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Highlights

•	 Biogeography requires geological and biodiversity patterns 
to be linked through hypothesis testing and temporally and 
spatially constrained predictions

•	 The effects of continental volcanoes on mountain biodiversity 
have been disregarded possibly due to persistent attention 
to mountain uplift alone as the phenomenon of interest to 
biogeographers

•	 Volcanic activity has many direct effects on biodiversity 
particularly in the context of mountain formation, and is 
a spatially and temporally constrained process

•	 We explain why continental volcanoes in the context of 
Neotropical mountains deserve special attention and 
illustrate this perspective with two research cases in the 
Colombian Andes

Abstract
The longstanding view of Neotropical mountain uplift as a 
promoter of species diversification has become commonplace 
in the last decades and could benefit from more specific 
Earth-Life evolution associations. We now know that mountain 
formation has contributed to the outstanding levels of richness 
and endemism of Neotropical mountains. Nonetheless, we are 
lacking conceptual and empirical frameworks where geological 
and biological processes are causally linked through testable 
hypotheses. In this perspective, we present volcanic activity in the 
Neotropics, not as phenomena occurring “on top of” mountain 
uplift, the latter being the phenomena of biogeographical interest, 
but rather as geological processes that directly impact biodiversity 
and are themselves the phenomenon of biogeographical interest. 
Volcanoes deserve biogeographical attention because their 
effects on landscape evolution generate predictable biodiversity 
process counterparts that can be integrated into biogeographical 
models enabling hypothesis testing. We review examples in the 
literature emphasizing the spatio-temporal scale of volcanism’s 
predicted and recorded effects on biodiversity. We illustrate our 
perspective by two recent study cases, focusing on wax palms and 
passerine birds. In the first one, wax palm genomic sampling was 
used to test 2 hypotheses: that the northern Andes have been 
disconnected in the past and connected by rapid but repeated 
eruptions of caldera-forming eruptions in the Colombian Massif 
fostering episodic dispersal, or alternatively, that they have always 
been continuous and have gradually uplifted hosting continuous 
diversification and dispersal through time. In broadly this same 
area, genetic and phenotypic data revealed the existence of a 
hybrid zone between species in the warbler genus Myioborus. 
Because hybridization is likely younger than volcanic activity, 
topographic connection spurred by volcanism could have also 
enabled secondary contact between previously isolated species, 
a hypothesis that merits formal testing. Altogether, we emphasize 
the pertinence of the volcanic record in offering opportunities for 
the evaluation of biogeographical hypotheses in the context of 
Neotropical mountains and their singularly outsized biodiversity.

Keywords: Andes, biogeography, magmatism, naturalism, palm, relief, topography, warbler.
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On the morning of February 20, 1835, a British 
naturalist travelling in South America witnessed a 
remarkable geological event: a devastating earthquake 
near the cities of Concepción and Yalcahuano in the 
coast of Chile. The naturalist observed the consequences 
of the earthquake and other ensuing events:

“…To the northward a volcano bursts out at the bottom 
of the sea adjoining the island of Juan Fernandez, 
and several of the great chimneys in the Cordillera of 
central Chile commenced a fresh period of activity. We 
thus see a permanent elevation of the land, renewed 
activity through habitual vents, and a submarine 
outburst, forming parts of one great phenomenon” 
(…) “The most remarkable effect (or perhaps speaking 
more correctly, cause of this earthquake was the 
permanent elevation of the land (…) the elevation 
of the land to the amount of some feet during these 
earthquakes, appears to be a paroxysmal movement, 
in a series of lesser and even insensible steps, by which 
the whole west coast of South America has been raised 
above the level of the sea”

The naturalist was no other than a young Charles 
Darwin, who, by coincidence, had been reading Sir 
Charles Lyell’s Principles of Geology while aboard 
the Beagle. Darwin’s thinking was influenced by his 
reading of Lyell and by his first-hand experience with 
the earthquake and its impact on the landscape he 
carefully observed. Such experience motivated Darwin 
(1840) to review hypotheses about the formation of 
mountains, relating earthquakes and volcanoes to the 
mountain building process in which fractures, rock 
tilting and volcanism help form continuous mountain 
chains like the Andes.

“…volcanic action, even on a very grand scale, as in the 
Andes, is only one effect of the power which elevates 
continents, at the slow rate at which the South American 
coast is now rising. (…) It may, therefore, be questioned, 
whether we are justified in admitting the hypothesis of 
a paroxysmal elevation of any mountain-chain, without 
distinct proofs in each particular case, that a series of 
impulses, like those, which now acting frequently on the 
same lines, rend the earth’s crust, and elevate unequally 
portions of it, could not have affected the observed 
effects. It is, however, a subordinate question, whether 
there exist proofs of paroxysmal violence in some 
mountain-chains; the important fact which appears 
to me proved, is, that there is a power now in action, 
and which has been in action with the same average 
intensity (volcanic eruptions being the index) since the 
remotest periods, not only sufficient to produce, but 
which almost inevitably must have produced, unequal 
elevation on the lines of fracture. ”

As noted by various scholars and summarized aptly by 
paleontologist Richard Fortey, “Lyell made time available 
to Darwin”. In line with the Lyellian uniformitarian school 
of thought in the geosciences, Darwin’s gradualistic 

view of evolution poses that small changes acting over 
long periods of time may have profound cumulative 
effects not only in geophysical properties of the Earth 
(e.g., as in the uplift of mountains), but also on the 
species inhabiting the planet. While the explanatory 
power of such theory is vast, Darwin did not explicitly link 
geological mechanisms like those generating topography 
with identifiable events in the evolution of life.

Since Darwin’s time, however, there has been broad 
interest in connecting Earth processes with the origins of 
biological diversity. For example, the uplift of the Andes, 
the formation of the Isthmus of Panama, or the origin of 
drainages in the Amazon River system figure prominently 
in seminal theories of Neotropical biogeography 
seeking to explain the distribution and evolutionary 
diversification of plants and animals (e.g., various 
chapters in Rull & Carnaval 2021). Nonetheless, there 
are outstanding challenges for those interested in the 
interplay between Earth history and biological evolution 
in physically complex and species-rich regions like 
the Neotropics because narratives linking geological 
and evolutionary processes can fall short in providing 
exclusive predictions that would enable researchers 
to falsify hypotheses or gauge support for alternative 
historical scenarios. For example, given that the Andean 
uplift has extended over tens of millions of years, and 
is the result of different mechanisms operating at 
different temporal (millions to tens of millions of years) 
and spatial scales (tens to thousands of km), that the 
diversification of many clades coincides with uplift is not 
unexpected. Limitations of previous works (Antonelli 
& Sanmartín 2011, Sanín et al. 2016,) rely on the fact 
that uplift, just as diversification, can be continuous 
or episodic. This lack of scale specificity can give rise 
to problems of biogeographical pseudo-congruence 
(Donoghue & Moore 2003).

A potential way to move forward in testing spatially 
and temporally explicit hypotheses involving Earth 
processes and the distribution and diversification of 
species is to carefully consider (1) the mechanisms 
potentially underlying such associations and (2) other 
sources of information which may be informative about 
the explanatory power of alternative scenarios (Dolby 
2021). For example, did the “uplift of the Andes” spur 
diversification because it created topographic relief 
isolating populations, because it generated novel 
habitats for lineages to colonize, or because it altered 
local climates promoting evolutionary adaptation? 
Can one evaluate scenarios in which Andean uplift is 
dissected into separate underlying mechanisms with 
specific putative effects on biodiversity? What sort of 
data on the physical environmental and organismal 
traits may one use alongside genetic or genomic data 
to evaluate predictions of alternative hypotheses?

We are convinced that productive dialogues between 
the Earth and life sciences in biogeography can best 
be established when one seeks to address questions 
like those posed above to understand how biodiversity 
responds to Earth processes. Indeed, the Neotropics 
has been the regional context in which many of these 
dialogues have been proposed (e.g Baker et al. 2014) 
and reviewing such dialogues is not our purpose. 
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Rather, we want to underline that the Earth processes 
studied and their purported effects on biodiversity 
should be temporally and spatially circumscribed as 
a first step in testing causal Earth-Life associations. 
Our main purpose is to show that volcanic centres 
are suitable areas where one can test links between 
Earth history and biodiversity because of their spatially 
and temporally explicit genesis, and their multiple 
and predictable effects on biodiversity. We illustrate 
this idea with examples of the influence of volcanoes 
on biodiversity in montane regions. We focus on the 
Neogene in the Tropical Andes and surrounding areas, 
a highly diverse region with complex topography and 
dynamic history where biogeographers have long 
sought links between Earth history and the evolution 
and distribution of life (e.g. Hoorn et al. 2010; Antonelli 
and Sanmartín 2011; Antonelli et al. 2018, Rahbek et al. 
2019; Muellner-Riehl et al. 2019), but where the role 
of volcanism as a driver of biotic evolution has been 
insufficiently explored.

Volcanoes and biodiversity
Volcanoes may trigger effects on biotas from 

local to regional scales, are aggregated in space, 
and have a traceable duration determined by their 
unique deposits. Thus, the study of the influence 
of volcanism on biodiversity appears especially 
promising, given the possibility of spatially and 
temporally explicit hypothesis-testing. However, 
in our view, volcanism has not received sufficient 
attention as a driver of biotic evolution in montane 
regions for two reasons. First, presumably because 
intermediate to large-scale volcanic eruptions have 

a substantial effect on the landscape over short, 
contemporary (i.e. ecological) time frames (i.e. plant 
early succession after volcanism: Tsuyuzaki 2009; 
diversity response to volcanism in animals: Elizalde 
2014, in birds: Daalsgard et al. 2007), interest about 
their deeper-time effects has been limited (but see 
Beheregaray  et  al. 2003 & Bemmels  et  al. 2022), 
and research has focused on understanding whether 
and how ecosystems and communities recover after 
them (Major et al. 2009). Second, researchers have 
focused on island volcanoes (i.e. Ali and Meiri 2019) 
and often considered continental volcanism only 
as a biogeographical epiphenomenon (sensu Dolby 
2021) associated with tectonic mountain building or 
uplift, the purported main phenomenon of interest 
affecting biodiversity (e.g., Chaves et al. 2011, Antonelli 
and Sanmartín 2011). This view often disregards 
other geological processes associated with volcanic 
eruptions (e.g., faulting and bulging, climate forcing), 
which on their own may affect dispersal, speciation 
and extinction, and should thus be incorporated in 
biogeographical hypotheses.

Examining causal relationships between Earth and 
life evolution in montane regions requires attention to 
scale: how fast, for how long, and where might Earth 
processes have affected biodiversity? Scale largely 
determines what one may expect of the relationship 
between volcanoes and biodiversity. For instance, 
tectonic mountain uplift spans over tens of millions of 
years, whereas continental arc volcanic construction 
spans over hundreds of thousands of years to a few 
million years (Fig.  1, Table  1). Over relatively short 
periods (weeks, months, years, decades), volcanoes 
often have destructive effects on ecosystems. 

Figure 1. Many-fold effects of volcanism on relief, landscape, soil, climate and biodiversity, to which species can respond 
by adapting and diversifying, dispersing or becoming extinct (E); for a revision of published works on these processes, 
see Table 1; A) Graphic representation of the effects of volcanism, and B) the relationship between these effects and 
biological processes.
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Table 1. Different scale effects of volcanism on terrestrial biodiversity.
Factor related to the process of 

Volcanism Effect on landscape and climate Geographical Scale; 
Temporal Scales (yrs) Effect on Biodiversity References

Large-scale lava flows and 
pyroclastic density-currents, 
lahars and debris avalanches

Valley and low land infills, burning, 
hydrogeomorphology disturbance/
responses (deviation and blockage 

of water ways) and of microhabitats 
(i.e. nests, caves), destruction 

of vegetation, flooding, new soil 
development, topographic inversion, 

new soil development

Local to Meso; 
10-10^6

Macroevolutionary: extinction, 
speciation.

Moral & Grishin 1999; 
Beheregaray et al. 2003; 

Dale et al. 2005; 
Tsuyuzaki 2009; 

Major et al. 2009; 
Arnalds et al. 2013; 

Elizalde 2014; 
Del Crisafulli et al. 2015; 

Hsu et al. 2017; 
Payne and Egan, 2019; 
Nogales et al. 2022; 

Bemmels et al. 2022; 
Thacker et al. 2023

Microevolutionary: population decline 
or local extirpation due to reduction 
of habitat, loss of genetic diversity, 

population subdivision and isolation.
Ecological: biased taxonomical 

representation, depression of the treeline 
(expansion of open highland vegetation); 

promotes habitat heterogeneity and 
patchiness, primary (and secondary) 

succession. Regional species pool.

Tephra fall deposits Mantling topography, burial, 
aerosol scavenging, biogeochemical 

disturbance, volcanic winters, nutrient 
deposition

Meso to regional; 
10-10^3

Macroevolutionary: Moral & Grishin 1999; 
Dalsgaard et al. 2007; 

Tsuyuzaki 2009; 
Bagnato et al. 2012; 
Arnalds et al. 2013, 

Cárdenas et al. 2014; 
Langmann 2014; 

Crisafulli et al. 2015; 
Gunnarsson et al. 2015; 

López de Heredia et al. 2015; 
Williams-Linera & Vizcaíno_

Bravo 2016; 
Loughlin et al. 2018; 

Beierkuhnlein et al. 2023

species turnover, local adaptation
Microevolutionary: population 

enhancement through increased 
resource offer or population declines 

due to soil turnover
Ecological: changes in primary 

productivity due to fertilization or 
limited light availability, trophic 
changes, changes in community 

structure and composition. Promotes 
secondary succession.

Mountain building on top of 
already existing mountain chain

Generation of steeper slopes and / or 
higher peaks, valley filling, bulging, 
isostatic rebound (vertical uplift), 
habitat heterogeneity increases, 

connectivity/isolation

Local to regional; 
10^3-10^6

Macroevolutionary: local adaptation 
and anagenesis, dispersal

Parra-Olea et al. 2012, 
Osuna et al. 2020; 
Sanín et al. 2022; 

Murienne et al. 2022
Microevolutionary: gene flow 

dynamics, dispersal across corridors, 
population isolation.

Mountain building on flat areas Generation of elevated areas, slopes, 
valley filling, bulging, isostatic rebound 
(vertical uplift), habitat heterogeneity 

increases

Local to regional; 
10^3-10^6

Macroevolutionary: local adaptation 
and anagenesis, dispersal.

Mastretta-Yanes et al. 2015; 
Murienne et al. 2022

Microevolutionary:
gene flow dynamics.

Ecological: biogeochemical cycling due 
to increased erosion and weathering, 
changes in structure and composition 

due to elevation gradients.
Warm refugia during cold 

periods, cold refuge during 
warm periods

Increase climatic heterogeneity, warm 
refuges

Local to meso; 
10-10^3

Macroevolutionary: extinction 
decreases, immigration increases.

Fraser et al. 2014

Microevolutionary: population refugia 
during glacials .

Gas and aerosol emissions Aerosol dispersal, volcanic winters, 
acid rain, soil and water pollution, 

affect carbon flux and plant gas 
interchange (physiology), enhanced 

UV-B radiation

Local to global; 
10-10^2

Macroevolutionary: Benca et al. 2018; 
Chen et al. 2019; 

Nogales et al. 2022
local adaptation.

Microevolutionary: local adaptation, 
mutagenesis.

Ecological: stress and mortality due 
impediment to gas exchange and 

toxicity exposure.
Progressive climate change Regional to global; 

10-10^6
Macroevolutionary: accelerate or 

decelerate diversification
Guex et al. 2016; 
Chen et al. 2019; 
Wang et al. 2023Microevolutionary:

migration 
(range size contraction or expansion).

Ecological: changes in composition and 
structure

Volcanic winters Decrease temperatures Regional to global; 
10-10^6

Macroevolutionary: massive extinction 
of plant lineages.

Oppenheimer et al. 2003; 
Sobolev et al. 2011; 

Sigl et al. 2015; 
Guex et al. 2016; 

Alexander et al. 2017

Microevolutionary: population 
bottlenecks.

Ecological: primary productivity declines, 
trophic cascades, acclimation, changes in 

migration patterns, pathogens and disease.
Fumarolic and lightning activity Increase humidity in high elevation 

areas, air, modify water and soil 
composition, diverse impact on 

microbial communities

Local; 10-10^2 Macroevolutionary: increase biodiversity. Costello et al. 2009; 
Medrano-Santillana et al. 2017; 

Solon et al. 2018
Microevolutionary: local adaptation 
to extreme environments, frequent 
lightning and nitrogen rich habitats.
Ecological: composition and structure 
change due to lightning-related fires, 

increased humidity, and nitrogen fixation.
Geodiversity Increase soil chemistry and nutrient 

content from diverse weathered 
bedrocks and volcaniclastic sediments, 

increase sulphur concentrations

Local to regional; 
10^3-10^6

Macroevolutionary: increase biodiversity 
by promoting diversification and local 

adaptation.

Moretti et al. 2021; 
Kienle et al. 2022; 

Romano et al. 2023
Ecological: increased diversity as increased 
heterogeneity of habitats, distance-from-

source environmental gradients, metabolic 
changes in biota, phenotypic adaptation 

to darker, richer soils
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However, in the long-term (thousands to millions of 
years), their addition of voluminous lava and volcaniclastic 
materials, emission of gases, the establishment of 
hydrothermal settings, or the modification of isostatic 
equilibrium due to thermal perturbations can have 
positive influences on biodiversity. Indeed, surface 
processes such as the formation of relief, drainages 
and soil, can have a variety of effects on colonization 
and speciation dynamics (Fig. 1, Table 1).

One of two main effects of volcanoes promoting 
biodiversity in the time frame of centuries to millennia 
relates to the soils that form after volcaniclastic 
deposition and subsequent weathering, which 
favour the accumulation of organic matter, water and 
nutrients (Tonneijck et al. 2010), and thus promote 
biodiversity by various mechanisms related to changes 
in resource availability and in the physical environment 
(Pardo et al. 2021). Volcanic ash soils harbor persistent 
carbon stocks and assimilable phosphorus that can be 
gradually absorbed by plants and are more fertile than 
soils that have evolved by exhumed rock weathering 
alone. Soil organic carbon stocks in andosols of high-
elevation Andean forest and paramo almost double 
global averages for other volcanic ash soils due to 
chemical and physical stabilization mechanisms 
(Tonneijck  et  al. 2010). Also, andosols have higher 
water retention potential and a strong resistance to 
water sediment erosion (Shoji  et  al. 1993) related 
to their high soil porosity (Poulenard et al. 2011). A 
net positive effect of volcanoes on organic matter 
accumulation and resistance to erosion in areas of 
significant relief and weathering can promote plant 
colonization and succession dynamics, leading to 
higher and more sustained plant diversity (Kienle et al. 
2022, Moretti  et  al. 2021). The spatial distribution 
of andosols may also foster patterns in phenotypic 
variation across space via adaptation or phenotypic 
plasticity. For example, plumage coloration in 
populations of Barn Owls (Tyto alba) is darker in 
areas where andosols are present or recent volcanic 
activity has occurred, a pattern attributable to greater 
production of phaeomelanin due to adaptation to 
darker soil surfaces (background matching) or to the 
influence of sulfur on metabolic pathways involved in 
pigment synthesis (Romano et al. 2023).

Secondly, volcanoes affect topographic evolution 
and may therefore influence evolutionary processes 
in various ways (Hoorn et al. 2013, Murienne et al. 
2022). These processes tend to occur at the 1 y-1 My 
time scales. First, large-scale volcanic eruptions alter 
local geomorphology by filling low valleys with volcanic 
material and inducing drastic changes in drainage basins 
(Pierson & Major 2014; Cárdenas et al. 2014; Galve et al. 
2022). Second, volcanic areas have steep geothermal 
gradients that promote kilometer-scale crustal doming 
and deformation, a process ultimately resulting in 
surface uplift. We here offer two examples of likely 
links between such processes and biotic evolution: in 
Ecuador, volcanoes shaped the topographic landscape 
where endemic ground beetles diversified by repeated 
connection-isolation dynamics in volcanic areas amidst 
Pleistocene climatic cycling (Murienne et al. 2022), and in 

Mexico, the volcano rabbit evolved after volcanic uprising 
of the Sierras Chichinautzin and Nevada (Osuna et al. 
2020). Finally, volcanic deposits may be easier to erode 
than surrounding bedrocks (Moosdorf et al. 2018) and 
can, in conjunction with climate, contribute to higher 
topographic destruction and accelerated drainage 
evolution, a process that may have substantial effects 
on biodiversity. For example, drainage evolution of the 
Cauca River valley in the Northern Andes of Colombia, 
related to volcanism in the Central Cordillera (i.e. the 
transition from several short river segments and lakes 
to a continuous river basin; Pérez-Consuegra et al. 2022) 
not only affected aquatic life but also contributed to the 
isolation of seasonally dry orographic rain-shadowed 
enclaves and their unique biota (González et al. 2018; 
Idárraga-Piedrahíta et al. 2021). In the Eastern Cordillera 
flanks of Ecuador, 8 m-thick tephra deposits blocked 
valley river incision, favoring Andean forest species 
turnover (Cárdenas et al. 2014). In sum, volcanism 
interacts in conjunction with climate and tectonics to 
generate particular environments where species evolve 
over time.

One may also consider the compounding effects of 
volcanoes via substrate enrichment and their influence 
on topography on the evolution and distribution 
of mountain biodiversity. Low-elevation valleys are 
often inhabitable areas for highland tropical species 
because of their higher temperatures and distinct 
precipitation regimes. On the other hand, areas that 
were recently exhumed through orogeny usually 
have parental material that will end in limited soil 
formation or nutrient-poor soils in which species 
with particular requirements cannot occur. Filling 
valleys with volcanic lava flows that will elevate 
surfaces (topographic inversion; Cas  et  al. 2011) 
and then also enrich soil composition by releasing 
biodiversity-limiting elements may therefore favour 
the establishment and accumulation of montane 
species, facilitate dispersal by range expansion, and 
foster local adaptation. Below, we provide a context 
of biogeography related to volcanic activity in the 
Northern Andes, then bring attention on the area 
of the Colombian Massif, and finalize by illustrating 
cases in which volcanic activity in the broader context 
of Andean uplift could be potentially related to 
biogeographic patterns (Fig. 3 [[Q1:  Q1]]).

Volcanoes in the Northern Andes and 
biogeography

The North-Andean volcanic province
Neogene volcanic activity in the Northern Andes 

results from the subduction of the Nazca oceanic plate 
beneath South America and has been relatively persistent 
since the Neogene (van Houten, 1976; Pennington, 1981; 
Marín-Cerón et al. 2019). In northern Colombia, the 
volcanic front in which most of the edifices concentrate 
has experienced major spatial changes between 
the Miocene and the Recent (Wagner et al. 2017), 
with shifts in the distribution of volcanic-influenced 
landscapes and deposits between the Western 
and Central Cordillera (Jaramillo et al. 2019; Fig. 2). 
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This long-term history causes both superficial volcanic 
piling over hundreds of thousands of years and deep 
magmatic addition to the lower crust over tens of millions 
of years (Fig. 2), which contribute to changes in crustal 
thickness, hydrogeomorphic changes in the inter-Andean 
valleys and to topographic elevation or connection 
due to valley filling (Fig. 2; Thouret et al. 1990, 1995; 

Figure 2. A. Regional map of the Colombian Andes showing the current tectonic configuration. B. Geological map showing 
the distribution of intrusive and volcano-sedimentary units from the Neogene. Abbreviations: PCB: Panamá-Chocó Block; 
WC: Western Cordillera; CC: Central Cordillera; EC: Eastern Cordillera; the volcanic cluster of the Colombian Massif is 
indicated north of Pasto, and the volcanic cluster of Nudo de los Pastos (southern tip of the Colombian Massif) is indicated 
south of Pasto (both as white triangles). Geological information taken from Gómez & Montes (2020); Digital Elevation 
Model (DEM) downloaded from: https://download.gebco.net/.

Suter et al. 2008; Poveda et al. 2015; Monsalve et al. 
2019; Espinosa-Vaquero 2020). Calc-alkaline volcanic 
products have also determined soil composition and 
evolution, ultimately contributing to geodiversity 
(Kienle  et  al. 2022), a factor positively associated 
with species richness (Muellner-Riehl  et  al. 2019, 
Rahbek et al. 2019).
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The Colombian Massif
The Colombian Massif is a continuous highland 

plateau encompassing the southern and central segments 
of the active volcanic arc in southern Colombia, from 
where major rivers flow North (i.e. Cauca, Magdalena) 
and West (i.e. Patía), and where the three Cordilleras 
of Colombia, and the Ecuadorian Andes split. Although 
volcanoes in the Northern Andes are compositionally 
related (Monstalve-Bustamante et al. 2020), the volcanic 
cluster of the Colombian Massif exhibits the record 
of widespread ignimbrites, which are large-volume 
deposits of high-concentration pyroclastic density 
currents (Branney and Kokelaard 2002) and their 
reworked products known as lahar deposits. They are 
exposed in an area of at least 2775 km2; geochronological 
constraints suggest two major volcanic activity periods 
in the Miocene (Kroonenberg et al. 1981) and Pliocene 
to Pleistocene (Risnes 1995, Sanin et al. 2022, Torres-
Hernández 2010, Van der Wiel 1991, Van der Wiel et al. 
1992). Together with large-scale debris-avalanches and 
lahars, calderas contributed to topographic growth and 
fast landscape disturbance in the Pliocene to Pleistocene 
and possibly to the closure of a trans-Andean portal 
connecting the Amazon and magdalena-caribe basins 
(Montes et al. 2021).

Dispersal of wax palms to different cordilleras across 
a volcanic province

The genus Ceroxylon comprises 13 species of wax 
palms from montane cloud forests of the Tropical Andes. 
Because wax palms are endemic to this region and 
diversified during the Neogene, diversification and 
surface uplift temporally and spatially coincide. Uplift 
in the Tropical Andes has also extended throughout 
the Neogene primarily in response to plate margin 
convergence and deformation (Mora  et  al. 2010). 
However, biogeographical processes like dispersal, 
speciation and extinction occur over shorter time scales 
and in more restricted areas than the “Neogene” and 
the “Tropical Andes”, respectively. Thus, this case study 
sought to test whether second-order processes, that are 
linked to mountain building, but that can usually be tied 
to more constrained time and spatial scales, could be 
causally linked to biogeographical processes in the wax 
palms. The regional effect of caldera-forming eruptions, 
and the ignimbrite deposits resulting in the filling of low 
valleys occur in volcanic provinces and can span from 
hundreds to a few million years. Intensive geographical 
and genomic sampling of wax palms throughout 
the Tropical Andes, alongside geochronological, 
petrographic and provenance analysis of ignimbrites 
and other rock outcrops surrounding the southern 
volcanic province of Colombia, were used to assess 
whether large-scale caldera-forming volcanic events 
could have been related to biogeographical processes in 
the palm genus. Dispersal would be enhanced through 
topographic connectivity by magmatic contribution to 
low passes, allowing connectivity between formerly 
disconnected segments of the Andes (Sanín et al. 2022). 
Specifically, Neogene ignimbrites occurring on the east 
and west slopes of the northern volcanic area of the 
Colombian Massif near Popayán (Cauca) and San Agustín 

(Huila) were studied, where extensive populations of 
the highland species of wax palms also exist. This area 
is currently topographically continuous and does not 
exhibit any particular relief or climatic breaks, and was 
shown to be a low mountain pass in the late Miocene 
to Pliocene (Montes  et  al. 2021). Through dated 
phylogenomic analyses, it was concluded that despite 
wax palms having lived in the Northern Andes since the 
Late Miocene, the dispersal of various highland lineages 
(Ceroxylon parvifrons, C. quindiuense, C. ventricosum, C. 
vogelianum) to the Western and Central Cordilleras of 
Colombia did not occur until the Plio-Pleistocene through 
the area of the Colombian Massif (Kroonenberg et al. 
1981). This is congruent with the description of volcanic 
eruptions of great magnitude that also occurred in this 
area and time. The study showed that volcanic eruptions 
in the Colombian Massif likely contributed to filling 
topographic gaps and low passes, thereby connecting 
the Western and Central Cordilleras to the Colombian 
Massif during the Plio-Pleistocene. This topographic 
connection allowed wax palms to colonize the Western 
and Central Cordilleras (Fig. 3A) by filling the low pass 
or “Trans-Andean portal” in south Colombia (indicated 
in orange color on Fig. 3B).

Hybridization in Andean warblers across a volcanic 
province

Two species of high-elevation passerine birds in 
the warbler family Parulidae, Myioborus ornatus and 
M. melanocephalus, exhibit striking geographic variation
in plumage coloration throughout the tropical Andes
which contrasts with low levels of differentiation
in mtDNA (Pérez-Emán 2005, Céspedes-Arias et al.
2021). Genetic divergence among plumage groups is
particularly low among those occurring in the northern
Andes, from central Ecuador to Venezuela. Near the
Colombia-Ecuador boundary two of these plumage
groups meet in a hybrid zone of approximately 200 km,
where individuals with intermediate plumage are
common and phenotypically “pure” individuals of both
forms do not co-occur. Based on phenotypic patterns
of variation, this hybrid zone is centered just in the
south of the Colombian Massif volcanic province, in
an area called Nudo de los Pastos (Fig. 3B-C), where
clear topographic or climatic breaks in the cloud forest
belt that these warblers inhabit do not currently exist
(Graham et al. 2010). Because this hybrid zone likely
formed by secondary contact of formerly isolated
populations, a question that arose during this work
is what prompted the period of isolation in which
populations differentiated in the first place and what
led to their secondary contact. Notably, the hybrid
zone location corresponds to an area of important
magmatic contribution to topography, which also
includes widespread ignimbrites and pyroclastic
deposits (Kroonemberg, 1981, Velandia et al. 2008)
that connected previously isolated mountain segments
at the Colombia-Ecuador border region. The changes
in connectivity of Myioborus habitat that allowed for
secondary contact between differentiated populations
in the area might have been related to volcanic activity
significantly modifying topographic connectivity.
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This hypothesis predicts that the timing of secondary 
contact (i.e. the age of the hybrid zone) must postdate 
volcanic activity leading to enhanced connectivity 
of cloud forest in the area. Based on mtDNA data 
(Pérez-Emán 2005), the diversification in the complex 
occurred within the past 1 million years, which 
implies that the hybrid zone is likely younger than 
magmatic topographic additions and could therefore 
have originated following volcanic activity in the 
Pleistocene in the Colombian Massif and Nudo de 
los Pastos. These findings show another effect of 
second-order processes in mountain building, namely 
topographic contribution by caldera-forming volcanic 
eruptions, on biogeographic processes, in this case 
related to secondary contact through dispersal. 
By using genomic data collected from specimens of 
Myioborus across the hybrid zone, a more precise 
estimate of the age of the hybrid zone can be 
obtained (Meier et al. 2017, Pool and Nielsen 2009, 
Sedghifar et al. 2015), and tests of explicit demographic 
scenarios can be conducted, research that will deliver 
a better understanding of the interplay of these two 
Earth-Life processes.

Concluding remarks
The Andes have had disparate topographic profiles 

and continuity throughout their history (Anderson et al. 
2016, León et al. 2018, Zapata et al. 2020, Montes et al. 
2021). Second-order processes of topographic evolution, 

like faulting and volcanism, have played an important role 
in mountain building, the consolidation of cordillera and 
inter-Andean valley systems, and in the evolution of life in 
the Neotropics. Although life has evolved in the context 
of gradual mountain uplift, spatially and temporally 
constrained processes like volcanism have had a 
definitive role in species dispersal and diversification. 
As we have discussed, at deep, thousand-to-million 
year time scales, volcanoes can promote life via 
different mechanisms. Furthermore, temporally and 
spatially constrained volcanic events and processes 
allow one to draw direct causal relationships between 
the evolution of landscape and of life. We encourage 
biogeographers to further engage in establishing such 
causal relationships and in testing specific predictions 
of alternative hypotheses as a productive means to 
enrichen our narratives about links between Earth and 
life evolution in North Andean biogeography.
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where magmatic additions ignimbritic eruptions and magmatic filling of low valleys led to higher topographic connectivity. 
A) and B) are modified from Sanín, Cardona et al. (2022). C) Hybrid zone of Myioborus warblers located in southern Colombia.
Orange dots correspond to localities where specimens with a clear intermediate plumage were collected, with the bigger orange
circles denoting the ones within the estimated center of the hybrid zone (Céspedes-Arias et al 2021). Black dots correspond
to localities where only parental plumage forms occur, either M. m. ruficoronatus in the south, or M. ornatus chrysops in
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