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Predicting mortality in the intensive care
unit: a comparison of the University Health
Consortium expected probability of
mortality and the Mortality Prediction
Model Il

Angela K. M. Lipshutz", John R. Feiner', Barbara Grimes? and Michael A. Gropper’

Abstract

Background: Quality benchmarks are increasingly being used to compare the delivery of healthcare, and may

affect reimbursement in the future. The University Health Consortium (UHC) expected probability of mortality (EPM)
is one such quality benchmark. Although the UHC EPM is used to compare quality across UHC members, it has not
been prospectively validated in the critically ill. We aimed to define the performance characteristics of the UHC EPM

Bland-Altman plots.

mortality was maximally uncertain.

in the critically ill and compare its ability to predict mortality with the Mortality Prediction Model Il (MPM-II).
Methods: The first 100 consecutive adult patients discharged from the hospital (including deaths) each quarter

from January 1, 2009 until September 30, 2011 that had an intensive care unit (ICU) stay were included. We
assessed model discrimination, calibration, and overall performance, and compared the two models using

Results: Eight hundred ninety-one patients were included. Both the UHC EPM and the MPM-III had excellent
performance (Brier score 0.05 and 0.06, respectively). The area under the curve was good for both models (UHC
0.90, MPM-III 0.87, p = 0.28). Goodness of fit was statistically significant for both models (UHC p =0.002, MPM-III
p =0.0003), but improved with logit transformation (UHC p=0.41; MPM-IIl p = 0.07). The Bland-Altman plot
showed good agreement at extremes of mortality, but agreement diverged as mortality approached 50 %.
Conclusions: The UHC EPM exhibited excellent overall performance, calibration, and discrimination, and
performed similarly to the MPM-III. Correlation between the two models was poor due to divergence when

Keywords: Critical care, Intensive care, Mortality, Severity of illness index, Projections and predictions

Background

Quality benchmarking is increasingly being used to
evaluate the delivery of healthcare on the individual and
systems levels by comparing performance measures
among providers and hospitals. The goal of benchmarking
is to improve transparency in healthcare and highlight
methods that can be utilized to improve quality [1, 2].
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Pay-for-performance (P4P) programs, such as those man-
dated by the Affordable Care Act (http://www.healthcare.-
gov/law/full/index.html, accessed November 18, 2014),
utilize quality benchmarking by tying financial incentives
to performance [3]. However, the integrity of quality
benchmarking depends on fair comparison of the per-
formance measures being utilized.

Performance measures can be either process or out-
comes measures. Process measures examine compliance
with a task, such as administration of deep vein throm-
bosis prophylaxis in the critically ill or administration of
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aspirin in a patient having a myocardial infarction. Out-
come measures evaluate the result of the care provided;
such measures include hospital mortality or functional
independence after discharge from the intensive care
unit (ICU). Comparison of outcomes measures among
different providers and hospital systems requires case-
mix adjustment, so that individuals and systems are not
penalized for taking care of sicker patients. Process mea-
sures were initially thought to be unaffected by severity
of illness, negating the need for case-mix adjustment for
comparison; however, this assumption has recently been
called into question (http://gold.ahrq.gov/projectsearch/
grant_summary.jsp?grant=R01+HS18338-01A1, accessed
November 18, 2014). Thus, adequate case-mix adjust-
ment is of paramount importance when comparing per-
formance measures across providers and hospitals.

Case-mix adjustment is typically accomplished utiliz-
ing prognostic models that predict a patient’s probability
of mortality. To this end, prognostic models have been
calibrated and validated in various hospital populations.
However, each model relies on a different set of variables
to predict mortality and, as such, may perform differ-
ently in different populations. The Acute Physiology and
Chronic Health Evaluation (APACHE) [4], Simplified
Acute Physiology Score (SAPS) [5-7], and Mortality
Probability Model (MPM) [8, 9] were created explicitly
for use in the ICU, validated in the critically ill, and rely
primarily on physiologic data to predict mortality. The
University Health Consortium (UHC) expected probabil-
ity of mortality (EPM) is another model that can be used
to predict mortality in hospitalized patients. The UHC
EPM differs from the APACHE, SOFA, and MPM in
that it was not created explicitly for use in the ICU.
Furthermore, it relies on administrative data, calculated
based on a complex algorithm that includes diagnosis-
related group (DRG) and comorbidities (UHC, Risk
Adjustment Methodology for the Clinical Data Base,
Oak Brook, IL, 2011). The benefit of using administra-
tive data over physiologic data is that it is easier and
less expensive to collect; however, it depends on the ac-
curacy of documentation by providers. Although the
UHC EPM was internally calibrated and validated, its
prognostic ability in certain populations has been ques-
tioned [10, 11]. It has not been extensively studied in
the critically ill. To date, only one study has evaluated
the use of the UHC EPM specifically in the ICU:
Enfield et al. compared the performance of the UHC
EPM and the APACHE-IV in critically ill patients at
two academic medical centers and found that the UHC
EPM was adversely affected by severity of illness [12].
However, the study was limited to medical ICU pa-
tients, and the sample size was relatively small.

At the University of California, San Francisco, we use
the UHC EPM to aid in benchmarking our critical care
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services against other UHC member institutions. Thus,
we sought to define the performance characteristics of
the UHC EPM in our ICU population and to compare
its ability to predict mortality with the MPM-IIL

Methods

Prognostic models

UHC EPM

UHC is an alliance of 119 academic medical centers and
their 293 hospital affiliates, representing approximately
90 % of US non-profit academic medical centers (https://
www.uhc.edu/cps/rde/xchg/wwwuhc/hs.xsl/home.htm,
accessed April 13, 2013). Member hospitals provide
de-identified patient level data to UHC for inclusion
in the UHC Clinical Data Base; UHC then applies a
proprietary model based on DRG and comorbidities
to calculate the EPM (UHC, Risk Adjustment Meth-
odology for the Clinical Data Base, Oak Brook, IL,
2011). The EPM model was internally calibrated and
internally validated. It is estimated to predict 84 % of
the odds of death in critical illness [12]. The Univer-
sity of California, San Francisco (UCSF) Medical Cen-
ter is a UHC member and provides patient level data
coded from clinical documentation to the Clinical
Data Base for quality improvement purposes.

MPM-III

The MPM-III estimates hospital mortality based on 16
variables collected within 1 h of ICU admission [9]. The
MPM-III is an update of the MPM-II; variables included
in the MPM-III were identified via a retrospective ana-
lysis of 124,855 Project IMPACT (Cerner Project IM-
PACT, Inc., Bel Air, MD) patients. The variables featured
in the model include physiologic parameters, and acute
and chronic diagnoses, such as heart rate, systolic blood
pressure, acute renal failure, history of chronic kidney
disease, history of cirrhosis, and history of malignant
neoplasm. The MPM-III is well-calibrated and shows ex-
cellent discrimination in the Project IMPACT sample.

Setting and subjects
The UCSF Medical Center is a 560-bed tertiary care aca-
demic medical center in San Francisco, CA. The medical
center has 77 adult critical care beds (32 medical/surgical,
29 neurology/neurosurgical, and 16 cardiology/cardiothor-
acic surgical) in a semi-closed ICU setting with mandatory
intensivist consultation for all medical/surgical patients as
well as neurology/neurosurgical and cardiology/cardio-
thoracic surgical patients requiring mechanical ventilation.
We included the first 100 consecutive adult patients
discharged from the hospital (including deaths) each quar-
ter between January 1, 2009, and September 30, 2011, who
required an ICU stay. We obtained data, including the
EPM, from the UHC Clinical Data Base directly from UHC
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for the entire study period. Data to calculate MPM-III for
the first 100 consecutive discharges per quarter during the
study period was obtained via retrospective review of the
clinical record as part of our institution’s involvement
in the California Hospital Assessment and Reporting
Taskforce (http://www.calqualitycare.org/about, accessed
November 18, 2014). The UHC and MPM-III data were
merged by patient encounter number, a unique identifier
for each patient and hospitalization. Repeat admissions,
trauma patients, burn patients, patients admitted to rule-
out myocardial infarction who were subsequently ruled
out (and had no other indications for ICU admission), and
patients admitted immediately after coronary artery bypass
grafting were excluded. Additionally, patients without
complete information available with which to calculate the
MPM-III score were excluded.

Statistical analysis

Approval for this study was obtained from the UCSF In-
stitutional Review Board, and the requirement for writ-
ten informed consent was waived. Descriptive data were
summarized as number (percentage), mean + standard
deviation (SD), mean (95 % confidence interval (CI)), or
median (interquartile range (IQR)). Predicted mortalities
were compared using the paired t test and Wilcoxon
sign rank test. Overall model performance was assessed
via Brier scores, which measure the average squared de-
viation between the predicted probabilities for a set of
events and their outcomes. A lower score indicates a
more accurate prediction [13]. Each model’s discriminative
ability was assessed via its receiver operator characteristic
(ROC) curve. Model calibration was described via the
Hosmer-Lemeshow goodness-of-fit test. The mortality
index for each model was calculated using observed and
expected mortality.

The UHC EPM and MPM-III were compared using
Pearson’s correlation coefficient, Spearman rho, and
Bland-Altman plots. Given poor calibration in the ori-
ginal models, we performed a post hoc analysis using
logit-transformed models to assess for improved model
fit. We hypothesized that, since one model relies on ad-
ministrative data and the other on clinical data, the use
of both models together would improve the prediction
of mortality. To test this hypothesis, we performed
multivariate logistic regression for the outcome of hos-
pital mortality with each logit-transformed model as a
predictor. We checked for interaction between the two
models; since there was a statistically significant inter-
action, the interaction term was included in the final
model. We then compared this model to the univariate
logistic regression results for each model separately
using the likelihood ratio test. We attempted to identify
MPM-III model variables that, when added individually
to the logit-transformed UHC model, improved its
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predictive ability. We chose the UHC EPM as the base
model for this analysis since the UHC EPM is based on
administrative data that is already collected for coding
and billing, rendering its calculation easy and inexpen-
sive. While collection of the physiologic data for the
MPM-III is tedious, time-consuming, and costly even in
the era of electronic medical records, collecting one vari-
able could be worthwhile if it improves the predictive
capability of the model significantly. This analysis was
performed by comparing the area under the ROC curves
for the UHC EPM plus individual MPM-III variables
and the UHC EPM alone, as well as calculating net re-
classification indices. The net reclassification index is a
measure for evaluating the improvement in predictive
performance obtained by adding a marker to a baseline
set of predictors—in this case, adding individual MPM-
III variables to the UHC EPM predictors. Reclassification
is considered separately for those who experience events
and those who do not. Reclassification to a risk group
with a higher risk is an upward movement and is an im-
provement in classification for those experiencing an
event, while reclassification downward is a failure for
those who have an event. For those who do not have an
event, reclassification downward is an improvement,
while reclassification upward is a failure. The reclassifi-
cation index is calculated by summing the proportions
of subjects reclassified upward minus those reclassified
downward for those having an event and those reclassi-
fied downward minus those reclassified upward for those
not having an event [14]. For our analysis, we used mortal-
ity cut points of <25, 25-50, and >75 % to represent low,
moderate, and high predicted mortality, respectively.

Additionally, since the models may perform differently
in different ICU populations, we performed a pre-planned
subgroup analysis to evaluate model performance in the
medical-surgical ICU population (excluding cardiac/car-
diothoracic and neurologic/neurosurgical ICU patients).
Statistical analysis was performed using Stata/IC 12.1 (Sta-
taCorp, College Station, TX).

Results
A total of 891 patients were included in the analysis, of
which 65 (7.3 %) died. Patient demographics are de-
scribed in Table 1. The UHC and MPM-III mean pre-
dicted mortalities were 8.22 % (95 % CI 7.17-9.28) and
14.29 % (95 % CI 13.16-15.44), respectively (paired ¢ test
p<0.0001); median predicted mortalities were 1.90 %
(IQR 0.36-7.78) and 7.40 % (IQR 3.21-17.34), respectively
(Wilcoxon sign rank p < 0.0001) (Fig. 1). The average ratio
of observed to expected mortality was 0.83 for the UHC
model and 0.52 for the MPM-III model.

Both the UHC model and the MPM-III had excellent
overall performance (Brier score 0.05 and 0.06, respect-
ively). The ROC curves (Fig. 2) showed excellent
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Table 1 Patient characteristics

Number 891
Age
Survivors 556+ 17.1
Non-survivors 61.0£175
Gender
Male 471 (529 %)
Female 420 (47.1 %)
Ethnicity
White 507 (56.9 %)
Black 73 (8.2 %)
Asian 46 (5.2 %)
Hispanic 57 (64 %)
Other 208 (23.3 %)

Admission type

Medical 204 (22.9 %)
Surgical 251 (28.2 %)
Cardiac/cardiothoracic 139 (15.6 %)
Neurological/neurosurgical 292 (32.8 %)
Unknown 5 (0.6 %)
DNR within 24 h of admission 29 (3.3 %)
Duration of mechanical ventilation 2 (1-5)
ICU length of stay in days 2 (1-6)
Hospital length of stay in days 8 (4-14)
Hospital discharge destination: discharged home 440 (494 %)
Hospital mortality 65 (7.3 %)

Data are mean + SD, n (%), or median (interquartile range)
DNR do not resuscitate, ICU intensive care unit
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Fig. 1 Box and whisker plots of predicted mortality for the University
Health Consortium (UHG, red) and Mortality Probability Model Il (MPM-III,
blue) are shown. The box shows the median and interquartile range
(IQR). The whiskers display the upper and lower values within 1.5 times
the IQR beyond the 25th and 75th percentiles. Individual data points
represent outliers. The median (IQR) predicted mortality was 1.90 %
(0.36-7.78) for the UHC model and 740 % (3.21-17.34) for the MPM-II,

(Wilcoxon sign rank p < 0.0001)
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Fig. 2 The receiver operating characteristic curves (ROC) plotting
sensitivity vs. 1-specificity are shown separately for the University
Health Consortium (UHC, red) and Mortality Probability Model Il
(MPM-II, blue). The area under the curve (AUC) for the UHC curve
was 0.90 (95 % Cl 0.86-0.93). The AUC for the MPM-IIl was 0.87

(95 % CI 0.83-0.91). The curves were not statistically different

(p =0.28). The diagonal line shows where there is no discriminating
ability (AUC=0.5)

discrimination for both models (area under the curve,
UHC 0.90, 95 % CI 0.86-0.93; MPM-III 0.87, 95 % CI
0.83-091; p for difference=0.28). The Hosmer-
Lemeshow goodness-of-fit test was statistically significant
for both models (UHC X? = 24.09, p = 0.002; MPM-III x>
=28.93, p=0.0003), suggesting a poor model fit. Logit
transformation of the models improved goodness of fit
(UHC X*=829, p=041; MPM-III X*=14.54, p =0.07).
Calibration plots suggest that the MPM-III overestimates
mortality (Fig. 3).

The two models correlated weakly, with a Pearson cor-
relation coefficient of 0.48 (p<0.0001) and Spearman
rho of 0.50 (p < 0.0001) (Fig. 4).

The Bland-Altman plot (Fig. 5) shows good agreement
between the two models at extremes of mortality but
poor agreement when mortality is maximally uncertain
(i.e., as predicted mortality approaches 50 %).

Multivariate logistic regression with the logit-transformed
UHC model and the logit-transformed MPM-III as pre-
dictor variables revealed that each model was independ-
ently predictive of the log odds of death (beta coefficient
0.66 (95 % CI 0.47-0.84) and 0.64 (95 % CI 0.39-0.89) for
the UHC and MPM-III models, respectively). However,
when an interaction term was included in the analysis, it
was statistically significant (p = 0.005), suggesting that the
effect of each predictor depended on the value of the other.
Likelihood ratio testing revealed that use of the UHC EPM
and MPM-III together improved the predictive capability
as compared to each model alone (likelihood ratio X* for
combined model vs. UHC EPM alone = 35.44, p < 0.0001;
likelihood ratio X* for combined model vs. MPM-III
alone = 75.78, p < 0.0001).



Lipshutz et al. Journal of Intensive Care (2016) 4:35

Page 5 of 8

a

1.00 &
£
]
£ 0.80 *
s &
s
2 0.60 *
: . ‘
g 0.40 e * @ *
(-9 b o
T °
o
£ 0.20 . *e
2 *
© 0.00 *

0.00 0.20 0.40 0.60 0.80 1.00
UHC Predicted Probability of Mortality

1.00 & *
2
5
£ 0.80
=
S
=)
2060
3 .
2 040 . *e
-9 4 <&
3 i e ¢
§ 0.20 * o0 *
3 <
° T

000 4-®

0.00 0.20 0.40 0.60 0.80 1.00

MPM Predicted Probability of Mortality

Fig. 3 The predicted probability of mortality is plotted against the
observed probability of mortality for the University Health Consortium
(UHQ) in panel a and Mortality Probability Model Il (MPM) in panel b.
The diagonal line shows where predicted and observed probabilities of
mortality are equal
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Fig. 4 Mortality Probability Model Il (MPM-II) predicted mortality is
plotted against the University Health Consortium (UHC) predicted
mortality. Each data point represents a single patient. The line
represents the regression line, with the shaded area representing the
95 % confidence interval. The Pearson correlation coefficient was
048, while the Spearman rho was 0.50, both p < 0.0001
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Fig. 5 The Bland-Altman plot shows the difference between the
University Health Consortium (UHC) and Mortality Probability Model [l
(MPM-II) plotted against the average predicted mortalities. The green
horizontal dashed line represents the overall mean of the differences,
while the shaded area shows the limits of agreement

Post hoc analysis evaluating the effect of adding individ-
ual variables from the MPM-III to the logit-transformed
UHC model on the area under the ROC curve, and net re-
classification index identified four individual variables that,
when added to the logit-transformed UHC model, resulted
in improved prognostic abilities. Of the four variable-
s—coma (defined as Glasgow Coma Score of 3 or 4) at the
time of ICU admission, cardiopulmonary resuscitation
within 24 h prior to ICU admission, mechanical ventila-
tion within 1 h of ICU admission, and limitations on
emergency therapies or interventions (e.g., do not resusci-
tate or do not intubate orders) present at the time of ICU
admission—only limitations on emergency therapies
reached statistical significance for both the area under the
curve and net reclassification index (Table 2).

Since the models may perform differently in different
patient populations, we performed a pre-planned subgroup
analysis of model performance in the medical-surgical ICU
patients, excluding neurological/neurosurgical ICU patients
and cardiac/cardiothoracic surgical ICU patients. A total of
460 patients were included in this subgroup analysis. The
mean age was 57.0 (SD, 17.8) years, 246 (53 %) patients
were male, and 234 (51 %) were white. Median hospital and
ICU LOS were 9 (IQR, 5-17) and 3 (IQR, 1-6) days, re-
spectively. Median duration of mechanical ventilation was 3
(IQR, 2-6) days. Hospital mortality in this subgroup was
9.13 %. Median predicted mortality was 2.40 % (IQR 0.41—
11.18) for the UHC model and 9.69 % (IQR 3.95-21.15) for
the MPM-III (Wilcoxon sign rank p < 0.001). Brier score
was 0.07 and 0.08 for the UHC EPM and MPM-II], respect-
ively. ROC curves were similar for the two models (area
under the curve, UHC 0.88, 95 % CI 0.84-0.93; MPM-III
0.85, 95 % CI 0.80-0.91, p for difference 0.44). The Hosmer-
Lemeshow goodness-of-fit test was statistically significant
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Table 2 Area under the receiver operating characteristic curve and net reclassification index for University Health Consortium (UHC)
Model plus individual Mortality Prediction Model Il (MPM-IIl) variables

MPM-III variables AUC for UHC model + additional p value for difference NRI NRI p value
variable between AUCs
Coma 091 0.09 0.09 0.04
Heart rate >150 0.90 0.36 0.03 0.14
Systolic blood pressure <90 0.90 0.34 0.00 N/A
Chronic kidney disease 0.90 049 0.00 N/A
Cirrhosis 0.90 0.90 0.02 029
Malignant neoplasm 0.90 0.74 0.00 N/A
Acute renal failure 0.90 048 0.01 036
Arrhythmia 0.90 032 0.00 0.87
Cerebrovascular accident 0.90 0.92 0.02 0.29
Gastrointestinal bleed 0.90 044 0.00 0.56
Intracranial mass effect 0.90 0.72 0.00 0.16
CPR prior to admission 0.90 0.14 0.12 0.01
Mechanical ventilation within 1 h of admission 091 0.03 0.04 0.50
Medical or unscheduled surgical admission 0.90 0.22 -0.01 0.78
Limitation on emergency therapy or intervention 092 0.03 0.10 0.05
All MPM-III variables 092 0.01 N/A N/A

Net reclassification index represents the proportion of patients who were appropriately recategorized into low (<25 %), moderate (25-50 %), and high (>75 %) risk

of mortality with the addition of each individual MPM-III variable

AUC area under curve, CPR cardiopulmonary resuscitation, MPM Mortality Probability Model Ill, NRI net reclassification index, UHC University Health Consortium

for the UHC model (X*=20.61, p=0.01) but not the
MPM-III (X2 =10.04, p = 0.26).

Discussion
Our study sought to define the performance characteris-
tics of the UHC EPM in our ICU population, and compare
the ability of the UHC EPM and MPM-III to predict death
in our heterogeneous cohort of adult ICU patients. In this
cohort, which included medical/surgical, cardiology/
cardiothoracic surgery, and neurology/neurosurgical
ICU patients, the UHC EPM exhibited excellent overall
performance, discrimination, and calibration in predict-
ing ICU mortality, suggesting that although it was not
designed specifically for use in ICU patients nor prospect-
ively validated in the critically ill, it is able to predict mor-
tality in this population reasonably well. Additionally, the
UHC EPM exhibited similar discrimination, as depicted
by the ROC curves, to the MPM-III, a model created and
validated for the prediction of mortality in the critically ill.
However, the two models differed in several important
ways. First, the MPM-III consistently overestimated mor-
tality in our population. The UHC EPM did not overesti-
mate mortality, potentially making it a better model for
quality benchmarking across ICUs, since overestimation
of mortality may overstate the quality of care provided in
poorly performing ICUs. Additionally, correlation between
the two models was poor due to divergence of the models
when mortality was maximally uncertain (i.e., when

predicted mortality approached 50 %). Thus, ICUs with
moderately ill patients may perform quite differently
depending on which model is used, and appropriate
model selection may depend on the patient population
and severity of illness.

Likelihood ratio testing confirmed that combining the
two models provided superior predictive capabilities as
compared to either model alone. This finding is likely
due to the fact that the two models rely on different
types of information—the UHC EPM relies on primarily
administrative data, while the MPM-III relies on physio-
logic data and comorbidities. Several MPM-III variables,
when added individually to the logit-transformed UHC
model, improve the predictive ability of the model
Since collection of a single variable may not be overly
time-consuming or expensive, the addition of a single
physiologic variable to the administrative model should
be considered.

Literature on the performance of the UHC model is
scarce. Davenport et al. compared the UHC Clinical
Data Base to the National Surgical Quality Improvement
Program (NSQIP) database in a cohort of over 26,000
surgical patients and found that the NSQIP database
was superior at predicting death and complications [10].
Kozower et al. compared the UHC mortality risk score
to that of the Society of Thoracic Surgeons (STS) in a
cohort of cardiac surgical patients and found that the
preoperative risk predicted by the UHC model was
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influenced by postoperative complications [11]. How-
ever, neither of these studies looked specifically at the
use of the UHC model in the ICU. More recently, En-
field et al. compared the performance UHC EPM and
APACHE-1V in 556 medical ICU patients at two insti-
tutions and found that although both models had out-
standing discrimination, the goodness-of-fit tests were
statistically significant, with divergence as predicted
mortality increased [12]. Additionally, the administra-
tive data was influenced by severity of illness, and the
two models differed in their conclusions when compar-
ing the two institutions. Thus, the authors cautioned
against relying on administrative data for comparisons
of quality among hospitals.

Our study differs from the previous studies in several
ways. First, unlike the studies of Davenport et al. and
Kozower et al., our study focused entirely on the ICU
population. And unlike the study by Enfield et al., we in-
cluded surgical ICU patients, cardiology/cardiothoracic
surgical ICU patients, and patients from the neurosci-
ence ICU. Additionally, our sample size was larger than
that of Enfield et al., giving us more power to detect dif-
ferences between the two models. In our study, diver-
gence was most profound when mortality was maximally
uncertain, and goodness of fit testing was not statistically
significant when using logit-transformed models, sug-
gesting good model fit. Furthermore, in our analysis, the
physiologic model consistently overestimated mortality.
Therefore, the administrative model appears to perform
well in our ICU population. Despite these differences,
our findings do agree with the conclusion by Enfield et al.
that “the methodology used to develop a mortality predic-
tion model can influence how these models compare
[and]...two models can have similar AUC and still perform
remarkably differently.”

Our study has several limitations. First, our analysis
includes only the first 100 consecutive discharges per
quarter who required intensive care. Although the pa-
tient characteristics of this subgroup were similar to
that of all patients discharged who required ICU level
care over the study period (data not shown), there
could be unrecognized differences that affect our re-
sults. Second, while our sample size is larger than pre-
vious studies of the UHC model in ICU patients [12], it
is small compared to validation cohorts used to assess
the performance of the APACHE [4], SAPS [5-7], and
MPM [8, 9]. Third, although the inclusion of subspe-
cialty ICU patients, such as cardiology/cardiac surgery
and neurology/neurosurgery patients, improves the
generalizability of our study, the heterogeneity of our
ICU population may affect our results if the models
perform differently in different patient subsets. Of
note, however, the two models performed similarly in
a pre-planned subgroup analysis of only medical/
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surgical ICU. Fourth, our attempt to identify individ-
ual variables from the MPM-III model that, when
added to the UHC EPM, improved model performance
based on the net reclassification index depended
largely on the cut points used. We chose <25, 25-50,
and >75 % to represent low, moderate, and high pre-
dicted mortality, respectively. The use of alternate cut
points may result in different results. Additionally, as
with all administrative data, the integrity UHC data
relies on the quality of coding; this documentation
was not reviewed to ascertain the quality of data that
drives this model. Poor coding could lead to under- or
overestimation of mortality risk. Furthermore, since
the UHC EPM is a proprietary algorithm, institutions
that are not UHC members are unable to calculate
their predicted mortality using this method. And, fi-
nally, since this study was performed at a single aca-
demic medical center, our results may not be
generalizable to other settings.

Conclusions

The UHC EPM exhibited excellent overall perform-
ance, calibration, and discrimination in our ICU
population, and performed similarly to the MPM-III
model. However, correlation between the two models
was poor due to divergence of the models when
mortality was maximally uncertain. Even when two
models have similar characteristics, they can perform
quite differently. Patient mix should be considered
when interpreting the results of prognostic models,
as this may affect results. The addition of a single
physiologic variable to administrative models may
improve prognostic ability and aid in comparing the
quality of care across institutions.
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