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Abstract 

Reaction time, response accuracy and psychophysiological 
measures such as lateralized readiness potential (LRP) have 
been used extensively to study information processing in dual 
tasks. To model these three dependent variables in a dual task, 
we propose a new mathematical modeling approach—a queuing 
network approach based on queuing network theory of human 
performance (Liu, 1996, 1997) and current discoveries in 
neuroimaging studies. This modeling approach is composed of a 
queuing network architecture of information processing in the 
brain and a set of mathematical equations in quantifying the 
three dependent variables in the dual task. This modeling 
approach can be used to account for information processing in 
both spatial and temporal dimensions and it provides a coherent 
and quantitative linkage between the neural signals (LRP) and 
behavioral data in the dual task. Despite its relative simplicity, 
this queuing network modeling approach is useful to quantify 
and predict behavioral performance and important aspects of the 
macroscopic electrical activity of the brain. Further development 
and extension of the current modeling approach are discussed.  

Introduction 
With the development of electrophysiological techniques, 
there is an emerging body of experimental studies which 
measure reaction times (RT), response accuracy, and 
event-related potentials (ERP) simultaneously to study 
one of the basic questions in cognitive science—human 
cognition in dual task situations (Sangals, Ross, & 
Sommer, 2004; Sommer, Leuthold, & Schubert, 2001). 
Compared to the traditional behavioral experimental 
studies, these studies are able to provide more information 
about the temporal properties of cognitive processes, 
reflecting basic cognitive information processing in the 
dual task. Among various ERP techniques, a brain 
potential extracted from ERP—lateralized readiness 
potential (LRP), has become a useful and powerful 
supplemental measurement to reaction time and response 
accuracy, since it not only shares ERP’s excellent 
temporal resolution but also reflects the information 
processing in the brain beyond the measurements of overt 
behavior. 

LRP measures response activation or preparation at the 
level of the cerebral motor cortex (Coles, 1996). More 

specifically, LRP reflects motor preparation taking place 
within the premotor area or the primary motor cortex (H. 
Leuthold & Jentzsch, 2001; Ulrich, Leuthold, & Sommer, 
1998). The start of this motor preparation is reflected by 
the LRP onset time, which is identified as the most 
important aspect of the potential (Mordkoff & Gianaros, 
2000). A frequently-used onset time of LRP is called 
stimulus-synchronized LRP (S-LRP onset time or S-LRP 
interval). S-LRP onset time is measured as the interval 
between the arrival of stimulus and the emergence of LRP 
(negative going potentials), reflecting premotoric 
processes (Sommer et al., 2001).  

Besides the experimental studies of LRP and other 
dependent variables, several mathematical models have 
been successfully established, focusing on modeling 
ERP/EEG: building on a lumped-parameter model, Jansen 
and Rit (1995) developed a computational model to 
produce EEG rhythms. Based on Jansen and Rit’s model, 
a neural mass model (David & Friston, 2003) assumes 
that the behavior of a population of neurons can be 
approximated using several state variables (e.g. firing 
rates). The model reproduces brain signals within the 
oscillatory regime by simply changing population 
kinetics. However, few mathematical models have been 
built to model all of the three dependent variables 
simultaneously and quantify them in dual task situations.  

In this paper, we propose a queuing network modeling 
approach as a new mathematical modeling method to 
quantify reaction time, response accuracy and S-LRP 
onset time simultaneously in dual task situations. First, we 
introduce the platform of this modeling approach—a 
queuing network architecture of information processing in 
the brain, representing the major brain regions and their 
connections as a network. Second, based on this network 
platform, a set of mathematical equations is developed to 
quantify the three dependent variables. Third, the 
modeling results are presented and validated with the 
results in an experimental study. Finally, we discuss the 
implication of the modeling approach and its further 
extensions to model the experimental results of other 
electrophysiological studies. 
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Perceptual Subnetwork  Cognitive Subnetwork  Motor Subnetwork 
1. Common visual processing (eyes, lateral 
geniculate nucleus, superior colliculus, 
primary and secondary visual cortex) 
2. Visual recognition (dorsal system) 
3. Visual location (ventral system) 
4. Visual recognition and location integration 
(distributed parallel area including the 
connections among V3 , V4 and V5, superior 
frontal sulcus, and inferior frontal gyrus) 
5. Common auditory processing (middle and 
inner ear) 
6. Auditory recognition (area from dorsal and 
ventral cochlear nuclei to the inferior 
colliculus) 
7. Auditory location (area from ventral 
cochlear nucleus to the superior olivary 
complex) 
8. Auditory recognition and location 
integration (primary auditory cortex and 
planum temporale) 

 A. Visuospatial sketchpad (right-hemisphere posterior 
parietal cortex) 
B. Phonological loop (left-hemisphere posterior parietal 
cortex) 
C. Central executive (dorsolateral prefrontal cortex 
(DLPFC), anterior-dorsal prefrontal cortex (ADPFC) 
and middle frontal gyrus (GFm)) 
D. Long-term procedural memory (striatal and 
cerebellar systems) 
E. Performance monitor (anterior cingulate cortex) 
F. Complex cognitive function: decision, calculation, 
anticipation of stimulus in simple reaction etc. 
(intraparietal sulcus (IPS), the superior frontal gyrus 
(SFS), the inferior frontal gyrus (GFi), the inferior 
parietal cortex and the ventrolateral frontal cortex, the 
intraparietal sulcus and the superior parietal gyrus) 
G. Goal initiation (orbitofrontal region and amygdala 
complex) 
H. Long-term declarative & spatial memory 
(hippocampus and diencephalons) 

 V. Sensorimotor 
integration (premotor 
cortex)  
W. Motor program 
retrieval (basal ganglia) 
X. Feedback information 
collection (somosensoy 
cortex) 
Y. Motor program 
assembling and error 
detecting (supplementary 
motor area ( SMA) and the 
pre-SMA) 
Z. Sending information to 
body parts (primary motor 
cortex) 
21-25: Body parts: eye, 
mouth, left hand, right 
hand, foot 

Figure 1: The general structure of the queuing network model (function of each server and corresponding brain areas) 
 

Queuing Network Architecture 
To model human performance and electrophysiological 
signal of the brain, the queuing network modeling approach 
regards the human cognition system as a queuing network 
based on several similarities between them. First, ample 
research evidence has shown that major brain areas with 
certain information processing functions are localized and 
connected with each other in the brain cortex via neural 
pathways (Bear & Connor, 2001; Smith et al., 1998; 
Roland, 1993; Faw, 2003), which is highly similar to a 
queuing network of servers that can process entities 
traveling through the routes serially or/and in parallel 
depending on specific network arrangements. Therefore, 
brain regions with similar functions can be regarded as 
servers and neural pathways connecting them are treated as 
routes in the queuing network (see Figure 1). Second, it has 
been discovered that information processed in the brain are 
coded in spike trains (Rieke, Warland, R.S., & Bialek, 
1997); depending on different tasks and learning stages, the 
to-be-processed information represented by these spike 
trains sometimes are processed by the brain regions 
(servers) immediately; sometimes they have to be 

maintained in certain regions to wait for the previous spike 
trains being processed (E. E. Smith & Jonides, 1998; Taylor 
et al., 2000). Hence, these spike trains can be represented as 
entities in the queuing network naturally and entities are 
processed in the network by certain queuing process as an 
analogy to represent the waiting and maintaining process of 
spike trains. 

In modeling human performance, computational models 
based on queuing networks have successfully integrated a 
large number of mathematical models in response time (Liu, 
1996) and in multitask performance (Liu, 1997) as special 
cases of queuing networks. Queuing network modeling 
approach has been successfully used to generate human 
behavior in real time, including simple and choice reaction 
time, driver performance and transcription typing (Liu, 
Feyen & Tsimhoni, in press; Wu & Liu, 2004a).  

In modeling brain imaging pattern, previous work in 
queuing network modeling was focused on modeling the 
dynamic connectivities among brain regions. Wu and Liu 
(2004b) successfully modeled how brain imagining patterns 
change with different learning stages and different stimuli to 
be processed. These connectivities of brain regions were 
modeled as dynamic changes of routing probability 
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(probability of entities enter one of multiple routes) in the 
queuing network during the learning process. 

Modeling of the Dependent Variables 
In the following we describe our use of the queuing 

network modeling approach to model reaction time, 
response accuracy, and S-LRP in a representative dual task 
experimental study. To model this task, it is necessary to 
determine the route of entities in the network first since all 
tasks do not necessarily activate the same network routes. 
Reaction time can be modeled by the time for the entities to 
traverse through the routes; response accuracy and the S-
LRP onset time are modeled by the processing of entities in 
the network. 

Target Experiment to be Modeled 
Among the dual task studies which measured the 3 

dependent variables, a representative experimental study 
(Sommer et al., 2001) is selected to be modeled. In their 
experiment, task 1 (T1) was an auditory-manual choice 
reaction task: low and high tones were presented to the 
subjects who were asked to make manual responses with 
their index or middle fingers of left and right hand. Task 2 
(T2) was a visual-manual reaction task including two 
conditions: one condition was a two-choice reaction task—
corresponding to letter “X” or “O”, subjects made manual 
responses with the middle or index fingers of the left and 
right hand; the other condition was a simple reaction task in 
which letters required a response with one of the fingers. 
The delay between the presentation of the stimulus of T1 
and T2 is called stimulus onset asynchrony (SOA). 

Route of Entities 
The route of entities in the queuing network is determined 

based on previous queuing network modeling work in 
modeling the connectivity of brain regions (Wu and Liu, 
2004b): in general, depending on the task to be performed, 
servers whose function is related to the target task are 
included in the route of entities. In task 1, entities 
representing the auditory stimulus enter the auditory 
perceptual subnetwork first (server 5->6/7->8) (see Figure 
1); then, they are transmitted into the cognitive subnetwork 
including server B, C, and F for making the phonological 
judgment. After that, they travel to the motor subnetwork 
(server W, Y, Z and hand server) for retrieving motor 
programs, assembling the motor programs, and initiating the 
motor response. According to the functions and connections 
of these brain regions, the route of task 1 and 2 are:  
T1: 5 ->6/7->8-> B-> C->F->C->W->Y->Z-> Hand  
T2: 1 ->2/3->4-> A-> C->F->C->W->Y->Z-> Hand  

In the simple reaction condition of task 2, route of entities 
is selected according to the functions of the severs and the 
physiological study of Kansaku et al. (2004): 

1 ->2/3->4->A->C->F->C->V->Z-> Hand 

Mathematical Modeling of Reaction Time 
Choice Reaction Time Independent of the SOA conditions, 
the response time of T1 (RT1) can be predicted by the sum 

of servers’ processing time in the route of entities of T1 
since no previous entities occupy any of the servers in the 
route (see T1 in Figure 2 and Equation 1).  

 
Figure 2: Illustration of the RT1 and RT2 (choice reaction time) 

 

E(RT1)=T1,AP+T1,B+T1,C+T1,F+T1,C+T1,Y+T1,W+T1,Z+T1,K (1) 
where, T1,AP is the processing time of the auditory perceptual 
subnetwork; T1,B, T1,C ,T1,F, T1,Y, T1,W, T1,Z, and T1,K 
represents the processing time of server B, C, F, Y, W, Z 
and Hand, respectively. 

In the choice reaction condition, the response time of T2 
(RT2) depends on the comparison between a) the difference 
between SOA and the time point when entities of T1 exit 
server F (T1,AP+ T1,B +T1,C +T1,F -SOA) and b) the duration of 
the processing time before entities of T2 enter server F (the 
sum of processing time at the perceptual subnetwork, server 
B and C, i.e. T2,VP+T2,A+T2,C) (see Equation 2)  
E(RT2) (choice reaction)=  

max(T1,AP+T1,B+T1,C +T1,F –SOA, T2,VP+T2,A+T2,C) 
+ T2,F+ T2,C+ T2,Y+ T2,W+ T2,Z+ T2,K 

 
(2) 

Simple Reaction Time RT2 in simple reaction condition is 
modeled in Appendix 1 (see Equation 6 and Equation 16 in 
Appendix 1). 

Mathematical Modeling of Response Accuracy 
The expected response accuracy (Pc) is estimated 

according to the difference between SOA and the sum of 
2, ,  2, ,  2, ,  2, ,  and C V Z K FstT T T T T (see Appendix 2).  

Mathematical Modeling of S-LRP   
Simple Reaction Time Since LRP reflects motor 

preparation within the premotor area (server V) or the 
primary motor cortex (server Z) and server V is in the route 
of simple reaction task, the arrival time of entities into 
server V is regarded as the LRP onset time in this simple 
reaction time situation. Based on Figure 6 in Appendix, the 
time that entities enter server V (Vst) can be estimated in two 
conditions depending on the value of ta (ta= 0, short SOA 
conditions in Figure 6; ta >0, long SOA conditions in Figure 
6, see Equation 3)  

 Max(T1,AP + T1,B +T1,C,+T1,F,   
SOA+ T2,VP+T2,A+T2,C)+T2,F+T2,C 

 ta=0   

Vst=   (3) 
 TFst +ta+T2,C ta>0  
Since Vst starts from the arrival of S1 and S-LRP onset time (S-

LRP) starts from the arrival of S2 (Sommer et al., 2001), S-LRP 
equals Vst - SOA, i.e.: 
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 Max(T1,AP+T1,B+T1,C,+T1,F,   

SOA+ T2,VP +T2,A+T2,C)+T2,F+T2,C-SOA 
 ta=0   

 S-LRP =   (4) 
 TFst +ta+T2,C-SOA ta>0  

Choice Reaction Time LRP reflects motor preparation in 
the regions represented by server V or Z and server Z is in 
the route of the choice reaction time condition of T2, 
therefore, the arrival time of entities at server Z is the 
expected S-LRP onset time (S-LRP) (see Equation 5).  
S-LRP = max(T1,AP+T1,B+T1,C +T1,F –SOA, T2,VP 

+T2,A+T2,C) + T2,F+ T2,C+ T2,Y+ T2,W   

(5)

Modeling Results and its Validation 
Using the equations derived in the previous sections, the 

predicted results of the dependent variables are presented 
and validated with the target experiment results. The value 
of parameters of these equations is set based on a classic 
cognitive modeling study (Byrne & Anderson, 2001) (see 
Appendix 3). 

Figure 3 showed the modeling results in comparison with 
experimental results. The R square of the model is .84 and 
the RMS=53.9 ms. 

 
Figure 3: The reaction time in the study of Sommer et al. (2001) 

(solid lines) along with the queuing network modeling results 
(dashed lines) 

    The modeling results of response accuracy in 
comparison with the experiment result are shown in Figure 
4. The R square between the prediction and the experiment 
result is 0.99 with RMS=.037. Moreover, it is found that at 
SOA=700 ms, the percentage of negative RT2 is 15% which 
is consistent with the Sommer et al.’s (2001) experimental 
results (16%). 

 
Figure 4: Response accuracy in the study of Sommer et al. 

(2001) (solid lines) along with the queuing network modeling 
results (dashed lines) 

In addition, the expected pattern of S-LRP exhibits the 
similar pattern with the experimental results (see Figure 5 
for the comparison of the S-LRP onset time between the 
prediction of the model and the experimental results, R 
square=.96; RMS=127.5 ms).  

 
Figure 5: The S-LRP onset time in the study of Sommer 

et al. (2001) (solid lines) along with the queuing network 
modeling results (dashed lines) 

Discussion 
We described a queuing network modeling approach to 

model reaction time, response accuracy and S-LRP onset 
time simultaneously in the dual task situation. Based on the 
queuing network architecture as a platform, a set of 
mathematical formulas is built which successfully modeled 
the three dependent variables coherently with analytical 
solution and very few free parameters.  

The queuing network modeling approach is able to model 
information processing in the brain in both spatial and 
temporal dimensions. This modeling approach incorporates 
the queuing network architecture which covers a wide range 
of brain regions. This feature provides the model a platform 
to predict fMRI BOLD signal (blood oxygenation level-
dependent) of several major brain regions in fMRI studies 
(Wu & Liu, 2004b), reflecting the spatial location of 
information processing in the brain. Combining with the 
current work, this modeling approach has the potential to 
model experimental results of both fMRI studies with 
spatial accuracy and ERP studies with temporal accuracy.  

The current work extends the advantages of this modeling 
approach in modeling reaction time (Liu, 1997) by unifying 
the neural signals and behavioral data. The model’s 
prediction is not only consistent with the external behavior 
of the subjects, but also in line with the electrophysiological 
measurements. The current modeling approach provides at 
least an alternative way to quantify the external behavioral 
data and to some extent explain how they are generated by 
the internal information processing in the brain.  

Moreover, this modeling approach provides a 
parsimonious and accurate quantification of the S-LRP 
onset time and behavioral data, since all of the dependent 
variables are modeled by the analytical solutions and only 
two free parameters are used in the modeling process.  

We are extending the current model approach to model a 
wider range of behavioral and physiological measurements 
in experimental studies including P3 components in ERP. 
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Overall, the queuing network modeling approach is a useful 
modeling method to predict the behavioral performance and 
electrophysiological phenomena of the cognitive system. 
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Appendix 

 
Figure 6. Modeling mechanisms of the expected RT2 under the simple 
reaction time condition. ta is the duration between when server F starts 
the anticipation process and when entities of S2 arrives at the 
perceptual subnetwork; TFst is the time point when server F starts its 
anticipation process TFst= T1,AP+T1,B+T1,C +T1,F. 
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1. Modeling of Expected RT2 (Simple Reaction Time)  
There are two conditions in modeling the expected RT2 at the 

simple reaction time condition. At short SOA conditions (entities 
of T2 arrive at server F before server F starts its anticipation 
process, ta=0, see Figure 6), entities of T2 have to wait until 
entities of T1 leave server F; after entities of T1 leave server F, 
entities of T2 will enter server F immediately. Since server F is 
occupied by the entities of T2 (subjects are busy in performing 
judgment of T2), the anticipation process is not occurred in this 
condition. At long SOA conditions, server F starts its anticipation 
process before entities of T2 arrive at server F. The mathematical 
models of RT2 (simple reaction condition) are constructed based 
on these two conditions in the following sections.  
Short SOA Condition (ta=0) Under the short SOA condition of 
T2 (simple reaction condition), the expected RT2 is also modeled 
with the same form of equation in  the choice reaction condition of 
RT2 except the motor subnetwork’s servers are replaced by the 
servers involved in the simple reaction time (see Equation 6 and 
Figure 6). 

2( | 0)aE RT t = = max(T1,AP+T1,B+T1,C +T1,F –SOA, T2,VP+ 
T1,A +T2,C) + T2,F+ T2,C+ T2,V+ T2,Z+ T2,K 

 
(6) 

Long SOA Condition (ta>0) 
1) Quantification of the Anticipation Process 

The anticipation process (R2 is made without seeing S2) at 
server F is quantified by the following mechanisms in time 
perception. According to the function of server F timing the 
perceptual anticipation of a sensory event in simple reaction time 
task (Schubotz, et al. 2001): the longer server F anticipating S2 
(defined as perceived waiting time, tperc), the higher probability 
(defined as p) to trig motor response without seeing S2 
(anticipation process): /perc percp t T= , where, Tperc is the duration 
between when the anticipation process starts and when the 
probability that subjects make the motor response equal to 1.  

Based on several psychophysical researches in studying the 
relationship between perceived waiting time (tperc) and actual 
waiting time (ta) in very short time periods, there has been 
considerable support for a psychophysical law for perceptual 
duration described by a power function following the Steven’s 
power law (Eisler, 1976). Thus,  

perc at kt β=  (7) 

where, ta is the duration between when server F starts the 
anticipation process and when S2 arrives at the perceptual 
subnetwork. k and β are the parameters in Steven’s power law 
(Wearden, et al., 1998). Since /perc percp t T= , we have: 

/a percp kt Tβ=  (8) 
Moreover, since p is defined as the probability that the response of 
T2 is made with the anticipation process (R2 is made without 
seeing S2), there are two conditions in which expected RT2 is 
modeled: RT2 with or without the anticipation process. 
2) Expected RT2 with the Anticipation Process (RT2,ANTI) 

Based on Figure 6, we have 
2, 2, 2, 2,2, Fst a C V Z KANTIRT T t T T T T SOA= + + + + + −    (9) 

From Equation 7, at can be rewritten into: 
1/( / )a perct t k β=  (10) 

Moreover, since subjects end their waiting process of S2 when 
they perceive the time reaches the perceived SOA, the perceived 
the waiting time ( perct ) equals the perceived SOA (SOAperc) minus 
the perceived TFst (TFst_perc), i.e.: 

perct =max(SOAperc -TFst_perc,0) (11) 
where, SOAperc and TFst_perc can be derived from Equation 7, thus: 

perct =max (kSOAβ - k TFst
β,0) (12) 

Combining Equation 9, 10, and 12, results in:  
1/max[( - ) ,0]a Fstt SOA Tβ β β=      (13) 

1/
2,

2, 2, 2, 2,

max[( - ) ,0]Fst FstANTI

C V Z K

RT T SOA T
T T T T SOA

β β β= +

+ + + + −
 (14) 

3) Expected RT2 without the Anticipation Process (RT2,NOAN) 
Under the condition that there is no anticipation, the expected 

RT2 (RT2,NOAN) is modeled with the same form of equation in the 
choice reaction condition except the motor subnetwork’s servers 
are replaced by the servers involved in the simple reaction time 
(see Equation 15 and Figure 6).  

RT2,NOAN = max(T1,AP+T1,B+T1,C +T1,F –SOA, T2,VP+ 
T1,A +T2,C) + T2,F+ T2,C+ T2,V+ T2,Z+ T2,K 

(15) 

Hence, the expected RT2 in long SOA conditions (ta>0) can be 
quantified by Equation 16:  

2 2, 2,( | 0) (1 )a ANTI NOANE RT t pRT p RT> = + −  (16) 
 
2. Mathematical Modeling of Response Accuracy of RT2  

In simple reaction condition of RT2, the response accuracy is 1 
minus the probability of negative RT2 (Pn) (RT2<0 means that the 
R2 occurs prior to the arrival of S2 (time=SOA)). Based on Figure 
6, the interval between the arrival of S1 (time=0) and R2 is 
TFst+ta+T2,C+T2,V+T2,Z+T2,K. Supposing u=T2,C+T2,V+T2,Z+T2,K, 
result in, 2{ 0}nP P RT= < { }a FstP t SOA u T= < − − . Since ta ranges 
from 0 to SOA- TFSt (ta ends when S2 arrives according to its 
definition), the probability of the RT2<0 (Pn) is: 

n
0

P  = 1/( )
FstSOA u T

Fst aSOA T dt
− −

−∫    (17) 

Solving this equation, probability of correct response (Pc=1-Pn) is:  
 2, 2, 2, 2,C V Z K

Fst

T T T T
SOA T

+ + +
−

 2, 2,

2, 2,

C V

Z K Fst

SOA T T
T T T

≥ +
+ + +

  

cP =    (18)
 1       2, 2, 2, 2,C V Z K FstSOA T T T T T< + + + +   

 
3. Parameter Setting in the Modeling Process 

The parameter setting method in this article follows the 
parameter setting method in a classic cognitive modeling study 
(Byrne & Anderson, 2001): two free parameters (processing time 
of server F and Tperc) are adjusted at long SOA conditions to fit the 
modeling results with experimental results; then without changing 
their value, these parameters are used in the model to produce the 
modeling results at short SOA conditions. Therefore, there is no 
free parameter to fit the experimental result at short SOA 
conditions. All of the three dependent variables are modeled based 
on the same set of parameters’ values in Table 1. Except the value 
of the free parameters, key closure time (Byrne & Anderson, 
2001), k and β (Wearden et al., 1998), the value of all the other 
parameters come from the same modeling approach which models 
a wide range of human performance in various tasks (Liu, et al, in 
press).  

Table 1: Parameters used in the modeling process 
Parameter Value Parameter Value 
T1,AP 126 ms T2,V 24 ms 
T2,VP 126 ms T1,W, T2,W 24 ms 
T2,A, T2,B 18 ms T1,Y, T2,Y 24 ms 
T1,C, T2,C 18 ms T1,Z, T2,Z 24 ms 
T1,F 338 ms T1,X, T2,X 24 ms 
T2,F (choice RT)  324 ms Tk 10 ms 
T2,F (simple RT) 293 ms k 2.1 
Tperc 570 ms β .93 
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