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Abstract 

Research on contrastive category learning has revealed a robust 
tendency for learners to develop caricaturized representations 
(elsewhere: ideals or extreme points) to support successful 
discriminative classification. These representations are defined 
by extreme values on some task-relevant dimension and are 
often indicated as highly representative of their categories. 
Work in this area has elaborated the task constraints and 
contexts necessary for these representations to emerge, but 
little research has scrutinized whether caricatured 
representations extend beyond a category’s known range of 
feature values. To these ends, across two experiments, we 
investigated whether the most representative items for a 
category can extend beyond the training set. Data from 
pairwise typicality comparisons following learning suggests 
that caricatured categories may be supported by representations 
that extend past the feature range present in training. The 
findings are better explained by certain representational 
frameworks (e.g., adaptive reference points, boundaries) than 
others (e.g., exemplars, clusters).        

Keywords: categories; learning; caricatures; ideals; 
generalization; typicality; representation 

Introduction 

Since the highly influential investigations into the graded 

structure of categories (Rosch & Mervis, 1975), various 

researchers have sought to further explore not only the 

moderating and mediating factors that define the 

representative locus of a category, but also how perceived 

exemplar typicality in turn affects category use. Whereas a 

great deal of that follow-up work assumed typicality to be a 

function of taxonomic (i.e., feature-based) similarity to some 

mean or modal category representation, a study conducted by 

Barsalou (1985) revealed that typicality can also be 

understood in terms of the degree to which an exemplar 

embodies some dimension that furthers the ends of a goal-

derived category—e.g., caloric value for things not to eat on 

a diet. Exemplars that realize the extreme values along those 

dimensions were considered idealized and often perceived as 

highly typical (for a dissenting view, see Kim & Murphy, 

2011).  

Though Barsalou’s (1985) original paper discussed 

idealness in relation to natural language, goal-derived 

categories, subsequent work has since expanded the construct 

to apply to taxonomically defined categories as well (Davis 

& Love, 2010; Levering & Kurtz, 2006). Insofar as a 

learner’s goal is to optimize performance on some 

classification task, any feature dimension with high 

diagnostic value can be construed as furthering the ends of 

that goal. It follows that exemplars with feature values 

instantiated on the higher or lower range of that dimension—

the category caricatures—are often seen as both highly 

idealized and highly typical (Ameel & Storms, 2006; Davis 

& Poldrack, 2013). 

 Much as with the peak-shift effect in single-dimension 

stimuli (Hanson, 1959), whether caricatured representations 

develop is contingent on the presence of a neighboring 

category structure (Goldstone, 1996)—specifically, whether 

context/task emphasizes that the concepts are interrelated or 

isolated. Further, the exact relationship of the categories has 

been shown to control whether the category representations 

are more aligned with prototypes or caricatures. For example, 

Levering and Kurtz (2006) demonstrated that the typicality 

distribution over a category’s members shifts depending on 

whether its feature values occupy one end of the known range 

of values (i.e., learning with two unidimensional categories) 

or the middle of the known range (i.e., learning with three 

unidimensional categories). 

Despite the literature detailing the enabling conditions of 

caricature effects, comparatively little investigation focuses 

on the mechanisms and representations that explain them. 

Davis and Love (2010) have proposed that error-driven 

learning can explain participants’ preference for idealized 

exemplars. Their participants were tasked with classifying 

exemplars from two or more categories, with each category 

always contrasting with another on a single dimension. After 

learning, when asked to generate an average category 

member, responses skewed from the prototype in the 

direction away from the contrast category. The positions of 

the generated stimuli could be simulated using a prototype 

model employed in Sakamoto, Jones, and Love (2008) that 

allowed the prototype’s location to move according to error, 
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rather than remaining fixed. The model operates via a 

singular representation that maximizes distance from the 

contrast category while minimizing distance to its own 

category members. Assuming the two categories are 

dissimilar enough to begin with, the representation would 

continue to resemble a classic prototype, as the model no 

longer must contend with maximizing distance between 

contrasting categories. This tracks with the earlier work by 

Goldstone (1996) suggesting that caricature effects emerge 

from two concepts being emphasized as interrelated.  

We refer to models that learn localist representations as 

falling under an adaptive reference point framework. 

Allowing the category representations—be they singular 

(Sakamoto et al., 2008) or distributed (Jones & Love, 2006; 

Kurtz & Silliman, 2019)—to adapt to task constraints and 

feedback not only provides a means for models to account for 

caricature effects, but also yields novel, behavioral 

predictions. Consider the scenario where two categories 

overlap such that the optimal representation location(s) 

exceeds the known range of feature values. Under these 

circumstances, the locus of category representation lies 

beyond the training set. Consequently, we could expect that 

the most typical items are not any of the experienced items 

but rather are extrapolated generalization items. Such an 

outcome would be difficult to reconcile with exemplar and 

cluster-based model frameworks which, while able to 

generalize to extrapolated items, may not view those items as 

more typical than the trained items. This is because the locus 

of representation for traditional reference point accounts 

always lies within the known range of feature values (i.e., 

either the items themselves or some reduced representation). 

To our knowledge, none of the extant caricature literature 

has explored the typicality of extrapolated items under 

caricatured representations—most choosing instead to focus 

on enhancements or benefits afforded to ideal, known 

members. The study most germane to our conjecture comes 

from Nosofsky (1991), who manipulated the presence of 

extreme-valued caricatures along with the frequency of 

instantiation for regular and extreme exemplars in a 

classification task. After learning, participants engaged in a 

two-alternative forced-choice typicality task, where they had 

to choose the more representative item from a pair of the 

same category. The relevant finding concerns the condition 

where participants were not exposed to the extreme 

caricatures during learning, and the training exemplars with 

the end-range feature values were seen more frequently than 

others. When comparing these two types of items during the 

typicality preference task, participants favored the non-

extreme, previously seen items. Prima facie, these findings 

do not suggest that extrapolated generalization items would 

be seen as more typical. However, Nosofsky (1991) was 

pitting frequency of instantiation against idealization, where 

the former has also been shown to contribute to category 

typicality (Barsalou, 1985). Nosofsky (1991) did not show 

that training exemplars with baseline frequency were favored 

over extrapolated caricature items. 

The aim of the present study is to further this line of 

investigation and determine whether the locus of category 

representation can extend beyond known feature values. 

Concretely, this could be evidenced if participants prefer a 

test item with feature values beyond the range observed in 

training (extrapolated) as more typical than a test item with 

feature values within the observed range (interpolated). To 

test the above prediction, we conducted two experiments 

designed to encourage extreme caricature representations 

during a classification learning phase and probe said 

representations in subsequent generalization and 2-

alternative forced-choice typicality preference (hereafter 

2AFC) phases.   

Experiment 1 

The purpose of this experiment was to test whether 

caricatured representations could result in typicality 

preferences favoring extrapolated generalization items over 

interpolated generalization items. Such evidence would 

disfavor traditional reference point accounts that presume 

representation is fixed to experienced items or averages of 

such items. Toward testing this prediction, participants 

engaged in three phases: 1) a classification learning task with 

two, symmetrical, continuous-valued, overlapping categories 

that shared a diagnostic dimension, 2) a generalization test 

phase with interpolated items, extrapolated items, and several 

items from the classification phase, and 3) a 2AFC typicality 

phase featuring the items from the generalization phase. The 

2AFC was included because it allows us to directly compare 

how representative items are within a category, rather than 

between possible categories (as with generalization). 

Based on the number of highly confusable, overlapping 

items, we anticipated that final block accuracy would be 

around 60-80% for the initial classification phase—the upper 

bounds being contingent upon whether participants can 

successfully commit difficult items to memory. This range of 

accuracy is not an issue for this experiment, as we only 

require the participants to perform well enough to develop 

caricatured representations (as is the intent of this phase). We 

further predicted that participants should perform near ceiling 

for the more ideal items on the generalization phase—

contingent upon their learning the diagnostic dimension from 

the preceding phase. Differences between the two critical test 

items, interpolated and extrapolated (see Figure 1), should be 

negligible. Items with more extreme values should be 

confidently categorized correctly, and as such, will likely be 

susceptible to ceiling effects. The generalization phase is 

intended primarily as a manipulation check of the category 

structure and task. 

Regarding the 2AFC phase, we predicted that participants 

should significantly favor the extrapolated generalization 

item to the interpolated generalization item. Several other 

pairwise comparisons from this phase were also analyzed but 

are tangential to our primary question and were therefore 

exploratory in nature.   
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Methods 

Participants The precedent for this design (Nosofsky, 1991) 

used 50 participants per condition. In anticipation of stringent 

screening criteria following online data collection, we 

collected roughly twice this amount. 92 psychology 

undergraduate students from Binghamton University 

participated in the study in exchange for partial course credit. 

Participants who reported a personal technical issue (n=3), 

who responded in a way indicating that they did not 

understand the instructions properly (n=4), or who self-

reported multi-tasking during the study (n=13), were dropped 

from the dataset. These screening criteria left 72 participants 

(~78% of original data) for analysis. 

 

Materials and Design The stimuli consisted of squares that 

varied continuously on dimensions of size (in cm) and 

shading (grayscale values). A previous study by Conaway 

and Kurtz (2017) demonstrated that these two dimensions 

were equally salient to participants. From these dimension, 

two overlapping categories (10 stimuli each) were 

constructed for the classification phase (see Figure 1). The 

semi-diagnostic dimension that delineated the categories was 

shading, though the dimension lost utility near the 

overlapping items (comprising ~40% of each category). 

 

 
 

Figure 1: Categories used for Experiment 1. Category (A or 

B) indicated by colored letters. Ts indicate items used in 

generalization/2AFC. Subscript e denotes extrapolated 

items, i denotes interpolated items. Grey backgrounds 

denote prediction-critical within-category pairs. Axis values 

are arbitrary and do not represent actual numerical values 

used for stimulus construction.  

 

Though multiple interpolated and extrapolated items were 

used in each phase, the two critical pairs always consisted of 

the furthest extrapolated item (i.e., most extreme along the 

diagnostic dimension) and the furthest interpolated item. A 

programming error resulted in training item “10-6” being 

omitted from the learning phase, while training item “9-7” 

was seen twice as often. Though inconvenient, neither item 

was intended to be involved in the two test phases, and the 

nature of the error does not disrupt the formation of 

caricatured representations. 

 

Procedure All data collection occurred online via a lab-

hosted web server due to COVID-19 restrictions on in-person 

research. Following informed consent, participants 

immediately began the classification phase. A general 

instruction screen presented participants with a brief 

description of the task and cover story. Participants were told 

that the squares were the same hieroglyphic letter from two 

related but distinct cultures, and that the hieroglyphs varied 

within a culture (as in differences with handwriting/style), but 

the variation between cultures was greater. The category 

labels were the cultures themselves (located in the SOUTH 

and WEST). Participants were also told that they would be 

receiving corrective feedback, and that while they would 

have to guess at first, that they will eventually come to 

understand what defines each category. 

On each classification trial, participants were presented 

with a single stimulus centered onscreen. Two onscreen 

response buttons labeled SOUTH and WEST were positioned 

below the stimulus. Trial-wise instructions at the top of the 

screen queried which group the hieroglyph belonged to. 

Participants were given unlimited time to make a response. 

Upon selecting a response, feedback was presented while the 

stimulus was still onscreen either notifying the participant 

that they had chosen correctly or incorrectly—always 

providing the correct category label. Feedback was kept 

onscreen until the participant clicked a continue button. There 

was no inter-trial interval (ITI) between feedback and the 

start of the next trial. Item order within a block was assigned 

randomly. This phase repeated for five blocks and a total of 

100 trials of classification. 

The generalization phase followed the completion of the 

classification phase. Participants were instructed at this point 

that they would now be tested on their knowledge of the two 

categories. They were told that they would be seeing a few 

old hieroglyphs and several new ones and that their task was 

much the same as before except that now they only had one 

chance to accurately classify a hieroglyph and would receive 

no feedback. Aside from the differences mentioned in the 

instructions, we now included an ITI of 200ms to prevent 

accidental double-clicks across trials. Following all 14 trials 

in the generalization phase, participants proceeded to the 

2AFC phase. 

At the start of the 2AFC phase participants were instructed 

that their task was to review two examples from the same 

category and indicate via mouse click which of the two 

examples was more representative of its category.  A 

representative hieroglyph was defined as an example that 

embodied what they believed made a hieroglyph a good 

example of its category. An example was provided using the 

superordinate category of birds, and the subordinate 

categories of robins (good example) and ostriches (poor 

example). Participants were informed that there would be no 

feedback as there was no objectively ‘correct’ answer. On 

each trial two stimuli from the same category of the preceding 

phase were randomly positioned to either the left or right of 

the screen. A prompt at the top of the screen provided the 
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category label and asked participants to click on the more 

representative example. Participants were given unlimited 

time to make their choice. Every pairwise combination of 

within-category pairs from the generalization phase was used 

with the order randomized. After concluding the experiment, 

participants were given the opportunity to complete an exit 

survey that was the basis for the screening described above. 

Results and Discussion 

All analyses were conducted in the R programming 

environment. In accord with initial predictions, final block 

classification accuracy was ~70% (SD = 0.45). Participants 

who scored 50% (chance) or less in the final block were 

excluded from further analyses. This resulted in eight 

participants being dropped from the dataset (~11% of the data 

following the screening outlined earlier) which left 65 

participants for further analysis. 

 

 
 

Figure 2: Heatmap of generalization for Experiment 1. 

Category choices recoded as +1/-1 and averaged. Critical 

items are outlined in red. 

 

In accord with our predictions regarding generalization, 

both the critical interpolated and extrapolated item were 

correctly categorized with high accuracy (see Figure 2). Two 

generalized linear models (one per category) were built to 

determine if the furthest extrapolated items were generalized 

accurately significantly more often than all other items. An 

ICC revealed ~10% of total variance was attributable to 

between-subjects variance, suggesting a random effects 

structure was unnecessary. Generalization accuracy was 

predicted from stimulus position. For the model on Category 

A items (red items of Figure 2), no significant differences 

were found (all ps > .993). For the Category B model, the 

extrapolated item was found to be accurately categorized 

significantly more often than items “8-2” (𝛽 = -1.859, SE = 

0.790, p = .019) and “8-5” (𝛽 =-1.965, SE = 0.786, p = 

.013)—all other ps > .067. The asymmetry in model results 

may be tied to the missing item during training—“10-6”. 

Though unexpected, this finding does not affect our 

conclusions, as we were mainly concerned with the furthest 

extrapolated and interpolated items. 

Our primary prediction for the typicality phase was that the 

most extreme-valued extrapolated items (“1-5” and “12-5”) 

would be selected as ‘more representative’ significantly more 

often than the most extreme-valued interpolated items (“3-5” 

and “10-5”) when the two were directly compared. Because 

the preference proportions collapse across multiple 

comparisons per participant (see Figure 3 caption), analyses 

on those proportions would violate assumptions of 

independence inherent to most tests. Instead, we examined 

only the subset of comparisons that include the two critical 

items—resulting in a single response per category per 

participant. Responses favoring the interpolated item were re-

coded to be negative. A binomial test was conducted to detect 

significant difference from chance. This process was repeated 

for each category separately. 

 

 
Figure 3: Heatmap for the 2AFC typicality task in 

Experiment 1. The sum for each item was divided over the 

total number of comparisons. The purple border denotes 

critical items. 

 

For Category A items, the analysis revealed that the 

extrapolated test item was selected significantly more often 

(54 to 11, p = .001). The same pattern of significance is found 

for the Category B items (55 to 10, p = .001). Cohen’s g 

values for the differences are 0.33 and 0.361, respectively 

(both large). A post-hoc power analysis was conducted to 

determine the adequacy of our sample size. Assuming the 

lowest observed preference (54/65 = .83) as our alternative 

2359



hypothesis, at N=65 participants, we would have power > .99 

to reject the null. Exploratory analyses for Category A 

revealed that 49 participants preferred item “1-5” (the most 

extreme item) to its upper flanker, “2-8” (p < .001), and 45 

participants preferred item “1-5” to its lower flanker, “2-2” 

(p = .002). When comparing Category B items 54 participants 

preferred “12-5” to “11-2” (p < .001), and 52 participants 

preferred it to item “11-8” (p < .001).  

These data suggest that the locus of caricature 

representation for a category may extend beyond the known 

range of exemplars. These findings are incompatible with 

traditional reference point frameworks (e.g., clusters, 

exemplars) and suggest that a different framework may be 

warranted. Although these data are better explained by an 

adaptive reference points framework, they are equally well 

explained by category boundary models, wherein increasing 

psychological distance from an optimal decision bound can 

be interpreted as increasing confidence in a category decision 

(Ashby et al., 1998). We address these competing 

explanations in the following experiment.  

Experiment 2 

The aim of Experiment 2 was to better dissociate the 

competing explanations in Experiment 1 as well as to provide 

a partial replication. Much of the design remained the same, 

with the critical difference being in the appearance of the 

most extreme extrapolation items. These items were now 

made more deliberately extreme so that they were 

considerably different from the end-range training items. 

Such extreme items should always be favored as more 

representative if the prior results arise from the mechanisms 

of a decision bound framework—recall that further 

psychological distance from a bound should always translate 

to greater confidence in category membership. If, however, 

participants view the items as too different from the training 

set, and reject them in favor of the interpolated item, such 

behavior would be better explained by adaptive reference 

points. This is because adaptive reference points are still 

constrained by the need to minimize within-category 

distance. Consequently, typicality would begin to fall off 

after some distance from the reference points. In addition to 

the aforementioned changes, we also omit the generalization 

phase as it is less informative for the present experiment. 

Further, we also swap the dimensions from Experiment 1 (see 

Figure 1), such that size is now the diagnostic dimension. 

Doing so allowed for greater range in the extreme 

extrapolated items. 

Methods 

Participants A total of 106 participants from Binghamton 

University were run in this experiment. After dropping 

participants for self-reporting multi-tasking (n=9), and 

another for self-reporting display issues, 96 participants 

(~91% of the original data) were left for analysis. 

 

Materials and Design The domain was the same, however, 

the diagnostic dimension was now size. The smallest square 

seen during classification was 3.52 cm, while the largest 

square seen during classification was 6.58 cm. The most 

extreme extrapolations were 0.5 cm and 16 cm for small and 

large, respectively. Both values were made as extreme as 

possible while still limited by factors of visibility (small) and 

the average monitor resolution of our participants (large). 

This decision resulted in a minor asymmetry between the 

differences of the largest and smallest seen and unseen items.  

 

Procedure The classification phase was largely the same, 

however, the cover story was changed in light of a small 

minority of participants (n=4) reporting being confused about 

the prior cover story; the squares were now characterized as 

sheet metal produced by two separate companies. The same 

labels (SOUTH and WEST) were kept. 

Results and Discussion 

Final block accuracy for the classification task was 65% (SD 

= 0.47). After dropping participants who did not meet the 

50% learning criteria (~23% of the data), 74 participants 

remained for the analyses on the 2AFC task. 

The aim of the 2AFC typicality phase was to determine if 

participants preferred the extreme caricatures—thereby 

supporting category boundaries—or rejected them, thereby 

supporting adaptive reference points. Inspection of the 2AFC 

item preference provides mixed support for both accounts 

(see Figure 4). There appears to be an asymmetry in 

preference for the extremely small caricature and the 

extremely large caricature. This asymmetry is not explained 

by the caricatures’ physical similarity to the nearest seen 

exemplar. Were this the case, we would expect the small 

caricature to be favored more so than the large caricature, as 

it is more similar (physically) to the training set. There is a 

possibility that ‘bigness’ defined one category more than 

‘smallness’ defined the other, but the cause for this 

systematic bias is equally opaque. 

 

 
 

Figure 4: Typicality preferences for Experiment 2. For 

parity with the earlier figure, the same number of columns 
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are retained, however, the end columns are not one unit’s 

difference from 2 and 11—differing rather by several units. 

 

Our primary analyses concern the two critical within-

category pairs (see Figure 4). Consistent with the category 

boundary models, the binomial tests revealed that 

participants still significantly preferred the critical 

extrapolated item to the critical interpolated item for both 

categories (Category A: 48 to 26, p = .014; Category B: 54 to 

20, p < .001). Notably, for both categories, participants’ 

preference for the extrapolated item is reduced from that seen 

in Experiment 1, though still greater than chance. As in 

Experiment 1, we also conducted exploratory analyses 

comparing the most extreme-valued extrapolations with its 

nearest extrapolated flankers (“2-8” and “2-2” for Category 

A, “11-8” and “11-2” for Category B). Curiously, when 

comparing the small item with its flankers, it is not 

significantly preferred to either “2-8” (41 to 33, p = .146) or 

“2-2” (44 to 30, p = .13). This is not true for the large item, 

which is still preferred to its flankers—items “11-8” (53 to 

21, p < .001) and “11-2” (51 to 23, p = .001).  Contrary to the 

main finding, the observed preference for the flanker 

extrapolated items (“2-8”, “2-2”) over the most extreme-

valued extrapolated item (small), is more consistent with the 

adaptive reference points framework (Davis & Love, 2010, 

Kurtz & Silliman, 2019). 

The asymmetry in overall preference for the extreme 

caricatures (across multiple comparisons), while not 

intended, is also better explained by an adaptive reference 

points framework. Assuming a category boundary 

explanation, both extreme caricatures should be equally 

preferred to the remaining test items, as each is respectively 

the furthest from the ostensible boundary demarcating its 

category. While a boundary framework cannot admit of this 

asymmetry, adaptive reference points can be positioned 

independently of each other, adopting an arbitrary 

constellation of positions if it best suits the task and stimuli.  

General Discussion 

Across two experiments we have found novel and robust 

evidence of caricature representations that extend beyond the 

known training set. To date, previous investigations of 

caricatures have been limited to demonstrating advantages 

for ideal training exemplars and generated stimuli that 

deviated from the prototype position. The present results are 

the first indication that caricatured categories can result in the 

most representative items lying beyond even the most 

extreme observed items.  

There are a few caveats to the present findings that warrant 

discussion. First, the procedure of screening participants who 

did not achieve greater than 50% accuracy in the final block 

has the potential to invite selection effects. This procedure is 

not uncommon in the categorization literature, as predictions 

concerning possible outcomes of test phases are predicated 

on the assumption that the participant has learned something 

about the categories. There is a possibility, though, that the 

difficulty of our task filters for only the type of learner who 

would respond in the observed manner for the latter test 

phases. It is entirely possible that a different design that is 

easier to learn may result in a different pattern of findings due 

simply to differences in the pool of participants being 

analyzed. While our procedure is vulnerable to this risk, it is 

a necessary risk, as the alternative of analyzing all non-

learners is equally undesirable. To mitigate this risk, we set 

our filter to a very achievable number—greater than 50%. 

A related concern is the difference in the number of 

participants filtered after classification between Experiments 

1 (~11%) and 2 (~23%). While some portion of the difference 

is likely owed to noise, it is more likely that swapping the 

dimensions along the x/y axes played a role. To reiterate from 

the Experiment 1 methods, this learning domain was selected 

because it had previously been normed such that each 

dimension was found to be equally salient to participants 

(Conaway & Kurtz, 2017). It is possible, however, that 

participants are treating the dimensions differently at lower 

vs. higher values—e.g., a 1-units difference at the high end 

of the range is perceived as much greater than a 1-units 

difference at the low end. This is likely not the case for 

Experiment 2, given that prior psychophysics studies suggest 

that the function relating perceived changes to line length and 

objective changes to line length is linear (Stevens, 1957). It 

is more a concern for Experiment 1 (lightness of gray 

squares), where the exponent of the power law relating 

perceived to actual changes is closer to 1.2 (Stevens, 1957). 

This may explain why accuracy was higher for Experiment 1. 

If the representations of one category are much further away 

in psychological space from the other category, that category 

would be easier to learn, as its items are less perceptually 

confusable with the contrast category. 

While not ideal, the potential differences in how 

participants perceived the diagnostic dimensions is only a 

problem for our conclusions if said differences impact 

caricature representation. Under both theories of caricature 

effects—category boundaries and adaptive reference 

points—this is not a concern. In the case of the former, the 

most representative item is simply that item which is furthest 

from the bounds. Even if one category is much more 

psychologically distant from the other category, there will 

still be a “furthest item”. Likewise, for adaptive reference 

points, we can assume that the reference points themselves 

exist on the same scale as the stimulus representations. 

Therefore, as one dimension expands at higher physical 

values, so too will the reference points move with them. In 

either case, we would expect the same predictions for both 

Experiment 1 and 2. 

Regarding theoretical implications of this work, the 

findings are most compatible with either a category boundary 

or adaptive references points framework. Traditional 

reference point accounts are principally unable to account for 

these data, though proper simulations will be needed for a 

more definitive conclusion on this matter. For example, 

cluster or exemplar accounts may explain the 2AFC data if 

they assume a Gaussian similarity gradient, rather than an 

exponential similarity gradient (Nosofsky, 1991)—though it 
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remains to be seen how this will impact model fits of the 

classification data. Likewise, comparing simulations of 

category boundary and adaptive reference point models will 

be equally informative as to the results of Experiment 2. 

We note here that although we have to this point been 

discussing the competing frameworks as though they were 

mutually exclusive, it is entirely possible that participants are 

leveraging multiple systems of categorization to complete 

our tasks. Though assuming two or more distinct 

architectures is less parsimonious, there is growing evidence 

that these distinct architectures may be instantiated in 

functionally distinct parts of the brain (Ashby et al., 1998; 

Bowman, Iwashita, & Zeithamova, 2020). Under this 

combined framework, participants could be averaging over 

the outputs of these systems or even alternating between them 

on a per-trial basis or contingent on the nature of the task. Our 

data may even reflect a mixture of participants, some of 

whom prefer to use boundaries, while others preference 

adaptive reference points or exemplars/clusters. Though 

these possibilities are merely speculative for now, future 

theoretical and empirical work may shed light on their 

respective likelihoods. 

Assuming one framework or the other, however, the data 

are inconclusive as to whether adaptive reference points or 

category boundaries undergird the effects. While the results 

of the critical pair comparisons in Experiment 2 are more 

consistent with category boundaries, the asymmetry in 

preferences is better explained by adaptive reference points. 

We also note reduced preference for extreme caricatures 

relative to the critical interpolated item in Experiment 2. It 

may simply be that the extreme extrapolations were not 

distinct enough from the category distributions to 

conclusively show that the majority of participants reject 

them. 

Determining which of these two accounts is more likely to 

explain caricature effects is critical to the endeavor of 

understanding category representation. To the extent that 

graded structure is a critical component of categorization, and 

to the extent that caricature effects represent a distinct form 

of graded structure, one can argue that our understanding of 

categorization will remain incomplete so long as our present 

theories are unable to fully and conclusively account for this 

phenomena. It is for these reasons that future empirical work 

on caricature effects should prioritize determining which 

theory of category representation (or combination thereof) 

best explains the data. 
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