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A universal question in network science entails learning about the topology of interaction from

collective dynamics. Here, we address this question by examining diffusion of laws across US

states. We propose two complementary techniques to unravel determinants of this diffusion

process: information-theoretic union transfer entropy and event synchronization. In order to sys-

tematically investigate their performance on law activity data, we establish a new stochastic model

to generate synthetic law activity data based on plausible networks of interactions. Through exten-

sive parametric studies, we demonstrate the ability of these methods to reconstruct networks, vary-

ing in size, link density, and degree heterogeneity. Our results suggest that union transfer entropy

should be preferred for slowly varying processes, which may be associated with policies attending

to specific local problems that occur only rarely or with policies facing high levels of opposition. In

contrast, event synchronization is effective for faster enactment rates, which may be related to poli-

cies involving Federal mandates or incentives. This study puts forward a data-driven toolbox to

explain the determinants of legal activity applicable to political science, across dynamical systems,

information theory, and complex networks. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4961067]

Over the past three decades, US states have expanded the

use of public health policies (laws, regulations, taxes) to

facilitate the change of complex health and social behav-

iors. In spite of growing evidence of the effectiveness of

individual policies, little is known about what motivates

any given state to adopt these new policies, let alone aid

in predicting state uptake of any new policy initiative.

Dynamical systems, information theory, and complex net-

works may be particularly applicable to the analysis of

policymaking among states, whereby they could help dis-

sect dynamic interactions within a group of intercon-

nected units (state governments) that are responsible for

the production of an observable and emergent phenome-

non (state health policy landscape). Here, we investigate

two complementary techniques grounded on information

theory and nonlinear time series analysis for the study of

policy diffusion among US states. Both approaches are

demonstrated on synthetic data, generated using a novel

modeling framework that can be tuned to proxy impor-

tant features of several real-world scenarios. This effort

offers an unprecedented mathematical basis for an

improved understanding of the determinants of policy

diffusion across governmental units over time, laying the

foundations for predictive modeling.

I. INTRODUCTION

Policy diffusion is a phenomenon that describes the

spreading of public policies from one government to another.1

Policy diffusion in American politics has been studied since

the seminal paper of Walker2 in 1969. Studies include a vari-

ety of different policy topics ranging from welfare reform,3

criminal justice,4 and public health5–7 to Native American

gaming8 and school choice.9 Initially, most researchers

focused on a single policy using event history analysis follow-

ing the approach first introduced in a classic study on lottery

adoptions.10 However, a number of new developments in the

last decade, including key explanatory concepts,5,11 policy

outcomes,12,13 and methods tailored for studying innova-

tion,14,15 have allowed researchers to examine how states may

learn from and influence one another. Seen in this form, poli-

cymaking can be modeled as an ensemble of individual units

interacting with rules and resources, often with competing

goals. With this representation in mind, we seek to understand

how modern network analysis techniques could provide

unique insights in terms of our understanding of the emergent

properties of government systems. Accordingly, here, we fur-

ther extend these approaches to unravel the topology of causal

influences among states from their legal activity.

Understanding the relationship between topology and

dynamics is a central research question in the fields of com-

plex networks and dynamical systems.16–18 Networks are

ubiquitous in nature and technology. For example, networks

have been used to model interactions between friends and col-

laborators,19,20 patterns of gene expression,21 neuronal circuits

in the brain,22–24 transportation systems,25 power grids,26 and
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the internet.27 Across these systems, local interactions among

units influence the collective dynamics and the function of the

entire network.

Due to rapid technological advancement, our knowledge

about individual units in natural networks, such as the brain

or the human genome, is continuously growing.23,28 But,

apprehending the topology of the interaction networks

remains an elusive problem. For example, the key constitu-

ents of cellular gene, protein, and metabolite networks are

well characterized, but the pathways involved in their inter-

action are not fully elucidated.21 Similarly, in neuroscience,

one can simultaneously measure the activity of at least one

hundred neurons,23 but when seeking to uncover synaptic

connections of a neuronal circuit through anatomical meth-

ods, only individual synapses can be deciphered. Finally,

while dyadic social interactions are relatively well under-

stood, predicting the effect of complex networks on human

behavior is an open question.20,29 Establishing reliable and

effective methods to enable the reconstruction of interaction

networks from local dynamical data may considerably

advance several fields of investigation, by empowering

researchers with refined data-driven descriptions of network

structures underlying collective phenomena.

Here, we demonstrate the use of the recently introduced

union transfer entropy (UTE)6 and event synchronization

(ES)30 to reconstruct network topologies underlying policy

diffusion as understood in political science. UTE is an

information-theoretic construct that we have recently pro-

posed to elucidate causal relationships in the US legal land-

scape, in the form of information sharing between states

toward the adoption or abrogation of a specific public health

policy. Such a measure is implemented on the individual

time series of legal activity of each state, by leveraging well-

established tools in information theory, such as entropy and

conditional mutual information.31 UTE differs from classical

transfer entropy methods32–34 that have been successfully

adapted to neuroscience,35–37 climate science,38–41 and ani-

mal collective behavior,42–45 due to its focus on slowly

evolving dynamical systems. This method could be applied

to the analysis of dynamical systems with rare and discrete

events, in the presence of multidimensional time series,

beyond the policy domain considered in this work.

ES was originally proposed to measure synchronization

and time-delay patterns between signals.30 This quantity

should be considered a measure of similarity for event time

series that takes into account varying delays and temporal

ordering. Recently, it was applied in the field of climate sci-

ence to analyze the spatial structure of temporal similarity of

extreme events at different locations. In particular, ES was

successfully employed to investigate spatio-temporal pat-

terns during the Indian summer monsoon46 and to study the

origin and propagation of extreme rainfall in South

America.47 The application of ES only requires the presence

of extreme events that could be isolated from the individual

time series, and is thereby suitable for the study of a number

of other fields, including social behavior of animal groups,

plasma, turbulence, cardiology, and brain research.45,48

Table I synoptically compares selected methods used for

network reconstruction, with emphasis on features such as

implementation on directed networks to infer causality;

applicability to discrete datasets similar to the public health

policy data that we use in this paper; and code availability

that would allow a fair comparison based on the original

implementation. Other than UTE, which was specifically

developed for discrete, slowly evolving dynamical systems,

only ES seems amenable to such an analysis, whereby its

input is a discrete binary series used to infer causality. In the

category of transfer entropy, we include recent extensions

that specifically address triplets, such as causation entropy34

and conditional transfer entropy.49 In Ref. 50, a new causal-

ity metric for datasets that do not have temporal information

attached to them was proposed and implemented on syn-

thetic and real datasets.

As a first, necessary step toward a systematic reconstruc-

tion of influences in the field of public policy, we posit a

reduced order, minimalistic model for policy diffusion. The

model is based on recent empirical observations in Ref. 56

and extends our previous work in Ref. 6, which focused on

one-out regular,57 cyclic ring-like topologies, where each

state is influenced by only one neighboring state. Here, we

seek to identify complex network topologies of causal influ-

ences. The model is motivated by so-called stochastic binary

neurons in the context of theoretical neuroscience.58

Synthetic data generated through the model are utilized

to test the accuracy of the proposed network reconstruction

techniques and offer a rigorous assessment of their potential,

prior to implementation on real data. The accuracy is evalu-

ated using a function of the receiver operating characteristic

(ROC) curve, which we propose as an objective measure to

capture the performance of network reconstruction. We

begin the analysis with principal motifs and then extend our

study to larger networks, in which individual units are

TABLE I. Select methods for network reconstruction compared on the basis of features relevant to slowly evolving discrete dynamical systems.

Method Feature Non-linear Model-free

Works with

discrete data

Directed

links

Code

availability

Treatment

of triplets

Select

references

Cross-correlation No No Yes Yes Yes No Refs. 45 and 51

Event synchronization Yes Yes Yes Yes Yes No Refs. 30 and 45

Functional clustering algorithm Yes Yes Yes No No No Ref. 52

Granger causality No No Yes Yes Yes No Ref. 53

Mutual information Yes Yes Yes No Yes No Ref. 54

Transfer entropy and recent developments Yes Yes Yes Yes Yes Yes Refs. 32, 34, 45, 49, and 55

Union transfer entropy Yes Yes Yes Yes Yes No Ref. 6
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regularly or randomly interconnected. Finally, we demon-

strate the application of our data-driven approaches to study

potential determinants of policy diffusion across US states.

Specifically, we generate two network topologies based on

competing explanations of the process of policy diffusion

(which is driven primarily by ideology or geography).7 From

synthetic data, we demonstrate the possibility of precisely

isolating each of these factors using our data-driven

approaches.

The paper is organized as follows. We first succinctly

review the data-driven measures used for network reconstruc-

tion, namely, UTE in Section II and ES in Section III. Our new

model to generate legal activity data is presented in Section

IV, grounded on our previous work in Ref. 6. Section V pro-

vides a background on the ROC analysis59 used to estimate the

performance of the applied methods. In Section VI, we present

our results for small motifs along with larger regular and ran-

dom networks. In addition, we investigate the possibility of

isolating determinant factors driving policy diffusion using ES

and UTE based on real-world examples. We conclude in

Section VII with a summary of our main results and future

work.

II. UNION TRANSFER ENTROPY FOR INFERRING
CAUSALITY

To begin, we consider independent draws of a discrete

random variable X described by a probability density func-

tion pðxÞ ¼ PrðX ¼ xÞ. The so-called Shannon entropy60 is

defined as

HX ¼ �
X

pðxÞ log pðxÞ; (1)

where the summation is over all states x of the process and

the base of the logarithm is chosen to be equal to 2, follow-

ing the standard practice in information theory, see, for

example, Ref. 31.

The mutual information of two random variables X and

Y with joint probability pXYðx; yÞ can be calculated as

MXY ¼
X

p x; yð Þlog
pXY x; yð Þ

pX xð Þ pY yð Þ
; (2)

where the notation directly follows from Eq. (1). Mutual

information is a non-directional (symmetric under the

exchange of X and Y) measure of the deviation from indepen-

dence of two random variables.

The above information-theoretic constructs can be

extended to stochastic processes. In a stationary Markov pro-

cess of order k, the conditional probability of process X
assuming state xnþ1 at time step nþ 1 is independent of its

state xn�k at time step n � k, that is, pðxnþ1jxn;…; xn�kþ1Þ
¼ pðxnþ1jxn;…; xn�kÞ. We use the shorthand notation xðkÞn

¼ ðxn;…; xn�kþ1Þ for words of length k. Given two stochastic

processes X and Y, the so-called transfer entropy32 measures

their deviation from the generalized Markov property, which

reads pðxnþ1jxðkÞn Þ ¼ pðxnþ1jxðkÞn ; yðkÞn Þ. Thus, transfer entropy

is given by

TX!Y ¼
X

p xnþ1; x
kð Þ

n ; y kð Þ
n

� �
log

p xnþ1jx kð Þ
n ; y kð Þ

n

� �

p xnþ1jx kð Þ
n

� � : (3)

This quantity can be used to measure directed influences

between two processes, that is, the degree of dependence of

process X on process Y, but not vice versa, since it is not

symmetric.

Next, we consider a networked dynamical system

composed of N distinct stochastic processes Xi with

i 2 f1;…;Ng, each taking the form of a discrete binary-

valued time series of length T, namely, xi
1;…; xi

T . With

respect to our target application in policy diffusion, each xi
n

encodes the law activity of state i on day n. Specifically, xi
n

takes value 1 if a law was implemented, repealed, or experi-

enced material change, and it is 0 otherwise. Without loss of

generality, we focus on legal activity corresponding to a spe-

cific law; the approach can be readily extended to examine

laws in different domains following Ref. 6.

We introduce the so-called union transfer entropy6 to

estimate the magnitude and direction of influences among

states from either real or simulated law activity. Union trans-

fer entropy IXj!Xi measures the directed influence that state j
has on state i, and is given by

IXj!Xi ¼
X

p xi
nþ1; x̂

i
n;s; x̂

j
n;s

� �
log

p xi
nþ1jx̂i

n;s; x̂
j
n;s

� �

p xi
nþ1jx̂i

n;s

� � ; (4)

where the summation is taken over all possible realizations

of Xi and Xj and

x̂i
n;s ¼

[n�1

r¼maxfn�s;1g
fxi

rg

������
������� 1; (5a)

x̂j
n;s ¼

[n�1

r¼maxfn�s;1g
fxj

rg

������
������� 1; (5b)

are scalar quantities which are obtained from legal activity

of states i and j. They indicate whether or not any law activ-

ity occurred in state i and state j, respectively, within a slid-

ing time sliding window of length s.

These quantities are used together with the binary ran-

dom variable associated with the law activity of state i at

time n to offer an empirical, probabilistic description of

whether or not legal activity tends to occur in one state on a

particular day with respect to any recent law activity in both

states. Specifically, we compute the following joint probabil-

ity density function

p xi
nþ1; x̂

i
n;s; x̂

j
n;s

� �
¼ 1

T

XT

n¼1

xi
nþ1x̂i

n;sx̂
j
n;s : (6)

Considering the unions of law activity x̂i
n;s and x̂j

n;s over the

previous s days allows for modeling processes with very low

event rates, where only a limited number of events occur in

the selected time window. Based on the time span required
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for states’ law activities to influence each other,6 we choose

window sizes of s 2 f2; 3; 4; 5g years.

Averaging over these window sizes guarantees an

amplification of short time delays between different states’

activities: events included in smaller time windows are auto-

matically included in larger windows as well. The data

aggregation in the window s is the main difference between

UTE and transfer entropy in Eq. (3). The possibility of con-

solidating different law domains in a single time series is

another difference between the two methods, which is how-

ever not detailed in our systematic analysis of synthetic data.

In order to incorporate these joint distributions into the

calculation of union transfer entropy, we rewrite Eq. (4) as

the difference of two conditional entropies,31 that is,

IXj!Xi ¼ H
XijX̂ i � H

XijX̂ i
;X̂

j ; (7)

whereby the two conditional entropies are computed as

H
XijX̂ i ¼ �

X
pðxi

nþ1jx̂i
n;sÞ log pðxi

nþ1jx̂i
n;sÞ; (8a)

H
XijX̂ i

;X̂
j ¼ �

X
pðxi

nþ1jx̂i
n;s; x̂

j
n;sÞ log pðxi

nþ1jx̂i
n;s; x̂

j
n;sÞ :

(8b)

These two conditional entropies can be calculated from the

empirical joint distribution in Eq. (6) by applying pertinent

marginalizations and conditional probability formulae, see,

for example, Ref. 61. The first conditional entropy in Eq.

(8a) can be interpreted as the uncertainty in the prediction of

the law activity in state i, given the union of all law activity

over a historical period in that state. The second conditional

entropy in Eq. (8b) refers to the union of historical law activ-

ity of another state.

Thus, IXj!Xi can be interpreted in the following way: if

the uncertainty of the prediction of the law activity of state i
on day n, xi

n, given the union of all recent law activity of that

state i, is reduced by conditioning on the union of all law

activity of state j, then state j is said to have influence over

state i. Therefore, the notion of union transfer entropy may be

associated with a form of predictive causality. To summarize,

IXj!Xi is directed (asymmetric under the exchange of states,

such that IXj!Xi 6¼ IXi!Xj in general). A larger value of IXj!Xi

implies that knowledge of historical law activity of state j
improves the prediction of activity of state i. A smaller value

of IXj!Xi indicates the independence of state i’s law activity

from state j’s. We remark that the proposed measure is tai-

lored to pairwise interactions, different from other measures,

such as information causality33 which afford the explicit treat-

ment of higher order interactions but may require more dense

datasets.

III. DIRECTED EVENT SYNCHRONIZATION
FOR QUANTIFYING SYNCHRONICITY

We consider two processes of length T, encapsulating

the time series of law activities for two states i and j, given

by xi
n and xj

n. Next, we define “useful” events in the form of

implementation, repeal, or experiencing a material change of

a law in state i (xi
n ¼ 1) and in state j (xj

n ¼ 1). The

corresponding event times are denoted by ti
r and tjs with r 2

f1;…;mig and s 2 f1;…;mjg, where mi and mj denote the

number of events that occur in the corresponding time series.

In the following, we count the fraction of event pairs

that match in time, such that a pair of totally identical time

series leads to a synchronicity value equal to one. By way of

example, we consider two event times ti
r and tjs, with tj

s � ti
r

and 0 � r; s � maxfmi;mjg. Since the laws enacted in differ-

ent states are rare events and their rates may change over

time, we introduce a local dynamic definition of the time

scale srs to decide the association between two events.

Specifically, we compute the dynamical delay for each event

pair (r, s) as

srs ¼ minftirþ1 � ti
r; t

i
r � ti

r�1; t
j
sþ1 � tj

s; t
j
s � tj

s�1g=2 ; (9)

that is, the minimum of the differences of pre- and post-

event times as depicted in Fig. 1. Delays are further filtered

by selecting a minimum and maximum allowable delay

ðsmin; smaxÞ between tir and tj
s. In this study, we choose smin

¼ 0 and smax ¼ 5� 365 days, in line with our assumptions

for UTE and that a year corresponds to 365 days.

The number of times an event occurs in process Xi

shortly after an event occurs in Xj can then be calculated as

cðXijXjÞ ¼
X
r;s

Srs; (10)

where

Srs ¼
1 if 0 � smin < tir � tj

s � srs � smax

1=2 if tr
i ¼ ts

j

0 otherwise:

8><
>:

Similarly, cðXjjXiÞ counts the number of times an event

occurs in Xi shortly before an event in Xj. Originally, the

symmetric and asymmetric quantities

FIG. 1. Inter-event times involved in calculating the dynamical delay for ES

between law activities of states i and j. Two events at ti
r and tj

s can be

uniquely interpreted as synchronized if their time lapse is smaller than the

dynamical delay, that is, the minimum of time lapses to preceding and suc-

ceeding events divided by two, as defined in Eq. (9).
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Q ¼ c XjjXi
� �

þ c XijXj
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi � 2ð Þ mj � 2ð Þ

p ; (11)

and

q ¼ c XjjXi
� �

� c XijXj
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi � 2Þ mj � 2ð Þ

p ; (12)

were introduced in Ref. 30 to capture the event synchroniza-

tion and event delay between the pair of time series. In par-

ticular, 0 � Q � 1, where Q¼ 1 implies that the events are

completely synchronous, and �1 � q � 1, where q¼ 1

implies that events in Xi always occur prior to those in Xj. To

facilitate the process of network reconstruction, where pair-

wise interactions between states should be compared across

the network, we define the directed event synchronization

between two time series Xi and Xj as

QXj!Xi ¼ c XjjXi
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi � 2ð Þ mj � 2ð Þ

p : (13)

For a pair of identical time series, QXj!Xi ¼ 1=2 and

QXi!Xj ¼ 1=2. For events in i that always anticipate events

in j, our measure is identical to the originally introduced

event delay in Eq. (12). By calculating directed event syn-

chronization for all pairs of states i and j, we define a matrix

QXj!Xi , from which we infer influences among states on a

slow time-scale. For low event rates, inter-event times for

synchronized events might be in the order of years and direc-

tion of influence associated with chronology of events is of

particular importance.

IV. MODELING LAW ACTIVITY

Recalling our previously introduced notation, the output

of state i is described by a binary stochastic variable

Xi
n 2 f0; 1g, which defines whether a law is implemented,

repealed, or substantively changed at time n, that is, Xi
n ¼ 1,

and we refer to it as experiencing a law event, or not, that is,

Xi
n ¼ 0. The law activity of state i is given by the time series

xi
1;…; xi

T .

In the absence of any interactions with neighboring

states, the dynamics of law adoption of a given state are fully

defined by the probability that Xi
nþ1 takes value one. This

probability is, in turn, proportional to the law event rate of

the state and is given by

PrðXi
nþ1 ¼ 1Þ ¼ Hi; (14)

where Hi is the law event rate of state i.
Interactions between states are encoded by a directed

network of N nodes i with i 2 f1;…;Ng, whose topology is

described by an adjacency matrix A. Its matrix elements are

zeros and ones to specify which states influence others and

which do not, such that

Aij ¼
1 if state j influences state i 6¼ j
0 otherwise:

�
(15)

An exemplary network along with the model mecha-

nisms involved is depicted in Fig. 2. For state i in this net-

work, Ai represents the total input and consists of

contributions Aij from all neighboring states that have

recently (since state i had the last law activity) had a law

event. The time of the last law event of state i is a crucial

quantity in our model, namely,

si
n ¼ maxf‘ � n : Xi

l ¼ 1g: (16)

To encode whether or not law activity occurred in the previ-

ous si
n days following day n, we recall the definition of the

scalar quantities from Eqs. (5a) and (5b)

FIG. 2. Network of influences among

states determines their law activity

dynamics. (a) An exemplary network

of N¼ 10 nodes and in-degree k¼ 2

for all nodes. State 9 (green) receives

incoming links from state 5 (red) and

state 2 (blue). (b) The adjacency

matrix A defined in Eq. (15) encodes

the network structure displayed in (a),

with light gray color indicating the

presence of a link. (c) Law activity of

state 2 (blue bar) and state 5 (red bar)

follows the last law event of state 9

(green bar). (d) Law events in the

neighboring states 2 and 5 (blue and

red bar in (c)) increase the law event

probability of state 9. Law activity was

generated for H ¼ 0:0005 and c¼ 1.
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x̂j
n;si

n
¼

[n�1

r¼maxfn�si
n;1g
fxj

rg

������
������� 1; (17)

that now evaluates whether law activity has happened in

state j since state i has had its last law event. We define the

input that state i receives at time step n as

Ai;n ¼
X
j 6¼i

Aijx̂
j
n;si

n
; (18)

and hypothesize that the probability that state i has a law

event at time step nþ 1 increases linearly with its input Ai;n.

Thus, the law activity of any state is mediated by both its

inherent behavior and its interactions with neighboring

states. The numbers of neighboring states that influence

state i and the number of those that are influenced by state j
are encoded by the in-degree kin

i and the out-degree kout
j ,

given by

kin
i ¼

X
j

Aij ; kout
j ¼

X
i

Aij: (19)

The degree ki of node i is defined as the sum of in- and out-

degree.

To simplify the analysis, we assume that spontaneous

enactment rates are the same for all states, that is, Hi ¼ H
for any state i. Thus, we propose the following model for the

probability of any law activity in state i at the next time step

PrðXi
nþ1 ¼ 1Þ ¼ cH

X
j 6¼i

Aijx̂
j
n;si

n
þH; (20)

where c is a scaling factor that defines the relative weight of

interactions with respect to spontaneous activity. The first

summand on the right hand side of Eq. (20) quantifies the

probability of enacting a new law exclusively through net-

work interactions, while the second summand quantifies the

probability of spontaneous law enactment. For the case of in-

degree kin
i equal to zero, the first summand is zero and the law

activity of state i is exclusively determined by the second

summand. Different values of the policy adoption frequency

H and the intensity of state-to-state diffusion c correspond to

different real-world scenarios as shown in Table II. While

the model in Eq. (20) uses a linear interaction function,

alternative selections could be contemplated to model nonli-

nearities, including saturation phenomena.62

Equation (20) for the probability of law activity defines

the whole model dynamics, since the remaining probabilities

for no law activity PrðXi
nþ1 ¼ 0Þ simply follow as PrðXi

nþ1

¼ 0Þ ¼ 1� PrðXi
nþ1 ¼ 1Þ for each state. All parameters

should be chosen such that PrðXi
nþ1 ¼ 1Þ and PrðXi

nþ1 ¼ 0Þ
are within ½0; 1�. This condition is readily fulfilled as we

study rare events in the realm of policy diffusion for which

PrðXi
nþ1 ¼ 1Þ � 1. Specifically, law activity in the public

health law domain based on real data was found to be in the

order of magnitude of PrðXi
nþ1 ¼ 1Þ � 0:0001, see Ref. 6.

V. DETECTING DETERMINANTS OF STATES’ LEGAL
ACTIVITY

To establish an understanding of both methods, ES and

UTE, we quantify the robustness of the reconstruction

through a ROC analysis.59 The ROC is a parametric curve

that quantifies relationship between the true and the false

positive links found in the corresponding binary matrices for

different thresholding, associated with the number of links in

the network. The use of ROC to quantify the accuracy of net-

work reconstruction is a contribution of this study and builds

on prior work on the assessment of leader–follower relation-

ships in coupled dynamical systems, describing the social

behavior of zebrafish.45 In order to estimate each method’s

ability to detect causal patterns of the underlying network

structures, we compute UTE and ES for each directed pair of

states i and j from Eq. (4) for the former method and Eq.

(13) for the latter. This process results in the matrices QXj!Xi

for directed synchronicity and IXj!Xi for directed causal

influences based on UTE.

Afterwards, we construct two binary matrices TUTEðzÞ
and TESðzÞ, respectively, based on the UTE and ES scores.

Here, the corresponding matrix elements take the value 1 if

they are among the fraction z of links with the highest scores

and 0 otherwise. Thus, a fraction z equal to 1 leads to the

maximum number of NðN � 1Þ ones. As the matrix A in Eq.

(20) denotes the binary connectivity matrix of the real net-

work, then the true positive rates RUTE
tpr and RES

tpr are defined

as the numbers of links in TUTEðzÞ, or TESðzÞ, respectively,

that are present in A with respect to the total number of exist-

ing links. The false positive rates RUTE
fpr and RES

fpr are the

TABLE II. Real-world scenarios that can be simulated by differentially selecting the system’s parameters of policy adoption frequency H and intensity of

state-to-state diffusion c. These associations are hypothesized on the basis of previous studies on policy diffusion.63–65

High c Low c

High H Federal incentives to adopt a set of new laws.

Policy diffusion is based on pilot experiences in leading states.

Example: Provisions of the Affordable Care Act

Federal pressure and/or incentives to adopt a set

of new laws. Due to time pressures and unique needs,

every state moves ahead more or less independently. Example:

Bioterrorism preparedness

Low H Policies that have a high start-up cost and unknown, highly targeted,

or only long-term benefits. States wait for early adopters to demonstrate

effectiveness (and political support). Leading states provide

evidence for the political/economic

or overall effectiveness of the policy, eventually stimulating diffusion.

Example: Medical marijuana laws

Policies that attend to specific local problems that occur

only rarely, or policies that face high levels of opposition.

Example: Localized disasters might trigger policy

adoption around specific risk factors that would not inform policy

development in other contexts
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fractions of links in TUTEðzÞ or TESðzÞ, respectively, which

do not match the original links. Thus, the true positive and

false negative rates for UTE can be defined as

RUTE
tpr zð Þ ¼

P
i;jT

UTE
ij zð ÞAijP

i;jAij
; (21a)

RUTE
fpr zð Þ ¼

P
i;jT

UTE
ij zð Þ 1� Aijð ÞP

i;j 1� Aijð Þ
; (21b)

and the ones for ES as

RES
tpr zð Þ ¼

P
i;j TES

ij zð ÞAijP
i;j Aij

; (22a)

RES
fpr zð Þ ¼

P
i;jT

ES
ij zð Þ 1� Aijð ÞP
i;j 1� Aijð Þ

: (22b)

This means that the true positive rates are estimates of the

probabilities for reconstructing a link that is actually present

in the real network, while the false positive rates are esti-

mates of the probabilities for reconstructing a link that is not.

Note that we have a zero denominator for either empty or

complete networks. We exclude these trivial cases from our

reconstruction. In the following, we apply this analysis to

different network structures encoded in the connectivity

matrix A.

We illustrate our analysis in the case of the directed

sample network depicted in Fig. 2 before we systematically

investigate the methods’ performance as functions of the

main model parameters H and c. Stochastic law activity is

generated based on Eq. (20) with the connectivity matrix A
chosen as shown in Fig. 2. As described above, we then

apply ES and UTE to generate weighted matrices as depicted

in Figs. 3(c) and 3(d). Through thresholding, we construct

ROC curves that correspond to different realizations of the

generated law activity. The thresholds are nonlinearly related

to the fractions of links with the highest scores z 2 ½0; 1�.
We quantitatively compare classifiers by reducing ROC

performance to a single scalar value representing the

expected performance. A common method is to calculate the

area under the ROC curve (AUC).66,67 AUC is a measure in

½0; 1� with 1 being the optimal performance and 0.5 chance.

The perfect classifier is thus the rectangular curve yielding

unit area with the top left corner denoting the perfect classifi-

cation with false positive rate equal to 0 and true positive

rate equal to 1. For matrices IXj!Xi and QXj!Xi with zero

entries only, that is, no dependence between time series

could be detected, the performance takes value 0. We esti-

mate the AUC-value by averaging over 10 different realiza-

tions, similar to the exemplary ROC curves in Fig. 3.

FIG. 3. ROC curves for (a) UTE and (b) ES applied to the exemplary network in Fig. 2(a). (a) Exemplary ROC curves for UTE associated with different real-

izations of the law activity dynamics follow from Eqs. (21a) and (21b). Each tenth data point on the red curve is marked in black; from right to left, they corre-

spond to the values z ¼ 1; 43=45; 71=90; 2=3; 4=9; 23=90; 2=15; 1=15; 1=45; and 1/90. (b) Exemplary ROC curves for ES associated with different realizations

of the law activity dynamics follow from Eqs. (22a) and (22b). Each tenth data point on the red curve is marked in black; from right to left, they correspond to

the values z ¼ 1; 17=30; 3=10; 1=5; 1=9; 1=15; 1=45; 1=45; 1=90; and 1/90. (c) Exemplary matrix IXj!Xi for directed causal influences based on UTE as defined

in Eq. (7) that leads to the curve highlighted in red in (a) via thresholding. Matrix values range from 0 (black) to 0.01 (white). (d) Exemplary matrix QXj!Xi for

directed synchronicity based on ES as defined in Eq. (13) that leads to the curve highlighted in red in (b) via thresholding. Matrix values range from 0 (black)

to 0.5 (white). Law activity was generated over a time span of 50 000 days and with parameters H ¼ 0:00005 and c¼ 20.
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We first find the maxima of matrices QXj!Xi for directed

synchronicity based on ES and IXj!Xi for directed causal influ-

ences based on UTE. For each ROC curve, we then create a

vector of 100 linearly spaced points between 0 and the corre-

sponding maximum. For each of these threshold values, we

calculate the true positive and false negative rates in Eqs. (21a)

and (21b) for UTE and in Eqs. (22a) and (22b) for ES, respec-

tively. Based on this procedure, ROC curves are generated.

Each tenth z-value is highlighted in Figs. 3(a) and 3(b). Here,

z¼ 1 corresponds to a true positive rate equal to 1 and simulta-

neously to a false positive rate equal to 1. A z-value of 0 corre-

sponds to true and false positive rates both equal to zero.

VI. RESULTS

A. Motif networks

To systematically investigate the performance of ES and

UTE, we start with motifs as depicted in Fig. 4. We generate

data for different H-values and c-values over a time of

T¼ 50 years. In the simulations, we neglect results for an ini-

tial time span of T=10 years, that is, for the first 5 years, in

order to exclude transient effects. Furthermore, we generate

10 different stochastic law activity data for each pair of

parameters, keeping the underlying network encoded in the

adjacency matrix A fixed. We then average over these real-

izations to obtain the mean AUC-value corresponding to

each ðH; cÞ pair. To generate the plots, we choose H-values

within the interval ½10�5; 10�2� and c-values within the

FIG. 4. Motif networks characterize four principal cases: (a) two states both

influence a common neighbor; (b) two states are both influenced by a com-

mon neighbor state; (c) three states influence each other in a cycle; and (d)

three states influence each other in a chain.

FIG. 5. Performance of UTE (left col-

umn) and ES (right column) for the

four motifs in Fig. 4 (top row: motif

(a); second row: motif (b); third row:

motif (c); and bottom row: motif (d)).

All AUC-values are averaged over 10

realizations. Contours highlighted in

black identify the area where our meth-

ods perform better than chance.
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interval ½0; 20�. Based on these intervals, we create vectors of

evenly spaced data values: for H, we generate a vector of 21

logarithmically spaced points and for c a vector of 21 line-

arly spaced points.

The results for the four motifs are illustrated in Fig. 5.

Therein, we show AUC-values as functions of the select con-

trol parameters, with red identifying exact reconstruction

(AUC¼ 1) and green chance (AUC¼ 0.5). Thus, AUC-

values below 0.5 characterize a performance worse than

randomly predicting original links. As expected, the perfor-

mance of both methods consistently increases with c,

whereby both methods benefit from a stronger relative weight

of the states’ interactions with respect to their spontaneous

activity. However, increasing the spontaneous activity

encoded through H has a differential role on the performance

of the two methods. While ES seems to benefit from higher

levels of legal activity, the performance of UTE is non-

monotonically related to H. Moderate values of H enhance

the efficacy of UTE in reconstructing the motif, but dense

legal activities tend to hamper network reconstruction. This is

likely related to the excessive density of the datasets, which

may mask causal relationships between the time series. In

this case, UTE fails to detect any causal relationship, leading

to a null matrix IXj!Xi . Of particular interest is the motif with

directed links (Fig. 4(d)), where non-existent links may be

generated due to conditional dependence. Our results in Fig.

5 show that this is not the case, since our methods predomi-

nantly detect pair-wise interactions. The reconstruction accu-

racy for both methods, UTE and ES, is very similar to the

one achieved for motifs (a) and (b) in Fig. 4.

These data offer empirical evidence for the possibility

of detecting complex interactions underlying US legal land-

scape using the proposed data-driven approaches.

Comparing the performance of both methods, we note that

UTE tends to be more effective than ES for very low event

rates of the order of 10�5–10�4. This is particularly evident

for the ring network (motif (c)), where UTE is successful in

detecting the underlying network structure for much smaller

values of H, confirming the effectiveness of this approach in

unraveling pairwise interactions in slowly evolving dynami-

cal systems.6 Even for faster event rates, UTE tends to be

more effective than ES across the four considered topologies,

until the event rate reaches 10�2 and the information-

theoretic approach fails to isolate causal relationships.

B. Comparing regular and random network topologies

Next, we investigate the performance of the two

approaches in the reconstruction of larger networks. To shed

light on the role of network regularity on the performance of

the methods, we examine a directed regular and two random

networks generated using the original small-world model68

adapted to directed networks.69 For this purpose, we start

with a graph of N nodes on a ring lattice. Each node is

accessed by its k nearest neighbors on the left side. To study

the impact of heterogeneity in the in-degree and out-degree

distributions as defined in Eq. (19), we introduce randomness

in two ways: first, we cut all the tails of the edges and then

rewire them randomly, keeping in-degrees kin
i constant.

Second, we reverse the direction of all the rewired edges,

obtaining constant out-degrees kout
i .

To begin, we consider the case k¼ 1 and we focus on

the exemplary networks shown in Fig. 6. For each network,

we run model simulations for H-values in the range of

½10�5; 10�2� with 21 logarithmically spaced points and for

c-values in the range of ½0; 20� with 21 linearly spaced points.

For each ðH; cÞ pair, data over a time of 50 years are gener-

ated using Eq. (20), whereby an initial time span of 5 years,

that is, 1825 days, is discarded to exclude transient effects.

The network topology given by the adjacency matrix A in

our model Eq. (20) is kept fixed, and 10 different realizations

of stochastic law activity data are generated.

Results for the two proposed methods are presented in

Fig. 7. Therein, the mean AUC-values are averages over 10

time series generated for each network. Interestingly, as long

as the in-degree remains constant for each node (upper and

middle row), neither of the two methods seems affected by

the network topology such that the event rate H and the cou-

pling c is nearly identical for the regular and randomized net-

works. This is due to the fact that the occurrence of events is

dominated by the input each state receives as evident in Eq.

(20), and the number of outgoing connections plays only a

secondary role. Keeping the out-degree constant and varying

the distribution of in-degrees instead (bottom row) improves

the performance of UTE for very low event rates of the order

of 10�5 and simultaneously for large event rates of the order

of 10�2, thus covering a larger region of successful causality

detection. On the contrary, ES displays a consistent perfor-

mance for all three cases and does not seem to be affected by

heterogeneities in in- and out-degrees.

Similar to the analysis of motifs, both UTE and ES

enable network reconstruction in a wide range of the parame-

ter space. Both methods benefit from enhancing the relative

weight of interactions, whereby the AUC-values increase

with c. For slow event rates, UTE tends to outperform ES,

leading to exact network reconstruction for event rates as

slow as 10�5. But as the event rate increases above 10�3, ES

FIG. 6. Three networks with N¼ 10

nodes: (a) a regular network; (b) a ran-

dom network with constant in-degree

kin ¼ 1; and (c) a random network

with constant out-degree kout ¼ 1.
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is capable of accurately inferring the network topology,

while UTE fails to detect network links.

Next, in order to study the impact of link density on the

methods’ performance, we consider the case of k¼ 3 and we

focus on the exemplary networks shown in Fig. 8. For each

network, we again run model simulations for a 21� 21 grid

of H-values logarithmically spaced in ½10�5; 10�2� and c-val-

ues linearly spaced in ½0; 20�. For each ðH; cÞ pair, we gener-

ate data based on Eq. (20) over a time of 50 years, discarding

an initial time of 5 years to exclude transient effects. We

generate 10 realizations of stochastic law activity data with

our model Eq. (20) while keeping the networks as depicted

in Fig. 8 fixed.

Results for UTE and ES are presented in Fig. 9 where the

mean AUC-values are averaged over 10 realizations of sto-

chastic time series data. The increased link density improves

the performance of ES, whereby we observe a narrower

parameters’ region in which network reconstruction is not fea-

sible (right column). Specifically, ES is successful in recon-

structing networks for any choice of the model parameters,

except for a small region where H and c are smaller than 10�4

and 5, respectively. In contrast, UTE performance decreases in

all three cases (left column), whereby we observe a significant

reduction in the maximal AUC-values to approximately 0.7,

accompanied by a wider region of parameter values in which

network reconstruction is not possible. However, UTE is suc-

cessful in reconstructing network topologies for small values

of H and c, in contrast with ES.70

These findings suggest that UTE should be preferred for

slow event rates, which do not lead to sufficiently dense

datasets to enable the applicability of ES. However, UTE is

computationally more challenging to implement and suffers

from increased link densities, which instead seem to benefit

the feasibility of ES.

FIG. 7. AUC scores of UTE and ES for

the networks depicted in Fig. 6 as func-

tions of the parameters H and c: a ring

network (upper row) and randomized

networks with constant in-degree (mid-

dle row) and out-degree (bottom row).

All AUC-values are averaged over 10

realizations. Contours highlighted in

black identify the area where our meth-

ods perform better than chance.

FIG. 8. Three networks with N¼ 10

nodes: (a) a regular network; (b) a ran-

dom network with constant in-degree

kin ¼ 3; and a random network with

constant out-degree kout ¼ 3.
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C. Complex networks based on real-world features

To demonstrate the potential of UTE and ES in under-

standing policy diffusion, we test them on synthetic data

associated with the US state policy landscape. Specifically,

we seek to demonstrate the potential of our data-driven

approaches to help explain the political underpinning of pol-

icy diffusion, by pinpointing competing factors as the basis

of states’ interactions. By applying ES and UTE to synthetic

law activity data, we test the ability of detecting two differ-

ent mechanisms, geography and ideology, which have been

proposed as important determinants of the policy diffusion

process in Refs. 6 and 7. We utilize these mechanisms to

construct undirected network topologies for the 50 US states

and then utilize an innovativeness index12 to introduce direc-

tionality. Finally, we generate law activity data through our

model, by using the underlying connectivity matrices encod-

ing geography- or ideology-based interactions.

With respect to geography, we generate an undirected

unweighted topology by connecting each pair of states if

they share a common border. Thus, Alaska and Hawaii are

decoupled from the network of continental US states.

Influences among states are directed from the state with a

higher legislative innovativeness index to the state with the

lower one. The innovativeness index of each state is com-

puted as an average over the years 1980–2010.12

With respect to ideology, our approach is motivated by

the so-called Axelrod model:71 a social influence model for

the dissemination of culture; each culture (in our case each

state) is characterized by certain features. Toward modeling

the process of diffusion of innovations,72 Axelrod puts for-

ward the notion of homophily, where cultures/states interact

preferentially with similar ones. In other words, the transfer of

ideas occurs most frequently between two cultures which are

alike. Thus, we propose that states which are similar in politi-

cal ideology, that is, more liberal or more conservative, are

connected. To this aim, we calculate the total difference

between the political ideologies of state pairs over the years

1980–2010, based on the average ideological position of those

states’ elected officials, including the governor and the major

party delegations in each house of the state’s legislative

bodies.73

Then, we use a simple Euclidean metric to construct a

weighted connectivity matrix whose generic ij entry is

1

1þ
ffiffiffiffiffiffi
D2

ij

q ; (23)

where Dij is the difference in ideology between states i and j.
From Eq. (23), we assemble a directed binary matrix by

using thresholding as we have done for ROC curves (see for

example, Ref. 74) and the innovativeness index, similar to

the geography-based network. For the ideology feature, the

threshold for the network is chosen to be 0.985 in order to

have the same number of edges (107) for the networks based

on geography and ideology as shown in Fig. 10.

FIG. 9. AUC scores of UTE and ES for

the networks depicted in Fig. 8 as func-

tions of the parameters H and c: a ring

network (upper row) and randomized

networks with constant in-degree (mid-

dle row) and out-degree (bottom row).

All AUC-values are averaged over 10

realizations. Contours highlighted in

black identify the area where our meth-

ods perform better than chance.
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In order to exemplify the two methods’ ability to detect

underlying network structures based on real-world features,

we perform our simulations for H-values within the interval

½10�5; 10�2� with 11 evenly, logarithmically spaced data val-

ues and c-values within the interval ½0; 30� with 11 evenly,

linearly spaced data values. While keeping both connectivity

matrices AIdeo and AGeo fixed, we generate 10 realizations

over 1980� 2010.

Results are depicted in Fig. 11. Although the time span

of 31 years is considerably shorter and the in-degree and out-

degree distributions are much more heterogeneous in com-

parison to the exemplary networks considered in Figs. 6 and

8, both methods are able to adequately detect causal influen-

ces in a wide range of the parameter space. While UTE out-

performs ES for low values H and c, smaller than 10�4 and

10, respectively, and succeeds in reconstructing network

topologies in a wider range of parameters, ES consistently

surpasses UTE for event rates larger than 10�4 reaching con-

siderably high AUC-scores, as large as approximately 0.8.

These findings are in line with expectations from simula-

tions on motifs and smaller networks. Based on Table II, our

results suggest that ES does not perform well for the study of

networks of influences associated with policies that occur

very slowly (such as laws with extensive opposition where

changes may take decades) or those that do not involve com-

parison with other states (such as those passed in reaction to

very specific local needs). In contrast, UTE may be challenged

by policies involving Federal mandates or incentives, which

may mask information flow between states.

In order to demonstrate the possibility of analyzing real

data, we apply the methods on a dataset consisting of law

enactment data for 27 different laws in the health policy

domain related to general driving regulations in all of 50 US

states over a period of 31 years (1980–2010). Details on the

dataset can be found in Ref. 6; each state is represented by a

binary-valued discrete time-series with a resolution of a day,

where 1 represents if any of the 27 laws is implemented,

repealed, or substantively changed, and 0 indicates no activity.

Inferred networks using UTE and ES methods are shown

in Fig. 12. The thresholds for each method were selected on

the basis of achieving the same number of links as in the pro-

posed networks for the 50 US states based on geography and

ideology. The UTE based network consists of 107 links for a

threshold of 0.0012, and the ES based network consists of

111 links for a threshold of 0.4330.

FIG. 10. Proposed networks for the 50 US states based on (a) geography and

(b) ideology. The nodes represent the US states. AK and HI are omitted for

clarity; in the geography-based network, AK and HI are isolated nodes,

while in the ideology-based network, AK has seven incoming edges from

CO, DE, GA, IN, LA, MO, and NV; and one outgoing edge to WY; and HI

has one outgoing edge only to MA.

FIG. 11. AUC-scores of UTE (left col-

umn) and ES (right column) for the net-

works depicted in Fig. 10 as functions

of the parameters H and c. Networks

for the 50 US states based on ideology

(upper row) and based on geography

(bottom row). All AUC-values are

averaged over 10 realizations. Contours

highlighted in black identify the area

where our methods perform better than

chance.
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The two approaches offer a rather different perspective

on what are the determining relationships underlying policy

diffusion over the real dataset. Such a difference could be

ascribed to the varying performance of the two methods with

respect to adoption frequency and intensity of state-to-state

diffusion shown in Section VI. As a result, it is difficult to

rely on a specific method against the other. Future work

should seek to establish objective techniques to integrate pre-

dictions from different methods and precisely quantify the

possibility of false positives.

Without such techniques, we should rely on links

(highlighted in Fig. 12) which are common to the two net-

works: one link from OK to MD, one from MD to MN, one

from PA to ND, one from TN to VT, and one from MA to WV.

These links reflect the directionality of policy diffusion related

to regulating safer driving and provide a different perspective

from analyses in other disciplines that may point to a single

explanation for policy change (such as the state’s political cul-

ture, or its burden of traffic accidents). They are likely to reflect

the increasingly interconnected world of policy learning, which

has been facilitated in recent years by national organizations

that bring together health and safety officials from different

states and increasingly robust community of advocates who

work to disseminate information on best practices.

VII. CONCLUSIONS

The process of interstate policy diffusion in the US has

been studied for decades, and US states have expanded the

use of public policies (defined as laws, regulations, taxes,

and associated enforcement mechanisms) to enhance preven-

tion and facilitate complex behaviors.13 Public policies are

powerful public health tools, yet many aspects of their adop-

tion and diffusion are not well understood. In spite of grow-

ing evidence for the effectiveness of numerous individual

laws, a number of important questions remain unanswered

about how to accelerate adoption of policies that have been

found to be effective.

In this study, we introduce a novel reduced order, mini-

malistic model for policy diffusion. The model is based on

recent empirical observations in Ref. 56 and extends our pre-

vious work in Ref. 6. Our model is a first step toward system-

atic inferences of influences in public policy. Synthetic data

generated through the model were utilized to test the accu-

racy of two network reconstruction techniques. We com-

pared the performance of UTE, recently proposed by our

group in Ref. 6 to study sparse and heterogeneous datasets

from law enactment and ES, originally introduced to mea-

sure synchronization and time-delay patterns between sig-

nals30 and later adapted to network reconstruction across a

number of fields.48 We analyzed principal motifs and then

extended the scope to larger networks, in which individual

units are regularly or randomly interconnected. Finally, we

demonstrated our data-driven approaches to study potential

determinants of policy diffusion in the US legal landscape.

We showed that both methods, UTE and ES, are success-

ful in accurately reconstructing network topologies for a wide

range of model parameters, spanning policies that rapidly

spread across states with little state-to-state learning, those

that emulate successful state pilot experiences, and those that

fall in between these two extremes. We systematically investi-

gated the performance of UTE and ES as functions of two

parameters, H and c, encapsulating the state’s law enactment

rate and the coupling between states, respectively. Both meth-

ods benefit from enhancing the relative weight of the interac-

tions, which reduces the possibility of law enactment from

spontaneous activity rather than coupling between states.

We found that UTE outperforms ES for slow event rates

and weak interactions between states, leading to exact net-

work reconstruction. However, ES was successful in inferring

the network topology for a wider range of parameters includ-

ing cases where UTE fails. We also found that the perfor-

mance of ES is largely independent of the network topology,

while UTE suffered from increasing link density and hetero-

geneous in-degree distributions. While we have focused on

regular and random network topologies, future efforts should

consider continuous interpolations between these topological

extremes by varying the rewiring probability.68,75 When

implemented on realistic networks constructed from ideol-

ogy, geography, and innovativeness, we showed that both

methods are similarly effective in isolating potential determi-

nants that drive policy diffusion.

Overall, these findings suggest that the two methods

could be synergistically integrated to unravel networks of

influences for a wide range of model parameters, whereby our

simulations did not hint at any selection of model parameters

where both the methods fail. While policies that occur very

slowly (such as laws with extensive opposition where changes

may take decades) or those that do not involve comparison

FIG. 12. Proposed networks for the 50 US states based on UTE (a) and ES (b).

Links that are common between the two networks are highlighted in black.

Alaska and Hawaii are not explicitly indicated on the map.
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with other states (such as those passed in reaction to very spe-

cific local needs) may be better tackled using UTE, ES should

be preferred for policies involving Federal mandates or incen-

tives. Through the integration of dynamical systems, informa-

tion theory, and complex networks, this study contributes new

tools toward an improved understanding of complex interac-

tions within groups of interconnected units (state govern-

ments) that are responsible for an emergent phenomenon

(state health policy landscape).
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