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Abstract

Multiscale Modeling and Homogenization of Composite Materials

by

George Mseis

Doctor of Philosophy in Mechanical Engineering

University of California at Berkeley

Professor Tarek Zohdi, Chair

In this study we analyze a method for the multiscale modeling of heterogeneous

materials with a special emphasis on unidirectional fiber composites. The method relies on

defining two problems. The first boundary value problem is defined with homogenized ma-

terial properties and the second boundary value problem is defined with the exact heteroge-

nous properties. Based on these definitions a modeling error between these two problems

is defined and analyzed for both small deformation and finite deformation cases. We intro-

duce a new modeling error that gives insight into the components that contribute to this

error. To improve the solution of the homogenized problem without solving the complete

heterogeneous problem, we define subdomains that include microstructural information.

These smaller subdomains can then be solved and included into the solution space of the

homogeneous problem through a simple coupling process. Through defining local error in-

dicators that are related to the global modeling error, we can adaptively select only the

subdomains with high local error to be included in the solution space. As a preset to the

multiscale process, homogenization techniques are analyzed for random unidirectional fiber

composites under small deformations. This allows one to systematically obtain material

properties for the homogenized boundary value problem. A thorough analysis is provided

to understand the behavior of the error indicator under both small and finite deformations.

We also explore the potential reduction in the modeling error when including subdomains in

the solution space. The effect the size of the subdomains have on the solution improvement

is also investigated.
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Chapter 1

Introduction

Materials consist of multiple scales. This is true for both engineering and natural

materials. Specifically, there are different length scales of importance depending on the

type of material of interest. There are many examples of materials which exhibit a strong

dependence on the various length scales. For example we note, biological materials, com-

posite materials, soils, rocks and even metals. When considering biological or composite

materials the information at the fiber length scale is crucial to the material response at

the continuum or large scale. Metals on the other hand are made up of grains and from a

damage and failure point of view this length scale is important. The process in which we

include the effects of the different length scales is known as multiscale modeling.

Our interest focuses on composites which have been playing an increasingly signifi-

cant role in engineering design. They usually consist of two constituents, a reinforcing agent

and a supporting matrix. Typically, the reinforcing component is stiffer than the matrix.

There are many types of composites including particle composites and fiber composites.

The most common used in engineering design are unidirectional fiber composites. We call

a single layer of unidirectional fiber composite a ply. Composites have been incorporated in

products ranging from aircrafts to golf clubs. Their popularity is mainly the consequence of

two significant advantages. The first is the inherent ability to tailor the material response

through varying the stacking sequence of unidirectional plys. The second is the high stiffness

to density ratio when compared to traditional engineering materials such as metals. This in

turn has resulted in a demand for higher fidelity computational simulations of composites

that account for the micro-structural constituents.
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The standard approach to model composite materials is to use the finite element

method. In particular, since accounting for all the micro-structural components in a nu-

merical setting is not feasible, we assume homogeneous material properties obtained either

from analytical bounds or through the process of numerical homogenization. This allows us

to solve large scale problems with minimal computational power. We then take advantage

of the nature of composite materials and utilize mutiscale modeling by including the effects

of the fiber-matrix combination.

1.1 Research Objectives and Thesis Outline

In this thesis two interconnected topics are explored. The first is the concept of ho-

mogenization, which is the process of obtaining constitutive information on the continuum

or large scale from the smaller length scale that includes pertinent micro-structural infor-

mation. For composite materials, which is the focus of this dissertation, the fiber-matrix

combination is explicitly modeled. There has been extensive research in homogenization

techniques, for an extensive overview refer to Nemat-Nasser and Hori [1] and Aboudi [2].

The notion of homogenization in this thesis is limited to the Average-field theory as described

in Hori and Nemat-Nasser [3], where by the homogenization process is conducted to obtain

macroscopic constitutive equations independent of a multiscale or coupled process. Our

interest here lies in understanding the effects of using randomly distributed unidirectional

fibers on the overall constitutive response. These numerical results are in turn compared

to some traditional analytical results such as those of Hill and Hashin-Rosen [4]. We also

explore obtaining converged representative volume element sizes for different fiber volume

fractions.

The second concept is the process of multiscale modeling of unidirectional fiber

composites, although homogenization is inherently a multiscale process, we make a clear

distinction. Particularly, in multiscale modeling the small length scale information enriches

the response of the large scale continuum in a coupled manner. There is a coupled solution of

both the macroscale and microscale. Therefore, the kinematics and kinetics of both scales

are explicitly related. This allows us to extract stress-strain information at both scales.

There are a number of approaches for conducting multiscale analysis, many of which depend

on the assumption that the microstructure is spatially periodic and that the solution space
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is also periodic. A review of these types of methods can be found in Bensoussan [5], Fish [6],

Allen [7] and Chung [8] and are generally known as asymptotic methods . Extensions to non-

periodic micro-structures can be found in Fish [9] and Ghosh [10] who innovated the voronoi

cell finite element method allowing for arbitrary heterogeneous materials. These approaches

are generally applied to small strain cases. Another approach, defines representative volume

elements at each integration point in a finite element analysis and utilizes the average-field

theorems used in homogenization to obtain macroscopic stresses and strains and in turn for

nonlinear analysis one can obtain the consistent tangent modulus. A review of these types

of approaches can be found in Kouznetsova. [11], Miehe [12] and Chaboche [13] . Specific

applications of these types of multiscale methods can be found in Arkaprabha et al [14]

where attention was dedicated to superelasticity of Nitinol polycrystals and in Nadler and

Papadopoulos [15] where a multiscale fabric model was introduced.

Our approach utilizes the concept of defining local error estimators that indicate

in which regions of the large scale the local small scale is necessary to improve the global

solution. This method is based on the works of Zohdi et al [16]-[17] where error estimators

are introduced and analyzed for small strain and macroscopically isotropic materials. We

initially analyze this method for small strains and macroscopically anisotropic materials and

then extend the approach to large deformations. The objective is to assess the improvement

in the solution space as a result of this type of multiscale analysis. An advantage of using

error estimators is the ability to choose specific regions in which to include the micro-

structural effects. This in turn allows us to reduce the computational cost of the multiscale

process. Additionally, the effect of including some regions with microstructure into the

global solution space is investigated for both small strains and large deformations.

The dissertation is organized as follows. We start by introducing the concepts of

continuum mechanics in Chapter 2. In Chapter 3, we derive the finite element method for

finite elasticity. We then in Chapter 4 introduce the concepts of homogenization in linear

elasticity. Numerical experiments are then conducted on representative volume elements

for random unidirectional fibers in Chapter 5. We move on to the multiscale modeling

in Chapter 6 and give an introduction to the concepts by deriving some modeling error

bounds. The analysis for multiscale modeling under the assumptions of linear elasticity

are provided in Chapter 7, along with subdomain construction concepts. In Chapter 8, we

include large deformations and analyze the accuracy of the global error bounds. We then, in
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Chapter 9, conduct the multiscale analysis with large deformation by utilizing the concepts

of subdomain construction. Finally, in Chapter 10 we close with conclusions.
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Chapter 2

Continuum Mechanics Basics

In this chapter, fundamental concepts in continuum mechanics are introduced.

For a full review of the subject refer to the works of Chadwick. [18], Spencer. [19] and

Holzapfel. [20] and the references therein.

2.1 Kinematics

Kinematics is the study of motion without considering the forces that produce these

motions. We start by introducing the kinematic considerations when analyzing continuum

bodies. Specifically, we define a body B whose elements or particles P can be placed into

a configuration R0 ∈ R3 at time t = 0. Each particle P is associated with a unique

position X in R0 defined relative to an origin O0 with base vectors Ei. The configuration

at t = 0 is called the reference configuration. We now consider that the body B moves and

assumes a new configuration R ∈ R3 at t > 0. The particles P now assume a new unique

position defined by the vector x with respect to an origin O with base vectors ei. This new

configuration at t > 0 is called the current configuration. Figure. 2.1 shows a schematic of

the body B in its reference configuration and current configurations.

The motion involved in going from the reference configuration to the current con-

figuration can be described through the function X (·) such that

x = X (X, t) (2.1.1)

Therefore, we can express the complete motion of the body B as function of the positions
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R0 R

Ei ei

X
x

X (X, t)

Figure 2.1: Schematics of reference and current configurations with base vectors

X in the reference configuration. We assume that the relation in Eqn. 2.1.1 can be inverted

to get X = X−1(x, t).

Given the relationship in Eqn. 2.1.1 we calculate the gradient of the motion as

F =
∂X (X, t)
∂X

=
∂x
∂X

=
∂xi
∂XA

ei ⊗EA

(2.1.2)

where F = FiAei⊗EA is known as the deformation gradient and since it has one component

in the current configuration ei and the other component in the reference configuration EA

it is considered a mixed tensor,. We assume the function X (·) is smooth enough and that

the inverse of F exists and is defined as

F−1 =
∂X−1(x, t)

∂x

=
∂X
∂x

=
∂XA

∂xi
EA ⊗ ei

(2.1.3)

We also have that J = det F 6= 0 which is known as the Jacobian. We can also define the

displacement vector as u = x−X and write the deformation gradient as
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F = H + I (2.1.4)

where H = du
dX and I is the identity tensor. The deformation gradient is used to get

relations between the reference and current configurations for line elements, area elements

and volume elements. Specifically, for line elements we have

dx = FdX (2.1.5)

and for an area element we can derive [18] the expression

nda = JF−TNdA (2.1.6)

which is known as Nanson’s formula and n,N are the unit normals defining an area ele-

ment in the current and reference configurations, respectively. Finally, we can express the

relationship between the reference and current configuration volumes as

dv = JdV (2.1.7)

where dv and dV are volume elements in the current and reference configuration respectively.

Derivations for these expressions can be be found in Chadwick. [18].

We also note the polar decomposition of F into stretch and rotation components

as

F = RU and F = VR (2.1.8)

where U and V are symmetric positive definite tensors defining the stretch of the material

in the reference and current configurations respectively. Also, R is a proper orthogonal

tensor (det(R) = 1) defining the rotation of the principle axes. This interpretation of R
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can easily be seen if we write U or V in spectral form and then expressing F in it’s polar

decomposition form thus,

F = RU (2.1.9)

= R
3∑
i=1

λiui ⊗ ui =
3∑
i=1

λiRui ⊗ ui (2.1.10)

such that λi are the eigenvalues and ui are the eigenvectors of the stretch tensor U and we

note that vi = Rui are the eigenvectors of V.

2.2 Strain Concepts

Strain can be expressed or defined in multiple ways. We start by deriving an

expression for the stretch of a material element. Consider the reference material line dX =

dSM where dS is the length of the material line and M is the unit vector defining the

orientation. This line element in the current configuration is dx = dsm where ds is the

length of the material line and m is the unit vector defining the orientation. Recalling, the

relationship between material lines dx = FdX we have

dsm = FdSM (2.2.1)

taking the dot product of each side in the above we get

ds2m ·m = dS2FM · FM→ ds2

dS2
= M · FTFM

= M ·CM
(2.2.2)

where C = FTF is called the right-Cauchy-Green tensor. We therefore have an expression

for the stretch (λ = ds
dS ) of a line element defined as

λ2 = M ·CM (2.2.3)
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With a similar approach we can also obtain B = F−1F−T which is known as the left-

Cauchy-Green tensor.

One form of a strain measure can be expressed as 1
2
ds2−dS2

dS2 , which is the change

in length of a line element non-dimensionalzed with respect to the original length. From

this expression we can obain

1
2
ds2 − dS2

dS2
=

1
2
ds2

dS2
− dS2

dS2

=
1
2
(
λ2 − 1

)
=

1
2

(M ·CM− 1)

= M · 1
2

(C− I) M

(2.2.4)

where we define the strain tensor E = 1
2 (C− I) and it is called the Lagrangian strain.

A similar approach can be adopted to define the Eulerian strain, which is expressed

as e = 1
2 (I−B). We also note that the linearized strain tensor is εij = 1

2

(
dui
dxj

+ duj

dxi

)
.

2.3 Stress Concepts

To introduce stress we define the traction vector on any surface in a body. Specif-

ically, we define the traction in both configurations as

t = t(x,n)︸ ︷︷ ︸
Current configuration

, T = T(X,N)︸ ︷︷ ︸
reference Configuration

(2.3.1)

where t is called the Cauchy traction vector defined as a force per unit current area and T

is called the first Piola-Kirchhoff traction vector defined as a force per unit reference area.

The stress tensor is postulated by invoking Cauchy’s stress theorem which states

that there exists a unique second order tensor such that

t = σn, T = PN (2.3.2)
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where σ is the Cauchy stress defined in the current configuration and it’s a symmetric

tensor, the traction-stress relation in indicial notation is ti = σijnj . On the other hand, P

is the first Piola-Kirchhoff stress defined as a two-point tensor with one-leg in the reference

configuration and the other in the current configuration, the traction-stress relation in indi-

cial notation is Ti = PiANA. The first Piola-Kirchhoff stress tensor, being a mixed tensor, is

synonymous to the deformation gradient F in nature. Note the proof of the existence of the

stress tensor is omitted, it can however be shown by utilizing Cauchy’s tetrahedron concept.

Additionally, assuming no body moments, the symmetry of the Cauchy stress σ = σT is a

direct result of the balance of angular momentum. Note also that the first Piola-Kirchhoff

stress is generally not symmetric.

We can obtain relations between the Cauchy stress and the first Piola-Kirchhoff

stress where,

P = JσF−T , PiA = JσijF
−1
Aj

(2.3.3)

and we finally introduce another common stress tensor known as the second Piola-Kirchhoff

stress S defined as

P = FS , σ =
1
J

FSFT (2.3.4)

we note that S does not lend itself to a physical interpretation in terms of tractions. None

the less, this stress tensor is defined completely in the reference configuration and is useful

when defining constitutive equations. This stress tensor is symmetric in nature.

2.4 Balance Equations

In this section the basic balance equations are introduced, with special attention

to conservation of mass, balance of linear momentum and balance of angular momentum.
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2.4.1 Conservation of Mass

We start by considering conservation of mass, where we assume that the mass of

the system remains constant. We therefore, do not consider cases where masses is added

or lost from our body. Noting that the mass density ρ0(X) is defined as mass per reference

volume and ρ(x, t) is mass per current volume, we have

m =
∫

Ω0

ρ0(X)dV =
∫

Ω
ρ(x, t)dv = constant > 0 (2.4.1)

Since, we have the relationship dv = JdV we can obtain the local form of conservation of

mass as

ρ0(X) = ρ(x, t)J (2.4.2)

2.4.2 Balance of Linear Momentum

We now consider the balance of linear momentum. The linear momentum equation

for a portion of a continuum body is simply

L(t) =
∫

Ω
ρvdv =

∫
Ω0

ρ0vdV (2.4.3)

where v is the velocity vector. The balance of linear momentum then states that the total

force acting on the body is equal to the time derivative of the linear momentum, we therefore

obtain

L̇(t) =
d

dt

∫
Ω
ρvdv =

d

dt

∫
Ω0

ρ0vdV = f (2.4.4)

where f are the total forces on the continuum body B. The total forces f are defined as
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f =
∫
∂Ω

tda+
∫

Ω
bdv

=
∫
∂Ω0

TdA+
∫

Ω0

BdV
(2.4.5)

with t and T being the spatial and reference configuration tractions respectively. Also, b

and B are the spatial and reference configuration body forces. We can now, with the help

of Cauchy’s Stress theorem, divergence theorem and Reynolds transport theorem, obtain a

local form of the balance of linear momentum. The results for both spatial and reference

configuration notation are summarized as

Current Configuration: divσ + b = ρv̇ (2.4.6)

Reference Configuration: DivP + B = ρ0v̇ (2.4.7)

where div and Div refer to the divergence operator with respect to xi and XA respectively.

These equations are the general equations of motions for a continuum body.

2.4.3 Balance of Angular Momentum

The angular momentum of a portion of a continuum about a fixed point in space

is defined as

J =
∫

Ω
r× ρvdv =

∫
Ω0

r× ρ0vdV (2.4.8)

where r is the position vector with respect to the fixed point. The balance of angular

momentum equates the time derivative of J to the total moment about the fixed point as

J̇ =
d

dt

∫
Ω

r× ρvdv =
d

dt

∫
Ω0

r× ρ0vdV = M (2.4.9)

where M are the sum of moments about a fixed point defined as
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M =
∫
∂Ω

r× tda+
∫

Ω
r× bdv

=
∫
∂Ω0

r×TdA+
∫

Ω0

r×BdV
(2.4.10)

We can reduce the balance of angular momentum equation by considering Cauchy’s

Theorem and divergence theorem to a statement on the symmetry of the Cauchy stress,

where σ = σT . We note again that the first Piola-Kirchhoff stress is generally not symmet-

ric.

2.5 Constitutive Relations

In this section a brief overview of both linear and nonlinear constitutive equations

are presented. We consider only elastic materials, which are materials whose deformation

depends only on the current state of stress without any concern for the deformation history.

These are known as path independent materials. A special type of elastic material is a

hyperelastic material, in which a free energy function W = W (F) is postulated to exist and

is defined as energy per unit reference volume. This assumption can be formulated from a

balance of energy perspective[20]. Another characteristic of hyperelastic materials is that

the work done on a closed system is zero. W is commonly referred to as a strain-energy

function. For an in-depth review of hyperelastic materials the reader is referred to Holzapfel

[20] and Ogden [21]. We note that the constitutive relation between stress and deformationa

in hyperelastic materials is defined as

P =
∂W (F)
∂F

(2.5.1)

We can write the strain energy function in terms of different parameters. For

instance, as a result of objectivity requirements we have W (F) = W (U). And we can also

write

W (F) = Ŵ (C) = W̃ (E) (2.5.2)
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note that the above function are different, however for simplicity of notation we will always

utilize W (·) as the function name, regardless of the parameters it depends on. By using the

chain rule we can obtain an alternate expression for the stress such that

P =
∂W (F)
∂F

= 2F
∂W (C)
∂C

(2.5.3)

Recalling that P = FS, we have that

S = 2
∂W (C)
∂C

=
∂W (E)
∂E

(2.5.4)

We also note that as a result of hyperelasticity we can define a 4th-order elasticity

tensors as derivatives of the strain energy function. We focus only on obtaining the tangent

for the second Piola-Kirchhoff stress. Hence, we have

CABCD = 2
∂SAB
∂CCD

= 4
∂2W (C)

∂CAB∂CCD
(2.5.5)

This gives us the material tangent and it’s an important quantity when dealing with non-

linear finite elements. We note this is not the total tangent, which is obtained from ∂P
∂F .

Since, we are concerned with fiber composites special focus will be placed on orthotropic

materials.

2.5.1 Linear Constitutive Relations

For linear elasticity, the general form of the strain energy function is W = 1
2ε ·Cε,

where ε is the small strain and C is the elasticity tensor for any elastic material. Recall,

that small strain is defined as ε = 1
2

(
dui
dxj

+ duj

dxi

)
. The stress is given as,

σ =
dW

dε
= Cε (2.5.6)

Since our interest is in unidirectional fiber composites we can specialize the form

of the elasticity tensor to transversely isotropic materials, which is a subset of orthotropic

materials. Figure. 2.2 shows a configuration of fibers in a matrix, the fibers are aligned
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along the E1 direction. A more general case can easily be considered.

When specializing the elasticity tensor to transverse isotropy we obtain the form

shown in Eqn. 2.5.7 using Voigt notation [22].



σ11

σ22

σ33

σ23

σ31

σ12


=



C11 C12 C12 0 0 0

C12 C22 C23 0 0 0

C12 C23 C22 0 0 0

0 0 0 1
2(C22 − C23) 0 0

0 0 0 0 C66 0

0 0 0 0 0 C66





ε11

ε22

ε33

2ε23

2ε31

2ε12



=



λ+ 2α+ 4µL − 2µT + β λ+ α λ+ α 0 0 0

λ+ α λ+ 2µT λ 0 0 0

λ+ α λ λ+ 2µT 0 0 0

0 0 0 µT 0 0

0 0 0 0 µL 0

0 0 0 0 0 µL





ε11

ε22

ε33

2ε23

2ε31

2ε12


(2.5.7)

Note that µL and µT are the shear moduli along the fiber direction and the trans-

verse to the fiber direction respectively. Additionally, α, λ and β are elastic constants. Their

physical meaning is not very obvious, however, they can be related to the extension moduli

and poissons ratio. To obtain the engineering moduli E11, E22, ν12, ν23, µ12 we must utilize

the elastic compliance matrix S, where S = C−1. This implies the relationship ε = Sσ.

Using this relationship and conducting experiments such that σ11 6= 0 and the rest of the

stress components are zero, we obtain the relations

ε11 = S11σ11

ε22 = S12σ11

ε33 = S12σ11

(2.5.8)

It is evident that S11 = 1/E11 and since ε11 = −ν12ε22 we have S12 = −ν12/E11. Conducting
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Figure 2.2: Schematics of fiber composite

similar experiments with σ22, σ33, etc we can obtain the form [4]

S =



1
E11

− ν21
E22

− ν21
E22

0 0 0

− ν12
E11

1
E22

− ν23
E22

0 0 0

− ν12
E11

− ν23
E22

1
E22

0 0 0

0 0 0 1
µ23

0 0

0 0 0 0 1
µ12

0

0 0 0 0 0 1
µ12


(2.5.9)

We can explicitly write the relationship between the engineering moduli and the

components of the elasticity tensor. This is done by taking the inverse of C and relating

the components to the explicit form of S. We therefore have,
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E11 =
−2C2

12 + C11(C22 + C23)
C22 + C23

E22 = −(C22 − C23)
(−2C2

12 + C11(C22 + C23)
)

C2
12 − C11C22

ν12 =
C12(C22 − C23)
C11C22 − C2

12

ν23 =
C11C23 − C2

12

C11C22 − C2
12

µ12 =
1
C66

µ23 =
E22

2(1 + ν23)

(2.5.10)

these relations will used to determine the specific engineering moduli from the elasticity

tensor that’s obtained from FEM simulations.

2.5.2 Nonlinear Constitutive Relations

There a number of strain energy functions [21] that can be used in nonlinear

elasticity. However, our focus will be on the simplest form, which is known as the Kirchhoff-

St.Venant material model. This is an extension of Hooke’s law as identified for linear

elasticity. The strain energy function is defined as

W (E) =
1
2
E : C : E (2.5.11)

where E is the Lagrangian strain and C is the material elasticity tensor. Therefore, the

second Piola-Kirchhoff stress is then defined as

S =
∂W

∂E
= C : E (2.5.12)

we make note, that this strain energy function does not satisfy the basic so called growth

conditions [20]. Specifically, as det(F) → 0 the stress goes to zero. This is physically

unrealistic. Nonetheless, since for our interest J will generally be close to 1 this material
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model can still be used and is employed for all ensuing analysis
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Chapter 3

Finite Element Method

3.1 Introdution

There are two main approaches to analyze finite deformation problems using the

finite element method. The first is what is known as the total lagrangian methodology and

the second is known as the updated lagrangian. The adopted method in this chapter is the

total lagrangian and will be briefly introduced. For a full account of developing the finite

element method for both linear and non-linear problems the reader is referred to Hughes

and Pister. [23], Hughes. [24], Zienkiewicz and Taylor.[25] and Belytshko et al. [26].

3.2 Total Lagrangian Formulation

This method relies on executing all calculations on the reference configuration. As

such, the boundary value problem is solved in the reference configuration. The strong form

is defined with reference to Chapter 2 as

DivP + ρ0b = ρ0ẍ

u = û on Γ0,u, T = T̂ on Γ0,T (3.2.1)

where Γ0,u ∪ Γ0,T = Γ is the boundary of the domain. Also Div refers to the divergence

with respect to the reference configuration( i.e DivP = ∂PiA
∂XA

ei). As noted previously, P

is the first Piola Kirchhoff stress and is related to the Cauchy stress as σ = J−1PFT .
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An additional stress description is the second Piola Kirchhoff stress defined previously as

S = F−1P.

Considering the static case, we begin by deriving the weak form of the boundary

value problem defined in Eqn. 3.2.1. This is achieved by multiplying Eqn. 3.2.1 by a test

function v and integrating. Hence,

∫
Ω0

v · (DivP + ρ0b) dΩ0 = 0, ∀v (3.2.2)

We consider the first term of the integral equation and rewrite it utilizing the divergence

theorem, we obtain after with some manipulations that

∫
Ω0

v ·DivPdΩ0 =
∫

Ω0

(
Div(PTv)−Gradv : PT

)
dΩ0

=
∫

Ω0

(∇X · (PTv)−∇Xv : PT
)
dΩ0

=
∫

Γ0

(PTv) ·NdΓ0 −
∫

Ω0

∇Xv : PTvdΩ0

=
∫

Γ0

v ·PNdΓ0 −
∫

Ω0

∇Xv : PTdΩ0

=
∫

Γ0

v ·TdΓ0 −
∫

Ω0

∇Xv : PTdΩ0

(3.2.3)

where T is the Piola traction and N is the surface normal in the reference configuration.

Plugging Eqn.3.2.3 into Eqn.3.2.2 we obtain the following result for the weak form

∫
Ω0

∇Xv : PTdΩ0 =
∫

Γ0

v ·TdΓ0 +
∫

Ω0

ρ0v · bdΩ0 (3.2.4)

which must hold for all v and v|Γ0,u = 0. We note that in the so called weak form we no

longer require the differentiability of the stress. Hence, we have weakened the smoothness

of the field when compared to the strong form.

We proceed by considering hyperelastic materials which, as discussed in Chapter 2

are defined by assuming the existence of a Helmholtz free-energy function W (F), defined

per unit reference volume. In addition from Chapter 2 recall that the second Piola-Kirchhoff

stress is defined as
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S =
∂W (E)
∂E

(3.2.5)

where E = 1
2(C− I) and C = FTF.

The equation we are trying to solve are nonlinear, since this is hard we resort to

approximating them. Therefore, we linearize our equations of motion and utilize Newton’s

method to obtain a solution to the original problem. The mathematical theory for lineariza-

tion as applied to the finite element method was first introduced by Hughes and Pister [23],

and is the subject of the next section.

3.2.1 Linearization of the Equations of Motion

For simplicity, we start off by assuming that the tractions and body forces are not

functions of the displacement. This means that no follower forces can be considered, to

include these types of effects the traction would have to be linearized. Linearization is done

through the Gateaux derivative, which is defined as

D∆u[Ψ(u)] =
d

dw
Ψ(u + w∆u)|w=0 (3.2.6)

this states that we are taking the derivative of Ψ with respect to u and in the direction

of ∆u. The derivative clearly depends on the direction, and is a generalization of the

directional derivative. To linearize the weak form found in Eqn. 3.2.4 we take the Gateaux

derivative of the internal energy component Wint =
∫

Ω0
∇Xv : PTdΩ0 with respect to the

displacement u and in the direction ∆u. Notice, since we are assuming that the tractions

and body forces do not depend on the displacement, we do not need to linearize them.

Hence we have the following statement

D∆u[Wint(u)] = D∆u

[∫
Ω0

∇Xv : PTdΩ0

]
= D∆u

[∫
Ω0

∇Xv : SFTdΩ0

]
=
∫

Ω0

∇Xv : D∆u[SFT ]dΩ0

=
∫

Ω0

∇Xv : D∆u[S(E(u))]FT︸ ︷︷ ︸
Kmat=MATERIAL TANGENT

+ ∇Xv : SD∆u[F(u)T ]︸ ︷︷ ︸
Kgeo= GEOMETRIC TANGENT

dΩ0

(3.2.7)
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We will consider each component in Eqn. 3.2.7 individually. Starting with the

material tangent component we make use of the trace property that tr(ABC) = tr(CAB),

therefore allowing us to write

Kmat =
∫

Ω0

tr(∇XvD∆u[S(E(u))]FT )dΩ0

=
∫

Ω0

tr(FT∇XvD∆u[S(E(u))])dΩ0

=
∫

Ω0

FT∇Xv : D∆u[S(E(u))]dΩ0

(3.2.8)

Since S = S(E(u)) we can utilize the chain rule to obtain thatD∆u[S(E(u))] = ∂S
∂ED∆u[E(u)],

and plug this result back into Eqn 3.2.8. Recall that ∂S
∂E = C, which are the material prop-

erties.

We now proceed with the linearization of both the Green-Lagrange strain and the

deformation gradient. We start with the deformation gradient defined as F = dx
dX = du

dX + I

and its linearization is

D∆uF (u) =
d

dw
F (u + w∆u)|w=0

=
d

dw

(
d(u + w∆u)

dX
+ I
)
|w=0

=
d

dw

(
H + w

d∆u
dX

)
|w=0

=
d∆u
dX

= ∇X∆u

(3.2.9)

Now we consider the Green-Lagrange strain defined as E = 1
2

(
FTF− I

)
and its linearization

is
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D∆u[E(u)] =
d

dw
E(u + w∆u)|w=0

=
1
2
d

dw
(F(u + w∆u)TF(u + w∆u)− I)|w=0

=
1
2
d

dw

[(
d(u + w∆u)

dX
+ I
)T (d(u + w∆u)

dX
+ I
)

+ I

]

=
1
2

[(
du
dX

T

+ I
)
d∆u
dX

+
(
d∆u
dX

)T ( du
dX

+ I
)]

=
1
2

[
FT∇X∆u + (∇X∆u)T F

]

(3.2.10)

With these results we can expand the complete linearized form of the internal

energy, continuing on from Eqn. 3.2.8 and plugging in the result from Eqn. 3.2.10 we have

the material tangent expressed as

Kmat =
∫

Ω0

FT∇Xv :
∂S
∂E

D∆u[E(u)]dΩ0

=
1
2

∫
Ω0

FT∇Xv :
∂S
∂E

[
FT∇X∆u + (∇X∆u)T F

]
dΩ0

=
∫

Ω0

FT∇Xv :
∂S
∂E

sym[FT∇X∆u]dΩ0

=
∫

Ω0

FT∇Xv :
∂S
∂E

[FT∇X∆u]dΩ0

(3.2.11)

Now we consider the geometric component of the stiffness matrix found in Eqn. 3.2.7 and

plug in the result from Eqn. 3.2.9 to obtain

Kgeo =
∫

Ω0

∇Xv : SD∆u[F(u)T ]dΩ0

=
∫

Ω0

∇Xv : S
(
∂∆u
∂X

)T
dΩ0

=
∫

Ω0

∇Xv : S (∇X∆u)T dΩ0

(3.2.12)

So our final linearized form of the balance of linear momentum equations are



3.2. TOTAL LAGRANGIAN FORMULATION 24

D∆u[Wint] =
∫

Ω0

FT∇Xv :
∂S
∂E

[FT∇X∆u]dΩ0 +
∫

Ω0

∇Xv : S (∇X∆u)T dΩ0 (3.2.13)

3.2.2 Finite Element Discretization

In this section the finite element discretization process is introduced. The domain

Ω0 of a continuum is discretized into smaller finite elements Ω0,e, where Ω0 = ∪Ω0e. This

is illustrated in Figure. 3.1

Ω
Ωemesh

Figure 3.1: The figure shows the finite element discretization. The left image shows the
global domain Ω0 and the left part shows the mesh of the global domain with element Ω0,e

The motion x(X, t) is approximated in a finite element as

x = XIN(X)I (3.2.14)

where NI are the shape functions, or generally speaking interpolation functions, and XI

are the nodal position vector at node I and summation over I is implied. We can also

approximate the test function as

v = bIN(X)I

vi = biINI

(3.2.15)

where biI are nodal values. From our linearized form, for simplicity of notation replace ∆u
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with u and we have the following approximation for the unknown variable

u = aIN(X)I

ui = aiINI

(3.2.16)

again aiI are the nodal values that we need to solve for. With this in mind we can approx-

imate ∇Xv and ∇Xu in terms of the shape functions as

∇Xu =
∂ui
∂XA

=
∂NIaiI
∂XA

=
∂NI

∂XA
aiI

(3.2.17)

the same expression is obtained for the gradient of the test function v.

We start by considering the linearized form of Wint found in Eqn. 3.2.13 and

plugging in the finite element approximations. In indicial notation Eqn. 3.2.13 becomes

D∆u[Wint] =
∫

Ω0

FiA
∂vi
∂XB

∂SAB
∂ECD

FjC
∂uj
∂XD

dΩ0 +
∫

Ω0

∂vi
∂XA

SAB
∂ui
∂XB

dΩ0 (3.2.18)

plugging in the approximations we obtain

D∆u[Wint] =
∫

Ω0

FiA
∂NI

∂XB
biI

∂SAB
∂ECD

FjC
∂NJ

∂XD
ajJdΩ0

+
∫

Ω0

∂NI

∂XA
biISAB

∂NJ

∂XB
aiJdΩ0

(3.2.19)

then factoring out biI and ajJ as common factors we get

D∆u[Wint] = biI

[∫
Ω0

FiA
∂NI

∂XB

∂SAB
∂ECD

FjC
∂NJ

∂XD
dΩ0

+δij
∫

Ω0

∂NI

∂XA
SAB

∂NJ

∂XB
dΩ0

]
ajJ

(3.2.20)

Now consider the finite element approximation of the body force term and the
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applied traction term to get

∫
Γ0

v.TdΓ0 +
∫

Ω0

ρ0v.fdΩ0 =
∫

Γ0

viTidΓ0 +
∫

Ω0

ρ0vifidΩ0

=
∫

Γ0

NIbiITidΓ0 +
∫

Ω0

ρ0NIbiIfidΩ0

= biI

[∫
Γ0

NITidΓ0 +
∫

Ω0

ρ0NIfidΩ0

] (3.2.21)

Lastly, we need to approximate the non-linearized internal energy and we have that

Wint =
∫

Ω0

∇Xv : PTdΩ0 =
∫

Ω0

FT∇Xv : SdΩ0

=
∫

Ω0

FiA
∂vi
∂XB

SABdΩ0

=
∫

Ω0

FiA
∂NI

∂XB
biISABdΩ0

= biI

[∫
Ω0

FiA
∂NI

∂XB
SABdΩ0

]
(3.2.22)

Keeping in mind Eqn. 3.2.4 we have from Eqn. 3.2.21 and Eqn. 3.2.22 that

biI

[∫
Ω0

FiA
∂NI

∂XB
SABdΩ0 −

∫
Γ0

NITidΓ0 +
∫

Ω0

ρ0NIfidΩ0

]
= 0 (3.2.23)

and since Eqn. 3.2.4 is true ∀v and therefore biI are arbitrary we have that

∫
Ω0

FiA
∂NI

∂XB
SABdΩ0 −

∫
Γ0

NITidΓ0 +
∫

Ω0

ρ0NIfidΩ0 = 0 (3.2.24)

this in turn allows us to neglect the biI from the linearized form of the internal energy and

hence we have what are known as the internal forces,

fint =
[∫

Ω0

FiA
∂NI

∂XB

∂SAB
∂ECD

FjC
∂NJ

∂XD
dΩ0 + δij

∫
Ω0

∂NI

∂XA
SAB

∂NJ

∂XB
dΩ0

]
ajJ (3.2.25)
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we can proceed to use these approximation for an iterative procedure of the Newton type.

3.2.3 Newton’s Method

Newton’s method is commonly used to solve a set of non-linear equations, similar

to the ones obtained from the balance of linear momentum defined in Eqn. 3.2.4. The

general statement for solving a nonlinear function ψ = 0 according to Newton’s method is

ψk+1 = ψk +
∂ψ

∂u

∣∣∣k duk = 0 (3.2.26)

where k is the iteration counter and the tangent stiffness is defined as KT = −∂ψ
∂u , we obtain

that the general algorithm

Kk
Tdu

k = ψk (3.2.27)

and uk+1 = uk + duk. For the set of equations from the finite element discretization, our

ψ function is

ψ =
∫

Ω0

FiA
∂NI

∂XB
SABdΩ0 −

∫
Γ0

NITidΓ0 +
∫

Ω0

ρ0NIfidΩ0 = 0 (3.2.28)

and the tangent stiffness is then

KT =
∫

Ω0

FiA
∂NI

∂XA

∂SAB
∂ECD

FjC
∂NJ

∂XD
dΩ0︸ ︷︷ ︸

Kmat

+ δij

∫
Ω0

∂NI

∂XA
SAB

∂NJ

∂XB
dΩ0︸ ︷︷ ︸

Kgeo

(3.2.29)

and plugging everything into Eqn. 3.2.26, we obtain the following

∫
Ω0

F kiA
∂NI

∂XB
SkABdΩ0 −

∫
Γ0

NIT
k
i dΓ0 +

∫
Ω0

ρ0NIf
k
i dΩ0 =[∫

Ω0

F kiA
∂NI

∂XA

∂SkAB
∂EkCD

F kjC
∂NJ

∂XD
dΩ0 + δij

∫
Ω0

∂NI

∂XA
SkAB

∂NJ

∂XB
dΩ0

]
dukjJ

(3.2.30)

which allows us to solve for the displacement increment dukjJ .
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3.2.4 Isoparametric Elements

We now explicity identify the shape function N(X)I by defining a master element

over which all calculations are conducted. This makes the process systematic. We express

N(X)I = N(X(ζ)I = N̂(ζ)I , with ζ being a local coordinate system of the master element.

A pictorial description is shown in Figure. 3.2

1
2

3
4

1 2

34

ζ2

ζ1

dXi

dζj

X1

X2

Figure 3.2: Isoparametric mapping in two dimensions for a 4 node quadrilaterial. The
left part shows the true mesh, while the right part shows the master element over which
all calculations are conducted. The two are related through dXi

dζj
, which is a deformation

gradient

An element is called isoparametric, if the shape functions for interpolating the

position vectors X is the same as that for interpolating u. We will limit our discussion to

these types of elements. Note that dX = F̃dζ, with F̃ = dXA
dζj

being the mapping from the

master element to the reference mesh.

The master element shape functions form a nodal basis. For a 8 nodded three

dimensional brick element we can construct the following shape functions

N1 =
1
8

(1 + ζ1)(1− ζ2)(1− ζ3) N2 =
1
8

(1 + ζ1)(1 + ζ2)(1− ζ3)

N3 =
1
8

(1− ζ1)(1 + ζ2)(1− ζ3) N4 =
1
8

(1− ζ1)(1− ζ2)(1− ζ3)

N5 =
1
8

(1 + ζ1)(1− ζ2)(1 + ζ3) N6 =
1
8

(1 + ζ1)(1 + ζ2)(1 + ζ3)

N7 =
1
8

(1− ζ1)(1 + ζ2)(1 + ζ3) N8 =
1
8

(1− ζ1)(1− ζ2)(1 + ζ3)

(3.2.31)

Since, the master element shape functions are defined we can use the chain rule
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1
2

3
4

1 2

34

ζ2

ζ1

dXi

dζj

X1

X2

ζ1

ζ2

ζ3

1 2

34

5 6

78

Figure 3.3: This is a 8 nodded brick showing the master element number scheme along with
the local coordinate system(ζi).

to rewrite the gradient of the shape functions as

∂NI

∂XA
=
∂NI

∂ζi

∂ζi
∂XA

(3.2.32)

where ∂NI
∂ζi

can be explicitly computed from Eqn. 3.2.31. This makes the computations much

easier as we keep track of one set of shape functions and all calculations are conducted on

that master element.

3.3 Dynamic Finite Elements with Explicit integration

In this section, we maintain the dynamic character of the balance of linear momen-

tum and setup an explicit time integration scheme. Again, the balance of linear momentum

equation in referential form was given in Eqn. 3.2.1 and is restated below

DivPT + ρ0f = ρẍ (3.3.1)

from this equation we reformulate the weak form and apply a finite element discretization in

the spatial dimension and finite difference method in time. Again, we start by multiplying

the BLM by the test function v and integrating, we have
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∫
Ω0

v · (DivPT + ρ0f
)
dΩ0 −

∫
Ω0

v · ρ0ẍdΩ0 = 0 (3.3.2)

Thus, the weak form of the equations becomes,

∫
Ω0

∇Xv : PTdΩ0 −
∫

Γ0

v ·TdΓ0 −
∫

Ω0

ρ0v · fdΩ0 +
∫

Ω0

ρ0v · ẍdΩ0 = 0 (3.3.3)

We now have the acceleration term in the weak form. We can recast the acceleration term

using a finite difference approximation, such that

u̇(t+ ∆t) =
u(t+ ∆t)− u(t)

∆t

u̇(t) =
u(t)− u(t−∆t)

∆t

(3.3.4)

and the acceleration is then

ü =
u̇(t+ ∆t)− u̇(t)

∆t

=
u(t+∆t)−u(t)

∆t − u(t)−u(t−∆t)
∆t

∆t

=
u(t+ ∆t)− 2u(t) + u(t−∆t)

∆t2

=
uL+1 − 2uL + uL−1

∆t2

(3.3.5)

For an explicit scheme we have the general formula y(t + dt) = f(y(t)), in other

words our function calculation depends only on values that are already knows, hence plug-

ging the time discretization into the weak form we obtain

∫
Ω0

∇Xv : (PT )LdΩ0 −
∫

Γ0

v ·TLdΓ0 −
∫

Ω0

ρ0v · fLdΩ0 +
∫

Ω0

ρ0v · x
L+1 − 2xL + xL−1

∆t2
dΩ0 = 0

(3.3.6)

Using the previously described finite element discretization in the static case of
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ui = aiINI and v = biINI and plugging back into the weak form we get

∫
Ω0

∂vi
∂XA

PLjAΩ0 −
∫

Γ0

viT
L
i dΓ0 −

∫
Ω0

ρ0vif
L
i dΩ0 +

∫
Ω0

ρ0vi
xL+1
i − 2xLi + xL−1

i

∆t2
dΩ0 =∫

Ω0

biI
∂NI

∂XA
PLjAΩ0 −

∫
Γ0

biINIT
L
i dΓ0 −

∫
Ω0

ρ0biINIf
L
i dΩ0

+
∫

Ω0

ρ0biINI
aL+1
iJ NJ − 2aLiJNJ + aL−1

iJ NJ

∆t2
dΩ0 = 0

(3.3.7)

extracting the biI term we have the form∫
Ω0

∂NI

∂XA
PLjAΩ0 −

∫
Γ0

NIT
L
i dΓ0 −

∫
Ω0

ρ0NIf
L
i dΩ0

+
aL+1
iJ − 2aLiJ + aL−1

iJ

∆t2

∫
Ω0

ρ0NINJdΩ0 = 0
(3.3.8)

We can now define the mass matrix as M =
∫

Ω0
ρ0NINJdΩ0 and the following expression

ensues

∫
Ω0

∂NI

∂XA
PLjAΩ0 −

∫
Γ0

NIT
L
i dΓ0 −

∫
Ω0

ρ0NIf
L
i dΩ0 +

MIJ

∆t2
(aL+1
iJ − 2aLiJ + aL−1

iJ ) = 0

(3.3.9)

rearranging the system we obtain the following expression for the displacement update

aL+1
iJ =

(
MIJ

∆t2

)−1(
−
∫

Ω0

∂NI

∂XA
PLjAΩ0 +

∫
Γ0

NIT
L
i dΓ0 +

∫
Ω0

ρ0NIf
L
i dΩ0

)
+ 2aLiJ − aL−1

iJ

(3.3.10)

The algorithm in Eqn. 3.3.10 is suitable only for constant time step. However, for

most purposes the time step will be changing due to deformation(Consequence of finding

the critical time step). The only difference in the derivation arises from this modification



3.3. DYNAMIC FINITE ELEMENTS 32

u̇(t+ ∆t) =
u(t+ ∆t)− u(t)

∆tL

u̇(t) =
u(t)− u(t−∆t)

∆tL−1

(3.3.11)

plugging this expression back into the acceleration we obtain the following algorithm

aL+1
iJ =

(
MIJ

(∆tL)2

)−1(
−
∫

Ω0

∂NI

∂XA
PLjAΩ0 +

∫
Γ0

NIT
L
i dΓ0 +

∫
Ω0

ρ0NIf
L
i dΩ0

)
+ ∆tLu̇L + aL−1

iJ

=
(

MIJ

(∆tL)2

)−1(
−
∫

Ω0

∂NI

∂XA
PLjAΩ0 +

∫
Γ0

NIT
L
i dΓ0 +

∫
Ω0

ρ0NIf
L
i dΩ0

)
+ ∆tL

(
aLiJ − aL−1

iJ

∆tL−1

)
+ aL−1

iJ

(3.3.12)

3.3.1 Diagonal Mass Matrix Estimation

The mass matrix M needs to be computed from M =
∫

Ω0
ρ0NINJdΩ0. However,

computing this with regular gauss quadrature will result in a non-diagonal matrix. This

means that we must find M−1 in a general setting. However, to avoid this expensive

calculation we can build the mass matrix as a diagonal matrix if we use the nodal positions

for the quadrature rule. This is done using the trapezoidal rule with quadrature points at

ζ = ±1 and weights w = 1. Hence, the integration can be estimated as

M =
∫

Ω0

ρ0NINJdΩ0

=
∫

Ω0

ρ0NINJJdΩ0

=
∫ 1

−1

∫ 1

−1

∫ 1

−1
ρ0NINJJdζ1dζ2dζ3

=
2∑
i=1

2∑
j=1

2∑
k=1

ρ0wiwjwkN(ζi1.ζ
j
2 , ζ

k
3 )IN(ζi1.ζ

j
2 , ζ

k
3 )J

(3.3.13)

Since the integration is over the nodal positions only diagonal terms appear in the matrix.
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This makes the inverse trivial to compute.

3.3.2 Stability of Explicit Integration

Generally speaking explicit schemes are conditionally stable. To maintain stability

the CFL condition must be satisfied, refer to Cook et al [27] for details. This is stated as

∆tc
L
≤ 1 (3.3.14)

where L is defined as the characteristic length of an element and c =
√
E/ρ is the wave

speed, with ρ being the current density and E the Young’s modulus. The equation can be

rearranged to define the critical time step as

∆tcrit ≤ L

c
(3.3.15)

This calculation is conducted over each element in the analysis and the final time step is

the smallest ∆tcrit over all the elements. The characteristic length is defined as the shortest

length in an element, this will result in a conservative critical time step.
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Chapter 4

Homogenization Techniques

In this chapter the average material properties of fiber composites are determined

using homogenization techniques. There has been extensive work in this field which in-

cludes the contributions of Aboudi [2], Nemat-Nasser [1], Christensen [4], C.T.Sun [28]

and Zohdi [29]. The methods include both analytical approaches to obtaining bounds on

the material properties to numerical experiments using the Finite Element Method. The

above references have focused on homogenization for linear elasticity. There have also been

advances on the front of homogenization in finite elasticity with works from Temizer [30],

Wriggers [31], Khisaeva [32] and Kanit et al. [33]. The focus of this chapter will be on

linear elastic materials with special attention to fiber composites. Although our focus is on

fiber composites, the numerical approaches are valid for any set of particle morphologies.

Numerical homogenization for isotropic macroscopic material properties for various particle

morphologies has been analyzed by Temizer [34].

4.1 Homogenization in Linear Elasticity

Typically materials have multiple constituents in them, i.e they are heterogeneous.

However, at sufficiently low magnification we see a uniform material. For example, in the

case of metals on the macroscopic scale we do not see the microscopic grains. When material

tests are conducted on for example, a sample of aluminum, the results are the material

properties in an average sense. These average properties are essential to engineering design.

To illustrate the effect of homogenization Figure 4.1 shows an illustration of the expected
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response in a one dimensional test. The first test includes the micro-constituents and

we find that the displacement response is non-uniform due to variation of the material

properties. On the other hand, the second test is of a homogenized material and we find

the displacement response to be smooth throughout the body.









Figure 4.1: This figure qualitatively shows the response of heterogeneous material on the
left and a material with homogeneous material properties on the right

When thinking of homogenization we can identify two boundary value problems,

the first identified with the exact material properties C(x) defined in the weak sense as

Find u ∈ H1(Ω),u|Γu = d,where ∀v ∈ H1(Ω)∫
Ω
∇u : C(x) : ∇vdΩ =

∫
Ω

f .vdΩ +
∫

Γt

t.vdΓ (4.1.1)

where, t = σn on Γt. Numerically resolving this problem is not tractable. Therefore

through the process of homogenization we solve an approximate problem with homogenized

material properties C∗ under the same boundary conditions as the heterogenous boundary

value problem such that

Find u∗ ∈ H1(Ω),u∗|Γu = d,where ∀v ∈ H1(Ω)∫
Ω
∇u∗ : C∗ : ∇vdΩ =

∫
Ω

f .vdΩ +
∫

Γt

t.vdΓ (4.1.2)

hence, we must identify C∗ which is referred to as the effective, homogenized or macroscopic

material properties. We note also that H1 denotes the Hilbert space in which the finite
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element solution exists. The corresponding norm in this space is identified as ||u||H1 =∫
Ω
∂u
∂x : ∂u∂xdΩ +

∫
Ω u · udΩ.

4.2 Identification of a Representative Volume Element

To obtain a relation between the micro-macro scales we must take a sample that

is representative of the micro-constituents, this sample is known as a representative volume

element (RVE) and can be thought of as a continuum material point. There are a number

of definitions for an RVE. However, a typical definition starts by expressing a separation of

scales between the micro and macro ranges. To this end, the characteristic lengths of the

components are first identified as

1. Structural Scale: L1

2. Representative Volume Element(RVE) scale: L2

3. Micro-constituent scale: L3

we then require that L1 >> L2 and L2 >> L3, as illustrated in Figure. 4.2. The size

differences between the characteristic lengths allows us to identify a uniform material at

every point. In turn, this is a requirement on the size of the RVE, meaning that stress-

strain response for a given RVE must be independent of the microstructural variations in

the structural scale. Hence, the RVE is statistically representative and therefore we can

take a sample from anywhere in the structural scale.

With an RVE identified we can calculate the homogenized properties through a

relationship between averages where we have

〈σ〉 = C∗ : 〈ε〉 (4.2.1)

and the notation 〈·〉 = 1
Ω

∫
Ω ·dΩ indicates the average over a volume Ω. In this case the

stress and strain are computed over the RVE and are averaged to obtain the relationship

identified in Eqn. 4.2.1. This is the fundamental basis behind statistical homogenization.
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C∗

C1

C2

L1

L3

L1 ! L2 ! L3

Use      as  

material 

property

C∗ Homogenize

Heterogeneous body

L2

Figure 4.2: Homogenization process and description of separation of scales showing that
L1 � L2 � L3. Also C1 is the matrix material property while C2 is the fiber/particle
material property and C∗is the homogenized material property

4.3 Micro-Macro Energy Balance

The micro-macro energy balance states that average energy of the heterogenous

material is equal to the energy of the homogenous material. This is mathematically stated

as

〈σ : ε〉 = 〈σ〉 : 〈ε〉 (4.3.1)

This is known as Hill’s condition. Further details and proof of the energy balance is found

in Hill [35] and Huet [36]. To satisfy the condition in Eqn. 4.3.1 the following boundary

conditions are used

1. Linear displacement

u|δΩ = E .x (4.3.2)

2. Constant traction
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t|δΩ = L.n (4.3.3)

where E ,L are constant strain and stress tensors. Note, that when using these special

boundary conditions Eqn 4.3.1 is satisfied regardless of the size of the RVE. Since either of

these conditions can be used to obtain the macroscopic response we note that depending

on the size of the RVE, each test would give a different result that bounds the real effective

property. Hence, from Huet [36] we have the following conditions

〈σ〉 = Cε : 〈ε〉, Linear displacement (4.3.4)

〈σ〉 = Cσ : 〈ε〉, Constant traction (4.3.5)

and the following bound is obtained

Cσ ≤ C∗ ≤ Cε (4.3.6)

we refer to Cε and Cσ as the apparent macroscopic properties. While C∗ is referred to the

effective, homogenized or macroscopic properties. Moreover, as illustrated in Figure. 4.3

as the RVE size increases the results from both tests converge to the same value. This is

another definition of an RVE, which states that the appropriate size of the RVE is obtained

when the material response from both constant traction and linear displacement boundary

conditions are equivalent.

4.4 Average Strain-Stress Theorem

In this section we briefly state the average stress/strain theorem. The theorem is

straightforward and a full derivation can be found in Zohdi [29]. We start by considering a

heterogeneous body loaded uniformly on its boundary by Eqn. 4.3.2. The result states that

for a perfectly bonded material that 〈ε〉Ω = E . A similar statement can be shown when

the boundary condition defined by Eqn. 4.3.3 is used. Specifically, the result states that

under these boundary condition the average stress 〈σ〉Ω = L. Therefore, these boundary
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Figure 4.3: Effect of Boundary Condition type on homogenization. Specifically showing
that traction boundary conditions produce a lower bound on the material properties, while
displacement boundary conditions produce an upper bound with the two approaching the
real effective property as the RVE size increases.

conditions are also sometimes called homogenous boundary condition because when applied

on a uniform/homogeneous body the stress/strain response is homogeneous(the same at

every material point).

4.5 Analytical Bounds

Our interest is to derive the average properties of the elasticity tensor such that

〈σ〉 = C∗〈ε〉 (4.5.1)

where, C∗ is the effective elasticity tensor.

In the general case when the material is fully anisotropic a full set of 6 tests are

necessary. Each test will recover a column of material properties. Depending on whether

we use constant strain or constant stress the average properties will be different. These two

different boundary conditions will result into bounds on the effective material properties.

They are generally known as Voigt-Reuss bounds. Voigt assumed that the strain field is

constant, 〈ε〉 = ε0, in a representative volume element. Hence, 〈σ〉 = 〈Cε〉 = 〈C〉ε0. On the

other hand, Reuss assumed that the stress field is constant in an RVE, 〈σ〉 = σ0, hence,
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we have the relation that 〈ε〉 = 〈C−1σ〉 = 〈S〉σ0. Therefore, 〈C〉 = 〈S〉−1. The following

bounds [36] are therefore obtained

〈S〉−1 ≤ C∗ ≤ 〈C〉 (4.5.2)

we note that inequality is a measure of the eigenvalues, where the difference in the eigen-

values of C∗ − 〈S〉−1 ≥ 0 and 〈C〉 − C∗ ≥ 0. We note that these bounds are generally not

accurate. For a macroscopically anisotropic material with isotropic constituents the pre-

dicted bounds would be isotropic. This is obviously a weakness of these analytical results

when our interest is fiber composites.

We now consider the Hashin-Rosen bounds which are described in detail in Hashin

and Rosen. [37] and in Christensen. [4]. These bounds generally provide much tighter bounds

than the Voigt-Reuss bounds. They also produce macroscopically transversely isotropic

effective bounds. The results are obtained using the minimum theories of elasticity and

presume µ1 > µ2 and κ1 > κ2, where κ is the bulk modulus of the given phase defined as

κ = −1
3

Eµ
E−2µ . The bounds are summarized in Eqns. 4.5.3-4.5.7

K2 +
v1

1/(K1 −K1) + v2/(K2 + µ2)
≤ K23 ≤ K1 +

v2

1/(K2 −K1) + v1/(K1 + µ1)
(4.5.3)

µ2 +
v1

1/(µ1 − µ2) + v2(K2 + 2µ2)/2µ2(K2 + µ2)

≤ µ23 ≤ µ1 +
v2

1/(µ2 − µ1) + v1(K1 + 2µ1)/2µ1(K1 + µ1)
(4.5.4)

µ2 +
v1

1/(µ1 − µ2) + v2/2µ2
≤ µ12 ≤ µ1 +

v2

1/(µ2 − µ1) + v1/2µ1
(4.5.5)

v1v2

v1/K2 + v2/K1 + 1/µ2
≤ E11 − v1E1 − v2E2

4(ν1 − ν2)2
≤ v1v2

v1/K2 + v2/K1 + 1/µ1
(4.5.6)
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v1v2

v1/K2 + v2/K1 + 1/µ2
≤ ν12 − v1ν1 − v2ν2

(ν1 − ν2)(1/K2 − 1/K1)
≤ v1v2

v1/K2 + v2/K1 + 1/µ1
(4.5.7)

where K = κ+ 1
3µ, K23 = 1

2(C22 +C23) and we also have the follow relationship for E22 as

E22 =
4µ23K23

K23 + µ23 + 4ν2
12µ12K23/E11

(4.5.8)

4.6 Numerical RVE Size

We now focus on numerical homogenization. Although analytical bounds exist

to obtain effective properties, they are generally not very accurate. To obtain better esti-

mates on the effective properties, we utilize numerical techniques as described in Chapter 3.

Using the finite element methods allows considerable freedom in understanding various ef-

fects that are not captured through analytical methods. For example, the effect of various

micro-constituent geometries on the effective properties can be explored, also anisotropic

micro-constituents can be added. To obtain the size of an RVE we must be able to find the

pointwise strain/stress fields in a sample of material. In addition, the boundary conditions

applied on the RVE are those which satisfy hills condition. Since in the limit, the macro-

scopic property C∗ is independent of the type of applied boundary condition, we explain the

numerical process with attention to the linear displacement boundary conditions. We begin

by assuming a small RVE size with some set number of micro-constituents and extracting

the macroscopic property CI
ε , where I denotes the RVE size. The sample size is subse-

quently increased by adding more micro-constituents and obtaining a new approximation

CI+1
ε . The process of increasing the size of the RVE is illustrated in Figure. 4.4. We can

then define the converged macroscopic property when

||CI+1
ε − CI

ε ||
||CI

ε ||
≤ TOL (4.6.1)

Once we have a converged result we can assume that C∗ ≈ Cε. This same process is

applicable to the case of constant traction boundary conditions.



4.7. ENSEMBLE AVERAGING 43



Figure 4.4: Increasing the size of the RVE by including more fibers in the domain

4.7 Ensemble Averaging

When considering random fibers, for a given sample size, we can create different

realizations or instances of that size. Therefore, to quantify the randomness it is important

to consider multiple samples with different random orientations and average the results.

This is known as ensemble averaging and is illustrated in Figure. 4.5 . We mathematically

define the ensemble average when considering linear displacement boundary conditions as

〈〈Cε〉〉N =
1
N

N∑
i=1

Ci
ε (4.7.1)

Figure 4.5: Different samples for same number of fibers. Note the different realizations of
the fiber positions

where N is the number of samples. We can also set a convergence parameter for the

ensemble average such that

||〈〈Cε〉〉N+1 − 〈〈Cε〉〉N ||
||〈〈Cε〉〉N || ≤ TOL (4.7.2)
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we note that for a small RVE size with few micro-constituents the variation between samples

is larger than that of a large RVE. Hence we usual require more samples for a converged

ensemble average when looking at smaller RVEs.
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Chapter 5

Numerical Experiments in

Homogenization

In this chapter a summary of the results we have obtained from homogenization

of random unidirectional fibers in linear elasticity is presented. Particularly, we explore the

issues involved in ensemble averaging and identification of the RVE size. These numerical

experiments are conducted for different volume fractions and the resulting homogenized

properties are compared to some of the analytical bounds described in the previous chapter.

We also make a note of the computational cost at the different volume fractions.

5.1 Finite Element Considerations

The finite element method was introduced in Chapter. 3. In this section some

issues concerning the modeling of RVE’s will be considered. In particular, we are trying

to model a sample of a heterogeneous material and in this case fibers inside a matrix.

Since, the material is heterogeneous the accuracy of the mesh is essential to capture the

material jumps. Figure. 5.1 illustrates an approach to obtain higher accuracy when there

are material jumps for a noncomforming uniform mesh. A nonconforming uniform mesh

is used for simplicity. However, ideally a material specific (conforming) mesh would be

desirable. The idea states that if an element contains multiple materials, the number of

gauss points is increased to better capture the material jumps. In elements, where the

material is uniform the minimum number of gauss points is used.
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Figure 5.1: This is a schematic of an RVE with fiber showing the mesh along with the
variation of Gauss points depending on element location. Specifically, if the element is in
one material then less gauss points are used while if the element is shared by the fiber and
matrix then more gauss points are used to better sample the region.

5.2 RVE Setup

In this section a description of setting up three dimensional RVEs is summarized.

To create an RVE, unidirectional fibers are randomly distributed inside a cube as shown

in Figure. 5.2. Figure. 5.3 shows a cross section of two sets of random fiber positions.

The specific parameters that dictate the size of the RVE include the fiber volume fraction

νf = Ωf

Ω , where Ωf is the total volume of the fiber phase and Ω is total volume of the RVE.

Also, the number of random fibers in the matrix, N and the radius of the fiber, r. Given,

νf , N and r the length of on side of the RVE cube can be calculated such that

L =

√
Nπr2

νf
(5.2.1)

This gives the required length of the RVE as a function of {νf , N, r}. For the simulations

conducted in this chapter, the material properties of the matrix and fiber were chosen to be

aluminum and boron, respectively. Table. 5.1 summarizes the properties of these materials.

Additionally, the radius of the boron fibers are assumed to be r = 150e−6m. With this

setup for the RVE, we can proceed in doing some analysis.
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Table 5.1: Material Properties for Aluminum and Boron

Material E(GPa) ν

Aluminum 70 0.3
Boron 400 0.3







Figure 5.2: Schematic of RVE with randomly positioned unidirectional fibers

Figure 5.3: Two realizations with random unidirectional fiber position using N = 20 fibers
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5.3 Mesh Convergence Study

A convergence study is conducted to determine the number of elements required

across a single fiber to produce converged material properties. This is achieved by starting

with a small number of elements and continuously refining the mesh until no variation in

the results is observed. For these studies , as discussed in Chapter 4, ensemble averaging

is used to get average material properties. Determining the number of nodes across a fiber

instead of a over the entire RVE simplifies doing other simulations. This is mainly because,

once the number of fibers are known in an RVE and given the needed number of nodes

across a fiber the total mesh size of the RVE and then be calculated.
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Figure 5.4: This plot shows convergence of the five independent material properties in the
elasticity tensor for a transversely isotropic material as a function of the number of nodes
along a fiber. Each data point is the ensemble average of 5 samples

This convergence analysis is conducted on an RVE with six fibers with linear

displacement boundary conditions imposed. Details on the boundary conditions are left for

the next section. There was no real reason behind using six fibers. Note this study is merely

to understand how many elements are needed to get converged numerical results, with no

concern to whether this RVE is truly representative. From this study, Figure. 5.4 shows

the ensemble average from 5 samples at each node set. The plots are of the 5 independent

material constants in the elasticity tensor. It is observed that eight nodes across a fiber is
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enough to capture the essential properties. With this in mind, this will be the standard

number of nodes used for all ensuing numerical experiments.

5.4 Extracting Material Properties

There are two ways to conduct the numerical experiments to obtain material prop-

erties. First, we make no assumptions on the material symmetries and therefore, conduct

six independent tests that satisfy Hill’s criteria. In the second analysis, since out model

consists of unidirectional fibers, we can assume transverse isotropy and therefore conduct

only three tests to obtain the five material constants. However, we emphasis that for each of

the three tests we are determining a column of material properties in the elasticity tensor.

Therefore, although we are assuming transverse isotropy we will get some non-zero terms in

locations that are otherwise zero. We will discuss this issue in detail in the ensuing sections.

It is clear that conducting three tests will be computationally efficient. Eqn. 5.4.1 shows

the three different displacement boundary conditions specified to extract the material con-

stants for the three test case. We note that we will only consider displacement boundary

conditions for extracting the material properties and determining the size of the RVE. The

size experiments will discussed in the upcoming section.

u|Ω =


E11 0 0

0 0 0

0 0 0



X1

X2

X3

 ,u|Ω =


0 0 0

0 E22 0

0 0 0



X1

X2

X3

 ,u|Ω =


0 0 E13

0 0 0

E13 0 0



X1

X2

X3

 (5.4.1)

We now compare the results from both of these methods. For each scenario, an

RVE with thirty fibers with a fiber volume fraction vf = 0.5 is used and a total of ten

samples are taken and ensemble averaged. The applied boundary conditions are of the

displacement type with component values Eij = 0.00001. The elasticity tensors from both

the three tests and six tests are summarized in Eqns. 5.4.2-5.4.3 respectively. The first

thing to note is that as mentioned, although we assumed transverse isotropy and conducted

three tests, we will not get the exact form of the elasticity tensor defined in Eqn. 2.5.7.

For instance, we have non-zero terms in locations that should be zero as can be seen in

Eqn. 5.4.2. This is seen when looking at the components C41, C42, C43 and C56. Again
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the reason these values appear is that for each test, we obtain components for an entire

column. Moreover, we show that as the RVE size increases they become negligible. The

other subtlety is that the components C12 and C13 are close but not exactly equal. This

can be attributed to the randomness of the fibers and the current size of the RVE.

When comparing the results from the two types of tests, we notice that there are

slight differences in some of the terms. This is particularly obvious in the fourth column.

Specifically, the component C44 is different between the two sets of tests. When conducting

three tests, we must calculate the value of C44 using the assumption that the material is

transversely isotropic therefore, C44 = 0.5(C22 − C23). On the other hand with six tests

this comes out of the FEM computation. This is the biggest difference between the two

results. It is then reasonable to simply conduct three tests and assume transverse isotropy

for this type of RVE configuration. Clearly, this will result in computational savings and is

the assumed method for the remaining chapter.

〈〈Cε〉〉 =



288.394 88.683 89.116 0.192 0.000 0.000

88.683 213.904 81.705 0.044 0.0000 0.000

89.116 81.705 213.904 0 0.000 0

0.192 0.044 0 66.099 0.000 0

0.000 0.0000 0.000 0.0000 69.081 0.121

0.000 0.000 0 0 0.121 69.081


︸ ︷︷ ︸

thirty fibers three tests

(5.4.2)

〈〈Cε〉〉 =



288.394 88.683 89.115 0.192 0.000 0.000

88.683 213.904 81.705 0.044 0.000 0.000

89.116 81.705 215.346 0.597 0.000 0.000

0.192 0.044 0.597 63.106 0.0000 0.000

0.000 0.000 0.000 0.0000 69.081 0.121

0.000 0.000 0.000 0.0000 0.121 68.594


︸ ︷︷ ︸

thirty fibers six tests

(5.4.3)
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5.5 RVE Size and Ensemble Averaging Results

5.5.1 Ensemble Averaging

The numerical experiments are conducted on RVE’s with random unidirectional

fiber positions. It’s important to quantify the effect the randomness has on the overall

mechanical properties. For this analysis, two sets of RVE’s are considered. The first consists

of two fibers and the second consists of thirty fibers. The volume fraction is set to νf = 0.5

and the fibers are made of boron while the matrix is aluminum. The effect the size of the

RVE has on the ensemble averaging will be examined. We will assume that that overall

macroscopic response is transversely isotropic. Therefore, only three tests are necessary to

extract the material constants.

In particular, consider the Figures. 5.5-5.8. These plots show how the ensemble

average converges with increasing sample size. In addition, the standard deviation of the

results are shown in Table. 5.2. The first column of figures shows the raw data Cε and the

ensemble average 〈〈Cε〉〉 and the second column is the relative error of the ensemble average

defined as

error =
||〈〈Cε〉〉N+1 − 〈〈Cε〉〉N ||

||〈〈Cε〉〉N || (5.5.1)

where N refer to the number of samples used in the averaging. For the case of two fibers,

200 samples were computed and since the error drops down quickly only the first 100 points

are considered in the plot of the error as shown in Figure.5.5-5.6. For all the independent

material constants, the ensemble average stabilizes after about 15 samples. It’s interesting

to note that even with a small number of fibers, the variation in the material properties is

not large, this is a consequence of the high volume fraction.

Now, for the case with thirty fibers, 50 samples were taken and the plots of the

results are shown in Figure. 5.7-5.8. The same basic results are observed when compared

to the case with two fibers. The error of the ensemble average drops rapidly and stabilizes

after approximately 10 samples. In both cases, for two fibers and thirty fibers, the error

drops down to almost the same value.

The summary of the material properties for the RVE with two fibers and thirty
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Figure 5.5: The ensemble averaging results are shown on the left column and the relative
error is shown on the right column. These results are for simulations with N = 2 and for
200 samples. This set of plots shows the convergence of the components of the individual
material properties C11, C12 and C22
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Figure 5.6: The ensemble averaging results are shown on the left column and the relative
error is shown on the right column. These results are for simulations with N = 2 and for
200 samples. This set of plots shows the convergence of the components of the individual
material properties C23 and C55

Table 5.2: Standard deviation of the data is summarized for both N = 2 and N = 30

Material Constant
Standard deviation
N = 2 N = 30

C11 0.8278 0.3285
C12 1.0658 1.1402
C22 3.2553 3.5600
C23 0.7461 0.7959
C55 0.8792 1.1725
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Figure 5.7: The ensemble averaging results are shown on the left column and the relative
error is shown on the right column. These results are for simulations with N = 30 and for
50 samples. This set of plots shows the convergence of the components of the individual
material properties C11, C12 and C22
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Figure 5.8: The ensemble averaging results are shown on the left column and the relative
error is shown on the right column. These results are for simulations with N = 30 and for
50 samples. This set of plots shows the convergence of the components of the individual
material properties C23 and C55
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fibers are shown respectively in the elasticity tensor 〈〈Cε〉〉 in Eqn. 5.5.2-5.5.3.

〈〈Cε〉〉︸ ︷︷ ︸
two fibers

=



297.804 104.324 104.253 −0.379 0.0000 0.0000

104.326 249.961 97.786 −0.649 0.0000 0.0000

104.253 97.783 249.961 0 −0.002 0

−0.379 −0.649 0 76.088 0.0000 0

0.0000 0.0000 −0.002 0.0000 81.252 −0.237

0.0000 0.0000 0 0 −0.237 81.252


(5.5.2)

〈〈Cε〉〉︸ ︷︷ ︸
thirty fibers

=



288.429 88.916 89.204 0.096 0.0000 0.0000

88.915 214.351 82.035 0.164 0.0000 0.0000

89.204 82.035 214.351 0 −0.001 0

0.096 0.164 0 66.158 0.0000 0

0.0000 0.0000 −0.001 0.0000 69.056 0.076

0.0000 0.0000 0 0 0.076 69.056


(5.5.3)

We note that the ensemble averaging has no effect on the accuracy of the material

properties, notice the difference in the material constants in Eqns. 5.5.2-5.5.3. Including

more samples in the simulation with N=2 will not cause the apparent elasticity tensor

to approach the effective properties. This should be expected, since the RVE with thirty

fibers certainly represents the composite more accurately. Experiments on the size of the

RVE will be conducted in the next section. As noted in the previous section, the overall

apparent material properties are not strictly transversely isotropic. However, the values of

the material constants C14, C15, C56 are very small and their value becomes smaller when

including more microstructure, as evidenced when looking at Eqns. 5.5.2-5.5.3 . If we look at

the distribution of 200 samples for 24 fibers we see the variation of these components of the

material properties is about zero, as shown in Figures. 5.9. The effect of these anisotropic

terms can be neglected since they are small and their variation occurs around zero. It is

important to note that these terms occur only for random fibers. If we situated the fibers

in a periodic manner these terms would be identically zero.
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Figure 5.9: These plots show the material properties of C14, C24, C56 for 200 samples for
N = 24. These components of the material properties fluctuate around zero and therefore
can be neglected since as their ensemble average would approach zero as we include more
samples
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5.5.2 RVE Size Determination

In this section, as previously noted, an analysis of the size of the RVE is conducted.

The main purpose is to asses the required size in order to obtain accurate homogenized

material properties. The analysis is conducted for a variety of fiber volume fractions and

the converged material properties will be compared to analytical homogenization bounds.

The considered volume fractions are νf = [0.1, 0.3, 0.5]. It should be noted that for νf > 0.5

the packing of fibers in the RVE becomes exceedingly difficult for constant cross sectional

area fibers, therefore, these conditions are avoided. The parameters for the RVE sizes

along with the finite element degrees of freedom for each volume fraction are summarized

in Tables. 5.3-5.5, we note that the number of degrees of freedom (DOF)is proportional to

L3 the volume of the RVE. Additionally Figure. 5.10 shows the stress contours of the RVEs

at the different volume fraction. We note that for smaller fiber volume fractions, from a

computational point of view, we are unable to increase the RVE size as much as when using

higher fiber volume fractions. This is because we are using a non-conforming mesh with

a constant mesh size. Notice, that for 26 fibers with νf = 0.5 and νf = 0.1 we needed

397, 953 degrees of freedom with a RVE characteristic length L = 0.0019 and 4, 444, 632

degrees of freedom respectively with an RVE characteristic length L = 0.0043. This issue

clearly highlights the advantage of using a conforming mesh as the mesh can be changed

adaptively in this case.

The results for the tests are shown in Figures. 5.11-5.13, where again for each

RVE size an ensemble average was conducted. The figures show the convergence of the five

independent material constants. We notice how as we increase the RVE size the results

initially abruptly change and then stabilize to some value. The final elasticity tensors at

the largest RVE size for each fiber volume fraction case is summarized in Eqns. 5.5.4-5.5.6.

Notice we neglect the terms in the elasticity tensor that fluctuate around zero as described

in Chapter. 5.5.1, which gives us a purely transversely isotropic response.
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Table 5.3: Table summarizes the RVE size results for νf = 0.5, L is the length of a side in
the RVE and DOF stands for degrees of freedom used.

Test Number Fibers L (m) DOF
1 2 0.0005 2,197
2 10 0.0012 89,373
3 18 0.0016 222,264
4 26 0.0019 397,953
5 34 0.0022 585,336
6 42 0.0024 786,432
7 50 0.0027 1,029,000
8 58 0.0029 1,316,928
9 66 0.0031 1,594,323
10 74 0.0032 1,908,168
11 82 0.0034 2,235,961

Table 5.4: Table summarizes the RVE size for νf = 0.3, L is the length of a side in the RVE
and DOF stands for degrees of freedom used.

Test Number Fibers L (m) DOF
1 2 0.00068 17,496
2 10 0.0015 192,000
3 18 0.0020 472,392
4 26 0.0025 862,488
5 34 0.0028 1,265,625
6 42 0.0031 1,715,361
7 50 0.0034 2,260,713
8 58 0.0037 2,823,576
9 64 0.0039 3,278,181

Table 5.5: Table summarizes the RVE size for νf = 0.1, L is the length of a side in the RVE
and DOF stands for degrees of freedom used.

Test Number Fibers L (m) DOF
1 2 0.0012 89,373
2 10 0.0026 1,029,000
3 18 0.0036 2,572,125
4 26 0.0043 4,444,632
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(a) νf = 0.5 and N = 82 (b) νf = 0.3 and N = 64

(c) νf = 0.1 and N = 26

Figure 5.10: Stress contours of σxz for RVEs at the different volume fractions
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Figure 5.11: Effect of RVE size on properties for νf = 0.5. The plots show how the five
independent material properties change as a function of the RVE size. The properties
converge after a certain RVE size.
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〈〈Cε〉〉︸ ︷︷ ︸
νf =0.5

=



287.397 87.115 87.466 0 0 0

87.115 209.215 81.167 0 0 0

87.466 81.167 209.215 0 0 0

0 0 0 64.024 0 0

0 0 0 0 67.002 0

0 0 0 0 0 67.002


(5.5.4)

〈〈Cε〉〉︸ ︷︷ ︸
νf =0.3

=



205.972 61.719 61.419 0 0 0

61.719 147.066 58.665 0 0 0

61.419 58.665 147.066 0 0 0

0 0 0 44.200 0 0

0 0 0 0 45.689 0

0 0 0 0 0 45.689


(5.5.5)

〈〈Cε〉〉︸ ︷︷ ︸
νf =0.1

=



130.594 46.031 45.995 0 0 0

46.031 108.075 45.361 0 0 0

45.995 45.361 108.075 0 0 0

0 0 0 31.357 0 0

0 0 0 0 32.083 0

0 0 0 0 0 32.083


(5.5.6)

5.6 Comparison with Analytical Bounds

In this section we compare the results from the numerical RVE experiments to the

Voigt-Reuss bounds and the Hashin-Rosen bounds described in Chapter.4.5. The converged

elasticity tensor results for each fiber volume fraction are used to extract traditional material

constants as described in Chapter. 2. We look at the results for E11, E22, µ12, µ23 and ν12

which are shown in Figure. 5.14. We observe that for E11 the numerical RVE results match

the upper bound exactly and for ν12 the bounds are all equivalent with the numerical results

matching. On the other hand, the numerical results for the remaining components lie in
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Figure 5.12: Effect of RVE size on properties for νf = 0.3. The plots show how the five
independent material properties change as a function of the RVE size. The properties
converge after a certain RVE size.
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Figure 5.13: Effect of RVE size on properties for νf = 0.1. The plots show how the five
independent material properties change as a function of the RVE size. The properties
converge after a certain RVE size.
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between the tighter bounds of Hashin-Rosen. This clearly shows the advantage of using

numerical techniques to obtain the elasticity tensor as opposed to relying on analytical

bounds.



5.6. COMPARISON WITH ANALYTICAL BOUNDS 66

0 0.1 0.2 0.3 0.4 0.5 0.6

80

100

120

140

160

180

200

220

240

260

Fiber Volume Fraction vf

E 11

 

 
E11 Hashin+
E11 Hashin−
E11 Voigt
E11 Reuss
E11 Numerical

0 0.1 0.2 0.3 0.4 0.5 0.6

80

100

120

140

160

180

200

220

240

260

Fiber Volume Fraction vf

E 22
 

 

 
E22 Hashin+
E22 Hashin−
E22 Voigt
E22 Reuss
E22 Numerical

0 0.1 0.2 0.3 0.4 0.5 0.6
30

40

50

60

70

80

90

100

Fiber Volume Fraction vf

µ
12

 

 
µ12 Hashin+
µ12 Hashin−
µ12 Voigt
µ12 Reuss
µ12 Numerical

0 0.1 0.2 0.3 0.4 0.5 0.6

30

35

40

45

50

55

60

65

70

75

Fiber Volume Fraction vf

µ
23

 

 
µ23 Hashin+
µ23 Hashin−
µ23 Voigt
µ23 Reuss
µ23 Numerical

0 0.1 0.2 0.3 0.4 0.5 0.6
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

Fiber Volume Fraction vf

ν 12

 

 
ν12 Hashin+
ν12 Hashin−
ν12 Voigt
ν12 Reuss
ν12 Numerical

Figure 5.14: Analytical bounds and numerical results for the five independent material
constants at different volume fractions. The material constants are in the form typical
in Engineering(Young’s modulus E11,E22, Poison’s ratio ν12 and shear modulus µ12, µ23).
The analytical bounds include the Voigt-Reuss bounds and the Hashin-Rosen bounds. The
Hashin-Rosen bounds are specifically for transversely isotropic materials and are clearly
tighter than the traditional Voigt-Reuss bounds.
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Chapter 6

Multiscale Modeling Introduction

In this chapter a description of the multiscale modeling analysis is presented for

linear elasticity. Many of the traditional approaches for multiscale modeling have been

based on asymptotic methods as described in Bensoussan. [5]. This approach relies on the

assumption that the solution and microstructure are periodic. It allows for the the extrac-

tion of the macroproperties and provides a connection between the scales simultaneously.

For further details the reader is referred to Zienkiewicz and Taylor. [38], Chung et al. [8],

Ghosh et al. [10] and Fish et al. [6]. The disadvantages with this method is the dependence

on the existence of a periodic structure which is generally not true for heterogeneous ma-

terials. These methods and others rely on RVE’s being defined and solved at each gauss

point, which can be extremely expensive.

Therefore, we want a method that is computationally efficient while being able

to effectively account for the microstructural effects. Since solving the true heterogeneous

problem is intractable, we start by first homogenizing as an independent process as de-

scribed in Chapter. 4. We will assume that we know the microstructure a priori, this can

be periodic or random. In our specific case, we will limit our interest to the analysis fiber

composites. Hence, the position of the fibers in the matrix are known. The structure is

then broken into subdomains that include the microstructural details. This is illustrated

in Figure. 6.1. The method will then allow us to choose the subdomains that need to be

included in the solution space. To this end error bounds that define a modeling error, in an

a posterior setting, are derived from residual techniques in an analogous fashion to what has

been done for error analysis in the finite element solution. For a complete review of error
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analysis in the finite element method the reader is referred to Ainsworh and Oden. [39].

This initial bound illustrates the sources of error however, it’s not suitable for computa-

tions. Therefore, for further analysis use is made of error bounds derived in Zohdi et al.

[16]. These bounds are extended for use under finite deformations.
















Figure 6.1: Schematic of multiscale approach showing the true heterogeneous body with
fibers and then a homogenized body. The homogenized material is shown to be broken up
in subdomains(cells) with fiber information based on the original heterogeneous body

6.1 Mathematical Setup: Global Problem

6.1.1 Setting Up The Exact Heterogeneous Boundary Value Problem

We start first by defining the exact boundary value problem with a known mi-

crostructure. The governing equations for the linear elastostatic case in the weak form

are

Find u ∈ H1(Ω),u|Γu = d,where ∀v ∈ H1(Ω),v|Γu = 0

B(u,v) = F(v) (6.1.1)
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This defines the weak form of the balance of linear momentum, note we make use of the

bilinear form for simplicity. Specifically, we have

B(u,v) =
∫

Ω
∇u : C : ∇vdΩ , F(v) =

∫
Ω

f · vdΩ +
∫

Γt

t · vdΓ (6.1.2)

Consider u to be the exact solution of the boundary value problem with a known microstruc-

ture and spatially varying material properties C(x). Since this is not computationally or

analytically tractable, we resort to homogenization.

6.1.2 Setting Up The Exact and Numerical Homogenous Boundary Value

Problem

The homogenized solution is characterized by a spatially constant material prop-

erty C∗ with solution u∗. This can be characterized by the weak form or the principle of

virtual work as

Find u∗ ∈ H1(Ω),u∗|Γu = d,where ∀v ∈ H1(Ω),v|Γu = 0

B∗(u∗,v) = F(v) (6.1.3)

with the bilinear forms defined as

B∗(u∗,v) =
∫

Ω
∇u∗ : C∗ : ∇vdΩ, F(v) =

∫
Ω

f · vdΩ +
∫

Γt

t · vdΓ (6.1.4)

Solving this analytically would also be very difficult, we therefore resort to the finite element

method and approximate the solution u∗ as u∗,h, which has a weak form as follows

Find u∗,h ∈ H1
u(Ω) ⊂ H1(Ω),u∗,h|Γu = d,where ∀vh ∈ H1

v (Ω) ⊂ H1(Ω),vh|Γu = 0

B∗(u∗,h,vh) = F(vh) (6.1.5)

Specifically, the expression of the bilinear forms are
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B∗(u∗,h,vh) =
∫

Ω
∇u∗,h : C∗ : ∇vhdΩ, F(vh) =

∫
Ω

f · vhdΩ +
∫

Γt

t · vhdΓ (6.1.6)

When approximating our initial problem defined in Eqn. 6.1.1 with Eqn. 6.1.5, we

must estimate the error to obtain an understanding of the accuracy of our homogenized

solution relative to the exact problem that includes the microstructure. The error analysis

is presented in the next section and involves using the residuals from the balance of linear

momentum or the local form of the weak equations that are solved using FEM.

6.1.3 Modeling Error Analysis

Consider the two boundary value problems shown in Figure. 6.2 and whose gov-

erning equations were described in Eqns. 6.1.1-6.1.3. In conducting the error analysis we

are trying to approximate the following

error = ||u− u∗,h||E(Ω) (6.1.7)

where || · ||E(Ω) is the energy norm defined as

|| · ||2E(Ω) =
∫

Ω
∇(·) : C : ∇(·)dΩ (6.1.8)

Note, that the above error can be deconstructed into two parts. The first part is an error

on the modeling component and the second part is an error on the numerical component.

In other words we have

||u− u∗,h||E(Ω) = ||u− u∗ + u∗ − u∗,h||E(Ω)

≤ ||u− u∗||E(Ω)︸ ︷︷ ︸
Modeling Error

+ ||u∗ − u∗,h||E(Ω)︸ ︷︷ ︸
Numerical Error

(6.1.9)

where our main interest here is to understand the modeling error. The numerical error

component has been discussed in detail in the literature with a comprehensive review found
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in Ainsworth and Oden. [39].

div(σ) + f = 0
t = ta on Γt

u = ua on Γu

div(σ∗) + f = 0
t∗ = ta on Γt

u∗ = ua on Γu

C(x) C∗

Homogenize

Figure 6.2: Schematic of both the heterogeneous and homogenous bodies with their corre-
sponding boundary value problem

To better understand the modeling error component, we take the solution from the

homogenized system(u∗) and calculate the small strain tensor, ε∗ and then define a stress

σm = C : ε∗. We can also define the traction as tm = σmn. Note the stress is computed

with the exact material properties, not the homogenized properties that were used to solve

Eqn. 6.1.3. We can now check to see how well this stress state satisfies both the local form

of the balance of linear momentum and the traction boundary condtion, specifically

div(σm) + f = rm

t− tm = t̂ on Γt (6.1.10)

where rm is the residual and t̂ is the mismatch in the traction boundary condition. Note

that as ε∗ → ε, rm → 0.. Therefore, we can interpret rm and t̂ as the error between the

heterogeneous solution and the homogenous solution. Particularly, it is an estimate on the

modeling error. To add mathematical rigor to this interpretation, we derive a relationship

between the modeling error defined in Eqn. 6.1.9 and Eqn. 6.1.10. To start we subtract

the balance of linear momentum portion of Eqn. 6.1.10 from the local form of Eqn . 6.1.1,

which is div(σ) + f = 0 with t = ta on Γt and u = ua on Γu. The result is
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div(σ − σm) + rm = 0

div(C : (ε− ε∗)) + rm = 0

div(σ̂) + rm = 0

(6.1.11)

Then we multiply Eqn. 6.1.11 by the test function v used to get the weak forms in Eqn. 6.1.1-

6.1.3 and integrate over the volume, such that

∫
Ω

(div(σ̂) + rm) · vdΩ = 0 (6.1.12)

We utilize the divergence theorem and obtain the form

∫
Ω
∇v : C : ∇(u− u∗)dΩ =

∫
Γt

t̂ · vdΓ +
∫

Ω
rm · vdΩ (6.1.13)

We note that on Γu, as previously stated v = 0 . Additionally, t̂ = t− tm = (σ − σm)n.

Observe that the difference between these two traction’s is not zero. This is specifically

because, t is the imposed traction while tm is the arising traction due to the mismatch

between the solutions u and u∗. Consider the case when v = u− u∗ we obtain

∫
Ω
∇v : C : ∇(u− u∗)dΩ =

∫
Ω
∇(u− u∗) : C : ∇(u− u∗)dΩ

= B(u− u∗,u− u∗)

= ||u− u∗||2E
=
∫

Γt

t̂ · (u− u∗)dΓ +
∫

Ω
rm · (u− u∗)dΩ

(6.1.14)

We now have the modeling error described in terms of the residual rm and the

mismatch in the tractions. We further simplify this expression by considering the Cauchy-

Schwarty inequality, leading to the following
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||u− u∗||2E =
∫

Γt

t̂ · (u− u∗)dΓ +
∫

Ω
rm · (u− u∗)dΩ

≤ ||rm||L2(Ω)||u− u∗||L2(Ω) + ||t− tm||L2(Γt)||u− u∗||L2(Γt)

(6.1.15)

We note that || · ||L2(Ω) =
∫

Ω(·) · (·)dΩ and is called the L2 norm. In Eqn. 6.1.15, we have

an expression for the modeling error that states that as rm → 0 and the jump in tractions

t̂→ 0 then the difference in the heterogenous and homogeneous solution is zero.

However, we note that error estimates derived depend on the analytical solutions.

Since we cannot calculate these solutions we refer to the FEM solution of the homogenized

problem. This is detailed in the next section.

6.1.4 Modeling Error Calculation on a Finite Element

We now extend our error definition in Eqn. 6.1.15 to be calculated on a finite

element. Recall that the finite element solution of the homogenized boundary value problem

was defined in Eqn. 6.1.5, with solution u∗,h. To calculate our modeling error we utilize an

expression that includes the numerical solution of the homogenized boundary value problem.

This can be expressed as,

||u− u∗,h||2E(Ω) =
∫

Ω
∇(u− u∗,h) : C : ∇(u− u∗,h)dΩ (6.1.16)

Recall this is the total error defined in Eqn. 6.1.16. It includes both the modeling an

numerical error. Neglecting body load effects and referring to Ainsworth and Oden. [39] we

can express on an element basis the total error as

B(u− u∗,h,v) = B(e,v) = B(u,v)−B(u∗,h,v)

= F(v)−B(u∗,h,v)

=
Ne∑
K

{∫
∂K∩Γt

t · vdΓ−
∫
K
∇u∗,h : C : ∇vdΩ

} (6.1.17)

where K a finite element and ∂K is the boundary of the element. We can restructure the
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last term in the above equation by utilizing ∇(C : ∇u∗,h · v) = ∇σm,h · v + σm,h : ∇v =

∇σm,h · v +∇u∗,h : C : ∇v. Therefore, Eqn. 6.1.17 becomes

B(e,v) =
Ne∑
K

{∫
∂K∩Γt

t · vdΓ−
∫
K

(
∇(C : ∇u∗,h · v)−∇σm,h · v

)
dΩ
}

(6.1.18)

upon utilizing the divergence theorem we obtain

B(e,v) =
Ne∑
K

{∫
∂K∩Γt

t · vdΓ−
∫
∂K

C : ∇u∗,h · v · nK +
∫
K
∇σm,h · vdΩ

}

=
Ne∑
K

{∫
∂K∩Γt

t · vdΓ−
∫
∂K
σm,hnK · vdΓ +

∫
K
∇σm,h · vdΩ

}

=
Ne∑
K

{∫
∂K∩Γt

t · vdΓ−
∫
∂K

tm,h(nK) · vdΓ +
∫
K
∇σm,h · vdΩ

}
(6.1.19)

We can break the integral on ∂K into two parts. One for elements in the interior of the

domain Ω and the other on the boundary ∂Ω such that

B(e,v) =
Ne∑
K

{∫
∂K∩Γt

(
t− tm,h(nK)

)
· vdΓ−

∫
∂K/Γt

tm,h(nK) · vdΓ +
∫
K
∇ · σm,h · vdΩ

}
(6.1.20)

This form gives an expression for the total error, all the terms inside the integral

are known except for v. We will come to this later. First we can rearrange the second term

by breaking up the element surface integral over the sum of the individual surface integrals.

For instance, in a three dimensional brick element there are 6 surfaces hence,

∫
∂K/Γt

tm,h(nK) · vdΓ =
6∑

γ=1

(∫
γ

tm,h(nK) · vdγ
)

(6.1.21)

Since each surface is shared by two elements we can calculate a jump in the traction’s over

each element surface where we have
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Ne∑
K

∫
∂K/Γt

tm,h(nK) · vdΓ =
Ne∑
K

6∑
γ=1

(∫
γ

1
2

(
tm,h(nK) + tm,h(nJ)

)
· vdγ

)

=
Ne∑
K

6∑
γ=1

(∫
γ

1
2

[tm,h] · vdγ
)

=
Ne∑
K

∫
K/Γt

1
2

[tm,h] · vdΓ

(6.1.22)

where element K and J share surface γi and [·] indicates the jump . We can utilize the

Cauchy-Schwarty inequality and obtain

B(e,v) ≤
Ne∑
K

{
||t− tm,h(nK)||L2(∂K∩Γt)||v||L2(∂K∩Γt)

+||[tm,h]||L2(∂K/Γt)||v||L2(∂K/Γt) + ||∇ · σm,h||L2(K)||v||L2(K)

} (6.1.23)

replacing v with e we have

||u− u∗,h||2E = B(e, e)

≤
Ne∑
K

{
||t− tm,h(nK)||L2(∂K∩Γt)||e||L2(∂K∩Γt)

+||[tm,h]||L2(∂K/Γt)||e||L2(∂K/Γt) + ||∇ · σm,h||L2(K)||e||L2(K)

} (6.1.24)

We would like norms of the error on the right hand side to be moved to the left side. To

accomplish this we must find bounds from above on these terms with respect to the energy

norm. This can be done by utilizing some aspects of functional analysis of which a thorough

discussion is presented in Oden and Demkowicz. [40]. We will utilize some key concepts to

achieve the desired bound. Specifically, there are two norms that need to be bounded. The

first is || · ||L2(Ω) which is L2 defined in the domain Ω. The second is || · ||L2(Γ) which is the

L2 norm defined on the boundary of the domain Γ.

Consider the first norm, we can utilize the properties of the bilinear form to obtain

an upper bound. The properties are
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1. B is continuous such that there is a constant C > 0

B(u,v) ≤ C||u||||v|| u,v ∈ Hm(Ω)

2. B is coercive or ellipitic such that there is a contant α > 0

B(u,u) ≥ α||u||2 ∀u ∈ Hm(Ω)

By utilizing the coercivity property for case when u ∈ H1(Ω) we have

||u||2E = B(u,u) ≥ α||u||2H1(Ω)

= α(||u||2L2(Ω) + ||u′||2L2(Ω))

≥ α||u||2L2(Ω)

(6.1.25)

Therefore, we have the following upper bound on the error ||e||L2(Ω) ≤ 1√
α
||e||E(Ω). The

first question might be, what is the constant α? To approach this, we consider the fact

that for linear elasticity the elasticity tensory C is positive definite and the energy is always

greater than or equal to zero. Specifically, we have the following property on C ∀ε there

exists two constants αL, αU ≥ 0

αLε : ε ≤ ε : C(x)ε ≤ αuε : ε (6.1.26)

because C is positive definite, it can readily be seen that from Eqn. 6.1.26 we have the

following inequality

||e||2E(Ω) ≥ αL||∇e||2L2(Ω) (6.1.27)

and considering the Poincare inequality ||e||2L2(Ω) ≤ C1||∇e||2L2(Ω) we can obtain

1
C1
||e||2L2(Ω) ≤ ||∇e||2L2(Ω) ≤

1
αL
||e||2E(Ω) (6.1.28)
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and hence, we have

||e||2E(Ω) ≥
αL
C1
||e||2L2(Ω) (6.1.29)

This is the bound we obtained using the ellipticity property, the only advantage

is this clarifies the meaning of the constant α, where C1 is a length scale of the body and

αL can be obtained exactly by starting with the lower bound statement on the elasticity

tensor and rearranging to get

0 ≤ ε : (C(x)− αLI) ε

= ε : Bε
(6.1.30)

Hence, B must be positive semidefinite and therefore, it’s eigenvalues must be nonnegative.

We can therefore solve for αL that satisfies this condition.

Now we consider the second norm in L2(Γ) on the boundary and find an upper

bound in the energy norm on the open set defining the domain Ω. To construct this bound

we utilize the trace theorem that is commonly used in functional analysis. The theorem is

described extensively in [40],[41] and a proof is found in [41]. It states

Theorem 6.1.1 Trace Theorem. Let Ω be bounded and assume Ω has a piecewise smooth

boundary. Also, suppose Ω satisfies the cone condition. Then there exists a bounded linear

mapping

γ : H1(Ω)→ L2(Γ), ||γ(ν)||L2(Γ) ≤ C||ν||H1(Ω) (6.1.31)

We can now use this theorem along with coercivity property such that

||e||L2(Γ) ≤ C||e||H1(Ω)

≤ C√
α
||e||E(Ω)

(6.1.32)

Hence, we have the bound ||e||L2(Γ) ≤ C√
α
||e||E(Ω). We now obtain the following bound on
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the error as

||u− u∗||2E(Ω) = B(e,v)

≤
Ne∑
K

{
||t− tm,h(nK)||L2(∂K∩Γt)||e||L2(∂K∩Γt)

+||[tm,h]||L2(∂K/Γt)||e||L2(∂K/Γt) + ||∇ · σm,h||L2(K)||e||L2(Ω)

}
≤

Ne∑
K

{
||t− tm,h(nK)||L2(∂K∩Γt)

C√
α
||e||E(K)

+||[tm,h]||L2(∂K/Γt)
C√
α
||e||E(K) + ||∇ · σm,h||L2(K)

1√
α
||e||E(K)

}
(6.1.33)

Applying the cauchy-schwartz inequality again gives us the following

||e||2E(Ω) ≤
√√√√ Ne∑

K

C2

α
||t− tm,h(nK)||2L2(∂K∩Γt)

Ne∑
K

||e||2E(K)

+

√√√√ Ne∑
K

C2

α
||[tm,h]||2L2(∂K/Γt)

Ne∑
K

||e||2E(K) +

√√√√ Ne∑
K

1
α
||∇ · σm,h||2L2(K)

Ne∑
K

||e||2E(K)

(6.1.34)

Now takeing out the common factor
∑Ne

K ||e||2E(K) and noting that
∑Ne

K ||e||2E(K) = ||e||2E(Ω)

we get

||e||E(Ω) ≤
√√√√ Ne∑

K

C2

α
||t− tm,h(nK)||2L2(∂K∩Γt)

+

√√√√ Ne∑
K

C2

α
||[tm,h]||2L2(∂K/Γt)

+

√√√√ Ne∑
K

1
α
||∇ · σm,h||2L2(K)

(6.1.35)

To get a more desirable expression we can proceed by using the identity (
√
a+
√
b)2 ≤ 2(a+b)

and we obtain
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||e||E(Ω) ≤
√√√√ Ne∑

K

C2

α
||t− tm,h(nK)||2L2(∂K∩Γt)

+

√√√√ Ne∑
K

C2

α
||[tm,h]||2L2(∂K/Γt)

+

√√√√ Ne∑
K

1
α
||∇ · σm,h||2L2(K)

≤
√√√√2C2

α

Ne∑
K

||t− tm,h(nK)||2L2(∂K∩Γt)
+

2C2

α

Ne∑
K

||[tm,h]||2L2(∂K/Γt)

+

√√√√ Ne∑
K

1
α
||∇ · σm,h||2L2(K)

≤
(

4C2

α

Ne∑
K

||t− tm,h(nK)||2L2(∂K∩Γt)
+

4C2

α

Ne∑
K

||[tm,h]||2L2(∂K/ Γt)

+
2
α

Ne∑
K

||∇ · σm,h||2L2(K)

)1/2

(6.1.36)

Hence we have the final form as,

||e||2E(Ω) ≤
2
α

(
Ne∑
K

2C2||t− tm,h(nK)||2L2(∂K∩Γt)
+ 2C2||[tm,h]||2L2(∂K/ Γt)

+||∇ · σm,h||2L2(K)

) (6.1.37)

We now have a form of the error over a finite element that can be calculated

from information we know. However, C and α are not known and they can be very hard

to calculated. Nonetheless, this bound give insight about the sources of error. We have

three terms that contribute to the error, they are 1) ||t − tm,h(nK)||2L2(∂K∩Γt)
which is

the difference in the applied traction and the resulting traction due to homogenization,

2) ||∇ · σm,h||2L2(K) which is the residual from the divergence of the stress resulting from

the homogenized strain acting on the exact material properties and 3) ||[tm,h]||2L2(∂K/ Γt)

the jumps in tractions across the finite elements. The last source of error is not purely a

modeling error, but rather a result of the finite element discretization. Recall, that the above

error bound is for the total error in the system, both modeling and numerical contributions.
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Finally the to get thse modeling error we must subtract the numerical error from

this global term. This can be easily done, as their are many methods for calculating the

numerical error defined in Eqn. 6.1.9. The finally term is

||u− u∗||E︸ ︷︷ ︸
Modeling Error

≥ ||u− u∗,h||E︸ ︷︷ ︸
Total error

− ||u∗ − u∗,h||E︸ ︷︷ ︸
Numerical Error

(6.1.38)

As mentioned, since we cannot easily calculate the values of the constants in the bound in

Eqn. 6.1.37 we utilize a different approach as described in the next section.

6.2 An Exact Upper Bound on The Modeling Error

An upper bound that is suitable for numerical studies has been presented in Zohdi

et al. [16]-[17]. The form of the bound is given as

||u− u∗||E(Ω) ≤ ||J0∇u∗||E(Ω) = ζ (6.2.1)

where

||J0∇u∗||2E(Ω) =
∫

Ω
(I− C−1C∗)∇u∗ : C(I− C−1C∗)∇u∗dΩ (6.2.2)

and J0 = I−C−1C∗. The proof is quite easy to show and proceeds by considering Eqn. 6.1.1

and Eqn. 6.1.3, with their respective definitions of the bilinear form. We can define an

operator ∆B(·, ·) as

∆B(u∗,v) = B(u∗,v)− B∗(u∗,v)

=
∫

Ω
∇v : (C− C∗)∇u∗dΩ

(6.2.3)
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We can now rewrite Eqn. 6.1.3 such that

B∗(u∗,v) = B(u∗,v)−∆B(u∗,v) = F(v) = B(u,v) (6.2.4)

this can be reformulated as

B(u− u∗,v) = −∆B(u∗,v) (6.2.5)

Hence, letting v = u− u∗ we get

||u− u∗||2E(Ω) = −∆B(u∗,u− u∗)

= −((∇(u− u∗), (C− C∗)∇u∗)

= −((∇(u− u∗),CC−1(C− C∗)∇u∗)

= −(C1/2(∇(u− u∗),C1/2C−1(C− C∗)∇u∗)

= −(C1/2(∇(u− u∗),C1/2J0∇u∗)

(6.2.6)

Now with the Cauchy-Schwarz inequality we get

||u− u∗||2E(Ω) = −(C1/2(∇(u− u∗),C1/2J0∇u∗)

≤ [(C1/2∇(u− u∗), (C1/2∇(u− u∗)]1/2[C1/2J0∇u∗,C1/2J0∇u∗]1/2

= ||u− u∗||E(Ω)||J0∇u∗||E(Ω)

(6.2.7)

we therefore have the proof for Eqn 7.0.7. This bound is amenable to computations and

will be used to for the multiscale modeling of fiber composites.

6.3 Numerical Experiments

In this section some basic numerical experiments will be conducted to demonstrate

the effectiveness of the upper bound defined in Eqn. 7.0.7. To start we will analyze two

examples with different boundary conditions and various material properties. For simplicity

the domain is a unit cube. The first example is a homogenous material with isotropic

properties which are considered the exact material properties with solution u. We then
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construct problems with material properties that deviate from the exact material properties

by some constant γ with solution u∗. These two solutions are then compared and the

errors bounds are calculated. The second example will involve comparisons between a

homogeneous material and heterogeneous material with some known microstructure. Error

bounds are calculated and compared to the exact error. Different homogenous material

properties are explored.

6.3.1 Isotropic-Isotropic Comparisions

The purpose of these examples is to understand how good the bound in Eqn. 7.0.7

is in predicting the error. The simplest example is to consider two isotropic bodies, one

that we consider to constitute the exact material with properties (C1) and an other with

material properties that deviate from C1 by a constant γ. Hence, we have C2 = γC1. Note

that γ is restricted in such away that the elasticity tensor remains positive definite. This

formulation allows us to solve both problems and get an exact error and compare to the

one predicted by the bound in Eqn. 7.0.7. Two sets of boundary conditions are considered.

The first is displacement control and the second is traction control. The mesh size for these

examples is 21X21X21 as can be seen in Figure. 6.3. The material properties for C1 were

E = 70GPa, ν = 0.3, these were kept constant since they are being considered exact. The

variation in material properties for C2 is then γE and γν.

For the case of displacement control we specified at x = 1 that ux = 0.001m, at

x = 0 the displacements were fixed such that u = 0 and the remaining directions are set

move freely. For the case of traction control we specified at x = 1 that tx = 0.1GPa and on

x = 0 the displacements were fixed.

For a given set of boundary conditions t=0.1GPa and γ = 1.3 the deformed shape

and the predicted error are shown in Figure. 6.4. The deformed shape is exaggerated to see

the deformation.

The results from the tests are summarized in Figure. 6.5, which show both the

predicted error ζ
||u∗,h||E(Ω)

and the exact error ||u
h−u∗,h||E(Ω)

||u∗,h||E(Ω)
vs the factor γ. The plots show

that for the case of traction control the exact error and the predicted error match almost

exactly, while under displacement control the predicted error is a true upper bound. The

predicted error cannot distinguish between the two different boundary conditions. For the

conducted tests we expect the exact error to be small under displacement control since we
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are imposing the positions exactly for both cases. In fact if ν was kept constant and only

young’s modulus was changed the exact error would be zero. This is clearly not the case

under traction control.

Figure 6.3: Mesh of cube used in the simulations

Figure 6.4: Deformed shape on the left showing the displacement contour and relative error
plots ζK

||u∗||E(Ω)
on the right

6.3.2 Hetrogenous-Homogenous Comparisons

In these examples we consider the case of a fibrous material with a known mi-

crostructure. Using some specific homogenized properties we conduct numerical experi-
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Figure 6.5: Plot of error for displacement control on the left and for traction control on the
right. We note how for the traction control the predicated global error ζ is a very strict
bound, on the other hand for displacement the predicated global error ζ is a true upper
bound.

ments comparing the exact error to the predicted error. For simplicity the microstructure

has fictitious dimensions, with a fiber radius of 0.2m in a square matrix material of di-

mension 1m. The fiber volume fraction was assumed to be νf = 0.5 which resulted in 4

fibers in the domain. The material properties of the heterogenous solid are summarized in

Table. 6.1.

Table 6.1: Heterogeneous Material Properties

Material E(GPa) ν

Carbon 260 0.3
Epoxy 5 0.3

Three cases of homogenized material properties are used for comparison to under-

stand the effect of the homogenized material property on the accuracy of the error indicator

ζ. The first two cases are the Reuss-Voigt bounds as lower and upper estimates of the het-

erogeneous material properties. The third we use some experimental material properties for

carbon-epoxy composite. These material properties are summarized in Table. 6.2. Note,

that for the geometry considered the homgenized properties are not representative since the

utilized microstructure does not satisfy the appropriate size conditions. Nevertheless, these

will serve the purpose of understanding the error bounds behavior. The results for both the
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traction and displacement control boundary conditions are summarized in Table. 6.3-6.4.

Note, the boundary conditions in each case were the same as those used in the isotropic-

isotropic comparison case. Figure. 6.6 shows the deformation under traction control and

the relative predicted error ζK
||u∗||E(Ω)

element wise, where K is the element number.

Table 6.2: Homogenized Material Properties

Material E11 E22 ν12 ν23 G12

Reuss Bound 9.83 9.83 0.3 0.3 3.77
Voigt Bound 132.5 132.5 0.3 0.3 50.96
Experimental 140 10 0.3 0.3 7

We notice that the accuracy of the error indicator ζ depends on the homogenized

material properties used. This can be particularly seen for the traction controlled case where

when we assumed the Reuss bound the error indicator ζ was very close to the exact error

on the other hand the Voigt bound and the experimental properties result in a less accurate

error prediction. When compared to the displacement controlled tests we notice again that

the exact errors are smaller than the ones resulting from traction control conditions, this is

again because the displacements on the boundaries are the same for both solutions. This

results in a loss of accuracy for the error predicator ζ under displacement control.

Table 6.3: Error for traction control

Material ||uh−u∗,h||E(Ω)

||u∗,h||E(Ω)

ζ
||u∗,h||E(Ω)

Reuss Bound 0.9319 0.9666
Voigt Bound 1.1181 3.5535
Experimental 1.1755 3.6654
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Table 6.4: Error for displacement control

Material ||uh−u∗,h||E(Ω)

||u∗,h||E(Ω)

ζ
||u∗,h||E(Ω)

Reuss Bound 0.1055 0.9666
Voigt Bound 0.0888 3.5463
Experimental 0.1507 3.6350

Figure 6.6: Deformed shape on the left showing the displacement contour and the relative
error ζK

||u∗||E(Ω)
plot on the right for a sample with four fibers and volume fraction νf = 0.5
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Chapter 7

Multiscale Subdomain

Construction

In this section we will break the entire domain into subdomains and utilize the

exact error bound of Eqn. 7.0.7 to choose which subdomains to solve at the microscale. To

start lets consider Figure. 7.1. The figure is a schematic of a heterogeneous solid that is

partitioned into predefined non-overlapping subdomains Θk, k = 1, 2, ..., N . It is clear that

the union of the subdomains results in the global domain. We therefore, have

N⋃
k=l

Θk = Ω, Θk ∩Θl = 0, k 6= l (7.0.1)

!"#$%&'()*(+",$

-%$./&"0,(

12#3()."0+

4
! 4)

Θk

Figure 7.1: Schematic of a heterogeneous body shown being deconstructed into subdomains
Θk, as shown on the on the right side.
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As usual each subdomain has a boundary ∂Θk where traction and displacement boundary

conditions are applied. We can now construct the local subdomain problem defined as

Find ũ ∈ H1(Θk), ũ|∂Θk,u
= d,where ∀v ∈ H1(Ω) (7.0.2)

B(ũk,v) = F(vk) (7.0.3)

where k refers to the subdomain number and we have

B(ũk,v) =
∫

Θk

∇vk : C∇ũkdΘk (7.0.4)

and

F(vk) =
∫
∂Θk,t

t · vkdΓk +
∫

Θk

f · vkdΘk (7.0.5)

We can now specify under what boundary conditions these local problems are

solved. Specifically, for the displacement boundary conditions we impose ũ|∂Θk,u
= u∗|∂Θk,u

.

If the global problem has traction boundary conditions specified then these are applied to

subdomains whose boundary intersects with the global domain. With the local solution at

hand we can now simply replace u∗k with the values from ũk, thus updating the homogenous

solution with results from the local boundary value problem. Therefore, the global solution

becomes

ũ∗ = u∗ +
N∑
k=1

Ek(ũk − u∗k) (7.0.6)

where is Ek is an operator that takes the values in the space Θk and puts them into the

space defined by Ω. The local subdomain error indicator is assumed to be

ζk = ||J0∇u∗k||E(Θk) (7.0.7)
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where the global error bound ζ =
√∑N

k=1 ζ
2
k . We note that ζk is not an upper bound on

the error in the subdomain.

7.1 Connecting Scales with Different Mesh Sizes

When solving the homogeneous problem it is clear that in many cases a fine mesh

is not required for convergence. More specifically, the convergence does not depend on the

microstructure. Therefore, in circumstances when the mesh size of the global homogenous

problem is too coarse relative to the microstructure we must be able to remesh the local

heterogeneous subdomains and connect the two scales together. Figure. 7.2 illustrates the

scenario. Where, given a subdomain(Θk) and noting that the blue coarse mesh is for the

homogeneous global problem and the finer red mesh is for the local scale that includes the

microstructure.

Ω Θk

Θk

Θk

!"#$%&'(%)*'+,*%#-,*"%%

!"#$%&'(%*'-,*%#-,*"%

u∗
k ↔ ũk

Figure 7.2: This figure shows how the two scales are related. The domain Ω in the center
left is shown broken up into subdomains Θk. The mesh size for the homogenized body at
the scale of the subdomain is show in the upper right part. On the other hand the mesh at
the subdomain scale with microstructure included is shown in the bottom right part. These
two meshes are related to each other.

The solution from the homogenous problem is projected onto the local problem

as described in the previous section. However, since the mesh’s do not match we must be

able to interpolate displacement solution(u∗k) to any specified position x in the subdomain.
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Therefore, given a nodal position(x̃) in the local scale mesh we mush be able to identify

in what element in the global scale mesh it lies and what corresponding master element

coordinate(ζ) value it posses. This can be achieved by finding the inverse mapping rela-

tionship. For the three-dimensional case an analytic solution is not possible, we therefore

must solve the system of nonlinear equations defining the isoparametric mapping. The

reader is referred to Knupp. [42], V. Murti etc . [43] and K.M.Yuan etc. [44] for an over

view of various methods. These papers provide algorithms that optimize the identification

of the inverse map and therefore, reduce the search time needed to find the inverse coor-

dinates. In this work we do not try to optimize the searching process and instead use a

simple algorithm. Specifically, we have the form

xi = N(ζ)IXiI (7.1.1)

where NI are the master element shape function which depend on ζ and XiI are the element

coordinates of the global mesh. We use the Newton-Raphson method to solve this nonlinear

system of equations for ζ. The algorithm is described in Algorithm. 1

Algorithm 1 Algorithm for inverse mapping
Given xm find ζm
Set Tolerance for convergence
Guess ζ = 0
for k = 1,Number of Elements do

Set element Coordinates XiI

while Error ≥ Tolerance do
1. xni = N(ζn)IXiI

2. ζn+1 = ζn + (xm)− x(ζn))
(
dx
dζ

)−1

ζn

3. Check error ||xm − xn+1||2
end while
SET ζm = ζn+1

if ζm is in between ± 1 then
Exit Loop over elements

end if
end for

Given the master element coordinates ζ, we can now use them in the shape func-

tions to interpolate the homogenized displacement solution u∗ to nodal values ũ on the
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local mesh with microstructure. This is a basic algorithm that works well, but can be very

slow if local scale mesh is very fine. With this algorithm we can now connect the mesh

scales together and solve problems with small microstructure. Examples will be shown in

the coming sections.

7.2 Overview of Numerical Analysis

Before proceeding with the numerical analysis, the material properties used and the

various numerical setups are overviewed. We start by introducing the notion of a material

mismatch ratio κ = Efiber

Ematrix
, while Poisson’s ratio ν is the same for both materials. The base

material is the matrix material and we consider an epoxy with Ematrix = 5GPa. For all

the ensuing analysis the mismatch ratios used are κ = [5, 10, 52], where for κ = 52 we have

carbon-fiber material properties. Clearly these are the material properties for the micro-

constituents and accordingly we need to compute homogenized material properties based

on procedures described in Chapters. 4-5 to solve large scale structural problems. These

basic results are summarized in Section. 7.2.1. The next part of this section will explain the

different numerical experiments that will be conducted and why we are interested in their

analysis.

7.2.1 Extracting Homogenized Properties

The summary of the homogenization results are described in this section. The

size of the RVE plots for the case of κ = 52 are show in Figure. 7.3. The moduli can

then be processed by finding the compliance matrix as the inverse of the elasticity matrix.

We will consider the RVE with 64 fibers to get the converged properties. The elasticity

and compliance matrices are given in Eqn. 7.2.1-7.2.2. The results for the three different

mismatch ratios are summarized in Table. 7.1 in the form of elastic constants. These

properties will be used for the numerical simulations to obtain the homogenized response.
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Figure 7.3: Effect of RVE size on properties for νf = 0.5 and κ = 52. The plots show the
convergence of the five independent material properties change as a function of the RVE
size. This gives us the material properties for a give set of matrix/fiber material properties.
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〈〈C〉〉 =



141.4451 15.1631 14.6420 0 0 0

15.1632 39.6500 10.8936 0 0 0

14.6420 10.8936 39.6500 0 0 0

0 0 0 14.3782 0 0

0 0 0 0 17.2170 0

0 0 0 0 0 17.2170


︸ ︷︷ ︸

Elasticity Matrix

(7.2.1)

〈〈S〉〉 =



0.0075 −0.0023 −0.0022 0 0 0

−0.0023 0.0280 −0.0068 0 0 0

−0.0022 −0.0068 0.0279 0 0 0

0 0 0 0.0695 0 0

0 0 0 0 0.05810

0 0 0 0 0 0.0581


︸ ︷︷ ︸

Compliance Matrix

(7.2.2)

Table 7.1: Homogenized Material Properties for different mismatch ratios

Mismatch κ 5 10 52
E11 GPa 14.9 27.48 132.6
E22 GPa 11.2 15.63 35.74
ν12 0.300 0.299 0.304
ν23 0.2981 0.291 0.245

G12 GPa 4.47 6.53 17.2 GPa

7.2.2 Numerical Experiments

All the numerical experiments in this section are conducted on a thin plate. Specif-

ically, our interest lies in assessing the following issues

1. Analysis of subdomain error indicators under different boundary conditions
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(a) Where do the largest errors occur?

2. Analysis of the multiscale process and assessing

(a) How much can we improve our solution?

(b) How many subdomains do we need to get good improvement in solution space?

To conduct these tests, we consider a fiber microstructure that can easily be re-

solved through the Finite Element Method. Subsequently a more realistic fiber dimension

is used to conduct the multiscale analysis, where our main interest would be to show how

the procedure works for more realistic micro-structures.

7.3 Analysis of Subdomain Errors

As previously mentioned we will consider a thin plate in bending as an example to

explore both the global error and the local error indicators in the subdomains. These errors

indicators ζ, ζk will then be compared to the exact errors by solving the problem with the

exact microstructure. The overall scheme will be to prescribe the micro-structural material

properties, obtain the homogenized properties and then conduct the large scale simulations

and predict the error. The domain is broken up into subdomains as previously described.

The plate has dimensions of 1m × 1m × 0.1m as shown in Figure. 7.4. We will

consider multiple boundary conditions including, fixed along both x and y planes, fixed

along x planes only and fixed along y planes only. For this analysis traction boundary

conditions are applied on the surface (z = 0.1m). The traction is over a circular region

of the plate. The region has a radius of 0.2m and is centered in the middle of the plate.

The fibers are assumed to have a radius of 0.04m. This will allow us to solve the complete

heterogeneous problem in a time efficient manner.

7.3.1 Various Boundary Conditions on X and Y Surfaces

Since the radius of the fibers are large we can solve the hetrogenous problem to

obtain the exact error and compare it to the predicted error ζ. Therefore, the solutions to

both the hetrogeneous and homogeneous problems are obtained using the Finite Element

Method, with solutions uh and u∗,h respectivelly. For both these cases the same mesh is

used. We enforce that there are at least eight elements through each fiber. For the current
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Figure 7.4: Schematic of the plate showing the circular center punch traction/displacement
used for the ensuing simulations.

setup we break up the plate into 10 × 10 × 1 subdomains, 10 domains in x, 10 in y and 1

in z. Given the fiber radius, our mesh over each subdomain is 9× 9× 9 elements. We can

then calculate the mesh size over the entire region from the prescribed subdomain mesh.

Since this is a static problem we apply a pseudo time scheme in which the applied traction

evolves such that t = −0.1× time− 0.1. Also, at each time step both the exact error and

the local error indicators are calculated in each subdomain.

Solving the boundary value problem for the three different boundary conditions

gives us the displacement field which is shown in Figures. 7.5-7.7. The effect of the fibers

can be seen from the figures on the right. When fibers are included the displacements are

no longer symmetric. The error indicator ζk in the subdomains for the different boundary

conditions are shown at each time step in Figure. 7.8-7.10. We note that the error distri-

bution for the x-y fixed and x fixed boundary conditions are very similar, the largest errors

occur on the edges defined by x = [±1, 0, 0]. Hence, the most significant errors are along

the fiber direction. This can be attributed to the high stiffness of the fibers. On the other

hand when observing the results from the y-fixed boundary conditions we notice the largest

errors occur in the center of the plate. The plate is allowed to move in the fiber direction.

When conducting these numerical tests and looking at the error in each subdomain

it’s important to understand that there is no guarantee that the predicted error is in fact

an upper bound in the given domain. For this reason we plot the local error indicator ζk

in each subdomain vs the exact error in each subdomain, with Figure. 7.11 illustrating the

results. These plots are for the three different boundary conditions at time step time = 0.

The red line indicates the exact error line. It is observed that for these examples all the

subdomain errors are above the line. Hence, they are upper bounds. Note, this is not
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Figure 7.5: Displacement of 1) Homogeneous body on the left, 2) Hetrogeneous body on
the right with x-y fixed boundary conditions

Figure 7.6: Displacement of 1) Homogeneous body on the left, 2) Hetrogeneous body on
the right with x fixed boundary conditions

Figure 7.7: Displacement of 1) Homogeneous body on the left, 2) Hetrogeneous body on
the right with y fixed boundary conditions



7.3. ANALYSIS OF SUBDOMAIN ERRORS 97

Figure 7.8: Plots showing ζk error indicator at each loading time for fixed x and y surfaces
as a function of the loading. The loading increasing going from left to right
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Figure 7.9: Plots showing ζk error indicatorat each loading time for fixed x surfaces as a
function of the loading. The loading increasing going from left to right
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Figure 7.10: Plots showing ζk error indicator at each loading time for fixed y surface as a
function of the loading. The loading increasing going from left to right
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guaranteed in other situations. We also notice that if we compare two subdomains such

that subdomain1 has a larger exact error than subdomain2, it is possible that the predicted

error in subdomain2 is larger than the predicted error in subdomain1. This emphasis the

fact the error predictions in the subdomains must be treated with caution and can only be

used as a guide.
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Figure 7.11: These figures show ζk error indicator at each subdomain for the following
boundary conditions 1)x -y fixed which is shown in the upper left, 2) x fixed which is shown
in the upper right and 3) y fixed which is shown in the bottom center.

It is interesting to note that the relative error ζ/||u∗,h||E(Ω) remains constant as the

traction load is increased, this is clearly due to the linearity of the system. Table. 7.2 shows

the global error for the different applied boundary conditions. We notice how the overall

performance of the error indicator clearly depends on the boundary conditions, where for

y place fixed case we have the best approximation to the exact error.
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Table 7.2: Global Errors

Boundary condition ζ
||uh−u∗,h||E(Ω)

ζ
||u∗,h||E(Ω)

X-Y Fixed 2.384 2.652
X Fixed 2.831 2.987
Y Fixed 1.335 1.869

7.4 Multiscale Analysis of Plate with Fiber Radius of 0.04m

In this section we will solve the local subdomain boundary value problem defined

in Eqn. 7.0.3 and update the global solution using Eqn. 7.0.6. We will analyze both the

effect the subdomain size has on enhancing the global solution and the effect of choosing

only some subdomains that are above a certain error tolerance. The analysis is conducted

on a plate in bending with similar boundary conditions used in the plate bending example to

analyze the subdomain errors. Specifically, the plate is clamped on all edges and we employ

both displacement and traction control boundary conditions on the surface (z = 0.1m). The

applied displacement is u = [0, 0,−0.01] and the traction is t = [0, 0,−0.1]. The loads are

imposed on a circular region with radius 0.15m and centered in the middle of the plate. The

fiber radius is r = 0.04m which is the same as before. Additionally, the fiber positions are

kept constant with the orientations summarized in Table. 7.3 and Figure. 7.12 showing the

fibers in a matrix. We will also explore the effect the material mismatch ratios κ = [5, 10, 52]

have on the solution updates. Keep in mind that the homogenized material properties are

summarized in Table. 7.1 and will be used to solve the homogeneous problem.

The mesh size to solve both the homogeneous and heterogenous boundary value

problem was 81 × 81 × 9 elements. This guaranteed about 8 elements across each fiber.

Figure. 7.13 shows the displacement contours for both the homogeneous and heterogeneous

solutions under a displacement control punch for κ = 52.

7.4.1 Effect of Number of Subdomain on Enhancing Homogeneous Solu-

tions

For this analysis the sub-structuring of the global domain is changed to understand

it’s effect on the updated solution ũ∗. We will consider three mismatch ratios of κ = 5, 10, 52
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Table 7.3: Fiber positions for nine fibers

Y position Z position Radius
0.7358 0.0538 0.04
0.8534 0.0598 0.04
0.3145 0.0428 0.04
0.1587 0.0442 0.04
0.6302 0.0503 0.04
0.4503 0.0464 0.04
0.9563 0.0449 0.04
0.0622 0.0421 0.04
0.5319 0.0499 0.04

Figure 7.12: Plot showing the fibers with radius 0.04m inside the plate

Figure 7.13: Displacement of 1) Homogeneous body on the left, 2) Hetrogeneous body on
the right with x-y fixed boundary conditions and κ = 52
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and 7 cases for sub-structuring the domain. The results for both traction and displacement

boundary conditions are summaried in in Table. 7.4-7.5. The first substructuring case is by

considering 1X1X1 subdomains, in other words we are solving the complete heterogeneous

problem. As expected this drives the error down to zero. In the next cases the domain is

halved along x and y. Figures. 7.14-7.15 shows the percent change in solution error defined

as

%∆e = 100× ||u
h − u∗,h||E(Ω) − ||uh − ũ∗,h||E(Ω)

||uh − u∗,h||E(Ω)
(7.4.1)

for both the displacement controlled and traction controlled punch, respectively. The per-

cent change between the exact error in column 5 and enhanced error column 6 of Ta-

bles. 7.4-7.5 drops rapidly once we partition the global domain. This is ofcourse expected

since we are solving a local boundary value problem with incorrect internal boundary con-

ditions. Nonetheless, there is clearly a significant improvement in the homogeneous solution

when sub-subtructuring the global domain. Clearly, the larger the size of the subdomain

the better, this size will be limited by memory considerations in real domains with fine

micro-structural attributes.
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Figure 7.14: Percent change in solution error %∆e by solving the smaller subdomain bound-
ary value problem under a displacement controlled punch.

One thing to note is that we are able to get better solution improvements when
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Table 7.4: Subdomain size effect on solution improvement for displacement control

Subdomain
κ

Number ζ
||u∗,h||E(Ω)

||uh−u∗,h||E(Ω)

||u∗,h||E(Ω)

||uh−ũ∗,h||E(Ω)

||u∗,h||E(Ω)
%∆e

size Subdomain
1× 1× 1 5 1 1.0055 0.435 0.0 100.0
2× 2× 1 5 4 1.0055 0.435 0.137 68.5
4× 4× 1 5 16 1.0055 0.435 0.191 56.1
6× 6× 1 5 36 1.0055 0.435 0.238 45.2
8× 8× 1 5 64 1.0055 0.435 0.270 37.8

12× 12× 1 5 144 1.0055 0.435 0.318 26.8
16× 16× 1 5 256 1.0055 0.435 0.346 20.4
1× 1× 1 10 1 1.554 0.621 0.0 100
2× 2× 1 10 4 1.554 0.621 0.194 68.7
4× 4× 1 10 16 1.554 0.621 0.272 56.2
6× 6× 1 10 36 1.554 0.621 0.339 45.3
8× 8× 1 10 64 1.554 0.621 0.388 37.6

12× 12× 1 10 144 1.554 0.621 0.456 26.5
16× 16× 1 10 256 1.554 0.621 0.497 19.9
1× 1× 1 52 1 4.068 2.754 0.0 100.0
2× 2× 1 52 4 4.068 2.754 0.950 65.5
4× 4× 1 52 16 4.068 2.754 1.299 52.8
4× 4× 1 52 36 4.068 2.754 1.653 39.9
8× 8× 1 52 64 4.068 2.754 1.889 31.4

12× 12× 1 52 144 4.068 2.754 2.189 20.5
16× 16× 1 52 256 4.068 2.754 2.396 13.0
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Table 7.5: Subdomain size effect on solution improvement for traction control

Subdomain
κ

Number ζ
||u∗,h||E(Ω)

||uh−u∗,h||E(Ω)

||u∗,h||E(Ω)

||uh−ũ∗,h||E(Ω)

||u∗,h||E(Ω)
%∆e

size Subdomain
1× 1× 1 5 1 1.005 0.435 0.0 100.0
2× 2× 1 5 4 1.005 0.435 0.137 68.5
4× 4× 1 5 16 1.005 0.435 0.191 56.1
6× 6× 1 5 36 1.005 0.435 0.238 45.2
8× 8× 1 5 64 1.005 0.435 0.270 37.8

12× 12× 1 5 144 1.005 0.435 0.318 26.8
16× 16× 1 5 256 1.005 0.435 0.346 20.3
1× 1× 1 10 1 1.536 0.723 0.0 100.0
2× 2× 1 10 4 1.536 0.723 0.453 37.4
4× 4× 1 10 16 1.536 0.723 0.491 32.1
6× 6× 1 10 36 1.536 0.723 0.533 26.3
8× 8× 1 10 64 1.536 0.723 0.558 22.9

12× 12× 1 10 144 1.536 0.723 0.609 15.8
16× 16× 1 10 256 1.536 0.723 0.634 12.4
1× 1× 1 52 1 2.698 0.905 0.0 100.0
2× 2× 1 52 4 2.698 0.905 0.473 47.7
4× 4× 1 52 16 2.698 0.905 0.542 40.1
6× 6× 1 52 36 2.698 0.905 0.614 32.1
8× 8× 1 52 64 2.698 0.905 0.658 27.2

12× 12× 1 52 144 2.698 0.905 0.740 18.2
16× 16× 1 52 256 2.698 0.905 0.783 13.4
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Figure 7.15: Percent change in solution error %∆e by solving the smaller subdomain bound-
ary value problem under a traction controlled punch.

applying displacement boundary conditions. This is because the boundary displacements

match for both the homogeneous and heterogenous solution spaces and the only error is

arising from the projection of the wrong boundary conditions on the interior parts of the

subdomains. On the other hand, when applying the traction boundary condition, the

displacement of the circular region where the tractions are applied do not match for the

homogeneous and heterogenous bodies. Thus in this case, we have an additional source of

error.

7.4.2 Effect of Choosing Some Subdomains on Enhancing Homogeneous

Solution

It is realistic to assume that under most circumstances we only want to solve a

specified number of subdomains whose error indicator ζk are above some tolerance. We can

set a criteria to include only a certain number of subdomains by considering

ζlimit = max(ζk)− α(max(ζk)−min(ζk)) (7.4.2)

where 0.0 ≤ α ≤ 1.0 is a user defined constant. If we want all the subdomains to be
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included in the analysis then α = 1, otherwise only the subdomains whose error exceeds

ζlimit are used. It can be computationally expensive to solve all the subdomains however the

added benefit on enhancing the homogeneous solution is not clear. To analyze this effect

we consider the displacement controlled punch scenario that is partitioned into 8 × 8 × 1

subdomains. The scaling factor α is varied and the complete boundary value problem

is solved to obtain the homogeneous solution which is updated with the local subdomain

solution. The results for a mismatch ratio κ = 52 are summarized in Table. 7.6 and

Figure. 7.16. It’s interesting to note that for α = 0.8 the drop in the %∆e change is slight

however the number of subdomains solved drops significantly. This can significantly reduce

the computational cost with minimal effect on the results. It should be noted however, that

using very few subdomains would result in a very small enhancement in the solution space.

This is clear when using an α = 0.2, which resulted in using only 4 subdomains and in turn a

%∆e of only 3.66% was achieved . Additionaly, to illustrate the process, Figure. 7.17 shows

the solved subdomains and the updated homogeneous solution for the case with α = 0.8.

Table 7.6: Effect of number of subdomains used on improving solution

Number
α

ζ
||u∗,h||E(Ω)

||uh−u∗,h||E(Ω)

||u∗,h||E(Ω)

||uh−ũ∗,h||E(Ω)

||u∗,h||E(Ω)
%∆e

Subdomain
64 1 4.068 2.754 1.889 31.4
30 0.8 4.068 2.754 1.991 27.6
24 0.6 4.068 2.754 2.093 23.9
14 0.4 4.068 2.754 2.358 14.4
4 0.2 4.068 2.754 2.653 3.66
4 0.05 4.068 2.754 2.653 3.66
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Figure 7.16: Percent change in solution error %∆e by choosing some subdomains in the
8× 8× 1 partition.

Figure 7.17: Displacement contours for κ = 52 of 1) Solved subdomains on the left 2)
Updated solution ũ on the right for α = 0.8.
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7.5 Multiscale Analysis of Plate with Fiber Radius of 0.01m

In this section we will consider a microstructure that is more challenging. The

same boundary conditions are imposed as in the previous section. A traction controlled

punch in the center is applied with load t = [0, 0,−0.1]. The microstructure geometry is

shown in Figure. 7.19. Specifically, a fiber radius of 0.01m is assumed which results in 159

fibers with a fiber volume fraction of 0.5. We will only consider the material property with

κ = 52, which gives us a carbon fiber.

Figure 7.18: Fibers with radius 0.01m in a matrix

Due to the fineness of the microstructure it is very difficult in this case to solve the

exact boundary value problem and thus cannot compare the homogeneous solution to the

exact solution. Requiring 8 nodes across a fiber would result in almost 19 million degrees of

freedom. This is assuming a square non-conforming mesh. Solving this is computationally

very expensive therefore, we don’t attempt it. To conduct the multiscale analysis we must

use different mesh sizes for the subdomain that includes microstructure and the subdomain

without the microstructure. To capture the details of the fibers we utilize a finer mesh

for these small scale problems and connect the two scales together with Algorithm. 1. For

this analysis the global domain is sub-structured into 10 × 10 × 1 subdomains. The mesh

on the subdomains that include the microstructure was set to 51 × 51 × 51 nodes, while

the subdomains without the microstructure is 9× 9× 9 nodes. This results in a mesh size

81× 81× 9 nodes on the global domain to solve the homogeneous problem.

The results of this simulation are shown in Figure. 7.19, where the equivalent stress

σeq(Von-Mises) is plotted for both the homogeneous solution and for parts of the subdo-

mains that have high local error indicators. Figure. 7.20, plots the ratio of ζk/ζmaxk vs the



7.5. PLATE WITH FIBER RADIUS 0.01M 110

subdomain number showing where the maximum error indicators occur. It’s clear that the

equivalent stress ranges are very different between the microsturcture and the homogenous

solution, this is of course to be expected. Clearly, this variation in σeq can be very im-

portant for damage analysis. As a comparison the average 〈σeq〉 stress in each subdomain

with and without microstructure is computed and their ratio is plotted in Figure. 7.21. We

notice this ratio fluctuates with some values over 1 and some below, meaning that in some

subdomains the average σeq with microstructure is higher than without while in others the

opposite is true.

Subdomains with

micro-structure

Figure 7.19: Contour solutions of the equivalent stress σeq for the case of fibers with radius
0.01m. The complete domain shows the solution for the homogenized body and the extended
sections show the subdomains with fibers used to update the solutions space. We note the
difference in the contour results and variation in σeq.
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Figure 7.21: Plot of the ratio of the average equivalent stress from the subdomain calculation
to the average equivalent stress of homogenized solution in each subdomain.
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Chapter 8

Multiscale Modeling with Large

Deformations: Global Error

Analysis

Deriving an exact upper bound on the modeling error for nonlinear elasticity is a

very difficult task if not impossible. Hence, in this chapter we will utilize the error bounds

derived in Chapter. 6 in Section. 6.2 as an indicator of the error for the case of large

deformations. In looking at large deformation we solve a nonlinear problem and refer to

the formulation of nonlinear finite elements described in Chapter. 3. For this analysis we

limit our interest to a Kirchhoff-St.Venant material model defined as

S = CE (8.0.1)

Where, C = ∂S
∂E . This model is generally satisfactory for deformations that involve

large displacements but relatively small strains. Since we are interested in fiber composites

this model is therefore satisfactory. Since we are limiting ourselves to this model, all results

that ensue are only valid for this type of material.

As stated before, we refer to the upper bound derived for the case of linear elasticity

as an error indicator for simulations with large deformations. Specifically, we will assume

the error bound to be defined on the reference configuration and we then have,
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ζ2 =
∫

Ω0

J0∇Xu∗ : CJ0∇Xu∗dΩ0 (8.0.2)

where again J0 = I−C−1C∗ and ∇X is the gradient operator with respect to the referential

positions XI . Since Eqn. 8.0.2 is not derived but assumed, the first set of actions is to

understand its response under large deformations. The questions that come to mind are

1. Does it always bound the exact error?

2. Under what circumstances does it fail?

In this chapter we attempt to answer these questions. We construct some basic

examples to elucidate the behavior of the error estimate. This will be conducted purely in

a numerically setting. Three loading scenarios are considered. First, simple shear along the

fiber direction. Second, simple shear perpendicular to the fiber direction and third, bending

of a beam. Each case will be discussed independently. First let’s consider the general case

of simple shear as shown in Figure. 8.1 and thus we have

x1 = X1 +KX2

x2 = X2

x3 = X3 (8.0.3)

and therefore, we can calculate the lagrangian strain E to be

E =


0 1

2K 0
1
2K

1
2K

2 0

0 0 0

 (8.0.4)

where K is a constant. We note that to produce this exactly, we must apply the exact

displacement boundary conditions on the block. However, for our purposes we want to apply

a transverse shear load on the surface of interest instead of pure displacement boundary

conditions. This is mainly to increase the error between the homogeneous and heterogeneous
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Figure 8.1: This is a schematic of a simple shear deformation

solution. Although the above is the exact formulation for simple shear, we apply the set of

boundary conditions shown in Figure. 8.2. Where the traction is applied on different faces

depending on if the load is parallel or perpendicular to the fiber direction. When referring

to simple shear conditions, we are implying the boundary condition stated in Figure. 8.2.

All the tests are conducted for a fiber volume fraction of νf = 0.5 and to reduce

the uncertainty the fibers are placed in the body symmetrically. The conducted analysis

will mainly examine whether using equation Eqn. 8.0.2 will bound the real error. To do

this we will compare ζ to the exact error and plot the ratio ||u−u∗||E(Ω)

ζ as a function of the

applied traction t.

8.1 Simple Shear of a Block: Along Fiber Direction

The first set of parametric tests are conducted on a 1m×1m×1m block in simple

shear with a traction load parallel to the fiber direction. The traction is loaded incrementally

to evaluate the change in the error prediction as a function of load. Additionally, the number

of fibers are increased and the same loading conditions are applied. The number of fibers

used was 4,16 and 36. Two material mismatch ratios are considered with κ = 5 and 52.

This is to see if the material type has an effect on the analysis. The mesh size depends on

the number of fibers added to the block. As usual we maintained approximately 8 elements

across each fiber.
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Figure 8.2: Simple shear with traction boundary condition and the applied displacement
constraints on the different faces. These are the conditions used for the computational
simulations

For the case of κ = 52 the final applied traction was t1 = 3.0N/m2 while for

κ = 5 the final applied traction was t1 = 2.6N/m2 and both were applied on the surface

X2 = 1.0. The reason for different max loadings for the two mismatch ratios is shear

locking occurring at the different loads which resulted in a lack of convergence with newton’s

method for the heterogenous solution. As mentioned the loading was applied incrementally

and Figure. 8.3 shows the displacement solution contour for the case of 36 fibers at traction

loading t1 = 2.0N/m2 and with a mismatch ration of κ = 5.

To analyze how well the error bound ζ works we plot a normalized load t1/Em

vs the ratio of the exact error divided by the predicted error. Specifically, as previously

mentioned ||u−u∗||E(Ω)

ζ is evaluated. The key is that this ratio remains under unity, therefore

ζ maintains an upper bound estimate on the error. Figure. 8.4 shows the plots of the results

from the parametric tests for both mismatch ratios of κ = 5 and 52. The desired ratio

remains below unity, however the error estimate deteriorates with increasing load. One

thing to notice, is that for mismatch ratio of κ = 5 the loss in accuracy is more pronounced

and at loading ratio of 0.41 a small jump in the trend occurs. The jump can be attributed
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Figure 8.3: Displacement contours for load parallel to fiber with 36 fiber and κ = 5 at load
increment t1 = 2.0N/m2 for a) Homogeneous body is shown on the left b) Heterogeneous
body is on the right

to some shear locking in the heterogeneous solution due to the large deformations.
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Figure 8.4: These plots show the performance of the global error indicator ζ under large
deformations for 1) κ = 52 on the left and for 2) κ = 5 on the right under loading parallel
to the fiber.

8.2 Simple Shear of a Block: Perpendicular to Fiber Direc-

tion

The next set of parametric tests is simple shear with a load perpendicular to the

fiber direction. As previously described the same parameters are changed for this study as

they were for the case of simple shear with a load parallel to the fiber. For a mismatch

ratio of κ = 52, the maximum traction is set to t2 = 1.2N/m2 while for a mismatch
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ratio of κ = 5 the maximum traction is set to t2 = 1.1N/m2. The traction is increased

incrementally as previously described. Again, the variation of maximum loads is due to

shear locking occurring for κ = 5. The displacement contours for the homogeneous and

heterogenous results are shown in Figure. 8.5 the case of 36 fibers at a traction value of

t2 = 0.5N/m2 and a material mismatch of κ = 5.

The results from the parametric studies are shown in Figure. 8.6. They show the

evolution of the error ratios as a function of load. In contrast to the simple shear with load

parallel to the fiber, the error ratios do not change as dramatically. In fact, with increasing

load ζ gets closer to the actual error. This is more pronounced for mismatch ration κ = 5.

We also observe a dependence on the number of fibers used. For example there is a large

change for both mismatch ratios when going from 4 fibers to 16 fibers. However, the change

is smaller when increasing fibers from 16 to 36. The change is negligible for κ = 52. This

dependence makes sense from the point of you that as you increase the number of fibers

the response from an average point of you converges to some value.

Figure 8.5: Displacement contours for load perpendicular to fiber with 36 fibers and κ = 5
at load increment t2 = 0.5N/m2 for a) Homogeneous body is shown on the left b) Hetero-
geneous body is on the right

8.3 Transverse Shear Loading of a Beam

This is the last set of parametric studies used to understand the behavior of the

error indicator defined in Eqn. 8.0.2. In this part we look at the case of transverse shear

of a beam of dimensions 1m × 0.1m × 0.1m. A traction is applied on the surface that is



8.3. TRANSVERSE SHEAR LOADING OF A BEAM 119

0.05 0.1 0.15 0.2
0.4

0.41

0.42

0.43

0.44

0.45

4 Fibers
16 Fibers
36 Fibers

||u
-u

* || E(
Ω

)/ζ

Traction/Em

0.05 0.1 0.15 0.2
0.44

0.46

0.48

0.5

0.52

0.54
4 Fibers
16 Fibers
36 Fibers

||u
-u

* || E(
Ω

)/ζ

Traction/Em

Figure 8.6: These plots show the performance of the global error indicator ζ under large
deformations for 1) κ = 52 on the left and for 2) κ = 5 on the right under loading perpen-
dicular to the fiber.

perpendicular to the fibers as shown in Figure. 8.7. The fibers are arranged so that they are

placed along the length of the beam. This test will produce large deformations that include

both displacements and rotations. The same set of fibers and mismatch ratios κ are used

for this study. For a mismatch ratio of κ = 52, the maximum traction is t3 = 0.2N/m2while

for a mismatch ratio of κ = 5 the maximum traction is t3 = 0.2N/m2. The displacement

contours for the homogeneous and heterogeneous results are shown in Figure. 8.8 for the

case of 36 fibers and mismatch ratio of κ = 5 at load increment t3 = 0.15N/m2.

t

Figure 8.7: Figure of a beam under transverse shear loading conditions. The fibers are
assumed to go along the length of the beam.

The results from the parametric studies are shown in Figure. 8.9. The error indi-

cator ζ for this test performs poorly in predicting the error. However, it remains an upper

bound. The ratio of exact error to ζ does not change significantly for the case of 16 and 36

fibers for both mismatch ratios. However, the case of 4 fibers behaves in an unpredictable

manner for both mismatch ratios. In fact for mismatch ration κ = 52, ζ approaches the

exact error while for mismatch ration κ = 5 , ζ deviates away from the exact error. Once

again, we notice that the results are very similar between cases of 16 and 36 fibers.
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Figure 8.8: Displacement contours for transverse shear loading with 36 fibers and κ =
5 at load increment t3 = 0.15N/m2 for 1) Homogeneous body is shown on the left b)
Heterogeneous body is on the right
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Figure 8.9: These plots show the performance of the global error indicator ζ under large
deformations for 1) κ = 52 on the left and for 2) κ = 5 on the right under transverse shear
loading.
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8.4 General Remarks on the Error Indicator ζ

From the conducted tests we notice that ζ remains an upper bound for all the test

cases conducted. However, there is no mathematical reason for this to hold under other

circumstances. We also note that the general behavior of the error indicator depends on

the type of boundary value problem that is being solved. This further complicates matters

because given a boundary value problem we are not able to a-priori predict the trend in

which the error indicator will evolve as a function of deformation.

With this in mind, we can still use ζ to adaptively choose the subdomains of

interest to solve smaller microstructural problems. The same process that was used for the

case of linear elasticity is adopted here with Eqn. 8.0.2 serving as an error indicator. The

procedure and results will be discussed in the next chapter.
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Chapter 9

Nonlinear Multiscale Subdomain

Construction

In this chapter the subdomain construction follows what was presented in Chap-

ter. 7. The only difference is the local boundary value problem that defines each subdomain

problem. The problem is defined in the context of nonlinear elasticity with the weak form

expressed as

∫
Θk

∇Xv : (FCE)TdΩ0,k =
∫
∂Θk,t

v ·TdΓ0,k +
∫

Θk

ρ0v · fdΩ0,k (9.0.1)

with displacement boundary conditions being projected on to the subdomain from the

homogeneous solution. Specifically, we have ũ|∂Θk,u
= u∗|∂Θk,u

. However, in addition the

solution from the homogeneous boundary value problem is also used as an initial guess for

the Newton’s iteration. Therefore, we project ũ|Θk
= u∗|Θk

as the first iteration.

The domain Ω is deconstructed into subdomains as was presented in Chapter 7

and the local error indicators are constructed by simply breaking the integral over each

subdomain such that,

ζ2 =
N∑
k=1

ζ2
k (9.0.2)
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with

ζ2
k =

∫
Θk

J0∇Xu∗ : CJ0∇Xu∗dΩ0,k (9.0.3)

and J0 = I− C−1C∗. Note all integrals are over the reference volumes.

9.1 Multiscale Modeling of Plate with Fiber Radius of 0.04m

The example of a plate in bending that was used for the analysis of multiscale

modeling in linear elasticity is used again in this section. The same configuration is used,

where the domain has 9 fibers and we conduct the analysis for multiple material mismatch

ratios and for both displacement and traction control boundary conditions. The same

mismatch ratios as described previously are used. To guarantee convergence in an efficient

way, the load is applied incrementally. For the traction controlled punch the following

condition is prescribed t = [0.0, 0.0,−0.1t − 0.1] and it’s applied in a region defined by a

circle with radius r = 0.15 and centered in the middle of the plate. The time varied from t =

[1, 2, 3, 4, 5]. While for the displacement controlled punch, we have u = [0.0, 0.0,−0.001t−
0.001] with t = 1 : 50 in increments of 1. A small displacement increment was needed for

Newton’s method to converge.

9.1.1 Effect of Number of Subdomains on Enhancing Homogeneous So-

lution

We initially look at the global error value at each increment for each material mis-

match ratio condition. The results for both the traction and displacement controlled punch

are summarized in Tables. 9.1-Table. 9.2. Since the displacement controlled punch required

more iterations for Newton’s method to converge we only show every 10th increment. The

results show that the predicted errors are upper bounds and over-predict the error in this

case by a factor of 2-3. This factor depends on the mismatch ratio and the load increment

as was previously observed.

We now break the domain Ω0 into subdomains of different size and solve these

smaller boundary value problems defined in Eqn. 9.0.1. The analysis is conducted for a
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Table 9.1: Traction controlled punch: global error for different time increments and different
mismatch ratios

Increment 1 2 3 4 5

Mismatch 5

ζ
||u∗,h||E(Ω)

0.941 0.906 0.881 0.863 0.849
||uh−u∗,h||E(Ω)

||u∗,h||E(Ω)
0.452 0.413 0.385 0.365 0.353

ζ
||uh−u∗,h||E(Ω)

2.079 2.195 2.291 2.361 2.405

Mismatch 10

ζ
||u∗||E(Ω)

1.385 1.333 1.288 1.252 1.223
||uh−u∗,h||E(Ω)

||u∗,h||E(Ω)
0.643 0.607 0.573 0.545 0.524

ζ
||uh−u∗,h||E(Ω)

2.153 2.197 2.249 2.296 2.332

Mismatch 52

ζ
||u∗,h||E(Ω)

2.513 2.487 2.457 2.423 2.388
||uh−u∗,h||E(Ω)

||u∗,h||E(Ω)
0.846 0.845 0.843 0.838 0.832

ζ
||uh−u∗,h||E(Ω)

2.970 2.943 2.915 2.891 2.871

Table 9.2: Displacement controlled punch: global errors for different time increments and
different mismatch ratios

Increment 10 20 30 40 50

Mismatch 5

ζ
||u∗,h||E(Ω)

0.999 0.988 0.973 0.956 0.938
||uh−u∗,h||E(Ω)

||u∗,h||E(Ω)
0.442 0.434 0.423 0.411 0.398

ζ
||uh−u∗,h||E(Ω)

2.261 2.277 2.299 2.326 2.356

Mismatch 10

ζ
||u∗,h||E(Ω)

1.427 1.407 1.379 1.349 1.316
||uh−u|∗,h||E(Ω)

||u∗,h||E(Ω)
0.589 0.578 0.564 0.548 0.531

ζ
||uh−u∗,h||E(Ω)

2.424 2.433 2.446 2.461 2.477

Mismatch 52

ζ
||u∗,h||E(Ω)

2.456 2.411 2.356 2.293 2.226
||uh−u∗,h||E(Ω)

||u∗,h||E(Ω)
0.789 0.777 0.762 0.745 0.727

ζ
||uh−u∗,h||E(Ω)

3.112 3.104 3.093 3.079 3.062
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total number of subdomains ranging from 4 to 81 subdomains. The percent change in

solution error (%∆e) defined in Eqn. 7.4.1 is calculated and plotted as a function of total

number of subdomains and load increment. The results for each mismatch ratio are shown

in Figure. 9.1 for the traction controlled punch and in Figure. 9.2 for the displacement

controlled punch.

Figure 9.1: Percent change in error %∆e for traction controlled punch for 1) κ = 52 which
is shown in the top left, 2) κ = 5 which is shown in the top right, 3) κ = 10 which is shown
in the bottom center

All the subdomain solutions were included in the update process. The results

indicate a similar trend seen in the analysis conducted for linear elasticity. The subdomain

solutions can reduce the error of the homogenized solution significantly. Clearly, the larger

the size of the subdomains the better the results. Also, there is greater percentage of

enhancement when using the displacement controlled punch.
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Figure 9.2: Percent change in error %∆e for displacement controlled punch for 1) κ = 52
which is shown in the top left, 2) κ = 5 which is shown in the top right, 3) κ = 10 which is
shown in the bottom center
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9.1.2 Effect of Choosing Some Subdomains on Enhancing Homogeneous

Solution

In this section as previously shown for the case of small strains, we explore the

effect of choosing only some of the subdomains in the solution space. Recall the criteria used

to determine which subdomains to use is defined in Subsection. 7.4.2 in Eqn. 7.4.2. For the

analysis we choose the displacement controlled punch with material mismatch ratio κ = 52

as used in the previous section. The domain is broken up into 9 × 9 × 1 subdomains and

α Eqn. 7.4.2 is varied to see its effect on the solution space. The value %∆e is calculated

as defined in Eqn. 7.4.1. We note that for large deformations the number of subdomains

utilized at a given increment can change as shown in Figure. 9.3. This is because depending

on the load increment the local error in subdomains will change and some might increase

and become larger than the imposed criteria. Therefore, we look at the last time increment

t = 50 to analyze the effect of using some of the subdomains. The results are summarized

in Table. 9.3 and in Figure. 9.4. We note the significant reduction of number of subdomains

used for α = 0.8 from 81 subdomains to 37 subdomains. However, the drop in %∆e is

small. Specifically it drops from a 39% change in error to a 28% change in error. This

clearly reduces the computational effort while maintaining a significant improvement in the

solution space. As in the case for small strains the less subdomains we use the less we are

able to improve our solution space as illustrated on Figure. 9.4.

Table 9.3: Effect of using some subdomains on improving solution for time increment t = 50

Number
α

ζ
||u∗,h||E(Ω)

||uh−u∗,h||E(Ω)

||u∗,h||E(Ω)

||uh−ũ∗,h||E(Ω)

||u∗,h||E(Ω)
%∆e

Subdomain
81 1 2.221 0.725 0.442 39.0
37 0.8 2.221 0.725 0.516 28.9
17 0.6 2.221 0.725 0.585 19.3
14 0.4 2.221 0.725 0.598 17.5
10 0.2 2.221 0.725 0.608 16.2
6 0.1 2.221 0.725 0.666 8.3
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Figure 9.3: Number of subdomains used as a function of the time increament for α = 0.2.
We notice how the number of subdomains used can change. This is also true for other value
of α.
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Figure 9.4: Percent change in solution error %∆e by choosing some subdomains in the
solution space for time increment t = 50 and a domain broken up into 9× 9× 1.
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9.2 Multiscale Modeling of Plate with Fiber Radius 0.01m

In a similar fashion to the case of small strains we consider a more challeng-

ing micro-structure. A traction controlled punch in the center is applied with load t =

[0, 0,−0.1t − 0.1] with t = [1, 2, 3, 4, 5] as previously stated. The microstructure geometry

is shown in Figure. 7.19. Specifically, a fiber radius of 0.01m is assumed which results in

159 fibers with a fiber volume fraction of 0.5. We will only consider the material property

with mismatch ratio κ = 52, which gives us a carbon fiber.

To conduct the multiscale analysis we must use different mesh sizes for the sub-

domain that includes microstructure and the subdomain without the microstructure. To

capture the details of the fibers we utilize a finer mesh for these small scale problems and

connect the two scales together with Algorithm. 1. For this analysis the global domain is

sub-structured into 10 × 10 × 1 subdomains. The mesh on the subdomains that includes

the microstructure was set to 51 × 51 × 51 nodes, while the subdomains without the mi-

crostructure is 9× 9× 9 nodes. This results in a mesh size 81× 81× 9 nodes on the global

domain to solve the homogeneous problem.

The results of this simulation are shown in Figure. 9.5, where the equivalent stress

σeq(Von-Mises) is plotted for both the homogeneous solution and for parts of the sub-

domains that have high local error indicators, specifically an α = 0.8 was used for this

simulation. Figure. 9.6, plots the ratio of ζk/ζmaxk vs the subdomain number showing where

the maximum error indicators occur. It’s clear that the equivalent stress ranges are very

different between the microsturcture and the homogenous solution, this is of course to be

expected. Clearly, this variation in σeq can be very important for damage analysis. As a

comparison the average 〈σeq〉 stress in each subdomain with and without microstructure

is computed and their ratio is plotted in Figure. 9.7. We notice this ratio fluctuates with

some values over 1 and some below, meaning that in some subdomains the average σeq with

microstructure is higher than without while in others the opposite is true.

9.3 Multiscale Modeling of Block in Shear Along Fiber

In this example we use the block in shear along the fiber direction that was used

to asses the performance of the error indicator ζ as shown in section. 8.1. The global error

results for a block in shear along the fiber direction are summarized in Figure. 8.4 and are
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Figure 9.5: Equivalent stress σeq contours for a) the homogenized body on the left and b)
the subdomains used in the solution space on the right with α = 0.8.
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Figure 9.6: This figure shows the variation of the fraction ζk
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k

in each subdomain. This
identifies the regions with high local error.
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Figure 9.7: Plot of the ratio of the average equivalent stress from the subdomain calculation
to the average equivalent stress of homogenized solution in each subdomain

shown in Table. 9.4. For the multiscale simulations we use the block with 36 fibers and

it is broken up into a total number of subdomains ranging between 8 and 27. Figure. 9.8

shows the percent change in solution error %∆e for the three different mismatch ratios

κ = [5, 10, 52]. Again, with this example we are able to achieve a significant improvement

in the solution space. We also see that %∆e has a dependence on the increment step similar

to what has been observed in the previous examples.
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Figure 9.8: Percent change in error %∆e for shear along fiber direction for 1) κ = 52 which
is shown in the top left, 2) κ = 5 which is shown in the top right ,3) κ = 10 which is shown
in the bottom center.
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Table 9.4: Errors for shear along fiber direction at different time increments and different
mismatch ratios

Increment 1 5 10 15 20

Mismatch 5

ζ
||u∗||E(Ω)

1.030 1.029 1.026 1.022 1.016
||u−u∗||E(Ω)

||u∗||E(Ω)
0.521 0.509 0.478 0.441 0.405

ζ
||u−u∗||E(Ω)

1.978 2.024 2.149 2.316 2.505

Mismatch 10

ζ
||u∗||E(Ω)

1.354 1.354 1.354 1.353 1.352
||u−u∗||E(Ω)

||u∗||E(Ω)
0.697 0.677 0.641 0.613 0.578

ζ
||u−u∗||E(Ω)

1.943 1.998 2.113 2.207 2.339

Mismatch 52

ζ
||u∗||E(Ω)

1.929 1.929 1.929 1.929 1.931
||u−u∗||E(Ω)

||u∗||E(Ω)
0.986 0.947 0.894 0.856 0.831

ζ
||u−u∗||E(Ω)

1.957 2.036 2.159 2.254 2.324
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Chapter 10

Conclusions

In this work, both multiscale modeling and homogenization of composite materials

was addressed. In the context of this work the process of homogenization and multiscale

modeling were separate entities. Each one was addressed independently and the connection

between the two was addressed.

The homogenization analysis was limited to linear elasticity where special attention

was dedicated to understanding the effect of using randomly positioned unidirectional fibers.

The RVE size was determined by successively enlarging the size until material parameters

converged. Also, given the random nature of the fibers it was necessary to conduct ensemble

averages for a given RVE size. Parameter studies were conducted with different material

properties and varying volume fractions. It was observed that for smaller volume fraction

a larger RVE size was needed, which made the numerical experiments more intensive. The

results in turn were compared to analytical bounds of varying degree of accuracy. To

conduct these numerical tests two types of material tests were explored, the first did not

account for the assumed overall transverse isotropy of the material and thus required 6

material tests. On the other hand, the second test assumed that the macroscopic response

is transversely isotropic and therefore, only three material tests were needed to obtain the

material properties.

On the multiscale front, we assumed that the overall macroscopic constitutive

response was known a priori. Hence, the need for a process of homogenization. The overar-

ching theme is then to include specific zones that include the micorstructural information

by predicting an error in some norm. To this end we derived an upper bound on the error
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between the exact solution and the homogenized solution. The error we defined provided us

with a clear understanding of the sources of error when solving a homogenized problem. In

particular, we found that the sources of error included 1) the differences in applied traction

and resultant traction 2) the satisfaction of divergence of the homogenized strain acting

on the exact material properties. However, we noted that this bound was not appropriate

for numerical calculations due to the presences of some unknown constants. Therefore,

we utilized a bound derived by Zohdi et al. [16]. This bound was analyzed for fiber com-

posites where we found that its accuracy depended on the homogenized macro-properties.

Nonetheless, it remained an upper bound. To utilize this bound in a multiscale setting, the

global domain was broken up into subdomains over which local error indicators were calcu-

lated. These local indicators allowed us to adaptively choose the subdomains we wanted to

include in the analysis. Parameter studies were then conducted by changing the material

properties, number of sudomains and the type of applied boundary conditions.

For the small strains analysis we looked at the effect the subdomain solutions had

on improving the overall solutions space i.e decreasing the modeling error. We found that

significant improvement could be achieved by this coupling process. Also, when utilizing

only some subdomains in the analysis the computational cost was reduced significantly with

little detriment to the overall enhancement of the solution space. We also found that the

type of boundary conditions had some effect on the enhancement of the solution space,

specifically applying displacement control conditions resulted in a larger decrease in the

modeling error.

For large deformations, we assumed the same form of the error indicator as derived

for small strains. The analysis proceeded by first establishing the effectiveness of the error

bound under these conditions. We compared the exact modeling error to the predicated

error and found that for the examples used the predicted error remained an upper bound.

We observed however, that it’s accuracy was a function of both the type of problem being

analyzed and the load increment. We then analyzed the effectiveness of the multiscale

process under large deformations and found that a significant reduction in the modeling

error can be achieved. In comparison to small deformations, similar trends were observed

for the reduction in the modeling error. There was however, a dependence on the load

increment as was observed when analyzing the predicted error.

In future work extensions to include inertial effects will be explored. Also, for
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large deformations different types of material models should be explored to understand

the response of the error indicator. For example Neo-Hookean and Mooney-Rivlin type

constitutive laws could be explored.
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Appendix A

Finite Element Algorithms

For this research a self authored finite element code was in Fortran 90. In this ap-

pendix, the integration schemes, conjugate gradient methods and sparse storage techniques

are elaborated on.

A.1 Sparse Storage

To reduce both memory cost and computational costs we make use of the sparsity

of the stiffness matrix KT in finite elements and write a sparse storage module. The basic

structure is developed in a Fortran module by defining a TYPE. We have

TYPE Sparse
integer, pointer :: columns(:)
real, pointer :: values(:)
integer, pointer :: entries

END TYPE

where column(:) identifies the column numbers, values(:) identifies the value at

the specific column, and entries identifies the number of values in the column. To generate

a matrix we simply create a TYPE Sparse with dimensions equal to the number of rows. In

other words, we define TYPE(SPARSE) :: SMatrix(rows). Then for a given row we have

column, value and entries information This gives us the basic data structure for the sparse

matrix. To work with data structure, we allow it be dynamic. Therefore, the length of the

columns and values vectors can change throughout the execution time.

Various subroutines are then introduced in the module that allow us to specifically,
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• Initialize the sparse matrix

• Assign values

• Addition of values

• Perform matrix vector multiplication.

A.2 Integration Schemes

When building the tangent stiffness KT we must perform numerical integration.

Recall the form of the stiffness matrix as

KT =
∫

Ω
FiA

∂NI

∂XA

∂SAB
∂ECD

FjC
∂NJ

∂XD
dΩ︸ ︷︷ ︸

Kmat

+ δji

∫
Ω

∂NI

∂XA
SAB

∂NJ

∂XB
dΩ︸ ︷︷ ︸

Kgeo

(A.2.1)

to perform this integral numerically we utilize gauss quadrature. Guassian quadra-

ture is a method that can allow exact integration of a polynomial of degree 2n-1, where n

is the number of gauss points. For a 1 dimensional case we have the following

∫ 1

−1
f(ζ)dx ≈

n∑
i=1

wif(ζi) (A.2.2)

where the domain of integration is always taken from [-1,1] and wi are the weights

corresponding to the gauss coordinates ζi. The weights and points for different gauss rules

are summarized in Table. A.1.

assuming the limits of the integral are from [-1,1] we can now express the integral

for the stiffness matrix as

KT =
n∑
i=1

n∑
j=1

n∑
k=1

wiwjwkFiA
∂NI

∂XA

∂SAB
∂ECD

FjC
∂NJ

∂XD
(A.2.3)

+
n∑
i=1

n∑
j=1

n∑
k=1

wiwjwkFiA
∂NI

∂XA
SAB

∂NJ

∂XB
(A.2.4)
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Table A.1: Gauss Quadrature Rules

Gauss Points n Coordinates ζi Weights wi
1 0 2
2 ± 1√

3
1

3
0 8

9

±
√

3
5

5
9

4
±
√

3− 2
√

6/5/7 18+
√

30
36

±
√

3 + 2
√

6/5/7 18−
√

30
36

5
0 128

225

±1
3

√
5− 2

√
10/7 322+13

√
70

900

±1
3

√
5 + 2

√
10/7 322−13

√
70

900

where all the arguments are evaluated at the gauss coordinates (ζi, ζj , ζk). We

note that generally, the limits are not from [-1,1] and hence we must conduct a mapping

that rewrites the integral in a manner amenable to gauss quadrature. When doing FEM

this is achieved when using the isoparametric mappings.

A.3 Conjugate Gradient

To solve the systems of equations that arise when you using the finite element

method we utilize the iterative scheme known as the conjugate gradient method. The

algorithm is presented in Alogorith. 2 where we want to solve Kmx = b
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Algorithm 2 Algorithm for conjugate gradient
Given matrix Kmand b find x
Set Tolerance for convergence
Select a starting guess xi

ri = b−Kmxi

Set si = ri

error = ||ri||
||xi||

while error > TOL do
Ks = Kmsi

rnorm = ri.ri

α = rnorm

si.Ks
xi+1 = xi + αsi

ri+1 = ri − αKs
β = ri+1.ri+1

rnorm

si+1 = ri+1 + βsi

error = ||ri+1||
||xi+1||

end while




