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RESEARCH ARTICLE
10.1002/2013JC009622

Hindcasts of potential harmful algal bloom transport pathways
on the Pacific Northwest coast
S. N. Giddings1,2, P. MacCready1, B. M. Hickey1, N. S. Banas3, K. A. Davis4, S. A. Siedlecki3,
V. L. Trainer5, R. M. Kudela6, N. A. Pelland1, and T. P. Connolly1

1School of Oceanography, University of Washington, Seattle, Washington, USA, 2Now at Scripps Institution of
Oceanography, UC San Diego, La Jolla, California, USA, 3Joint Institute for the Study of the Atmosphere and Ocean,
Seattle, Washington, USA, 4Department of Civil & Environmental Engineering, UC Irvine, Irvine, California, USA, 5NOAA
Northwest Fisheries Science Center, Seattle, Washington, USA, 6Department of Ocean Sciences, UC Santa Cruz, Santa Cruz,
California, USA

Abstract Harmful algal blooms (HABs) pose a significant threat to human and marine organism health,
and negatively impact coastal economies around the world. An improved understanding of HAB formation
and transport is required to improve forecasting skill. A realistic numerical simulation of the US Pacific
Northwest region is used to investigate transport pathways from known HAB formation hot spots, specifi-
cally for Pseudo-nitzschia (Pn), to the coast. We show that transport pathways are seasonal, with transport to
the Washington (WA) coast from a northern source (the Juan de Fuca Eddy) during the summer/fall upwell-
ing season and from a southern source (Heceta Bank) during the winter/early spring due to the predomi-
nant wind-driven currents. Interannual variability in transport from the northern source is related to the
degree of wind intermittency with more transport during years with more frequent relaxation/downwelling
events. The Columbia River plume acts to mitigate transport to the coast as the plume front blocks onshore
transport. The plume’s influence on alongshore transport is variable although critical in aiding transport
from the southern source to the WA coast via plume entrainment. Overall transport from our simulations
captures most observed Pn HAB beach events from 2004 to 2007 (characterized by Pseudo-nitzschia cell
abundance); however, numerous false positives occur. We show that incorporating phytoplankton biomass
results from a coupled biogeochemical model reduces the number of false positives significantly and thus
improves our Pn HAB predictions.

1. Introduction

Harmful algal blooms (HABs) pose a significant and increasing threat to human and marine organism health,
and negatively impact coastal economies around the world [Anderson et al., 2012]. Certain species of the
genus Pseudo-nitzschia (Pn) are prominent on the US Pacific Northwest (PNW) coast and capable of produc-
ing the toxin domoic acid (DA). Although Pn and DA are found worldwide, they have been most detrimental
in upwelling systems [Trainer et al., 2012], systems that are susceptible to a variety of HAB species due to
their overall high nutrients and high productivity [Trainer et al., 2010; Pitcher et al., 2010]. DA can be trans-
ferred through the food web to filter-feeding shellfish, which, when ingested by humans, can lead to
amnesiac shellfish poisoning. DA toxicity, resulting in long-lasting effects and deaths, has been reported in
humans and several species of seabirds and marine mammals [e.g., Bejarano et al., 2008]. Implementation of
monitoring programs and warning systems has decreased the impact on human health, yet HABs continue
to cause environmental damage and economic losses. Conservative closures of harvesting have resulted in
significant revenue loss for shellfish and planktivorous fish industries [Trainer et al., 2012; Dyson and Huppert,
2010]. Thus, an improved understanding of HAB formation (including Pn growth and DA production), bloom
progression, and physical transport is required to better predict, understand, and mitigate events.

To date, various factors have been implicated in Pn HAB formation and DA production and in fact, toxin pro-
duction may depend on the geographic region [Trainer et al., 2012; Kudela et al., 2010]. Multiple studies
have shown the importance of nutrient input and physical retention to the creation and maintenance of
coastal blooms [e.g., Schnetzer et al., 2007; Trainer et al., 2000; Pitcher et al., 2010], yet bloom timing,
strength, and toxicity remain difficult to predict. Some of the newest, most promising methods for HAB
management include improved detection/monitoring of cells and modeling; including conceptual,
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empirical, and numerical models [Anderson et al., 2012]. The future of HAB forecasting likely lies in the com-
bined efforts of in situ monitoring linked efficiently with sophisticated data assimilative models along with
clear information dissemination [Jochens et al., 2010; Franks, 1997].

In the PNW, there are two known hot spots for Pn HAB formation: the Juan de Fuca Eddy, which forms
above the Juan de Fuca Canyon at the western entrance to the Juan de Fuca Strait [Hickey and Banas, 2003;
Trainer et al., 2002, 2009; MacFadyen et al., 2008], and Heceta Bank [Hickey and Banas, 2003; Trainer et al.,
2001; Hickey et al., 2013] (Figure 1). Although the complete mechanism initiating toxin production is not
fully characterized, both of these regions exhibit at least two features that are commonly associated with
algal blooms: high nutrient supplies and retentive circulation [Marchetti et al., 2004; Trainer et al., 2009].
Transport from both of these Pn HAB hot spots to the coast is driven by the surface currents, which in the
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Figure 1. Model domain overlain with moorings (circles), repeat CTD stations (dots), NOAA tide gauges (triangles, numbers correspond to Table 1), and NDBC buoys (squares). Note that
the NDBC buoys are colocated with tide gauges 2 and 6. Tick marks on the axes indicate every other grid point in the domain. Bathymetry contours are at 30, 50, 100, 180, 500, 1000,
2000, 3000, and 4000 m depth. Boxes indicate particle release locations and the Long Beach landing location is labeled stretching from just north of the CR mouth to the southern
entrance of Willapa Bay. (b) Cross sections at 47�N showing the vertical grid over the entire domain and (c) zoomed in over the shelf. The shelf section (Figure 1c) includes the raw
bathymetry (thick black), the smoothed bathymetry (thick gray), the vertical grid spacing on sigma levels (light gray), and a line delineating 10 m from the boundary as an approximation
to the upper and lower boundary layers (thin gray). (d) River flow from the two largest rivers and (e) 8 day weighted winds over the full 4 year simulation period computed as described
in section 4.1. Winds are rotated into alongshore (black) and cross-shore (gray) principal components where >0 is downwelling favorable and onshore winds, respectively. Vertical bands
in Figures 1d and 1e indicate time periods of other measurements shown in this manuscript indicated by the figure number.
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PNW are dominated by elements of the California Current System (CCS) and local upwelling/downwelling
winds.

In the CCS, near-surface southward seasonal mean transport is present over the mid to outer shelf in
summer, and northward flow is present in fall and winter. Currents over the shelf and slope are dominated
by the effects of local and remote wind stress, tides, and freshwater input. In the PNW, local winds are sea-
sonal: northward during the winter months, southward during the summer/fall months with the northward
winds being stronger and the southward winds weaker compared to those further south in the CCS [Hickey,
1979, 1989; Hickey and Banas, 2008]. Northward winds are downwelling favorable driving northward and
onshore near-surface currents over the shelf (the latter due to Ekman transport). Southward winds are
upwelling favorable driving southward and offshore near-surface currents over the shelf. Upwelling favor-
able winds drive coastal upwelling, which brings deep (cold, salty, nutrient rich, and oxygen poor) water
near the surface at the coast. The transition to upwelling typically occurs during spring (the ‘‘spring transi-
tion’’); however, the exact timing varies from year to year [Huyer et al., 1979; Holt and Mantua, 2009]. At
depth, over the slope during the upwelling season, the California Undercurrent (CUC) flows northward pro-
viding the source waters for upwelling [Hickey, 1979; Connolly and Hickey, 2014]. During winter, the CUC is
replaced by the northward Davidson current, which extends to the water surface. Other important physical
processes in the PNW include coastal-trapped waves [Battisti and Hickey, 1984] and freshwater plumes
[Hickey et al., 2009]. All of these processes are important in determining the formation and fate of HABs.

At least one clear transport pathway from the Juan de Fuca Eddy region to the coast has been described by
MacFadyen and Hickey [2010] and MacFadyen et al. [2005] and is driven by the local surface currents: upwell-
ing winds allow escape from the Eddy, subsequent downwelling winds bring particles to the coast.
Although this particular transport mechanism has been well documented, it cannot account for all of the
observed coastal Pn HAB events. Thus, other mechanisms must exist such as transport from a southern
source, Heceta Bank, as shown by Hickey et al. [2013].

Freshwater plumes in the PNW have been suggested as an influence on transport pathways to the coast
[Thomson et al., 1989; Hickey et al., 2009] and a potential influence on HAB transport from hot spots [Hickey
et al., 2005]. The Columbia River (CR) plume is often bidirectional with plume water present north of the
river mouth along the Washington (WA) coast and south of the river mouth offshore of the Oregon (OR)
coast [Hickey et al., 2005, 2009; Burla et al., 2010; Liu et al., 2009a]. Furthermore, a significantly diluted fresh-
water plume from the Juan de Fuca Strait influences the Eddy region and interacts with the CR plume
[Hickey et al., 2009]. Previous studies in the vicinity of the CR plume have suggested that the plume acts as a
barrier to onshore and alongshore transport [Hickey et al., 2005; Banas et al., 2009a]. It is unknown whether
the plume has a similar barrier effect on particles transiting from these hot spots on seasonal and interan-
nual time scales. Additionally, observations in 2002 found onshore transport of Pn within low salinity CR
plume water during storms suggesting the potential importance of plume entrainment [Adams et al., 2006].

As part of the PNWTOX (PNW TOXins) project working to improve our understanding of HABs in the PNW,
here we use numerical simulations to predict transport pathways for Pn HABs in the PNW from two known
source regions, the Juan de Fuca Eddy and Heceta Bank, to the coast. Our results are directed towards Pn
specifically; however, the transport pathways apply more generally to any HAB species or even other near-
surface particles originating from the chosen hot spots. In section 2, we describe the methods, which
include realistic hindcast numerical simulations and particle tracking. In section 3, we discuss transport
pathways from these known source regions in comparison with beach-based observations of Pn cell counts
(section 3.1) and specifically address the influence of the CR plume (section 3.2). In the discussion (section
4), we propose a wind-intermittency index to describe the northern source transport pathway (section 4.1)
and we employ a coupled biogeochemical model to improve Pn HAB predictability (section 4.2). Our find-
ings are summarized in section 5. We find that transport pathways to the WA coast are seasonal, originating
from the northern Juan de Fuca Eddy during the late spring, fall, and summer and from the southern Heceta
Bank during the winter and early spring due to the seasonal large-scale upwelling/downwelling conditions.
Transport from the Eddy requires wind relaxations and thus years with more frequent relaxations/downwel-
ling during the upwelling season have more transport pathways to the coast. Overall the CR plume acts to
block onshore transport, thus mitigating HAB beach events. In the alongshore direction, the CR influence is
variable, sometimes blocking alongshore transport, sometimes enhancing alongshore transport. The latter
is particularly important in transport from a southern source when entrainment allows for enhanced
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alongshore transport. Overall, results are consistent with observed Pn HAB beach events and incorporating
a biogeochemical model reduces false positives.

2. Methods

The results presented here utilize realistic hindcast numerical simulations and particle tracking experiments
for 4 years, 2004–2007. After describing our numerical methods, we describe the model validation with an
extensive suite of in situ observations.

2.1. Numerical Simulations
The numerical simulations of the PNW region are built with a framework developed by the University of
Washington Coastal Modeling Group (UWCMG) [MacCready et al., 2009; Liu et al., 2009a, 2009b; Banas et al.,
2009a, 2009b; Sutherland et al., 2011]. This modeling framework employs the Regional Ocean Modeling Sys-
tem (ROMS) [Shchepetkin and McWilliams, 2005], a free surface, hydrostatic, primitive equation model. The
models are forced with realistic atmospheric forcing, tides, river flow, and boundary conditions to conduct
hindcast simulations of the hydrodynamic conditions throughout the domain. The model domain and forc-
ing described here (the ‘‘Cascadia’’ model) are similar to the Modeling of the Salish Sea (MoSSea) simula-
tions [Sutherland et al., 2011]; however, resolution is focused on the coast rather than the inland waters and
the domain extends farther offshore and farther south.

The Cascadia domain encompasses the inland waters of the Salish Sea (which includes Puget Sound, the
Strait of Georgia, and the Juan de Fuca Strait) and the coastal ocean and estuaries of WA, OR, and Vancou-
ver Island (VI), British Columbia (see Figure 1). The horizontal resolution ranges from 1.5 km at the coast to
4.5 km far offshore. The model has 40 S-coordinate layers with stretching parameters chosen to enhance
resolution near the bed and in the upper water column (hs 5 4, hb 5 0.8, hc 5 0, Figures 1b and 1c). Grids
with higher resolution performed comparably. The final simulations were run with the addition of a biogeo-
chemical model (NPZDO) (see Davis et al., manuscript in preparation, 2014; Siedlecki et al., manuscript in
preparation, 2014), five passive tracers, and diagnostics. Additional simulation details including forcing fields
and boundary conditions are described in Appendix A. Figures 1d and 1e include the river flow and winds
over the full 4 years of simulation for reference. Example snapshots of simulated surface salinity and tem-
perature during the upwelling season are shown in Figure 2.

2.2. Particle Tracking
We employ a previously described particle tracking code [Banas et al., 2009b] that includes the option to
surface trap particles (representing a buoyant particle) or to allow vertical excursions. Particles with vertical
motion include advection due to the 3-D current field plus vertical mixing parameterized by a random dis-
placement model [North et al., 2008; Visser, 1997].

Particles are released at the surface from the known regions of Pn HAB formation, the northern Juan de
Fuca Eddy and the southern Heceta Bank sources, in a box of 31 3 31 particles spaced 2 km apart (Figure 1)
and then tracked for 30 days. This ‘‘experiment’’ is repeated every 2 days. Both 2-D and 3-D particle tracking
were tested and compared. Additionally, the number of particles, frequency of particle release, particle
spacing, and length of tracking period were tested to ensure repeatability. From our numerous tests, we
concluded that surface trapped particles released at intervals <5 days and spaced <10 km apart sufficiently
resolve the synoptic variability and necessary spatial scales of interest. Live Pn cells are slightly positivity
buoyant thus corroborating the use of surface-trapped particles. Finally, for most results in this paper, we
use the first 15 days of particle tracking to approximate the lifetime of a PNW Pn bloom (2–3 weeks) [Trainer
and Suddleson, 2005] and to encompass longer than twice the event time scale in the region (�3–5 days)
[Hickey, 1979]. Example particle tracks are shown in Figure 2a during a 14 day period of upwelling followed
by downwelling favorable winds (see Figure 2c).

2.3. Model Validation
The UWCMG has run several Cascadia models at different grid resolutions and completed extensive param-
eter testing and model validation. Here we present validation of the final Cascadia grid utilizing in situ
hydrodynamic observations, satellite data, and glider data including time series as well as validation of
important regional features. There are numerous features and processes that are important to the formation
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and transport of algal blooms in the PNW. Of particular interest are coastal-trapped waves, the regional
upwelling, the CR plume, the aforementioned retentive circulation hot spots, and the CUC. Overall, our
model exhibits high skill and successfully reproduces these important features of PNW coastal
oceanography.

2.3.1. Overall Model Skill
Model currents, salinity, and temperature are validated using an extensive array of observations (see Figure 1
and more details in Appendix A). Mooring records were provided from the Ecology and Oceanography of
Harmful Algal Blooms—Pacific NorthWest (ECOHAB-PNW) and River Influences on Shelf Ecosystems (RISE)
projects (May–September 2004–2007) as well as the Canadian Institute of Ocean Sciences (IOS) (year-round).
Moorings had acoustic Doppler current profilers (ADCPs) and conductivity, temperature, depth sensors
(CTDs), or temperature sensors at varying depths. NOAA tide gauges (http://tidesandcurrents.noaa.gov/)
were used to validate sea surface height. Finally, CTD casts throughout the domain were used to test the
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Figure 2. Model surface fields and particle tracks during upwelling season. Simulation snapshots of (a) sea surface salinity and (b) tempera-
ture on 26 September 2005 (red line in Figure 2c) are shown in the top plots. Particle tracks included in Figure 2a show 7% of the total par-
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low).
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vertical distribution of temperature and salinity. These included casts from the spatially comprehensive
ECOHAB-PNW [MacFadyen et al., 2008] and RISE [Hickey et al., 2010] projects as well as the Puget Sound
Regional Synthesis Model (PRISM), Washington State Department of Ecology, the Joint Effort to Monitor the
Strait (JEMS), and IOS totaling over 7000 CTD casts from 2004 to 2007. Note that casts span the entire year,
although the majority of the open coast casts were taken during the upwelling season.

We utilized three different model skill metrics to assess the simulation performance and test different model
setups: the Skill Score (SS) [Murphy, 1988], Willmott Skill Score (WS) [Willmott, 1982], and correlation coeffi-
cient (r), discussed in more depth in Liu et al. [2009b], Sutherland et al. [2011], and Appendix A. Skill analyses
of various model setups are described in Appendix A, while WSs for the final simulations during 2005 are
shown in Table 1. WSs are computed on the minor and major velocity components defined by principal
axes analysis as well as on the hourly and subtidal (Godin low pass filter) [Emery and Thomson, 2004] time
series using all available observational data. Average WSs are strong (Table 1, 1 indicates perfect agreement,
0 complete disagreement), particularly for the major principal axes velocity component and temperature.
Salinity agreement is weaker because of a salinity bias that is inherited from the NCOM boundary conditions
[Liu et al., 2009b; Sutherland et al., 2011]. WSs are lowest (worst) beyond the shelf break (A1 and EH3) and
highest (best) on the shelf (EH2, EH4, RN, RC, and RS). Overall WSs for the salinity and temperature from all
of the 2264 CTD casts in 2005 (see Figure 1) are high (�0.92, Table 1a, far right-hand column) as are WSs for
sea surface elevation (Table 1b). Additional details on Table 1 are given in Appendix A.

Because the data are unevenly sampled in time and space, these average WSs may obscure or bias some
processes. For example, fewer winter data means these WSs are biased toward summertime upwelling proc-
esses. Thus, we have also examined SS, WS, r, and comparison plots over time and space separately (not all
included here) and observe consistent model skill. For example, the model captures both the tidal and
event-scale variability (see Figures 3 and 4) as well as the vertical structure of velocity, salinity, and tempera-
ture (see the right-hand columns of Figures 3 and 4). Additionally, event scale and seasonal variation in the
velocity, salinity, and temperature indicate the model is successfully reproducing coastal-trapped waves,
coastal upwelling, and CR plume movements as described below.

2.3.2. Coastal-Trapped Waves
Coastal-trapped waves (CTWs) propagate up the OR and WA coastline primarily as a result of wind forcing
off northern CA [Battisti and Hickey, 1984]. These waves directly influence the velocity structure over the
shelf, including the surface velocity, as they drive strong (�0.15 m s21) quasi-barotropic velocity fluctua-
tions on time periods of 5–10 days [Battisti and Hickey, 1984]. Additionally, they influence the alongshore
pressure gradient over the slope and thus the CUC [Connolly et al., 2014]. The event-scale variability in
velocity structure over the midshelf mooring, RS (Figure 4), shows that our model is properly propagating
CTWs from the boundaries. Figure 4 includes the subtidal along-stream velocity both at the surface and at
30 m depth where the signature of the CTWs will dominate the variance. Despite their dominance at depth,

Table 1. Final Model Willmott Scoresa

a A1 J2C EH1 EH3 EH2 EH4 RN RC RS RR Average Casts

Uminor 0.38 0.36 0.69 0.7 0.6 0.6 0.54 0.63 0.51 0.58
Umajor 0.58 0.71 0.94 0.81 0.85 0.8 0.66 0.73 0.84 0.77
S 0.24 0.65 0.56 0.88 0.63 0.84 0.79 0.86 0.52 0.66 0.92
T 0.49 0.56 0.6 0.88 0.9 0.87 0.85 0.89 0.91 0.77 0.97
<Umin> 0.37 0.51 0.63 0.45 0.56 0.52 0.46 0.59 0.51 0.51
<Umaj> 0.58 0.79 0.83 0.77 0.93 0.89 0.74 0.75 0.87 0.79
<S> 0.24 0.65 0.57 0.9 0.62 0.88 0.85 0.9 0.54 0.68
<T> 0.48 0.55 0.6 0.92 0.91 0.9 0.88 0.93 0.92 0.79

b Charleston 1 So. Beach 2 Garibaldi 3 Astoria 4 La Push 5 Neah Bay 6 Port Ang. 7 Port Town 8 Friday Har. 9 Cherry Pt. 10 Seattle 11 Tacoma 12 Average

g 0.95 0.97 0.99 0.96 0.99 0.99 0.98 0.96 0.98 0.98 0.93 0.93 0.97
<g> 0.82 0.89 0.85 0.94 0.92 0.92 0.91 0.86 0.84 0.86 0.85 0.83 0.87

aWillmott skill scores (WS) for the final Cascadia medium resolution model for 2005 (initialized with results from the end of the 2004 simulation). The various mooring locations and
NOAA water level gauges are marked in Figure 1. (a) WS are included for the minor and major principal axes velocity components (determined from the subtidal time series), salinity,
and temperature for the hourly and subtidal (with brackets,<>) time series over all time and depths that the observations exist. WS for all of the CTD casts combined are in the last
column of a. b) Both hourly and subtidal water level is compared over the full year from NOAA gauges. Gauges are listed from south to north along the coast followed by increasing
distance into the Salish Sea. Port Angeles and Port Townsend are in the Juan de Fuca Strait, Friday Harbor and Cherry Point are in the Strait of Georgia, and Seattle and Tacoma are in
Puget Sound. See the associated locations by number in Figure 2.
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CTWs play an important role in the surface velocity fields, which impact HAB transport, as seen in the strong
correspondence between Figures 4a and 4b.

2.3.3. Coastal Upwelling/Downwelling
Satellite images are used to compare mean monthly sea-surface temperature (SST) with our simulations
during 2005. Satellite data are from MODIS Aqua (version R2012.0), provided by the NASA Ocean Biology
Processing Group. The 4 km daily global imagery was subset to the US west coast (25–50�N, 110–135�W)
prior to cloud-clearing and temporal binning. The daily imagery for each year was processed using DINEOF
version 2.2 [Beckers and Rixen, 2003]. The reconstructed data were then subset to the PNW region and tem-
porally binned to monthly averages using an arithmetic mean. Figure 5 presents monthly means of SST
from the satellite and simulations every 3 months beginning in February 2005.

Seasonal sea surface warming is well captured ranging from �8�C in January to �18�C in August. The coastal
upwelling signal of nearshore cold water begins in June and reaches a maximum in August, disappearing in
November. Enhanced upwelling just south of Quillayute Point and over Heceta Bank is captured in the simula-
tions, although the WA shelf upwelled water is slightly too cold (�0.5–1�C, see Figures 5c and 5g). The surface
currents (Figures 3a and 4a) and sea surface height (not shown) show the clear upwelling/downwelling sea-
sonal patterns, with flow toward the north and high sea level at the coast during the winter downwelling
months switching to flow toward the south and low coastal sea level during upwelling months.

2.3.4. Columbia River Plume
Signatures of the CR plume presence can be seen in many of the data sets, confirming that our model repre-
sents the salinity, temperature, and variability of the plume structure. Nearshore, the CR plume is seen during
the winter months as a slightly colder signal north of the CR mouth (see Figures 5a and 5e) to a warmer than
background signal in May both north and south of the mouth (see Figures 5b and 5f). During periods of
downwelling favorable winds, the plume hugs the Washington coast and is observed at moorings north of
the CR mouth. For example, near day 140 in Figure 3, strong downwelling winds lead to northern near-
surface flow (Figure 3a) followed by a sharp decrease in salinity (Figure 3b) as the plume passes over the EH2
mooring. During upwelling favorable winds, the plume moves offshore and southward (e.g., Figure 2a), result-
ing in decreased salinities south of the CR mouth such as seen near day 160 at the RS mooring (Figure 4b).
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Figure 3. Modeled and observed near-surface subtidal velocity, salinity, and temperature at EH2. (left) Subtidal time series near the water surface and (right) residual mean profiles over
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2.3.5. Regional Pn HAB Hot Spots
2.3.5.1. Juan De Fuca Eddy
The Juan de Fuca Eddy, a semiretentive feature near the mouth of Juan de Fuca Strait [Tully, 1941; Denman
and Freeland, 1985], plays a large role in Pn HAB formation and transport [Trainer et al., 2002, 2009; Hickey
and Banas, 2003; MacFadyen et al., 2005, 2008]. This cyclonic, cold-core eddy persists throughout much of
the summer and fall. Unfortunately, the cold signal of the Juan de Fuca Eddy and Juan de Fuca Strait in the
summer months is too warm in model results (Figures 5c and 5g). This is a known model deficiency: the SST
exiting the Salish Sea is high by �2�C. This offset decreases with depth, disappearing by �20 m beneath
the surface. We believe this may be due to insufficient mixing within the Salish Sea and Juan de Fuca Strait
where our model resolution cannot resolve the extreme bathymetry. Despite this near-surface deficiency,
the Juan de Fuca Strait estuarine exchange flow and Eddy are consistent with observations at depth; e.g.,
see Figure 6, which shows the observed and measured salinity and temperature at 35 m depth during a
September 2005 ECOHAB-PNW cruise. The Juan de Fuca Eddy is apparent as a region of higher salinity and
lower temperature and the observations and model are consistent in terms of eddy size, extent, salinity,
and temperature. The eddy development in our model is consistent with prior model studies by both Mac-
Fadyen and Hickey [2010] and Foreman et al. [2008] that show that the Eddy begins as enhanced upwelling
off of Cape Flattery (near tide gauge #6, Figure 1), which spreads westward and is periodically renewed dur-
ing upwelling periods.

Particle tracking experiments were used to examine the Eddy circulation. Particles released in the Eddy region
become trapped in the Eddy, circulate cyclonically during downwelling winds, and can escape the Eddy to the
south into the WA shelf upwelling jet during upwelling (e.g., see the particle tracks in Figure 2a). This relationship
between the eddy retention time and the winds (eddy is retentive during downwelling winds and ‘‘leaky’’ during
upwelling winds) is consistent with previous observations [MacFadyen et al., 2005, 2008] and models [MacFadyen
and Hickey, 2010]. Particles released in the Eddy region can remain in the Eddy for up to the full tracking period
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(30 days) but on average are retained �10 days, similar to physical drifter observations [MacFadyen et al., 2005].
Additionally, features surrounding the Eddy are consistent with observations including the Vancouver Island
Coastal Current (VICC) and the Juan de Fuca Strait Exchange flow. The VICC flows from the Juan de Fuca Strait
along VI to the northwest [e.g., Tully, 1941; Hickey et al., 1991] sometimes wrapping around the Eddy (e.g., Figure
2). The Juan de Fuca Strait exchange flow (measured at moorings EH1 and J2C) exhibits estuarine exchange that
can reverse during strong downwelling favorable winds [Hickey et al., 1991; Hickey, 1989; Thomson et al., 2007].
These features interact with the Eddy and influence its strength.

2.3.5.2. Heceta Bank
Heceta Bank is a hot spot for high productivity [Venegas et al., 2008; Kim and Barth, 2011; Rivas and Samel-
son, 2011] and specifically a known hot spot for Pn bloom formation [Trainer et al., 2001; Hickey and Banas,
2003; Hickey et al., 2013]. Our model captures the enhanced upwelling over Heceta Bank, the separation of
the upwelling jet offshore [Castelao and Barth, 2006; Kosro, 2005], and the retentive recirculation over the
bank inshore of the separated jet [Kirincich and Barth, 2009; Whitney and Allen, 2009] (see Figures 5c and 5g,
for an example). The high retention is observed in particle tracking results in which particles remain over
the bank for extended periods of time.

2.3.6. California Undercurrent
The CUC is a large-scale feature that forms over the midlatitude Eastern Pacific Ocean continental slope
[Hickey, 1979] extending as far north as VI [Thomson and Krassovski, 2010; Pierce et al., 2000]. In the northern
CCS, the CUC has been linked to the alongshore pressure gradient [Hickey, 1979, 1998; Werner and Hickey,
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1983; Connolly et al., 2014]. It typically manifests itself as a depth-intensified northward current centered
below the shelf-break (�250–350 m) and is present throughout the summer/fall upwelling season. The CUC
plays an important role in determining the water properties, source depth, and chemistry of upwelled water
[MacFadyen et al., 2008; Connolly and Hickey, 2014; Siedlecki et al., manuscript in preparation 2014], thus
impacting phytoplankton blooms. CUC water derives from the tropics and thus is relatively high in both
temperature and salinity [i.e., high ‘‘spice,’’ Flament, 2002]. It also contains high nutrients and low dissolved
oxygen [Lynn et al., 2003; Hickey, 1979].

Glider cross sections of density and geostrophic velocity [Pelland et al., 2013] have been used to evaluate the
placement, strength, and variability of the CUC in our simulations (e.g., Figure 7). The CUC is identified as a north-
ward velocity core centered below the shelf break in both the observations and model. Comparisons to 20 glider
transects throughout 2005–2006 (not shown) show that the model consistently generates a CUC and that its
magnitude, location, and seasonal development are in good qualitative agreement with the observations.

3. Results

3.1. Potential HAB Transport Pathways
Potential HAB surface transport pathways originating from the two hot spots are determined from the particle
tracking experiments described in section 2.2. A particle ‘‘beaching’’ is defined as passing within the 30 m iso-
bath of a defined latitudinal extent. Shoreward of the 30 m isobath is chosen to approximately demarcate the
seaward extent of the innershelf, where the upper and lower boundary layers intersect [Lentz and Fewings,
2012]. Our model excludes some innershelf physical processes, such as surface waves, that could impact
whether particles actually reach the beach. Sensitivity tests using the 20, 10, and 4 m isobaths as ‘‘beaching’’ cut
offs (rather than 30 m), resulted in similar temporal patterns but fewer total beachings (up to 60% fewer). White
lines in Figure 2a show typical beach landing pathways on a map view during upwelling winds.
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Particles released and tracked over our 4 year simulations show clear seasonal variation in transport path-
ways from the potential source regions based on the predominant wind direction. Figure 8 shows particle
paths (latitude versus time) for only those particles that reach Long Beach, WA (Figure 1) within 15 days of
release from either the Eddy or Heceta Bank (thus showing only a portion of the total particles that were
released every 2 days throughout the 4 years). In general, during the upwelling summer and fall months,
particles move from the source regions southward in the coastal jet and offshore; during the winter and
spring months they tend to move northward over the innershelf and onshore following the large-scale
wind-driven surface currents. This means that for WA beaches, particles from the Juan de Fuca Eddy region
can reach the beach during the summer/fall while particles from the Heceta Bank region can reach the
beach during the winter/spring as seen in Figure 8, consistent with observations [e.g., MacFadyen et al.,
2005; Hickey et al., 2013].

3.1.1. Summer/Fall Pn Events
During the time period examined (2004–2007), high Pn cell counts were observed during the summer/fall
upwelling period every year at Long Beach, WA by the Olympic Regional Harmful Algal Bloom (ORHAB) pro-
gram (Figure 8b). It is important to note that these high Pn cell count events did not always correspond to
high DA concentrations. Each of these summer/fall events corresponds with particles arriving from the Juan
de Fuca Eddy region (Figure 8a).

Wind patterns associated with these events are fairly consistent. Figures 9a and 9c show the mean winds
(61 standard deviation) for all beachings in 2005 where the x axis is in days relative to the beaching time.
Winds are overall weakly upwelling favorable but on average relax and/or reverse to downwelling favorable
just before the particle beaches. The upwelling favorable winds allow escape from the Eddy and southern
transport while the subsequent relaxation or downwelling drives onshore Ekman transport. This pattern of
winds was identified by MacFadyen et al. [2005] and MacFadyen and Hickey [2010] as critical to this transport
pathway. Very few particles take 15 days to reach the beach, over 50% of the particles beach within less
than 10 days, and almost all beachings take at least 5 days from the Eddy (Figure 9e).
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3.1.2. Spring Pn Events
Spring/early summer events were observed in 2005, 2006, and 2007 (Figure 8b). The source of these cells
depends on whether the spring transition has occurred or not. For example, in 2005, the spring transition
was delayed [Kosro et al., 2006] and the late spring event (Sp/Su05 in Figure 8) was caused by transport
from Heceta Bank. In 2006 and 2007 however, the spring events occurred after the spring transition and
thus were due to transport from the Eddy (Sp/Su06 and Sp07 in Figure 8). The only spring event that is not
captured with this model is the mid-spring 2005 event (Sp05 in Figure 8). This is likely a result of the sensitivity
of this transport pathway to plume location, wind history, and particle release times as beachings from Heceta
Bank occur one day earlier and our higher resolution model did identify this event with particles deriving
from Heceta Bank. Additionally, Hickey et al. [2013] use observations to show this event is from a southern
source near Heceta Bank originating on 20 March 2005. Our particle tracking releases are on 19 and 21 March,
and the 19 March release results in the early landings seen in Figure 8. Thus, our model results are largely con-
sistent with the spring transport pathway from a southern source onto the WA coast suggested by measure-
ments [Hickey et al., 2013], although this transport pathway appears more sensitive to model resolution than
the Eddy transport pathway as borne out by higher resolution model runs not shown here.

Spring events from the Heceta Bank region are associated with persistent downwelling winds that lead to
both northward and onshore transport (see the average winds in Figures 9b and 9d). In many cases, particles
from Heceta Bank do not travel as far north as the WA coast and, as we will describe in section 3.2, entrain-
ment into the CR plume is an important aspect of this pathway. While this pathway results in fewer time peri-
ods with Long Beach landings (relative to the Eddy pathway), the pathway is robust, bringing significantly
more particles to the beach per large event. Similar to Eddy beachings, very few particles take 15 days to
reach the beach and over 50% of the particles beach within 10 days. Heceta Bank beachings can occur faster
than Eddy beachings, in as few as 2.5 days when storm winds are sufficiently strong (see Figure 9f).

3.1.3. Interannual Variability
Significant interannual variability occurs in our 4 year modeling period. For example, 2004 and 2007 have weaker
upwelling winds with intermittent relaxation/downwelling events (Figure 8c). The intermittent relaxation/
downwelling winds allows more total particles to reach the coast during the upwelling season as seen by the
higher number of beachings during the 2004 and 2007 upwelling seasons (O(104) particles, Figure 8a). Strong
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upwelling winds, as in late 2005 (late transition) and throughout the 2006 upwelling season, prevent particles
from reaching the coast, as they are swept offshore resulting in fewer beachings (O(103) particles, Figure 8a).

Conversely, while the transport pathway from Heceta Bank varies substantially between years, there is no clear
interannual trend. Intermediate strength, persistent downwelling winds appear to be most important in bring-
ing particles from the Heceta Bank region to the WA coast (e.g., winter 2005 and spring 2006). Very strong
downwelling winds do not contribute to WA beachings as particles either immediately beach on the OR coast,
or in the case of CR plume entrainment, sweep further north in less time, reaching the VI shelf or the Salish Sea.

3.2. The Influence of the CR Plume
To specifically address the influence of the CR plume on these transport pathways, we compare the results
from the above-described realistic hindcast simulations to simulations excluding the CR and the CR plume
(No-CR simulation). This is accomplished by altering the model grid such that points within the CR are con-
sidered land, effectively shutting off the river at its mouth. The influence of the plume on onshore and
alongshore transport applies to any particles following these transport pathways.
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3.2.1. CR Plume Influence on Onshore Transport
To examine the impact of the CR plume on onshore transport, we compare the number of particles that
transit within the 30 m isobath along the entire OR/WA coastline between the full simulation and the No-CR
simulation (Figure 10a). Typically, more particles beach in the No-CR simulation for both northern and
southern sources (Figure 10a). Over the course of 1 year, the No-CR simulation allows 40% more beachings
than the full simulation from the northern source and 13% more beachings from the southern source. This
suggests that the CR plume frequently acts as a barrier to onshore transport, in agreement with previous
studies [Banas et al., 2009a]. Effectively, the CR plume forms a convergence front that acts as a barrier to
cross-frontal transport and thus onshore transport of surface particles starting offshore of the plume. During
the transition to downwelling (necessary for onshore transport), strong vertical mixing leads to vertical iso-
pycnals, thus shutting down cross-shelf transport within the plume [e.g., Austin and Lentz, 2002; Rao et al.,
2011]. If the plume reaches the coast before the upwelling front, constituents previously trapped in or off-
shore of the upwelling front are blocked from reaching the coast [Austin and Lentz, 2002]. Long Beach sits
well within the region where the CR reaches the coast first (�70–100 km from the CR mouth) [Rao et al.,
2011]. Thus, this mechanism blocks onshore transport to the southern WA coast.

3.2.2. CR Plume Influence on Alongshore Transport
Banas et al. [2009a] suggested that the CR plume acts as a semipermeable along-coast barrier, reducing
overall southward transport on the shelf. Although we do find individual events in which this effect on
transport of particles from the northern source is clear (e.g., Figure 11b), the overall effect on the mean lati-
tudinal distribution of particles after 15 days is minimal (Figure 10b, solid lines). Examining the full range of
latitudinal particle distribution (shaded regions), some differences between the full simulation (dark gray
shaded) and No-CR (light gray shaded) emerge, yet overall remain minimal.

Particles from the southern source similarly have minimal difference in the mean latitudinal extent (Figure
10c). However, particles from the southern source exhibit larger differences in their full latitudinal distribu-
tion with some particles transiting significantly further north (over 2� of latitude) in the full simulations than
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Figure 11. Snapshots of the CR plume influence on transport. Particle tracks over 15 days for the full simulation (blue) and No-CR experi-
ment (red) from (a) the southern source during a period of entrainment and downwelling winds and from (b) the northern source during a
period of upwelling favorable winds. Time stamps indicating these 15 day particle tracking windows are included in Figure 10. The start
time is marked with a vertical line through all subplots, the 15 day tracking period is indicated as rectangles in Figure 10d.
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in the No-CR simulations (Figure 10c, dark gray shaded versus light gray shaded). This enhanced northward
transport occurs because particles are entrained into the CR plume, where onshore transport is blocked
while alongshore transport is enhanced due to the buoyant coastal current [e.g., Fong and Geyer, 2002].
Figure 11a shows a clear example of the influence of plume entrainment during strong downwelling favor-
able winds. Thus, the plume can act as an along-coast conduit during downwelling when entrainment
occurs. Although these events are rare and the mean latitudinal distribution remains similar, these events
are critical in connecting the OR and WA coasts.

3.2.3. CR Plume Influence on Potential HAB Transport Pathways
The combined effect of the above CR-related mechanisms on potential HAB surface transport pathways
from Pn hot spots is that the CR plume acts to mitigate the number of HAB beach events by blocking
onshore transport while at the same time defining the HB transport pathway. The CR plume can block
onshore transport of HABs from both source regions. In fact, total Long Beach landings are lower in the full
simulations than in the No-CR simulations for both source regions. Even after entrainment into the plume,
the onshore transport of particles is still reduced relative to the No-CR simulations suggesting that
entrained particles are strongly influenced by the dominant alongshore momentum transport in the plume
and potentially influenced by shoreward plume fronts.

While beachings on the OR coast from the northern source are limited due to the strong offshore Ekman
transport that occurs during periods of upwelling winds sufficient to move particles that far south (see
Figure 11b), beachings from the southern source during downwelling winds strongly depend on the CR
plume. If southern source particles are entrained into the plume on a previous upwelling/relaxation cycle,
they can be transported significantly farther north during downwelling winds. Entrainment is critical to for-
mation of the Heceta Bank pathway to the WA coast. Without plume entrainment, HABs from a southern
source would commonly beach along OR (see Figure 11a).

4. Discussion

Our well-validated simulations confirm the existence of both northern and southern Pn HAB transport path-
ways and elucidate the CR plume influence on potential pathways. However, the simulations predict more
beaching events than seen in observed high Pn cell count events. In an effort to improve predictability, we
further investigate wind intermittency and develop an index to capture the northern transport pathway. Addi-
tionally, we incorporate a biogeochemical model to reduce the number of false positive beaching events.

4.1. Wind Intermittency
In addition to the overall wind direction and strength, an important consideration to the seasonality and interan-
nual variability of transport pathways is the time history of the winds. This is particularly clear in the transport from
the northern source where downwelling winds are required to bring particles to the coast after upwelling winds.
Figure 8 showed that during our 4 model years more particles reached the coast during the upwelling season in
years with frequent relaxation/downwelling wind events (2004 and 2007). Thus, a measure of the wind intermit-
tency may provide an additional useful predictive tool during the upwelling season (i.e., when the northern source
transport pathway dominates). The most successful approach we employed was a simple algorithm that uses
both the raw hourly wind stress in the major principal axes direction (s, N m22) and an upwelling index based on
the 8 day weighted mean winds in the major principal axes direction (Wmaj,8d N m22). This upwelling index is
based on that defined by Austin and Barth [2002], although it is employed as a filter, thus retaining the units of s:

Wmaj;k tð Þ5 1
k

ðt

0

smaj e
t
0
2tð Þ=k dt

0

where k is the filter time (8 days in this case) and t is time. W describes the overall mean wind conditions
while the wind stress, s, represents the instantaneous winds. For transport from the northern source, the
mean winds should be upwelling favorable while the instantaneous winds should be 0 or downwelling
favorable (e.g., beachings in Figure 2). Thus, the wind intermittency index is a true/false index defined as:
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Iw8 tð Þ51 if Wmaj;8d � 0
� �

and smaj � 0
� �

; otherwise Iw8 tð Þ50

where we have defined wind stress> 0 as downwelling favorable. The correspondence between our wind index
(Figure 12a) and the presence of beachings from the Juan de Fuca Eddy (Figure 12b) is strong. The cumulative
sum of this index over each upwelling season matches the patterns in the observed interannual variability; i.e.,
high transport potential in 2004 and 2007 and significantly lower potential in 2005 and 2006.

During the downwelling season (i.e., when the southern source transport pathway dominates), intermit-
tency remains important as particles only reach the WA coast if entrainment in the CR plume occurs. Trans-
port pathways to the OR coast from this southern source on the other hand are very common and only
decrease when entrainment into the CR plume occurs. Entrainment of the southern source requires the
plume presence (i.e., prior upwelling) and other potential factors such as a weak plume front. Unfortunately,
defining an index for transport from the southern source was less successful. This is likely due to the fact
that with similar wind conditions, plume entrainment sometimes occurs and sometimes does not. The time
history of the wind and thus the plume location and strength, as well as the river flow are all important fac-
tors in determining whether entrainment can occur or not.

4.2. Eliminating False Positives
Most (7/9) of the Pn HAB events at Long Beach are captured with our particle tracking results, confirming
the importance of both a northern (Juan de Fuca Eddy) and southern (Heceta Bank) source for Pn HAB
events on the WA coast. However, as seen in Figure 8, (or using the wind index, Iw, introduced above) there
are numerous false positives, i.e., on the basis of transport mechanisms alone, events may be predicted
when they do not actually occur (also see Figures 12a–12c). For example, early summer 2005 (�day 170)
and mid-summer 2007 (�day 920) events from the Juan de Fuca Eddy and intermittent winter/early spring
events from the Heceta Bank region (�days 2350, 20, 360, 420, 720) are false positives. Loosely defining
events as groupings of beachings where at least one particle beaches in 20 days, there are �24 events pre-
dicted while only 9 events are observed (�15 false positives).

Even when a physical pathway exists, Pn (or other phytoplankton) may not exist in the source region. Some of
the false positives occur during periods of overall low productivity; i.e., winter/early spring and early fall. For
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Figure 12. Particle tracking with biology. (a) Wind index representing the potential for beach landings originating from the Juan de Fuca
Eddy as described in section 4. (b) Particle hits at Long Beach, a dot indicates one or more hits from either the northern source (upper line) or
southern source (lower line). (c) Thresholding approach incorporating the biogeochemical model. All dots have 10 or more particles reaching
the beach while size/color represents the mean cumulative sum of along-path phytoplankton in the model (phytoplankton values greater
than background levels are in small light gray dots while large phytoplankton values are in large black dots, larger than 125 mg L21). (d)
Observed Pn cell count (cells L21) at Long Beach from the ORHAB program split into three bins ranging from a small number of cells (small
light gray dots) to a large number of cells (large black dots). Pink rectangles outline the observed events as also marked in Figure 8.
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example, the Eddy is most productive in summer through late fall [Trainer et al., 2009]. While extensive in situ
biological measurements have not found a clear correlation between Pn and nutrients or water properties in
the PNW, they have found a significant, positive correlation between Pn and total chlorophyll [Trainer et al.,
2009]. Thus, periods with low overall productivity, such as winter/early spring and early summer, may have
physical transport pathways from the source regions to the coast but the water may not contain Pn cells.

As a first cut to identifying false positives, we include results from a biogeochemical model in our particle
tracking analysis. The biological model [described in Banas et al., 2009a; Davis et al., manuscript in prepa-
ration, 2014] contains nutrients, one phytoplankton class, one microzooplankton class, small and large
detritus, and oxygen. Biogeochemical parameters (such as growth rate, grazing rate, etc.) were chosen
based on extensive in situ measurements. The biogeochemical model is coupled to the hydrodynamic
simulations and results compare well with observed chlorophyll, primary productivity, and nitrate.
As a simple test to utilize this model to eliminate false positives, we employ a thresholding approach.
Figure 12c includes an example thresholding with cutoffs requiring more than 10 particles reaching the
beach and varying levels of the mean cumulative sum of the along-path phytoplankton values. This
approach reduces the number of false positives significantly (by more than 80%), predicting only two
false positives. Seven out of the nine observed events are predicted while two are considered missed
events. It does not remove false-positives entirely as the onset and length of events differ, thus additional
predictive skill on event scales is desired.

To improve predictability, further research on Pn growth in the PNW is required to determine what conditions
are preferential for Pn cell growth and subsequently for toxin production. Current research by Lubetkin and Les-
sard (manuscript in preparation, 2014) employs nonparametric multiplicative regression models to try to deter-
mine what drives development of Pn and DA in the PNW. The results from this analysis will be combined with
our modeling approach in the future to improve Pn HAB prediction capabilities. To capture the early spring
blooms from Heceta Bank including the small coastal estuaries may improve predictability. These events occur
prior to the spring transition when the upwelling-driven nutrient supply is low. Wetz et al. [2006] showed that
local winter riverine inputs of nutrients along the OR coast could initiate late winter/early spring blooms consist-
ent with this potential source. Finally, an additional, promising way to improve predictability is a combined
monitoring/modeling approach as has been recently suggested [e.g., Jochens et al., 2010]. In the PNW, ship-
board monitoring for Pn and DA within the generation hot spots will allow for particle tracking models like this
one to be run in a predictive mode to assess the risk that an observed bloom will reach the shore.

5. Conclusions

Here we have described a realistic numerical model for the PNW coastal region. This manuscript presents detailed
validation of the model physics using extensive observations. We show that the model adequately simulates cur-
rents and water properties along the coast throughout depth over the shelf and shelf break. For example, impor-
tant coastal processes such as river plumes, CTWs, coastal upwelling, and CUC dynamics, amongst other
processes are consistent with observational data in both spatial patterns and dominant temporal variability.

This manuscript uses this model to investigate potential HAB transport pathways in the PNW. In particular, we
investigate transport pathways from previously identified Pn/DA source regions to the WA coast. Overall, we
observe a strong seasonal signal in transport pathways associated with the change in the direction of the pre-
dominant seasonal regional currents and local upwelling/downwelling favorable winds. During the summer/fall
upwelling season, beach events are most often associated with transport from the northern source, the Juan de
Fuca Eddy. While during the winter/early spring downwelling season, the model is consistent with the hypothe-
sis that the southern source, Heceta Bank, can be a source to the WA coast. The CR plume mitigates beachings
by blocking onshore transport. The CR influence in the alongshore direction is variable, but important for allow-
ing the southern source pathway to the WA coast via plume entrainment. Understanding the mechanisms for
entrainment into regional river plumes as well as transport within the nearshore zone are important research
areas that would further improve understanding potential HAB transport pathways in the PNW.

The transport simulations and a wind intermittency index capture Pn HAB beach events, yet result in numer-
ous false positives. Predictability is enhanced by >80% with the incorporation of a simple biogeochemical
model. Nevertheless, additional research on the biological drivers of Pn growth and DA production in the
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PNW is required to enhance pre-
dictability. A combined in situ mon-
itoring/modeling approach would
also significantly aid HAB predict-
ability in the PNW.

Appendix A: Additional
Model Information and
Validation

A1. Numerical Simulations
The model described in section 2.1
utilizes realistic bathymetry, forcing
and initial conditions. High-
resolution bathymetry [Smith and
Sandwell, 1997; Haugerud, 2000; Fin-
layson, 2005] was smoothed using a
volume-preserving scheme to
decrease numerical errors near steep
slopes while best preserving the
original bathymetry [Sikiric, 2011].
The model is initialized and nudged
at the western and southern boun-
daries with the global Navy Coastal
Ocean Model (NCOM) [Barron et al.,
2006, 2007]. Radiation conditions
are used on all 3-D model fields at
the open boundaries [Marchesiello
et al., 2001, 2003] and open bound-
ary conditions for free-surface and
depth-averaged momentum use the
Chapman [1985] and Flather [1976]
conditions, respectively. The north-

ern boundary is closed at Johnstone Strait. In reality, exchange through this narrow strait can be significant;
however, tests employing an open northern boundary forced with tides from Foreman et al. [2012] did not sig-
nificantly improve model skill. In addition, we tested different implementations of the open boundary condi-
tions (described in section A2). The model includes 16 river point sources using daily discharge values from the
United States Geological Survey (USGS, http://waterdata.usgs.gov/usa/nwis/) and Environment Canada (http://
www.wsc.ec.gc.ca/applications/H2O/). These include 14 Puget Sound rivers, the Fraser River, and the Columbia
River (note that the smaller coastal rivers are not included). Eight tidal constituents derived from the 1/4�

TPXO7.2 inverse global tidal model [Egbert and Erofeeva, 2002] are forced at the open boundaries. Meteorologi-
cal forcing of surface pressure, wind, air temperature, relative humidity, shortwave radiation, downward long-
wave radiation, and rainfall are taken from the MM5 regional forecast model [Mass et al., 2003].

A2. Model Validation—Overall Model Skill
The model currents, salinity, and temperature are validated using an extensive array of observations
described in section 2.3.1 (see Figure 1). We utilized three different model skill metrics to assess the simula-
tion performance and test different model setups: the Skill Score (SS) [Murphy, 1988], Willmott Skill Score
(WS) [Willmott, 1982], and correlation coefficient (r), discussed in more depth in Liu et al. [2009b] and Suther-
land et al. [2011]. The skill scores are defined as:
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Table A1. Model Skill Comparisona

NCOM MoSSea 

Coastal Cascadia 

Low High Medium 

ΔΔx (km) 14 0.3 - 6 3 1 - 3 1.5 - 4 1.5 - 4 

N 40 20 20 40 40 40 

U -0.09 -0.35 -0.31 -0.39 -0.11 -0.11 

V 0.06 -0.27 -0.27 -0.30 -0.15 -0.18 

S -12.83 -2.16 -16.45 -1.47 -1.25 -0.91 

T -0.30 0.23 -1.00 0.15 -0.05 -0.30 

S (casts) 0.07 0.85 0.64 0.77 0.77 0.75 

T (casts) 0.61 0.88 0.63 0.85 0.85 0.86 

η 0.01 0.93 0.92 0.92 0.89 0.89 

<U> -1.19 -0.46 -0.22 -0.46 -0.08 -0.31 

<V> -0.89 -0.13 -0.03 -0.10 0.06 0.06 

<S> -13.11 -2.13 -16.55 -1.44 -1.16 -0.89 

<T> -1.01 0.27 -1.11 0.07 -0.13 -0.48 

<η> 0.68 0.70 0.59 0.62 0.72 0.68 

average  -2.33 -0.14 -2.76 -0.06 0.03 0.01 

aComparison of model skill score (SS) for various simulations for the year 2005. NCOM
is the NCOM global model, MoSSea is the model published in Sutherland et al. [2011],
and Low, Medium, and High indicate the lowest, medium, and highest Cascadia coastal
model resolutions, respectively. Variables with brackets,<>, indicate subtidal data,
while those without brackets are hourly data. U and V are east/west and north/south
velocities, respectively. Several different boundary conditions for the final medium reso-
lution model were compared as described in the text. Here only two medium resolution
runs are included; both have the final parameters (ROMS options ADD_FSOBC and
ADD_M2OBC are activated, Tin 5 0.75 days and Tout 5 360 days). Note that the other
ROMS columns do not have these options and have Tin 5 0.75 days, Tout 5 3 days. The
two medium resolution runs presented differ only in the initial conditions: the first was
initialized using NCOM, the second using ROMS output from the end of the previous
year. Differences in skill between these two runs are indicative of the inherent variability
in model skill score between runs. Colors are coded such that the darkest gray on any
row is the least skillful model run, and white is the most skillful.
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where mi is a model value, oi is an observational value, and there are N paired modeled/observed values.
MSE is the mean square error, sxy is the covariance of x and y, sx is the standard deviation of x, and s2

x is the
variance of x. The SS is a valuable metric to compare models to one another where a higher SS indicates bet-
ter model performance [Murphy, 1988], thus we use the SS to compare our different model setups and
boundary conditions. The WS is an index of agreement between modeled and observed values where a WS
of 1 indicates complete agreement and a WS of 0 indicates complete disagreement [Willmott, 1982]. Here
we use the WS to compare our chosen model with observations.

We compared our various resolution models (along with the higher Salish Sea resolution model, MoSSea)
and determined that while our lowest resolution grid clearly had the least skill (performing similarly poorly
to NCOM global), the medium resolution grid had sufficient skill compared to our highest resolution grid
and the MoSSea grid (see Appendix Table A1 where darker colors indicate worse performance). We further
tested the medium resolution grid with different open boundary conditions (including nudging time scales,
a sponge layer, and the implementation of tides) and different vertical resolution. In summary, our final
model runs use the medium resolution grid and include an outgoing nudging time scale of 360 days [as in

Marchesiello et al., 2001], no
sponge layer, activated ADD_F-
SOBC and ADD_M2OBC options,
and 40 vertical layers (see the last
two columns of Appendix Table
A1).

WSs for the final simulations dur-
ing 2005 are shown in Table 1.
The WS is computed for all time
series from all available moorings
during the observational period
at all available depths.

For most of the moorings (ECO-
HAB-EH and RISE-R), observations
exist during the summer in 2–4
m intervals throughout most of
the depth for velocity and at a
few fixed points in the vertical for
salinity and temperature. For
example, EH2 (comparison pre-
sented in Figure 3) includes
velocity between �12 and 40 m
every 2 m, temperature at 1, 4,
10, 11, 15, 20, 29, 39, and 49 m,
and salinity at 4, 15, and 39 m
from 1 May 2005 to 3 October
2005. The A1 and J2C moorings
(maintained by IOS) and Race
Rocks (RR, near-surface measure-
ments maintained by the Race
Rocks Ecological Reserve/Marine
Protected Area and available via
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Figure A1. CTD cast histograms. (a) Histograms (% of total CTD casts) of the difference in
the depth mean salinity (solid black) and temperature (gray line) between the model and
observations. Values less than zero indicate the model is fresher or colder. (b) Histograms
of the difference in the vertical stratification between the model and observations. Verti-
cal stratification is measured as the difference between the top and bottom layer salin-
ities (solid black) and temperatures (gray line). Values less than zero indicate the model is
less stratified than the observations. (c) Histograms of the difference in the pycnocline
depths between the model and observations. Values greater than zero indicate the
model has a shallower pycnocline depth. Several values fall into the far right bin indicat-
ing that the algorithm (which searches for the maximum density gradient) found a partic-
ularly deep pycnocline in the observations. Some casts contain noisy data or steps that
can lead to the selection of an erroneously deep pycnocline value. All three measures are
split into two regional groups, (left) the open coast region and (right) the Salish Sea. WSs
for all comparisons are included in each panel.
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IOS) are nearly year-round time series. WSs are computed on the minor and major velocity components
defined by principal axes analysis as well as on the hourly and subtidal time series. Average WSs are strong
(Table 1, 1 indicates perfect agreement, 0 complete disagreement), particularly for the major principal axes
velocity component and temperature. Salinity agreement is weaker because of a salinity bias that is inher-
ited from the NCOM boundary conditions [Liu et al., 2009b; Sutherland et al., 2011]. WSs are lowest (worst)
beyond the shelf break (A1 and EH3) and highest (best) on the shelf (EH2, EH4, RN, RC, and RS).

Overall, WS for the salinity and temperature from all of the 2264 CTD casts in 2005 (see Figure 1) are high
(�0.92, Table 1a, far right-hand column). These values aggregate important features of the salinity and tem-
perature vertical structure. Thus, we also made comparisons similar to Sutherland et al. [2011] which examine
histograms of the depth mean salinity and temperature, stratification defined by two layers (when possible,
top-bottom difference when there is no distinct pycnocline), and the depth of the pycnocline (when it exists)
in two regions, along the open coast and within the Salish Sea (Appendix Figure A1). The model is too salty
and cold within the Salish Sea (by �1.5 psu and�0.5�C), but does well along the coast. The two-layer stratifi-
cation compares well in both regions. Finally, the model depth of stratification tends to be slightly shallower
than the observations because individual model profiles are typically smoother than observations.

Finally, Table 1b shows the WS for the sea surface elevation at 12 NOAA tide gauges (adjusted with atmos-
pheric pressure from NDBC buoys, www.ndbc.noaa.gov/, see Figure 1) moving from south to north and into
the Salish Sea. Tidal sea surface elevations compare strongly throughout the domain, weakening slightly
within the Salish Sea (WS� 0.93). Subtidal sea surface elevation has slightly lower WS than the tidal values.
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