP0(n

−1/2) by the Donsker condition
and the consistency condition (van der Vaart and Wellner, 1996). By the second result of
Lemma 11 and the assumption that Kn = oP0(n

−1/2), this yields that

θn − θ0 = 2(Pn − P0)P0Γ0 + oP0(n
−1/2).

Multiplying both sides by
√
n, and applying the central limit theorem yields the result.

Proof of Corollary 4. We have that

Pr0

{
nθn ≤ q̂ub1−α

}
= Pr0

{√
n(θn − θ0)

σ0

≤
q̂ub1−αn

−1/2 −
√
nθ0

σ0

}
Fix 0 < ε < θ0. The right-hand side is equal to

Pr0

{√
n(θn − θ0)

σ0

≤
q̂ub1−αn

−1/2 −
√
nθ0

σ0

and q̂ub1−αn
−1 ≤ ε

}
+ o(1)

≤ Pr0

{√
n(θn − θ0)

σ0

≤
√
n(ε− θ0)

σ0

and q̂ub1−αn
−1 ≤ ε

}
+ o(1)

≤ Pr0

{√
n(θn − θ0)

σ0

≤
√
n(ε− θ0)

σ0

}
+ o(1) = Pr

{
Z ≤

√
n(ε− θ0)

σ0

}
+ o(1),

where Z ∼ N(0, 1). The final equality holds by Theorem 16 and the well known result
about the uniform convergence of distribution functions at continuity points when random
variables converge in distribution (see, e.g., Theorem 5.6 in Boos and Stefanski, 2013). The
result follows by noting that (ε− θ0)/σ0 is negative and that limz→−∞ Pr(Z ≤ z) = 0.
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