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Abstract 

Heat Transfer in Graphene and Anisotropic/Nonlinear Systems:  

Experimental and Theoretical Studies 

by 

Zhen Chen 

Doctor of Philosophy in Engineering - Mechanical Engineering 

University of California, Berkeley 

Professor Chris Dames, Chair 

 

Various modern devices involve highly anisotropic materials. For example, 
Bi2Te3 is used in thermoelectrics, and graphene finds broad applications ranging from 
microelectronics to optoelectronics.  The heat transfer in these materials can deviate 
significantly from classical isotropic transport theory.  Nonlinear thermal devices have 
also drawn a great deal of attention for such applications as thermal regulation of building 
envelopes, and thermal protection of delicate components in electrical hardware, 
spacecraft thermal shielding, and satellite radiators. 

In this thesis, heat transfer in nonlinear devices and anisotropic materials, in 
particular graphene, is investigated using both experimental and theoretical methods.  
Measurements on graphene sheets encased by silicon dioxide layers show the strong 
effect of the encasing oxide in disrupting the thermal conductivity of adjacent graphene 
layers, leading to more than one order of magnitude suppression as compared to the 
freely-suspended graphene experiment reported in literature.  Modeling thermal 
properties of anisotropic materials reveals an unexpected guideline to engineer heat 
transport: due to phonon focusing effects, in many cases the heat transfer can be 
enhanced by reducing a phonon velocity component perpendicular to the transport 
direction.  Finally, a nonlinear thermal diode, based on a new mechanism exploiting 
asymmetric scattering of ballistic energy carriers by pyramidal reflectors, is demonstrated 
experimentally.  Experiments underline that all thermal rectifiers require nonlinearity in 
addition to asymmetry.  



	
  

i	
  

Table of Contents 
List of Figures ................................................................................................................... iii 

List of Tables .................................................................................................................... ix 
Acknowledgements ........................................................................................................... x 

Chapter 1:  Introduction .................................................................................................. 1 
1.1  Graphene .............................................................................................................................. 1 
1.2  Anisotropic heat transfer .................................................................................................... 3 
1.3  Nonlinear thermal devices .................................................................................................. 4 
1.4  Outline of the thesis ............................................................................................................. 6 
1.5  References ............................................................................................................................ 6 

Chapter 2: Thermal properties of encased graphene .................................................... 8 
2.1  Introduction ......................................................................................................................... 8 
2.2  Thermal conductivity .......................................................................................................... 8 

2.2.1  Physical picture and heat transfer models ...................................................................... 9 
2.2.2  Microfabrication .......................................................................................................... 14 
2.2.3  Experiment ................................................................................................................... 15 
2.2.4  Results and discussion ................................................................................................. 18 

2.3  Thermal contact resistance ............................................................................................... 27 
2.3.1  Experimental method ................................................................................................... 28 
2.3.2  Results and discussion ................................................................................................. 33 

2.4  Summary ............................................................................................................................ 35 
2.5  Appendix: a Monte Carlo scheme for uncertainty analysis .......................................... 36 
2.6  References .......................................................................................................................... 38 

Chapter 3: An anisotropic Debye model for the thermal boundary conductance .... 42 
3.1  Introduction ....................................................................................................................... 42 
3.2  Description of model ......................................................................................................... 43 

3.2.1  Basic assumptions and justifications ........................................................................... 43 
3.2.2  Characteristic frequencies and temperatures ................................................................ 45 
3.2.3  Specific heat ................................................................................................................. 47 
3.2.4  Phonon irradiation ........................................................................................................ 50 
3.2.5  Thermal boundary conductance ................................................................................... 53 

3.3  Comparison with experiments ......................................................................................... 54 
3.3.1  Specifying input parameters ........................................................................................ 54 
3.3.2  Specific heat of graphite .............................................................................................. 57 
3.3.3  Specific heat of high density polyethylene .................................................................. 60 
3.3.4  Models for TBC and transmission coefficient ............................................................. 61 
3.3.5  TBC between graphite and  metals .............................................................................. 62 

3.4  Summary and conclusions ................................................................................................ 64 
3.5  Appendices ......................................................................................................................... 64 

3.5.1  Evaluating the DOS and vDOS integrals ..................................................................... 64 
3.5.2  2D and 1D phonon gas models .................................................................................... 66 
3.5.3  Defining an equilibrium temperature ........................................................................... 69 
3.5.4  Comparing to the phonon irradiation calculation using full-direction-dispersion ....... 70 

3.6  References .......................................................................................................................... 71 



	
  

ii	
  

Chapter 4: A photon thermal diode .............................................................................. 74 
4.1  Introduction ....................................................................................................................... 74 
4.2  Experimental design .......................................................................................................... 75 
4.3  Results ................................................................................................................................. 77 
4.4  Outlook ............................................................................................................................... 79 
4.5  Appendices ......................................................................................................................... 79 

4.5.1  Design of the blackbody cavity (BBC) ........................................................................ 79 
4.5.2  Asymmetric transmission functions ............................................................................. 81 
4.5.3  Nonlinearity of the thermal transport ........................................................................... 84 
4.5.4  A semi-quantitative guideline to optimize the thermal collimator .............................. 85 
4.5.5  Lumped cooling model ................................................................................................ 86 
4.5.6  Further verification of the need for a thermal collimator: An experiment on phonons 
in an etched silicon on insultator (SOI) wafer ....................................................................... 90 

4.6  References .......................................................................................................................... 92 
Chapter 5: Summary and outlook ................................................................................. 95 

5.1  Summary ............................................................................................................................ 95 
5.2  Outlook ............................................................................................................................... 96 
5.3  References .......................................................................................................................... 97 

	
  
	
   	
  



	
  

iii	
  

List of Figures 
 
Figure 1-1.  Introduction to graphene. ................................................................................ 1 
Figure 1-2.  Proposed studies on graphene.  (a) Suspended vs. encased.  (b) Ballistic vs. 

diffusive transport.  (c) Thickness dependence of k.  (d) Electron vs. phonon 
contribution.  (a) and (c) are pursued in this thesis, (b) and (d) are left for future. .... 2 

Figure 1-3.  Important anisotropic materials. ...................................................................... 3 
Figure 1-4.  Flowchart for modeling thermal properties. .................................................... 4 
Figure 1-5.  Proposed application of thermal diodes. ......................................................... 5 
Figure 2-1. Schematic of the “heat spreader method” to measure k for graphene encased 

between top and bottom SiO2 films.  Heat flows (red arrows) through the encased 
graphene and into the Si heat sink. ............................................................................. 9 

Figure 2-2.  Boundary conditions for the 2D analytical model solved using separation of 
variables.  (a) Step 1: solving the temperature field of the bottom oxide, Tox(x,z).  (b) 
Step 2: solving the temperature field of graphene, Tg(x).  The thermal boundary 
resistance, Rc,gr-ox, also included. .............................................................................. 11 

Figure 2-3.  Typical T profiles along a graphene film calculated by three different 
models: 1D fin, 2D SOV, and 2D FEM, all of which assume perfect Si heat sink.  
Inset: detail of the 2D FEM calculations. ................................................................. 11 

Figure 2-4.  A typical 3D FEM model.  For clarity, the mesh is only shown in (b), and 
only for the electrodes. .............................................................................................. 12 

Figure 2-5. Microfabrication of a sample for measurement (by Dr. Wanyoung Jang). (a) 
Deposit and locate graphene flakes. (b-c) Trim into rectangle using an oxygen 
plasma. (d) Clean. (e) Evaporate upper oxide. (f) Pattern the heater and temperature 
sensors. ...................................................................................................................... 14 

Figure 2-6. (a) Schematic electrical circuit to apply heating power and measure the 
temperature rise of the heater.   (b) Schematic electrical circuit to measure the 
temperature rise of the 3 sensors.  (c) Typical measurements for the “heat-spreader” 
method: T rise as a function of heater power. ........................................................... 15 

Figure 2-7. Flowchart to extract the thermal conductivity of graphene from a 3D FEM 
model based on the measured temperature profile (T1, T2, and T3) responding to a 
Joule heating, and other geometries and thermal properties justified in Table 2-2. . 16 

Figure 2-8. Effect made in order to shake hands between measurements and FEM 
simulations for a control experiment excluding graphene layer from the basic stack.  
The results suggest two improvements as indicated in Fig. 2-9. .............................. 17 

Figure 2-9. Improving the experiment.  (a) Shorten heater leads to reduce unnecessary 
background heating.  (b) Reduce thermal resistance to copper heat sink. ................ 17 

Figure 2-10. Comparison between experimentally-measured sensor temperatures 
(crosses) and best-fit FEM simulation results (circles) for the simplest “Si + oxide” 
control experiment (gray), as well as the “Si + Pt + oxide” control experiment (blue, 
red).  We also checked the sensitivity of the Pt fit, which is better than ± 30% (red 
squares and diamonds). ............................................................................................. 18 

Figure 2-11. Effect of the graphene-oxide thermal contact resistance on the FEM-
extracted thermal conductivity of graphene.  Accouting for the thermal contact 
resistance decreases the extracted thermal conductivity of graphene by ~10% at 



	
  

iv	
  

room temperature, and as the temperature goes down, the correction becomes less 
and less important. .................................................................................................... 19 

Figure 2-12. Temperature dependence of k for encased graphene and ultrathin graphite.  
TPRC: Ref. [7]. ......................................................................................................... 20 

Figure 2-13.  k vs. thickness at (a) 310 K, (b) 164 K, and (c) 92 K.  Because multiple 
samples were measured with NLayers=3, their thickness coordinates have been shifted 
slightly for clarity.  The 2 layer flake was only measured at 310 K.  Error bars 
indicate 95% confidence intervals, and k of the encased SLG flake is so low that 
only the upper bound is significant.  For comparison, literature values are also 
shown for bulk graphite (dashed lines [7]), suspended SLG (open square [4], open 
diamond [5]), and SiO2-supported SLG (open circles [16]). .................................... 21 

Figure 2-14.  (a) Suspended scenario: more DOF and less scattering per layer near the 
“free” boundaries as compared to the “core”, thermal conductivity will increase 
when decreasing the number of graphene layers.  (b) Encased scenario: fewer DOF 
and more scattering per layer near the “constrained” boundaries as compared to the 
“core”, thermal conductivity will decrease when decreasing the # of graphene layers.
................................................................................................................................... 22 

Figure 2-15.  (a) Best-fit values of k0 and δ as functions of temperature.  kBulk(T) is 
graphite [7]. (b) Dimensionless comparison of Eq. (2-6) with the thickness-
dependent measurements from four different Ts, using the dimensionless 
conductivity k − k0( ) kBulk − k0( ) . .............................................................................. 24 

Figure 2-16.  Schematic of the differential 3ω method.  Two samples have the same 
structure except one has the thin film of interest while the other not.  The thermal 
property of interest (k of the thin film or Rc) can be extracted by subtracting the 
thermal impendences of the two samples measured by a classical 3ω method, 
respectively. .............................................................................................................. 28 

Figure 2-17.  Sample microfabrication (by Dr. Wanyoung Jang).  (a) Deposit and locate 
graphene flakes.  (b) Cleaning anneal, then evaporate top oxide.  (c) Pattern the 
heaters.  (d-e) Ion mill the top surface using an Ar beam, to trim the flake and 
simplify the thermal analysis. ................................................................................... 30 

Figure 2-18.  One dimensional heat transfer justification.  (a) Three key length scales of 
the problem.  (b) Visualization of the isotherms and flux lines by a 2D FEM 
simulation.  (c) Convergence of the real thermal resistance to the ideal 1D 
resistance, Rth,FEM/ Rth,1D, as a function of the dimensionless group whtr/tox.  Typical 
expected values of these parameters in the real experiments: whtr = 3 µm, tetch = 60 
nm, tox = 300 nm. ...................................................................................................... 31 

Figure 2-19.  Fitting the electrical resistance of a typical heater.  (a) Comparison between 
the experimental data (points) and the fits using a linear (blue line) or Bloch-
Grüneisen (B-G) formula (red line).  On these logarithmic axes the linear fit appears 
curved.  (b) Residuals for the linear fit (blue), B-G fit (red), and B-G + empirical 
polynomial fit [green; see Eq. (2-10)]. ...................................................................... 32 

Figure 2-20.  Experimental measurements of the thermal contact resistance between 
silicon dioxide and graphene, for four samples of different thicknesses (filled points, 
in color).  Also included for comparison are the contact resistances of several related 
carbon materials from the literature (open points), and theoretical curves for a 



	
  

v	
  

diffuse mismatch model (DMM) and a maximum transmission model (MTM) 
(lines). ....................................................................................................................... 34 

Figure 2-21.  A straightforward approach to estimate confident intervals in the 
temperature-resistance calibration. ........................................................................... 36 

Figure 2-22.  A Monte Carlo approach to estimate confident intervals in the temperature-
resistance calibration. ................................................................................................ 36 

Figure 2-23.  Flowchart of a Monte Carlo scheme to analyze uncertainty. ...................... 37 
Figure 3-1. (a) Iso-energy surface (here for ab cv v> ; the opposite case is straightforward).  

The ellipsoidal surface has an equatorial radius abvω  and polar radius cvω .  Its kb-
kc projection is an ellipse.  (b) FBZ (here for , ,ab m c mk k> ; the opposite case is 
straightforward) with equatorial radius ,ab mk  and polar radius ,c mk .  Its kb-kc 
projection is also an ellipse. ...................................................................................... 43 

Figure 3-2. Two frequency regimes (here for ab cv v> , and , ,ab m c mk k> ; the other 

combinations are straightforward).  (a) When ω <min ωD,c ,ωD,ab( ) , all of the states 

on the iso-energy surface are allowed.  (b) When 
( ) ( ), , , ,min , max ,D c D ab D c D abω ω ω ω ω< < , only the states inside the FBZ are allowed.  

In both cases the orange shading indicates the allowed states. ................................. 45 
Figure 3-3. Dimensionless DOS, ( ) ( )

1
32

, ,
ˆ 3D ab D c pucD D ω ω η= , as a function of 

dimensionless frequency 
1
32

, ,ˆ ( )D ab D cω ω ω ω= .  While layered materials (r >> 1) 
show a transition from a quadratic to a linear power law with increasing ω , chain-
like materials (r << 1) show a transition from a quadratic power law to a constant 
value.  These transitions indicate different dimensionality crossovers. .................... 47 

Figure 3-4. Dimensionless specific heat, ( )ˆ 3 puc BC C kη= , as a function of dimensionless 

temperature, ( )
1
32

, ,
ˆ

D ab D cT T θ θ= , obtained by numerical integration of Eqs. (3-11a) 
and (3-11b).  All materials recover the Debye T3 law at low T, and Dulong and Petit 
limit at high T.  But at intermediate temperatures the layered materials (r >> 1) show 
a T2 dependence, while the chain-like materials (r << 1) show a T1 dependence. ... 48 

Figure 3-5. Dimensionless vDOS defined in Eq. (3-14), ( ),
ˆ 3 4c c D c puc ch h vω η= , as a 

function of dimensionless frequency, ,ˆ D cω ω ω= .  Both layered (r >> 1) and chain-
like (r << 1) materials transition from a quadratic power law at low frequency to a 
constant value at high frequency. .............................................................................. 51 

Figure 3-6. Dimensionless c-axis irradiation, ( ),
ˆ 3 4c c puc B c D cH H k vη θ= , as a function of 

dimensionless temperature, ,
ˆ

D cT T θ= , obtained by numerical integration of Eqs. 
(3-15a) and (3-15b).  Both layered (r >> 1) and chain-like (r << 1) materials show 
T4àT2àT1 power law transitions. ............................................................................ 52 

Figure 3-7. Debye ellipsoid approximations for the iso-energy surfaces of materials with 
hexagonal symmetry.  The schematics represent projections in the A-Γ -M plane (an 
A-Γ -K plane looks very similar).  (a) Schematic iso-energy surfaces for a graphite-



	
  

vi	
  

like material with a lobed quasi-TA branch and an almost cylindrical quasi-LA 
branch.  The third branch (pure TA) is not shown because it is already well-
approximated by an ellipsoid (Eq. 3-4).   (b) A naive approach approximates the 
quasi-TA with a circumscribed ellipsoid, and the quasi-LA with an inscribed 
ellipsoid.  (c) An improved approach, used in this work, decomposes the quasi-TA 
and quasi-LA branches and then recomposes them as the two ellipsoids TL1 (black) 
and TL2 (green); see Eq. (3-25).  The original and recomposed iso-energy surfaces 
in (c) have been offset slightly for clarity. ................................................................ 55 

Figure 3-8. Comparison with experimental data for specific heat of (a) graphite and (b) 
HDPE, showing that the anisotropic Debye model successfully reproduces the 
specific heat of these strongly anisotropic materials.  The model parameters for 
graphite are fully determined from the published dispersion relation without any 
fitting, while the HDPE model has two adjustable parameters because no published 
dispersion information was available. ....................................................................... 59 

Figure 3-9. Comparison with experimental data5 for TBC between graphite and (a) Al, 
(b) Au, (c) Cr, and (d) Ti.  In each case, four different models are considered: the 
traditional isotropic DMM [2], the 2D-DOS DMM [8], and the anisotropic DMM 
and MTM from the present work.  All models include the same pre-factor [Eq. (3-
17)] and assume inelastic transmission across interfaces.  The corresponding RMS 
errors are summarized in Table 3-5.  Key qualitative differences among the models 
are indicated by the iso-energy surfaces and group velocity vectors sketched in (e): 
as compared to the aniso-DMM, the 2D-DOS-DMM neglects the continuous 
transition from vab to vc, while the iso-DMM is equivalent to decreasing vab and 
increasing vc.  In both cases, the additional approximations to vab and vc tend to 
overestimate the c-axis heat transfer (Table 3-2). ..................................................... 62 

Figure 3-10. Mathematical framework to evaluate Eq. (3-10) for 
( ) ( ), , , ,min , max ,D c D ab D c D abω ω ω ω ω< < .  For materials with anisotropy ratio r > 1, 

the ka-kb projection of the iso-energy surface within the FBZ is an annulus.  For 
materials with r <1, the projection of the iso-energy surface becomes instead a disk.
................................................................................................................................... 65 

Figure 3-11. 2D and 1D phonon gas models to verify the specific heat and c-axis 
irradiation of strongly anisotropic materials at intermediate temperatures [

, , , ,min( , ) max( , )D c D ab D c D abTθ θ θ θ= = ].  The two key features are the DOS and the 
c-axis component of the group velocity. ................................................................... 67 

Figure 3-12. Comparison with lattice dynamics calculation (all-direction-dispersion) for 
phonon irradiation of a graphite-like material, showing errors less than 10% from 
200 K – 10000 K.  The disagreement at lower temperature is due to the failure to 
capture the reduced group velocity of ZA phonons at long wavelengths [12]. The 
Debye model parameters for this graphite-like material are fully determined from 
the dispersion calculated from the lattice dynamics method [22] without any fitting.
................................................................................................................................... 71 

Figure 4-1.  The two key ingredients of a photon thermal diode: asymmetry and 
nonlinearity.  (a) Asymmetry arises from angle-dependent transmission through the 
test section containing pyramidal reflectors: from bottom to top, transmission is 
higher for energy carriers with normal incidence, while from top to bottom, 



	
  

vii	
  

transmission is favored for carriers of oblique incidence.  (b) The nonlinearity arises 
because the emission from the hot reservoir (not shown) has an angular weighting 
that is also bias-dependent.  At zero thermal bias (ΔT = 0), the angular weighting is 
nearly uniform (i.e. Lambertian), while for non-zero thermal bias (ΔT > 0), the 
emission becomes increasingly forward-peaked.  (c) The combined effect is thermal 
rectification. .............................................................................................................. 74 

Figure 4-2.  Experimental concept.  (a) A hot blackbody cavity (BBC; its guard heater 
and shields omitted for clarity) generates photons with a Lambertian distribution.  
The key diode components are the thermal collimator and the test section with 
pyramidal mirrors.  The depicted configuration is forward bias (Fwd), with reverse 
bias (Rev) obtained by flipping the test section.  (b) Energy balance applied to the 
BBC (dashed line): changes in stored thermal energy are balanced by the electrical 
heater (PBBC) and heat transfers through the diode (QDiode) and to/from the guard 
(QBBC-G).  (c) Lumped cooling scheme: after stabilizing the BBC and guard at TBBC = 
TG  = 573 K, the BBC power is shut down while TG held constant.  QDiode is 
extracted from the resulting BBC cooling curve. ..................................................... 75 

Figure 4-3.  (a) Cooling curves for representative experiments without (open points: 
controls) and with (filled points) the thermal collimator.  (b) Cooling rates calculated 
from a using a 10-point moving average.  Symbols as in (a).  The two control 
experiments (shaded in gray) are virtually indistinguishable from each other, while 
the three experiments with the collimator (shaded in orange) are clearly separated.   
(c) Diode heat transfers calculated from Eq. (4-2) by averaging the cooling rate in b 
from 569 K to 553 K, and including additional trials.  These key results demonstrate 
how thermal rectification requires both asymmetry and nonlinearity.  Another 
collimator (Col. 2: striped bars) with narrower holes shows similar results, but 
degrades the rectification to around 4.1% (Col. 2 data omitted from (a) and (b) for 
clarity). ...................................................................................................................... 78 

Figure 4-4.  Design of Blackbody Cavity (BBC).  (a) Guarding + shielding concept (CAD 
drawing) ensures 99% of the BBC’s heater power transmits through the aperture 
instead of leaking out through the BBC side walls or supports.  (b) Home-built BBC 
and guard with hand-wound heaters ensure good temperature stability and 
uniformity (Tmax – Tmin < 1.5 K, as measured by six K-type thermocouples as shown 
in a).  (c) 15 radiation shields made of polished copper: five concentric “cans” for 
the BBC (middle row), five for the guard (back row), and five for the pyramidal test 
section (front row, assembled). ................................................................................. 80 

Figure 4-5.  Ray tracing simulation to optimize the transmission function.  (a) Simulation 
domain: staggered double-layer pyramidal arrays (each layer a checkerboard) with 
specular surfaces and high aspect ratio for each pyramid.  Mirror symmetries are 
applied to reduce the simulation domain to the unit cell indicated by the black 
dashed square.  (b) Simulation results for the geometry indicated in (a) and used in 
the main experiments.  For photons launched from the top ( 12

θτ , red line), as incident 
angle increases, transmission decreases from ~95% to 0%.  On the other hand, for 
photons launched from the bottom ( 21

θτ , blue line), as incident angle increase, 
transmission increases from 0% to ~35%. ................................................................ 82 

Figure 4-6.  Visualization to confirm the function of the pyramidal test section.  The 
surrounding environment is white (not shown), and the camera exposure time is the 



	
  

viii	
  

same for all images.  (a) View towards points.  Mostly black from θ = 0o, indicating 
high transmission, while much less black from θ = 45o, indicating lower 
transmission.  (b) View towards bases.  Mostly shiny from θ = 0o, indicating low 
transmission, while much more black from θ = 45o, indicating higher transmission.
................................................................................................................................... 83 

Figure 4-7.  Conceptual evolution of the weighting function, w(θ ).  (a) Zero bias (ΔT = 0 
K): the whole system is in equilibrium at 573 K, so that w does not depend on θ.  (b) 
Moderate bias (ΔT = 150 K): the temperature of collimator, Tcol., is lower than that 
of BBC, TBBC, so that w is somewhat distorted.  (c) large bias (ΔT = 290 K; this 
corresponds to the main experiments): Tcol. is further reduced relative to TBBC, so that 
w is further distorted. ................................................................................................ 85 

Figure 4-8.  Comparing the solution from the perfect shield limit to the full solution of 
the lumped cooling model.  Using realistic parameters, the difference between the 
perfect shield limit of Eq. (4-10) and the full numerical solution of Eq. (4-8) is 
estimated to be less than 0.1% over the typical experimental regime t/tc < 0.1, where 
tc ~ 7 hours (see text). ............................................................................................... 88 

Figure 4-9.  Comparing experimental results to the constant radiation resistor model.  
Each curve has one free parameter.  (a) For the simplest scenario of no collimator or 
pyramidal test section, the model agrees with the experiment to within 1.5%.  (b) 
For experiments involving the test section and collimator, this simple linear model 
explains the average magnitude of the experimental results.  The slopes of b are in 
error but this may not be surprising considering the additional complexity and 
nonlinearity involved.  For clarity we only fit three of the five cooling curves of Fig. 
4-3(b) (see text). ........................................................................................................ 89 

Figure 4-10.  An experiment to study thermal rectification of phonons by asymmetric 
microfabricated pores.  Left: Concept and thermal circuit.  Right: A fabricated 
structure (by Dr. Wanyoung Jang).  Since this structure lacks a thermal collimator, 
no rectification is expected. ...................................................................................... 90 

Figure 4-11.  Attempted phonon thermal rectification: typical experimental data in 
forward and reverse bias (left and right columns, respectively).  Top: Measurements.  
Bottom: Corresponding schematics.  In each experiment the test section (diode 
region) is between the points labeled T1 and T2.  The average temperature was fixed 
at 20 K, while 4 different thermal biases were applied: ΔT≈ ±(0, 5.5, 9.7, and 13) K.  
Rectification corresponds to (T2-T∞,2)Fwd > (T1-T∞,1)Rev.  Because the two plots are 
basically mirror images of each other, there is no clear rectification above the noise 
threshold.  This null result confirms that rectification is not possible without a 
thermal collimator. .................................................................................................... 91 

  



	
  

ix	
  

List of Tables 
Table 2-1  Estimation of phonon mean free paths in encased graphene. .......................... 25 
Table 2-2  Example of a detailed sensitivity analysis for the nominal 12-layer sample at 

310 K. ........................................................................................................................ 26 
Table 3-1.  Analytical expressions for the specific heat in several limiting cases.  The 

model recovers the Debye T3 law in the low temperature limit, and the Dulong and 
Petit law in the high temperature limit.  For strongly anisotropic materials at 
intermediate temperatures, the model predicts a T2 dependence and T1 dependence 
for layered (r >> 1) and chain-like (r << 1) materials, respectively.  3 1.202...ζ =  is 
Apery’s constant. ...................................................................................................... 49 

Table 3-2.  Analytical expressions for the c-axis irradiation cH  in several limiting cases.  
In the low temperature limit the model reduces to the blackbody emissive power 
law.  For intermediate temperatures and strongly anisotropic materials, the model 
predicts a T2 dependence for both layered and chain-like materials.  These 
expressions also highlight the phonon focusing effect of the ab-plane velocity abv : 
except for chain-like materials at intermediate T, in all other cases cH  is actually 
increased by reducing abv . ........................................................................................ 52 

Table 3-3.  Input parameters for graphite, which are extracted from the phonon dispersion 
in Ref. 16 using the iso-energy-decomposition process described in Section 3.3.1. 57 

Table 3-4.  Input parameters for metals.  The number density of primitive unit cells pucn  
is obtained from Ref. 17 and the velocities from Ref. 2, with the exception of the 
slightly anisotropic titanium for which the effective isotropic velocities are obtained 
from 

1
32( )iso ab cv v v= , where abv  and cv  are calculated from the stiffness constants 

[11]. ........................................................................................................................... 62 
	
   	
  



	
  

x	
  

Acknowledgements 
 

This thesis places a full stop to a seven-year-journey in pursuing my PhD, which 
starts at UC Riverside and ends here at UC Berkeley.  I use this opportunity to thank the 
many people who have helped along the long journey. 

It’s my great fortune to be the first PhD student of Professor Chris Dames, so that 
I had the opportunity to learn his research style at first hand, especially during the UC 
Riverside period.  I have great respect for his insistence on doing solid work, his critical 
thinking, his attitude to appreciate other people’s work, and his patience in training 
students.  I hope to use these values in my future career.  I am also grateful to Professor 
Zi Q. Qiu for teaching me the importance of physical pictures in research.  I would like to 
thank Professor Grigoropoulos for serving in both my qualifying exam and dissertation 
committee. 

I have benefited a great deal from both the formal and informal discussions with 
my labmates at Berkeley.  In particular, I enjoyed building experiment with Shannon Yee, 
talking physics with Sean Lubner, taking Quantum Mechanics with Vivek Mishra, and 
solving heat conduction equations with Geoff Wehmeyer. 

I would not have been able to finish my PhD if it were not for my family.  In 
particular, my father gave me unusual freedom, love, and support as I grew up.  
Xiaodong loved me unconditionally.  She sacrificed her career in China in order for me to 
pursue my PhD in US.  Most importantly, she gave birth to Niels, who has the magic 
power to make me forget anything unhappy.  I love you all, and you are the reason I look 
forward to every day. 

  

 

 



	
  

1	
  

Chapter 1:  Introduction 
This thesis covers three major topics: thermal properties of graphene, heat transfer 

in highly anisotropic materials, and a photon thermal diode.  At first sight, these three 
topics may appear independent of each other.  We will show in the following chapters 
that they are closely related, and indeed form a complete and logical story.  In short, the 
theoretical work of the heat transfer in anisotropic materials is motivated by the 
experimental work on the thermal properties of graphene which itself is a highly 
anisotropic material.  The photon thermal diode is a device built to study nonlinear heater 
transfer, which, of course, transports thermal energy anisotropically as well. 

This chapter gives a very brief and broad survey to all the three topics, leaving the 
detailed technical literature review to the following designated chapters. 

 

1.1  Graphene 
	
  

	
  

Figure 1-1.  Introduction to graphene. 

Graphene is a single- or few-layer graphite sheet, or an unrolled carbon nanotube 
[Fig. 1-1(a)].  The theoretical study of graphene can be traced back to the 1940s [1-3].  
However, experimental study has lagged far behind due to the great difficulties in 
preparing graphene samples.  The breakthrough was made in 2004 by Novoselov and 
Geim who successfully isolated and measured single-layer graphene on insulating 
substrates [4], which enabled a rapid exponential growth in graphene research. 

Graphene has attracted a great deal of interest from researchers studying both 
fundamental physics and industrial applications.  On the fundamental side, due to a linear 
instead of the normal parabolic electron dispersion relationship [Fig. 1-1(b)], graphene is 
a prototype system to study “massless,” pseudo-relativistic electrons.  On the application 
side, due to its superior electrical [5-6] and thermal properties [7-8], graphene is a 
promising candidate for transparent electrodes for displays and optoelectronic devices.  
Key challenges include opening an adequate band gap, and preparing large wafer-scale 
graphene flakes. 

(a)  Definition Energy 
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                 = unrolled CNT 
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Figure 1-2.  Proposed studies on graphene.  (a) Suspended vs. encased.  (b) Ballistic 
vs. diffusive transport.  (c) Thickness dependence of k.  (d) Electron vs. phonon 
contribution.  (a) and (c) are pursued in this thesis, (b) and (d) are left for future.  

In response to these fundamental and application interests, many questions need 
to be addressed. This thesis will focus on the following heat transfer aspects, in which A, 
B, and E will be addressed in Chapter 2, and C and D are left for future research 
directions. 

A.  Effect of dielectric layers on the thermal conductivity of graphene (kg).  While 
physicists are more interested in freely-suspended graphene (and often at very low 
temperature), which is an exceedingly simple and clean structure to study the 
fundamental physics of electrons, engineers care more about industrial applications in 
which graphene is usually encased by dielectric layers [Fig. 1-2(a)].  Intuitively, this 
encased structure will impose extra constraints on the thermal transport, but we need a 
quantitative experiment confirmation. 

B.  Length/width dependence of kg.  As indicated in Fig. 1-2(b), the energy carrier 
transitions from diffusive to ballistic behavior as the characteristic length/width 
approaches the dominant mean free path (MFP) of the carrier.  Due to the high thermal 
conductivity of freely-suspended graphene (1000s W/m-K), the dominant MFP of 
graphene is thought to be in the micron range [7-8], making it possible to observe this 
diffusive-ballistic transition even at room temperature. 

C.  Thickness dependence of kg.  The thermal conductivity must recover the bulk graphite 
limit as the number of layers is increased, both for freely-suspended and encased 
graphene.  The question is how this bulk limit is approached [Fig. 1-2(c)], and if there is 
any difference between the two scenarios. 

D.  Electron vs. phonon contributions to kg.  Phonons dominate the heat transfer at room 
temperature.  However, electrons gradually manifest themselves as temperature decreases, 
especially if a back/top gate is applied to manipulate the sample’s electrochemical 
potential EF. 
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E.  Thermal contact between graphene and dielectric layers.  This parameter is especially 
important for industrial applications, in which graphene would need to interact with 
dielectrics. 

 

1.2  Anisotropic heat transfer 
	
  

	
  
Figure 1-3.  Important anisotropic materials. 

As shown in Fig. 1-3, many important materials are highly anisotropic.  For 
example, graphite is a typical layered material, as are the Li-ion battery material LixC6 
and Li1-xCoO2, and the popular thermoelectric material Bi2Te3.  High density 
polyethylene, liquid crystal (smectic A phase), and the famous superconducting material 
YBa2Cu4O8 are well-known chain-like materials. 

Before introducing our general framework to model the heat transfer in 
anisotropic materials, it’s desirable to revisit some of the fundamental principles: 

A.  Onsager’s reciprocal relation [9]: the conductivity matrix is symmetric no matter how 
the axes are aligned, which is a manifestation of the more fundamental principle of time 
reversal symmetry. 

B.  Neumann's Principle [10]: the conductivity tensor must be at least as symmetric as 
the crystal.  For example, silicon has cubic symmetry in crystal structure, and its sound 
velocities vary with direction.  Yet the thermal conductivity of silicon is isotropic. 

Kab ≈ 2000 W/m-K 

Layered (e.g., graphite) 

Chain-like (e.g., HDPE) 

Kc ≈ 6 W/m-K 

Kab ~ 0.2 W/m-K 

Kc ~ 20 W/m-K 

[Bahramy et al., Nat. Comm. (2012)] 

Li-ion batteries Bi2Te3 Thermoelectrics 

[Goodenough et al., DOE (2007)] 
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Figure 1-4.  Flowchart for modeling thermal properties. 

As indicated in Fig. 1-4, the dispersion, i.e., the energy-momentum relation, of a 
specific energy carrier (e.g. photon, phonon, electron) is the central information to model 
any thermal properties. From the dispersion relation, we can extract the group velocity of 
the energy carrier, the density of states (if the dimensionality is known), and thus the heat 
capacity (C).  To model the thermal conductivity (k), we need a second piece of 
information, which is the scattering mechanisms that give the mean free path (MFP) of 
the carrier.  Likewise, we need the transmission coefficient (tij) to model the thermal 
boundary conductance (G). 

This thesis will discuss in detail how to model C and G of anisotropic materials in 
Chapter 3, and leave k for future research directions. 

 

1.3  Nonlinear thermal devices 
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Figure 1-5.  Proposed application of thermal diodes. 

The great success of electrical engineering can partially be attributed to the 
capability of controlling electrical flux nonlinearly.  By contrast, thermal engineering still 
relys on the linear thermal elements, namely thermal resistors (R) and capacitors (C).  It 
is desirable to control heat flux in a nonlinear manner, both passively and actively. 

The most fundamental passive nonlinear thermal element would be a thermal 
diode: a two-terminal device that transmits heat more easily in one direction than in the 
reverse direction would be the heat-transfer analogue to the familiar electrical diode.  
Highly-effective thermal rectifiers could find numerous applications in thermal 
engineering.  For example, in solar-thermal power, a temperature doubler [analogous to a 
voltage doubler; see Fig. 1-5(a)] can exploit nighttime cold temperatures as well as 
daytime highs to increase the average temperature difference driving a heat engine, 
increasing both efficiency and power output [11-12].  A thermal diode’s clamping 
functionality could be useful for thermal regulation of building envelopes [13], as well as 
thermal protection of delicate components in electrical hardware, spacecraft thermal 
shielding, and satellite radiators [Fig. 1-5(b)]. 

The most fundamental active nonlinear thermal element would be a thermal 
transistor: a three-terminal device that controls the thermal conductivity of a channel.  
Due to the active nature, a thermal transistor would have more degrees of control in 
thermal engineering than a passive thermal diode.  For example, a feedback mechanism 
could be built up through the gate terminal of the thermal transistor so the amount of heat 
that is dissipated or acquired through the satellite radiators could be accurately controlled 
[imagine the thermal diodes in Fig. 1-5(b) are replaced with thermal transistors]. 

We should note that these nonlinear thermal devices might never be as efficient as 
their electrical counterparts, which is due to the fact that the thermal conductivity of 
solids spans less than five orders of magnitude, while the electrical conductivity spans 
more than twenty orders of magnitude. 

This thesis will experimentally demonstrate a passive thermal diode in Chapter 4, 
and leave the active thermal transistor for future research directions. 

 

(b)  Protecting satellite radiator from overloads 
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1.4  Outline of the thesis 
This thesis is broadly concerned with heat transfer in anisotropic and nonlinear 

systems, from both experimental and theoretical perspectives. 

Chapter 2 measures the thermal properties of graphene encased by silicon dioxide 
layers.  A heat spreader method is developed and verified, and finally applied to measure 
the thermal conductivity of graphene.  A differential 3ω method is adapted to measure the 
thermal contact resistance between graphene and silicon dioxide. 

Chapter 3 develops a general framework to model the thermal properties of 
anisotropic materials.  The model is compared with experimental results of specific heat 
and thermal boundary conductance for typical layered and chain-like materials. 

Chapter 4 experimentally demonstrates a photon thermal diode.  The 
measurements underline the two key ingredients, the asymmetry and the nonlinearity, to 
any thermal rectification mechanism. 

Finally Chapter 5 summarizes the contribution of this thesis and suggests some 
interesting directions for future research. 
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Chapter 2: Thermal properties of encased graphene 

2.1  Introduction 
This portion of the thesis investigates the 

heat transfer properties of graphene encased by 
silicon dioxide layers.  The first half of the 
chapter develops a heat spreader method to 
measure the thermal conductivity of graphene 
and ultrathin graphite (thickness from 1 to ~20 
layers) encased within silicon dioxide.  The thermal conductivity increases with the 
number of graphene layers, approaching the in-plane thermal conductivity of bulk 
graphite for the thickest samples, while showing suppression below 160 W/m-K at room 
temperature for single-layer graphene.  These results show the strong effect of the 
encasing oxide in disrupting the thermal conductivity of adjacent graphene layers, an 
effect that penetrates a characteristic distance of approximately 2.5 nm (~7 layers) into 
the core layers at room temperature.  The second half of the chapter adapts a differential 
3ω method to measure the thermal contact resistance between graphene and silicon 
dioxide.  The sample thicknesses are 1.2 nm (single-layer graphene), 1.5 nm, 2.8 nm, and 
3.0 nm, as determined by atomic force microscopy.  All samples exhibits approximately 
the same temperature trend from 42 K to 310 K, with no clear thickness dependence.  The 
contact resistance at room temperature ranges from 5.6×10-9 to 1.2×10-8 m2-K/W, which 
is significantly lower than previous measurements involving related carbon materials. 
These results underscore graphene’s potential for applications in microelectronics and 
thermal management structures. 

This chapter is based very closely on our previous publications [1, 2], but includes 
more details and justifications.  

 

2.2  Thermal conductivity 
Among graphene's many remarkable properties [3], its expected very high thermal 

conductivity k has been suggested as a key advantage for applications in microelectronics 
and thermal management.  Using a Raman method for both heating and temperature 
sensing [4], the thermal conductivity of suspended single-layer graphene (SLG) has been 
measured in the range ~600 to ~5000 W/m-K near and above room temperature [4-6], far 
higher than the k of copper (~400 W/m-K).  Although the variations in the reported 
optical absorbance remain to be clarified [4-6], these results suggest that suspended SLG 
has a k comparable to, if not exceeding, its very high-k carbonaceous cousins − including 
graphite (1950 W/m-K in-plane [7]), diamond (2310 W/m-K [7]), and suspended carbon 
nanotubes (up to ~3400 W/m-K for µm-length tubes, according to modeling [8] and 
experiments [9-13]).   

However, in most practical devices, graphene layers will be encased within 
dielectrics such as silicon dioxide, and it is essential to understand how this boundary 
interaction impacts thermal transport.  Although traditional analysis of the in-plane k of 
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thin films ignores the distinction between suspended and supported boundaries [14-15], 
recent measurements of SLG with one face supported on a substrate show that k is greatly 
reduced, to ~50 - 1020 W/m-K on copper (Raman method [6]), or ~600 W/m-K on SiO2 
(suspended platform method [16]).  In contrast to suspended SLG, these values fall far 
below the in-plane k of bulk graphite [7], demonstrating the great importance of free vs. 
supported boundaries.   

Here we present the first measurements of graphene and ultrathin graphite (1 ≤ 
NLayers ≤ ~20) in an encased configuration.  The results show that the encasing SiO2 
further reduces k well below that of supported graphene.  Furthermore, these experiments 
capture the thickness-dependent transition from SLG to bulk graphitic behavior, and 
imply that the surface-induced disruptions of k penetrate into the neighboring graphene 
layers by a characteristic distance of 2.5 nm (7 layers) at room temperature. 

 

2.2.1  Physical picture and heat transfer models 

A.  Graphene as a heat spreader 
	
  

	
  
Figure 2-1. Schematic of the “heat spreader method” to measure k for graphene 
encased between top and bottom SiO2 films.  Heat flows (red arrows) through the 
encased graphene and into the Si heat sink. 

Figure 2-1 shows a schematic of the heat spreader method developed in this work 
to measure the in-plane k of encase graphene.  The graphene thin film is encased between 
top and bottom oxide layers, a configuration which is very relevant to microelectronics 
applications, where graphene layers might be used as the transistors, interconnects, and 
thermal management materials, all encased by SiO2 dielectric layers.  The silicon 
substrate acts as a heat sink.  A heater and three temperature sensors are microfabricated 
on top of the upper oxide layer, which is used to electrically isolate these electrodes from 
the graphene.  A metallic line heater dissipates Joule heat at a rate QH, which flows 
vertically through the stack into the Si heat sink, while simultaneously spreading laterally 
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(1-25 layers) 
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(Au, 50 nm) 

SiO2 (300 nm) 

SiO2 (30 nm) 

Heat sink (Si wafer) 

T1 T2 T3 
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through the high-k graphene layer.  Compared to a control experiment with no graphene 
layer, the configuration in Fig. 2-1 results in higher temperatures at the sensors T1 - T3. 
Finally, k of the graphene layer is inferred by fitting 3 measured experimental quantities 
(temperature rise per unit heater power, for sensors T1, T2, and T3) to a thermal model. 

B.  One, two, and three dimensional heat transfer models 
We model the heat transfer in this encased graphene structure (Fig. 2-1) under the 

framework of the classic heat conduction, namely the heat diffusion equation.  This 
assumption is adjusted in Section 2.2.4E.  We start with a simple one dimensional (1D) 
model for physical insight, and end with a sophisticated three dimensional (3D) model to 
extract the thermal conductivity of graphene.  

1D fin: simplistic but insightful  

The simplest thermal model is to treat the graphene heat spreader as a “1D fin,” 
where the effective “convection” coefficient heff represents the vertical conduction 
through the lower SiO2 layer into the Si heat sink.  The interfacial contact resistances are 
also important.  Thus, 

heff = tox / kox + Rc,gr−ox
'' + Rc,ox−Si

''( )
−1

 (2-1) 

where kox and tox are the thermal conductivity and thickness of the lower oxide layer, and 
the two ''

cR  terms are the specific contact resistances (m2-K/W) from graphene-to-oxide 
and from oxide-to-silicon, respectively.  We note that ''

, SioxcR −  has been previously 
measured (~2x10-8 m2-K/W at 300 K [17]), but ''

, oxgrcR −  has not.  This latter quantity is 
particularly important for graphene microelectronics applications, and will be measured 
separately in Section 2.3. 

This simplified fin model gives good insight into the major measurement issues.  
As a first approximation, we neglect the ''

cR  terms, and using tox = 300 nm we estimate heff 
= 4x106 W/m2K.  Using textbook fin theory, we estimate the characteristic fin length 
(also known as the thermal healing length [50]), PhkAm effc /

1 =− ,  where Ac and P are the 
cross sectional area and “wetted perimeter” of the graphene fin.  For a flake of thickness 
t, and width w out of the page in Fig. 2-1, the ratio Ac/P is simply t.  Thus, the 
characteristic fin length is  

effhktm /1 =− ,  (2-2)  

which ranges from ~0.5 µm for single layer graphene (t = 0.34 nm) to ~1.5 µm for 10 
layer graphene (t = 3.4 nm), assuming k~3000 W/m-K [4, 8, 18-20].  Thus, the extent of 
lateral heat spreading is expected to be roughly a few microns.  However, as shown 
below, it turns out that the thermal conductivity of graphene is more than 1 order of 
magnitude smaller than the assumed 3000 W/m-K.  This violates the criterion, m-1>>tox 
required to use the fin analogy.  Therefore, in this work we use the fin model as a helpful 
qualitative guide to the measurement issues, but not for quantitative analysis. 
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2D models: SOV vs. FEM 

	
  

Figure 2-2.  Boundary conditions for the 2D analytical model solved using 
separation of variables.  (a) Step 1: solving the temperature field of the bottom 
oxide, Tox(x,z).  (b) Step 2: solving the temperature field of graphene, Tg(x).  The 
thermal boundary resistance, Rc,gr-ox, also included. 

	
  

Figure 2-3.  Typical T profiles along a graphene film calculated by three different 
models: 1D fin, 2D SOV, and 2D FEM, all of which assume perfect Si heat sink.  
Inset: detail of the 2D FEM calculations. 

A slightly improved model is a 2D calculation implemented using separation of 
variables (SOV).  We solve this problem in two steps.  First, we solve the 2D Laplace 

equation ∂
2T
∂x2

+
∂2T
∂z2

= 0  with boundary conditions indicated in Fig. 2-2(a), to obtain the 

2D temperature field of the bottom oxide: 
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Tox x, z( ) = T∞ +
q ''b
koxL

z+ 2q
''

koxL
sin(βmb)

βm
2 cosh(βmd)m=1

∞

∑ sinh(βmz)cos(βmx) , (2-3) 

where q” is the heat flux with unit W/m2, b is the half width of the heater line, d and L 
are the thickness and length of the bottom oxide, respectively, and the eigenvalue 

βm =
mπ
L
,m =1,2,3,...    

Second, we add the graphene thin film and  [Fig. 2-2(b)].  An infinitesimal 
control volume on graphene results in an energy balance as 

q '' − kox
∂Tox
∂z z=d

+ kgt
∂2Tg
∂x2

z=d

= 0 , where Tg(x) = Tox (x,d)+ Rc,gr−ox
" kox

∂Tox
∂z z=d

.  Thus the 

resulting temperature of graphene is 

Tg x( ) =T∞ +
q''b
koxL

d + q
''b
L
Rc,gr−ox
"

+
2q''

L
sin(βmb)[sinh(βmd )+βmRc

"kox cosh(βmd )]
βm
2[kgtβm sinh(βmd )+ kgtRc

"koxβm
2 cosh(βmd )+ kox cosh(βmd )m=1

∞

∑ cos(βmx)
. (2-4) 

Note the top oxide and metal electrodes are neglected for simplicity in this SOV method. 

 To account for the effect of the top oxide and the metal electrodes, we have also 
implemented a 2D finite-element method (FEM).  As shown in Fig. 2-3, the three 
methods agree within 1% with each other.  Also note from the inset of Fig. 2-3 that 
within the lower oxide the temperature gradients in the cross-plane direction are 
significantly steeper than the gradients in the in-plane direction, supporting the use of the 
fin model.  The FEM calculations account for the effect of the metal electrodes in causing 
local spatial averaging (“plateaus”) of the temperature. 

3D FEM: all details 

	
  

Figure 2-4.  A typical 3D FEM model.  For clarity, the mesh is only shown in (b), 
and only for the electrodes. 

''
, oxgrcR −
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The simple 2D models above turn out to be too crude, because they assume the Si 
substrate has infinite k and also neglect the geometric variations out-of-the-page.  Finally, 
we have to set up a 3D FEM model using a commercial software package (COMSOL).  
A typical simulation domain is shown in Fig. 2-4.  A heat flux boundary condition is 
applied on the top surface of the heater's active length to represent Joule heating, while 
the rest of the top surfaces are treated as insulated.  The symmetry plane that bisects the 
region of interest is also treated as insulated.  The bottom face and three side faces of the 
silicon substrate domain are held at ambient temperature, to approximate the far-field 
conditions of the true Si wafer.  This is justified because the typical size of the central 
heater region that dominates the total Joule heating is ~10 µm long.  From well-known 
solutions for the 3D spreading resistance of small heat source into a semi-infinite 3D 
substrate [21], such a problem can always be accurately approximated with a finite 
substrate as long as the characteristic substrate dimensions are all much larger than the 
heater dimensions.  We simulated a range of substrate sizes to confirm that the final 
model results were independent of the simulated substrate size.  Analogous optimizations 
were performed to quantify the length of the oxide layers and metal leads (of heater and T 
sensors) that were required to be included in the simulation domain. 

Additional computational optimization focused on meshing.  Due to the extreme 
ratio of the graphene film thickness (~1 nm) to its typical in-plane dimensions (~10 µm), 
as well as for reasons of computational efficiency, this system is more easily optimized 
using a swept mesh strategy rather than the typical free mesh.  Note also from Fig. 2-4(a) 
that the upper 5 µm of the Si substrate were meshed finely while the lower 45 µm were 
meshed coarsely.   We confirmed the calculations in this work are fully converged by 
comparing results from different mesh sizes and meshing strategies (swept vs. free). 

In summary, these simulations include known 3D geometries (graphene flake, 
heater, T sensors, oxide layers, and at least (50 µm)3 of the Si substrate), thermal 
conductivities (top and bottom oxide layers, Si substrate, and metal electrodes), and the 
thermal contact resistance between graphene and SiO2, which is measured in Section 2-3 
Each FEM-simulated sensor temperature takes into account the local T averaging caused 
by the finite sensor width.  The results are only sensitive to the in-plane (rather than 
cross-plane) k of the encased flake. 
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2.2.2  Microfabrication 
	
  

	
  
Figure 2-5. Microfabrication of a sample for measurement (by Dr. Wanyoung Jang). 
(a) Deposit and locate graphene flakes. (b-c) Trim into rectangle using an oxygen 
plasma. (d) Clean. (e) Evaporate upper oxide. (f) Pattern the heater and 
temperature sensors. 

All the samples are prepared by Dr. Wanyoung Jang.  As shown in Fig. 2-5: we 
start with an oxidized Si wafer with a grid of alignment marks.  Then graphene flakes are 
deposited randomly, and candidate flakes are located with respect to the grid.  To 
facilitate the theoretical analysis and simplify the 3D FEM model, we trim the messy as-
deposited graphene flakes into regular rectangular shapes using an oxygen plasma.  The 
next step is a hydrogen cleaning anneal [22], and then the upper oxide layer is deposited 
by electron beam evaporation.  Finally, electron-beam lithography is used to pattern the 
metallic electrodes by a lift-off process.  An important detail is that the current leads of 
the heater are made as wide as possible outside of the central heating region [Fig. 2-5(f), 
right], to ensure that the large majority of the joule heat is generated in the immediate 
vicinity of the graphene sample. 
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2.2.3  Experiment 

A.  Set up 

	
  
Figure 2-6. (a) Schematic electrical circuit to apply heating power and measure the 
temperature rise of the heater.   (b) Schematic electrical circuit to measure the 
temperature rise of the 3 sensors.  (c) Typical measurements for the “heat-spreader” 
method: T rise as a function of heater power. 

With the sophisticated 3D FEM model and the microfabricated samples, we now 
set up the experiment to measure the temperature profile in order to fit the thermal 
conductivity of graphene.  The heater and three temperature sensors are independent 
resistance thermometers measured using four-point probe methods.  Figure 2-6(a-b) 
shows the circuits for the heater and the sensor, respectively, through which the Joule 
heating (QH in Fig. 2-1) is applied and the temperature responses (T1, T2, and T3) are 
recorded.  Figure 2-6(c) shows typical data for the temperature rise at each sensor as a 
function of DC heater power.  The data in Fig. 2-6(c) include both positive and negative 
heater currents, confirming that we are free of artifacts of Seebeck/Peltier effects or 
electrical leakage through the upper oxide layer. 

The experiments were conducted in a liquid nitrogen cryostat evacuated to a 
pressure of ~10-6 Torr, under which circumstances convection can be neglected, and we 
also confirmed that radiation is also negligible over our temperature range (from 37 K to 
310 K). 
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B.  Fitting scheme 
	
  

	
  
Figure 2-7. Flowchart to extract the thermal conductivity of graphene from a 3D 
FEM model based on the measured temperature profile (T1, T2, and T3) responding 
to a Joule heating, and other geometries and thermal properties justified in Table 2-
2. 

As shown in Fig. 2-7, to extract the thermal conductivity of graphene from the 
experimentally-measured quantities, we treat the unknown thermal conductivity k of the 
graphene layer as an adjustable parameter, and solve the 3D FEM model iteratively to 
find the value of k that results in the best agreement between simulated and measured 
quantities (sensor temperatures normalized by heater power).  Note that all the other input 
parameters to the 3D FEM model, including geometries and thermal properties, are listed 
and justified in Table 2-2 of the sensitivity analysis (see Section 2.2.4-F).  This non-linear 
least-squares fitting process is automated by using MATLAB to interface directly with 
our COMSOL software.  Using a single desktop computer, the fitting process typically 
requires about 0.5 - 1 hour to converge. 

C.  Improving the experiment 
Figure 2-8 shows the result of a control experiment which measures the 

temperature response on the top surface of the oxide for 9 distances ranging from 1 to 
1000 µm away from the heater line.  Note that this control experiment has no graphene 
layer, and thus the 3D FEM has no fitting parameters.  As shown schematically in Fig. 2-
9(a), our initial design of the heater line had very long I+ and I- leads, which dissipate 
more than 20 times of the heating power as compared to the central potion of the heater, 
leading to temperature response far away from the central heater region.  As indicated by 
curve 1 & 2 in Fig. 2-8, we have to include these long leads in our 3D FEM model in 
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order for a better comparison with experimental results.  However, this will be punished 
by the computational time.   

	
  

Figure 2-8. Effect made in order to shake hands between measurements and FEM 
simulations for a control experiment excluding graphene layer from the basic stack.  
The results suggest two improvements as indicated in Fig. 2-9. 

 

          	
  

Figure 2-9. Improving the experiment.  (a) Shorten heater leads to reduce 
unnecessary background heating.  (b) Reduce thermal resistance to copper heat 
sink. 
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In addition, our old design relied on a layer of vacuum grease (k~0.2 W/m-K) for 
thermal contact between the chip carrier and copper sample stage.  We estimate that the 
thermal resistance of this layer is ~20-40 K/W.  Coupled with the large 20x background 
heating, we estimate that these two effects are enough to cause a significant uniform 
“background” temperature rise of ~1 K/mWHeater, which affects all T sensors uniformly 
(see curve 3 of Fig. 2-8). 

In order to improve our experiment: 

• We redesigned the heater current leads to be much shorter and wider [see the schematic 
in Fig. 2-9(a) and the microfab. in Fig. 2-5(f)], reducing the background heating by a 
factor of at least 10. 

• We replaced the grease with indium foil (k~80 W/m-K) and built a simple spring 
fixture to apply several atmospheres of clamping pressure [see the schematic in Fig. 2-
9(b)] [23-24], which should reduce the background T by another factor of 10. 

 

2.2.4  Results and discussion 

A.  Validation of method 
	
  

	
  
Figure 2-10. Comparison between experimentally-measured sensor temperatures 
(crosses) and best-fit FEM simulation results (circles) for the simplest “Si + oxide” 
control experiment (gray), as well as the “Si + Pt + oxide” control experiment (blue, 
red).  We also checked the sensitivity of the Pt fit, which is better than ±  30% (red 
squares and diamonds). 
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To validate this new heat spreader method we used the two experiments shown in 
Fig. 2-10.  First, a control experiment was performed without the graphene layer.  As 
shown by the lower curve, this measured baseline T profile is described very well by an 
FEM fit that treats k of SiO2 as the only free parameter.  (In all other experiments the 
oxide thermal conductivities are considered to be known and fixed).  The fit value for 
kSiO2 at 310 K is 1.43 W/m-K, agreeing to better than 1% with our separate measurement 
of this SiO2 using a standard 3ω method [25].  

In the second validation experiment (upper curve of Fig. 2-10), we prepared a 
sample with a 38-nm thick film of evaporated Pt in the stack rather than graphene.  The 
Pt film is an effective heat spreader, leading to significantly higher Ts than the oxide 
control experiment for the same heating power.  Using k of Pt as the only free parameter, 
the best-fit FEM temperature profile (T1, T2, T3) is in very good agreement with the 
experimental measurements, and was obtained using a best-fit value of kPt = 25.4 W/m-K.  
To confirm this value of kPt we used the Wiedemann-Franz law to estimate kPt = 26.6 
W/m-K from the resistivity of a four-probe Pt line prepared during the same evaporation 
run, thus validating this heat spreader + FEM method to within 5%.  We also checked the 
sensitivity of this method by varying the best-fit property away from its optimized value.  
For example, Fig. 2-10 also show the results of FEM simulations using a value of kPt that 
is 30% smaller (red squares) or 30% larger (red diamonds) than the best-fit value.  These 
results show that the sensitivity of this fit is clearly better than ±30%. 

B.  The effect of thermal contact resistance Rc,gr-ox 
	
  

	
  
Figure 2-11. Effect of the graphene-oxide thermal contact resistance on the FEM-
extracted thermal conductivity of graphene.  Accouting for the thermal contact 
resistance decreases the extracted thermal conductivity of graphene by ~10% at 
room temperature, and as the temperature goes down, the correction becomes less 
and less important. 
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To study the effect of thermal contact resistance between the graphene and the 
oxide layer, in Section 2.3 we developed a differential 3ω experiment [26] to directly 
measure the contact resistance between graphene and silicon dioxide over the same 
temperature range. At room temperature, the measured thermal contact resistance is 
around 1.0×10-8 m2-K/W, which is equivalent to the thermal resistance of an oxide layer a 
few tens of nanometers thick [27].  The temperature dependence of the thermal contact 
resistance is weak around room temperature, transitioning to a power law close to 1−T  at 
low temperature.  We revised our FEM parameter extraction to account for this thermal 
contact resistance, thus leading to improved values for the thermal conductivity of 
graphene.  We can see from Fig. 2-11 that accounting for the thermal contact resistance 
leads to reductions in the extracted graphene thermal conductivity by ~10% at room 
temperature, and the effect becomes weaker as decreasing temperature.  This trend can be 
qualitatively understood by the simple “fin” model: according to Eqs. (2-1) and (2-2), the 
thermal contact resistance results in a decrease of the effective “convection” coefficient, 
which for constant fin parameter m also corresponds to a decrease in the graphene 
thermal conductivity.  As the temperature decreases, the conduction thermal resistance of 
the oxide layer increases more quickly than does the contact thermal resistance, making 
the contact-resistance term relatively less important to the extracted k of graphene at low 
temperatures. 

C.  Temperature dependence of k 
	
  

	
  
Figure 2-12. Temperature dependence of k for encased graphene and ultrathin 
graphite.  TPRC: Ref. [7]. 
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In Fig. 2-12, we plot k as a function of temperature for all of the encased samples 
measured in this work.  For clarity, we omit the error bars here and save them to Fig. 2-
13. Figure 2-12 shows that for a given thickness, the suppression of k as compared to 
bulk graphite is even stronger at lower T.  Over the range from 60 K < T < 150 K, seven 
of the samples follow a power law temperature trend between 5.1T  and 2T .  The specific 
heat of bulk graphite [28] also follows an approximately 5.1T  power law in this 
temperature range, suggesting that these samples are in a boundary-scattering regime 
where k simply tracks the specific heat capacity.  At higher T the data in Fig. 2-12 
transition to a much weaker power law.  We expect that all of these samples have a peak 
in k(T) near or just above room temperature, indicating the onset of significant Umklapp 
phonon scattering, although because of the limited T range measured in Fig. 2-12 the 
peak is only clearly evident for the 19 layer flake.  Recent measurements of supported 
and suspended SLG are also consistent with the existence of a peak in k(T) around room 
temperature [6, 16]. 

D.  Thickness dependence of k 
	
  

	
  
Figure 2-13.  k vs. thickness at (a) 310 K, (b) 164 K, and (c) 92 K.  Because multiple 
samples were measured with NLayers=3, their thickness coordinates have been shifted 
slightly for clarity.  The 2 layer flake was only measured at 310 K.  Error bars 
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indicate 95% confidence intervals, and k of the encased SLG flake is so low that only 
the upper bound is significant.  For comparison, literature values are also shown for 
bulk graphite (dashed lines [7]), suspended SLG (open square [4], open diamond 
[5]), and SiO2-supported SLG (open circles [16]). 

In Fig. 2-13, we plot k of encased graphene and ultrathin graphite as a function of 
thickness at three different temperatures.  The 95% confidence intervals (CI) are 
evaluated using a Monte Carlo method described in Section 2.5 and our estimates of the 
random and systematic uncertainties (Table 2-2).  This analysis reveals that our 
experiments are most sensitive for thick flakes of high k.  Conversely, we find that k of 
encased SLG is so low that this heat spreader method can meaningfully give only the 
upper bound of k.  For example, as shown in Fig. 2-13(a), at 310 K our measurements 
show with 97.5% confidence that k of encased SLG is below 160 W/m-K.  This is well 
below the room-temperature values of 580 W/m-K reported for SiO2-supported SLG 
[16], and ~1000 to ~5000 W/m-K reported for suspended SLG [4-6]. 

The dominant feature of Fig. 2-13 is the trend that k of encased graphene 
increases with the number of layers, approaching bulk graphite for the thickest sample at 
room temperature [Fig. 2-13(a)].  We note that this trend is opposite of that reported for 
suspended graphene [4], which for SLG shows k well above that of bulk graphite, and 
with k decreasing with the number of layers to approach the bulk graphite value. 

	
  

Figure 2-14.  (a) Suspended scenario: more DOF and less scattering per layer near 
the “free” boundaries as compared to the “core”, thermal conductivity will increase 
when decreasing the number of graphene layers.  (b) Encased scenario: fewer DOF 
and more scattering per layer near the “constrained” boundaries as compared to 
the “core”, thermal conductivity will decrease when decreasing the # of graphene 
layers. 
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To interpret these opposite trends we offer a simple physical picture: as indicated 
in Fig. 2-14, for the suspended case, which has a “free” boundary, there are more degrees 
of freedom (DOF) and less phonon scattering per layer for layers near the boundaries as 
compared to layers in the “core” [30].  As a result the thermal conductivity of layers near 
the boundaries is bigger than that of the “core” layers, so, upon decreasing the total 
number of layers, the boundaries become relatively more important than the core, and the 
effective average thermal conductivity of a suspended graphene sheet will increase.  On 
the other hand, for the encased case, which has “constrained” boundaries, there are fewer 
DOF and more phonon scattering per layer for layers near boundaries as compared to the 
“core.”  Thus, the thermal conductivity of the boundary layers is now smaller than that of 
the “core” layers, so, upon decreasing the number of “core” layers, the effective thermal 
conductivity of an encased graphene sheet will now decrease. 

For the encased scenario, a key physical question is to identify the characteristic 
length δ by which these oxide-induced surface disruptions of the outermost graphene 
layers extend into the core of the flake due to the weak Van der Waals coupling between 
adjacent graphene layers.   

To address this question we introduce the following phenomenological model. 
We assume that the in-plane k of an ultrathin graphite flake varies continuously across the 
flake thickness according to an unknown function ),(ˆ tzk , where k̂  is the local thermal 
conductivity, and z is measured from the midplane of the flake which has a total thickness 
t.  This assumption of a local thermal conductivity function ),(ˆ tzk  is supported in part by 
the fact that the in-plane thermal conductivity of 3D graphite can be largely understood 
through analysis of a 2D phonon gas [31].  Because the interlayer Van der Waals 
coupling is much weaker than the in-plane bonding, the most important effect of the 
adjacent layers is in scattering the in-plane 2D phonons rather than major alterations of 
the phonon dispersion [18, 31-32]. 

 Note that our experiments yield only the effective conductivity of the entire flake, 

equivalent to averaging: k(t) = 1
t

k̂(z, t)dz
−t/2

t/2
∫ .  Referring to Fig. 2-13, at any given 

temperature we expect )(tk  to have three features: (i) For very thick flakes k should 
recover to the bulk graphite value, that is, Bulkktk =∞→ )( ; (ii) For sufficiently thin flakes 
it appears that k tends to an approximately constant value k0, that is, 0)0( ktk =→ ; (iii) 
There is some characteristic thickness at which the )(tk  function transitions between the 
k0 regime and the kBulk regime.   

 Consistent with these criteria, here we suggest a semi-empirical form for the local 
thermal conductivity function:   

( ) ( ) ( )[ ]δδ 200 coshcosh1),(ˆ tz
Bulk kkktzk −−+=  , (2-5) 

where δ  characterizes the distance that the oxide-induced disruptions of the outermost 
surface layers penetrate into the core of the flake.  Note that the symmetry of Eq. (2-5) 
assumes that the upper and lower surfaces of the flake experience similar constraining 
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effects by their respective adjacent oxides, which is not obvious considering that one 
interface arises from mechanical exfoliation and the other from evaporation, but 
nevertheless might be a good approximation if Ref. 16 is correct that the dominant effect 
of the oxide is in quenching the out-of-plane ZA modes.  For flakes much thicker than δ, 
Eq. (2-5) is simply a function that interpolates between the constrained 0

ˆ kk =  at the flake 
surfaces and Bulkkk =ˆ  deep within the core of the flake, over the exponential decay length 
δ.  Averaging Eq. (2-5) for 22

tt z ≤≤−  to compare with experiments gives 

k(t) = k0 + kBulk − k0( ) 1− 2δ
t tanh t

2δ( )"# $% . (2-6) 

	
  

Figure 2-15.  (a) Best-fit values of k0 and δ as functions of temperature.  kBulk(T) is 
graphite [7]. (b) Dimensionless comparison of Eq. (2-6) with the thickness-
dependent measurements from four different Ts, using the dimensionless 
conductivity k − k0( ) kBulk − k0( ) . 

To apply this model to our data, k0 and δ are treated as T-dependent fitting 
parameters, while kBulk(T) is taken from Ref. 7.  We use a 2χ  minimization to fit this 
model to the thickness-dependent k from Fig. 2-13, using kBulk from TPRC [7].  The 
temperature dependence of these fitting parameters, k0 and δ, is given in Fig. 2-15(a), 
which shows that the oxide-induced surface distortions penetrate much deeper into the 
core at low temperature.  Finally, in Fig. 2-15(b) we collapse the measurements from 
these four Ts and all thicknesses on to a single dimensionless plot of ( ) ( )00 kkkk Bulk −−  vs. 
δ/t , which suggests that Eq. (2-6) is a reasonable description of this entire data set. 

E.  Estimation of phonon mean free paths 
Because the FEM method is based on the continuum diffusion equation which 

cannot handle ballistic effects, it is only appropriate for flakes with phonon mean free 
paths smaller than the center-to-center spacing of our T sensors. 
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To confirm that our samples are in the diffusive rather than ballistic regime, we 
used kinetic theory to estimate the phonon mean free paths.  The two-dimensional form 
of kinetic theory is Λ= Cvk 2

1 , where C is the volumetric heat capacity, v is the phonon 
velocity, the factor of 21  is for a two-dimensional system, and Λ is the phonon mean free 
path.  This simplified "dominant phonon" or "gray" formulation approximates all 
phonons as traveling at the same velocity, and neglects the contribution of optical modes.  
Because the temperatures of interest in this study are well below graphite's Debye 
temperature (~2000 K in-plane), the dominant phonon approach is a much better 
approximation for graphite/graphene than for most other materials.  Therefore we 
estimate the mean free path as Λ ≈ 2k /Cv , where C is taken from Ref. 28 and v=14,800 
m/s is an average of the LA and TA sound velocities using ( )2

,
2
,2

12 −−− += TAsLAs vvv   [33].   
Table 2-1 summarizes this calculation using our k measured for representative thick (19 
layers) and thin (3 layers, using the average of our three samples of this thickness) 
samples. 

T [K] 
Heat Capacity, C 

[J/m3-K] 
Mean Free Path, Λ 

Thick (19 layers) Thin (3 layers, avg. of 3 samples) 
310 15 ×105 51 nm 16 nm 
164 6.5 ×105 103 nm 25 nm 
92 2.8 ×105 56 nm 23 nm 
37 0.55 ×105 67 nm 37 nm 

Averages: 69 nm 25 nm 
Table 2-1  Estimation of phonon mean free paths in encased graphene. 

As shown in Table 2-1, the phonon mean free paths in the graphene samples 
measured in this work are typically in the range of 20 nm - 100 nm, considerably smaller 
than the electrode spacings and thus justifying the use of the diffusion equation. 

F.  Sensitivity analysis using partial derivatives 
 If the uncertainties of every input parameter are small and assumed to have a 
Gaussian distribution about their mean value, the classical partial derivative method for 
uncertainty analysis can be written 

uk
k
= Si ×

uxi
xi

"

#
$

%

&
'

2

i
∑ , (2-7) 

where uk is the total uncertainty in graphene's thermal conductivity k, 
ixu  is the 

uncertainty in the i-th input parameter xi, and the dimensionless sensitivities Si are 
defined as  

Si =
xi
k
∂k
∂xi

=
∂ lnk( )
∂ ln xi( )

. (2-8) 

 An example of this analysis is summarized in Table 2-2 for the sample that is 
nominally 12 layers thick.  In this sample only the first two sensors were working.  The 
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uncertainties in each of the input quantities are given at the 95% confidence level and are 
our estimates considering both random and systematic uncertainties at 310 K.  The 
uncertainties were updated as appropriate at other temperatures (not shown).  The partial 
derivatives were evaluated numerically via COMSOL+MATLAB using small 
perturbations of each parameter around its typical value.  To highlight the relative 
importance of each of the inputs, Table 2-2 also lists each variable's contribution, defined 
as ( )ixii xuSc

i
/×= .    

	
  

Table 2-2  Example of a detailed sensitivity analysis for the nominal 12-layer sample 
at 310 K. 

Table 2-2 reveals the following: 

• The thermal conductivity of graphene is very sensitive ( 3>iS ) to the thickness and 
thermal conductivity of the bottom oxide, the temperature rise of sensor 1, and the 
distance between electrodes.   

• The thermal conductivity of graphene is weakly sensitive ( 2.0≤iS ) to the top oxide 
properties, the heater width, the metal thermal conductivity, and the thermal contact 
resistance between graphene and SiO2.  

• The input parameters with the greatest relative uncertainty (ui / xi) are the thermal 
conductivity of the substrate and the thermal contact resistance between graphene and 
SiO2.  
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 The combined effect of the above is that the three most important contributions 
(largest ci) to the total uncertainty in graphene's thermal conductivity are the thermal 
conductivity of the bottom oxide, the thermal conductivity of the silicon substrate, and 
the temperature rise of sensor 1.  We measured the thermal conductivity of the silicon 
substrate and the bottom oxide using a standard 3-omega method.  We determined the 
uncertainty of these parameters by considering our 3-omega results, literature values [17, 
34], and the FEM fitting results for a control experiment without any graphene.  The 
uncertainty in the temperature response of each sensor depends critically on that sensor's 
temperature coefficient of resistance, which we measure for every sensor and fit using a 
Bloch- Grüneisen formula [29, 35] (details see Section 2.3.1E).  

 The thermal contact resistance between graphene and SiO2 (details see Section 
2.3) was also included in our analysis.  The thermal contact resistances between Si and 
SiO2 and between gold and SiO2 were not included in the analysis, but by considering the 
thickness of an equivalent oxide layer [17], the above partial derivative analysis suggests 
that these corrections should change the final value of graphene's k by at most a few 
percent, which can be safely neglected compared to the other uncertainties. Likewise, the 
uncertainty in the electrode thickness (e.g. 55 nm ± 4 nm) was also ignored because it 
was shown to have a negligible influence on the final extracted value of graphene's k; this 
is also evident from the fact that the sensitivity to the metal thermal conductivity is very 
low (Table 2-2).   

 The layer thicknesses t were determined using a combination of AFM 
measurements and interference colors under an optical microscope [36-38].  From our 
previous experience with optical interference colors as cross-referenced with Raman 
microscopy and electrical transport measurements [36], we are confident in identifying 
single- and bi-layer graphene flakes and assume negligible uncertainty in this 
designation.  For flakes 3 layers and thicker, the typical standard deviation in AFM 
thickness measurements is 0.15 nm, and the uncertainty can be considered to be at most 
±1 layer.  For simplicity in plotting and designating samples we rounded the AFM 
measured thickness to the nearest integer number of layers.  We have confirmed 
numerically that our heat-spreading method is only sensitive to the product tk ⋅ , because 
all graphene flakes are so thin that there are negligible temperature gradients through the 
flake's thickness.  Thus any uncertainty in t leads translates directly to an equal 
uncertainty in k.  Therefore, for a 3 layer flake, an uncertainty of ±1 layer would 
contribute an additional 33% uncertainty in k, and for a 10±1 layer flake the additional 
uncertainty in k is only 10%.  These uncertainties are not incorporated in the error bars of 
Fig. 2-12 where they would be only a minor correction. 

 

2.3  Thermal contact resistance 
To ensure effective heat transfer away from active devices and into heat sink 

regions, future graphene-based microelectronics, interconnects, and thermal management 
structures will require good thermal contact between graphene and other materials, 
especially dielectrics.   
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While direct measurements are rare [1, 51] for the thermal contact resistance 
involving graphene, the thermal contact resistance of several related carbon materials has 
been measured by various groups.  For example, using a transient thermoreflectance 
technique, Schmidt et al. [39] measured the thermal contact resistance between a highly 
ordered pyrolytic graphite (HOPG) substrate and an Al thin film to be 2.0×10-8 m2-K/W 
at 300 K.  Yu et al. [40] measured the thermal contact resistance between a 152-nm-
diameter carbon nanofiber and a Pt substrate;  based on the reported contact width (10 
nm), and our estimates of the contact length from the published scanning electron 
microscope (SEM) images, the equivalent thermal contact resistance of the nanofiber is 
4.4 − 6.7×10-8 m2-K/W at room temperature.  For single-walled carbon nanotubes on 
SiO2 substrates, by fitting the measured electrical breakdown voltages to a thermal 
model, Pop et al. [41] extracted a contact resistance equivalent to 1.0 - 2.1×10-8 m2-K/W 
from 500 0C - 700 0C.     

  Here we report measurements of the thermal contact resistance between single- 
and few-layer graphene and silicon dioxide, using a differential 3ω method [26] over a 
temperature range from 42 K to 310 K. 

 

2.3.1  Experimental method 

A.  A differential 3ω method 
	
  

	
  
Figure 2-16.  Schematic of the differential 3ω method.  Two samples have the same 
structure except one has the thin film of interest while the other not.  The thermal 
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property of interest (k of the thin film or Rc) can be extracted by subtracting the 
thermal impendences of the two samples measured by a classical 3ω method, 
respectively. 

We first briefly introduce the classical 3ω method, a standard technique to 
measure thermal properties of both bulk and micro/nano structrues [25, 42].  As shown in 
Fig. 2-16, the measurement is driven by an AC current with angular frequency ω through 
a heater line microfabricated on the surface of the sample.  The resulting Joule heating 
oscillates at a frequency of 2ω, which correspondingly produce a temperature field 
oscillating at the same frequency.  As a response to this temperature oscillation, an AC 
component with a frequency of 2ω is superposed to the original DC component of the 
electrical resistance of the heater line.  Finally, combining these two components of the 
electrical resistance with the driving AC current, we obtain two superposed voltage 
components, V1ω and V3ω, both of which contain important information of thermal 
properties of the sample.  In particular, the 3ω component is widely used, and known as 
the 3ω method. 

We now describe the differential 3ω method, which extends the classical 3ω 
method for thin film measurement, especially for samples containing multiple thin films.  
As indicated in Fig. 2-16, two samples are prepared, which have exactly the same 
structure except that the primary sample includes the thin film of interest while the 
control sample does not.  Subtracting the thermal impedance of the control sample (ZB) 
from that of the primary sample (ZA) gives net thermal impedance of the thin film and the 
thermal contact resistances. 

Note that the thermal impedance of the atomic graphene layer is negligible for our 
sandwich structure (Fig. 2-1), so the thermal contact resistance dominates, i.e., 

( ). .A B g top ox g bot ox top ox bot oxZ Z R R R↔ ↔ ↔− = + − .  We assume the thermal contact resistances 
from graphene to top and bottom oxides are identical ( .g top ox g bot ox g oxR R R↔ ↔ ↔= = ), and 
neglect the contact resistance between the top and bottom oxide layers in the control 
pattern ( .. 2 oxgoxbotoxtop RR ↔↔ << ).  Thus, we calculate 1

2 ( )g ox A BR Z Z↔ = − . 

B.  Microfabrication 
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Figure 2-17.  Sample microfabrication (by Dr. Wanyoung Jang).  (a) Deposit and 
locate graphene flakes.  (b) Cleaning anneal, then evaporate top oxide.  (c) Pattern 
the heaters.  (d-e) Ion mill the top surface using an Ar beam, to trim the flake and 
simplify the thermal analysis. 

The samples are prepared by Dr. Wanyoung Jang.  As shown in Fig. 2-17: first, 
graphene flakes are deposited randomly on an oxidized Si wafer using an exfoliation 
method [36, 43].  Although it would be desirable for the bottom oxide to be thinner in 
order to minimize the background thermal resistance, we are restricted to use a 300 nm 
thick layer because of the optical interference method used to identify the thin flakes 
[43].  Candidate flakes are then located with respect to a grid of alignment marks.  Next 
we anneal the samples with Ar (1.7 L/min) and H2 (1.9 L/min) at 400 °C for 1 hour [22], 
followed by electron-beam evaporation of approximately 30 nm of silicon dioxide.  Then 
electron-beam lithography is used to pattern evaporated Cr/Au electrodes (thickness 5 nm 
/ 175-345 nm) by a lift-off process.  Finally, we use an argon ion beam (inductively 
coupled plasma at 450 W, with 50 W of RF power) to mill the top surface of the sample 
to an etch depth slightly greater than the original thickness of the top oxide.  In this way 
the graphene flake is trimmed to match the width of the metal heater line, which ensures 
one dimensional (1D) heat flow through the graphene flake, as justified in the following 
section.  To facilitate the differential 3ω measurements, on every sample we fabricate two 
heaters in close proximity with identical heater patterns and etch depths: the primary 
pattern (“A”) which includes the graphene flake between the oxide layers, and a control 
pattern (“B”) with top and bottom oxide layers but no graphene [Fig. 2-17(e)]. 

C.  Justification of the 1D heat transfer assumption 
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Figure 2-18.  One dimensional heat transfer justification.  (a) Three key length 
scales of the problem.  (b) Visualization of the isotherms and flux lines by a 2D FEM 
simulation.  (c) Convergence of the real thermal resistance to the ideal 1D 
resistance, Rth,FEM/ Rth,1D, as a function of the dimensionless group whtr/tox.  Typical 
expected values of these parameters in the real experiments: whtr = 3 µm, tetch = 60 
nm, tox = 300 nm. 

We now justify the assumption of the 1D heat transfer through the sandwich 
structure (top SiO2 + graphene + bottom SiO2).  As indicated in Fig. 2-18(a), there are 
three important lengths in this problem: the heater width (whtr), the oxide thickness (tox), 
and the etching depth (tetch).  Ideally, we want whtr >> tox or tetch = tox to ensure 1D heat 
transfer through the sandwich structure.  In practice, however, we are constrained by the 
graphene flake size and concerned about the time and cost of the ion milling.  In order to 
compromise between the ideality and reality, we performed analysis utilizing a two 
dimensional finite element method (2D FEM) through a commercial software package 
(COMSOL).  To mimic the real experiment, we use a flux boundary condition to 
represent the heater.  We then apply a temperature boundary condition on the lower 
surface of the bottom oxide, and set the other boundaries to be adiabatic.  Figure 2-18(b) 
shows the isotherms and adiabats for a representative structure, which confirms the 1D 
heat transfer qualitatively.  Note that we exaggerated the thickness of graphene for clarity.  
For a quantitative justification, in Fig. 2-18(c) we normalize the real thermal resistance 
(Rth,FEM) by the ideal 1D resistance, Rth,1D = tox (kox ⋅whtr ) , and plot it as a function of a 
dimensionless group whtr/tox.  We showed four different scenarios by increasing the 
etching depth from zero to all the way through the bottom oxide.  The first feature is, as 
expected, that Rth,FEM gradually converges to Rth,1D as whtr/tox increases for all the 
scenarios.  The second feature is that as the etching depth increases, the convergence 
becomes faster.  Based on this analysis, and also considering the reality, we design our 
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experiment parameters to be: whtr = 3 µm, tetch = 0.2⋅tox, which introduces a 4.5% error by 
assuming 1D heat transfer through the sandwich structure.  Note that this is a 
conservative analysis since it ensures the heat transfer through not only graphene but also 
the oxide to be one dimensional. 

D.  A current-sweep scheme 
The experiments are conducted at temperatures from 42 K - 310 K in a liquid 

helium cryostat evacuated to ~10-6 Torr.  Although differential 3ω methods most 
commonly use a single value of the electrical current and evaluate the difference between 
two frequency sweeps [26], we have found somewhat improved uncertainty by fixing the 
frequency (at 1000 Hz) and evaluating the difference between two current sweeps.  In 
this scheme we check the linearity of the curve of heater temperature rise vs. power, to 
verify that the current and voltage are free of offset errors and non-thermal harmonics.  
We confirmed that the final results are independent of the frequency chosen for the 
current sweep.  For example, contact resistance measurements taken at 10, 500, 1000, and 
10000 Hz agree to within ±3.8% at 310 K and ±2.2% at 80 K [95% confidence interval 
(CI)]. 

E.  A Bloch- Grüneisen formula 
	
  

 

Figure 2-19.  Fitting the electrical resistance of a typical heater.  (a) Comparison 
between the experimental data (points) and the fits using a linear (blue line) or 
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Bloch-Grüneisen (B-G) formula (red line).  On these logarithmic axes the linear fit 
appears curved.  (b) Residuals for the linear fit (blue), B-G fit (red), and B-G + 
empirical polynomial fit [green; see Eq. (2-10)]. 

The largest contribution to the overall uncertainty in Rg↔ox is the uncertainty in the 
temperature response of the electrical resistance of the heater, dRe/dT.  As shown in Fig. 
2-19(a), a simple linear fit bTaRe +=  is clearly inadequate to describe the calibration 
curve Re(T) over the large temperature ranges of interest.  Therefore, for every heater 
pattern we fit the measured Re(T) with a Bloch-Grüneisen formula [35]  

Re,BG (T ) = r0 + 4Δ
T
θ

"

#
$

%

&
'
5 z5ez

(ez −1)20

θ
T∫ dz , (2-9) 

where r0 is the residual resistance indicating the impurity and boundary scatterings of 
electrons, θ is the Debye temperature, and ∆ is a scaling factor indicating the strength of 
electron-phonon coupling.  As shown in Fig. 2-19, Re,BG(T) is a much better description 
of the experimental Re(T).  As expected the residuals of this improved fit reveal small but 
clear deviations from the simple Bloch-Grüneisen theory [Fig. 2-19(b)] [35].  We capture 
these deviations empirically using a low-order polynomial in ln(T):  

Re(T ) ≈ Re,BG (T )+ cn ln(T )[ ]n
n=1

N

∑ , (2-10) 

where the results become approximately independent of N for 53 ≤≤ N .  Finally, we 
differentiate Eq. (2-10) analytically to obtain the required dRe/dT.  [Our final results are 
taken as the average of the values obtained from the 3rd, 4th, and 5th order versions of 
Eq. (2-10).] 

 

2.3.2  Results and discussion 

A.  Thickness and temperature dependence of Rg-ox 
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Figure 2-20.  Experimental measurements of the thermal contact resistance between 
silicon dioxide and graphene, for four samples of different thicknesses (filled points, 
in color).  Also included for comparison are the contact resistances of several related 
carbon materials from the literature (open points), and theoretical curves for a 
diffuse mismatch model (DMM) and a maximum transmission model (MTM) 
(lines). 

The measured thermal contact resistances between graphene and SiO2 are shown 
in Fig. 2-20 for four samples with different thicknesses (1.2 nm, 1.5 nm, 2.8 nm, and 3.0 
nm) as determined by atomic force microscopy (AFM).  Based on these AFM 
measurements [37-38] and our experience with the interference colors under an optical 
microscope [36], we believe that the 1.2 nm and 1.5 nm samples are single layer (SLG) 
and bilayer graphene (BLG), respectively.  As shown in Fig. 3, the typical uncertainty in 
the contact resistance ranges from approximately ±7% at 310 K to ±28% at 42 K (95% 
CI).  At room temperature the contact resistance is found to range from 5.6×10-9 to 
1.2×10-8 m2-K/W, which is relatively low compared to typical values reported for various 
other material pairings [44], and in particular is lower than previous measurements of the 
contact resistance of carbon materials to various substrates [39-41]. 

Although the measurements in Fig. 2-20 do not exhibit any clear dependence on 
the sample thickness, all four samples follow roughly the same temperature trend.  
Around room temperature, the contact resistance is relatively independent of temperature, 
although two of the samples show a slight minimum in Rg↔ox(T) around 200 K.  Below 
about 100 K, all four samples show a marked increase in contact resistance, transitioning 
to a power law that can be approximated as 1−

↔ ∝ TR oxg . 

B.  Comparing to theoretical models 
Modeling the thermal contact between graphene and silicon dioxide is challenging 

due to the amorphous nature of the SiO2 and the highly anisotropic properties of the 
graphene.  Here we briefly consider two simple models as shown in Fig. 2-20 (a more 
sophisticated model will be developed in Chapter 3).  First, a lower bound on the thermal 
contact resistance is the “maximum transmission model” (MTM) [33], a generalization of 
the “phonon radiation limit” [45].  The phonon internal energies were determined from 
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experimental values of the heat capacity [28].  The characteristic velocities were taken as 
4487 m/s and 2157 m/s for oxide (isotropic) and graphene (c-axis [28]), respectively, 
determined from a weighted average of the transverse and acoustic sound speeds. The 
second model considered in Fig. 2-19 is the elastic diffuse mismatch model (DMM) 
described by Duda et al. for thermal contact between isotropic and anisotropic materials 
[46, 47].  As shown by the dashed (MTM) and solid (DMM) lines in Fig. 2-20, both 
models capture certain features in the measurements, but with significant weaknesses.  
The MTM indeed serves as a lower bound and appears promising below about 60 K, but 
it greatly underpredicts the true contact resistance at higher temperatures.  The DMM 
qualitatively captures most of the temperature trend, but the DMM values are too large by 
a factor of approximately 6 at all temperatures, which may indicate that inelastic phonon 
scattering (neglected in this implementation [46]) is a significant channel for heat flow. 

 

2.4  Summary 
This portion of the thesis focused on measuring thermal properties of encased 

graphene.  First, we have developed and validated a heat spreader method to measure k of 
graphene and ultrathin graphite encased within SiO2.  These results highlight the 
importance of layer thickness and interfacial coupling for in-plane heat transfer.  In 
particular, to maximize k by ultrathin graphite encased in SiO2 at room temperature, layer 
thicknesses of at least 10 nm should be targeted to ensure k > 1000 W/m-K.  Second, we 
have measured the thermal contact resistance between graphene and silicon dioxide from 
42 K to 310 K, and found resistance values significantly lower than previous 
measurements involving related carbon systems [39-41].  These measurements should 
prove helpful for interpreting recent experiments involving heat transfer and energy 
dissipation in graphene [4, 48-49], and are an encouraging development for possible 
future applications of graphene in microelectronics, interconnects, and thermal 
management structures. 
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2.5  Appendix: a Monte Carlo scheme for uncertainty analysis 
	
  

	
  

Figure 2-21.  A straightforward approach to estimate confident intervals in the 
temperature-resistance calibration. 

	
  

	
  
Figure 2-22.  A Monte Carlo approach to estimate confident intervals in the 
temperature-resistance calibration. 

"Offered the choice between mastery of a 5-foot shelf of analytical statistics books and 
middling ability at performing statistical Monte Carlo simulations, we would surely 
choose ... the latter."  - W. H. Press et al., Numerical Recipes 3rd edn.   
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We choose a Monte Carlo scheme [29] to analyze uncertainties for both the 
thermal conductivity of graphene (kgr) and the calibration of temperature-resistance 
relation [R(T)] of microfabricated thermometers.  In the kgr analysis, as shown in Table 2-
2 certain input parameters such as the substrate thermal conductivity and the contact 
resistance between graphene and SiO2 have rather large uncertainties, violating one of the 
basic assumptions of the partial derivative uncertainty analysis described in Section 
2.2.4.F.  In the R(T) calibration, the dataset are nonlinear and complicated.  In both 
scenarios, Monte Carlo simulations are good options to analyze uncertainty propagations. 

	
  

Figure 2-23.  Flowchart of a Monte Carlo scheme to analyze uncertainty. 

We use the R(T) calibration as an example to demonstrate this Monte Carlo 
scheme.  As illustrated in Fig. 2-21, here T is the control variable (Xi) set in the cryostat, 
Re is the response variable (Yi) measured using a four-probe method [Fig. 2-6(a)].  Our 
goal is find the true physics, i.e., the three parameters, r0, θ, and ∆, of the Bloch-
Grüneisen formula [Eq. (2-9)].  For simplicity, we group these three parameters to define 
a vector parameter, a = {r0, θ, ∆}.  A straightforward approach is to calibrate multiple 
trials to estimate atrue ≈ avg.(ai

expt. )  and the confident interval from the scatter of ai
expt. .  

However, in most cases we only have one measurement, thus only a0
expt. .  As shown in 

Fig. 2-22 and the flowchart of Fig. 2-23, the Monte Carlo scheme allows us to generate 
numerous synthetic control-response variable datasets (Tsynth,i, Rsynth,i) from the measured 
(T0, R0) dataset based on the Bloch-Grüneisen formula and the known statistical 
distributions of experimental uncertainties in Ti and Ri.  Fitting each synthetic dataset 
with the model yields a slightly different outcome for the fitting parameter ai

synth. , the 
statistics of which finally allow us to calculate the uncertainty in a.  Note that this scheme 
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implicitly assumes the error propagation (the “error cloud” in Fig. 2-21 and 2-22) in the 
neighborhood of a0

expt.  is similar to in the neighborhood of atrue. 

Likewise, in the kgr analysis, the control variables (Xi) are all the geometries and 
the thermal properties input to the FEM model (Fig. 2-7), except kgr; the response 
variables (Yi) are the temperatures measured by the three resistive thermometers; the best 
fit model is the 3D FEM model; and the fitting parameter (a) is kgr at a specific cryostat 
temperature. 

In both scenarios, we confirmed that the MC results are converged by comparing 
results from multiple MC trials.  In the kgr analysis, to validate our implementation of the 
MC method we evaluated a test case using small uncertainties for all input parameters, 
and confirmed that it was in close agreement with the partial derivative method. 
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Chapter 3: An anisotropic Debye model for the thermal 
boundary conductance 
[Reproduced with permission from Physical Review B 87, 125426 (2013)] 

 

3.1  Introduction 
Understanding and engineering the thermal boundary conductance (TBC, also 

discussed as a thermal boundary resistance or thermal contact resistance) across 
atomically-intimate interfaces is becoming increasingly important as the characteristic 
lengths of modern devices continue shrinking to micro- and nano- scales [1]. Nearly all 
models for the TBC, such as the widely-used diffuse mismatch model (DMM) and 
acoustic mismatch model (AMM) [2], require that the materials have isotropic properties, 
and are most commonly based on an isotropic Debye dispersion relation.  However, 
many important materials are highly anisotropic, including layered materials such as 
graphite, boron nitride, and Bi2Te3, and chain-like materials such as high density 
polyethylene (HDPE).   In such highly anisotropic materials, the conventional isotropic 
Debye model is no longer a good approximation.  For example, in graphite at 
intermediate temperatures the predictions of the isotropic Debye model deviate from the 
experimental data for the specific heat capacity by more than a factor of two [3-4], and, 
as will be shown below, compared to the measured TBC between graphite and metals [5], 
DMM calculations using an isotropic Debye model are typically in error by more than a 
factor of 10. 

 For the special case of interfaces involving graphite, recently two anisotropic 
TBC models were reported.  Prasher [6] used the DMM to model the TBC between 
graphite and platinum below 100 K using the aniostropic graphite dispersion from 
Komatsu [7]. Also using the DMM, Duda et al. [8] modeled the TBC between graphite 
and aluminum by approximating graphite’s density of states (DOS) as two-dimensional 
(2D).  In both cases the modeled TBC was found to be lower for interfaces oriented 
parallel to graphite’s ab-planes (also called basal planes), which was attributed to the fact 
that the sound velocity is much lower in the c-axis direction than along the ab-planes.  
Because these models [6, 8]	
  were developed specifically for graphite, they are difficult to 
generalize to other anisotropic materials. 

In this chapter we develop a general framework for the TBC using an anisotropic 
Debye phonon dispersion, whereby the first Brillouin zone and the iso-energy surfaces 
are both generalized from spherical to ellipsoidal.  We restrict the analysis to materials 
where only one of the three principle directions is anisotropic; that is, materials with 
tetragonal, trigonal, or hexagonal symmetries.  This restriction is appropriate for a large 
number of layered and chain-like materials, including graphite, boron nitride, Bi2Te3, 
HDPE, and tellurium.  This chapter is organized as follows.  In Section 3.2 we present the 
two basic assumptions of the framework and derive an expression for the TBC, include 
simple analytical expressions for several limiting cases.  The specific heat capacity is also 
discussed.  Then in Section 3.3 we compare the model to experimental results from the 
literature for the specific heat of a typical layered (graphite) and chain-like (HDPE) 
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material, and for the TBC between graphite and various metals.  Finally we summarize 
this chapter in Section 3.4, and leave some detailed derivations in Section 3.5. 

 

3.2  Description of model 

3.2.1  Basic assumptions and justifications 

	
  
Figure 3-1. (a) Iso-energy surface (here for ab cv v> ; the opposite case is 
straightforward).  The ellipsoidal surface has an equatorial radius abvω  and polar 
radius cvω .  Its kb-kc projection is an ellipse.  (b) FBZ (here for , ,ab m c mk k> ; the 
opposite case is straightforward) with equatorial radius ,ab mk  and polar radius ,c mk .  
Its kb-kc projection is also an ellipse. 

The first key assumption of this model is that a material’s anisotropic phonon 
dispersion can be well approximated by the anisotropic Debye dispersion, 
2 2 2 2 2 2 2

a a b b c cv k v k v kω = + + , where av , bv  and cv  are the sound velocities along the a-, 
b- and c-axis directions respectively, and ( , ,a b ck k k ) is the wavevector.  This dispersion 
has ellipsoidal iso-energy surfaces in k-space [Fig. 3-1(a)].  Because in this work we 
focus on materials with a b abv v v= = , this simplifies to  

 2 2 2 2 2
ab ab c cv k v kω = + , (3-1) 

where 2 2 2
ab a bk k k= + . 

 The other key assumption is that an anisotropic material’s first Brillouin zone 
(FBZ) can be adequately approximated by an ellipsoid [Fig. 3-1(b)], an obvious 
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generalization of the spherical FBZ used in the classic isotropic Debye model.  Here the 

FBZ ellipsoid is defined as the surface satisfying  
2 2 2

2 2 2
, , ,

1a b c

a m b m c m

k k k
k k k

+ + = , where ,a mk , 

,b mk , and ,c mk  are wavevector cutoffs.  Because we focus on materials with restricted 
symmetries such that , , ,a m b m ab mk k k= = , this can be written 

 
2 2

2 2
, ,

1ab c

ab m c m

k k
k k

+ = . (3-2) 

To ensure the correct total number of acoustic modes, these wavevector cutoffs are 
constrained by the number density of primitive unit cells, pucη , through  

 2
21
, ,6puc ab m c mk k

π
η = . (3-3) 

The number of optical modes is given by . 3( 1)opt pucmη η= − , where m is the number of 
atoms in the crystal basis.  For simplicity we approximate them as Einstein modes, 
making their contributions to heat transfer vanish. 

 We now comment briefly on the validity of this anisotropic Debye approximation.  
The form of Eq. (3-1) is motivated by an exact result from continuum elasticity [9-11], in 
which the dispersion relation for the pure transverse acoustic (pure-TA) branch of 
materials with hexagonal symmetry can be written as 

 2 2 2
66 44ab cC k C kρω = + , (3-4) 

where ρ  is the mass density and ijC  is stiffness constant.  Although the dispersion 
relations for both the quasi-longitudinal acoustic (quasi-LA) and the quasi-transverse 
acoustic (quasi-TA) branches have more complicated angular dependencies [11], under 
certain conditions they also are well approximated by the form of Eq. (3-4) using 
different ijC  (details in Section 3.3.1).  Graphite is a typical example satisfying these 
conditions.  However, this anisotropic Debye approximation cannot capture the variation 
of the phase velocity with the magnitude of the wavevector in real materials, which arises 
purely from atomistic effects [12].  For example, the present model cannot capture the 
curvature of the well known flexural (ZA, also called TA⊥ [13] or oTA [14]) branch in 
graphite, which has been given by Lifshitz as [12,15]  

 2 2 2 4
44 33ab c ab

BC k C k k
d

ρω = + + , (3-5) 

where B is related to the bond-bending stiffness of an isolated graphene layer and d is the 
interlayer distance.  The last term in Eq. (3-5) is a subcontinuum effect, which can be 
formally  neglected if BdCkab /44

2 << .  Similar considerations apply to chain-like 
materials and the bond-bending stiffness of individual atomic chains [12]. 
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Comparing the anisotropic Debye model of Eq. (3-1) to the real dispersion of a 
typical layered material, graphite [16], we estimate that for all three acoustic branches 
(LA, TA, ZA) the present model is in error by typically tens of percent for variations in 
ω  with the magnitude of k  in any fixed direction.  This shortcoming is offset, however, 
by the merit of the model in capturing the large variations of ω  with the direction of k , 
which is the emphasis of the present work.  These directional variations can be 
substantial: for example gv  in graphite changes by a factor of approximately 5 to 10 as 
estimated by comparing the sound velocity in the ab-plane to that along the c-axis.  
Section 3.3 will show this anisotropic Debye approximation compares favorably with 
experimental values of the specific heat and a more detailed lattice dynamics calculation 
of phonon irradiation, typically to within ±10% over the temperature range 200 to 2,000K. 

 

3.2.2  Characteristic frequencies and temperatures 

	
  
Figure 3-2. Two frequency regimes (here for ab cv v> , and , ,ab m c mk k> ; the other 

combinations are straightforward).  (a) When ω <min ωD,c ,ωD,ab( ) , all of the states 

on the iso-energy surface are allowed.  (b) When 
( ) ( ), , , ,min , max ,D c D ab D c D abω ω ω ω ω< < , only the states inside the FBZ are allowed.  

In both cases the orange shading indicates the allowed states. 

Based on the ellipsoidal dispersion relation and FBZ, we define the characteristic 
Debye frequencies of the ab-plane and c-axis directions, 
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 , ,

, ,

D ab ab ab m

D c c c m

v k
v k

ω

ω

=

=
, (3-6) 

with corresponding Debye temperatures 

 , ,

, ,

D ab D ab B

D c D c B

k
k

θ ω

θ ω

=

=

h
h

, (3-7) 

where !  is the reduced Planck’s constant and Bk  is the Boltzmann constant.  It will also 
prove convenient to define the anisotropy ratio 

 , ,

, ,

D ab D ab

D c D c

r
ω θ

ω θ
= = . (3-8) 

We refer to materials with r > 1 as “layered,” and r < 1 as “chain-like.”  Thus graphite 
(r >> 1) is strongly layered, while HDPE is strongly chain-like (r << 1). 

 The definitions of Eqs. (3-6)-(3-8) facilitate the upcoming analysis by 
distinguishing between two different frequency regimes, as shown in Fig. 3-2.  First, for 
those modes with ( ), ,min ,D c D abω ω ω< , the iso-energy surface has not reached the FBZ 
boundary, so all of those states are allowed as indicated by orange shading in Fig. 3-2(a).  
Second, for those modes with ( ) ( ), , , ,min , max ,D c D ab D c D abω ω ω ω ω< < , part of the iso-
energy surface lies outside of the FBZ, so only the part inside the FBZ is allowed [orange 
shading in Fig. 3-2(b)]. 
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3.2.3  Specific heat 

	
  
Figure 3-3. Dimensionless DOS, ( ) ( )

1
32

, ,
ˆ 3D ab D c pucD D ω ω η= , as a function of 

dimensionless frequency 
1
32

, ,ˆ ( )D ab D cω ω ω ω= .  While layered materials (r >> 1) show 
a transition from a quadratic to a linear power law with increasing ω , chain-like 
materials (r << 1) show a transition from a quadratic power law to a constant value.  
These transitions indicate different dimensionality crossovers. 

The phonon specific heat is given by  

 C = !ω
∂fBE
∂T∫ D(ω)dω

pol
∑ , (3-9) 

where the sum runs over all polarizations, BEf  is the Bose-Einstein distribution function, 
and ( )D ω  is the DOS which for an arbitrary dispersion relation is given by [17]  

 3
1
8

( )
g

dSD ω
π

ω = ∫∫ v , (3-10) 

where dSω  is an elemental area on an iso-energy surface in k-space [Fig. 3-1(a)].  For the 
anisotropic Debye model defined by Eqs. (3-1) and (3-2), the analytical expression of 
DOS is conveniently evaluated in two regimes depending on the anisotropy ratio r 
(details in Appendix A). 

 In Fig. 3-3, we plot the dimensionless density of states 

( ) ( )
1
32

, ,
ˆ 3D ab D c pucD D ω ω η=  as a function of the dimensionless frequency 

1
32

, ,ˆ ( )D ab D cω ω ω ω=  for a single polarization.  The key feature is the range of power laws 

describing D̂  versus ω̂ .  The isotropic “control” case (r = 1) follows the well-known 
quadratic power law over the entire frequency range.  Layered materials (r >> 1) show a 
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transition from a quadratic to a linear power law with increasing ω , which can be 
interpreted by the scenario depicted in Fig. 3-2(b).  This transition indicates a 
dimensionality crossover from 3D to 2D as the c-axis modes become fully saturated at 
large ω .  Chain-like materials (r << 1), on the other hand, show a transition from a 
quadratic power law to a constant value with increasing ω , indicating a dimensionality 
crossover from 3D to 1D. 

 Substituting Eqs. (3-31) and (3-32) into Eq. (3-9), we obtain two integral 
expressions for the specific heat in terms of x = !ω kBT .  For r > 1,  

C = kB
4

2π 2vab
2 vc!

3

T 3x4ex

ex −1( )
2

0

xD ,c

∫ dx + T 2x3ex

ex −1( )
2
θD,c
2
θD,ab
2 − Tx( )

2

θD,ab
2 −θD,c

2
xD ,c

xD ,ab

∫ dx

#

$

%
%
%

&

'

(
(
(pol

∑ , (3-11a) 

while for r < 1, 

C = kB
4

2π 2vab
2 vc!

3

T 3x4ex

ex −1( )
2

0

xD ,ab

∫ dx + T 3x4ex

ex −1( )
2
−
T 2x3ex

ex −1( )
2
θD,c
2
Tx( )

2
−θD,ab

2

θD,c
2 −θD,ab

2

#

$

%
%
%

&

'

(
(
(xD ,ab

xD ,c

∫ dx

)

*
+

,
+

-

.
+

/
+pol

∑ .  

 (3-11b) 

	
  

Figure 3-4. Dimensionless specific heat, ( )ˆ 3 puc BC C kη= , as a function of 

dimensionless temperature, ( )
1
32

, ,
ˆ

D ab D cT T θ θ= , obtained by numerical integration of 
Eqs. (3-11a) and (3-11b).  All materials recover the Debye T3 law at low T, and 
Dulong and Petit limit at high T.  But at intermediate temperatures the layered 
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materials (r >> 1) show a T2 dependence, while the chain-like materials (r << 1) 
show a T1 dependence.  

Low T 
T ≪min(θD,c ,θD,ab )  

CLowT =
2π 2kB

4

15!3
T 3

vab
2 vcpol

∑  

Intermediate T 
min(θD,c ,θD,ab )≪T ≪max(θD,c ,θD,ab )  

         Layered (r >> 1) 

CLayer−Mid .T =
3ζ3kB

3kc,m
π 2!2

T 2

vab
2

pol
∑  

    Chain-like (r << 1) 

CChain−Mid .T =
kab,m
2 kB

2

12vc!
T
vcpol

∑  

High T 
T ≫max(θD,c ,θD,ab )  CHighT = 3ηpuckB  

Table 3-1.  Analytical expressions for the specific heat in several limiting cases.  The 
model recovers the Debye T3 law in the low temperature limit, and the Dulong and 
Petit law in the high temperature limit.  For strongly anisotropic materials at 
intermediate temperatures, the model predicts a T2 dependence and T1 dependence 
for layered (r >> 1) and chain-like (r << 1) materials, respectively.  3 1.202...ζ =  is 
Apery’s constant. 

In both Eqs. (3-11a) and (3-11b), the first integral is the exact result for a 
traditional isotropic Debye solid, while the second integral captures the effects of 
anisotropy.  Figure 3-4 shows the dimensionless specific heat ( )ˆ 3 puc BC C kη=  versus the 

dimensionless temperature ( )
1
32

, ,
ˆ

D ab D cT T θ θ= , calculated by numerical integration of Eqs. 
(3-11a) and (3-11b).  Layered materials (r >> 1) exhibit a transition from T3àT2àT0 
behavior with increasing T, while chain-like materials with r << 1 exhibit a transition 
from T3àT1àT0.  We will come back to these transitions in Section 3.3.2 when 
comparing this model to the experimental specific heat of graphite and prior models. 

 To gain further physical insight, in Table 3-1 we simplify Eqs. (3-11a) and (3-11b) 
in several limiting cases.  First, in the low temperature limit [ , ,min( , )D c D abT θ θ= ], only 
low energy phonons are activated, in which case the FBZ boundaries are far away from 
the iso-energy surfaces [Fig. 3-1(a)].  Therefore the analytical expression recovers the 
classic Debye T3 law and depends on the two sound velocities, but not the two 
wavevector cutoffs because the phonon wavelengths are insensitive to the granularity of 
the lattice in this limit.  On the other hand, in the high temperature limit 
[T ≫max(θD,c ,θD,ab ) ], all of the phonons are full activated and obey equipartition of 
energy, and thus the analytical expression recovers the Dulong and Petit result, and 
depends on the two wavevector cutoffs (related to the total number of phonon modes) but 
not the sound velocities. 

 At intermediate temperatures [ , , , ,min( , ) max( , )D c D ab D c D abTθ θ θ θ= = ], Table 3-1 
shows that strongly anisotropic materials exhibit a mixture of the high-T and low-T 
behaviors just described.  At intermediate T, the populated iso-energy surfaces reach the 
FBZ boundary along the crystal direction of low sound velocity, while remaining far 
from the FBZ boundary along the direction of fast sound velocity [Fig. 3-1(b)].  
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Therefore the slow-velocity direction is saturated in its high-T regime while the fast-
velocity direction is still in its low-T regime.  Thus the limiting analytical expression for a 
layered material at intermediate temperature follows a T2 power law, and depends on vab 
and kc,m but not vc or kab,m.  Conversely, a chain-like material follows a T1 law, and 
depends on vc and kab,m but not vab or kc,m.  These intermediate T behaviors are further 
justified in Appendix B through an alternative derivation using simplified 2D and 1D 
phonon gas models. 

 

3.2.4  Phonon irradiation 
We calculate the irradiation and TBC using the close analogy between phonon transport 
and photon radiation.  We restrict the analysis to interfaces oriented normal to the 
material’s c-axis, the configuration of highest symmetry, because this simplifies the 
analysis and it is also a common configuration in applications and experiments [5].  For 
materials with isotropic properties, the “incident radiation” [Eq. (6) of Ref. 18] is a 
convenient quantity for evaluating the TBC.  However, to accommodate materials with 
anisotropic properties, the phonon “irradiation” is a better choice.  A general expression 
for the irradiation along the c-axis is 

 3

ˆ 0

ˆ ˆ  c
pol

H I d
⋅ <

= ⋅∑ ∫∫∫
k c

s c k , (3-12) 

 where ˆ (0,0,1)=c  is the unit vector along the c-axis, ŝ  is a unit vector parallel to the 
group velocity, ˆ 0⋅ <k c  denotes integration over the incident half-space, and the intensity 
I = 1

8π 3
!ω vg fBE  at wavevector k travels in the ŝ  direction. 

 It is helpful to convert Eq. (3-12) to an integral over frequency, 

 Hc = !ω
ω

∫  hc fBEdω
pol
∑ , (3-13) 

where we introduce a new quantity, ch , which can be understood as the density of states 
[Eq. (3-10)]  weighted by the c-axis projected velocity: 

 ( )
( )

3
1
8

ˆ ˆ 0

ˆg
c

g

h dSωπ
ω

⋅ <

⋅
= ∫∫

s c

v c

v
. (3-14) 

Thus, ch  represents the product of the phonon velocity component along the direction of 
heat transfer (here, ĉ ) and the number of phonon modes per unit frequency between ω  
and dω ω+ , integrated over the incident half-FBZ.  We refer to ch  as the vDOS (v 
indicating velocity-weighted), and its role in the irradiation [Eq. (3-13)] is analogous to 
the role of the DOS in the specific heat [Eq. (3-9)].  Analytical expressions for the vDOS 
are given in Appendix A. 
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Figure 3-5. Dimensionless vDOS defined in Eq. (3-14), ( ),
ˆ 3 4c c D c puc ch h vω η= , as a 

function of dimensionless frequency, ,ˆ D cω ω ω= .  Both layered (r >> 1) and chain-
like (r << 1) materials transition from a quadratic power law at low frequency to a 
constant value at high frequency. 

 Figure 3-5 shows the dimensionless vDOS, ĥc = hcωD,c 3ηpucvc 4( ) , versus the 

dimensionless frequency, ,ˆ D cω ω ω= , for a single polarization.  Both layered and chain-
like materials show a transition from a 2ω̂  dependence at low frequency to a constant 
value at high frequency.  The low frequency behavior is straightforward from Eqs. (3-33) 
and (3-34) of Appendix A, and the high frequency behavior can be understood from the 
definition of ch  [Eq. (3-14)]: an averaged product of DOS [Eq. (3-10)] and the c-axis 
component of the group velocity.  For layered materials, the high frequency DOS is 2D 
and thus proportional to ω (Fig. 3-3), and as shown in Appendix B the frequency-
dependent c-axis component of the group velocity scales as 1

, ,2g c Dv ω−∝ .  However, for 

chain-like materials, the high frequency DOS is 1D and thus constant while 0
, ,1g c Dv ω∝  

(Appendix B). 

 Substituting Eqs. (3-33) and (3-34) into Eq. (3-13), we obtain expressions for the 
irradiation.  For r > 1, 

Hc =
kB
4

8π 2vab
2 !3

T 4x3

ex −10

xD ,c

∫ dx +
θD,ab
2 θD,c

2

θD,ab
2 −θD,c

2

T 2x
ex −1

−
θD,c
2

θD,ab
2 −θD,c

2

T 4x3

ex −1

#

$
%
%

&

'
(
(xD ,c

xD ,ab

∫ dx
)
*
+

,+

-
.
+

/+pol
∑ , (3-15a) 

while for r < 1, 

 Hc =
kB
4

8π 2vab
2 !3

T 4x3

ex −10

xD ,ab

∫ dx +
θD,c
2 θD,ab

2

θD,c
2 −θD,ab

2

T 2x
ex −1

−
θD,ab
2

θD,c
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ex −1
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'
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xD ,c
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)
*
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/+pol
∑ . (3-15b) 
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Figure 3-6. Dimensionless c-axis irradiation, ( ),
ˆ 3 4c c puc B c D cH H k vη θ= , as a 

function of dimensionless temperature, ,
ˆ

D cT T θ= , obtained by numerical 
integration of Eqs. (3-15a) and (3-15b).  Both layered (r >> 1) and chain-like (r << 1) 
materials show T4àT2àT1 power law transitions.  

The first integral of Eqs. (3-15a) and (3-15b) is the exact result for a traditional 
isotropic Debye solid, while the second integral captures the effects of anisotropy.  In Fig. 
3-6 we plot the dimensionless irradiation ( ),

ˆ 3 4c c puc B c D cH H k vη θ=  versus the 

dimensionless temperature ,
ˆ

D cT T θ= .  Both layered (r >> 1) and chain-like (r << 1) 
materials show a T4àT2àT1 transition with increasing T. 

Low T 
T ≪min(θD,c ,θD,ab )  Hc−LowT =σ phononT

4 =
π 2kB

4

120!3
1
vab
2

pol
∑

"

#
$
$

%

&
'
'
T 4  

Intermediate T 

 
min(θD,c ,θD,ab )≪T ≪max(θD,c ,θD,ab )  

          Layered (r >> 1) 

Hc−Layer−Mid .T =
kc,m
2 kB

2T 2

48!
vc
2

vab
2

pol
∑  

   Chain-like (r << 1) 

Hc−Chain−Mid .T =
kab,m
2 kB

2T 2

16!
 

High T 
T ≫max(θD,c ,θD,ab )  Hc−HighT =

1
2ηpuckBT

vckc,m
vabkab,m + vckc,mpol

∑ vc  

Table 3-2.  Analytical expressions for the c-axis irradiation cH  in several limiting 
cases.  In the low temperature limit the model reduces to the blackbody emissive 
power law.  For intermediate temperatures and strongly anisotropic materials, the 
model predicts a T2 dependence for both layered and chain-like materials.  These 
expressions also highlight the phonon focusing effect of the ab-plane velocity abv : 
except for chain-like materials at intermediate T, in all other cases cH  is actually 
increased by reducing abv . 
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 For further physical insight, Table 3-2 presents simplifications of Eqs. (3-15a) and 
(3-15b) for several limiting cases.  In the low temperature limit, regardless of r Eqs. (3-
15a) and (3-15b) reduce to the well-known blackbody emissive power law with a phonon 

Stephen-Boltzmann constant σ phonon = π
2kB
4 vab

−2

pol
∑
"

#
$$

%

&
'' 120!3( )  [19]. In the limit of 

strongly anisotropic materials at intermediate temperatures, Table 3-2 shows that both 
layered and chain-like materials follow a T2 power law, which arises from the power law 
ˆ ˆch ω∝  (Fig. 3-5).  These intermediate temperature behaviors are further justified in 

Appendix B using simplified 2D and 1D phonon gas models. 

 Table 3-2 reveals the unexpected result that the c-axis irradiation Hc is generally 
increased by reducing the ab-plane sound velocity vab  (the only exception being chain-
like materials at intermediate T, for which cH  has no velocity dependence at all).  This 

abv  dependence of cH  can be understood as a consequence of phonon focusing [20-22]. 
As can be seen from Fig. 3-1(a), reducing abv  elongates the iso-energy surfaces 
(“slowness surfaces” in Ref. 20) along the ab-plane, thus increasing the component of the 
group velocity along the c-axis direction and correspondingly increasing cH .  This 
suggests a surprising guideline for materials engineering to increase TBC: the heat 
transfer along the c-axis direction can be increased by reducing a phonon velocity, as 
long as it is a velocity component perpendicular to the c-axis.  The analogous effect on 
the thermal conductivity of highly anisotropic materials has also been reported [23-25].  
For example, a hybrid model [22] (lattice dynamics + molecular dynamics) confirmed 
that the thermal conductivity in the c-axis direction of a graphite-like material is also 
increased by reducing the ab-plane phonon velocity, caused in part by the same phonon 
focusing effects of interest here.  In Section 3.3, we will examine this anticipated Hc 
dependence of the TBC further for two particular models of transmission coefficient. 

 

3.2.5  Thermal boundary conductance 
From traditional radiative heat transfer [26], the net heat flux across an interface between  
materials A and B can be expressed as 

 [ ]1 1 2 2( ) ( ) ( ) ( )A AB B BAq H T t T H T t Tτ= − , (3-16) 

where ABt  is an average (with respect to direction, position, energy, and polarization) 
transmission coefficient from A to B, T1 and T2 are the local equilibrium temperatures on 
either side of the interface, and the pre-factor 

 
( ) ( )1
1 22

1
1 AB BAt T t T

τ =
− +⎡ ⎤⎣ ⎦

 (3-17) 

arises because we work in terms of equilibrium rather than emitted temperatures 
(Appendix C) [18, 27].  
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 When the system is at equilibrium at temperature T, the 2nd Law of 
Thermodynamics requires 0q =  and thus [2, 18, 28] from Eq. (3-16) 

 ( ) ( ) ( ) ( )A AB B BAH T t T H T t T= . (3-18) 

 Substituting Eq. (3-18) into Eq. (3-16), and expanding q as a Taylor series in 
1 2T T TΔ = − , we obtain an expression for the thermal boundary conductance defined as 

( )0lim /TG q TΔ →= Δ : 

 iji
ij i

tHG t H
T T

τ
∂⎡ ⎤∂

= +⎢ ⎥∂ ∂⎣ ⎦
, (3-19) 

where i, j = A, B or equivalently B, A. 

 We note in passing that the TBC obtained from the limit 0TΔ →  must be always 
symmetric upon exchanging the labels A and B.  Thus, there cannot be any rectification 
in this low-bias regime, regardless of the model of the transmission coefficient.  Although 
some analyses may neglect the second term of Eq. (3-19), such an approximation can 
have the side effect of incorrectly implying thermal rectification [29].  

 

3.3  Comparison with experiments 

3.3.1  Specifying input parameters 

A.  Wavevector cutoffs: kab,m and  kc,m 
Given pucη  for a real material, Eq. (3-3) sets the first constraint for the two 

wavevector cutoffs, and as the second constraint we choose to fix the anisotropy ratio: 

 

, , .,

, , , .

ab m expab m

c m c m exp

kk
k k

= , (3-20) 

where , , .ab m expk  and , , .c m expk  are wavevector cutoffs consistent with the experimentally-
determined crystallographic structure.  For example, one simple way to fix the , .m expk  
values is from the reported extents of the FBZ in the [100], [010], and/or [001] directions. 

B.  Sound velocities 
We have used two different approaches to obtain the six sound velocities (3 

polarizations each of abv  and cv ).  The first and easiest approach is to use experimentally-
measured values along suitable high symmetry directions in the ab-plane and along the c-
axis.  For materials for which the full phonon dispersion relation is available a second 
approach is a “secant” method, in which case the sound velocity for a specified branch 
and direction is set to be equal to the slope of the secant that connects the Γ  point and the 
end point of that branch at the FBZ boundary. 



	
  

55	
  

 Although we could easily calculate the specific heat by summing over each 
branch (LA, TA1, TA2), for simplicity and physical insight it is also helpful to lump these 
six velocities into two effective ones, , .ab effv  and , .c effv , requiring two more equations.  For 
the first constraint we insist on the correct low T behavior of the specific heat from Table 
3-1, leading to 

 
2 2
, . , .

3 1
polab eff c eff ab cv v v v

=∑ . (3-21) 

Similarly, for the second constraint we require the correct intermediate T behavior from 
Table 3-1.  For layered materials this gives 

 
2 2
, .

3 1
polab eff abv v

=∑ , (3-22a) 

while for chain-like materials we find 

 , .

3 1
polc eff cv v

=∑ , (3-22b) 

Note that Eq. (3-21) is exact for all materials, but Eqs. (3-22a) and (3-22b) are exact only 
for highly anisotropic materials. 

C.  Decomposition of iso-energy surfaces for materials with hexagonal symmetry 
	
  

	
  
Figure 3-7. Debye ellipsoid approximations for the iso-energy surfaces of materials 
with hexagonal symmetry.  The schematics represent projections in the A-Γ -M 
plane (an A-Γ -K plane looks very similar).  (a) Schematic iso-energy surfaces for a 
graphite-like material with a lobed quasi-TA branch and an almost cylindrical 
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quasi-LA branch.  The third branch (pure TA) is not shown because it is already 
well-approximated by an ellipsoid (Eq. 3-4).   (b) A naive approach approximates 
the quasi-TA with a circumscribed ellipsoid, and the quasi-LA with an inscribed 
ellipsoid.  (c) An improved approach, used in this work, decomposes the quasi-TA 
and quasi-LA branches and then recomposes them as the two ellipsoids TL1 (black) 
and TL2 (green); see Eq. (3-25).  The original and recomposed iso-energy surfaces 
in (c) have been offset slightly for clarity. 

As discussed in Section 3.2.1, the exact dispersion relations of the quasi-TA and 
quasi-LA branches are more complicated than Eq. (3-1), whether evaluated by lattice 
dynamics [22] or continuum elasticity [Eqs. (3.11) and (3.12) in the appendix of Ref. 11].  
For a strongly layered material like graphite, the typical shapes of the exact iso-energy 
surfaces are depicted in Fig. 3-7(a).  In the A-Γ -M plane, the quasi-LA surface is nearly 
rectangular while the quasi-TA surface has four prominent lobes (an A-Γ -K slice looks 
very similar). 

 The task here is to determine the best approximation of these iso-energy surfaces 
with Debye ellipsoids such as Fig. 3-1(a), given the principal sound velocities.  The 
obvious but naive approach is to approximate each branch with its own ellipsoid.  As 
indicated in Fig. 3-7(b), this is equivalent to approximating the lobed quasi-TA branch 
with a circumscribed ellipsoid.  Similarly, the quasi-LA would be replaced with an 
equivalent inscribed ellipsoid.  As suggested by the graphical comparison of Fig. 3-7(b), 
these approximations appear quite crude and will introduce large errors in the phonon 
transport calculations.  For example, for graphite at room-temperature, HC calculated in 
this way is eight times too small as compared to that calculated using an all-direction 
lattice dynamics method as described in Appendix D. 

 A much improved approach is motivated by the exact dispersion relations of the 
quasi-TA and quasi-LA branches.  From Eqs. (3.11) and (3.12) of the appendix of Auld 

[11], when  ( ) ( )( )13 3311

44 44 44
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and 
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Graphite satisfies this very well   [ ( ) ( )( )13 3311

44 44 44

2
1 1 1 0.01C CC

C C C+ − − < ].  Noticing the 

complementary relation between Eqs. (3-23) and (3-24), we rewrite them as two new 
branches 
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with the graphical interpretation given in Fig. 3-7(c): decompose the lobed quasi-TA 
branch and the curved quadrilateral quasi-LA branch, and recompose them as two 
ellipsoids.  Now all three branches of materials with hexagonal symmetry have 
dispersions in the form Eq. (3-1), and thus ellipsoidal iso-energy surfaces.  To help 
validate this ellipsoidal Debye approximation, in Appendix D we compare its Hc with 
that from a full lattice-dynamics calculation of a graphite-like material.  As shown in Fig. 
3-12 the two calculations agree very well, to within ±10% over a wide temperature range 
from 200 K to 10,000 K. 

D.  Contributions from optical phonons 
For materials with a polyatomic basis we use an Einstein model to account for the 

contributions of optical phonons, with Einstein frequencies taken from the average of the 
experimentally-reported optical phonon frequencies at the Γ  point and the edge of FBZ.  
Note that this treatment may be oversimplified for materials with complicated optical 
branches and/or optical phonons with large group velocities. 

 

3.3.2  Specific heat of graphite 
The specific heat of graphite has been well understood for decades both 

theoretically and experimentally [3-4, 7, 9, 12-13, 30], making this a useful check of the 
accuracy of the anisotropic Debye approximation used in the present work.  Graphite is 
highly anisotropic (r ranging from 10 - 16 depending on the polarization) and also has 
relevance for its close cousins graphene and carbon nanotubes. 

Parameter Unit ab-plane c-axis 

vTA m/s   10200  1000 

vTL1 m/s   16200  1000 

vTL2 m/s     6400  2500 

kmax 1010m-1            1.73         1.1 

fE,LO/TO THz 42 

fE,ZO THz 23 

Table 3-3.  Input parameters for graphite, which are extracted from the phonon 
dispersion in Ref. 16 using the iso-energy-decomposition process described in 
Section 3.3.1. 

 Following the recipes outlined above, the input parameters are extracted from the 
published phonon dispersion [16] and summarized in Table 3-3.  We assign the secant 
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velocity to all branches.  In addition, to facilitate the analysis we unfold the dispersion 
relation along the c-axis direction [6]: in real space we cut the 4-atom-basis primitive unit 
cell in half along the c-axis to form a unit cell with a 2-atom-basis, and correspondingly 
in reciprocal space the wavevector cutoff ,c mk  is doubled.  Only the c-axis direction was 
unfolded because the real dispersion relation [13, 16] in that direction is continuous at the 
FBZ boundary (e.g. TA→TO’ and LA→LO’ in Fig. 2 of Ref. 16), whereas along the ab 
plane the real dispersion relation shows some gaps at the FBZ boundary and has optical 
modes that are relatively slower compared to their acoustic counterparts.  

 The modeled specific heat of graphite is shown by the solid red line in Figure 3-
8(a), and shows a transition from T2  to T0 behavior with increasing T as expected from 
Table 3-1 as well as from standard models such as Lifshitz [12]. The model accounts for 
contributions from both optical and acoustic phonons, and we confirmed that the 
contribution from electrons is negligible at the temperatures considered here.  The optical 
contributions are shown by the dashed red line and use , /E LO TOf  = 42 THz and , ZE Of  = 23 
THz.  The acoustic contribution was calculated using both approaches described above: 
summing over all three polarizations and using the two effective velocities calculated 
from Eqs. (3-21) and (3-22a).  The two calculations are nearly indistinguishable so only 
the former is shown in Fig. 3-8(a). 
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Figure 3-8. Comparison with experimental data for specific heat of (a) graphite and 
(b) HDPE, showing that the anisotropic Debye model successfully reproduces the 
specific heat of these strongly anisotropic materials.  The model parameters for 
graphite are fully determined from the published dispersion relation without any 
fitting, while the HDPE model has two adjustable parameters because no published 
dispersion information was available.  

The experimental specific heat of graphite [3-4, 31] is shown by the points in Fig. 
3-8(a).  With no free parameters the model agrees with the experimental data to within 
±10% throughout the temperature range 50 – 2,000 K.  However, below 20 K the model 
transitions to a T3 power law, which is too steep as compared to the experimental data.  
This discrepancy is due to the oversimplification of linearizing the phonon dispersion of 
the ZA branch.  The literature dispersion [13, 16] shows a monotonic decrease of the 
group velocity from 8500 m/s at the edge of the FBZ to approximately 1000 m/s at the Γ  
point.  Therefore the secant method used here (6400 m/s) overestimates the velocity of 
small-wavevector ZA phonons which are the major contribution to the DOS at low 
temperatures, thereby underestimating their specific heat.  A more detailed model 
dispersion such as Eq. (3-5) for the ZA branch [7, 12-13, 15-16] would help resolve this 
discrepancy, and also suggests an ideal T1 regime between T2 and T0 for the ZA 
contribution to the specific heat [12].  However, such an approach is not pursued further 
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here because it requires another material-dependent parameter which is less widely 
available, loses some of the simplicity and physical insight of the present model, and is 
not necessary for good accuracy at typical temperatures (~50 K and above).  

 For comparison Fig. 3-8(a) also includes a traditional 3D isotropic Debye model 
(blue line).  The isotropic sound velocity for each polarization is obtained using 

1
32( )iso ab cv v v= , as required by the low temperature limit in Table 3-1.  Similarly, the 

isotropic cutoff wavevector kD is calculated by conserving the number of acoustic modes, 
1
32

, ,( )D ab m c mk k k= .  Thus, as shown in Fig. 3-8(a) this isotropic model captures exactly the 
same high temperature Dulong and Petit limit and the low temperature Debye T3 law as 
the anisotropic model , but at intermediate temperatures the isotropic model misses the T2 
regime and overpredicts the heat capacity by more than a factor of two. 

 

3.3.3  Specific heat of high density polyethylene 
High density polyethylene (HDPE) is chosen as a representative chain-like 

material because of its high anisotropy ( 0.09r ≈ ) and the interest in its strongly 
direction-dependent and drawing-dependent thermal conductivity [32-33].  

 The number density of HDPE primitive unit cells ( pucη = 3.64×1028 m-3) is 
estimated from the reported mass density [32] by approximating the primitive unit cell as 
containing a single [CH2] basis.  However, the acoustic parameters needed to calculate 
the specific heat of HDPE are not well documented in the literature.  Therefore the 
strategy here is to fit our model to the experimental data.  We treat the two Debye 
temperatures ,D abθ  and ,D cθ  as adjustable parameters, and use a non-linear least-squares 
algorithm [34] to minimize the root-mean-square (RMS) error of  [(Cexpt. – Cmodel)/ Cexpt.]. 

 Figure 3-8(b) shows the experimental data and best fit model for the specific heat 
of HDPE of crystallinity 0.77 [32]. The experiment and model both show the expected 
transition from T3  to T1 behavior with increasing T, as expected from Table 3-1.  We note 
that a more detailed dispersion relation accounting for subcontinuum chain bending 
modes [12] suggests the T1 regime of those modes may ideally be separated into T5/2 and 
T1/2 regimes, although those do not appear separately evident in the experimental data of 
Fig. 3-8(b).  Returning to the present model, the T0 Dulong and Petit regime is not 
expected until above 1000 K, which exceeds the melting temperature of HDPE (~400 K) 
and thus is not accessible in the experiments.  Also, because the vibrational temperature 
of the C-H bond can be estimated as above 1800 K [35], the heat capacity of the optical 
phonons is negligible over the entire experimental temperature range, and thus the 
calculation in Fig. 3-8(b) only accounts for the acoustic phonons.  The fitting results 
show that the characteristic temperatures are , 100 KD abθ =  for the inter-chain modes and 

, 1099 KD cθ =  for the intra-chain modes, corresponding to a high anisotropy r = 0.09.  
For comparison, Fig. 3-8(b) also shows the best fit using a traditional 3D isotropic Debye 
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model with one adjustable Debye temperature Dθ  (289 K).  The RMS residual of the 
anisotropic model (7%) is much better than that of the isotropic model (48%). 

 

3.3.4  Models for TBC and transmission coefficient 
To calculate the TBC using Eq. (3-19), we need the irradiation and the 

transmission coefficients.  The former has been discussed in detail in Section 3.2.4, and 
for the latter we now consider two common models: a maximum transmission model 
(MTM) [18] and a diffuse mismatch model (DMM) [2].  

 The MTM (or radiation limit) supplies for the TBC an extreme upper bound 
compatible with the 2nd Law of Thermodynamics [18]. It assumes a 100% phonon 
transmission leaving the material with the lesser cH , and the opposite transmission 
coefficient can be obtained directly from Eq. (3-18), leading to a TBC 

 

2
,  j i

MTM i j
j i

H HG if H H
H H T

∂
= <

− ∂
. (3-26) 

where i, j = A, B or equivalently B, A. 

 The DMM is often used as an estimate for atomically disordered interfaces.  The 
key assumption is that phonons lose their memory after bombarding the interface, leading 
to a transmission coefficient of the form2 
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where i, j = A, B or equivalently B, A. 

Substituting Eq. (3-27) into Eq. (3-19), we obtain 
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. (3-28) 

 As noted previously, Eqs. (3-26) and (3-28) underline the symmetry of the heat 
transfer across the interface, i.e., there cannot be any thermal rectification upon 
exchanging the labels A and B. 

 We can now evaluate the suggestion from Section 3.2 that there may be a 
monotonic relationship between the irradiation and TBC.  Without loss of generality, we 
fix AH  and increase BH .  For the DMM this does indeed always act to increase the TBC 
[Eqs. (3-19) and (3-27)].  However, for the MTM increasing BH  increases the TBC only 
while BH  is smaller than AH ; but for B AH H>  we see that increasing BH  reduces the 
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TBC [Eq. (3-26)].  Thus the anticipated monotonic relationship between irradiation and 
TBC is always true for the DMM, although only sometimes true for the MTM. 

 

3.3.5  TBC between graphite and  metals 

Material npuc 
(1028m-3) 

vLA 
(m/s) 

vTA 
(m/s) 

Al 6.02 6240 3040 

Au 5.90 3390 1290 

Cr 8.33 6980 4100 

Ti 2.83 6105 2923 
Table 3-4.  Input parameters for metals.  The number density of primitive unit cells 
pucn  is obtained from Ref. 17 and the velocities from Ref. 2, with the exception of the 

slightly anisotropic titanium for which the effective isotropic velocities are obtained 
from 

1
32( )iso ab cv v v= , where abv  and cv  are calculated from the stiffness constants [11]. 

	
  

Figure 3-9. Comparison with experimental data5 for TBC between graphite and (a) 
Al, (b) Au, (c) Cr, and (d) Ti.  In each case, four different models are considered: the 
traditional isotropic DMM [2], the 2D-DOS DMM [8], and the anisotropic DMM 
and MTM from the present work.  All models include the same pre-factor [Eq. (3-
17)] and assume inelastic transmission across interfaces.  The corresponding RMS 
errors are summarized in Table 3-5.  Key qualitative differences among the models 
are indicated by the iso-energy surfaces and group velocity vectors sketched in (e): 
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as compared to the aniso-DMM, the 2D-DOS-DMM neglects the continuous 
transition from vab to vc, while the iso-DMM is equivalent to decreasing vab and 
increasing vc.  In both cases, the additional approximations to vab and vc tend to 
overestimate the c-axis heat transfer (Table 3-2). 

We now compare the TBC model to recent measurements by Schmidt et al. [5] 
for boundaries between highly ordered pyrolytic graphite (HOPG) and various metals.  In 
all experiments the interfaces are aligned normal to the graphite’s c-axis, consistent with 
the model assumption.  Using the input parameters for metals (Table 3-4) and those for 
graphite (Table 3-3), the flux bombarding on the interfaces (Hc) from graphite side is at 
most 16% of the flux from the metal sides throughout the experimental temperature range.  
This makes the overall TBC calculation dominated by graphite (particularly by the TL2 
branch), as both Eqs. (3-26) and (3-28) simplify to ( )THG grc ∂∂≈ ,2  for 

metalcgrc HH ,, << .
 
 

 Figure 3-9 compares the experimental results [5] to four different models, 
including the traditional isotropic DMM [2], the 2D-DOS DMM [8], and the anisotropic 
DMM and MTM from this work.  To facilitate meaningful comparisons, we underline 
two details held constant for all models.  First, we include the pre-factor τ  [Eq. (3-17)] 
which we believe represents the real physics for the equilibrium temperature drop [5, 18, 
27], although it was not incorporated in the original 2D-DOS DMM [8]. This pre-factor 
increases the modeled TBC by a factor of 2-3 [Eq. (3-19)].  Second, we assume inelastic 
transmission [27] across the interfaces.  Although restricting the transmission to be purely 
elastic would reduce the modeled TBCs closer to the experimental results, it also 
introduces an ambiguity in matching the phonon branches of the metals to the hybrid 
branches of graphite (Section 3.3.1). 

 The RMS errors of the four models as compared to the experimental data are 
summarized in Table 3-5.  None of the models had any parameters adjusted to improve 
their fits.  The comparison shows that the experiments (points in Fig. 3-9) are best 
explained by the anisotropic DMM of the present work (red line), with an average error 
of 491%.  The 2D-DOS DMM8 (blue line) is the next-best model, with an average error 
of 1010%, while the traditional isotropic DMM (purple line) [2] is the worst, with an 
average error of 3464%.  Although the average error of 491% for the anisotropic DMM 
certainly leaves something to be desired, disagreements of this magnitude and larger are 
common in TBC modeling even of isotropic materials, and are most likely due to the 
failure of the DMM’s fundamental assumptions about the interface transmissivity [1].  

 Comparing the models in more detail, we note that the isotropic DMM predictions 
greatly exceed those of the anisotropic DMM, and the experimental data.  This is because 
the averaging rule used to obtain an effective isotropic velocity, 

1
32( )iso ab cv v v= , is 

equivalent to increasing the incident velocity cv  and decreasing the in-plane velocity abv .  
As shown in Table 3-2, both of these changes tend to increase the irradiation in the c-axis 
direction, and as noted in Section 3.3.4 this will always correspond to an increase in the 
DMM TBC.  The 2D-DOS DMM predictions exceed those of the anisotropic DMM for a 
similar reason, because the 2D-DOS DMM neglects the curvature of the iso-energy 
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surface at the edge of the FBZ, which also has the effect of overestimating the group 
velocity component along the c-axis direction and thus increasing the TBC.  

 The other major feature of Fig. 3-9 is the implications of the anisotropic MTM 
(green line), which based on the 2nd Law of Thermodynamics is expected to serve as an 
extreme upper bound for the TBC.  The comparison with experiments shows that this 
anisotropic MTM indeed acts as an upper bound for these materials.  However, Fig. 3-9 
also shows that the isotropic DMM greatly exceeds the anisotropic MTM limit, indicating 
that approximating a strongly anisotropic material as isotropic can lead to TBC 
predictions that violate the 2nd Law of Thermodynamics. 

 

3.4  Summary and conclusions 
We have developed a general framework to calculate the TBC for anisotropic 

materials based on an anisotropic Debye dispersion relation and ellipsoidal first Brillouin 
zone, which also yields compact analytical expressions in various limiting cases.  When 
compared to the experimental TBC between graphite and various metals from the 
literature [5], the new anisotropic DMM has errors at least a factor of six smaller than 
those of the traditional isotropic DMM and errors typically two times smaller than those 
of a recent 2D-DOS DMM [8]. The anisotropic model also predicts an interesting and 
unexpected guideline for materials engineering to increase the TBC: due to phonon 
focusing the TBC actually can be increased by reducing a phonon velocity, as long as it is 
a velocity component parallel to the plane of the interface.  Recently an analogous effect 
on the thermal conductivity has also been reported [22-25].  

 

3.5  Appendices 

3.5.1  Evaluating the DOS and vDOS integrals 
The general form of the DOS [Eq. (3-10)] is a surface integral [36] which can be 

evaluated by projecting the 3D iso-energy surface to a 2D plane.  Here we project it to the 
ka-kb plane: 
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, (3-29) 

where ck  can be expressed in terms of ak  and bk :
 

2 2 2 2( )c ab a b ck v k k vω= − + . 

 Equation (3-29) can be evaluated by implementing the polar-coordinate 
substitution: 
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where the domain of the polar angle is 0 2ϕ π≤ ≤ .  The main complication is in 
determining the domain of the polar radius ρ . 

	
  

Figure 3-10. Mathematical framework to evaluate Eq. (3-10) for 
( ) ( ), , , ,min , max ,D c D ab D c D abω ω ω ω ω< < .  For materials with anisotropy ratio r > 1, the 

ka-kb projection of the iso-energy surface within the FBZ is an annulus.  For 
materials with r <1, the projection of the iso-energy surface becomes instead a disk.  

When ( ), ,min ,D c D abω ω ω< , no part of the iso-energy surface has reached the 

boundary of the FBZ, so 0 abvρ ω≤ ≤ .  However, when 

( ) ( ), , , ,min , max ,D c D ab D c D abω ω ω ω ω< < , part of the iso-energy surface lies outside of the 
FBZ, and it is helpful to consider the domain of ρ  in two categories.  First, for materials 
with anisotropy ratio r >1, the ka-kb projection of the iso-energy surface within the FBZ 
is an annulus (Fig. 3-10), with an outer radius max abvρ ω=   and an inner radius 

( ) ( )2 2 2 2
min , , , ,ab m D c D ab D ckρ ω ω ω ω= − −  which can be obtained by solving the intersection 

of the two ellipsoids in Fig. 3-10.  Second, for materials with r <1, the projection of the 
iso-energy surface becomes instead a disk (Fig. 3-10), with 

( ) ( )2 2 2 2
max , , , ,ab m D c D c D abkρ ω ω ω ω= − − , again obtained from the intersection of the two 

ellipsoids in Fig. 3-10. 
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 Having identified the appropriate domain of ρ , it is straightforward to evaluate 
the polar-coordinate version of Eq. (3-29), and thus the DOS.  For layered materials (r > 
1) we find 
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For chain-like materials (r < 1), 
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 Following a similar procedure, we evaluate the vDOS also in two categories.  For 
r > 1, 
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and for r < 1, 
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3.5.2  2D and 1D phonon gas models 
Here we develop simplified 2D and 1D phonon gas models to verify the various 

intermediate-T limiting behaviors presented above for the specific heat (Table 3-1) and c-
axis irradiation (Table 3-2). 
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Figure 3-11. 2D and 1D phonon gas models to verify the specific heat and c-axis 
irradiation of strongly anisotropic materials at intermediate temperatures [

, , , ,min( , ) max( , )D c D ab D c D abTθ θ θ θ= = ].  The two key features are the DOS and the c-
axis component of the group velocity. 

 The 2D and 1D DOS (Fig. 3-11) for a single polarization are easily shown to be: 
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Conservation of the number of modes requires 
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and the group velocity components along the ab-plane and c-axis are 
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Combining these we obtain the frequency-dependent DOS 
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 Substituting Eq. (3-38) into Eq. (3-45), we obtain the 2D and 1D specific heat: 
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which agrees with the limiting behaviors in Table 3-1. 

 The 2D and 1D irradiation along the c-axis can be calculated from 

 

1
,2  c BE g c

pol
H f D v d

ω

ω ω=∑∫h . (3-40) 

 The pre-factor 12
 
arises because only the states with a wavevector component 

0ck <  are involved in this transport process.  In the following discussion, we focus on the 
simplification of ,g cv . 

 For the 2D phonon gas [Fig. 3-11(a)], we have 

 ω ! vabkab . (3-41) 

Combining Eqs. (3-37) and (3-41) and averaging ,g cv  over the range ,[ ,0]c mk− , we find 

 

2
,

, ,2 2
c c m

g c D

v k
v

ω
≈ . (3-42) 

 Substituting Eq. (3-42) into Eq. (3-40), we obtain the 2D irradiation along the c-
axis 
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which agrees with the limiting behavior in Table 3-2. 

 Likewise, for a 1D phonon gas [Fig. 3-11(b)], we have 
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 c cv kω ≈ . (3-44) 

Combining Eqs. (3-37) and (3-44), we find 

 , ,1g c D cv v≈ . (3-45) 

 Substituting Eq. (3-45) into Eq. (3-40), we obtain the 1D irradiation along the c-
axis 

 
Hc,1D =

kab,m
2 kB

2T 2

16!
, (3-46) 

which again agrees with the limiting behavior in Table 3-2. 

 

3.5.3  Defining an equilibrium temperature 
As mentioned in Ref. 18, there are several ways to define an equilibrium 

temperature .eqT  in terms of the opposing emitted temperatures T+  and T−  used in a two-
flux model.  The typical strategy is to require conservation of some related quantity such 
as phonon number density, energy density, or irradiation along the c-axis.  Here we show 
that the difference between any of these definitions and a naive definition 

 
1

., 2 ( )eq naiveT T T+ −= +   (3-47) 

is of the order of 2 T−Δ , where T T+ −Δ = − , and thus for low-to-moderate-thermal bias all 
definitions are practically equivalent. 

 Here we take the conservation of irradiation along the c-axis as an example: 

 ( ) ( ) ( )1 1
. 2 2c eq c cH T H T H T+ −= + . (3-48) 

In the analytical limiting cases in Table 3-2, we have 

 ( ) n
cH T AT= . (3-49) 

where A is a function of the velocities and wavevector cutoffs, but not temperature.  For 
intermediate cases not covered by Table 3-2, the numerical results of Fig. 3-6 confirm 
that cH  is a smoothly-varying function of T, which for small Δ around any T is still well-
approximated by the power law form of Eq. (3-49).  Therefore n is in the range [1, 4], 
though not necessarily an integer. 

 Substituting Eq. (3-49) into Eq. (3-48), the equilibrium temperature can be 
generalized as 
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 Using a Taylor series Eq. (3-50) can be expanded as 
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. (3-51) 

where O  represents higher order terms. 

 The naive arithmetic average equilibrium temperature can be expressed as 
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Subtracting Eq. (3-52) from Eq. (3-51) and neglecting higher order terms, we obtain 
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Considering that 1T−Δ = , Eqs. (3-51) and (3-53) indicate that 

( ). ., . .eq eq naive eq eqT T T T− Δ= , and thus the naive definition is adequate to represent the real 
equilibrium temperature. 

Following a similar procedure, we have confirmed that the conclusion above also 
applies to approaches using conservation of phonon number density and energy density. 

 

3.5.4  Comparing to the phonon irradiation calculation using full-
direction-dispersion 

As discussed in Section 3.3.5, we believe the discrepancies between the 
anisotropic DMM model and the experimental TBC seen in Fig. 3-9 are largely due to the 
crude approximations for the transmission coefficients, not the anisotropic Debye 
approximation used for the phonon irradiation.  To independently check the Hc 
calculation, here we validate the anisotropic Debye model by comparison with the 
phonon irradiation of a graphite-like material calculated using the lattice dynamics 
method [22, 37]. We followed Ref. 22 in detail, including using the optimized Tersoff 
potential [38] for intra-plane interactions and the Lennard-Jones (LJ) potential [39] for 
inter-plane interactions.  With the resulting all-direction dispersion relation, we calculated 
the phonon irradiation by modifying Eq. (2) in Ref. 22 from classical to Bose-Einstein 
statistics. 
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Figure 3-12. Comparison with lattice dynamics calculation (all-direction-dispersion) 
for phonon irradiation of a graphite-like material, showing errors less than 10% 
from 200 K – 10000 K.  The disagreement at lower temperature is due to the failure 
to capture the reduced group velocity of ZA phonons at long wavelengths [12]. The 
Debye model parameters for this graphite-like material are fully determined from 
the dispersion calculated from the lattice dynamics method [22] without any fitting. 

Figure 3-12 shows the comparison between the phonon irradiation calculated 
using the lattice dynamics dispersion and that calculated using our model with velocities 
(vab,TA = 10,100, vab,TL1 = 25,000, vab,TL2 = 5,700; vc,TA = 300, vc,TL1 = 300, vc,TL2 = 2,500 
[m/s]) extracted from the lattice dynamics dispersion along [100] and [001].  The simple 
Debye ellipsoid results agree with the full lattice dynamics calculation to within ±10% 
over a wide temperature range from 200 K to 10,000 K.  Below 100 K, the Debye 
ellipsoid approximation deviates from the lattice dynamics results due to the shortcoming 
described in Section 3.2.1: for the ZA branch, the Debye model cannot capture the 
dependence of phase velocity on the magnitude of the wavevector. 
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Chapter 4: A photon thermal diode 

4.1  Introduction 
Energy is one of the dominant global issues of modern times, and the majority of 

it passes through the thermal domain [1].  Traditional thermal engineering is based on the 
paradigm of linear thermal elements, such as thermal resistors (R) and capacitors (C), and 
in this sense lags many decades behind electrical engineering, which has benefited 
greatly from ingenious applications of nonlinear elements.  The most fundamental such 
element would be a thermal rectifier.  Here we define the thermal rectification as [2]  

 
γ TH ,TC( ) = QFwd −QRev( ) QRev , (4-1) 

where FwdQ  and RevQ  are the heat transfers under the same thermal bias H CT T TΔ = −  but 
different directions: Forward (Fwd) and Reverse (Rev). 

Regardless of the type of energy carrier, all thermal rectifiers require two key 
ingredients (Fig. 4-1): asymmetry and nonlinearity [3].  Classical thermal diodes include 
natural convection in a gravitational field (molecular gases) and a Fourier Law 
mechanism exploiting temperature-dependent thermal conductivities (electrons, phonons) 
[3-4].  Within radiation heat transfer (photons), to our knowledge rectification has not 
been experimentally established by any mechanism, classical or otherwise, although 
recent theoretical work has suggested far-field [5] and near-field [6-7] mechanisms 
exploiting temperature-dependent total emissivity, ε(T).  

	
  

Figure 4-1.  The two key ingredients of a photon thermal diode: asymmetry and 
nonlinearity.  (a) Asymmetry arises from angle-dependent transmission through the 
test section containing pyramidal reflectors: from bottom to top, transmission is 
higher for energy carriers with normal incidence, while from top to bottom, 
transmission is favored for carriers of oblique incidence.  (b) The nonlinearity arises 
because the emission from the hot reservoir (not shown) has an angular weighting 
that is also bias-dependent.  At zero thermal bias (ΔT = 0), the angular weighting is 
nearly uniform (i.e. Lambertian), while for non-zero thermal bias (ΔT > 0), the 
emission becomes increasingly forward-peaked.  (c) The combined effect is thermal 
rectification. 
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Here we present a new mechanism of photon thermal rectification, inspired by a 
pioneering ballistic electrical diode [8] and previous proposals for phonon heat transfer 
[9-13].  Figure 4-1 shows the basic concept.  Due to the taper of the pyramidal mirrors, 
photons of near-normal incidence (θ ≈ 0°) have higher transmission for trajectories from 
bottom-to-top than from top-to-bottom.  However, the trend is opposite for trajectories 
entering the test section at highly oblique incidence (θ approaching 90°).  At equilibrium 
these effects must exactly cancel, a fundamental requirement of the 2nd Law of 
Thermodynamics (equivalently, conservation of optical etendue [14]).  As recently noted 
by ourselves [11] and others [12] this further implies that the asymmetric structure of Fig. 
4-1(a) alone [9-10] cannot show rectification even far away from equilibrium.  A 
nonlinearity is also mandatory [3, 11-12], which we achieve through a “thermal 
collimator” whose angle-dependent emission distorts as a function of the net thermal flux.  
Here we experimentally demonstrate both the rectification effect and the necessity of the 
collimator. 

 

4.2  Experimental design 
	
  

	
  
Figure 4-2.  Experimental concept.  (a) A hot blackbody cavity (BBC; its guard 
heater and shields omitted for clarity) generates photons with a Lambertian 
distribution.  The key diode components are the thermal collimator and the test 
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section with pyramidal mirrors.  The depicted configuration is forward bias (Fwd), 
with reverse bias (Rev) obtained by flipping the test section.  (b) Energy balance 
applied to the BBC (dashed line): changes in stored thermal energy are balanced by 
the electrical heater (PBBC) and heat transfers through the diode (QDiode) and to/from 
the guard (QBBC-G).  (c) Lumped cooling scheme: after stabilizing the BBC and 
guard at TBBC = TG  = 573 K, the BBC power is shut down while TG held constant.  
QDiode is extracted from the resulting BBC cooling curve. 

Figure 4-2(a) shows our experimental concept.  Photons are emitted from a 
graphite blackbody cavity (BBC) at TBBC = 573 K, which offers a well defined boundary 
condition with a nearly Lambertian emission (for design details see Appendices).  The 
cold side of the radiation field is maintained at T∞ = 283 K using a water-cooled black 
plate.  For asymmetric scatterers we use highly-polished copper pyramids, chosen for 
their high infrared (IR) reflectivity.  As in Fig. 4-1(a), photons incident towards the 
pyramids’ peaks have higher transmission for normal incidence, while photons incident 
towards their bases have higher transmission for oblique incidence (see Figs. 4-5 and 4-6 
in Appendices for further verification). 

The second key ingredient is the thermal collimator, which provides bias-
dependent angular weighting of emission as depicted in Fig. 4-1(b) and Fig. 4-2(a).  To 
create a suitable nonlinearity, we designed a collimator from a perforated graphite plate 
coated with gold film as an IR reflector on the side facing the BBC [Fig. 4-2(a)].  The 
collimator is mounted to the BBC using weak thermal links.  These features ensure that, 
whenever the diode experiences substantial thermal bias, the temperature of the 
collimator is significantly lower than that of the BBC (for example, Tcol ~ 473 K when 
TBBC  = 573 K and T∞ = 283 K).  Then, due to the open holes in the collimator, for angles 
close to θ ≈ 0° many of the photons entering the pyramid test section were emitted from 
the BBC core at TBBC.  However, photons entering at oblique angles are much more likely 
to have been emitted from the internal cylindrical surfaces of the collimator holes, with 
lower intensity since Tcol < TBBC.  The greater the thermal bias, the larger the difference 
between Tcol and TBBC, and thus the greater the angular distortion of the intensity incident 
on the pyramids (see also Fig. 4-7 in Appendices).  The configuration shown in Fig. 4-2(a) 
is Fwd biased: when the BBC is hot, photons emitted normally have more intensity, and 
are relatively easy to transmit through the pyramidal test section.  Similarly, flipping the 
test section upside down creates Rev bias: the collimator emission is still weighted 
towards normal incidence, but this is now relatively difficult to transmit through the test 
section.  The result is thermal rectification.  

The experimental design ensures that convection and conduction losses from the 
BBC are below 0.1% (see Appendices).  To minimize radiation heat losses from the BBC 
exterior (< 1%), we surround it with 5 concentric radiation shields and an active guard 
heater (see Appendices).  A kinematic coupling between test section and BBC is used to 
ensure positioning accuracy and repeatability when flipping the test section between 
polarities.  The BBC and its guard each have two independent heater loops [Fig. 4-4(b) in 
Appendices].  Each is typically stable to within ±0.5 K, with maximum differences of 1.5 
K among these four heater zones as measured by six thermocouples. 
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This experiment requires highly accurate measurements of the heat transfer 
through the test section, Qdiode, under Fwd and Rev biases.  Direct evaluation of the 
steady-state BBC power from the heaters’ current I and voltage V was found to be 
impractical due to the highly oscillatory nature of PWM-switched AC electricity.  Instead 
we implemented the lumped cooling method [15] depicted in Figs. 4-2(b) and (c).  First 
the BBC and guard are both stabilized at 573 K.  Then for times t > 0, the BBC heaters 
are turned off (PBBC = 0) while the guard is maintained at its original temperature.  From 
the time-dependent cooling curve [Fig. 4-2(c)] we extract Qdiode as follows.  The excellent 
shielding between BBC and guard ensures QBBC−G <<Qdiode .  This approaches the perfect 
shield limit (see Appendices), whereby the BBC energy balance of Fig. 4-2(b) simplifies 
to 

 
CBBC

dTBBC
dt

= −Qdiode , (4-2) 

where CBBC is the thermal capacitance of the BBC (with SI units J/K).  In our 
experimental regime the perfect-shield approximation of Eq. (4-2) agrees with exact 
numerical solutions to within 0.1% (see Appendices), and also brings several 
experimental advantages.   Most importantly, the cooling curve becomes independent of 
TG and RBBC-G, so the final results are insensitive to drifts or fluctuations in these 
quantities.  Also, Qdiode comes directly from the cooling rate, |dTBBC/dt|, which is 
measured with much better accuracy than the electrical power PBBC = [I⋅V]BBC.   
Furthermore, although quantifying Qdiode requires an estimate for CBBC based the BBC’s 
geometry and specific heat capacity [16], CBBC is a common parameter for both Fwd and 
Rev bias, and thus cancels out in Eq. (4-1).  Thus, rectification is calculated directly from 
the cooling curves using 

 
BBC BBC BBC

Fwd Rev Rev

dT dT dT
dt dt dt

γ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

, (4-3) 

where both derivatives are evaluated over the same temperature range. 

 

4.3  Results 
We performed two sets of experiments to verify the key predictions [11-12] that 

both asymmetry and nonlinearity are required.  First we confirm that asymmetry alone is 
insufficient by measuring the pyramidal test section without the collimator.   The open 
points in Fig. 4-3(a) show two such control experiments.  The BBC heater is turned off at 
573 K, and we allow a 4 K buffer before defining t = 0 to ensure the system has fully 
transitioned to its free-cooling trajectory.  To better detect any differences between the 
curves, in Fig. 4-3(b) we plot the cooling rate, |dTBBC/dt|, evaluated numerically over a 10 
point (10 minute) moving average.  Both panels confirm that these two control 
experiments are virtually indistinguishable from each other.  To describe each trial with a 
single number, we average the cooling rate from 569 K to 553 K and calculate the 
corresponding heat flow through the diode using Eq. (4-2).  The results for three trials 
each of Fwd and Rev bias are plotted in Fig. 4-3(c) using the unfilled columns.  The 
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difference (0.3%) between the average Qdiode under Fwd and Rev biases for these control 
experiments is well within experimental uncertainty (Fwd and Rev standard deviations 
each < 0.8%), making this the first experimental confirmation that ballistic thermal 
rectification is not possible through asymmetric scattering alone. 

	
  

Figure 4-3.  (a) Cooling curves for representative experiments without (open points: 
controls) and with (filled points) the thermal collimator.  (b) Cooling rates 
calculated from a using a 10-point moving average.  Symbols as in (a).  The two 
control experiments (shaded in gray) are virtually indistinguishable from each 
other, while the three experiments with the collimator (shaded in orange) are clearly 
separated.   (c) Diode heat transfers calculated from Eq. (4-2) by averaging the 
cooling rate in b from 569 K to 553 K, and including additional trials.  These key 
results demonstrate how thermal rectification requires both asymmetry and 
nonlinearity.  Another collimator (Col. 2: striped bars) with narrower holes shows 
similar results, but degrades the rectification to around 4.1% (Col. 2 data omitted 
from (a) and (b) for clarity). 

Finally, we measure the complete device with pyramidal test section and thermal 
collimator.   Using a collimator optimized by a semi-quantitative guideline (see 
Appendices), Figs. 4-3(a) and (b) show that the Fwd bias configuration (red filled squares) 
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now clearly cools faster than the Rev bias case (blue filled squares).  For example, at a 
BBC temperature of 563 K, Fig. 4-3(b) shows that the BBC cooled at 0.352 K/min in 
Fwd bias, but 0.314 K/min in Rev bias.  Repeatability was confirmed after the Rev bias 
test by flipping the test section again and re-measuring Fwd bias, with very good 
consistency (red filled circles).  Thus, as summarized in Fig. 4-3(c) using the filled 
columns, this first experimental proof of ballistic thermal rectification showed a 
rectification γ = 10.9%.   To further verify the rectification effect, the experiment was 
repeated using a collimator with holes of half the diameter but the same thickness and 
open-area fraction.  As shown by the striped columns in Fig. 4-3(c), the resulting heat 
transfer was again asymmetric and highly repeatable, and as expected (see Appendices) 
the rectification was reduced (γ = 4.1%). 

 

4.4  Outlook 
The results in Fig. 4-3 represent the first experimental demonstration of a photon 

thermal diode using any mechanism.  This is also the first demonstration of the ballistic 
thermal rectification mechanism [9-12] for any carrier type, and in principle is 
generalizable to other ballistic carriers including electrons and phonons, for example 
using pyramidal quantum dots [17], sawtooth nanowires [9-10, 18], or microfabricated 
structures (see Appendices). 

Highly-effective thermal rectifiers could find numerous applications in thermal 
engineering.  Many arise from electrical analogues [19].  For example, in solar-thermal 
power, a temperature doubler (analogous to a voltage doubler) can exploit nighttime cold 
temperatures as well as daytime highs to increase the average temperature difference 
driving a heat engine, increasing both efficiency and power output [11, 20].  A thermal 
diode’s clamping functionality could be used for thermal regulation of building envelopes 
[21], as well as thermal protection of delicate components as in electrical hardware, 
spacecraft thermal shielding, and satellite radiators.  Thermal diodes are also a 
fundamental element for logic operations; besides the suggestion of thermal information 
processing [22] this can also benefit power generation, since an array of diodes can 
automatically pick out only the hottest of sources and coldest of sinks. 

 

4.5  Appendices 

4.5.1  Design of the blackbody cavity (BBC) 
Although for simplicity the main text is written as if both reservoirs are perfectly 

black, all of the fundamental analysis of the ballistic thermal rectification mechanism 
applies just as well to reservoirs with arbitrary spectral, directional, emissivity functions 
ε(λ,θ,ϕ,x,y).  Importantly, the analysis predicts that even for an arbitrary asymmetric test 
section and both reservoirs with their own arbitrary ε(λ,θ,ϕ,x,y), rectification cannot 
occur without the introduction of some explicit nonlinearity [11] (here, the thermal 
collimator).   For simplicity in the discussion and interpretation of the experiments, we 
endeavored to use reservoirs that are approximately black, i.e. ε ≈ 1 for all λ, θ, ϕ, x, and 
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y across the aperture.  Here we followed standard BBC designs to approach this ideal [23].  
Graphite was chosen as the BBC material because of its relative high intrinsic emissivity 
(ε = 0.80 at room temperature, increasing with temperature in the experimental regime 
[24]), good high temperature stability, and machinability by the supplier (Poco Graphite).  
The total directional emissivity [ε(θ, ϕ)] of our resulting design is at least 0.91 from all 
(x,y) across the aperture [23]. 

 

	
  

Figure 4-4.  Design of Blackbody Cavity (BBC).  (a) Guarding + shielding concept 
(CAD drawing) ensures 99% of the BBC’s heater power transmits through the 
aperture instead of leaking out through the BBC side walls or supports.  (b) Home-
built BBC and guard with hand-wound heaters ensure good temperature stability 
and uniformity (Tmax – Tmin < 1.5 K, as measured by six K-type thermocouples as 
shown in a).  (c) 15 radiation shields made of polished copper: five concentric “cans” 
for the BBC (middle row), five for the guard (back row), and five for the pyramidal 
test section (front row, assembled). 

One major design criteria for heat transfer is to ensure the large majority of the 
BBC’s heater power transmits through the BBC aperture (and thus the test section) 
instead of being lost from the exterior of the BBC’s side walls.  This is difficult because 
the transmit-to-loss ratio scales with the area ratio of the aperture to the external BBC 
surfaces, and thus clashes with the design criteria for a high effective emissivity of the 
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aperture [23].  In other words, a larger aperture increases the transmit-to-loss ratio, but 
decreases the effective emissivity of the aperture.  To overcome this difficulty, a guarding 
+ shielding concept [Fig. 4-4(a)] is implemented.  A guard heater (graphite) is designed 
to create a local surrounding temperature approximately equal (±1 K) to the temperature 
of the BBC, thus greatly reducing the radiation loss from the BBC.  The BBC and guard 
each have two independent heater loops [Fig. 4-4(b)], made by hand winding heater wires 
of nickel-chromium alloy (Omega Engineering, NIC80-010-062 and NI80-040; insulated 
with steatite “fish spine” beads, FS-200-14, k ≈ 5 W/m-K), and anchored with cement 
(Resbond-920, k ≈ 2.2 W/m-K) along 15% of their length.  We press fit six K-type 
thermocouples into the graphite [Fig. 4-4 (a)]: one at the center of each heater zone [Fig. 
4-4 (b)] to provide feedback to the PWM controllers; plus one at the edge of each BBC 
zone to check the temperature uniformity of the BBC.  The worst case non-uniformity is 
found to be 1.5 K from the center to the edge of the BBC side wall. 

Five concentric radiation shields [Fig. 4-4 (c); polished copper, ε < 0.05 [16]] are 
placed between the guard heater and BBC (top, sides, and bottom), with another five 
radiation shields placed outside the pyramidal test section to further reduce the radiation 
loss.  Five more concentric radiation shields are placed outside the guard heater (top, 
sides, and bottom) to further reduce the power requirements of the guard heater.  With 
this design, at steady state the heat loss through the BBC side walls is estimated to be < 1% 
of the heating power PBBC = [I·V]BBC.  Finally, to minimize conductive losses we use four 
hollow ceramic pegs to support the BBC above the guard heater, and another four pegs to 
support the whole system above the vacuum chamber floor.  Each peg has length 1.50”, 
wall thickness 0.039”, and outer diameter 0.156”; to accommodate the thermal expansion 
mismatch between graphite and copper the through-holes on the radiation shields have 
diameters 0.190”.  The resulting heat conduction through the ceramic pegs is estimated to 
be < 0.1% of the power transmitting through the test section. 

 

4.5.2  Asymmetric transmission functions 
The starting point of this ballistic thermal rectification mechanism is based on the 

intuition depicted in Fig. 4-1(a) of the main text: the ballistic trajectories directed towards 
the peaks of the pyramidal arrays (τ12; here 1 denotes the test section terminal facing the 
peaks of the pyramids, and 2 denotes that facing the bases) have high transmission for 
normal incidence, while the ballistic trajectories incident on the bases of the pyramidal 
arrays (τ21) have high transmission for oblique incidence. 

One fundamental question may arise regarding this intuition: is it possible to 
achieve τ12 = 100% while τ21 = 0% for all incident positions and angles?  The answer is 
no.  A qualitative argument is based on time reversal symmetry: for each transmitted trial 
along one direction, there must exist a corresponding trial which follows exactly the same 
path but in the opposite direction.  It’s impossible to block one trial without blocking the 
other.  This insight has been quantified using a Landauer-Büttiker approach [11-12].  At 
thermal equilibrium, for photons emitted with Lambertian distributions from parallel 
thermal reservoirs with same contact areas (x-y plane), from the 2nd Law of 
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Thermodynamics it can be shown [11] that for any possible asymmetric test section 
geometry it must always be the case that 

 
2 2

12 210 0
sin cos sin cosd d

π π
θ θτ θ θ θ τ θ θ θ=∫ ∫ , (4-4) 

where τ12θ  and 21
θτ  are the transmission coefficients after averaging over the contact area 

and azimuthal angles ϕ , thus depending only on the polar angle θ.  Thus, the two 
transmission functions, τ12θ  and 21

θτ , are not independent but rather are constrained by the 
2nd Law of Thermodynamics.  Interestingly this constraint is equivalent to the 
conservation of etendue in optical terminology [14], which also is essentially the 
reciprocity relation of view factor analysis25 in radiation heat transfer. 

	
  

Figure 4-5.  Ray tracing simulation to optimize the transmission function.  (a) 
Simulation domain: staggered double-layer pyramidal arrays (each layer a 
checkerboard) with specular surfaces and high aspect ratio for each pyramid.  
Mirror symmetries are applied to reduce the simulation domain to the unit cell 
indicated by the black dashed square.  (b) Simulation results for the geometry 
indicated in (a) and used in the main experiments.  For photons launched from the 
top ( 12

θτ , red line), as incident angle increases, transmission decreases from ~95% to 
0%.  On the other hand, for photons launched from the bottom ( 21

θτ , blue line), as 
incident angle increase, transmission increases from 0% to ~35%. 

In order to guide the design of the experimental test section, we simulated the 
scattering of photons by asymmetric pyramidal structures using a ray tracing scheme in a 
three dimensional domain [11, 26].  Figure 4-5 (a) shows the geometry used in the main 
work, which was crudely optimized using a phenomenological drifted Bose-Einstein 
model of the thermal collimator [11, 26].  The chosen structure is a double layer of 
pyramidal arrays.  Each layer is a “checkerboard” array, and the first layer is staggered 
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with respect to the second layer.  Each pyramid is treated as perfectly specular, and has 
an aspect ratio (AR) of 3:1 (height:base).  The gap between the tips of the lower layer and 
the bases of the upper layer is equal to one-half of the base of a pyramid.  To improve the 
computational efficiency, we define our ray-tracing simulation domain using a unit cell 
(indicated using black dashed lines) by considering the mirror symmetries of the 
staggered pyramidal arrays.  For each polar angle (Δθ  mesh of 1 deg.), the transmission 
coefficient is averaged over 9604 photon trials, in which the x-y position and azimuthal 
angle ϕ are randomized with uniform distribution using a Monte Carlo (MC) scheme.  
Figure 4-5(b) shows the results, with 95% confidence intervals in τ estimated as <1% for 
all θ.  For transport towards the peaks ( 12

θτ , red line), photons of near-normal incidence (θ 
= 0o) are largely transmitted, while photons incident from oblique angles are largely 
reflected.  For transport towards the bases ( 21

θτ , blue line), on the other hand, photons 
from θ = 0° are entirely reflected, and photons incident from oblique angles have higher 
transmission. 

	
  

Figure 4-6.  Visualization to confirm the function of the pyramidal test section.  The 
surrounding environment is white (not shown), and the camera exposure time is the 
same for all images.  (a) View towards points.  Mostly black from θ  = 0o, indicating 
high transmission, while much less black from θ  = 45o, indicating lower 
transmission.  (b) View towards bases.  Mostly shiny from θ  = 0o, indicating low 
transmission, while much more black from θ  = 45o, indicating higher transmission. 

Our pyramidal test section is designed according to these simulation results. To 
qualitatively confirm the as-fabricated test section meets its core function of having very 
different angle-dependent transmission coefficients from its two ends, we imaged the test 
section from various angles using visible light and a consumer-grade digital camera.  This 
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is a conservative check, since IR has a longer wavelength than visible light, and thus for 
fixed surface roughness it will perceive the pyramids as being more specular.  In addition, 
the intrinsic reflectivity of copper in the IR is also higher than in the visible [16].  As 
shown in Fig. 4-6 (a), we first cover the backside of the test section with a black cloth, 
and place it in a large environment that is otherwise white.  The front side of the test 
section is then imaged with a digital camera located around 25” away (corresponding to a 
small solid angle of 0.010 sr) with two different angles: normal (θ = 0o) and oblique (θ = 
45o).  The camera exposure time is the same for all four scenarios.  For the configuration 
with pyramid peaks pointing away from the black cloth [Fig. 4-6(a)], the view from θ = 
0o is almost totally black, indicating the large majority of photons incident from this 
direction are transmitted through to the black cloth.   On the other hand, the image from θ 
= 45o shows much less black, indicating that most photons incident from 45° are reflected.   
The observations for the configuration with pyramid peaks pointing down towards the 
black cloth [Fig. 4-6 (b)] are opposite: the photographs are mostly shiny from θ = 0o, 
indicating low transmission, and much more black from θ = 45o (higher transmission).  
The trends of this semi-quantitative experiment are consistent with the ray tracing results 
of Fig. 4-5(b) and confirm that the transmission functions of the fabricated test section 
indeed have the required angular dependencies. 

 

4.5.3  Nonlinearity of the thermal transport 
We emphasize that a static angle-dependence in ε(θ), no matter how sharply 

peaked [27], cannot lead to thermal rectification.  This is a direct consequence of the 2nd 
Law requirement for no net transport at thermal equilibrium, and has been demonstrated 
theoretically by ourselves [11] and others [12].  For example, using a Landauer-Büttiker 
framework the effect of the emissivities ε1(θ ) and ε2(θ ) can be incorporated into 
effective 12

θτ  and 12
θτ  functions and the reservoirs treated as black, and in this case analysis 

like Eq. (4-4) has already established that rectification is not possible without some 
additional nonlinearity.  Indeed, the key is to introduce some additional bias dependence 
as well.  In our work this is realized through the thermal collimator. 
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Figure 4-7.  Conceptual evolution of the weighting function, w(θ  ).  (a) Zero bias (ΔT 
= 0 K): the whole system is in equilibrium at 573 K, so that w does not depend on θ .  
(b) Moderate bias (ΔT = 150 K): the temperature of collimator, Tcol., is lower than 
that of BBC, TBBC, so that w is somewhat distorted.  (c) large bias (ΔT = 290 K; this 
corresponds to the main experiments): Tcol. is further reduced relative to TBBC, so 
that w is further distorted. 

Figure 4-7 depicts the evolution of the distortions in the weighting function, w(θ), 
caused by increasing ΔT.  For simplicity here we imagine the graphite of the collimator to 
be perfectly black; allowing for εgraphite < 1 does not change the major trends.  We fix 
TBBC = 573 K for all three scenarios, but vary the temperature of the surroundings (T∞), 
and thus the bias (ΔT).  At zero bias (ΔT = 0 K) as depicted in Fig. 4-7 (a), the whole 
system is in equilibrium and so the temperature of the graphite collimator (Tcol.) is also at 
573 K.  Thus, the combined effect of BBC + collimator is to emit photons into the 
pyramid test section with an isotropic Lambertian distribution, characterized by a 
radiation temperature of 573 K at all angles.  For non-zero bias [Fig. 4-7(b) & (c)] 
however, Tcol. < TBBC.  Now, due to the open holes in the collimator, for angles close to θ 
≈ 0° many of the photons entering the pyramid test section were emitted from the BBC 
core at TBBC.  But photons at oblique angles are much more likely to have been emitted 
from the internal cylindrical surfaces of the collimator holes, with lower intensity since 
Tcol < TBBC.  Thus, the photons have a distribution distorted away from Lambertian after 
passing through the collimator.  The higher the bias, the more distorted the distribution. 

 

4.5.4  A semi-quantitative guideline to optimize the thermal collimator 
An accurate model for the non-equilibrium collimator is desired but challenging.  

Instead here we describe a semi-quantitative argument about the maximization of the 
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thermal rectification, γ, with respect to the ratio D/h, where D and h are the hole diameter 
and the thickness of the collimator, respectively.  In the spirit of distorting the distribution 
function as depicted in Fig. 4-7, we can conclude that γ vanishes when D/h reaches either 
0 or ∞, so the best rectification must occur for some intermediate value of D/h.  As 
described next, a semi-quantitative guideline for the optimal ratio is (D/h)opt. ≈ tan(θc), 
where θc is the angle at which the Fwd and Rev transmission curves cross.  For example, 
for the pyramidal test section used in this experiment we estimate θc ≈ 40 degrees based 
on the crossing seen in Fig. 4-5(b). 

To obtain this guideline, we invoke the physical picture depicted in Fig. 4-1(a) of 
the main text: to transmit through the pyramidal test section, Fwd bias favors photons 
with small incident angles while Rev bias favors photons with large incident angles.  We 
fix the total open-area fraction of the collimator.  For the approximate range 0 < D/h < 
tan(θc), increasing D/h gradually increases the number of hot photons launched directly 
from the BBC while decreasing the number of cooler photons launched from the 
collimator.  In this regime, these hot photons have small incident angles and thus most 
are transmitted under Fwd bias but blocked under Rev bias, leading to a significant 
increase of QFwd. but only a slight increase of QRev..  The overall result is that increasing 
D/h in this regime thus increases γ.   Continuing to tan(θc) < D/h < ∞, increasing D/h 
further increases the total number of hot photons emitted directly from the BBC.  In this 
regime, however, the additional hot photons have much larger incident angles, most of 
which are now blocked under Fwd bias but transmitted under Rev bias.  This leads to a 
saturation of QFwd. but a significant increase of QRev., and thus further increases of D/h 
cause a decrease of γ .  Combining these two regimes, we conclude (D/h)opt. ≈ tan(θc). 

Following this argument, we designed our collimator with D/h = 1, which is 
expected to be reasonably well-matched to the value of tan(θc) ≈ 0.84 for the pyramidal 
test section [Fig. 4-5(b)].  This collimator resulted in γ = 10.9%, as shown in Fig. 4-3(c) 
of the main text using filled columns.  To test the basic trend of the collimator 
optimization argument just given, we also measured a second collimator with a smaller 
D/h = 0.5, expected to give inferior rectification.  As indicated by the striped columns in 
Fig. 4-3(c), this Col. 2 indeed resulted in weaker rectification, in this case γ = 4.1%.  
Further support of the basic collimator argument comes from the fact that as compared to 
Col. 2, the better-optimized Col. 1 significantly increases QFwd. while only slightly 
increasing QRev. [Fig. 4-3(c)], consistent with our prediction for the regime 0 < D/h < 
tan(θc) above. 

 

4.5.5  Lumped cooling model 
We explain the lumped cooling model used to develop Eqs. (4-2) and (4-3) of the 

main text.  The lumped cooling problem is the thermal-domain analogy of discharging an 
electrical RC circuit.   The Biot number during the cooling process is estimated to be < 
0.01, making the lumped cooling model a good approximation [28].  The basic energy 
balance on the dashed control volume in Fig. 4-2(b) of the main text yields 
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BBC

BBC BBC BBC G diode
dTC P Q Q
dt −= + − , (4-5) 

where CBBC is the thermal capacitance of the BBC estimated from geometry and 
handbook data, and PBBC = [I·V]BBC is the electrical power delivered to the BBC.  We 
follow a standard radiation resistor analysis25, where the driving potential is σT4 with σ 
as the Stefan-Boltzmann constant, and resistances carry units of m-2.  Thus, 

 ( )4 4
BBC G G BBC BBC GQ T T Rσ σ− −= −

 
(4-6) 

is the heat transfer from BBC to guard, and  

 ( )4 4
diode BBC diodeQ T T Rσ σ ∞= −

 
(4-7) 

is the heat transfer through the test section. 

The measurements reported in the main text are obtained as follows.  After the 
whole system stabilizes with TBBC = TG = 573 K (typically 12 hours), we turn off the 
heaters of the BBC at time t = 0 (PBBC = 0 for t > 0) while maintaining the guard at 573 K 
[Fig. 4-2(c) of the main text].  Now the energy balance on the BBC simplifies to 

 

4 4 4 4
BBC G BBC BBC

BBC
BBC G diode

dT T T T TC
dt R R

σ σ σ σ ∞

−

− −
= − . (4-8) 

In the perfect-shield limit (QBBC−G Qdiode <<1 , checked below), this further reduces to 

 

4 4
BBC BBC

BBC
diode

dT T TC
dt R

σ σ ∞−
= − . (4-9) 

After separating variables and integrating, we obtain a closed-form solution to Eq. (4-9), 
albeit for t(TBBC): 

 
t =
RdiodeCBBC
4σT

∞
3

f TBBC (t)( )− f TBBC ,0( )#
$

%
& , (4-10) 

where ( ) 1ln 2tanx T xf x
x T T
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Figure 4-8.  Comparing the solution from the perfect shield limit to the full solution 
of the lumped cooling model.  Using realistic parameters, the difference between the 
perfect shield limit of Eq. (4-10) and the full numerical solution of Eq. (4-8) is 
estimated to be less than 0.1% over the typical experimental regime t/tc < 0.1, where 
tc ~ 7 hours (see text). 

We first compare this perfect shield limit [Eq. (4-10)] to the full numerical 
solution of Eq. (4-8).  In this calculation we use the following realistic parameters: CBBC 
= 1700 J/K, RBBC-G = 600 m-2, and Rdiode = 640 m-2.  Here CBBC is estimated based the 
BBC’s geometry and specific heat capacity16 averaged over the experimental regime, 
RBBC-G is extracted from full-time cooling curves beyond the perfect shield limit, and 
Rdiode is averaged over the experimentally extracted Fwd and Rev resistances.  In Fig. 4-8, 
we plot the dimensionless temperature, T̂BBC =TBBC TBBC ,0 , as a function of a dimensionless 

time, ˆ ct t t= , where ( )3
,04c BBC diode BBCt C R Tσ=  is estimated to be ~7 hours.  Within the time 

regime of the real experiment (t/tc < 0.1), the difference between the two solutions is less 
than 0.1%, corresponding to a maximum error of 0.55 K for 553 K < TBBC < 573 K.  This 
verifies that the perfect shield limit is appropriate for the experimental regime presented 
in the main text.   

We next compare the cooling rate, |dTBBC/dt|, predicted by this perfect shield limit 
to experiments.   We treat Rdiode as the only free parameter, and fit the experimental 
cooling curves to Eq. (4-9).  As shown in Fig. 4-9(a) for the simplest scenario of no test 
section or collimator, the model fit (dashed lines) agrees with the experimental cooling 
rate (points) with maximum error of 1.5% from 553 K to 569 K.  We consider this very 
good agreement.  In addition, from the fitting result, Rdiode = 266 m-2, and based on the 
aperture area of (2.50”)2 and standard radiation analysis25, we estimate the total 
hemispherical emissivity of the aperture to be 0.93, which is consistent with the BBC 
design value (>0.91) described in Appendices. 
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Figure 4-9.  Comparing experimental results to the constant radiation resistor 
model.  Each curve has one free parameter.  (a) For the simplest scenario of no 
collimator or pyramidal test section, the model agrees with the experiment to within 
1.5%.  (b) For experiments involving the test section and collimator, this simple 
linear model explains the average magnitude of the experimental results.  The slopes 
of b are in error but this may not be surprising considering the additional 
complexity and nonlinearity involved.  For clarity we only fit three of the five 
cooling curves of Fig. 4-3(b) (see text). 

Figure 4-9(b) shows a similar comparison of this model with the measurements 
from Fig. 4-3(b) of the main text.  For clarity, instead of fitting all five of the cooling 
curves in Fig. 4-3(b), we only performed three fits: the reverse biased experiment, one of 
the two forward biased experiments, and likewise one of the two control experiments (no 
collimator).  The fits again capture the leading order behavior |dTBBC/dt|, but now deviate 
from the experiments in the higher order behavior d(|dT/dt|) / dT.  Such deviations may 
not be surprising considering the additional complexity and nonlinearity introduced by 
the collimator and test section.  We emphasize that in Fig. 4-3(c) of the main text the 
diode power is calculated using Eq. (4-2) which directly averages the experimental 
cooling rate in Fig. 3 (b) from 569 K to 553 K, and does not invoke Eq. (4-9).  Thus the 
fact that Eq. (4-9) deviates from the experiment in Fig. 4-9(b) has no effect on the results 
in Fig. 4-3(c). 
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4.5.6  Further verification of the need for a thermal collimator: An 
experiment on phonons in an etched silicon on insultator (SOI) wafer 

	
  
Figure 4-10.  An experiment to study thermal rectification of phonons by 
asymmetric microfabricated pores.  Left: Concept and thermal circuit.  Right: A 
fabricated structure (by Dr. Wanyoung Jang).  Since this structure lacks a thermal 
collimator, no rectification is expected. 

The success of the photon thermal diode reported in the main text builds on 
lessons learned from an earlier study of ballistic phonons in etched SOI.  This previous 
experiment lacked an effective thermal collimator and thus is expected to be unable to 
provide rectification.  Here we briefly summarize this experiment and its main result.   

We attempted several variations of the basic concept illustrated in Fig. 4-10.  The 
central test section (between T1 and T2 in the figure) contains a ballistic thermal diode 
made by etching asymmetric triangular pores in the device layer of an SOI wafer.  The 
central test section was then undercut by a selective wet etch to release it from the 
substrate, for thermal isolation.  The experiments were conducted in high vacuum to 
eliminate convection, and radiation losses were also negligible.  Temperatures as low as 
10 K were used to maximize the mean free paths (MFPs) of the phonons in Si and ensure 
ballistic transport.  Gold lines were used as heaters and resistance thermometers.  All 
samples were patterned using e-beam lithography. 
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Figure 4-11.  Attempted phonon thermal rectification: typical experimental data in 
forward and reverse bias (left and right columns, respectively).  Top: 
Measurements.  Bottom: Corresponding schematics.  In each experiment the test 
section (diode region) is between the points labeled T1 and T2.  The average 
temperature was fixed at 20 K, while 4 different thermal biases were applied: ΔT≈  
±(0, 5.5, 9.7, and 13) K.  Rectification corresponds to (T2-T∞,2)Fwd > (T1-T∞,1)Rev.  
Because the two plots are basically mirror images of each other, there is no clear 
rectification above the noise threshold.  This null result confirms that rectification is 
not possible without a thermal collimator. 

Typical measurement results are shown in Fig. 4-11.  The plots show measured 
temperature at the four positions indicated from left to right as T∞,1, T1, T2, and T∞,2.  The 
thermal diode is in the central section between T1 and T2.  The etched slots between T∞,1 
and T1, and between T2 and T∞,2, are as symmetric as possible and used to increase the 
thermal resistance R0 to be comparable to the expected Rdiode.  In each experiment in this 
example, the average temperature 12 T1 +T2( )  was held constant at 20 K, while several 
thermal biases (T1-T2) were applied.  This required simultaneous tuning of two 
independent inputs: the background temperature of the cryostat’s cold finger, T∞ (which is 
different from T∞,1 and T∞,2), and the Joule heating at the hot-side of the device (Q1 in 
forward bias, and Q2 in reverse bias).  We used an iterative secant method to optimize 
both input parameters simultaneously during the experiment.   

The raw data in Fig. 4-11 can be understood by considering the different heat 
flows through the test section in forward and reverse bias.  As indicated in the schematics, 
to maintain the same magnitude of |ΔT|=|T1-T2|, more heat should flow through the 
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central diode section in forward bias than in reverse bias.  In forward bias, this heat must 
then flow through the neighboring region from the location T2 to the location T∞,2.  In 
reverse bias, on the other hand, the heat flow exiting the diode section must then flow 
from T1 → T∞,1.  Therefore, when holding |T1-T2| constant but reversing thermal polarity 
(as in the experiments of Fig. S8), the signature of thermal rectification is (T2-T∞,2)Fwd > 
(T1-T∞,1)Rev.  Inspection of the measurements in Fig. 4-11 indicate that no such 
rectification was evident, because for any given ΔT the measured (T2-T∞,2)Fwd ≈ (T1-T∞,1)Rev 
to within experimental uncertainty.  Thus we conclude that the experiment depicted in 
Fig. 4-11 again confirms one of the key conclusions of the main text: ballistic thermal 
rectification is not possible through asymmetry alone.   

Several other configurations were tried with different temperature ranges, 
structures, and configurations, including an “H-bridge” concept similar in spirit to what 
was used in the electrical analogue [8].  In all cases no rectification was detectable, 
consistent with expectations since there was no thermal collimator.   

In light of the understanding developed in the main text, we identify two key 
issues which would need to be addressed to observe significant ballistic thermal 
rectification in a phonon system such as Fig. 4-10.  First is the fact that calculations 
predict stronger rectification for specular rather than diffuse surfaces [11, 26].  The 
structures of Fig. 4-10 were prepared by reactive ion etching (RIE) and exhibit roughness 
which may not be negligible compared to the characteristic phonon wavelengths even at 
these low temperatures [29].  Smoother surfaces might be achievable by using focused 
ion beam (FIB) milling rather than RIE,  reflowing Si using a high-temperature hydrogen 
anneal [30], or exploiting crystallographic anisotropy such the well-known 111 stop 
planes of KOH-etched Si.  The second issue is more fundamental: the need for effective 
thermal collimation.  The experiments of Fig. 4-11 were performed at low temperatures 
to ensure ballistic phonon transport and specular reflections, but this also quenches the 
inelastic (umklapp) phonon scattering and thus there is no nonlinearity analogous to the 
mechanism of Fig. 4-7.  We emphasize that strategies based on simply etching slots into 
the SOI film cannot function as a thermal collimator for phonons, because phonon-
surface scattering is elastic and thus linear.  In contrast, the photon thermal collimator of 
the main text involves highly inelastic interactions between the photons and the graphite, 
which is one of the main advantages of the photon approach for this first demonstration. 
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Chapter 5: Summary and outlook 

5.1  Summary 
We summarize the contributions of this thesis as following: 

Chapter 2 measured the thermal properties of graphene encased by silicon dioxide 
layers, a structure most relevant to microelectronics applications.  A heat spreader + FEM 
method was developed to measure the thermal conductivity.  This method was first 
validated by two control experiments.  The first control omitted graphene from the basic 
stack.  The extracted thermal conductivity of silicon dioxide layer agreed to better than 
1% with a separate measurement using a 3ω method.  The second control used a Pt thin 
film to mimic graphene.  The extracted thermal conductivity of Pt agreed to better than 
5% with a separate measurement combining a four-probe resistivity measurement and the 
Wiedemann-Franz law.  We then measured the thermal conductivity of encased graphene 
as a function of both temperature and the number of graphene layers.  These results 
showed that the thermal conductivity of single-layer-graphene was suppressed below 160 
W/m-K at room temperature, while the thermal conductivity of our thickest samples 
approached that of bulk graphite.  We also developed a phenomenological model to 
capture the physics. 

Chapter 2 also measured the thermal contact resistance between graphene and 
silicon dioxide using a differential 3ω method.  Our experiments showed that this thermal 
contact is significantly better than those contacts involving related carbon systems, which 
encourages possible future applications of graphene in microelectronics, interconnects, 
and thermal management structures.  In addition, we applied a Bloch- Grüneisen formula 
to calibrate the resistance thermometer, which improves the accuracy of the experiment.  
We also applied a Monte Carlo scheme for uncertainty analysis, which relaxes the 
constraints on the traditional partial derivative method, and is a good option for nonlinear 
and complicated expressions. 

Chapter 3 dealt with heat transfer in anisotropic materials.  The first Brillouin 
zone and the iso-energy surfaces of the Debye dispersion relation are both generalized 
from spherical to ellipsoidal.  This model is checked by comparison with the 
experimental specific heat capacity of graphite and HDPE, as well as the phonon 
irradiation of graphite calculated from lattice dynamics.  The anisotropic TBC model 
performs at least six times better than the standard isotropic diffuse mismatch model at 
explaining the measured TBC between graphite and various metals [1].  The model 
further reveals an unexpected guideline to engineer the TBC: due to phonon focusing 
effects, in many cases the TBC across an interface can be increased by reducing a phonon 
velocity component parallel to the plane of the interface. 

Chapter 4 experimentally demonstrated a photon thermal diode.  The device is 
based on a new mechanism exploiting asymmetric scattering of ballistic energy carriers 
by pyramidal reflectors.   Control experiments verify recent theoretical predictions that 
this mechanism also requires a non-linear thermal collimator element, due to a deep 
requirement of the 2nd Law of Thermodynamics (equivalent to conservation of optical 
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etendue).  Experiments confirm both effects: With pyramids and collimator the thermal 
rectification is 10.9 ± 0.8%, while without the collimator no rectification is detectable (< 
0.3%).  This experiment is the first demonstration of a photon thermal diode, regardless 
of mechanism; and the first demonstration of the ballistic thermal rectification 
mechanism, regardless of energy carrier type. 

 

5.2  Outlook 
We list below several points that may be worth further investigation in the future: 

A.  Diffusive-ballistic heat transport in graphene 

As proposed in Fig. 1-2(c), it would be interesting to observe the diffusive-
ballistic transition by varying the length of graphene flakes.  Recent measurements [2] of 
graphene nano ribbons supported by a substrate show this crossover by varying both the 
length and width of samples, although the quenching effect of the silicon dioxide 
supporting layer obscures the physical picture.  In addition, it’s not consistent to show 
ballistic effect using a pure diffusive FEM model.  In order to show a clean physical 
picture, it’s desirable to measure a freely suspended sample despite of the challenges in 
microfabrication and in cleaning the sample [3].  A framework based Boltzmann 
transport equation, instead of the classical diffusion equation is preferred in extracting the 
thermal conductivity from experimental raw data. 

B.  Kinetic theory for anisotropic systems 

A general framework is developed in Chapter 3 to model the specific heat and 
thermal boundary conductance of anisotropic materials.  The next step is to incorporate 
different scattering mechanisms (see Fig. 1-4) to model the thermal conductivity.  An 
interesting starting point may be the so-called minimum thermal conductivity model [4].  
It is hoped that after considering the anisotropy of the materials, this model can be 
brought back to serve as the lower bound of experimental results, thus resolving the 
recent mystery of the highly anisotropic WSe2 system [5].  A long-term objective is to 
finally build up a kinetic theory for anisotropic systems, in which a key challenge is to 
model the direction dependent mean free path, and to incorporate it with the direction 
dependent phonon group velocity. 

C.  Thermal transistors 

A passive photon thermal diode is experimentally demonstrated in Chapter 4.  
The next objective may be an active nonlinear thermal element, for example a thermal 
transistor.  One promising mechanism is the metal-insulator-transition (MIT) of VO2 [6].  
We can directly apply thermal gate to transition between metal and insulator phases, thus 
switching between high-low (thermal) conducting states with a rectification effect up to 
28% [7].  We can also apply electrical gate to modulate the oxygen vacancies in VO2 [8], 
and thus the MIT point and thermal conductivity. 
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