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Abstract 
 
 

Causal Inference Methods and Their Application To HIV Observational Study Data 
 

by  
 

Andrew Thomas Anglemyer 
 

Doctor of Philosophy in Epidemiology 
 

University of California, Berkeley 
 

Professor John M. Colford, Jr., Chair 
 

Worldwide, particularly in areas with no treatment availability or antenatal 
programs, approximately 1600 children are diagnosed with human immunodeficiency 
virus (HIV) every day,(5) and over 300,000 deaths from acquired immune deficiency 
syndrom (AIDS) among children occur annually worldwide.(6) The Centers for Disease 
Prevention and Control (CDC) estimated a total of 142 children less than 13 years old 
were infected with HIV perinatally in 2005,(7) while the World Health Organization 
(WHO) estimates 2 million children (0-14 years) globally living with HIV (1.8 million 
living in Sub-Saharan Africa alone).(8) Epidemiologists and biostatisticians are actively 
trying to estimate the causal effects of highly active antiretroviral therapy (HAART) in 
order to establish which treatments are best and when to they should be initiated.  This 
proves to be a challenging task for several reasons including the unique dynamics of 
pediatric HIV populations and the lack of randomized evidence.  However, with an 
abundance of observational data, analytical approaches designed to help researchers 
establish causal effects from observational studies have been developed—referred to 
within the present studies as causal inference techniques.  In this dissertation, I performed 
a systematic review of studies that used so-called causal inference methods (i.e. 
propensity scores, instrumental variables, marginal structural models, and structural 
equation models) in the context of HIV/AIDS research and assessed the interpretability 
and content of the identified studies.  I use empirical examples from a marginal structural 
model (MSM) analysis and instrumental variable (IV) analysis using Pediatric Spectrum 
of Disease (PSD) surveillance program data.  Specifically, I estimate the causal effect of 
triple therapy (e.g. HAART) on time to C diagnosis, and time to C diagnosis/death 
among HIV-infected children and perform an adapted instrumental variable analysis in 
order to estimate the causal effect of HAART on the hazard of AIDS events or death.   

The systematic review revealed that approximately 43% of all studies using 
causal inference methods on HIV/AIDS data were published in 2007 and 2008.  Studies 
using MSMs were less likely to discuss specific model selection than studies using any 
other causal inference method (OR=0.26; 95% CI 0.08-0.72).  Using a g-comp approach, 
where I define Ψ1 (p0)(tk) ≡P(Ta > tk) as all treated and Ψ0 (p0)(tk) ≡P(Ta > tk) as all 
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untreated, the causal effect of HAART suggested that among children who initiated 
therapy within 6 months of birth the effect in delaying a C diagnosis, ΨHZ(p0)(tk)= -
0.466 (95% CI -1.20-0.565), is seemingly stronger than children who initiated therapy 
within 12 months of birth (ΨHZ(p0)(tk)= -0.321 (95% CI -1.151-0.300)).  Additionally, 
though not statistically significant, the effect of triple therapy initiated within the first 12 
months of life on time to C diagnosis is potentially greater among symptomatic children 
(12 Months: ΨHZsymptomatic (p0)(t36): -0.587 (95% CI -1.217-0.480)) than among 
asymptomatic children (12 Months: ΨHZasymptomatic (p0)(t36): -0.106 (95% CI -1.054-
0.739)).  The instrumental variable analysis yielded the naïve rate ratio comparing an 
early-defined IV (1997 cut-off) non-HAART era with the HAART era—estimated at 
RRITT=2.17 (95% CI:  1.34-3.52).  As a result of HAART use misclassification by 
calendar era, an instrumental variable estimator was used, yielding a RRIV = 3.91 (95% 
CI 2.41, 6.34), 80% higher than the naïve result. 

Regardless of year of publication, all HIV studies are deficient by varying degrees 
in all assessed areas.  Researchers using causal inference methods should describe their 
methods in a more transparent and interpretable way so that the results may reach a wider 
audience.  Together Chapter 3 and 4 use causal inference methods to not only help 
establish the effectiveness of HAART on preventing advanced disease and/or mortality, 
but they also attempt to address the need to establish optimal timing of treatment for 
treatment guidelines.  The overarching benefits of these methods are that they define a 
parameter of interest not dependent on a particular model assumption (semi-parametric), 
and they define explicit identifiability assumptions under which these estimators produce 
estimates of so-called causal association, which are related to distributions of 
counterfactuals.   
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Introduction 
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1.1 Introduction 
 

The goal of this dissertation is to describe the methodological and research options for 
epidemiologists who are working with observational data dealing with human 
immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS).  As the use 
of causal inference research approaches becomes more prominent, the application of 
these epidemiological methods should involve just as much, if not more, care to ensure 
quality and validity as with traditional analytical techniques.   I will use pediatric 
observational study data to highlight different causal inference approaches.  Treatment 
guidelines for HIV-infected children are country and institution-dependent; it is with 
these causal inference approaches that I hope to contribute to the pediatric HIV research 
field to help establish the best HIV treatment scenario and schedule.  The analyses 
heretofore aim to not only support findings from randomized trials but to also estimate 
the impact of HIV interventions on a population level.  Results from these analyses may 
not only presumably help reduce the individual burden of disease through treatment 
initiation guidance, but could also impact future treatment costs and requirements within 
countries with a high incidence of pediatric HIV.   
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1.2 Specific aims 
 

This dissertation has two specific aims: 
 
1. Review the most common causal inference methods used to analyze HIV 

observational data 

 
2. Apply techniques reviewed under Aim 1 to: 
 

a) Estimate the effect of highly active antiretroviral therapy on time to 
AIDS or death among HIV-infected children attending referral clinics 
from 1988 to 2009. 

 
b) Estimate the population effect of highly active antiretroviral therapy 

on the hazard of AIDS or death among HIV-infected children 
attending referral clinics from 1988 to 2009. 

 
My second aim is an application of two causal inference methods on data from the 
Pediatric Spectrum of Disease (PSD) multicenter active surveillance program specifically 
for children who have been exposed to HIV perinatally from 1988 to present.  The 
outcomes that are my primary focus are:  a C diagnosis (a definition of severe HIV 
disease progression); C diagnosis or death; and death.   
 
 

1.3 Structure of the dissertation 
 
This dissertation is structured to include the following chapters: 
 

 In Chapter 1 I highlight the need for wider, more appropriate uses of 
causal inference techniques applied to HIV/AIDS data.  I also discuss how 
these methods could influence treatment guidelines if adopted more 
widely to reach an international audience. 
 

 Chapter 2 highlights Specific Aim 1.  I briefly introduce four different 
causal inference techniques--propensity scores; instrumental variables, 
marginal structural models, and structural equation models—and describe 
the temporal trends in publications and quality assessments of the 
described techniques within HIV/AIDS settings.  

 
 Chapter 3 addresses Specific Aim 2.  I use marginal structural models as 

estimated by g-comp to estimate the causal effect of highly active 
antiretroviral therapy on time to a C diagnosis or death among an HIV-
positive pediatric population.   
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 Chapter 4 applies an adapted instrumental variable analysis to estimate the 

effect of highly active antiretroviral therapy on the hazard of a C diagnosis 
or death among an HIV-positive pediatric population.   

 
 Chapter 5 is a synthesis of my results from Chapters 2-4 and presents 

possible directions for future research. 
 

 The appendices include reference materials for Chapters 2-4 (A) and the 
manuscripts of Chapters 2-4 submitted for publication (B). 

 
1.4 Prevention, treatment, and study of 

HIV/AIDS   
 

 
Though the World Health Organization (WHO) advocates for a four-tiered approach for 
preventing mother-to-child-transmission (MTCT),(1) the public health response has been 
predominantly compartmentalized within one or two aspects separately.  The 
recommended approach to reducing MTCT worldwide is by focusing on: 1)  prevention 
of HIV in women, most importantly young women; 2)  prevention of unintended 
pregnancies among HIV positive women; 3)  prevention of vertical transmission; and  4)  
support for the mother and family.(1)  As I discuss, highlight, and implement new 
epidemiological techniques for estimating the effects of specific treatments for pediatric 
HIV, it is important to keep in mind that all of these cases could have been prevented by 
not only HIV prevention services but also sexual and reproductive health services.  A 
schematic illustrating the different points of intervention for prevention of MTCT is 
shown below.  The public health approach has focused primarily on identifying, through 
testing, the HIV positive pregnant women to ensure adequate MTCT prevention efforts 
during and after pregnancy.  However, the case could be made that an integrated focus on 
sexual and reproductive health services with HIV/AIDS prevention services would have a 
wider-catchment area for HIV prevention.(2)  For example, in Figure 1, Women 2-4 
would have remained uninfected had they had access to sexual and reproductive health 
services (e.g. condoms).  Furthermore, this same access would have prevented any 
unwanted pregnancies, and thus would have prevented any vertical transmission.  
Woman 1’s use of reproductive health services not only prevented her own HIV 
infection, but also vertical infections by not becoming pregnant.  To illustrate that sexual 
and reproductive services are not only helpful in protecting a woman from HIV, but are 
also a necessary component to prevent MTCT, Woman 3’s access to reproductive 
services prevented any unwanted pregnancies.  The HIV status of children of Women 2 
and 4 could be addressed through a combination of antenatal and HIV services during 
pregnancy, delivery, and early infancy.  As such, services that focus primarily on the 
pregnant woman are further downstream in the infection chain and must focus on the 
woman and infant in order to prevention transmission.    
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Figure 1.1  Stages of HIV Vertical Transmission and Provision of Prevention Services 
 
Transmission preventable by reproductive services by either preventing initial infection 
to women or by preventing future pregnancies among infected women  
{-------------------------------------------------------------------------------------} 
           STAGE 1  STAGE 2  STAGE 3 
         Preventable by treating 

   HIV+ pregnant women,  
   administering prophy- 
   laxis to child and through  

         safe feeding practices 
                {----------------------------} 
 

 
 
 
 

 
 
Prevention strategies focusing on the child have to cope with three avenues of infection 
via MTCT:  in utero; at delivery; and through breastfeeding.  It is estimated that the 
probability of infection in utero and at time of delivery is approximately 15-30%, though 
if breastfeeding from 18-24 months the overall probability of vertical transmission 
increases to about 30-45%.(3)  
 
Factors affecting the risks at each of these stages are highlighted in Table 1.1. One of the 
greatest risks for vertical transmission is the severity of HIV disease among the mothers.  
Maternal disease severity is most commonly described by the viral load, the amount of 
HIV contained within her blood, and is often an indication of either recent infection or 
advanced AIDS. As seen in Table 1.1, maternal viral load is an ever-present MTCT risk 
from pregnancy through breastfeeding.  
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Table 1.1 Maternal and neonatal factors that may increase the risk of HIV transmission 

 
Adapted from the WHO/CDC Prevention of Mother-to-Child Transmission of HIV 
Generic Training Package (2008).(4) 
 
 
As illustrated in Figure 1.1, prevention efforts have multiple avenues of approach to 
prevent MTCT.  Before pregnancy, reproductive health services provide options for safer 
sex and family planning alternatives to prevent unintended pregnancies.  Additionally, 
sexual health services provide testing and treatment options for sexually transmitted 
infections.  Testing for HIV and counseling are available at antenatal clinics and during 
prenatal care.  And, providing antiretroviral therapy not only benefits the woman’s 
health, but also in turn reduces the risk of vertical transmission.  All these approaches in 
concert with counseling about healthy feeding options will likely reduce the risk of 
infection for a child born to an HIV positive mother.   
 
Despite all the various sectors of prevention, United Nations AIDS (UNAIDS) estimates 
that worldwide, particularly in areas with no treatment availability or antenatal programs, 
approximately 1600 children are diagnosed with HIV every day.(5)  Furthermore, over 
300,000 deaths among infected children occur annually worldwide.(6)  The influence 
prevention strategies have had on stopping MTCT is ever apparent when the numbers of 
pediatric infections in the United States and Sub-Saharan Africa are contrasted.  The 
Centers for Disease Prevention and Control (CDC) estimated a total of 142 children less 
than 13 years old were infected with HIV perinatally in 2005,(7) while the WHO 
estimates 2 million children (0-14 years) globally living with HIV (1.8 million living in 
Sub-Saharan Africa alone).(8)  
 
The factors affecting HIV progression in children are multi-dimensional.  Perhaps one of 
the most influential aspects to HIV progression, aside from access to antiretroviral 
therapy (ART) treatment, is nutrition.  As illustrated in Figure 1.2, the relationships 
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between HIV, nutrition, coinfections, and baseline immune function are synergistic.(9)  
Some research suggests that HIV-infected newborns with fewer t-cells are more likely to 
progress quicker than HIV-infected newborns with more t-cells.(10)  The presence of 
coinfections, such as tuberculosis, has also been independently linked to HIV progression 
in children.(11; 12)  Much like the WHO’s recommended multi-tiered approach to 
prevention of MTCT, HIV treatment should also include multiple aspects to adequately 
slow disease progression. 
 
Figure 1.2  Relationships Between HIV, Nutrition, Coinfection, and Baseline Immune 
Function 
 

 
 
Source:  Adapted from RCQHC and FANTA 2003.(9) 

 
 
 
Children born to HIV positive mothers are at a unique risk for not only HIV infection, but 
also immune health in general.  Infants born to HIV+ mothers are a particularly 
vulnerable population for myriad reasons.  Pregnant women infected with HIV are more 
likely to give birth to a low birth weight (LBW) infant if they are not taking antiretroviral 
medications.(13) Without access to appropriate drugs and care, a reality in the developing 
world, these fetuses are likely to seroconvert, as well.  In turn, a LBW child vertically 
infected with HIV has two significant threats to his immune function—LBW and HIV. 
 
Children with a compromised immune system, as a result of HIV infection or other 
factors such as impaired intrauterine growth, are especially vulnerable to poor immune 
responses.  Cytotoxic T cells, mostly CD8s are the protagonists in cell-mediated illnesses, 
while helper T cells, e.g. CD4s, secrete cytokines to activate more cytotoxic cells for 
damage.  A possible consequence of impaired immune response is a condition referred to 
as immune reconstitution inflammatory syndrome (IRIS).(14)  This situation occurs 
whenever an individual’s immune system is stabilized after long-term suppression (e.g. 
HIV infection).  Indeed, reconstituting the lymphocyte structure and production among 
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HIV+ individuals will raise levels of CD4, which in turn creates the opportunity for more 
infections like tuberculosis or other cell mediated illnesses by activating more cytotoxic 
cells.  IRIS is also seen in infants born LBW with low lymphocyte counts.  After therapy 
their counts raise, as does their risk for opportunistic infections. 
 
Diagnosing infants early is essential to providing adequate care, but young pediatric 
populations are more difficult to diagnose than adults.  The WHO has put together an 
algorithm for diagnosing HIV in infants (see Figure 1.3).(15)  Essentially the status of 
children under 18 months old is only confirmed through more expensive HIV virological 
testing (e.g. polymerase chain reaction-PCR); even with a negative virological test, if the 
child has breastfed recently he could still seroconvert in the near future.  The HIV rapid 
test (e.g. enzyme-linked immunosorbent assay-ELISA) most commonly used among 
adult populations is not useful in infants under 9 months because maternal antibodies 
may still be present and can affect the test’s results.  The costs of the virological tests can 
pose a barrier for adequate diagnoses in resource-limited settings.   
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Figure 1.3 HIV Diagnosis in Infants and Young Children Under 18 Months 
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Just as identifying HIV positive children calls for different approaches than those that 
would be employed for adult populations, studies of treatment effectiveness in adults may 
not be reflective of its effectiveness in pediatric populations.  Results from adult studies 
that have explored highly active antiretroviral therapy (HAART) and its effect on 
mortality are likely not reflective of its effect on mortality if applied to pediatric 
populations.(16) Typically CD4 counts and viral load are clinical parameters used to 
assess disease progression in adult populations, but these same parameters have a wide 
variability in children.(17-19)  Additionally, in children HIV affects neuro-cognitive 
development, growth, and an immune system that is not yet fully mature.(20-22) Though 
adult observational studies have shown that patients who start HAART early (higher CD4 
counts) have better clinical outcomes than adults who start at CD4 counts below 200 
cells/µL, these results are likely not generalizeable to the pediatric HIV infected 
community. 
 
Deciding when to begin HIV treatment among children is an ongoing debate that has life-
long implications for the children and economic consequences for governments.  Until 
recently(23) there was little agreement between the three primary HIV/AIDS health-
governing bodies about the optimal time for treatment initiation for children under 12 
months.  Table 1.2 contrasts the treatment guidelines for HIV-positive children.(24)   A 
decision to recommend treatment for all HIV positive children regardless of symptoms 
was recently made by all three institutions based on recent randomized controlled trial 
(RCT) evidence suggesting reduced mortality risk for early treated children versus 
deferred treated children.  Generally, the WHO is more conservative in its 
recommendations as they have a lower CD4% or CD4 count treatment initiation 
threshold than Paediatric European Network for Treatment of AIDS (PENTA) or the 
CDC in most pediatric age groups.  
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Table 1.2 Contrasts of Pediatric Treatment Initiation Guidelines by Governing Body 
  PENTA 2008 CDC 2008 WHO 2009 

Clinical 
Immunological 0-11 months 
Virological 

Treat all Treat all Treat all 

 
Clinical Treat CDC 

Stage B or 
C/WHO stage 3 
or 4 

Treat CDC 
Stage B or C 

WHO stage 4 or 
severe 3 

Immunological Treat < 25% or 
< 1000 

Treat < 25% Treat < 20% or 
< 750 

12-35 months 

Virological Consider > 
100,000 
copies/mL 

Consider > 
100,000 
copies/mL 

 

 
Clinical Treat CDC 

Stage B or 
C/WHO stage 3 
or 4 

Treat CDC 
Stage B or C 

WHO stage 4 or 
severe 3 

Immunological Treat < 20% or 
< 500 

Treat < 25% Treat < 20% or 
< 750 

36-59 months 

Virological Consider > 
100,000 
copies/mL 

Consider > 
100,000 
copies/mL 

 

 
Clinical Treat CDC 

Stage B or 
C/WHO stage 3 
or 4 

Treat CDC 
Stage B or C 

WHO stage 4 or 
severe 3 

Immunological Treat < 350 Treat < 350 Treat < 15% or 
< 200 

60+ months 

Virological Consider > 
100,000 
copies/mL 

Consider > 
100,000 
copies/mL 

 

Adapted from PENTA Guidelines.(24) 
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1.5 Alternative analytic approaches  
  
 
One of the key reasons why it has been so difficult to establish the optimal timing for 
treatment initiation is because of a lack of randomized evidence.  The effects of ARVs in 
preventing severe disease and mortality have been well-established for years in 
observational and randomized studies.  In turn, it is often difficult to ethically justify 
randomizing some children to treatment and others to none or deferred treatment.  A 
couple of RCTs have actually estimated the effect of delaying treatment (i.e. HAART) to 
see if there was any benefit.(25; 26)  The CHERI study estimated the effect of early 
HAART versus delayed HAART on mortality among HIV positive infants.(26)   This 
trial was prematurely terminated because of an unbalanced, disproportionate number of 
deaths in the delayed treatment arm.  A small feasibility RCT study was also conducted 
which aimed to estimate the impact of delaying HAART.(25)  The study population for 
this small feasibility trial was comprised of HIV positive children from 1 year to 12 years 
old, thus not addressing the issue of delaying treatment among infants.  The results from 
the larger trial will likely not be available until 2011.  Observational study data results 
supporting these findings are not widely available either.(27; 28)  In one of the few 
observational studies exploring when to initiate treatment among infants, Chiappini et al 
compared children who were treated with HAART early with children who were deferred 
treatment and found that the early treated group had significantly lower viral load than 
deferred treatment group and that they were less likely to progress to a C diagnosis.(27)  
Similarly, Newell et al studied a cohort of HIV infected children and concluded that 
initiating ART in the first 5 months of life and the use of HAART were both predictive of 
an improved CD4 z-score 6 months after treatment initiation.(28)  
 
Despite a lack of randomized evidence, researchers have developed techniques in an 
attempt to assert causation from observational study data.  The counterfactual framework 
was developed in 1990 by Rubin to help illustrate the need for and the use of causal 
inference methods.(29)  The theory was later introduced more into mainstream 
epidemiology by Greenland in 2000.(30)  In general, the counterfactual is the idea that an 
outcome would not have occurred had, counter to fact, a previous event not occurred.  
The goal of counterfactuals is to achieve a pseudo-randomized population as one would 
have in an RCT.  Much like the scenario when a person’s treatment assignment through 
randomization in an RCT is not dependent on information connected to outcome studied, 
the counterfactual framework creates the situation in which person A would have had 
equal opportunity to be treated to x.  
 
Studying HIV/AIDS observational data can be complex and multifaceted, posing 
numerous challenges for biostatisticians and epidemiologists alike.  Researchers are often 
charged with estimating the true impact of treatments to adequately prevent disease 
spread or treat patients with HIV/AIDS.  However, to estimate the true effects, nuisance 
factors need to be addressed and/or removed, often requiring special techniques.   
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Common approaches to estimate treatment effects are often biased because of model 
selection or unmeasured confounding.  For example, one of the traditional methods for 
controlling the biases introduced by measured confounders are multivariable regression 
techniques.  However, regression techniques are only as good as the measured 
confounder data.(31) Moreover, model building can become cumbersome even with 
comprehensive confounder data collected; often investigators will settle for model 
interpretability over adequate adjustment for bias.(31) Furthermore, time-dependent 
confounding is often addressed by using methods such as extended Cox regression 
models in which one would add an interaction term made up of the time-dependent 
variable of interest and some function of time.(32)   Under two specific conditions, these 
conventional methods fail:  C1) when there is a time-dependent risk factor of an event 
that also predicts subsequent treatment; and C2) when previous treatment history predicts 
a future risk factor.(33) Causal inference methods have been developed in order to help 
reconcile these problems commonly seen in HIV epidemiological research. These 
concepts are reintroduced later in Chapters 2-4. 

 
The application of causal inference techniques to HIV/AIDS observational study data has 
increased steadily over the last 20 years.  In Chapter 2, I performed a systematic review 
of the literature to explore the temporal trends of four causal inference methods used with 
HIV/AIDS data—including instrumental variables, propensity scores, marginal structural 
models, and structural equation models--the frequency of publications by authors and 
journals, assess the transparency and quality of the methods employed, and explore the 
networks of affiliated institutions.  I identified 70 papers for all methods; approximately 
forty-one percent of all HIV/AIDS studies using the listed causal inference methods were 
published in 2007 and 2008.  Specifically, approximately half (47%) of the studies using 
marginal structural models were published in 2007 and 2008.  
 
Though the application of causal inference techniques has become more popular in the 
epidemiologic literature, their use with pediatric HIV/AIDS data is infrequent.  Through 
2008, only three studies have applied causal inference methods to pediatric HIV data, all 
three used marginal structural models.(34-36)  Fox et al used marginal structural models 
the estimate the effect of maternal CD4 count on child mortality after adjusting for 
breastfeeding and low birth weight.  The researchers found that a child whose mother’s 
CD4 was less than 200 had an increased 18 month mortality risk when compared to 
children whose mother’s CD4 was greater than 500 (HR=3.0 95% 1.2-7.9).(34)  The 
other two causal inference applications through 2008 were both Patel et al.(35; 36)  The 
researchers used marginal structural models to estimate the effects of HAART on CD4 
cell percentage in a pediatric cohort study.  After 5 years of follow up, they found that the 
initiation of HAART increased CD4 percentage by 2.34% (95% 1.35%-3.33%) after 
adjusting for confounding by disease severity.(35)  With the same study population after 
10 years of follow up, the authors estimated the effect of HAART on mortality and found 
that marginal hazard ratio comparing HAART and non-HAART use was 0.24 (95% 0.11-
0.51) after adjusting for disease severity.(36)  In Chapter 3 to estimate the causal effect of 
HAART on time to AIDS progression or death, I have estimated a marginal structural 
(association of marginal counterfactual means with changes in uniformly applied 
treatment)  using g-computation.  Similar to Patel et al’s approach, in this analysis I 
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avoided numerous pitfalls commonly seen with traditional techniques, including, but not 
limited to, and unmeasured biases and model misspecification.  In Chapter 4, I use 
calendar year in an adapted instrumental variable analysis to estimate the causal effect of 
HAART on the hazard of C diagnosis or death.  This analysis further adjusted for 
misclassification of HAART use and any covariate that may have been related to 
calendar year and outcome.  This approach, never before used on an HIV positive 
pediatric population, is particularly appropriate when trying to estimate the effect of a 
treatment on a population level. Together Chapter 3 and 4 not only help establish the 
effectiveness of HAART on preventing advanced disease and/or mortality, but they also 
attempt to address the need to establish optimal timing of treatment for treatment 
guidelines.   
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2.1 ABSTRACT 
Background 
To adequately prevent disease spread or treat sufferers of HIV/AIDS, epidemiologists 
and biostatisticians are charged with finding the true impact of interventions or 
treatments.  The gold standard for testing clinical effectiveness is the randomized 
controlled trial (RCT).  Randomization of treatment assignment is a requisite tool in 
controlling confounding in RCTs, both known and unknown.(1; 2) When the 
randomization assumption is satisfied, the estimated effects derived from a study are said 
to be causal.  However, for multiple reasons RCTs cannot often be employed.  Using the 
counterfactual framework more recently reintroduced by Rubin,(3) researchers attempt to 
define and estimate the causal effects of an intervention or treatment.  To help to 
determine whether a specific causal effect is identifiability from the data (and to even 
define what it is with regards to a specific intervention on a graph), directed acyclic 
graphs (DAGs) are often used.  These in essence define a non-parametric structural 
equation model.(4) 
 
Traditional methods for controlling biases, like regression techniques, are only as good as 
the measured confounder data and how true the model is.(5) Causal inference methods 
including propensity scores, instrumental variables, marginal structural models, and 
structural equations are alternative techniques with causal effect interpretations.   
 
The propensity score is defined as a subject’s conditional probability of treatment or 
exposure (arbitrarily defined as one of two possible levels), given the observed potential 
confounders.(5)  The principle of random allocation to treatments in RCTs, instrumental 
variables (IV) are variables that only affect the outcome through their effect on the 
treatment or exposure alone (e.g., random treatment assignment).(6)  A method proposed 
by Robins as early as 1997 and later emerging as a significant step forward in so-called 
causal inference methods is the parameter one estimates from a marginal structural model 
(MSM).(7)  This methods to estimate an MSM can accomdate the presence of time-
dependent covariates, often simultaneously intermediate variables and confounders, in 
the estimation of the marginal (“causal”) association of history of exposure or 
treatment.(8)  Often used in psychology research, structural equation modeling (SEM) 
involves a network of independence assumptions and equations which typically includes 
a parametric model for a DAG which includes measured and latent variables.(9)  This 
review aims to establish the temporal trends of these causal inference methods used with 
HIV/AIDS data, the frequency of publications by authors and journals, assess the 
transparency and quality of the methods employed, and explore the networks of affiliated 
institutions.   
 
Methods 
We performed a systematic review of studies that used causal inference methods in the 
context of HIV/AIDS research.  The initial search strategy collected all publications 
through December 2008 using Medline.   
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The interpretability of the study design to measure the causal effect of antiretroviral 
therapy and an HIV-related outcome was evaluated for each study based on the following 
4 fields:  1) traditional interpretability; 2) discussion of statistical analysis-specific 
assumptions; 3) discussion of confounding measures; and 4) model or instrument 
selection.   
 
Results 
The literature search yielded 70 papers which satisfied the eligibility criteria and were 
included in this review.  Approximately forty-one percent of all HIV/AIDS studies using 
the listed causal inference methods were published in 2007 and 2008.  Approximately 
half (47%) of the studies using marginal structural models were published in 2007 and 
2008.(10-25)  
  
Nearly two-thirds (63.0%) of all studies made comparisons between causal inference 
results and results using traditional methods; two-thirds (68.5%) of all studies referenced 
any causal inference method-specific assumptions.  Over two-thirds (67.1%) of all 
studies discussed in detail the instrument or (treatment) model selection. 
   
Over a third of all HIV/AIDS studies using propensity scores (36.8%) did not relate the 
causal inference results with results using traditional methods or failed to show the 
benefit of applying these techniques to the study data.  Furthermore, propensity score 
studies were not likely to discuss any causal inference method-specific assumptions 
(42.1%).  Over half of MSM studies (52.8%) stated the method by which the treatment 
model was selected.  Studies using MSMs are more likely to relate causal inference 
results to those generated from more traditional methods and discuss model assumptions, 
than studies using any other causal inference method (OR=4.87;  95% CI 1.77-14.71, 
OR=5.87; 95% CI 1.98-20.23, respectively).  Studies using MSMs are less likely to 
discuss specific model selection than studies using any other causal inference method 
(OR=0.26; 95% CI 0.08-0.72). 
 
Among MSM studies published before 2007, the largest network is associated with 
Harvard University with 9 affiliated publications.  In 2007 or 2008, the largest networks 
were among Johns Hopkins and University of California-San Francisco each with 7 
publications, and University of California-Berkeley with 6 publications.   
 
Discussion 
We have found an increasing trend in appearance of most of these methods as nearly 
forty percent of studies using one of the listed methods were published in 2007 or 2008.  
As some of the most technical methods are published more often in journals such as 
AIDS and American Journal of Epidemiology, the readership may begin to employ the 
methods within their own research.  Hernan, Robins, and Cole have authored more 
HIV/AIDS studies using causal inference methods than any other researchers.  As a 
result, their respective affiliated institutions, Johns Hopkins and Harvard University, have 
some of the largest networks for MSMs.  It should be noted, however, that there was a 
geographical and institutional shift in network size for MSM studies from pre-2007 to 
2007-2008.  All HIV studies using causal inference methods are deficient by varying 
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degrees in traditional interpretability, assumption discussion, covariate and confounding 
discussion, and model and instrument selection discussion.  Perhaps the fact that most of 
the MSM studies make comparisons to traditional methods partly describes their increase 
in publication frequency.   
 
 

2.2  Background 
 
 
As researchers and scientists across the globe continue to work toward reducing the threat 
of human immunodeficiency virus (HIV) and acquired immune deficiency syndrome 
(AIDS), they must also constantly react to a changing research environment.  Just as the 
unforgiving mutations of the virus make vaccine development a daunting task for 
virologists and immunologists, the complexities of HIV/AIDS epidemiology are 
multifaceted and ever-changing for biostatisticians and epidemiologists.  To adequately 
prevent disease spread or treat patients with HIV/AIDS, epidemiologists and 
biostatisticians are charged with finding the true impact of interventions or treatments.  
Unfortunately, the true effects are often obscured by nuisance factors and special analysis 
techniques are needed to remove these nuisance factors.  The analytic techniques that 
estimate a true causal relationship are referred to as causal inference methods.  In this 
review of causal inference methods used with HIV/AIDS data, we will explore the 
temporal trends of their appearance in the literature, the frequency of publications by 
authors and journals, assess the transparency and quality of the methods employed, and 
explore the networks of affiliated institutions.   
   
Researchers are often tasked with establishing the causal effects of an exposure or 
treatment on a disease or other outcome.  In the perfect world, we would be able to see 
how X (treatment) affects Y (outcome) by treating everyone to X and following up to see 
if the Y occurs.  Then, we would re-run the experiment under the exact same conditions 
and have everyone who was once before treated with X now be untreated.  The difference 
we would see in Y between the two scenarios could be causally attributed to the changes 
in exposure to X.   This scenario is difficult to achieve in human studies as other factors 
can interfere with the X-Y relationship and the exact same conditions are nearly 
impossible to guarantee.  In an attempt to simulate these conditions, the accepted gold 
standard for testing clinical effectiveness is the randomized controlled trial (RCT).  
However, often an RCT cannot be performed because of ethical or plausibility reasons 
and researchers are left with data from observational studies.   
 
 
 

2.2.1 Counterfactual Framework 
 
When trying to assert causation, it is often helpful to consider the contribution the 
counterfactual framework has had on causal inference.  The counterfactual is the idea that 
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an outcome would not have occurred had, counter to fact, a previous event not occurred.  
Neyman introduced this framework in 1923 and more recently Rubin reintroduced it in 
1990(3); it was later made more accessible to the epidemiology community through 
Greenland’s contributions in 1999(26) and 2000.(27)  Using studies of HIV or AIDS as a 
backdrop, suppose we were interested in studying the effects of antiretroviral therapy 
(ART) (X=x (x =1 received) or x (x = 0 not received)) on death (Y=y (y=1 yes)     or y (y=0 no) ).  If person 
A received ART (x=1), he would be followed up to determine whether he would be alive 
at the end of the follow-up period.  Then, this same person A during the same time period 
would subsequently be untreated with x (x=0) and followed up to determine whether he 
would survive.  In turn, for each subject there can be two treatment scenarios and two 
possible outcomes: (x=1)-(y=1); (x=1)-(y=0); (x=0)-(y=1); (x=0)-(y=0).  However, we 
can only observe person A’s true treatment scenario and outcome and the three remaining 
unrealized possibilities are known as the counterfactuals.  Causal effect methods 
commonly found in HIV/AIDS observational studies are heavily dependent on the 
counterfactual framework.   Furthermore, the HIV/AIDS counterfactual example can be 
extended to a practical longitudinal example.  Similar to the previous example, let a Є 
{0,1} indicate ART receipt.  Under this scenario, person A has two possible outcomes—
Y(1) when receiving ART and Y(0) not receiving ART.  As such, the causal effect within 
that individual is the difference between the two outcomes.  Furthermore, the average 
causal effect across the whole population is E{Y(1)-Y(0)}.  These potential outcomes are 
often depicted in terms of a linear model termed a Marginal Structural Model(8): 
 
     E{Y(a)}= α + βa   [1] 
 
To reconcile the realistic circumstance in which we only have one observable scenario, 
we can create the situation in which person A would have had equal opportunity to be 
treated to x.  Randomized controlled trials achieve this very goal by ensuring in study 
design that person A’s treatment allocation is not dependent on information connected to 
outcome Y, also known as the randomization assumption.(28) 
 
 
 

2.2.2 Randomization Assumption 
 
Random allocation or randomization of treatment assignment is a requisite tool in 
controlling both known and unknown confounding in RCTs.(1; 2)  When the 
randomization assumption is satisfied, the estimated effects derived from a study are said 
to be an estimate of so-called causal associations—confounding is absent.    
 
Randomization reduces the residual or within-group variance and ultimately minimizes 
the bias from both measured and unmeasured confounding factors.(29)  Subsequently, its 
use allows for a clearer establishment of the intervention’s or treatment’s effect.(1)  It is 
generally understood that instituting a treatment randomization scheme implies that there 
are assumed, a priori, uncontrolled effects from unknown variables. Furthermore, equal 
randomization is the most statistically efficient ratio because for any given total sample 
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size it maximizes statistical power.(30)  And, if one were interested in estimating the 
difference in means, the power of t-test is affected in the case of large treatment 
imbalances, (e.g. 70% in one arm versus 30% in another arm).(30)  
 
 

2.2.3 Introduction to Directed Acyclic Graphs  
 
Directed acyclic graphs are nonparametric causal models which illustrate the 
relationships between variables involved in a study.  By definition, variables, or nodes, 
represented in DAGs cannot both affect and be affected by another variable at the same 
time.(31)  In theory it would be possible to depict variables over time as so-called 
feedback loops represent a coarsening of a DAG that more finely represents cause and 
effect over time.  In the HIV example above, assume patients living in certain 
neighborhoods were more likely to die from HIV/AIDS and also were less likely to be 
treated with ART.  Figure 2.1 demonstrates this confounding scenario.  In this situation, 
zip code would be a confounder of the ART-death relationship.  In fact, zip code not only 
directly affects death, but also indirectly affects death through ART.  Thus, zip code-
death forms a directed path, as does also the zip code-ART-death path.   
 
Backdoor Pathways in DAGs 
In Figure 2.1, if one were interested in the direct effect of ART on death, one would have 
to explore whether the presence of a backdoor path is confirmed.  That is to say, in the 
present example is there a path from ART, against the flow, to another variable that is 
associated with death?  In fact, zip code represents a variable that should be addressed in 
the analysis of ART’s direct effect on death to ensure that the randomization assumption 
does not fail. It should be noted, however, when looking at ART’s direct effect on death, 
the pathway death-nutrition-ART does not represent a backdoor path because the path 
would have to go against the flow of not only the first path from nutrition but also the 
path from ART-nutrition.  
 
Variable Adjustment in DAGs 
DAGs are particularly useful in determining which variables are important in the 
analysis.  In the Figure 2.1 representing simple confounding, zip code’s effect on that 
relationship will have to be removed to realize an unbiased direct effect of ART on death.  
Essentially, we are setting zip code at a fixed level such that it has no influence on the 
ART-death relationship.  Furthermore, assume that one of the major side effects of 
initiating ART is a loss of appetite.  In this scenario, when person A initiates ART he 
would have worse nutrition than those not starting ART.  Furthermore, a poor diet in 
immune-compromised individuals leads to poor survival outcomes.  In this respect, the 
direct effect of ART on survival is modified by nutrition.  Again, to estimate an unbiased 
direct effect of ART on death, apart from appetite, this effect modification will need to be 
addressed.  
 
In contrast, calendar year is neither a confounder nor an effect modifier.  As such, 
calendar year is an external time-dependent variable that cannot be affected by the 
severity of disease (an indication for ART initiation).  Moreover, Figures 2.1 assumes 
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that calendar year is independent of death given ART use.  This external variable will be 
introduced again later in the discussion of instrumental variables.   
 
 

2.2.4 Traditional Methods for Confounding 
Adjustment 

 
The traditional methods for controlling the biases introduced by measured confounders 
include using multivariable regression techniques.  However, regression models are 
parametric and depend heavily on how true the model is.  In the best-case scenario with a 
presumably correctly identified coefficient, the covariates within the model are arbitrarily 
selected, thus biasing the coefficient estimate and resulting in model misspecification.  
Moreover, model building can become cumbersome even with comprehensive 
confounder data collected; often investigators will settle for parameter interpretability 
over adequate adjustment for bias.   
  

2.2.5 Causal Inference Approaches for 
Confounding Adjustment 

 
Causal inference methods have been developed in order to help reconcile these problems 
commonly seen in HIV epidemiological research and observational studies with high-
dimensional studies in general.  We will review 5 causal inference methods that have 
relevance to addressing common data and statistical problems found in HIV/AIDS 
studies:  propensity score matching, instrumental variable approaches, estimation of 
marginal structural models and structural equation models, and accelerated failure time 
models.    
 
Randomized Controlled Trials and Causal Inference 
Unlike an RCT with a properly performed randomization procedure, observational 
studies are inherently affected by confounding bias.  While an RCT randomizes study 
participants to receive treatments, the physicians or the participants themselves select 
receipt of treatments in an observational study.   Therefore, in the latter scenario, an 
argument for causality is difficult because the effect seen could either be a result of the 
treatment or it could be a result arising from the reason for selecting the treatment.(6)  In 
the presence of noncomplicance, data from RCTs are most often analyzed using the 
intention to treat (ITT) principle.  Under this rule, once person A is randomized to a 
treatment X, he should be included in any future analyses comparing treatment 
assignment arms as if he actually received treatment X despite actual receipt of treatment 
X.  In this respect, ITT is actually determining the effect of assigning person A to 
treatment X.  If randomization failed or treatment assignments were rarely followed, non-
compliance adjustments are needed to ensure the results are a true reflection of the causal 
effect of treatment X.   
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Propensity Scores 
In the absence of treatment assignment, observational studies are inherently more prone 
to confounding bias than controlled trials.  Propensity scores (PS) were developed in 
1983 by Rosenbaum and Rubin to control for known confounding bias and yet preserve 
parameter interpretability.  The propensity score is defined as a subject’s conditional 
probability of treatment or exposure as opposed to another treatment or exposure, given 
the observed potential confounders.(5)  To estimate the propensity score, a logistic 
regression can be used with the confounders as the independent variables and the 
treatment as the dependent variable.  As such, two subjects with the same propensity 
score will have an equal estimated probability of treatment.  Propensity scoring emulates 
the randomization procedure of RCTs, as the distribution of confounders between 
treatment groups is similar.  It is important to note that the propensity model selection 
should consider the best balance of confounders between treatment arms.(5)  It should be 
noted that propensity score adjustment assumes (like all but instrumental variable 
methods) that there is no unmeasured confounding to bias the results. 
 
In 1999, McLaughlin et al published what is thought to be the first HIV/AIDS study 
using propensity score methods.(32) The researchers used propensity scores to adjust for 
confounding in the estimated effect of zidovudine (ZDV) and pneumocystis carinii 
pneumonia (PCP) prophylaxis on hospitalizations and death.  Specifically, the authors 
used propensity scores for ZDV and PCP prophylaxis for each subject in order to adjust 
the estimated effect of ZDV and PCP prophylaxis on hospitalizations and mortality.  
Propensity scores were entered into the proportional hazards models as covariates.  
Outcomes were measured within proportional hazards regression models; the authors 
found that the adjusted relative risk of death associated with ZDV was 36% (95% CI 0.2-
0.4).  among treated patients when compared to untreated patients.  The adjusted relative 
risk of death among subjects treated with PCP prophylaxis was 49% (95% CI 0.3-0.8) 
when compared to subject untreated with PCP prophylaxis.  
 
 Instrumental Variables 
The use of instrumental variables (IV) can be dated back over a half-century when they 
have been found in econometric theory.(33)  Like the principle of random allocation to 
treatments in RCTs, IVs are variables that only affect the outcome through their effect on 
the treatment or exposure alone.(6)  Moreover, referring once again to the counterfactual 
framework and the randomization assumption, all counterfactual observations are 
independent of the process of treatment allocation.  Additionally, the variation in the 
identified instrument is assumed to be substantial enough to cause variation in the 
treatment. Instrumental variable methods can actually control confounding, measured or 
unmeasured, under the specific assumption that the outcome is conditionally independent 
given the variable of interest.  Though this assumption may not be directly testable, the 
use of DAGs helps justify the use of a specific IV.  In Figure 2.1, the implicit assumption 
is that calendar year is only related to the outcome (death) through the exposure (ART).  
Thus, given the assumptions of the graph, calendar year presumably makes for a possible 
instrumental variable.  As a result, the researcher will be able to estimate how much the 
variation in ART that is explained by the calendar year affects death.  
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The earliest application of IVs analyzing HIV/AIDS data and meeting my inclusion 
criteria was in 2001.(34)  In a study of population effectiveness of ART in reducing 
AIDS diagnoses in an HIV positive population, Tarwater et al used calendar year as an 
external time-dependent variable.(34)  This allowed the researchers to account for 
different infection durations.  Specifically, the authors compared the incidence of AIDS 
in subjects who had the same disease duration in different eras of ART.  The relative 
hazard in the no therapy era was 1.52 (95% CI 0.93-2.49) and 0.30 (95% CI 0.18-0.51) in 
the HAART era.   
 
Marginal Structural Models  
A method proposed by Robins as early as 1992 and later emerging as a significant step 
forward in causal inference methododology are proposed estiamtors for marginal 
structural model (MSM).(35)  Basic methods can be divided in estimation equation 
approaches (the so-called inverse probability of treatment weighting-IPTW-and its 
double-robust extension) and graphical computation (G-comp) approaches.  Much like all 
causal inference approaches, MSMs assume no unmeasured confounding.  Additonally, 
another important assumption is the experimental treatment assignment (ETA) 
assumption,(36) which is a scenario when at each time point, there is a covariate level lk 
at which all patients either receive or do not receive the identical treatment. 
 
In 2000, Hernan et al used MSM to estimate the causal effect of ZDV on survival of 
HIV-positive men.(37)  In an attempt to eliminate bias from time-dependent 
confounding, the authors used weights to obtain IPTW partial likelihood estimates.  
Specifically, the marginal structural Cox model yielded a mortality rate ratio of 0.7 (95% 
CI 0.6-1.0) for ZDV use after adjusting for CD4 count and other time-dependent 
covariates. 
 
Source of Inference in Marginal Structural Models 
Some options for producing confidence intervals for the MSM parameters include robust 
or sandwich estimators.  Bootstrapping also helps to make a case for a probability-based 
inference about an effect based on an estimated effect using a population-based 
sample.(7; 38) Rather than making assumptions about the population, the researcher can 
make conclusions about a population’s characteristics using the data from the sampled 
population.   
 
Structural Equation Models  
Often used in psychology research, structural equation modeling (SEM) involves a 
network of independence assumptions and equations.(9)  In this network of equations, 
each variable may only appear as a dependent variable once, but may appear in any 
equation as a causal variable.  As such, the network of equations allows the researchers to 
see how each dependent variable changes as its causal variables change.  The response 
variables in this network of equations are referred to as endogenous; all others are 
exogenous.(9)  
 
In 1991, van der Welde et al published the first SEM analysis within an HIV/AIDS study 
population.  The authors found that when studying AIDS_related health behavior, it may 
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be beneficial to explore not only one’s motivation to protect one’s self but also to include 
other variables such as social norms and previous behavior attributes.   
 
 

2.3  Methods 
 
 

2.3.1 Literature Search and Study eligibility 
 
I performed a systematic review of studies that used causal inference methods in the 
context of HIV/AIDS research.  The initial search strategy collected all publications 
through December 2008 using Medline.  Articles containing the textwords “propensity”, 
or “instrumental AND variable”, or “marginal structural model”, or “structural equation 
model” and indexed to include “HIV” or “AIDS” textwords were selected with MeSH 
subject headings “Acquired Immunodeficiency Syndrome”, “AIDS-Associated 
Nephropathy”, “AIDS Dementia Complex”, "AIDS Serodiagnosis”, “AIDS-Related 
Opportunistic Infections”, “AIDS-Related Complex”, “AIDS Vaccines”, “HIV 
Seropositivity”, “HIV Long-Term Survivors”, “HIV", or “HIV Infections”.  Once the 
eligible articles were identified, a cross-reference search using Web of Science was 
performed.  All studies citing the included Medline publications were included for the 
initial review.  Following identification of eligible cross-referenced publications from 
Web of Science, a final search was performed on the bibliographies of methods-based 
researchers who are either first or senior authors of more than 2 eligible publications.  
These authors include:  Cole S, Hernán M, van der Laan M, Petersen M, and Robins J.  
The eligibility criteria are summarized in Table 2.1.  All analyses were performed using 
R.(39) 
 
 

2.3.2 Qualitative Study Assessment  
 
The interpretability of the study design to measure the causal effect of antiretroviral 
therapy and an HIV-related outcome was evaluated for each study based on the following 
4 fields:  1) traditional interpretability; 2) discussion of statistical analysis-specific 
assumptions; 3) discussion of confounding measures; and 4) model or instrument 
selection.  The rubric used to assess these fields is illustrated in Table 2.2.   
 

Traditional Interpretability 
To assess the interpretability of results from HIV/AIDS studies that employ causal 
inference methods, epidemiology and biostatistics literacy criteria were established.  Our 
aim was to explore the frequency HIV/AIDS researchers compare their causal inference 
results to results they would have achieved had they used traditional methods.  With 
studies using propensity scores, we were also exploring whether the researchers 
demonstrated the benefit of using propensity adjustment by showing the distribution of 
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covariates before and after adjustment.  With the remaining methods, contrasts of results 
from traditional and causal inference methods were evaluated.   
 

Statistical Analysis Assumptions 
All statistical methods have important assumptions that should either be tested or at least 
discussed in papers using them, particularly if the methods are more contemporary or 
highly specific. Often studies will not list the methods-specific assumptions, but the 
researchers will rather acknowledge the assumptions through their discussion of methods 
or limitations.  For example, in a study using propensity scores, the assumption of no 
unmeasured confounding may not be explicitly identified, but the researchers may 
discuss controlling for all known confounders.  Instrumental variables are assumed to be 
independent of the outcome and assumed to have enough variance to induce variance in 
the treatment.  Marginal structural models make several assumptions, to which a study 
employing these methods should at least make a reference.  Among these assumptions are 
the ETA assumption described previously, no unmeasured confounding or randomization 
assumption, and appropriate model specification.(8)  In structural equation models, 
exogenous variables are assumed independent.(9) 
 

Confounding Measures 
As estimating the causal effect of x on y while minimizing bias is the main objective of 
causal inference methods, it is important for studies to identify specifically which 
covariates may bias this causal effect.  A general discussion of confounder adjustment 
may not help future studies trying to expound on the study’s results.    
 
 Model or Instrument Selection 
It is not enough to simply employ these methods to control for confounding and reduce 
bias.  The technique by which the researcher selects his model or instrument is just as 
important as the researcher recognizing a priori the necessity to perform the causal 
inference.  In studies using propensity scores, a case for the specific variables used to 
model the propensity of treatment is helpful to understand their influence on the 
estimated effect and control of bias.  Similarly, the variables included in the treatment 
model for marginal structural models should not only be identified but also justified.  
Some of the model selection procedures may be as basic as an acknowledged prior 
knowledge or research, but may also include stepwise addition or deletion techniques, 
Akaike information criterion, or super learning applications like Deletion/Substitution/ 
Addition (DSA) algorithm.  A discussion about the ways the authors selected the 
included variables (e.g. based on prior studies) is enough to satisfy this criterion.  A 
justification for using a specific instrument in studies using instrumental variables is 
necessary to understand its influence, or lack thereof, on the estimated causal effect.    
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2.4  Results 
 

2.4.1 Literature Search 
 
The initial search on Medline, Web of Science, and selected bibliographies yielded 1535 
potential studies, of which 932 were later removed based on publication date, duplication, 
title, or abstract details.  The remaining 603 papers were reviewed for eligibility and 70 
satisfied the eligibility criteria and were included in this review.  The selection flow is 
detailed in Figure 2.2. 
 

2.4.2 Temporal Trends 
 
Though some of the included causal inference methods were developed by the onset of 
the HIV epidemic, the highest concentration of these methods in the HIV/AIDS literature 
was not apparent for about two decades.  Propensity scores were introduced near the 
early stages of the HIV epidemic, however the first appearance of these methods in the 
HIV/AIDS literature was in 1999 (McLaughlin et al).(32)  It was another four years 
before the next publication using propensity scores appeared in 2003.(40)  The trend in 
propensity score publications is markedly increasing as about 42% of all HIV studies 
using these methods were published in 2007 and 2008.(41-48)  The appearance of 
instrumental variables in HIV/AIDS literature occurred in 2001 (Tarwater et al).(34)  
Two years later the next instrumental variables publication appeared in the literature 
(Bhattacharya et al).(49)  Though only seven instrumental variable studies are known to 
have been published before 2009,(6; 24; 34; 49-52) four of the seven were published in 
the last four years.(6; 24; 51; 52)  In 2000 the first MSM study appeared in the literature 
(Hernan et al),(37) and every subsequent year saw an increase in publications using these 
methods on HIV/AIDS data.  Approximately half (47%) of the studies using marginal 
structural models were published in 2007 and 2008.(10-14; 16-25; 53) The use of 
structural equations on HIV/AIDS data has its origin in 1991 (Van der Velde et al).(54) 
Only one other publication using this method would appear in the 1990s,(55) while the 
majority (54.6%) was published since the end of 2005.(56-61)  Approximately forty-three 
percent of all HIV/AIDS studies using the listed causal inference methods were published 
in 2007 and 2008.  Temporal trends in the appearance of causal inference methods in 
HIV/AIDS publications are described in Table 2.3 and illustrated in Figure 2.3.   
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2.4.3 Causal Inference Study Epidemiology and 
Publication Characteristics 

 
Figure 2.4 is a dot-chart showing the frequency of causal inference publications 
analyzing HIV/AIDS data among all affiliated researchers with at least two included 
papers.  Hernan has the most affiliated publications with 12 included studies; Cole had 10 
and Robins had 9 associated publications.  Figure 2.5 is a dot-chart illustrating the 
frequency of publications among first authors.  Petersen had the most first authorships 
with 5 publications, followed by Hernan with 4 and Cole with 3 publications.  About one 
in six (17.1%) of all included studies was principally authored by one of these three 
researchers.  It should be noted, however, that all of the publications that were principally 
authored by these researchers employed marginal structural models.  Robins had the most 
senior authorships with 7 publications, followed by van der Laan with 3 publications.  
See Figure 2.6 for a dot-chart illustrating the frequency of publications among senior 
authors.   
 
Over one-third (37.1%) of all the studies were published in AIDS, American Journal of 
Epidemiology, Journal of Acquired Immune Deficiency Syndromes, or Statistics in 
Medicine (see Figure 2.7). The most common exposure or outcome was antiretroviral 
therapy or HIV disease progression (64.3%).   
 

1. Epidemiology of Studies Using Propensity Scores 
All studies using propensity scores had unique first authors and all but two (AIDS) were 
published in unique journals.  Antiretroviral therapy or HIV disease progression were the 
most common exposure or outcome studied (47.4%).  High-risk behaviors were the 
second most common exposure or outcome studied (21.1%) in publications using 
propensity scores (see Table 2.4).   
 

2. Epidemiology of Studies Using Instrumental Variables 
All studies using instrumental variables had unique first authors and all but two 
(American Journal of Epidemiology) were published in unique journals (see Table 2.5).  
Additionally, all but one of these studies explored the impact of ART on disease 
progression or high-risk behavior.  Bhattacharya et al explored the relationship between 
type of insurance (private versus public) and HIV-related mortality.(49) 
 

3. Epidemiology of Studies Using Marginal Structural Models 
Among publications using marginal structural models, several researchers were the 
primary authors on more than one publication (see Table 2.6).  Peterson was the first 
author of five HIV/AIDS studies using marginal structural models,(13-16; 23) Hernan 
was the primary author on four HIV/AIDS studies,(37; 62-64) and Cole(11; 65; 66) was 
the primary author for three studies.  Lopez-Gatell,(12; 20) Brumback,(40; 67) and 
Patel(21; 22) were the primary authors for two studies each.  Over a third (36.1%) of all 
HIV/AIDS studies using MSMs were published in AIDS or American Journal of 
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Epidemiology.  Antiretroviral therapy or HIV disease progression was the most common 
exposure or outcome studied (80.6%).   
 

4. Epidemiology of Studies Using Structural Equation Models 
Studies using structural equation models were authored by unique authors and generally 
published in different journals, though AIDS and Behavior had two publications (see 
Table 2.7).  All publications using structural equation models explored either ART 
adherence or high-risk behaviors.   
 

2.4.4 Summary of Study Quality Assessment 
Results 

 
Application of the quality assessment tool for these studies revealed that the most 
common weaknesses were traditional interpretability, a discussion of model or instrument 
selection, and a discussion of assumptions, though these results are highly method-
dependent.  The results are described in detail in Tables 2.8-2.11.  Figure 2.8 illustrates 
the proportion of causal inference studies which satisfied the specific study assessment 
criteria.   
 
Nearly two-thirds (63.0%) of all studies made comparisons between causal inference 
results and results using traditional methods; two-thirds (68.5%) of all HIV/AIDS studies 
referenced any causal inference method-specific assumptions.  Nearly all studies (95.9%) 
had a discussion about the type of confounding being controlled for using the causal 
inference method and listed the specific potential confounders.  Over two-thirds (67.1%) 
of all studies discussed in detail the instrument or (treatment) model selection.   
 

1. Assessment of Studies Using Propensity Scores  
Over a third of all HIV/AIDS studies using propensity scores (36.8%) did not relate the 
causal inference results with results using traditional methods or failed to show the 
benefit of applying these techniques to the study data.  Furthermore, propensity score 
studies were not likely to discuss any causal inference method-specific assumptions 
(42.1%).  As the primary goal of using propensity scores is to control for confounding 
and selection bias, nearly all (89.5%) discussed specifically which potential confounders 
they were controlling with propensity scores.  Over two-thirds of propensity score studies 
discussed the procedure of selecting the treatment model.   
 

2. Assessment of Studies Using Instrumental Variables 
Studies using instrumental variables were likely to have causal effects compared to 
traditional methods (71.4%).  Additionally, studies using instrumental variables were just 
as likely to discuss the method-specific assumptions made as specific instrument 
selection (85.7%).  All instrumental variable studies discussed in detail the specific 
confounding being controlled for in the study.   
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3. Assessment of Studies Using Structural Equation Models 
No studies using structural equation models made comparisons of their results with 
results from traditional methods.  Nearly half (45.5%) of these studies discussed their 
inherent assumptions.  All studies using structural equations discussed their specific 
mediating variables and model selection.    
 

4. Assessment of Studies Using Marginal Structural Models 
Studies using marginal structural models were likely to have causal effects compared to 
traditional methods (80.6%).   Additionally, studies using marginal structural models 
were likely to discuss the method-specific assumptions made (86.1%).  Nearly all MSM 
studies discussed in detail the confounding variables they aimed to control (97.2%).  Just 
over half of MSM studies (52.8%) stated the method by which the treatment model was 
selected.     
 

2.4.5 Temporal Trends and Year of Publication 
 
Approximately seventy percent of all studies analyzed data based in the United States.  
The temporal trends suggest that these causal inference methods are being applied to non-
US data more often in 2007 and 2008 than in previous years (OR=1.55; 95% CI 0.56-
4.29), though this relationship is not statistically significant.  Among propensity score 
studies specifically, the most recent publications seem to be more likely from non-US 
data than in previous years of publication (OR=2.67; 95% CI 0.40-20.25).  A similar 
trend is found among studies using MSMs published in 2007 or 2008 as these studies are 
analyzing non-US data less often than studies published before 2007 (OR=1.17; 95% CI 
0.26-5.17).   
 

2.4.6 Traditional Interpretability and Year of 
Publication 

 
Over all studies, the year of publication does not seem to affect a study’s probability of 
making comparisons between causal effects and effects from traditional methods 
(OR=0.69; 95% CI 0.26-1.81).  Propensity score studies published in calendar years 2007 
or 2008 appeared to be just as likely to have a traditional interpretability component as 
papers published before 2007 (OR=0.95; 95% CI 0.14-6.73), though counts are too small 
to attain statistical significance.  Counts are too small for any reasonable estimates to be 
made from method-specific studies using instrumental variables or structural equations.  
No study using structural equations made any comparisons with traditional methods.  
However, among studies using MSMs, year of publication does not seem to have any 
effect on a study’s likelihood for making comparisons with traditional methods 
(OR=0.28; 95% CI 0.04-1.55).   
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2.4.7 Discussion of Assumptions and Year of 
Publication 

 
Among all HIV/AIDS studies using a causal inference method, the year of publication 
does not appear to have an effect on the probability of those studies discussing method-
specific assumptions (OR=1.22; 95% CI 0.45-3.43).  Studies using propensity scores 
published in 2007 or 2008 seem to be more likely to reference method-specific 
assumptions than propensity score studies published before 2007 (OR=1.75; 95% CI 
0.27-11.92), though counts are too small to attain statistical significance.  Calendar year 
of publication of studies using MSMs does not appear to affect the likelihood of those 
studies discussing MSM-specific assumptions (OR=1.41; 95% CI 0.21-11.83).    
 

2.4.8 Discussion of Confounding and Year of 
Publication 

 
Calendar year of publication of all causal inference studies does not seem to have an 
effect on whether the study will address specific confounding controlled for (OR=0.35; 
95% CI 0.02-3.86).  Specifically, calendar year of publication of studies using propensity 
scores does not seem to have an effect on whether the study will address specific 
confounding controlled for (OR=0.70; 95% CI 0.02-19.75).  Nearly all MSM studies 
discussed their specific confounding concerns.   
 
 
 

2.4.9 Discussion of Treatment Model/ 
Instrument Selection and Year of 
Publication 

 
Calendar year of publication of all causal inference studies does not seem to have an 
effect on whether the study has a discussion about model or instrument selection 
(OR=0.82; 95% CI 0.30-2.20).  Specifically, calendar year of publication of studies using 
propensity scores does not seem to have an effect on whether the study will address 
model selection (OR=1.71; 95% CI 0.24-15.75).   Calendar year of publication of studies 
using MSMs does not appear to affect the likelihood of those studies discussing model 
selection (OR=0.65; 95% CI 0.17-2.41).   
 
 
 
 
 
 



   

 35 

2.4.10 Comparison of Studies Using MSMs Vs 
Any Other Causal Inference Method 

 
Studies using MSMs are just as likely to be using non-US data as studies using any other 
causal inference method (OR=0.80; 95% CI 0.29-2.18).  Studies using MSMs are more 
likely to relate causal inference results to those generated from more traditional methods 
than studies using any other causal inference method (OR=4.87;  95% CI 1.77-14.71).  
Studies using MSMs are more likely to discuss specific model assumptions than studies 
using any other causal inference method (OR=5.87; 95% CI 1.98-20.23).  Studies using 
MSMs are seemingly more likely to discuss specific confounding than studies using any 
other causal inference method (OR=2.00; 95% CI 0.18-44.18).  Studies using MSMs are 
less likely to discuss specific model selection than studies using any other causal 
inference method (OR=0.26; 95% CI 0.08-0.72). 
 

2.4.11 MSM-Specific Study Assessment 
  
Among studies using MSMs, whether the authors stated specifically how they estimated 
their confidence intervals or standard errors for the causal effect of interest was 
investigated.  Approximately eighty-six percent of all MSM studies reported their source 
of inference (see Table 2.12).  Specifically, approximately twenty-two percent used the 
bootstrapping method to estimate their standard errors or confidence intervals, fourteen 
percent used the “sandwich” method, eight percent used generalized estimating 
equations, and forty-two percent used a non-specific robust method.    
 
There are three common methods of estimating the parameters in marginal structural 
models:  G-comp, double robust, or IPTW.  Though all three of these methods control for 
confounding, albeit in different ways, only two studies used any method other than IPTW 
to estimate the MSM parameters.(15; 16)  Both of these studies used all three methods to 
compare results.    
 

2.4.12 Network of Publishing Institutions 
 
The network of institutions represented by all the listed authors is illustrated in Figures 
2.9a-2.12b.  Table 2.13 is a supplemental table numerically showing the frequency of 
publications from each affiliated institution (with a minimum of 2).  Institution 
abbreviations are detailed in Appendix A.1.   
 
Networks of Marginal Structural Model Studies 
Among MSM studies published before 2007 (Figure 2.9a), the largest network is 
associated with Harvard University with 9 affiliated publications.  The next largest 
networks are associated with University of Washington with 5 papers, and University of 
California-San Francisco and Johns Hopkins University each with 4 affiliated 
publications.  Among MSM studies published in 2007 or 2008 (Figure 2.9b), the largest 
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networks were among Johns Hopkins and University of California-San Francisco each 
with 7 publications, followed by University of California-Berkeley with 6 publications. 
 
Networks of Propensity Score Studies 
Among propensity scores studies published before 2007 (Figure 2.10a), the largest 
network is associated with University of California-Los Angeles with 4 publications, 
followed by Johns Hopkins University with 3 affiliated publications.  The networks for 
propensity score papers published in 2007 or 2008 are shown in Figure 2.10b.  The 
Centers for Disease Control and Prevention has the largest network with 3 affiliated 
publications among these publications.   
 
Networks of Instrumental Variables Studies 
Among studies using instrumental variables published before 2007 (Figure 2.11a), the 
largest network is only two; University of Pittsburgh, Northwestern University, Johns 
Hopkins University, University of California-Los Angeles, and RAND all have two 
affiliated publications before 2007.  Among instrumental variables studies published in 
2007 or 2008 (Figure 2.11b), no network is larger than 1.    
 
Networks of Structural Equation Model Studies 
Among studies using structural equations published before 2007 (Figure 2.12a), the 
largest network is only two—the University of Miami.  Among structural equation model 
studies published in 2007 or 2008 (Figure 2.12b), no network is larger than 1.    
 
 

2.5  Discussion 
 
We have performed a systematic review of the HIV/AIDS literature for studies using 
causal inference methods including propensity scores, instrumental variables, marginal 
structural models, and structural equations.  We have found an increasing trend in 
appearance of most of these methods as over forty percent of studies using one of the 
listed methods were published in 2007 or 2008.  Compared to all other methods, 
publications using MSMs had the highest proportion published in 2007 or 2008 (47.2%), 
followed by propensity score studies (42.1%).  HIV/AIDS studies using instrumental 
variables and structural equation models have not seen the resurgence that other studies 
using other causal inference methods have.   
 
The journals in which the studies were published may have some impact on the method’s 
future use.  Likely due to method-specific technical issues and readership, some methods 
are more often found in statistical or economics journals (e.g. IVs).  Moreover, IVs have 
their origins in economics and have yet to be adopted as a common technique in 
epidemiology.(33)  Figure 2.7 illustrates the frequency of appearance of causal inference 
publications in specific journals.  The highest frequencies are found in the journals AIDS, 
American Journal of Epidemiology, Journal of Acquired Immune Deficiency Syndrome, 
and Statistics in Medicine.  As some of the most technical methods are published more 
often in journals such as AIDS and American Journal of Epidemiology, the readership 
may begin to employ the methods within their own research.      
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Some authors and affiliated institutions have contributed greatly to the dissemination of 
causal inference methods used for HIV data.  As described in Figure 8, Hernan, Robins, 
and Cole have authored more HIV/AIDS studies using causal inference methods than any 
other researcher.  As a result, their respective affiliated institutions, Johns Hopkins and 
Harvard University have some of the largest networks.  It should be noted, however, that 
there was a geographical and institutional shift in network size for MSM studies from 
pre-2007 to 2007-2008 as Johns Hopkins, University of California-San Francisco, 
University of California-Berkeley, and University of California-Los Angeles had the 
largest networks most recently, while Harvard University was the most prolific producer 
of MSM studies prior to 2007.     
 
The study assessments found that, regardless of year of publication, all HIV studies are 
deficient by varying degrees in traditional interpretability, assumption discussion, 
covariate and confounding discussion, and model and instrument selection discussion.  
Over all studies, traditional interpretability was the most common deficiency, but this is 
likely due to no study using structural equation models making any comparisons to 
traditional methods.  Though not seen in our review, as a method has been used long 
enough, a traditional results comparison may be less important in the eyes of the 
researcher as limited space may be predicated on other results.  Studies using IVs were 
most deficient in having a traditional interpretability component.  While this is likely a 
reflection of the difficulty in making such comparisons with these methods, it remains an 
important aspect of promoting the use of a method.   
 
Often some assumptions are not testable, but acknowledging them in the analysis should 
be policy to ensure study validity.  Some assumptions, like the experimental treatment 
assignment (ETA) for MSMs, are often testable(36) and should be adequately described.  
Publications using propensity scores were most deficient in discussing inherent methods-
specific assumptions.   
 
The most deficient area for studies using MSMs was a discussion of their treatment 
model selection.  Not only is this key for other researchers to understand fully how to 
implement MSMs, but it is also particularly important to ensure unbiased results.  If 
incorrect covariates are used in building the treatment model, biased estimators are 
possible.(68)  In particular, the inclusion of variables which predict only treatment, i.e. 
not confounders, can affect the estimator’s performance.  Regarding confounders and 
other covariates, most studies, regardless of causal inference method, described or listed 
the variables the method hoped to control for.  In turn, future studies of similar research 
questions may be able to control for similar confounding.   
 
Most studies using MSMs reported robust or sandwich confidence intervals.  By 
explicitly stating the source of their confidence intervals, researchers once again have the 
opportunity for not only making a case for a true causal effect, but allow other 
researchers to learn from their methods.    
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Studies using MSMs are more likely to discuss their results as they relate to conventional 
methods than studies using any other causal inference method.  Moreover, MSM-based 
HIV publications are more likely to discuss the (treatment) model selection than the 
treatment or instrument model in any other causal inference method.  Though in 
comparison to the most technically difficult methods MSMs are not terribly difficult to 
understand, perhaps the fact that most of the MSM studies make comparisons to 
traditional methods partly describes their increase in publication frequency.   
 
There are several limitations concerning this review that should be considered.  Firstly, 
though every attempt was made to capture all relevant studies, some may have been 
missed.  A problem encountered when performing this review was that often studies will 
employ a method that is technically an included causal inference method, but the 
researchers fail to identify the method as specifically one of the included methods.  We 
did not include these studies, as it would not have been reasonable to capture all of these 
studies using unidentified causal inference methods.  In turn, we could have ended up 
with a skewed sample of only the studies with an identified causal inference method 
found on Medline and studies with an unidentified causal inference method found by our 
cross-referencing search.  Secondly, as inherent in any review, we have to consider 
publication and author bias as a potential issue.  If a prominent researcher is one of the 
authors on a causal inference paper, it may be more likely to be published.  As the 
techniques and methods increase in complexity, many technical experts are required to 
collaborate.  As a result, multiple institutions will likely have representation as either the 
problem necessitates or as the method becomes more recognized.(69)  Though 
publication bias is likely not the case regarding these publications and their concentration 
of authorships and institutions, some researchers believe that a looming threat to 
publication privilege is, for example, the department chair who wants his name on every 
publication from within his department.(70) Thirdly, non-health related journals, like 
economics journals, might have more studies with HIV data.  These results may not be 
generalizeable to studies of other diseases.  In fact, the trends found in HIV studies may 
not be indicative of the trends among all epidemiologic studies.  Some of the study 
assessments may not be as high as they could be because authors would reference 
previous work on the data in an attempt to avoid discussing technical details.  Journal 
limitations may prevent authors from discussing further.  It should be noted that a 
possible limitation to our dot-chart describing the contributions of senior authors may be 
more of a misrepresentation issue.  That is to say, sometimes the last author is the 
researcher who either contributed the least amount to the study or simply received a gift 
authorship with no specific research role.(71)  Moreover, in some cases as some 
prominent journals have limits on the number of authors allowed, the author occupying 
the senior author spot may not be the senior author at all.  In fact, recently researchers 
found a relationship between journals with authorship limitations and the number of 
databases accessing those particular journals,(72) which would have limited our ability to 
find these studies in our search. 
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Tables 
 
Table 2.1 Causal Inference Study Eligibility Criteria  
1)  Prospective or retrospective study published in peer-reviewed journal before calendar 
year 2009 
2)  At least 1 of the following endpoints was ascertained: 

i. Incident AIDS 
ii. Incident HIV 
iii. Stage of HIV disease 
iv. Response of HIV/AIDS to therapy 
v. HIV/AIDS disease progression 
vi. Death 

Or, behavioral or clinical risks were assessed within an exclusively HIV positive 
population.   
3)  One of the causal inference techniques described above explicitly stated and used in 
analysis (propensity scores, instrumental variables, MSM, structural equation model) 
4)  Results from application of method to dataset (not a subset of data for illustrative 
purposes) are published and have not been published previously elsewhere 
 
Table 2.2:  Quality Assessment Rubric Tool Applied To All Studies  

Traditional 
Interpretability 

Is the method described as appropriate when compared 
to other methods?    

Or, are results from both causal inference and traditional 
methods given?  (Alternatively, are before- and after- 

propensity score analyses done?) 
Discussion of Statistical 

Analysis-Specific 
Assumptions 

Are assumptions discussed generally and as they apply to 
the study data?   

Discussion of 
Confounding Measures 

Are the specific confounders the causal inference method 
aims to control or the type of (potential) confounding 

adjusted for discussed? This may also include mediating 
factors found in SEMs.  

Model and Instrument 
Selection 

Is the model or instrument selection technique discussed? 
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Table 2.3  Trends of Causal Inference Methods Used in Studies of HIV and HIV Risk  

Statistical method Total No. of 
articles  

No. of 
articles  

No. of 
articles  

No. of 
articles  

No. of 
articles  

  Pre-00 2001-02 2003-04 2005-06 2007-08 
Propensity 
scoring±,1 

19 
(26.0%) 

1 
(5.3%) 

0 
(0.0%) 

3 
(15.8%) 

7 
(36.8%) 

8 
(42.1%) 

Instrumental 
Variables±,2 

7 
(9.6%) 

0  
(0.0%) 

1 
(14.3%) 

2 
(28.6%) 

2 
(28.6%) 

2 
(28.6%) 

Marginal Structural 
Models± 

36 
(49.3%) 

1 
(2.8%) 

3 
(8.3%) 

7 
(19.4%) 

8 
(22.2%) 

17 
(47.2%) 

Structural Equation 
Models± 

11 
(15.1%) 

3 
(27.3%) 

0 
(0.0%) 

2 
(18.2%) 

2 
(18.2%) 

4 
(36.4%) 

Total3 73 5 
(6.8%) 

4 
(5.5%) 

14 
(19.2%) 

19 
(26.0%) 

31 
(42.5%) 

±Proportions reported are among studies using that statistical method 
1. One of these publications is also included in Marginal Structural Models 
2. Two of these publications are also included in Marginal Structural Models 
3. Sum of total is more than sum of included studies due to papers using multiple 
methods 
 
 
 
Table 2.4:  Propensity Score-specific study epidemiology grouped by exposure or 
outcome keywords 
 Lead Author Journal Exposure Primary outcome 

measure 
Propensity Scoring 

Sanguan-
wongse(41)  

(2008) 

Journal of Acquired 
Immune Deficiency 

Syndromes 
ART Time to death 

Potard(42)  
(2007) Antiviral Therapy HAART HIV RNA, CD4 

Braithwaite(43)  
(2007) AIDS ART initiations 

Adherence, change in HIV 
RNA, CD4, HIV RNA 

suppression 
Nosyk(73)  

(2006) 
BioMed Infectious 

Diseases HAART Hospital readmission 

Merito(74)  
(2006) 

European Journal of 
Health Economics  Time of ART initiation Cost effectiveness, incident 

AIDS, death 

A
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R

T
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r 
D
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Liu(75)  
(2006) 

AIDS Research and 
Therapy HAART Quality of life 

(Continued on next page…) 
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Table 2.4 Propensity Score-specific study epidemiology grouped by exposure or outcome 
keywords (continued) 

Lead Author Journal Exposure Primary outcome 
measure 

Liu(76)  
(2006) 

Quality of Life 
Research HIV and use of HAART Quality of life 

Chu(77)  
(2005) 

American Journal of 
Epidemiology Hormonal contraception CD4 cell count, viral load 

A
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R

T
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Brumback(40)  
(2003) Biometrics ART CD4 cell count 

Zule(48)  
(2008) 

Drug and Alcohol 
Dependence Needle sharing HIV, HCV 

El-Bassel(78)  
(2005) 

Social Science and 
Medicine 

High-risk sex; intimate partner 
violence 

Intimate partner violence, 
sexual risk related factors 

Wenzel(79)  
(2004) Prevention Medicine Shelters vs low income 

housing 

Physical or sexual abuse, 
substance abuse, HIV risk 

behavior 

H
ig

h-
R

is
k 

B
eh

av
io

rs
 

Rotheram-
Borus(80)  

(2003) 
Prevention Science HIV prevention programs High risk behavior, drug use 

Mahal(47)  
(2008) AIDS HIV/AIDS Healthcare utilization, 

spending, lost income 

Gangopad-
hyay(81)  
(2005) 

Sexually Transmitted 
Diseases  STI/HIV programs STDs 

H
ea

lth
 C

ar
e 

or
 

Pr
ev

en
tio

n 
Pr

og
ra

m
s 

McLaughlin(32)  
(1999) 

International Journal of 
Quality in Health Care 

Primary source of and access to 
care 

Time to treatment, 
hospitalization, death 

Anuwatnon-
thakate(46)  

(2008) 
PLoS ONE Directly observed therapy TB outcomes 

Tai(45)  
(2007) 

Journal of Infectious 
Diseases Pregnancy AIDS defining illness, death 

O
th

er
 

Albalak(44)  
(2007) 

Archives of Internal 
Medicine Time TB/HIV coinfection 
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Table 2.5 Instrumental Variable-specific study epidemiology grouped by exposure or 
outcome keywords  
 Lead Author Journal Exposure Primary outcome 

measure 
Instrumental Variables 

Shiels(24)  
(2008) 

Journal of Acquired 
Immune Deficiency 

Syndromes 
HAART AIDS-defining cancers 

Bond(6)  
(2007) 

Statistics in Medicine 
Nelfinavir HIV RNA Concentration 

Lakdawalla(51)  
(2006) 

The Quarterly Journal 
of Economics HAART Risky sexual activity 

Cain(52)  
(2006) 

American Journal of 
Epidemiology HAART Multiple AIDS defining 

illnesses 

Hogan(50)  
(2004) 

Statistical Methods in 
Medical Research HAART CD4 Cell Count 

Bhattacharya(49)  
(2003) 

Journal of Health 
Economics Public vs private insurance HIV-related mortality 

A
R

T
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r 
D
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se
 P
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Tarwater(34)  
(2001) 

American Journal of 
Epidemiology ART Time to AIDS  

 
 
 
Table 2.6 Marginal Structural Model-specific study epidemiology grouped by exposure 
or outcome keywords  
 Lead Author Journal Exposure Primary outcome 

measure 

Marginal Structural Models 

Shiels(24)  
(2008) 

Journal of Acquired 
Immune Deficiency 

Syndromes 
HAART AIDS-defining cancers 

Petersen(23)  
(2008) 

AIDS 
Time until switching ART All cause mortality 

Patel(21) 
(2008) 

Clinical Infectious 
Diseases HAART, HAART with PI, 

HAART with NON RTI CD4 cell % 

A
R

T
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r 
D
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ea

se
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re
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Patel(22)  
(2008) 

Clinical Infectious 
Diseases HAART CD4 cell count and survival 

(Continued on next page…) 
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Table 2.6 Marginal Structural Model-specific study epidemiology grouped by exposure 
or outcome keywords (Continued) 

Lead Author Journal Exposure Primary outcome 
measure 

Fox(25)  
(2008) 

International Journal of 
Epidemiology Maternal CD4 count HIV exposed, uninfected 

Fairall(19)  
(2008) 

Archives of Internal 
Medicine HAART Time to death 

De Beaudrap(17)  
(2008) 

AIDS Research and 
Human Retroviruses ART 

Tx discontinuation, time to 
death, time to progression, 

CD4, adverse effects, 
virological response 

Dolev(18)  
(2008) 

AIDS 
HAART Skin or anogenital warts 

Petersen(15)  
(2007) 

Clinical Infectious 
Diseases Pillbox organizers Adherence, HIV RNA level 

Petersen(16)  
(2007) 

AIDS 
Boosted single or boosted 

double PI ART Viral suppression 

Petersen(13)  
(2007) 

American Journal of 
Epidemiology Time until switching ART Future CD4 cell counts 

Petersen(14)  
(2007) 

Statistics in Medicine 
Time until switching ART CD4 cell count 

Cole(11)  
(2007) 

American Journal of 
Epidemiology HAART HIV RNA concentration 

Perez(53)  
(2007) 

Gaceta Sanitaria 
HAART Time to AIDS and death 

Hogg(82)  
(2006) 

PLoS Medicine 
Resistance to non-nucleoside 

RTI Death 

Hernan(64)  
(2006) 

Basic and Clinical 
Pharmacology and 

Toxicology 
HAART AIDS or death 

De Luca(83)  
(2006) 

Antiviral Therapy Lopinavir/ritonavir or 
efavirenz plus 2 nucleoside 

analogues 

Viral failure, CD4 recovery, 
and clinical progression 
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R
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Cole(66)  
(2005) 

American Journal of 
Epidemiology HAART CD4 cell count 

(Continued on next page…) 
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Table 2.6 Marginal Structural Model-specific study epidemiology grouped by exposure 
or outcome keywords (Continued) 

 Lead 
Author Journal Exposure Primary outcome 

measure 

Sterne(84)  
(2005) Lancet HAART AIDS or death 

Hogan(50)  
(2004) 

Statistical Methods in 
Medical Research HAART CD4 cell count 

Casper(85)  
(2004) 

Journal of Acquired 
Immune Deficiency 

Syndrome 

HAART, CD4, oral 
inflammation HHV-8 shedding 

Barron(86)  
(2004) 

AIDS 
Discontinuation of ART Death 

Brumback(67)  
(2004) 

Statistics in Medicine 
Zidovudine CD4 cell count 

Brumback(40)  
(2003) 

Biometrics 
ART CD4 cell count and viral load 

Ko(87)  
(2003) 

Biometrics 
HAART CD4 cell count 

Cole(65)  
(2003) 

American Journal of 
Epidemiology HAART Time to AIDS and death 

Hernan(63)  
(2002) 

Statistics in Medicine 
Zidovudine CD4 cell count 

Hernan(62)  
(2001) 

Journal of the American 
Statistical Association Zidovudine and prophylaxis 

therapy Survival 

A
R
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r 
D

is
ea

se
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Hernan(37)  
(2000) Epidemiology Zidovudine survival 

(Continued on next page…) 
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Table 2.6 Marginal Structural Model-specific study epidemiology grouped by exposure 
or outcome keywords (Continued) 

 Lead 
Author Journal Exposure Primary outcome 

measure 
Lopez-

Gatell(20)  
(2008) 

AIDS 
Incident TB Death 

Brown(10)  
(2007) 

AIDS 
Incident and prevalent HSV-2 HIV acquisition 

Lopez-
Gatell(12)  

(2007) 

American Journal of 
Epidemiology Incident TB Death 

Bachmann(88)  
(2006) 

AIDS 
AIDS death, illness, poverty 

Monthly adult equivalent 
income and expenditure, 
illness episodes, death 

Brookhart(89)  
(2006) 

Computational Statistics 
and Data Analysis Drinking water patterns Prevalent GI illness 

Wang(90)  
(2005) AIDS HIV infection Overdose mortality 

O
th

er
 

Eisenberg(91)  
(2002) 

Epidemiology and 
Infection Drinking water patterns Diarrhea 
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Table 2.7 Structural Equation Models-specific study epidemiology grouped by exposure 
or outcome keywords  
 Lead 

Author Journal Exposure Primary outcome 
measure 

Structural Equation Models 

Rice(61)  
(2008) 

Journal of Adolescence 
Social network influences HIV risk behaviors 

Bull(59)  
(2008) 

AIDS and Behavior 
Internet-based intervention Change in proportion engaged 

in protected sex 

Cha(60)  
(2008) 

International Journal of 
Nursing Studies Social support, depression, 

self-efficacy ART adherence 

Sodergard(58)  
(2007) 

Patient Education and 
Counseling Attitudes toward meds, goals, 

right support system Adherence-behavior 

Naar-King(57)  
(2006) 

AIDS Care 
Stage of change, social 

support Alcohol and drug abuse 

Llabre(56)  
(2006) 

AIDS Patient Care and 
STDs HAART adherence Validity in predicting HIV 

viral load 

Prado(92)  
(2004) 

AIDS and Behavior 
Stressors Religious involvement 

Lim(93)  
(2003) 

Journal of Occupational 
Health Psychology Knowledge, homophobia, 

fear Organizational outcomes 

Sengupta(94)  
(2000) 

Journal of Acquired 
Immune Deficiency 

Syndromes 
Distrust Willingness to participate in 

AIDS research 

Kraft(55)  
(1995) 

Social Science and 
Medicine Attitudes and information Restrictive AIDS policies 

A
dh

er
en

ce
 a

nd
 B

eh
av

io
r 

Van der 
Velde(54)  

(1991) 

Journal of Behavioral 
Medicine 

Protection motivation theory, 
conflict theory AIDS related health behaviors 
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Table 2.8:  Results of Study Quality Assessment of Propensity Scores Publications 

Lead Author 
Data 

Country 
of Origin 

Traditional 
Interpretability 

Assumptions 
Discussed 

Confounding Or 
Mediating 
Variables 
Discussed 

Model/ 
Instrument 
Selection 
Discussed 

Zule(48)  
(2008) US Yes No Yes Yes 

Sanguan-
wongse(41)  

(2008) 
Thailand Yes Yes Yes Yes 

Mahal(47)  
(2008) Nigeria No Yes Yes Yes 

Anuwatnon-
thakate(46)  

(2008) 
Thailand Yes Yes Yes Yes 

Tai(45)  
(2007) US Yes No Yes Yes 

Potard(42)  
(2007) France No Yes Yes Yes 

Braithwaite(43)  
(2007) US Yes No Yes No 

Albalak(44)  
(2007) US No No No No 

Nosyk(73)  
(2006) Canada Yes No Yes No 

Merito(74)  
(2006) Italy Yes No Yes Yes 

Liu(76)  
(2006) US No No Yes Yes 

Liu(75)  
(2006) US Yes Yes Yes Yes 

Gangopadhyay(81)  
(2005) India No No Yes No 

El-Bassel(78)  
(2005) US No Yes Yes Yes 

Chu(77)  
(2005) US Yes Yes Yes Yes 

Wenzel(79)  
(2004) US Yes No Yes Yes 

Rotheram-
Borus(80)  

(2003) 
US Yes No No No 

Brumback(40)  
(2003) US Yes Yes Yes Yes 

McLaughlin(32)  
(1999) US No No Yes No 
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Table 2.9:  Results of Study Quality Assessment of Instrumental Variable Publications 

Lead Author 
Data 

Country 
of Origin 

Traditional 
Interpretability 

Assumptions 
Discussed 

Confounding Or 
Mediating 
Variables 
Discussed 

Model/ 
Instrument 
Selection 
Discussed 

Instrumental Variables 
Shiels(24)  

(2008) US No Yes Yes Yes 

Bond(6)  
(2007) Europe Yes Yes Yes Yes 

Lakdawalla(51)  
(2006) US Yes Yes Yes Yes 

Cain(52)  
(2006) US No Yes Yes Yes 

Hogan(50)  
(2004) US Yes Yes Yes Yes 

Bhattacharya(49)  
(2003) US Yes Yes Yes Yes 

Tarwater(34)  
(2001) US No No Yes No 

 
Table 2.10:  Results of Study Quality Assessment of Marginal Structural Model Publications 

Lead Author 
Data 

Country 
of Origin 

Traditional 
Interpretability 

Assumptions 
Discussed 

Confounding Or 
Mediating 
Variables 
Discussed 

Model/ 
Instrument 
Selection 
Discussed 

Marginal Structural Models 
Shiels(24)  

(2008) US No  No Yes No 

Peterson(23)  
(2008) US No Yes Yes Yes 

Patel.2(21)  
(2008) US Yes Yes Yes No 

Patel.1(22)  
(2008) US Yes Yes Yes No 

Lopez-Gatell(20)  
(2008) US Yes Yes Yes No 

Fox(25)  
(2008) Zambia Yes Yes No Yes 

Fairall(19)  
(2008) 

South 
Africa Yes Yes Yes No 

Dolev(18)  
(2008) US No No Yes No 

De Beaudrap(17)  
(2008) Senegal No Yes Yes Yes 
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Table 2.10:  Results of Study Quality Assessment of Marginal Structural Model 
Publications (continued) 

Lead Author 
Data 

Country 
of Origin 

Traditional 
Interpretability 

Assumptions 
Discussed 

Confounding Or 
Mediating 
Variables 
Discussed 

Model/ 
Instrument 
Selection 
Discussed 

Peterson.1(13)  
(2007) US Yes Yes Yes Yes 

Peterson.2(14)  
(2007) US No Yes Yes Yes 

Peterson.3(16)  
(2007) US Yes Yes Yes Yes 

Peterson.4(15)  
(2007) US Yes Yes Yes Yes 

Lopez-Gatell(12)  
(2007) US Yes Yes Yes No 

Cole(11) 
(2007)  US Yes Yes Yes No 

Brown(10)  
(2007) 

Zim-
babwe/  
Uganda 

Yes Yes Yes Yes 

Perez(53)  
(2007) Spain Yes Yes Yes No 

Hogg(82)  
(2006) Canada Yes Yes Yes Yes 

Hernan(64)  
(2006) France Yes Yes Yes Yes 

De Luca(83)  
(2006) Italy Yes No Yes No 

Brookhart(89)  
(2006) US Yes Yes Yes Yes 

Bachmann(88)  
(2006) 

South 
Africa Yes No Yes No 

Wang(90)  
(2005) US Yes Yes Yes Yes 

Sterne(84)  
(2005) 

Switzer-
land Yes Yes Yes No 

Cole(66)  
(2005) US Yes Yes Yes Yes 

Hogan(50)  
(2004) US Yes Yes Yes Yes 

Casper(85)  
(2004) US No No Yes Yes 

Brumback(67)  
(2004) US No Yes Yes No 

Barron(86)  
(2004) US Yes Yes Yes No 
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Table 2.10:  Results of Study Quality Assessment of Marginal Structural Model 
Publications (continued) 

Lead Author 
Data 

Country 
of Origin 

Traditional 
Interpretability 

Assumptions 
Discussed 

Confounding Or 
Mediating 
Variables 
Discussed 

Model/ 
Instrument 
Selection 
Discussed 

Ko(87)  
(2003) US Yes Yes Yes Yes 

Cole(65)  
(2003) US Yes Yes Yes Yes 

Brumback(40)  
(2003) US Yes Yes Yes Yes 

Hernan(63)  
(2002) US Yes Yes Yes No 

Eisenberg(91)  
(2002) US Yes Yes Yes Yes 

Hernan(62)  
(2001) US Yes Yes Yes No 

Hernan(37)  
(2000) US Yes Yes Yes Yes 

 
Table 2.11:  Results of Study Quality Assessment of Structural Equation Models 
Publications 

Lead Author 
Data 

Country 
of Origin 

Traditional 
Interpretability 

Assumptions 
Discussed 

Confounding Or 
Mediating 
Variables 
Discussed 

Model/ 
Instrument 
Selection 
Discussed 

Structural Equation Models 
Rice(61)  
(2008) US  No No Yes Yes 

Cha(60)  
(2008) US No No Yes Yes 

Bull(59)  
(2008) US No Yes Yes Yes 

Sodergard(58)  
(2007) Sweden No No Yes Yes 

Naar-King(57)  
(2006) US No No Yes Yes 

Llabre(56)  
(2006) US No Yes Yes Yes 

Prado(92)  
(2004) US No No Yes Yes 
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Table 2.11:  Results of Study Quality Assessment of Structural Equation Models 
Publications (continued) 

Lead Author 
Data 

Country 
of Origin 

Traditional 
Interpretability 

Assumptions 
Discussed 

Confounding Or 
Mediating 
Variables 
Discussed 

Model/ 
Instrument 
Selection 
Discussed 

Structural Equation Models 
Lim(93)  
(2003) Singapore No No Yes Yes 

Sengupta(94)  
(2000) US No Yes Yes Yes 

Kraft(55)  
(1995) Norway No Yes Yes Yes 

Van der Velde(54)  
(1991) 

Nether-
lands No Yes Yes Yes 

 
Table 2.12  Source of Inference Among Studies Using Marginal Structural Models 

Author 
(Year) 

Source of 
Inference 

Author 
(Year) 

Source of 
Inference 

Author 
(Year) 

Source of 
Inference 

Author 
(Year) 

Source of 
Inference 

Hernan[50] 
(2000)  GEE Casper[95] 

(2004) robust Hogg[92] 
(2006) unknown 

Debeau-
drap[16] 
(2008) 

robust 

Hernan[33] 
(2001) robust Hogan[31] 

(2004) sandwich Perez[64] 
(2007) robust Dolev[17] 

(2008) unknown 

Eisen- 
berg [101] 

(2002) 
sandwich Cole[75] 

(2005) robust Brown[9] 
(2007) GEE Fairall[18] 

(2008) robust 

Hernan[73] 
(2002) sandwich Sterne[94] 

(2005) robust Cole[10] 
(2007) sandwich Fox[24] 

(2008) robust 

Brum-
back[52] 
(2003) 

sandwich Wang[100] 
(2005) robust 

Lopez-
Gatell[11] 

(2007) 
bootstrap 

Lopez-
Gatell[19] 

(2008) 
robust 

Cole[76] 
(2003) bootstrap 

Bach-
mann[98] 

(2006) 
robust 

Peter-
sen.1[12] 

(2007) 
robust Patel[21] 

(2008) unknown 

Ko[97] 
(2003) robust 

Brook-
hart[99] 
(2006) 

bootstrap 
Peter-

sen.2[13] 
(2007) 

bootstrap Patel.2[20] 
(2008) unknown 

Barron[96] 
(2004) robust 

De 
Luca[93] 

(2006) 
unknown 

Peter-
sen.3[15] 

(2007) 
bootstrap 

Peter-
sen[22] 
(2008) 

bootstrap 

Brum- 
back[77] 
(2004) 

bootstrap Hernan[74] 
(2006) robust Petersen.4 

(2007)[14] bootstrap Shiels[23] 
(2008) GEE 
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Table 2.13.  Supplemental Table for Figures 13a-16b (Network of Institutions and 
Affiliated Authors of HIV-Related Studies Using Causal Inference Methods)1, 2 

 MSMs Propensity Scores Instrumental 
Variables 

Structural 
Equations 

All Methods 

Institution  Before 
2007 

2007-
2008 

Before 
2007 

2007-
2008 

Before 
2007 

2007-
2008 

Before 
2007 

2007-
2008 

Before 
2007 

2007-
2008 

Harvard 9 4 1 1 0 0 0 0 11 4 

Johns Hopkins 4 7 3 0 2 1 0 0 9 8 

UCLA 3 4 4 1 2 1 0 1 9 7 

UCSF 3 7 1 0 0 0 1 0 5 7 

Pittsburgh 1 2 1 1 2 1 0 1 4 5 

UC Berkeley 2 6 0 0 0 0 0 0 2 6 

Cook County 3 2 2 0 0 0 0 0 5 2 

UW 5 0 1 0 0 0 0 0 6 0 

Northwestern 1 2 1 0 2 1 0 0 4 3 

SUNY 
Brooklyn 

2 2 1 0 0 0 0 0 3 2 

Tulane 0 2 0 0 0 0 0 0 0 2 

Montefiore 1 1 2 0 0 0 0 0 3 1 

Georgetown 1 1 2 0 0 0 0 0 3 1 

CDC 1 0 0 2 0 0 0 1 1 3 

TMOPH 0 0 0 2 0 0 0 0 0 2 

Phuket 0 0 0 2 0 0 0 0 0 2 

Bangkok 
Metropolitan 

Health Admin. 

0 0 0 2 0 0 0 0 0 2 

Office of 
Disease 

Prevention and 
Control 

0 0 0 2 0 0 0 0 0 2 

Bamrashadura 0 0 0 2 0 0 0 0 0 2 

Chiang Rai 
Provincial PH 

Office 

0 0 0 2 0 0 0 0 0 2 

Research 
Institute of 

Tuberculosis 

0 0 0 2 0 0 0 0 0 2 

Stanford 0 1 1 0 1 0 0 0 2 1 

RAND 0 0 1 0 2 0 0 0 3 0 

Columbia 0 1 1 0 0 0 0 0 1 1 
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Table 2.13.  Supplemental Table for Figures 12a-15b (Networks of Institutions and 
Affiliated Authors of HIV-Related Studies Using Causal Inference Methods)1, 2 

(continued) 
 MSMs 

 Propensity Scores 
Instrumental 

Variables 
 

Structural 
Equations All Methods 

Institution  Before 
2007 

2007-
2008 

Before 
2007 

2007-
2008 

Before 
2007 

2007-
2008 

Before 
2007 

2007-
2008 

Before 
2007 

2007-
2008 

Saint Paul’s 1 0 1 0 0 0 0 0 2 0 

UBC 1 0 1 0 0 0 0 0 2 0 

INSERM 1 0 0 1 0 0 0 0 1 1 

Brown 2 0 0 0 1 0 0 0 3 0 

USC 1 2 0 0 0 0 0 0 1 2 

UNC Chapel 
Hill 

0 1 0 0 0 0 1 0 1 1 

University of 
Miami 

0 0 0 0 0 0 2 0 2 0 

University of 
East Anglia 

1 1 0 0 0 0 0 0 1 1 

University of 
the Free State 

1 1 0 0 0 0 0 0 1 1 

Lincoln 
Medical, NY 

1 1 0 0 0 0 0 0 1 1 

Kaiser 0 2 0 0 0 0 0 0 0 2 

1.  Institutional abbreviations are described in Appendix A.1.   
2.  Included are institutions with a minimum of 2 publications using one of the causal inference methods 
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Figures 

 
Figure 2.1.  DAG Representing Theoretical Antiretroviral Therapy and Death 
Relationship  
 

                                  Zip Code                   
 
         ART        Death  
 
 

 Calendar Year      Nutrition                                                                                          
 
 
 
 
Figure 2.2.  Study Selection Flow 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Initially	  identified	  
abstracts	  from	  
Medline,	  Web	  of	  
Science	  and	  
selected	  

bibliographies:	  
	  

N=	  1535	  

Papers	  examined	  
for	  review:	  

	  
N=603	  

Papers	  removed	  
based	  on	  date,	  

duplication,	  title,	  or	  
abstract:	  

	  
N=932	  

	  

Papers	  removed	  
because	  they	  did	  
not	  meet	  criteria:	  

	  
N=533	  	  

Papers	  included	  in	  
review	  

	  
N=70	  
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Figure 2.3.  Histograms Showing Temporal Trends in Appearance of Causal 
Inference Methods in HIV/AIDS Publications  
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Figure 2.4  Dot Chart of Frequency of Publications (with a minimum of 2) By All 
Associated Authors Using Causal Inference Methods With HIV/AIDS  
 
      Author  Publications Using Causal Inference Methods By All Associated Authors 
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Figure 2.5  Dot Chart of Frequency of Publications By First Authors Using Causal 
Inference Methods With HIV/AIDS  
 
      Author  Publications Using Causal Inference Methods By First Authors 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   

 58 

 
Figure 2.6  Dot Chart of Frequency of Publications By Senior Authors (Last 
Author) Using Causal Inference Methods With HIV/AIDS  
 
      Author  Publications Using Causal Inference Methods By Senior Authors 
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Figure 2.7.  Dot Chart of Frequency of Appearance of Publications Using Causal 
Inference Methods With HIV/AIDS Data By Journal  
 
                 Journals                                        Publications Using Causal Inference Methods By Journal 
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Figure 2.8. Bar-plots of Results of Study Quality Assessments By Method  
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Figure 2.9a.  Network of Institutions and Affiliated Authors of HIV-Related Studies 
Published Before 2007 Using Marginal Structural Models  
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Figure 2.9b.  Network of Institutions and Affiliated Authors of HIV-Related Studies 
Published In 2007-08 Using Marginal Structural Models                
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Figure 2.10a.  Network of Institutions and Affiliated Authors of HIV-Related 
Studies Published Before 2007 Using Propensity Scores 
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Figure 2.10b.  Network of Institutions and Affiliated Authors of HIV-Related 
Studies Published In 2007 Or 2008 Using Propensity Scores 
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Figure 2.11a.  Network of Institutions and Affiliated Authors of HIV-Related 
Studies Published Before 2007 Using Instrumental Variables 

 
Figure 2.11b.  Network of Institutions and Affiliated Authors of HIV-Related 
Studies Published in 2007 or 2008 Using Instrumental Variables 
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Figure 2.12a.  Network of Institutions and Affiliated Authors of HIV-Related 
Studies Published Before 2007 Using Structural Equations 

 
Figure 2.12b.  Network of Institutions and Affiliated Authors of HIV-Related 
Studies Published in 2007 or 2008 Using Structural Equations 

 

 
 
 
 
 



   

 67 

Bibliography 
 
1. Jadad A. Randomized Controlled Trials:  A User's Guide.  First Edition.  BJM 

Publishing Group; [date unknown]. 
 
2. Schulz K, Grimes D. Generation of allocation sequences in randomised trials:  

chance, not choice. Lancet 2002;359(9305):515-519. 
 
3. Rubin D. Comment:  Neyman (1923) and Causal Inference in Experiments and 

Observational Studies. 1990; 
 
4. Pearl J. Causality:  models, reasoning, and inference.  Cambridge University Press; 

2000. 
 
5. Shah B, Laupacis A, Hux J, Austin P. Propensity score methods gave similar results 

to traditional regression modeling in observational studies: a systematic review. 
Journal of Clinical Epidemiology 2005;58(6):550-559. 

 
6. Bond SJ, White IR, Sarah Walker A. Instrumental variables and interactions in the 

causal analysis of a complex clinical trial. Statist. Med. 2007;26(7):1473-1496. 
 
7. Robins JM. Marginal structural models. 1998; 
 
8. Robins JM, Brumback B. Marginal structural models and causal inference in 

epidemiology. Epidemiology 2000;11(5):550–560. 
 
9. Greenland S, Brumback B. An overview of relations among causal modelling 

methods. International journal of epidemiology 2002;31(5):1030. 
 
10. Brown JM, Wald A, Hubbard A, Rungruengthanakit K, Chipato T, Rugpao S, Mmiro 

F, Celentano DD, Salata RS, Morrison CS, others. Incident and prevalent herpes 
simplex virus type 2 infection increases risk of HIV acquisition among women in 
Uganda and Zimbabwe. Aids 2007;21(12):1515. 

 
11. Cole SR, Hernan MA, Anastos K, Jamieson BD, Robins JM. Determining the effect 

of highly active antiretroviral therapy on changes in human immunodeficiency virus 
type 1 RNA viral load using a marginal structural left-censored mean model. 
American journal of epidemiology 2007; 

 
12. Lopez-Gatell H, Cole SR, Hessol NA, French AL, Greenblatt RM, Landesman S, 

Preston-Martin S, Anastos K. Effect of tuberculosis on the survival of women 
infected with human immunodeficiency virus. American journal of epidemiology 
2007;165(10):1134. 

 
 



   

 68 

13. Petersen ML, Deeks SG, Martin JN, van der Laan MJ. History-adjusted marginal 
structural models for estimating time-varying effect modification. American journal 
of epidemiology 2007;166(9):985. 

 
14. Petersen ML, Deeks SG, van der Laan MJ. Individualized treatment rules: Generating 

candidate clinical trials. Statist. Med. 2007;26(25):4578-4601. 
 
15. Petersen ML, Wang Y, van der Laan MJ, Guzman D, Riley E, Bangsberg DR. 

Pillbox Organizers Are Associated with Improved Adherence to HIV Antiretroviral 
Therapy and Viral Suppression: A Marginal Structural Model Analysis. CLIN 
INFECT DIS 2007;45(7):908-915. 

 
16. Petersen ML, Wang Y, van der Laan MJ, Rhee SY, Shafer RW, Fessel WJ. Virologic 

efficacy of boosted double versus boosted single protease inhibitor therapy. AIDS 
2007;21(12):1547–54. 

 
17. de Beaudrap P, Etard J, Guèye FN, Guèye M, Landman R, Girard P, Sow PS, Ndoye 

I, Delaporte E, for the ANRS 1215/1290 Study Group. Long-Term Efficacy and 
Tolerance of Efavirenz- and Nevirapine-Containing Regimens in Adult HIV Type 1 
Senegalese Patients. AIDS Research and Human Retroviruses 2008;24(6):753-760. 

 
18. Dolev JC, Maurer T, Springer G, Glesby MJ, Minkoff H, Connell C, Young M, 

Schowalter K, Cox C, Hessol NA. Incidence and risk factors for verrucae in women. 
EPIDEMIOLOGY AND SOCIAL AIDS. 22 (10): 1213-1219, June 19, 2008. [date 
unknown]; 

 
19. Fairall LR, Bachmann MO, Louwagie G, van Vuuren C, Chikobvu P, Steyn D, 

Staniland GH, Timmerman V, Msimanga M, Seebregts CJ, others. Effectiveness of 
antiretroviral treatment in a South African program: a cohort study. Archives of 
Internal Medicine 2008;168(1):86. 

 
20. López-Gatell H, Cole SR, Margolick JB, Witt MD, Martinson J, Phair JP, Jacobson 

LP. Effect of tuberculosis on the survival of HIV-infected men in a country with low 
tuberculosis incidence. AIDS 2008;22(14):1869. 

 
21. Patel K, Hernán M, Williams P, Seeger J, McIntosh K, Dyke R, Seage III G, 

Pediatric AIDS Clinical Trials Group 219/219C Study Team. Long-term effect of 
highly active antiretroviral therapy on CD4 cell evoloution among children and 
adolescents infected with HIV:  5 years and counting. CLIN INFECT DIS 
2008;46(11):1751-1760. 

 
22. Patel K, Hernan MA, Williams PL, Seeger JD, McIntosh K, Dyke RBV, Seage III 

GR, Pediatric AIDS Clinical Trials Group 219/219C Study Team. Long-‐Term 
Effectiveness of Highly Active Antiretroviral Therapy on the Survival of Children 
and Adolescents with HIV Infection: A 10-‐Year Follow-‐Up Study. CLIN INFECT 
DIS 2008;46(4):507-515. 



   

 69 

 
23. Petersen ML, van der Laan MJ, Napravnik S, Eron JJ, Moore RD, Deeks SG. Long-

term consequences of the delay between virologic failure of highly active 
antiretroviral therapy and regimen modification. AIDS 2008;22(16):2097. 

 
24. Shiels MS, Cole SR, Wegner S, Armenian H, Chmiel JS, Ganesan A, Marconi VC, 

Martinez-Maza O, Martinson J, Weintrob A, others. Effect of HAART on incident 
cancer and noncancer AIDS events among male HIV seroconverters. JAIDS Journal 
of Acquired Immune Deficiency Syndromes 2008;48(4):485. 

 
25. Fox MP, Brooks DR, Kuhn L, Aldrovandi G, Sinkala M, Kankasa C, Horsburgh R, 

Thea DM. Role of breastfeeding cessation in mediating the relationship between 
maternal HIV disease stage and increased child mortality among HIV-exposed 
uninfected children. International Journal of Epidemiology 2009;38(2):569. 

 
26. Robins J. Identifiability and exchangeability for direct and indirect effects. 1992; 
 
27. Greenland S. An introduction to instrumental variables for epidemiologists. 

International Journal of Epidemiology 2000;29(4):722-729. 
 
28. Jewell N. Statistics for Epidemiology.  Chapman and Hall; 2004. 
 
29. Bluhm R. From hierarchy to network:  a richer view of evidence for evidence-based 

medicine. Perspect Biol Med 2005;48(4):535-47. 
 
30. Lachin J. Statistical properties of randomization in clinical trials. Control Clin Trials 

1988;9(4):289-311. 
 
31. Hernan MA, Hernandez-Diaz S, Robins JM. A Structural Approach to Selection 

Bias. Epidemiology 2004;15(5):615-625. 
 
32. McLaughlin TJ, Soumerai SB, Weinrib D, Aupont O, Cotton D. The association 

between primary source of ambulatory care and access to a outcomes of treatment 
among AIDS patients. International Journal for Quality in Health Care 
1999;11(4):293. 

 
33. Riersol E. Confluence analysis by means of lag moments and other methods of 

confluence analysis. Econometrica 1941;9:1-24. 
 
34. Tarwater PM, Mellors J, Gore ME, Margolick JB, Phair J, Detels R, Munoz A. 

Methods to assess population effectiveness of therapies in human immunodeficiency 
virus incident and prevalent cohorts. American journal of epidemiology 
2001;154(7):675. 

 
35. Robins JM, Rotnitzky A. Recovery of information and adjustment for dependent 

censoring using surrogate markers. AIDS Epidemiology, Methodology Issues 1992; 



   

 70 

 
36. Tager IB, Haight T, Sternfeld B, Yu Z, van Der Laan M. Effects of Physical Activity 

and Body Composition on Functional Limitation in the Elderly. Epidemiology 
2004;15(4):479-493. 

 
37. Hernan M, Brumback B, Robins J. Marginal structural models to estimate the causal 

effect of zidovudine on the survival of HIV-positive men. Epidemiology 
2000;11(5):561–570. 

 
38. Robins J. Marginal structural models versus structural nested models as tools for 

causal inference.  In: Statistical Models in Epidemiology:  The Environment and 
Clinical Trials.  New York, NY: Springer-Verlag; 1999 p. 95-134. 

 
39. R-Project.  www.r-project.org: [date unknown]. 
 
40. Brumback B, Greenland S, Redman M, Kiviat N, Diehr P. The intensity-score 

approach to adjusting for confounding. Biometrics 2003;59(2):274–285. 
 
41. Sanguanwongse N, Cain KP, Suriya P, Nateniyom S, Yamada N, Wattanaamornkiat 

W, Sumnapan S, Sattayawuthipong W, Kaewsa-ard S, Ingkaseth S, others. 
Antiretroviral therapy for HIV-infected tuberculosis patients saves lives but needs to 
be used more frequently in Thailand. JAIDS Journal of Acquired Immune Deficiency 
Syndromes 2008;48(2):181. 

 
42. Potard V, Rey D, Mokhtari S. First-line highly active antiretroviral regimens in 2001-

2002 in the French Hospital Database on HIV:  combination prescribed and 
biological outcomes. Antiviral Therapy 2007;12:317-324. 

 
43. Braithwaite RS, Kozal MJ, Chang CC, Roberts MS, Fultz SL, Goetz MB, Gibert C, 

Rodriguez-Barradas M, Mole L, Justice AC. Adherence, virological and 
immunological outcomes for HIV-infected veterans starting combination 
antiretroviral therapies. Aids 2007;21(12):1579. 

 
44. Albalak R, O'Brien R, Kammerer S. Trends in tuberculosis/human immunodeficiency 

virus comorbidity, United States, 1993-2004. Archives of Internal Medicine 
2007;167(22):2443-2452. 

 
45. Tai J, Udoji M, Barkanic G, Byrne D, Rebeiro P, Byram B, Kheshti A, Carter J, 

Graves C, Raffanti S, Sterling T. Pregnancy and HIV Disease Progression during the 
Era of Highly Active Antiretroviral Therapy. J INFECT DIS 2007;196(7):1044-1052. 

 
46. Anuwatnonthakate A, Limsomboon P, Nateniyom S, Wattanaamornkiat W, 

Komsakorn S, Moolphate S, Chiengsorn N, Kaewsa-ard S, Sombat P, Siangphoe U, 
Mock PA, Varma JK. Directly Observed Therapy and Improved Tuberculosis 
Treatment Outcomes in Thailand. PLoS ONE 2008;3(8):e3089. 

 



   

 71 

47. Mahal A, Canning D, Odumosu K, Okonkwo P. Assessing the economic impact of 
HIV/AIDS on Nigerian households: a propensity score matching approach. AIDS 
2008;22:S95. 

 
48. Zule WA, Bobashev G. High dead-space syringes and the risk of HIV and HCV 

infection among injecting drug users. Drug and Alcohol Dependence 
2009;100(3):204–213. 

 
49. Bhattacharya J, Goldman D, Sood N. The link between public and private insurance 

and HIV-related mortality. Journal of Health Economics 2003;22(6):1105–1122. 
 
50. Hogan JW, Lancaster T. Instrumental variables and inverse probability weighting for 

causal inference from longitudinal observational studies. Statistical Methods in 
Medical Research 2004;13(1):17-48. 

 
51. Lakdawalla D, Sood N, Goldman D. HIV Breakthroughs and Risky Sexual Behavior. 

The Quarterly Journal of Economics 2006;121(3):1063–1102. 
 
52. Cain LE, Cole SR, Chmiel JS, Margolick JB, Rinaldo Jr CR, Detels R. Effect of 

highly active antiretroviral therapy on multiple AIDS-defining illnesses among male 
HIV seroconverters. American journal of epidemiology 2006;163(4):310. 

 
53. METODOLÓGICA N. Aplicación de modelos estructurales marginales para estimar 

los efectos de la terapia antirretroviral en 5 cohortes de seroconvertores al virus de la 
inmunodeficiencia humana Marginal structural models application to estimate the 
effects of antiretroviral therapy in 5 cohorts of HIV seroconverters. Gac Sanit 
2007;21(1):76–83. 

 
54. Velde FW, Pligt J. AIDS-related health behavior: Coping, protection motivation, and 

previous behavior. Journal of behavioral medicine 1991;14(5):429–451. 
 
55. Kraft P, Rise J. Prediction of attitudes towards restrictive AIDS policies:  a structural 

equation modeling approach. Social Science and Medicine 1995;40(5):711. 
 
56. Llabre MM, Weaver KE, Durán RE, Antoni MH, McPherson-Baker S, Schneiderman 

N. A measurement model of medication adherence to highly active antiretroviral 
therapy and its relation to viral load in HIV-positive adults. AIDS Patient Care & 
STDs 2006;20(10):701–711. 

 
57. Naar-King S, Wright K, Parsons J, Frey M, Templin T, Ondersma S. Transtheoretical 

Model and substance use in HIV-positive youth. AIDS Care 2006;18(7):839-845. 
 
58. Södergaard B, Höfer S, Halvarsson M, Sönnerborg A, Tully MP, Lindblad \K. A 

structural equation modeling approach to the concepts of adherence and readiness in 
antiretroviral treatment. Patient Education and Counseling 2007;67(1-2):108–116. 

 



   

 72 

59. Bull S, Pratte K, Whitesell N, Rietmeijer C, McFarlane M. Effects of an Internet-
Based Intervention for HIV Prevention: The Youthnet Trials. AIDS Behav 
2008;13(3):474-487. 

 
60. Cha ES, Erlen JA, Kim KH, Sereika SM, Caruthers D. Mediating roles of 

medication–taking self-efficacy and depressive symptoms on self-reported 
medication adherence in persons with HIV: A questionnaire survey. International 
journal of nursing studies 2008;45(8):1175. 

 
61. Rice E, Stein J, Milburn N. Countervailing social network influences on problem 

behaviors among homeless youth. Journal of Adolescence 2008;31:625-639. 
 
62. Hernan MA, Brumback B, Robins J. Marginal structural models to estimate joint 

causal effect of nonrandomized treatments. Journal of the American Statistical 
Association 2001;96(454):440-448. 

 
63. Hernan MA, Brumback BA, Robins JM. Estimating the causal eect of zidovudine on 

CD4 count with a marginal structural model for repeated measures. Statistics in 
Medicine 2002;21:1689–1709. 

 
64. Hernan M, Robins J. Estimating causal effects from epidemiological data. Journal of 

Epidemiology and Community Health 2006;60(7):578-586. 
 
65. Cole SR, Hernán MA, Robins JM, Anastos K, Chmiel J, Detels R, Ervin C, Feldman 

J, Greenblatt R, Kingsley L, others. Effect of highly active antiretroviral therapy on 
time to acquired immunodeficiency syndrome or death using marginal structural 
models. American journal of epidemiology 2003;158(7):687. 

 
66. Cole SR, Hernan MA, Margolick JB, Cohen MH, Robins JM. Marginal structural 

models for estimating the effect of highly active antiretroviral therapy initiation on 
CD4 cell count. American journal of epidemiology 2005;162(5):471. 

 
67. Brumback BA, Hernán MA, Haneuse S, Robins JM. Sensitivity analyses for 

unmeasured confounding assuming a marginal structural model for repeated 
measures. Statistics in medicine 2004;23(5):749–767. 

 
68. Lefebvre G, Delaney JAC, Platt RW. Impact of mis-‐specification of the treatment 

model on estimates from a marginal structural model. Statist. Med. 
2008;27(18):3629-3642. 

 
69. Epstein R. Six authors in search of a citation:  Villains or victims of the Vancouver 

Convention? British Medical Journal 1993;306:765-767. 
 
70. Bennett D, Taylor D. Unethical practices in Authorship of Scientific Papers. 

Emergency Medicine 2003;15:263-270. 
 



   

 73 

71. Rennie D, Yank V, Emanuel L. When authorship fails:  a proposal to make 
contributors accountable. Journal of the American Medical Association 
1997;278:579-585. 

 
72. Buehring G, Buehring J, Gerard P. Lost in citation:  vanishing visibility of senior 

authors. Scientometrics. 2007;72(3):459-468. 
 
73. Nosyk B, Sun H, Li X, Palepu A, Anis AH. Highly active antiretroviral therapy and 

hospital readmission: comparison of a matched cohort. BMC Infectious Diseases 
2006;6(1):146. 

 
74. Merito M, Pezzotti P, for the ICONA Study Group. Comparing costs and 

effectiveness of different starting points for highly active antiretroviral therapy in 
HIV-positive patients. Eur J Health Econ 2006;7(1):30-36. 

 
75. Liu C, Weber K, Robison E, Hu Z, Jacobson LP, Gange SJ. Assessing the effect of 

HAART on change in quality of life among HIV-infected women. AIDS Research 
and Therapy 2006;3(1):6. 

 
76. Liu C, Ostrow D, Detels R, Hu Z, Johnson L, Kingsley L, Jacobson LP. Impacts of 

HIV infection and HAART use on quality of life. Qual Life Res 2006;15(6):941-949. 
 
77. Chu JH, Gange SJ, Anastos K, Minkoff H, Cejtin H, Bacon M, Levine A, Greenblatt 

RM. Hormonal contraceptive use and the effectiveness of highly active antiretroviral 
therapy. American journal of epidemiology 2005;161(9):881. 

 
78. El-Bassel N, Gilbert L, Wu E. HIV and intimate partner violence among methadone-

maintained women in New York City. Social Science and Medicine 2005;61:171-
183. 

 
79. Wenzel SL, Tucker JS, Elliott MN, Hambarsoomians K, Perlman J, Becker K, 

Kollross C, Golinelli D. Prevalence and co-occurrence of violence, substance use and 
disorder, and HIV risk behavior: A comparison of sheltered and low-income housed 
women in Los Angeles County. Preventive Medicine 2004;39(3):617–624. 

 
80. Rotheram-Borus MJ, Song J, Gwadz M, Lee M, Rossem RV, Koopman C. 

Reductions in HIV risk among runaway youth. Prevention Science 2003;4(3):173–
187. 

 
81. Gangopadhyay DN, Chanda M, Sarkar K, Niyogi SK, Chakraborty S, Saha MK, 

Manna B, Jana S, Ray P, Bhattacharya SK, Detels R. Evaluation of Sexually 
Transmitted Diseases/Human Immunodeficiency Virus Intervention Programs for 
Sex Workers in Calcutta, India. Sexually Transmitted Diseases 2005;32(11):680-684. 

 
 
 



   

 74 

 
82. Hogg RS, Bangsberg DR, Lima VD, Alexander C, Bonner S, Yip B, Wood E, Dong 

WW, Montaner JS, Harrigan PR. Emergence of drug resistance is associated with an 
increased risk of death among patients first starting HAART. PLoS Med 
2006;3(9):e356. 

 
83. De Luca A, Cozzi-Lepri A, Antinori A. Lopinavir/ritonavir or efavirenz plus two 

nucleoside analogues as first-line antiretroviral therapy: a non-randomized 
comparison. Antiviral Therapy 2006;11:609-618. 

 
84. Sterne JA, Hernán MA, Ledergerber B, Tilling K, Weber R, Sendi P, Rickenbach M, 

Robins JM, Egger M. Long-term effectiveness of potent antiretroviral therapy in 
preventing AIDS and death: a prospective cohort study. The Lancet 
2005;366(9483):378–384. 

 
85. Casper C, Redman M, Huang ML, Pauk J, Lampinen TM, Hawes SE, Critchlow CW, 

Morrow RA, Corey L, Kiviat N, others. HIV infection and human herpesvirus-8 oral 
shedding among men who have sex with men. JAIDS Journal of Acquired Immune 
Deficiency Syndromes 2004;35(3):233. 

 
86. Barron Y, Cole SR, Greenblatt RM, Cohen MH, Anastos K, DeHovitz JA, Delapenha 

R, Gange SJ. Effect of discontinuing antiretroviral therapy on survival of women 
initiated on highly active antiretroviral therapy. AIDS 2004;18(11):1579-1584. 

 
87. Ko H, Hogan J, Mayer K. Estimating causal treatment effects from longitudinal HIV 

natural history studies using marginal structural models. Biometrics 2003;59:152-
162. 

 
88. Bachmann MO, Booysen FL. Economic causes and effects of AIDS in South African 

households. AIDS 2006;20(14):1861. 
 
89. Brookhart A, van Der Laan M. A semiparametric model selection criterion with 

applications to the marginal structural model. Computational Statistics and Data 
Analysis 2006;50:475-498. 

 
90. Wang C, Vlahov D, Galai N, Cole SR, Bareta J, Pollini R, Mehta SH, Nelson KE, 

Galea S. The effect of HIV infection on overdose mortality. AIDS 2005;19(9):935. 
 
91. Eisenberg JNS, Wade TJ, Hubbard A, Abrams DI, Leiser RJ, Charles S, Vu M, Saha 

S, Wright CC, Levy DA, others. Associations between water-treatment methods and 
diarrhoea in HIV-positive individuals. Epidemiology and infection 
2002;129(02):315–323. 

 
92. Prado G, Feaster DJ, Schwartz SJ, Pratt IA, Smith L, Szapocznik J. Religious 

involvement, coping, social support, and psychological distress in HIV-seropositive 
African American mothers. AIDS and Behavior 2004;8(3):221–235. 



   

 75 

 
93. Lim K. Managing HIV at the workplace: an empirical study of HIV and HR 

managers in Singapore. Journal of Occupational Health Psychology 2003;8(4):235-
246. 

 
94. Sengupta S, Strauss RP, DeVellis R, Quinn SC, DeVellis B, Ware WB. Factors 

affecting African-American participation in AIDS research. JAIDS Journal of 
Acquired Immune Deficiency Syndromes 2000;24(3):275. 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



   

 76 

 
 
 
 
 
 
 
 
 

 
 
Chapter 3 
 

 
 

 

The Effect of Early Triple 
Therapy Among HIV-
Infected Children:  A Causal 
Inference Approach 
 
 
 
 
 
 
 
 
 

 
 
 



   

 77 

3.1 ABSTRACT 
 
Background 
Though principally extremely rare in the United States today, the majority of human 
immunodeficiency virus (HIV) infections in children are attributed to mother-to-child-
transmission (MTCT). Specifically, there are three avenues of infection via MTCT:  in 
utero; at delivery; and through breastfeeding.  It is estimated that the probability of 
infection in utero and at time of delivery is approximately 15-30%, though breastfeeding 
from 18-24 months the overall probability of vertical transmission increases to about 30-
45%.(1) Worldwide, however, particularly in areas with no treatment availability or 
antenatal programs, approximately 1600 children are diagnosed with HIV every day,(2) 
and over 300,000 deaths among infected children occur annually worldwide.(3)  
 
In 1996, the advent of highly active antiretroviral therapy (HAART) dramatically reduced 
the risk of mortality from HIV.  However, the long-term effects of HAART, or triple 
therapy, are not yet fully understood.  As a consequence, the costs and benefits of 
initiating therapy earlier rather than later are still at the forefront of pediatric HIV 
research and treatment guidance.  Treatment recommendations vary between the Centers 
for Disease Control (CDC), World Health Organization (WHO), and Ministries of Health 
within individual European countries.  Similar to the current CDC guidelines, the WHO 
recently changed the treatment guidelines to include all HIV infected children under 12 
months regardless of immunologic status.(4)  
 
In the present study, I use marginal structural models as estimated by G-Computation to 
estimate the causal effect of triple therapy (HAART) on time to C diagnosis, time to C 
diagnosis/death, and death alone among HIV-infected children.  
 
Methods 
The Pediatric Spectrum of Disease (PSD) is a multicenter active surveillance program 
specifically for children who have been exposed to HIV perinatally.(5) Through this 
program, I have identified and defined a population-based cohort of HIV positive 
northern Californian children who were vertically infected from 1988-2008.    
 
To estimate the effect of therapies on outcomes of interest, traditional methods for 
controlling biases, like regression techniques, are often employed.  However, they often 
fall victim to model misspecification, thus inherently biased. So-called causal inference 
methods are alternative techniques with causal effect interpretations. 
 
I have looked at binary levels of A, A ∈ {0,1} in triple therapy (HAART) initiated in the 
first 6 months versus no triple ARV therapy initiated in the first 6 months.  Further, I 
have also looked at binary levels of A, A ∈ {0,1} in triple therapy (HAART) initiated in 
the first 12 months versus no triple ARV therapy initiated in the first 12 months.  Two 
subgroup analyses were performed by further restricting A to triple therapy initiated 
within the first 6 or 12 months of life among symptomatic children and triple therapy 
initiated within the first 6 or 12 months of life among asymptomatic children.  I have 
defined a vector of baseline covariates, W, which includes immune status at treatment 
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initiation, length of pregnancy (full-term or less than full-term), child’s race, sex, whether 
mothers received prenatal care, and birthweight (< 2500 grams or >= 2500 grams). Using 
a g-comp approach, where I define Ψ1 (p0)(tk) ≡P(Ta > tk) as all treated and Ψ0 (p0)(tk) 
≡P(Ta > tk) as all untreated, I estimate the marginal additive difference and marginal log 
hazard ratios for each treatment scenario. 
 
Results 
The sample comprised of N=217 HIV infected children whose infection is assumed to 
occurred in utero or at delivery. The majority of the sample is female (56.2%) and non-
White ethnicity (71.9%).  Approximately half of the mothers of the children included 
received prenatal care.  Over one-quarter of the children were born low birth weight 
(29.5%) and about forty-three percent were not full-term.  Immune impairment at ARV 
treatment initiation was common as 40.1% were severely impaired and 32.3% were 
moderately impaired.  Eight percent of the children received triple therapy in their first 6 
months of life, while 45% received triple therapy within the first 12 months of life.  
 
Though no results were statistically significant, there are some trends that should be 
highlighted.  Among children who initiated triple therapy within 6 months of birth the 
causal effect of treatment in delaying a C diagnosis, ΨHZ(p0)(tk)= -0.466 (95% CI -1.46-
0.397), is seemingly stronger than children who initiated therapy within 12 months of 
birth (ΨHZ(p0)(tk)= -0.321 (95% CI -0.588-0.212)).  Additionally, the effect of triple 
therapy initiated within the first 6 or 12 months of life on time to C diagnosis is greater 
among symptomatic children (12 Months: ΨHZsymptomatic (p0)(t36): -0.587 (95% CI -1.217-
0.480)) than among asymptomatic children (12 Months: ΨHZasymptomatic (p0)(t36): -0.106 
(95% CI -1.138-2.105)).  In contrast, the effect of triple therapy initiated within the first 6 
or 12 months of life on time to death is stronger among asymptomatic children (12 
Months: ΨHZasymptomatic (p0)(t36): -0.336 (95% CI -1.423-0.305)) than among 
symptomatic children (12 Months: ΨHZsymptomatic (p0)(t36): -0.165 (95% CI -15.297-
0.621)).  
 
Discussion 
The WHO, in 2006, developed clinical and immunologic guidelines for treatment 
initiation in asymptomatic children in resource-limited settings based on HIV Pediatric 
Prognostic Markers Collaborative Study (HPPMCS) data.(4) In 2008, WHO amended 
their recommendations for treatment initiation for HIV-positive children as a result from 
an RCT in South Africa.(7) Though not statistically significant, the results from the 
present analysis may be interpreted as supportive of the current WHO treatment 
guidelines for initiating treatment among all HIV positive children, regardless of 
symptoms.   
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3.2  Introduction 
 
The earliest known reports of Human Immunodeficiency Virus (HIV) and Acquired 
Immune Deficiency Syndrome (AIDS) were in 1983 among homosexual men in the 
United States.(8; 9)  The epidemic quickly spread throughout all communities and 
continues today disproportionately affecting the most vulnerable populations.  Early in 
the epidemic, childhood infections were often the result of blood transfusions and 
resulted in the loss of nearly the entire childhood hemophiliac community.  However, 
since the early 1990s as researchers have learned more about the spread of the infection 
within children, the majority of HIV infections in children are attributed to mother-to-
child-transmission (MTCT). Specifically, there are three avenues of infection via MTCT:  
in utero; at delivery; and through breastfeeding.  It is estimated that the probability of 
infection in utero and at time of delivery is approximately 15-30%, though breastfeeding 
from 18-24 months the overall probability of vertical transmission increases to about 30-
45%.(1)  All three of these sources of infection have been neutralized in the United States 
through early prenatal diagnosis and treatment among mothers and recommendations for 
breastfeeding cessation in antenatal programs.  In fact, in the United States, the risk for 
childhood infection has decreased such that it is very rare in all communities as the 
prophylaxis treatment for prevention of infection in children has improved and testing 
among mothers has become obligatory.(10)  Worldwide, however, particularly in areas 
with no treatment availability or antenatal programs, approximately 1600 children are 
diagnosed with HIV every day.(2) 
 
Infants born to HIV+ mothers are a particularly vulnerable population for myriad reasons.  
Pregnant women infected with HIV are more likely to give birth to a low birth weight 
(LBW) infant if they are not taking antiretroviral medications.(11) Without access to 
appropriate drugs and care, a reality in the developing world, these infants are likely to 
seroconvert, as well.  In turn, a LBW child infected with HIV via MTCT has two 
significant threats to his immune function—LBW and HIV.  Furthermore, while the 
burden of vertical transmissions is in Sub-Saharan Africa and practitioners know the 
ways to prevent MTCT, often in these developing countries food insecurity leaves HIV-
positive mothers little choice but to continue exposing their children to HIV via 
breastfeeding.(12; 13)  
 
Determining which children are more likely to convert than others may prove to be 
invaluable in perinatal HIV treatment and prevention.  Embree et al found that in a cohort 
of HIV exposed and unexposed children enrolled at birth, postnatally infected children, 
those who seroconverted at some time after 3 months of age, were more likely to have 
lower, pre-seroconversion CD4+ counts than HIV unexposed children (p value < 
0.007).(14)  Research has also shown that HIV-infected newborns with fewer t-cells are 
more likely to progress quicker than HIV-infected newborns with more t-cells.(15)  A 
study exploring seasonality and maternal factors among HIV exposed, but initially 
uninfected, children in Cameroon, birth weight was a significant predictor of 
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seroconversion in their first two months of life (p value < 0.01).(16) These results are 
particularly notable because all mothers enrolled in the study were treated with 
Nevirapine at the beginning of labor.  In contrast, the use of antiretroviral therapy during 
pregnancy and labor is associated with an increase in birth weight in HIV exposed 
children.(11)  
 
Not all children who are exposed to HIV perinatally seroconvert, independent of 
retroviral therapy. The more severe the infection in the mothers, the more likely she is to 
transmit the disease in utero and through breastfeeding, in the absence of prophylaxis.  
The standard treatment for prevention of MTCT is single dose nevirapine (sdNVP) 
perinatally, though about 10% of children exposed to sdNVP will still develop HIV even 
before breastfeeding.(17; 18)  
 
Today, over 90% of the estimated 2.5 million HIV infected children worldwide live in 
sub-Saharan Africa.(3) Over 300,000 deaths among infected children occur annually 
worldwide.(3) The burden of pediatric HIV infections lies in the poorest regions of sub-
Saharan Africa, where approximately only 10% of mothers have access to antenatal 
programs aimed at preventing MTCT.(19) As access to care in developing areas 
continues to affect the health of future mothers, so too does it affect their children’s 
health.  A recent study in South Africa found that 85% of HIV-infected, sdNVP exposed 
infants were moderately or severely immuno-compromised (CD4 % < 25) by 6 months 
post-partum,(17) suggesting these children were particularly vulnerable due to the 
severity of infection in their mothers.   
 
Family planning services play a key role in reducing MTCT as both unwanted 
pregnancies and vertical transmission of HIV result from engaging in unprotected sex.  
Not only is an increase in contraception use more cost-effective at reducing MTCT than 
preventative drugs, namely Nevirapine,(20) but Sweat et al found that even a small 
reduction in unwanted pregnancies prevents an equal number of HIV infections as 
provision of Nevirapine.(21) In fact, an argument can be made that the risk of vertical 
transmission would be reduced if HIV positive women were able to space their births 
further apart because not only would their need for prevention of MTCT services be 
reduced, but her own health would improve, thus improving her virologic status.(22) 
 
In 1996, the advent of highly active antiretroviral therapy (HAART) dramatically reduced 
the risk of mortality from HIV.  Results from birth cohort studies of HIV+ children 
indicate that approximately 70-80% of children left untreated will survive to age five.(23-
25)  Previously, only three large, observational studies have evaluated the impact of 
HAART on mortality among HIV-infected children (regardless of symptoms),(26; 23) 
only one of which had a longer period of follow-up of HAART-exposed children.  In 
turn, the long-term effects of HAART on mortality among children still need to be 
explored.  Patel et al, with the use of marginal structural models, estimated the weighted, 
adjusted proportional hazard for mortality as 0.24 (95% CI 0.11–0.51) when comparing 
HAART treated children to untreated children.(27)  Similarly, Gortmaker et al found a 
reduced hazard ratio for death (HR 0.33; 95% CI 0.19-0.58)(26) and de Martino et al 
found a reduced RH of death (RH 0.29; 95% CI 0.13-0.67) among triple therapy initiated 
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children compared to untreated children.(23)  After the roll-out of HAART, survival 
expectedly has only improved.(23; 28)  HAART is used as a first-line treatment now 
among HIV infected children in order to recuperate from HIV-associated illnesses and re-
establish immuno-compentence.(29-33)  
 
Researchers are still trying to establish the most ideal time to initiate antiretroviral 
therapy in vertically infected children.  Weighing the benefits and risks of early initiation 
of HAART or triple therapy is a necessary component in making treatment guidelines 
recommendations.  Treatment recommendations vary between the Centers for Disease 
Control (CDC), World Health Organization (WHO), and Ministries of Health within 
individual European countries.  Nevertheless, the varying treatment guidelines for 
pediatric HIV do not seem to significantly affect the clinical outcomes.(34) For numerous 
reasons, not the least of which are the inherent ethical issues, randomized controlled trials 
(RCT) exploring the best time to initiate HAART in HIV positive children are very 
uncommon.  In fact, the only published randomized trial estimating the effect of early 
HAART versus delayed HAART on mortality among HIV positive infants prematurely 
terminated in 2008 as a result of an unbalanced, disproportionate number of deaths in the 
delayed group.(35) One other RCT was conducted to explore the impact of delaying 
HAART initiation on clinical disease progression, however this study was a small 
feasibility study in preparation for another, larger RCT which will likely be completed in 
2011.  Moreover, the study population only included HIV positive children 1-12 years of 
age, excluding all positive infants.(36) Prior to the HAART era, the PENTA 1 study 
conducted a similar study of delayed versus early initiation of zidovudine 
monotherapy.(37)  Their results suggest that early initiation of ART has no added benefit 
on clinical outcomes.  Among non-RCTs, Newell et al from the European Collaborative 
Study, a prospective study of a birth cohort of 131 HIV infected children, conclude that 
initiating ART in the first 5 months of life and the use of HAART were both highly 
predictive of an improved CD4 z-score 6 months after treatment initiation.(38)  In one of 
the only other identified observational studies evaluating the impact of delayed treatment 
initiation among HIV positive infants, Chiappini et al found children treated early with 
HAART had significantly lower viral load than deferred treatment children and they were 
also less likely to progress to a C diagnosis.(39)  
 
Results from adult studies that have explored HAART and its effect on mortality are 
likely not reflective of its effect on mortality if applied to pediatric populations.(40) 
Typically CD4 counts and viral load are clinical parameters used to assess disease 
progression in adult populations, but these same parameters have a wide variability in 
children.(41-43)  Additionally, in children HIV affects neuro-cognitive development, 
growth, and an immune system that is not yet fully mature.(44-46) Though adult 
observational studies have shown that patients who start HAART early (higher CD4 
counts) have better clinical outcomes than adults who start at CD4 counts below 200 
cells/µL, these results are likely not generalizeable to the pediatric HIV infected 
community. 
 
As a result of new evidence from one prematurely terminated RCT estimating the impact 
of early HAART on mortality, the WHO recently changed the treatment guidelines to 
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include all children under 12 months regardless of immunologic status.(4)  Previously, 
treatment for pediatric HIV infection was only recommended for children who presented 
symptomatically.  The previous age-specific recommendations by the WHO are listed in 
Appendix A.2.(7)  The implications for these treatment guidelines are particularly 
important for the infected infants who will now have to be on HAART for life.  Once a 
child begins therapy, he must remain on treatment for life, or he risks developing drug 
resistance, which may in turn hasten his death. 
 
The long-term exposure to HAART has known adverse health implications for HIV-
infected adults.  In fact, HAART has been associated with an increased risk of 
hyperlipidemia, lipodystrophy, and atherosclerosis.(47)  This risk is not as well 
understood in infants, but there is evidence of an increased risk of cardiac abnormalities 
and mitochondrial damage in children, HIV positive and negative alike, whose mothers 
were treated with HAART.(48; 49)  
 
The CDC’s clinical categories of HIV disease among children helps determine the 
progress of the disease and establish immune suppression.  Though the CDC’s treatment 
guidelines include all HIV positive children under 12 months, previous algorithms were 
employed to determine treatment eligibility.  Essentially, severe disease was determined 
by a combination of clinical presentations and immunologic measurements (CD4 count 
or preferably CD4%).  These criteria are outlined in Appendix A.3.  In contrast, the 
Pediatric European Network for the Treatment of AIDS (PENTA) group’s treatment 
recommendations are less aggressive; essentially, treatment is recommended among 
infants if they have a C diagnosis or CD4% less than 20% (see Appendix A.4).(50) 
 
Particularly a problem in HIV/AIDS literature, observational studies are often biased as 
traditional analysis methods are employed to estimate the effect of a treatment on an 
outcome of interest.  Causal inference methods have been developed to overcome many 
of these biases and have been employed in the present study.  Among the four previously 
published observational studies exploring the effect of HAART on mortality in a 
pediatric population, two applied causal inference methods, one of which was a follow-up 
study of the first study.(27; 51)  
 
To overcome the inherent issue of correct model specification in time to event 
observational studies, I aimed to use g-computation, a marginal structural models (MSM) 
estimator, to estimate the causal effect of HAART (interchangeably referred to as triple 
therapy) on reducing AIDS/death among children who were infected in utero.  
Additionally, I performed a subanalysis of symptomatic and asymptomatic children.   
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3.3  Methods 
 

3.3.1 Study Population 
 
The Pediatric Spectrum of Disease (PSD) is a multicenter active surveillance program 
specifically for children who have been exposed to HIV perinatally.(5) Since 1988 this 
program has been located at Stanford University and has a surveillance catchment area of 
12 counties in northern California with a total population of approximately 6 million. 
Through this program, I have identified and defined a population-based cohort of HIV 
positive northern Californian children.   
 
Researchers working with the PSD database examine records from the California 
Children Services program, which provides case management services for HIV infected 
children, and medical records at hospital-based clinics.  Study nurses visited pediatric 
HIV clinics biannually for data extraction from medical records and to identify new 
patients entering the PSD database.  Medical records for all children under 18 years of 
age were followed until they were lost to follow up, died, or their status was definitely 
negative.  Vertical transmission was determined by the CDC classification system for 
HIV in children younger than 13 years of age.(30; 52)  An alphanumeric code combined 
with the birth date was used as a unique identifier to preserve confidentiality and avoid 
record duplication.  For the ongoing surveillance for the PSD database, institutional 
review boards approval has been granted annually by the enrolling hospitals for the 
children and by Stanford University.  For the present study, approval was obtained from 
the institutional review boards of Stanford University and University of California-
Berkeley.   
 

3.3.2 Statistical Methods 
 
Data Structure 
In the present analysis, I have done a time to event analysis to explore the effect of 
treatments (triple ARV therapy, or no triple ARV therapy), A, have on the amount of 
time until my event of interest occurs.  That is to say, I have estimated the time, T, it 
takes for a child to experience an event (1: Category C; 2: Category C diagnosis or death; 
3: death).  
 
I have looked at binary levels of A, A ∈ {0,1} in triple therapy (HAART) initiated in the 
first 6 months versus no triple ARV therapy initiated in the first 6 months.  To allow for a 
less restrictive treatment assignment, I have also looked at binary levels of A, A ∈ {0,1} 
in triple therapy (HAART) initiated in the first 12 months versus no triple ARV therapy 
initiated in the first 12 months.  Two subgroup analyses were performed by further 
restricting A to triple therapy initiated within the first 6 or 12 months of life among 
symptomatic children and triple therapy initiated within the first 6 or 12 months of life 
among asymptomatic children.  I have defined a vector of baseline covariates, W, which 
includes immune status at treatment initiation, length of pregnancy (full-term or less than 
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full-term), child’s race, sex, whether mothers received prenatal care, and birthweight (< 
2500 grams or >= 2500 grams).   I have defined T as a discrete variable with values 
{1,….,K}, where K is last time point children are monitored.  In contrast, I defined 
censoring, C, as the last time point children are observed.  My data structure also defines 
whether an event has occurred as N1 and a similar scenario for censoring with N2.  In 
turn, all time points until the event occurs are denoted by dN1(t) = 0 and dN1(t) = 1 at the 
time point the event occurs.   All time points until a child is censored are denoted by 
dN2(t) = 0 and dN2(t) = 1 at the time of censoring.  The long form of my observed data 
can be expressed as n iid observations of O = (A,W,dN1(t), dN2(t): t=1, …, K) ~ po, 
where po is the density of the my observed data, O.      
 
The likelihood of the observed data is described as: 
 
                                        k  
L(0) = P(W)P(A|W) Π P(dN1(t) | dN1(t-1) = 0, dN2(t-1) =0,A,W)   (1) 
             t=1 
            P(dN2(t) | dN1(t) = 0, dN2(t-1) = 0, A, W) 
 
Where,  
 

Q10(W) ≡ P(W) is the distribution of baseline covariates, W; 
Q20(N1(t),A,W) ≡ P(dN1(t) | dN1(t-1) = 0, dN2(t-1) =0,A,W) is the  

conditional hazard of the event (C diagnosis and/or death) given 
the treatment (A) and baseline covariates, W; 

g10(A,W) ≡ P(A | W) is the treatment mechanism; 
g20(N2(t), A,W) ≡ P(dN2(t) | dN1(t) = 0, dN2(t-1) = 0, A, W) is the  

censoring mechanism—the conditional hazard of censoring given 
the subject did not yet experience an event, no previous censoring, 
and given the treatment, A, and baseline covariates.   

 
In turn, the likelihood (equation 1) factorizes the distribution of W, baseline covariates, 
the missingness mechanism, g, and the conditional hazard of the outcome of interest.  To 
estimate the survival, that is, the probability of surviving to time k given treatment, A, 
and baseline covariates, W, one would define S0(tk | A, W) = P(T > tk | A,W).  Then one 
would take the cumulative product of 1 minus the conditional hazard of C diagnosis 
and/or death to estimate survival (see equation 2):   
  tk 
S0(tk | A, W) = ∏(1- Q20(N1(t),A,W))       (2) 
  t=1 
 
In time to event analyses, researchers will often a priori specify a parametric hazard 
model in traditional techniques exploring the effect of a treatment, A, on a time to event 
outcome, and test if A is different from zero.  Covariates are selected for inclusion in 
these traditional approaches usually in a rudimentary way—selecting and deleting 
covariates based on their influence on A’s effect on the outcome. One of the most 
common approaches for time to event scenarios is the Cox proportional hazard model, or 
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logistic regression in the case of discrete time outcomes.  Furthermore, time will often be 
fit and a linear model will be employed to estimate the effect of A and the covariates.  
The parameters in conditional hazard models are estimated with a maximum likelihood 
approach.  The central feature here is to evaluate whether the parameter representing the 
treatment, A, is significantly different from 0.  Again, these estimates are heavily 
dependent on how well the model is specified.  In turn, the parameters within hazard 
models may not be correctly specified, though this may go unnoticed unless the selected 
hazard model is contrasted with alternative models.  It should be noted that the parameter 
estimating the effect of A on the outcome of interest is only relevant within that specific 
model.  In the optimistic case of correctly specifying the hazard model, then this 
parameter represents the log odds ratios of the event occurring at each time point for A, 
and only in the context of that specific model.  Essentially, this is the proportional 
hazards assumption—A’s effect is identical at every time point.   
 
Furthermore, the log-rank statistic in a Cox proportional hazards model can be described 
as the effect of A on time to event, but only if the model is correctly specified.  
Proportional hazards are similarly assumed in these models while fitting the baseline 
hazard.  Either the conditional hazards or Cox proportional hazards models are often 
biased as a result of incorrectly specified models.   
 
G-Computation Approach 
Unfortunately, restrictive parametric models often seen in traditional methods are not 
usually representative of the data generating distribution of the outcome of interest, even 
if baseline covariates are included in the model.(53)  Using an approach that uses 
parameters that are naturally selected based on the data as opposed to using parameters 
selected in the ways highlighted above allows for easier interpretation of the model and 
its parameters.  Additionally, the models’ parameters are only correct in the context in the 
specified model.   
 
For example, let us define our parameter of interest as a function of our data generating 
distribution, Ψ (p0).  If one is interested in the survival at time point, tk, the specific 
survival curve may be expressed as P(Ta > tk).  Once again referring to the counterfactual 
framework, if a subject’s treatment level were to be set at a, then Ta would be the event 
time, T, one would have observed, regardless of whether that subject’s true observed 
treatment is at level a.  Had this subject been treated with a different level of a than what 
is expressed in P(Ta > tk), then this is a counterfactual description of his survival curve.   
 
The causal assumptions for the present study are illustrated in Figures 3.1 and 3.2.  In 
general, I could assign all my subjects to treatment a, triple therapy, and their censoring, 
dN2(t), to not censored at all t throughout the study (Figure 3.2).  In turn, I will have my 
counterfactual outcome—treated with triple therapy and not censored.  In order to 
quantify the causal effect of A, triple therapy, on mortality (or death/category C 
diagnosis), the effect was estimated using these counterfactuals.  More specifically, I 
used a marginal additive difference ΨRD(p0)(tk), in the probability of survival.  That is, 
 
Ψ1 (p0)(tk) ≡P(Ta > tk) [all treated] – Ψ0 (p0)(tk) ≡ P(Ta > tk) [all untreated]  (3) 
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My parameters established in this fashion may also be influenced by baseline covariates, 
defined previously as W.  As such, I can estimate the counterfactual survival at tk setting 
other baseline variables at 0 or 1.  Additionally, the marginal log hazard ratio is defined 
by: 
 
ΨRH (p0)(tk) = log ((log(Ψ1 (p0)(tk)))/(log(Ψ0 (p0)(tk))))    (4) 
 
 
A directed acyclic graph (DAG) often helps researchers decide which variables are 
necessary for adjustment by identifying possible confounders.  Elements within DAGs 
were described previously (Ch.2-Causal Inference Methods applied to HIV/AIDS Data).  
Figure 3.3 is a DAG describing the possible associations between initiation of HAART 
and HIV mortality among infected children.  Similarly, Figure 3.4 describes the possible 
associations between initiation of HAART and a C Diagnosis.  My analysis plan included 
exploring each of the measured baseline covariates within Figures 3.3 and 3.4 and define 
them as W.   
 
In order to express the mean counterfactual outcomes, as described by equations 3 and 4, 
I have employed the G-computation estimator.  Because it is important to estimate the 
distributions of my baseline covariates, W, the conditional hazard of the event given their 
treatment, A, and W, and the conditional survival of the outcome of interest, as related to 
the conditional hazard, I have employed super learner software 
(Deletion/Substitution/Addition).  The empirical distribution of my baseline covariates in 
my data estimate non-parametrically the marginal distribution of W.  By using this data-
adaptive machine learning algorithm, and its cross-validation based on likelihood, I am 
avoiding the problems inherent with traditional approaches and model building.(60)  All 
confidence intervals for G-computation estimates were calculated by bootstrap sampling.     
 
Specifically, my data analysis plan includes using DSA on the entire data set in the 
repeated measures form for discrete time survival analysis.  I have forced in A and 
indicators for time into the DSA, in turn, time was non-parametrically fit.  Then, the 
standard g-comp was performed where everyone is be set equal to A=1 (treated) and the 
DSA fit was used to get conditional hazards from 1...tk.  I then took the product integral 
of one minus the hazard.  As a result, for each child I derived an estimated survival as 
though the child were treated and then I took the mean over those children to get the 
mean treatment specific survival at tk. I repeated this process for children setting A=0. 
 
In an intent-to-treat approach, I assumed the initial treatment, whether mono, dual, or 
triple therapy, was unmodified throughout the study.  In order to establish t=0, that is the 
first day of follow-up for each child, I employed an algorithm to include only children 
who were assumed to be infected in utero or delivery.  In turn, I excluded n=60 children 
who were likely infected postnatally via breastfeeding, which could have occurred any 
time throughout breastfeeding.  This approach included children whose mothers were 
assumed to be knowledgeable about their infection as breastfeeding was likely 
discouraged among these women.  To identify these children, an algorithm was applied 
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that identified children whose mothers showed HIV symptoms during their pregnancy, 
symptoms during their delivery, were known to have taken HIV medication, or were 
known to have received prenatal care, as mandatory HIV testing for pregnant women 
began in 1987.  Two separate, primary analyses were explored regarding timing of 
initiation of HAART—a) starting triple therapy in the first six months of life, b) starting 
triple therapy in the first twelve months of life. 
 
For my subgroup analyses of children who were asymptomatic and symptomatic at time 
of treatment initiation, I constructed an algorithm to identify their disease status.  The 
definition of asymptomatic children was adapted from the CDC’s definition of 
severe/moderate/mild immune suppression among children (see Appendix A.3).  In short, 
somewhat similar to PENTA’s previous treatment initiation guidelines (see Appendix 
A.4), asymptomatic children were described as not having a C diagnosis and not having a 
CD4% below 15%.  In the absence of CD4% data, the CD4 count as it relates to the 
immune competence age-specific threshold was used.  To ensure children who began 
ART were asymptomatic, another algorithm was applied to identify children who were 
diagnosed with a C diagnosis 4 weeks or more after the initial treatment.  Previously, it 
has been shown that at least four weeks of ARV treatment are needed to have any clinical 
effectiveness.(54) Additionally, this algorithm identified the CD4% or CD4 counts within 
four weeks of ARV treatment initiation to ensure that the immunological data (CD4% 
and CD4 count) at (or near) treatment initiation were likely unaffected by ARV initiation.    
 
The variables included in the primary analysis were length of pregnancy (full-term or not 
full-term), sex, birthweight (<2500 grams, >2499 grams), race (non-White or White 
ethnicity), prenatal care, and immune status at treatment initiation (severely, moderately, 
or mildly/not suppressed).  The same variables were included in the subanalysis of 
asymptomatic/symptomatic children, except for immune status at treatment initiation as 
this information is captured in the definition of A in the subanalysis.     
 
Analyses were limited to the first 3 years of life for C diagnosis and C diagnosis/death.  
Death was a somewhat rare event in the first 36 months; in turn, for death alone, survival 
analyses were limited to the first 60 months of life to capture more death cases.  
 
In the present study, I have estimated the causal effect of triple therapy on mortality or C 
diagnosis in children enrolled in a population-based study using marginal structural 
models as estimated by G-computation methods.  For comparison, assuming the model is 
correct, I estimated the coefficient in front of A in a Cox proportional hazards model, the 
log-rank statistic, for each treatment scenario comparison, which is the log-rank statistic.  
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3.4  Results 
 

3.4.1 Demographics and Baseline Characteristics 
 
After excluding children whose time of infection was difficult to ascertain or whose 
infection likely occurred via breastfeeding, n=60, the sample was comprised of N=217 
HIV infected children whose infection was assumed to occur in utero or at delivery.  This 
sample was the population used for the primary analysis—time to C diagnosis and/or 
death; time to C diagnosis; time to death.  Patient characteristics are outlined in Table 3.1.  
The majority of the sample was female (56.2%) and non-White ethnicity (71.9%).  
Approximately half of the mothers of the children included received prenatal care.  Over 
one-quarter of the children were born low birth weight (29.5%) and about forty-three 
percent were not full-term.  Immune impairment at ARV treatment initiation was 
common as 40.1% were severely impaired and 32.3% were moderately impaired.  Eight 
percent of the children received triple therapy in their first 6 months of life, while 45% 
received triple therapy within the first 12 months of life.  About 55% of the sample either 
never received triple therapy or initiated therapy after 12 months of life.   
 
The associations between the baseline covariates (W) and triple therapy initiation in the 
first 6 months and in the first 12 months are described in Tables 3.2 and 3.3.  As the 
immune status deteriorated to moderate or severe immune suppression, children were 
more likely to initiate therapy within their first 6 months of life (cOR = 1.61;  
p value 0.12).  Similarly, children born to mothers who received prenatal care were more 
likely to initiate triple therapy within 6 months of birth, though this relationship is not 
statistically significant (cOR = 1.47; p value 0.20).  Though not significant, the data 
suggest that children of White ethnicity were half as likely to initiate triple therapy within 
their first 6 months of life (cOR = 0.49; p value 0.27). The associations between triple 
therapy initiation in the first 6 months of life and W were approximately the same at 12 
months, though race and immune status at treatment initiation become significant.  
Namely, as the immune status worsens at treatment initiation, the odds of starting triple 
therapy in the first 12 months are increased 1.82 times (p value = 0.03).  The odds of 
beginning triple therapy in the first 12 months among White children decrease to 0.28 
when compared to non-White children  (p value = 0.05). 
 
A total of n=75 children were diagnosed with a C diagnosis within the first 36 months of 
life.  Bivariate estimates of W and C diagnosis within the first 36 months of life are listed 
in Table 3.4.  Both ethnicity and immune status at treatment initiation are strongly 
associated with C diagnosis in the first 36 months.  Specifically, a child of White 
ethnicity is more than two times more likely to be diagnosed with a C diagnosis than a 
non-White child (cOR = 2.39; p value < 0.01); the worse the immune status at treatment 
initiation the more likely the child was to be diagnosed with a C diagnosis (cOR = 2.17; p 
value < 0.01).  Using a traditional approach to identifying possible confounders of the 
triple therapy and C diagnosis relationship, ethnicity and immune status at treatment 
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initiation appear to be the only baseline covariates that should be considered confounders 
as they are both related to the treatment and the outcome.   
 
A total of n=84 children were either diagnosed with a C diagnosis or died within 36 
months of birth (see Table 3.5).  Again, White children were twice as likely to either be 
diagnosed with a C diagnosis or die within the first 36 months of life (cOR = 2.01; p 
value < 0.01).  A worsening of immune status at treatment initiation would increase a 
child’s odds of being diagnosed with a C diagnosis or dying within the first 3 years of life 
by nearly two-fold (cOR = 1.90; p value < 0.01). 
 
A total of n=58 children died by the end of 60 months of follow-up.  Table 3.6 shows the 
bivariate estimates of death and W.   The only baseline covariate with borderline 
statistical significance is ethnicity.  That is to say, White children had about 1.7 times the 
odds of dying within the first 5 years as non-White children (cOR = 1.69;               p 
value = 0.11). 
 
For the sub-analyses, the sample populations were limited to children who were treated 
asymptomatically and children who were treated symptomatically at treatment initiation.  
N=10 symptomatic children were treated with triple therapy within their first 6 months of 
life, and n=8 asymptomatic children were similarly treated (see Table 3.7).  With so few 
observations, expectedly there were no significant findings in the bivariate analyses.   
 
Forty-eight children were treated with triple therapy symptomatically within their first 12 
months of life.  In contrast, n=50 children were asymptomatic at treatment initiation in 
their first 12 months of life (see Table 3.8).  The bivariate estimates of triple therapy 
initiation and W are listed below.  Just as the case with treatment initiated within 6 
months among symptomatic and asymptomatic children, there are no significant 
associations between any baseline covariate and triple therapy initiation within 12 months 
among symptomatic and asymptomatic children.   
 
Time to Event Analysis:  A G-Computation Approach 
 
The data were expanded such that time to event outcomes could be estimated. To 
estimate the survival, specifically the probability of surviving to time k given treatment, 
A, and baseline covariates, W, I defined S0(tk | A, W) = P(T > tk | A,W).   
Additionally, I estimated the cumulative product of 1 minus the conditional hazard of 
experiencing the event to estimate survival:   
 
  tk 
S0(tk | A, W) = ∏(1- P(dN1(t) | dN1(t-1) = 0, dN2(t-1) =0,A,W))     
  t=1 
 
The definitions of A vary based on the research question I am trying to answer.  
Treatment, A, is defined as: 1) Treatment with triple therapy within the first 6 months of 
life; 2) treatment with triple therapy within the first 12 months of life;    3) treatment with 
triple therapy within the first 6 months of life among asymptomatic children; 4) treatment 
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with triple therapy within the first 6 months of life among symptomatic children; 5) 
treatment with triple therapy within the first 12 months of life among asymptomatic 
children; 6) treatment with triple therapy within the first 12 months of life among 
symptomatic children.   
 
The model selection was performed by an algorithm that selects the fit of the initial 
hazard data-adaptively.  A super learner, Deletion/Substitution/Addition (D/S/A), was 
used to search through function forms using deletion, substitution, and addition actions.  
Sinisi and van der Laan have applied this algorithm to fit the initial hazard on pooled data 
over time.(55) The covariates selected by D/S/A from the candidate covariates in W for 
each model are identified in each subsection below.   
 
The survival probabilities at time k, Ψ1(p0)(tk) and Ψ0(p0)(tk), are described in each 
subsection.  Similarly, the marginal log hazard ratios at time k, denoted by ΨHZ(p0)(tk), 
and marginal additive differences at time k, ΨAD(p0)(tk), are given for each comparison.  
For comparison purposes, the log-rank statistic in a Cox proportional hazards model was 
estimated for each comparison, as well, while adjusting for the same baseline covariates 
selected by D/S/A in the marginal structural approach; this estimate is only correct is the 
model is correctly specified. 
 

3.4.2 All Children—Regardless of Symptoms 
 
Time to C Diagnosis (36 Months of follow-up) 
 
A initiated in First 6 months of Life 
In estimating the time to a C diagnosis, D/S/A selected sex, race, and pregnancy term as 
covariates within our treatment mechanism.  The unadjusted binary estimates of W on 
time to a C diagnosis are listed in Table 3.9.  Male children were less likely to be 
diagnosed with a C diagnosis than female children (OR = 0.52; 95% CI 0.31-0.84).  
Furthermore, children born at term were significantly less likely as children not born at 
term to be diagnosed with a C diagnosis (OR = 0.76; 95% CI 0.58-1.01).     
 
A Initiated in First 12 months of Life 
Similarly, the same baseline covariates were selected using D/S/A when estimating the 
effect of triple therapy initiated in the first 12 months of life on a C diagnosis.   
 
In Figure 3.5a, the G-computation survival curves for the causal effect of triple therapy 
initiated in the first 6 months of life on time to C diagnosis among all children are 
illustrated, similarly for the estimates for therapy initiated in the first 12 months of life in 
Figure 3.5b.   
 
The causal treatment specific parameters at time k related to triple therapy on C diagnosis 
had all children been treated or untreated within 6 or 12 months of birth are listed in 
Table 3.10.  Using the counterfactual language, the estimates in the first column are the 
causal treatment specific parameters related to triple therapy on C diagnosis had all 
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children started therapy within 6 months of birth.  The second column illustrates the 
causal treatment specific parameters related to triple therapy on C diagnosis had all 
children been untreated within 6 months of birth.   
 
In Table 3.11, the marginal additive differences at time k, denoted by ΨAD(p0)(tk), are 
increasing over time for both treatment initiation scenarios; at 36 months the marginal 
additive difference is 0.120 (95% CI -0.127-0.270) among children who initiated therapy 
within 6 months. Among children who initiated within 12 months, the marginal additive 
differences at time k are also increasing over time; at 36 months the marginal additive 
difference is 0.087 (95% CI -0.065-0.151).  This suggests that the causal effect of triple 
therapy initiated in the first 12 months of life on time to C diagnosis is not as strong as 
the causal effect of triple therapy initiated in the first 6 months of life as the marginal 
additive difference is less.  However, neither of the marginal additive differences is 
statistically significant.  The marginal log hazard ratios at time k, denoted by 
ΨHZ(p0)(tk), are described in Table 3.11 and stay somewhat proportional through time k-
1 for both treatment initiation scenarios.  At 36 months the log hazard ratio for children 
who initiated treatment within 6 months of birth is -0.466 (95% CI -1.46-0.397).  The 
marginal log hazard at 36 months estimating the causal effect of triple therapy initiated in 
the first 6 months of life is greater than the same ratio for children who initiated treatment 
within the first year, ΨHZ(p0)(tk)= -0.321 (95% CI -0.588-0.212).  Though not 
statistically significant, these results suggest that among children who initiated triple 
therapy within 6 months of birth the causal effect of treatment in delaying a C diagnosis 
is stronger than children who initiated therapy within 12 months of birth.  
It should be noted that ΨHZ(p0)(tk), averaged over t is equivalent to the Cox proportional 
hazards parameter, in turn the log rank test parameter.  Comparing these results to a more 
traditional approach, the Cox proportional hazards parameter at 36 months comparing 
children treated within the first 6 months of life and children not treated within the first 6 
months of life is HR=-0.476 (p value = 0.356).  The Cox proportional hazards parameter 
at 36 months comparing children treated within the first 12 months of life and children 
not treated within the first 12 months of life is HR=-0.407 (p value = 0.089). 
 
Time to C Diagnosis or Death (36 Months of Follow-up) 
 
Initiated in First 6 months of Life 
In estimating the time to a C diagnosis or death, often referred to as AIDS-free survival, 
among all children who started triple therapy in their first 6 months of life, D/S/A, 
selected no unforced terms for the treatment mechanism. Variables from which the 
treatment mechanism model was selected included the following:  pregnancy term, sex, 
race, prenatal care, birth weight, immune status at treatment initiation, and time indicator 
variables. 
 
Initiated in First 12 months of Life 
Similarly, no unforced terms were selected by D/S/A for the treatment mechanism in 
estimating the time to a C diagnosis or death among children who started triple therapy in 
the first 12 months of life.   
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The G-computation survival curves for the causal effect of triple therapy initiated in the 
first 6 months of life on time to C diagnosis or death among all children are illustrated in 
Figure 3.6a.  Similarly, in Figure 3.6b are the survival curves for the estimates for therapy 
initiated in the first 12 months of life.   
 
The causal treatment specific parameters at time k related to triple therapy on C diagnosis 
or death had all children been treated or untreated within 6 or 12 months of birth are 
listed in Table 3.12.  Again, using the counterfactual language the estimates in the first 
column are the causal treatment specific parameters related to triple therapy on C 
diagnosis or death had all children started therapy within 6 months of birth.  The second 
column illustrates the causal treatment specific parameters related to triple therapy on C 
diagnosis or death had all children been untreated within 6 months of birth.  Similarly, 
the third and fourth columns relate to the counterfactuals related to initiating triple 
therapy within the first 12 months of life.   
 
In Table 3.13, the marginal additive differences at time k, denoted by ΨAD(p0)(tk), are 
increasing over time for both treatment initiation scenarios; at 36 months the marginal 
additive difference is 0.108 (95% CI -0.110-0.311) among children who initiated therapy 
within 6 months. Among children who initiated within 12 months, the marginal additive 
differences at time k are also increasing over time; at 36 months the marginal additive 
difference is 0.055 (95% CI -0.150-0.158).  The marginal additive difference of effect 
among children who initiated triple therapy within 12 months of life is approximately 
half the marginal additive difference among children who initiated within their first 6 
months of life.  The marginal log hazard ratios at time k, denoted by ΨHZ(p0)(tk), are 
described in Table 3.13 and stay somewhat proportional through time k-1 for both 
treatment initiation scenarios.  At 36 months the log hazard ratio estimating time to a C 
diagnosis or death among children who initiated treatment within 6 months of birth is -
0.369 (95% CI -1.588-0.300).  In contrast, the marginal log hazard at 36 months 
estimating the causal effect of triple therapy initiated in the first 12 months of life is less 
pronounced (ΨHZ(p0)(tk) = -0.180 (95% CI -0.599-0.445)).  Though not significant, these 
results suggest that the causal effect of triple therapy initiated in the first 6 months on 
time to C diagnosis or death is twice the causal effect of triple therapy initiated in the first 
12 months of life.  The Cox proportional hazards parameter at 36 months comparing 
children treated within the first 6 months of life and children not treated within the first 6 
months of life is HR=-0.346 (p value = 0.454).  The Cox proportional hazards parameter 
at 36 months comparing children treated within the first 12 months of life and children 
not treated within the first 12 months of life is HR=-0.431 (p value = 0.058). 
 
Time to Death (60 Months of Follow-up) 
 
Initiated in First 6 months of Life 
In estimating the time to death, D/S/A selected no unforced terms for the treatment 
mechanism. Variables from which the treatment mechanism model was selected included 
the following:  pregnancy term, sex, race, prenatal care, birth weight, immune status at 
treatment initiation, and time indicator variables. 
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Initiated in First 12 months of Life 
No unforced terms were selected by D/S/A for the treatment mechanism in estimating the 
time to death among children who initiated triple therapy within 12 months of life. 
 
The G-computation survival curves for the causal effect of triple therapy initiated in the 
first 6 months of life on time to death among all children are illustrated in Figure 3.7a.  
Similarly, in Figure 3.7b are the survival curves for the estimates for therapy initiated in 
the first 12 months of life.   
 
The causal treatment specific parameters at time k related to triple therapy on death had 
all children been treated or untreated within 6 or 12 months of birth are listed in Table 
3.14.  The estimates in the first column are the causal treatment specific parameters 
related to triple therapy on death had all children started therapy within 6 months of birth.  
The second column illustrates the causal treatment specific parameters related to triple 
therapy on death had all children been untreated within 6 months of birth. 
 
In Table 3.15, the marginal additive differences at time k, denoted by ΨAD(p0)(tk), are 
increasing over time for both treatment initiation scenarios.  The marginal additive 
difference at 60 months for children who initiated therapy within 6 months of life is 0.046 
(95% CI -0.229-0.200).  When compared to the marginal additive difference among 
children who initiated therapy within 12 months of life, 0.048 (95% CI -0.249-0.130), 
there is no discernable difference in triple therapy’s effect on time to death under the two 
treatment initiation scenarios.  Similarly, the marginal log hazard ratios of triple therapy’s 
effect on time to death at 60 months under each treatment plan are comparable 
(ΨHZ(p0)(t60) = 6 months: -0.199 (95% CI -1.378-0.825); 12 Months:  -0.205 (95% CI -
0.526-0.821)).  The Cox proportional hazards parameter at 60 months comparing children 
treated within the first 6 months of life and children not treated within the first 6 months 
of life is HR=-0.203 (p value = 0.695).  The Cox proportional hazards parameter at 60 
months comparing children treated within the first 12 months of life and children not 
treated within the first 12 months of life is HR=-0.432 (p value = 0.114). 
 
3.4.3 All Children—Asymptomatic vs 

Symptomatic 
 
 
Time to C Diagnosis (36 Months of follow-up) 
 
Initiated in First 6 months of Life-Asymptomatic Children 
In estimating the time to C diagnosis among asymptomatically treated children who 
started triple therapy within 6 months of birth, D/S/A selected no unforced terms for the 
treatment mechanism. Variables from which the treatment mechanism model was 
selected included the following:  pregnancy term, sex, race, prenatal care, birth weight, 
and time indicator variables. 
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Initiated in First 6 months of Life-Symptomatic Children 
In estimating the time to a C diagnosis among symptomatically treated children who 
started triple therapy within 6 months of birth, D/S/A selected an interaction between 
prenatal care and a time indicator variable for 25-30 months, and selected an interaction 
between sex and pregnancy term as covariates within our treatment mechanism.  
Variables from which the treatment mechanism model was selected included the 
following:  pregnancy term, sex, race, prenatal care, birth weight, and time indicator 
variables.   
 
The G-computation survival curves for the causal effect of triple therapy initiated in the 
first 6 months of life on time to C diagnosis among asymptomatic children are illustrated 
in Figure 3.8a.  Similarly, in Figure 3.8b are the survival curves for the estimates for 
therapy initiated in the first 6 months of life among symptomatic children.   
 
The causal treatment specific parameters at time k related to triple therapy on C diagnosis 
had all asymptomatic or symptomatic children been treated or untreated within 6 months 
of birth are listed in Table 3.16.  The estimates in the first column are the causal 
treatment specific parameters related to triple therapy on C diagnosis had all 
asymptomatic children started therapy within 6 months of birth.  The second column 
illustrates the causal treatment specific parameters related to triple therapy on C diagnosis 
had all asymptomatic children been untreated within 6 months of birth.  Similarly, the 
third and fourth columns are the causal treatment specific parameters related to triple 
therapy on C diagnosis among symptomatic children.   
 
In Table 3.17, the marginal additive differences at time k, denoted by ΨAD(p0)(tk), are 
increasing over time for both treatment initiation scenarios.  The marginal additive 
difference at 36 months for asymptomatic children who initiated therapy within 6 months 
of life is 0.115 (95% CI -0.327-0.446).  When compared to the marginal additive 
difference among symptomatic children who initiated therapy within 6 months of life, 
0.146 (95% CI -0.214-0.355), there is a slight increase in the marginal additive difference 
in triple therapy’s effect on time to C diagnosis among symptomatically treated children. 
Similarly, the marginal log hazard ratio of triple therapy’s effect on time to C diagnosis at 
36 months among symptomatically treated children is increased when compared to 
asymptomatically treated children (ΨHZsymptomatic (p0)(t36): -0.563 (95% CI -14.34-0.653); 
ΨHZasymptomatic (p0)(t36):      -0.429 (95% CI-16.23-0.948)). These results, though not 
statistically significant, suggest that the effect of triple therapy initiated within the first 6 
months of life on time to C diagnosis is stronger among symptomatic children than 
among asymptomatic children. The Cox proportional hazards parameter at 36 months 
comparing children treated asymptomatically within the first 6 months of life and 
children not treated asymptomatically within the first 6 months of life is HR=-0.712 (p 
value = 0.057).  The Cox proportional hazards parameter at 36 months comparing 
children treated symptomatically within the first 6 months of life and children not treated 
symptomatically within the first 6 months of life is HR=-0.531 (p value = 0.459). 
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Initiated in First 12 months of Life-Asymptomatic Children 
In estimating the time to C diagnosis among asymptomatic children, D/S/A selected term 
of pregnancy for the treatment mechanism (see Table 3.18). Children who were full-term 
had a significantly reduced risk of a C diagnosis when compared to children who were 
not born full-term (cOR=0.71; 95% CI 0.54-0.95).  Variables from which the treatment 
mechanism model was selected included the following:  pregnancy term, sex, race, 
prenatal care, birth weight, and time indicator variables. 
 
Initiated in First 12 months of Life-Symptomatic Children 
Among symptomatically treated children, D/S/A selected an interaction between prenatal 
care and a time indicator variable for 25-30 months, and selected an interaction between 
sex and pregnancy term as covariates within our treatment mechanism.  Variables from 
which the treatment mechanism model was selected included the following:  pregnancy 
term, sex, race, prenatal care, birth weight, and time indicator variables.   
 
The G-computation survival curves for the causal effect of triple therapy initiated in the 
first 12 months of life on time to C diagnosis among asymptomatic children are illustrated 
in Figure 3.9a.  Similarly, in Figure 3.9b are the survival curves for the estimates for 
therapy initiated in the first 12 months of life among symptomatic children.   
 
The causal treatment specific parameters at time k related to triple therapy on C diagnosis 
had all asymptomatic or symptomatic children been treated or untreated within 12 months 
of birth are listed in Table 3.19.  The estimates in the first column are the causal 
treatment specific parameters related to triple therapy on C diagnosis had all 
asymptomatic children started therapy within 12 months of birth.  The second column 
illustrates the causal treatment specific parameters related to triple therapy on C diagnosis 
had all asymptomatic children been untreated within 12 months of birth.  Similarly, the 
third and fourth columns are the causal treatment specific parameters related to triple 
therapy within 12 months of birth on C diagnosis among symptomatic children. 
 
In Table 3.20, the marginal additive differences at time k, denoted by ΨAD(p0)(tk), are 
increasing over time for both treatment initiation scenarios.  The marginal additive 
difference at 36 months for asymptomatic children who initiated therapy within 12 
months of life is 0.030 (95% CI-0.250-0.225).  These results suggest that there is little 
causal effect of triple therapy started in the first 12 months of life among asymptomatic 
children on time to C diagnosis.  This evidence is further supported by the marginal log 
hazard ratio   -0.106 (95% CI -1.054-0.739).  When compared to the marginal additive 
difference among symptomatic children who initiated therapy within 12 months of life, 
0.152 (95% CI -0.153-0.240), with the marginal additive difference among asymptomatic 
children, there is a noticeable difference.  In fact, there is approximately a five-fold 
difference in the marginal additive differences, though these differences are not 
statistically significant.  Similarly, the marginal log hazard ratio of triple therapy’s effect 
on time to C diagnosis at 36 months among symptomatically treated children 
(ΨHZsymptomatic (p0)(t36): -0.587 (95% CI -1.217-0.480)), is approximately five times 
larger than the marginal log hazard ratio among asymptomatically treated children 
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(ΨHZasymptomatic (p0)(t36): -0.106 (95% CI -1.054-0.739)). These results, though not 
statistically significant, suggest that the effect of triple therapy initiated within the first 12 
months of life on time to C diagnosis is stronger among symptomatic children than 
among asymptomatic children. The Cox proportional hazards parameter at 36 months 
comparing children asymptomatically treated within the first 12 months of life and 
children not treated asymptomatically within the first 12 months of life is HR=-0.516 (p 
value = 0.102).  The Cox proportional hazards parameter at 36 months comparing 
children treated symptomatically within the first 12 months of life and children not 
treated symptomatically within the first 12 months of life is HR=-0.008 (p value = 0.997). 
 
Time to C Diagnosis or Death (36 Months of follow-up) 
 
Initiated in First 6 months of Life-Asymptomatic Children 
Among asymptomatically treated children, in estimating the time to C diagnosis or death, 
D/S/A selected term of pregnancy for the treatment mechanism (see Table 3.21). 
Variables from which the treatment mechanism model was selected included the 
following:  pregnancy term, sex, race, prenatal care, birth weight, and time indicator 
variables. 
 
Initiated in First 6 months of Life-Symptomatic Children 
In estimating the time to C diagnosis or death among symptomatically treated children, 
D/S/A selected no unforced terms for the treatment mechanism. Variables from which the 
treatment mechanism model was selected included the following:  pregnancy term, sex, 
race, prenatal care, birth weight, and time indicator variables. 
 
The G-computation survival curves for the causal effect of triple therapy initiated in the 
first 6 months of life on time to C diagnosis or death among asymptomatic children are 
illustrated in Figure 3.10a.  Similarly, in Figure 3.10b are the survival curves for the 
estimates for therapy initiated in the first 6 months of life among symptomatic children.   
 
The causal treatment specific parameters at time k related to triple therapy on C diagnosis 
or death had all asymptomatic or symptomatic children been treated or untreated within 6 
months of birth are listed in Table 3.22.  The estimates in the first column are the causal 
treatment specific parameters related to triple therapy on C diagnosis or death had all 
asymptomatic children started therapy within 6 months of birth.  The second column 
illustrates the causal treatment specific parameters related to triple therapy on C diagnosis 
or death had all asymptomatic children been untreated within 6 months of birth.  
Similarly, the third and fourth columns are the causal treatment specific parameters 
related to triple therapy within 6 months of birth on C diagnosis or death among 
symptomatic children. 
 
In Table 3.23, the marginal additive differences at time k, denoted by ΨAD(p0)(tk), are 
increasing over time for both treatment initiation scenarios.  The marginal additive 
difference at 36 months for asymptomatic children who initiated therapy within 6 months 
of life is 0.140 (95% CI -0.380-0.490).  The marginal additive difference for symptomatic 
children who initiated therapy within 6 months, 0.062 (95% CI -0.236-0.403), is 
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approximately half the difference among asymptomatic children.  The marginal log 
hazard ratio estimating the causal effect of triple therapy on time to C diagnosis or death 
among asymptomatically treated children, -0.514 (95% CI -17.72-1.086), is more than 
twice the marginal log hazard ratio among symptomatically treated children (-0.204 (95% 
CI-1.475-0.683)).  These results, though not statistically significant, suggest that the 
effect of triple therapy initiated within the first 6 months of life on time to C diagnosis or 
death is stronger among asymptomatic children than among symptomatic children.  The 
Cox proportional hazards parameter at 36 months comparing children treated 
asymptomatically within the first 6 months of life and children not treated 
asymptomatically within the first 6 months of life is HR=-0.570 (p value = 0.091).  The 
Cox proportional hazards parameter at 36 months comparing children treated 
symptomatically within the first 6 months of life and children not treated 
symptomatically within the first 6 months of life is HR=-0.291 (p value = 0.388).  
 
Initiated in First 12 months of Life-Asymptomatic Children 
Among asymptomatically treated children, in estimating the time to C diagnosis or death, 
D/S/A selected the pregnancy term as a covariate within our treatment mechanism.  The 
unadjusted binary estimates of W on time to death are listed in Table 3.24.   
 
Initiated in First 12 months of Life-Symptomatic Children 
Among symptomatically treated children, D/S/A selected an interaction between prenatal 
care and a time indicator variable for 25-30 months, and selected an interaction between 
sex and pregnancy term as covariates within our treatment mechanism.  Variables from 
which the treatment mechanism model was selected included the following:  pregnancy 
term, sex, race, prenatal care, birth weight, and time indicator variables.   
 
The G-computation survival curves for the causal effect of triple therapy initiated in the 
first 12 months of life on time to C diagnosis or death among asymptomatic children are 
illustrated in Figure 3.11a.  Similarly, in Figure 3.11b are the survival curves for the 
estimates for therapy initiated in the first 12 months of life among symptomatic children.   
 
The causal treatment specific parameters at time k related to triple therapy on C diagnosis 
or death had all asymptomatic or symptomatic children been treated or untreated within 
12 months of birth are listed in Table 3.25.  The estimates in the first column are the 
causal treatment specific parameters related to triple therapy on C diagnosis or death had 
all asymptomatic children started therapy within 12 months of birth.  The second column 
illustrates the causal treatment specific parameters related to triple therapy on C diagnosis 
or death had all asymptomatic children been untreated within 12 months of birth. 
Similarly, the third and fourth columns are the causal treatment specific parameters 
related to triple therapy within 12 months of birth on C diagnosis or death among 
symptomatic children. 
 
In Table 3.26, the marginal additive differences at time k, denoted by ΨAD(p0)(tk), are 
increasing over time for both treatment initiation scenarios.  The marginal additive 
difference at 36 months for asymptomatic children who initiated therapy within 12 
months of life is 0.061 (95% CI -0.208-0.267).  The marginal additive difference for 
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symptomatic children who initiated therapy within 12 months, 0.052 (95% CI -0.255-
0.319), is only slightly less than the marginal additive difference among asymptomatic 
children.  The marginal log hazard ratio estimating the causal effect of triple therapy on 
time to C diagnosis or death among asymptomatically treated children, -0.205 (95% CI -
1.205-0.601), is greater than the marginal log hazard ratio among symptomatically treated 
children -0.168 (95% CI -1.526-0.709)).  Though not statistically significant, the 
marginal log hazard ratios suggest that the effect of triple therapy initiated within 12 
months on time to C diagnosis or death is stronger among asymptomatic children than 
among symptomatic children. The Cox proportional hazards parameter at 36 months 
comparing children treated asymptomatically within the first 12 months of life and 
children not treated asymptomatically within the first 12 months of life is HR=-0.204 (p 
value = 0.455).  The Cox proportional hazards parameter at 36 months comparing 
children treated symptomatically within the first 12 months of life and children not 
treated symptomatically within the first 12 months of life is HR=-0.154 (p value = 0.571). 
 
Time to Death (60 Months of follow-up) 
 
Initiated in First 6 months of Life-Asymptomatic Children 
In estimating the time to death among asymptomatic children treated within 6 months of 
birth, D/S/A selected the square of the term of pregnancy and the square of prenatal care 
as covariates within our treatment mechanism.  The unadjusted binary estimates of W on 
time to death are listed in Table 3.27.   
 
Initiated in First 6 months of Life-Symptomatic Children 
Among symptomatically treated children, in estimating the time to death D/S/A selected 
pregnancy term as a covariate within our treatment mechanism.  The unadjusted binary 
estimates of W on time to death are listed in Table 3.28.   
 
The G-computation survival curves for the causal effect of triple therapy initiated in the 
first 6 months of life on time to death among asymptomatic children are illustrated in 
Figure 3.12a.  Similarly, in Figure 3.12b are the survival curves for the estimates for 
therapy initiated in the first 6 months of life among symptomatic children.   
 
The causal treatment specific parameters at time k related to triple therapy on death had 
all asymptomatic or symptomatic children been treated or untreated within 6 months of 
birth are listed in Table 3.29.  The estimates in the first column are the causal treatment 
specific parameters related to triple therapy on death had all asymptomatic children 
started therapy within 6 months of birth.  The second column illustrates the causal 
treatment specific parameters related to triple therapy on death had all asymptomatic 
children been untreated within 6 months of birth. Similarly, the third and fourth columns 
are the causal treatment specific parameters related to triple therapy within 6 months of 
birth on death among symptomatic children. 
 
In Table 3.30, the marginal additive differences at time k, denoted by ΨAD(p0)(tk), are 
increasing over time for both treatment initiation scenarios.  The marginal additive 
difference at 60 months for asymptomatic children who initiated therapy within 6 months 
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of life is 0.032 (95% CI -0.348-0.129).  The marginal additive difference for symptomatic 
children who initiated therapy within 6 months, 0.057(95% CI -0.313-0.237), is nearly 
twice the difference among asymptomatic children.  The marginal log hazard ratio 
estimating the causal effect of triple therapy on time to death among asymptomatically 
treated children, -0.160 (95% CI -0.774-1.008) is approximately half the marginal log 
hazard ratio among symptomatically treated children -0.301 (95% CI -15.297-0.820).  
Though these results are not statistically significant, they suggest that initiating treatment 
within 6 months of birth among symptomatic children has a greater effect on time to 
death than among asymptomatic children treated within 6 months of birth. The Cox 
proportional hazards parameter at 36 months comparing children treated 
asymptomatically within the first 6 months of life and children not treated 
asymptomatically within the first 6 months of life is HR=-0.745 (p value = 0.084).  The 
Cox proportional hazards parameter at 36 months comparing children treated 
symptomatically within the first 6 months of life and children not treated 
symptomatically within the first 6 months of life is HR=-0.299 (p value = 0.459). 
 
Initiated in First 12 months of Life-Asymptomatic Children 
In estimating the time to death among asymptomatic children treated within the first 12 
months of life, D/S/A selected the square terms length of pregnancy term and prenatal 
care as covariates within our treatment mechanism.  The unadjusted binary estimates of 
W on time to death are listed in Table 3.31.   
 
Initiated in First 12 months of Life-Symptomatic Children 
Among symptomatically treated children, in estimating the time to death, D/S/A selected 
pregnancy term as a covariate within our treatment mechanism.  The unadjusted binary 
estimates of W on time to death are listed in Table 3.32.   
 
The G-computation survival curves for the causal effect of triple therapy initiated in the 
first 12 months of life on time to death among asymptomatic children are illustrated in 
Figure 3.13a.  Similarly, in Figure 3.13b are the survival curves for the estimates for 
therapy initiated in the first 12 months of life among symptomatic children.   
 
The causal treatment specific parameters at time k related to triple therapy on death had 
all asymptomatic or symptomatic children been treated or untreated within 12 months of 
birth are listed in Table 3.33.  The estimates in the first column are the causal treatment 
specific parameters related to triple therapy on death had all asymptomatic children 
started therapy within 12 months of birth.  The second column illustrates the causal 
treatment specific parameters related to triple therapy on death had all asymptomatic 
children been untreated within 12 months of birth. 
 
In Table 3.34, the marginal additive differences at time k, denoted by ΨAD(p0)(tk), are 
increasing over time for both treatment initiation scenarios.  The marginal additive 
difference at 60 months for asymptomatic children who initiated therapy within 12 
months of life is 0.039 (95% CI -0.156-0.158).  The marginal additive difference for 
symptomatic children who initiated therapy within 12 months, 0.075 (95% CI -0.084-
0.205), is approximately twice the difference among asymptomatic children.  The 
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marginal log hazard ratio estimating the causal effect of triple therapy on time to death 
among asymptomatically treated children, -0.165 (95% CI -15.297-0.621), is 
approximately half the marginal log hazard ratio among symptomatically treated children 
(-0.336 (95% CI -1.423-0.305)).  Again, these results are not statistically significant.  
However, they suggest that initiating treatment within 12 months of birth among 
symptomatic children has a greater effect on time to death than among asymptomatic 
children treated within 12 months of birth.  The Cox proportional hazards parameter at 36 
months comparing children treated asymptomatically within the first 12 months of life 
and children not treated asymptomatically within the first 12 months of life is HR=-0.591 
(p value = 0.103).  The Cox proportional hazards parameter at 36 months comparing 
children treated symptomatically within the first 12 months of life and children not 
treated symptomatically within the first 12 months of life is HR=-0.098 (p value = 0.764). 
 
Table 3.35 allows one to compare the MSM results as estimated by g-computation to 
results one would have found using traditional techniques.  Specifically, the mean 
marginal log hazard ratio over tk is the standard analogue to the Cox proportional hazards 
parameter.  If the Cox PH model is correct, its estimates should be similar to the 
estimates from the mean marginal log HR over tk.  In most cases these estimates were 
similar, however there are a few estimates that are different.  Of particular note, the 
standard Cox PH model estimated the effect of triple therapy initiated in the first 12 
months on C diagnosis or death as -0.431(95% CI: -0.875 - 0.012) while the mean 
marginal log hazard ratio over tk was estimated as -0.179 (95% CI: -0.625 - 0.468).  
Similarly, the standard Cox PH model estimated the effect of triple therapy initiated in 
the first 12 months among asymptomatic children on C diagnosis as -0.516(95% CI: -
1.134 - 0.102) while the mean marginal log hazard ratio over tk was estimated as -0.106 
(95% CI: -1.138 – 2.105).  Further, the standard Cox PH model estimated the effect of 
triple therapy initiated in the first 12 months among symptomatic children on C diagnosis 
as -0.068 (95% CI: -0.610 - 0.474) while the mean marginal log hazard ratio over tk was 
estimated as -0.594 (95% CI: -15.65 – 1.529). 
 
 

3.5  Discussion 
 
The optimal timing of initiation of HAART among HIV-infected children is an on-going 
debate and recommendations for treatment initiation vary.(56) Guidelines in the United 
States and in Europe in previous years were based on 2-5 year risk of disease progression 
estimates calculated from observational studies.(56)  In contrast, more recent guidelines 
(2003) have been based on estimates of the 12-month risk of disease progression as 
reported by the HIV Pediatric Prognostic Markers Collaborative Study (HPPMCS) 
Group, a collection of studies conducted in the developed world or in high-resource 
settings.(57)  The WHO, in 2006, developed clinical and immunologic guidelines for 
treatment initiation in asymptomatic children in resource-limited settings based on 
HPPMCS data.(4)  In 2008, WHO amended their recommendations for treatment 
initiation for HIV-positive children as a result from an RCT in South Africa.(7)  Though 
not statistically significant, the results from the present analysis may be interpreted as 
supportive of the current WHO treatment guidelines. 
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In an attempt to use the data available to fit the most efficient model, the present study 
estimated the causal effects of triple therapy initiated at different thresholds on time to C 
diagnosis, time to C diagnosis or death, and death alone.  The sampled children were 
more likely to be non-White females.  The unbalanced distribution of gender may not be 
important as studies in high-resource settings have previously found no difference in 
survival or disease progression between genders.(57) Additionally, studies have found 
increasing trends in risk of death among children of non-White ethnicities, though not 
statistically significant.(57)  In contrast, the risk of disease progression is seemingly 
reduced among children of non-White ethnicities, though these too are not 
significant.(57)  In the present study, over 70% of the children were either moderately or 
severely immunologically impaired at the time of triple therapy treatment initiation.  
Moreover, nearly 90% of the children remained untreated with HAART through the first 
12 months of life. This could be both a reflection of the treatment guidelines at the time 
or the availability of some drugs at the time of disease progression.      
 
Traditional approaches in estimating the effects of treatments on time to event data, to 
include Cox proportional hazards models, often rely heavily on correct model 
specification.  Using a data generating distribution approach avoids the inherent problems 
of employing traditional Cox methods, even if baseline covariates are included in the Cox 
model.(53)  In turn, as opposed to using parameters selected by stepwise inclusion 
techniques or similar approaches, using an approach that uses parameters that are 
naturally selected based on the data allows for easier interpretation of the model and its 
parameters.  For example, using a more traditional approach, the data suggest that 
ethnicity is a baseline confounder because it is significantly associated with both 
treatment initiation and C diagnosis (and death).  Furthermore, immune function at 
treatment initiation was significantly associated with treatment and our events of interest.  
However, D/S/A did not select either of these variables for inclusion in our analysis, 
therefore preventing any unnecessary loss in precision in my estimates.   
 
The causal effect of triple therapy among all children in delaying the time to a C 
diagnosis and/or death, regardless of immune status at treatment initiation, appears to be 
stronger among children who initiated therapy within 6 months rather than within 12 
months of birth.  Though no study has explored optimal treatment initiation in a pediatric 
HIV population using causal inference methods, this study’s results seem to be in tune 
with previous, traditional analyses in early therapy initiation.  Chiappini et al found that 
children who were treated with HAART early, as defined by:  treatment initiation within 
6 months of birth; category N, A, or B disease before treatment initiation; in 
immunologic category CDC 1 or 2 before treatment initiation, had significantly lower 
risk of progression to category C disease than not-early treated children (p value < 
0.0001).(39)  Similarly, Newell et al found that HIV positive children who started ART 
before 5 months of age were significantly more likely to have an improved immunologic 
response (time to a 20% increase in CD4 z score), after adjusting for immunocompetence 
status at treatment initiation.(38)  It should be noted, however, that the authors were 
unable to find any added benefit in early treatment on sustained CD4 cell count after 6 
months.  In contrast, some laboratory research suggests that the positive immune 
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response in children who have been treated early versus children who have been treated 
later in life may only be an artifact of younger age and not truly associated with early 
treatment.(57)  
 
An RCT in South Africa recently concluded that children who were assigned to early 
treatment initiation, regardless of symptoms, had a significantly lower mortality risk and 
risk of progression to category C disease when compared to children whose treatments 
were deferred until they became symptomatic.(35) The results from this RCT were the 
catalyst in the WHO’s revised treatment guidelines.   Similarly, the results, though not 
statistically significant, from the present analysis suggest that the effect of triple therapy 
initiated within the first 12 months of life on time to death is stronger among 
asymptomatic children (12 Months: ΨHZasymptomatic (p0)(t36): -0.336 (95% CI -1.423-
0.305)) than among symptomatic children (12 Months: ΨHZsymptomatic (p0)(t36): -0.165 
(95% CI -15.297-0.621)).  This suggests that the mortality risk is, in fact, potentially 
reduced among HIV positive children who initiate HAART early rather than deferring 
treatment until symptoms arise.  In contrast, the present study found that the effect of 
triple therapy initiated within the first 6 or 12 months of life on time to C diagnosis is 
greater among symptomatic children (12 Months: ΨHZsymptomatic (p0)(t36): -0.587 (95% CI 
-1.217-0.480)) than among asymptomatic children (12 Months: ΨHZasymptomatic (p0)(t36): -
0.106 (95% CI  -1.054-0.739)).  This suggests that the gained benefit in initiating 
HAART by reducing the risk of disease progression is perhaps more fully realized among 
children who are already severely immune-compromised.   
 
In some cases, the g-comp estimates are quite different than estimates one would have 
found using traditional approaches.  Using a traditional approach to covariate selection, 
one may have chosen race/ethnicity and length of pregnancy because of their significant 
effect on both treatment and outcomes of interest.  Using a superlearner to help select 
covariates based on a cross-validation and likelihood framework has been shown to 
minimize the empirical risk of loss function over a subspace.(55)  Even if the Cox model 
were correctly identified, the estimates are only correct within the context of that 
particular model.  In the present study, I also used a standard Cox proportional hazards 
model to estimate the effect of different treatment scenarios on a C diagnosis.  Despite 
adjusting for the same covariates DSA selected for g-comp, the standard Cox model’s 
estimates were sometimes different.  For example, the standard Cox PH model estimated 
the effect of triple therapy initiated in the first 12 months among symptomatic children on 
C diagnosis as -0.068 (95% CI: -0.610 - 0.474) while the mean marginal log hazard ratio 
over tk was estimated as -0.594 (95% CI: -15.65 – 1.529).  This discrepancy may imply 
that the Cox model may simply be incorrect. 
 
Despite the added efficiency in parameters as a result of using a causal inference 
approach, the present study has several limitations.  Death was somewhat a rare outcome 
and the data do not provide enough power to show an effect of triple therapy.  Though an 
attempt to increase the number of events seen during the follow up period was made by 
expanding the follow up to 60 months, there was no added significance in the findings.  
There were no data available regarding income, so the impact of socio-economic status 
could not be measured.   
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Though the data do not provide the opportunity to calculate the impact of socio-economic 
status, it is possible the children who were born to poor mothers were less likely to have 
access to the same health care as other children.  Evaluating the use of prenatal care 
within the sample allows one to speculate about the proportion of children who had 
access to care.  Furthermore, the proposed DAG showing the impacts of variables on 
triple therapy initiation and C diagnosis and/or death suggests that SES affects access to 
prenatal care and maternal ARVs at delivery and during pregnancy.  Though I was not 
able to control for SES, I did have data on the child’s race.  Nearly three-quarters of this 
study sample was non-White ethnicity.  Late initiation of HAART and low drug 
adherence have been seen more among non-White populations in the U.S. than among 
White populations, which in turn results in more advanced disease and increases in 
mortality risk.(58)  
 
Though an attempt to isolate children who were likely infected in utero or at birth was 
made in the present analysis, there is still a risk that some children included in the study 
were infected postnatally via breastfeeding.  Data on breastfeeding practices were not 
collected and it was assumed to have not occurred if women received prenatal care.  
However, even if low SES women were well-informed of the risk of transmission from 
breastfeeding, they may have felt they had little choice but to breastfeed for economic 
reasons.  In Sub-Saharan Africa, the risk of MTCT is well understood by many women 
who consciously decide to breastfeeding despite the transmission risks because of 
economic hardships and fears of increased risk of illnesses prevented by breast milk’s 
nutritional benefits.   
 
These data were extracted from the children’s medical records, which may not offer a 
complete picture of maternal ARV exposure.  Unfortunately, it was difficult to accurately 
estimate the proportion of mothers who were exposed to ARV during pregnancy or at 
delivery.  Moreover, maternal HIV disease severity was not assessed.  The severity of 
disease in mothers has been linked not only to the transmission of HIV, but also the 
severity in disease in vertically infected children.(15) 
 
Viral load was not a variable analyzed in the present study as most of the children did not 
have these data collected.  While CD4% is the primary source of clinical treatment 
guidance, viral load would likely also be an acceptable proxy for immuno-competence.  
Though immune function (as measured by clinical diagnoses and CD4 count or percent) 
at treatment initiation was adjusted, there could be residual confounding from a child’s 
overall immune function that is unaccounted for.  Thus, it is possible that these results 
could be indicative of the unmeasured severity of immune suppression at treatment 
initiation rather than a true causal effect of triple therapy initiated at 6 or 12 months.     
 
Losses to follow-up were a formidable threat in this study.  Because the population was 
dynamic, children could have been any age at their first HIV clinic visit.  I established t0, 
first day of study entry, as the birth date, assuming all children were infected in utero or 
at delivery.  Unfortunately, some children may have first visited the clinic after the first 6 
or 12 months, which would include them as untreated children in the study.  At a 
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minimum n=68 children were considered untreated in this analysis because their first 
study data were collected after the first 6 months.  Furthermore, n=44 children were 
untreated in the analyses with A defined by treatment starting in the first 12 months 
because their first study data were collected after the first 12 months.  These children 
could have moved into the catchment area later and may have already been receiving 
triple therapy.  Additionally, it is possible that the healthiest children stop going to clinic 
after a period of time.  Similarly, it is possible that sicker children either begin to go to 
the clinic after symptoms arise or cease going to the clinic because they were too ill.  A 
sensitivity analysis on the data showed that the children who were censored before the 
end of the follow up period in the C diagnosis analyses were slightly more likely to be 
severely immuno-compromised at treatment initiation than children who were 
uncensored (44% vs 38%).  Similarly, the children who were censored before the end of 
the follow up period in the C diagnosis/death analyses were more likely to be severely 
immuno-compromised at treatment initiation than children who were uncensored (45% vs 
38%).  Not surprisingly, this suggests that the children who were censored, which 
included death, reached a C diagnosis, or lost to follow up, were sicker than the children 
who survived beyond the follow-up time.  Children who were treated within 6 months 
were slightly more likely to be censored than children who were untreated within 6 
months of birth (33% vs 28%).  This was likely due to the fact the children who started 
treatment early were sicker than children who delayed treatment.  Children who were 
treated within 12 months were slightly less likely to be censored than children who were 
untreated within 12 months of birth (24% vs 31%).  This was likely due to the possibility 
that the children who started treatment early were able to regain their health quicker than 
children who delayed treatment. 
 
A sample size calculation was performed to see what the sample size would have to be in 
order to see a statistically significant finding.  Conditional on the proportion of children 
treated within the first 6 months remaining the same (approximately 10%), then with a 
power of 0.80 in order to see hazard ratio of 0.63 comparing all treated and untreated 
children estimating the time to a C diagnosis or death I would have needed to enroll 
approximately 405 untreated children with 41 treated children.  See Appendix A.5 for 
details.   
 
Time-dependent confounding, (e.g. immune status throughout the study in the present 
example), was not controlled for.  A child’s baseline immune status was adjusted in the 
analyses estimating the effect of triple therapy among all children, regardless of 
symptoms.  A child who started monotherapy may have good immunocompentence at 
treatment initiation, but later his immune status may deteriorate thus influencing the 
treatment and clinical outcome of interest.  In this study, n=165 children (76.0%) at some 
point in life after the first 6 months of life initiated triple therapy.  Furthermore, n=92 
children (42.4%) modified their treatment to triple therapy after the first 12 months of 
life.   
 
Though the approach applied in this analysis was an intent-to-treat analysis, an analysis 
that adjusts for treatment modification would likely lead to a stronger effect of triple 
therapy on clinical outcomes.  By not adjusting for treatment modification, the present 
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results are biased toward the null, suggesting that the effect of triple therapy on C 
diagnosis and/or death is likely stronger than the G-computation estimates.  
 
Adherence and resistance are always a threat in studies of ARV effectiveness.  The 
present study was not able to assess the rates of adherence among the HIV positive 
children; this is likely heavily dependent on the mother’s own ARV adherence.  As a 
result, it is possible that some children who were started on triple therapy treatment early 
did not continuously receive the therapy, which in turn could create a drug resistance.  If 
this child later restarted triple therapy, he may have poorer clinical and immunologic 
outcomes than other children who were continuously treated.     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   

 106 

Tables 
 
Table 3.1.  Patient Demographics and Baseline Characteristics  (N=217) 
Baseline Covariate (W)   N (%) 
Male Sex 
  

95 (43.8) 

White Ethnicity 
 

61 (28.1) 

Mother had Prenatal Care  
 

110 (50.7) 

Not Low Birth weight  
 

153 (70.5) 

Full-Term Pregnancy 
 

123 (56.7) 

Immune Status at Treatment Initiation 
   Untreated 
   No or Mild Impairment 
   Moderate Impairment 
   Severe Impairment 
 

 
14 (6.5) 
46 (21.2) 
70 (32.3) 
87 (40.1) 

HAART Initiation 
  First 6 Months of Life 
  First 12 Months of Life 
  After First 12 Months of Life or Never 

 
18   (8.3) 
98   (45.2) 
119 (54.8) 

 
 
Table 3.2:  Sample Baseline Characteristics and Associations With Triple Therapy 
Initiation In First 6 Months (N=217) 
Baseline Covariate (W) Triple Therapy In First 6 Months 

(cOR)1 P Value 

Male Sex 
  

0.62 0.35 

White Ethnicity 
 

0.49 0.27 

Mother had Prenatal Care  
 

1.47 0.20 

Not Low Birth weight  
 

0.63 0.36 

Full-Term Pregnancy 
 

0.84 0.57 

Immune Status at 
Treatment Initiation 

1.61 0.12 

1. cOR=crude odds ratio 
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Table 3.3:  Sample Baseline Characteristics and Associations With Triple Therapy 
Initiation in First 12 Months (N=217) 
 Triple Therapy In First 12 Months 

(cOR) 1 P Value 

Male Sex 
  

0.87 0.73 

White Ethnicity 
 

0.28 0.05 

Mother had Prenatal Care  
 

1.41 0.17 

Not Low Birth weight  
 

0.81 0.64 

Full-Term Pregnancy 
 

0.86 0.56 

Immune Status at 
Treatment Initiation 

1.82 0.03 

1. cOR=crude odds ratio 
 
 
Table 3.4:  Sample Characteristics and Associations With C Diagnosis With 36 Months 
 C Diagnosis Within First 36 Months 

(N=75) 
(cOR) 1 

P Value 

Male Sex 
  

0.86 0.60 

White Ethnicity 
 

2.39 < 0.01 

Mother had Prenatal Care  
 

1.00 0.98 

Not Low Birth weight  
 

1.23 0.51 

Full-Term Pregnancy 
 

0.87 0.43 

Immune Status at 
Treatment Initiation 
 

2.17 
 

< 0.01 

1. cOR=crude odds ratio 
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Table 3.5:  Sample Characteristics and Associations With C Diagnosis or Death 
 C Diagnosis/Death Within First 36 

Months (N=84) 
(cOR) 1 

P Value 

Male Sex 
  

0.87 0.62 

White Ethnicity 
 

2.01 0.02 

Mother had Prenatal Care  
 

0.96 0.82 

Not Low Birth weight  
 

0.98 0.95 

Full-Term Pregnancy 
 

0.83 0.31 

Immune Status at 
Treatment Initiation 
 

1.90 
 

< 0.01 

1. cOR=crude odds ratio 
 
 
Table 3.6:  Sample Characteristics and Associations With Death  
 Death Within First 60 Months 

(N=58) 
(cOR) 1 

P Value 

Male Sex 
  

0.79 0.46 

White Ethnicity 
 

1.69 0.11 

Mother had Prenatal Care  
 

0.95 0.77 

Not Low Birth weight  
 

1.01 0.97 

Full-Term Pregnancy 
 

0.83 0.34 

Immune Status at 
Treatment Initiation 
  

1.10 
 

0.56 

1. cOR=crude odds ratio 
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Table 3.7:  Sample Characteristics and Associations With Triple Therapy Initiation in 
First 6 Months By Symptomatic Status 
 Triple Therapy In First 6 

Months (N=10) 
(cOR) 1 

Triple Therapy In First 6 Months 
(N=8) 

(cOR) 1 
 Symptomatic P Value Asymptomatic P Value 
Male Sex 
  

0.54 0.38 0.76 0.72 

White Ethnicity 
 

1.10 0.89  -- n/a 

Mother had 
Prenatal Care  
 

1.59 0.26 1.30 0.54 

Not Low Birth 
weight  
 

0.61 0.46 0.69 0.61 

Full-Term 
Pregnancy 
 

0.65 0.26 1.25 0.65 

1. cOR=crude odds ratio 
 
Table 3.8:  Sample Characteristics and Associations With Triple Therapy Initiation in 
First 12 Months By Symptomatic Status 
 Triple Therapy In First 12 

Months (N=48) 
(cOR) 1 

Triple Therapy In First 12 
Months (N=50) 

(cOR) 1 
 Symptomatic P Value Asymptomatic P Value 
Male Sex 
  

0.85 0.76 0.91 0.88 

White Ethnicity 
 

0.62 0.47 -- n/a 

Mother had 
Prenatal Care  
 

1.36 0.34 1.40 0.36 

Not Low Birth 
weight  
 

1.16 0.80 0.57 0.35 

Full-Term 
Pregnancy 
 

0.67 0.22 1.25 0.58 

1. cOR=crude odds ratio 
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Table 3.9  Binary Estimates of Selected Baseline Covariates on C Diagnosis Among 
Children Who Initiated A in First 6 Months of Life* 
Baseline Covariate (W) Unadjusted Odds Ratio 
Sex 
 

0.52 (0.31 – 0.84) 

Term of Pregnancy 
 

0.76 (0.58 – 1.01) 

Race 1.19 (0.72 – 1.92) 
*Covariates selected by D/S/A.  Variables from which the treatment mechanism model 
was selected included the following:  pregnancy term, sex, race, prenatal care, 
birthweight, immune status at treatment initiation, and time indicator variables.   
 
 
Table 3.10:  Causal Treatment Specific Parameters Related to Triple Therapy on C 
Diagnosis:  Therapy Initiation Under 6 Months or Under 12 Months   
(36 Months of Follow-up) 
 Triple Therapy Initiated First 6 

Months 
Triple Therapy Initiated First 12 
Months 

Time 
Interval 

 (all treated) 
Ψ1(p0)(tk) 

 (all untreated) 
Ψ0(p0)(tk) 

 (all treated) 
Ψ1(p0)(tk) 

 (all untreated) 
Ψ0(p0)(tk) 

6 Months 0.92 (0.81-0.97) 0.90 (0.85-0.92) 0.91 (0.66-0.96) 0.88 (0.83-0.94) 
12 Months 0.85 (0.66-0.94) 0.81 (0.73-0.85) 0.83 (0.58-0.93) 0.78 (0.70-0.84) 
18 Months 0.79 (0.54-0.91) 0.74 (0.63-0.80) 0.76 (0.54-0.90) 0.69 (0.61-0.80) 
24 Months 0.73(0.51-0.88) 0.67 (0.56-0.74) 0.73(0.52-0.87) 0.65 (0.56-0.75) 
30 Months 0.72 (0.50-0.86) 0.66 (0.56-0.73) 0.73 (0.50-0.85) 0.64 (0.56-0.71) 
36 Months 0.67 (0.41-0.84) 0.60 (0.55-0.69) 0.71 (0.49-0.84) 0.62 (0.53-0.67) 
 
 
 
Table 3.11:  Causal Effects of Triple Therapy on C Diagnosis:  Therapy Initiation Under 
6 Months or Under 12 Months (36 Months of Follow-up) 

 Triple Therapy Initiated First 6 
Months 

Triple Therapy Initiated First 12 
Months 

Time 
Interval 

Marginal Additive 
Difference  
ΨAD(p0)(tk) 

Marginal log 
Hazard Ratio 
ΨHZ(p0)(tk) 

Marginal Additive 
Difference  
ΨAD(p0)(tk) 

Marginal log Hazard 
Ratio 
ΨHZ(p0)(tk) 

6 Months 0.043  
(-0.079-0.101) 

-0.475  
(-1.231-0.616) 

0.032  
(-0.252-0.111) 

-0.328  
(-1.174-1.646) 

12 Months 0.077  
(-0.132-0.180) 

-0.472  
(-1.222-0.591) 

0.057  
(-0.260-0.195) 

-0.325  
(-1.162-1.136) 

18 Months 0.103  
(-0.166-0.241) 

-0.468  
(-1.213-0.574) 

0.075  
(-0.229-0.223) 

-0.323  
(-1.158-0.854) 

24 Months 0.113  
(-0.175-0.264) 

-0.467  
(-1.204-0.572) 

0.082  
(-0.187-0.251) 

-0.322  
(-1.153-0.632) 

30 Months 0.115  
(-0.176-0.270) 

-0.467  
(-1.203-0.571) 

0.083  
(-0.143-0.258) 

-0.322  
(-1.152-0.452) 

36 Months 0.120  
(-0.192-0.276) 

-0.466  
(-1.202-0.565) 

0.087  
(-0.099-0.264) 

-0.321  
(-1.151-0.300) 
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Table 3.12:  Causal Treatment Specific Parameters Related to Triple Therapy on C 
Diagnosis or Death:  Therapy Initiation Under 6 Months or Under 12 Months   
(36 Months of Follow-up) 
 Triple Therapy Initiated First 6 

Months 
Triple Therapy Initiated First 12 
Months 

Time 
Interval 

 (all treated) 
Ψ1(p0)(tk) 

 (all untreated) 
Ψ0(p0)(tk) 

 (all treated) 
Ψ1(p0)(tk) 

 (all untreated) 
Ψ0(p0)(tk) 

6 Months 0.93 (0.80-0.95) 0.90 (0.81-0.93) 0.91 (0.70-0.95) 0.90 (0.81-0.93) 
12 Months 0.86 (0.64-0.91) 0.80 (0.65-0.86) 0.83 (0.57-0.90) 0.80 (0.66-0.87) 
18 Months 0.79 (0.52-0.86) 0.72 (0.60-0.81) 0.76 (0.51-0.86) 0.72 (0.59-0.81) 
24 Months 0.74(0.48-0.83) 0.64 (0.54-0.76) 0.69 (0.46-0.81) 0.64 (0.53-0.76) 
30 Months 0.73 (0.48-0.83) 0.64 (0.54-0.72) 0.69 (0.43-0.81) 0.64 (0.53-0.72) 
36 Months 0.68 (0.44-0.81) 0.57 (0.54-0.68) 0.63 (0.40-0.77) 0.57 (0.49-0.68) 
 
Table 3.13:  Causal Effects of Triple Therapy on C Diagnosis or Death:  Therapy 
Initiation Under 6 Months or Under 12 Months (36 Months of Follow-up) 
 Triple Therapy Initiated First 6 

Months 
Triple Therapy Initiated First 12 Months 

Time 
Interval 

Marginal Additive 
Difference  
ΨAD(p0)(tk) 

Marginal log 
Hazard Ratio 
ΨHZ(p0)(tk) 

Marginal Additive 
Difference  
ΨAD(p0)(tk) 

Marginal log Hazard 
Ratio 
ΨHZ(p0)(tk) 

6 Months 0.035  
(-0.088-0.114) 

-0.369  
(-1.072-0.843) 

0.016  
(-0.205-0.080) 

-0.179  
(-0.803-1.296) 

12 Months 0.057  
(-0.143-0.197) 

-0.369  
(-1.064-0.807) 

0.030  
(-0.250-0.137) 

-0.179  
(-0.799-1.054) 

18 Months 0.077  
(-0.179-0.230) 

-0.369  
(-1.061-0.780) 

0.040  
(-0.242-0.158) 

-0.179  
(-0.795-0.853) 

24 Months 0.094  
(-0.203-0.244) 

-0.369  
(-1.060-0.759) 

0.048  
(-0.222-0.192) 

-0.179  
(-0.790-0.823) 

30 Months 0.095  
(-0.220-0.244) 

-0.369  
(-1.060-0.743) 

0.049  
(-0.240-0.195) 

-0.180  
(-0.790-0.806) 

36 Months 0.108  
(-0.231-0.261) 

-0.369  
(-1.058-0.730) 

0.055  
(-0.252-0.208) 

-0.180  
(-0.786-0.792) 
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Table 3.14:  Causal Treatment Specific Parameters Related to Triple Therapy on Death:  
Therapy Initiation Under 6 or 12 Months (60 Months of Follow-up) 
 Triple Therapy Initiated First 6 

Months 
Triple Therapy Initiated First 12 
Months 

Time 
Interval 

 (all treated) 
Ψ1(p0)(tk) 

 (all untreated) 
Ψ0(p0)(tk) 

 (all treated) 
Ψ1(p0)(tk) 

 (all untreated) 
Ψ0(p0)(tk) 

6 Months 0.97 (0.94-1.00) 0.97 (0.95-0.98) 0.97 (0.95-0.99) 0.96 (0.96-0.97) 
12 Months 0.94 (0.89-1.00) 0.93 (0.90-0.95) 0.94 (0.90-0.97) 0.93 (0.90-0.95) 
18 Months 0.92 (0.85-1.00) 0.90 (0.85-0.93) 0.92 (0.85-0.96) 0.90 (0.87-0.92) 
24 Months 0.89 (0.73-0.96) 0.87 (0.77-0.90) 0.89 (0.61-0.95) 0.87 (0.81-0.87) 
30 Months 0.86 (0.65-0.96) 0.84 (0.74-0.87) 0.86 (0.68-0.94) 0.84 (0.79-0.84) 
36 Months 0.84 (0.57-0.95) 0.81 (0.72-0.85) 0.84 (0.55-0.88) 0.81 (0.76-0.82) 
42 Months 0.82 (0.57-0.94) 0.78 (0.70-0.82) 0.82 (0.53-0.86) 0.78 (0.72-0.79) 
48 Months 0.79 (0.57-0.93) 0.75 (0.68-0.80) 0.79 (0.51-0.85) 0.75 (0.69-0.77) 
54 Months 0.77 (0.57-0.93) 0.73 (0.66-0.78) 0.77 (0.48-0.83) 0.72 (0.66-0.75) 
60 Months 0.75 (0.53-0.92) 0.70 (0.63-0.76) 0.75 (0.46-0.92) 0.70 (0.63-0.72) 
 
 
 
 
Table 3.15:  Causal Effects of Triple Therapy on Death:  Therapy Initiation Under 6 
Months or Under 12 Months (60 Months of Follow-up) 
 Triple Therapy Initiated First 6 

Months 
Triple Therapy Initiated First 12 
Months 

Time 
Interval 

Marginal 
Additive 
Difference  
ΨAD(p0)(tk) 

Marginal log 
Hazard Ratio 
ΨHZ(p0)(tk) 

Marginal Additive 
Difference  
ΨAD(p0)(tk) 

Marginal log 
Hazard Ratio 
ΨHZ(p0)(tk) 

6 Months 0.006  
(-0.036-0.053) 

-0.199  
(-16.11-0.938) 

0.007  
(-0.019-0.030) 

-0.205  
(-1.966-0.464) 

12 Months 0.012  
(-0.065-0.104) 

-0.199  
(-16.11-0.907) 

0.012  
(-0.036-0.059) 

-0.205  
(-1.206-0.458) 

18 Months 0.017  
(-0.088-0.151) 

-0.199  
(-16.14-0.887) 

0.018  
(-0.051-0.086) 

-0.205  
(-1.216-0.451) 

24 Months 0.023  
(-0.145-0.102) 

-0.199  
(-1.368-0.851) 

0.023  
(-0.265-0.112) 

-0.205  
(-1.225-1.300) 

30 Months 0.027  
(-0.159-0.120) 

-0.199  
(-1.373-0.847) 

0.028  
(-0.264-0.136) 

-0.205  
(-1.234-1.167) 

36 Months 0.032  
(-0.217-0.138) 

-0.199  
(-1.376-0.846) 

0.033  
(-0.262-0.087) 

-0.205  
(-0.529-1.067) 

42 Months 0.036  
(-0.197-0.154) 

-0.199  
(-1.377-0.835) 

0.037  
(-0.260-0.092) 

-0.205  
(-0.527-0.987) 

48 Months 0.040 
(-0.206-0.170) 

-0.199  
(-1.378-0.832) 

0.041 
(-0.257-0.098) 

-0.205  
(-0.526-0.922) 

54 Months 0.043 
(-0.214-0.185) 

-0.199  
(-1.378-0.831) 

0.045 
(-0.253-0.109) 

-0.205  
(-0.525-0.867) 

60 Months 0.046 
(-0.229-0.200) 

-0.199  
(-1.378-0.825) 

0.048  
(-0.249-0.130) 

-0.205  
(-0.526-0.821) 
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Table 3.16:  Causal Treatment Specific Parameters Related to Triple Therapy on C 
Diagnosis:  Therapy Initiation Under 6 Months Among Asymptomatic or Symptomatic 
Children (36 Months of Follow-up) 
 Triple Therapy Among 

Asymptomatic 
Triple Therapy Among 
Symptomatic 

Time 
Interval 

 (all treated) 
Ψ1(p0)(tk) 

 (all untreated) 
Ψ0(p0)(tk) 

 (all treated) 
Ψ1(p0)(tk) 

 (all untreated) 
Ψ0(p0)(tk) 

6 Months 0.94 (0.69-1.00) 0.91 (0.86-0.92) 0.94 (0.85-1.00) 0.90 (0.81-0.90) 
12 Months 0.88 (0.50-1.00) 0.82 (0.74-0.84) 0.89 (0.73-1.00) 0.82 (0.66-0.82) 
18 Months 0.83 (0.37-1.00) 0.75 (0.66-0.77) 0.84 (0.63-1.00) 0.74 (0.59-0.76) 
24 Months 0.78 (0.34-1.00) 0.68 (0.62-0.71) 0.80(0.60-1.00) 0.67 (0.54-0.72) 
30 Months 0.77 (0.33-1.00) 0.67 (0.62-0.71) 0.79 (0.59-1.00) 0.67 (0.54-0.71) 
36 Months 0.72 (0.30-1.00) 0.61 (0.55-0.69) 0.75 (0.56-1.00) 0.61 (0.53-0.68) 
 
 
Table 3.17:  Causal Effects of Triple Therapy on C Diagnosis:  Therapy Initiation Under 
6 Months Among Asymptomatic or Symptomatic Children (36 Months of Follow-up) 
 Triple Therapy Among 

Asymptomatic 
Triple Therapy Among 
Symptomatic 

Time 
Interval 

Marginal 
Additive 
Difference  
ΨAD(p0)(tk) 

Marginal log 
Hazard Ratio 
ΨHZ(p0)(tk) 

Marginal 
Additive 
Difference  
ΨAD(p0)(tk) 

Marginal log 
Hazard Ratio 
ΨHZ(p0)(tk) 

6 Months 0.031  
(-0.184-0.115) 

-0.429  
(-16.26-1.022) 

0.041  
(-0.023-0.170) 

-0.575  
(-15.346-0.184) 

12 Months 0.058  
(-0.271-0.216) 

-0.429  
(-16.25-0.986) 

0.075  
(-0.039-0.304) 

-0.572  
(-15.317-0.181) 

18 Months 0.080  
(-0.312-0.303) 

-0.429  
(-16.24-0.960) 

0.103  
(-0.050-0.351) 

-0.569  
(-15.313-0.179) 

24 Months 0.099  
(-0.320-0.380) 

-0.429  
(-16.23-0.955) 

0.126  
(-0.052-0.397) 

-0.566  
(-15.311-0.179) 

30 Months 0.100  
(-0.322-0.380) 

-0.429  
(-16.23-0.953) 

0.128  
(-0.052-0.406) 

-0.566  
(-15.313-0.178) 

36 Months 0.115  
(-0.327-0.446) 

-0.429  
(-16.23-0.948) 

0.146  
(-0.055-0.415) 

-0.563  
(-15.314-0.178) 

 
 
 
 
Table 3.18  Binary Estimates of Selected Baseline Covariates on C Diagnosis Among 
Children Who Initiated A Asymptomatically in the First 12 Months of Life* 
Baseline Covariate (W) Unadjusted Odds Ratio 
Term of Pregnancy 
 

0.71 (0.54 – 0.95) 

*Covariates selected by D/S/A.  Variables from which the treatment mechanism model 
was selected included the following:  pregnancy term, sex, race, prenatal care, birth 
weight, and time indicator variables.   
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Table 3.19:  Causal Treatment Specific Parameters Related to Triple Therapy on C 
Diagnosis:  Therapy Initiation Under 12 Months Among Asymptomatic or Symptomatic 
Children (36 Months of Follow-up) 
 Triple Therapy Among 

Asymptomatic 
Triple Therapy Among 
Symptomatic 

Time 
Interval 

 (all treated) 
Ψ1(p0)(tk) 

 (all untreated) 
Ψ0(p0)(tk) 

 (all treated) 
Ψ1(p0)(tk) 

 (all untreated) 
Ψ0(p0)(tk) 

6 Months 0.91 (0.73-0.97) 0.90 (0.86-0.94) 0.95 (0.76-1.00) 0.90 (0.85-0.93) 
12 Months 0.82 (0.58-0.94) 0.80 (0.74-0.88) 0.89 (0.70-1.00) 0.82 (0.73-0.85) 
18 Months 0.74 (0.45-0.92) 0.72 (0.66-0.82) 0.85 (0.67-0.92) 0.74 (0.64-0.79) 
24 Months 0.68 (0.42-0.89) 0.65 (0.63-0.77) 0.80 (0.61-0.90) 0.67 (0.62-0.74) 
30 Months 0.67 (0.41-0.88) 0.64 (0.63-0.72) 0.80 (0.54-0.90) 0.66 (0.62-0.73) 
36 Months 0.65 (0.38-0.85) 0.62 (0.56-0.68) 0.75 (0.49-0.87) 0.60 (0.58-0.68) 
 
 
Table 3.20:  Causal Effects of Triple Therapy on C Diagnosis:  Therapy Initiation Under 
12 Months Among Asymptomatic or Symptomatic Children (36 Months Follow-up) 
 Triple Therapy Among 

Asymptomatic 
Triple Therapy Among 
Symptomatic 

Time 
Interval 

Marginal 
Additive 
Difference  
ΨAD(p0)(tk) 

Marginal log 
Hazard Ratio 
ΨHZ(p0)(tk) 

Marginal 
Additive 
Difference  
ΨAD(p0)(tk) 

Marginal log 
Hazard Ratio 
ΨHZ(p0)(tk) 

6 Months 0.010  
(-0.204-0.064) 

-0.107  
(-1.207-1.608) 

0.043  
(-0.142-0.137) 

-0.600  
(-15.645-0.987) 

12 Months 0.018  
(-0.199-0.116) 

-0.106  
(-1.101-1.094) 

0.078  
(-0.119-0.254) 

-0.597  
(-15.643-0.584) 

18 Months 0.024  
(-0.234-0.151) 

-0.106  
(-1.092-0.749) 

0.108  
(-0.113-0.208) 

-0.594  
(-1.220-0.508) 

24 Months 0.029  
(-0.242-0.188) 

-0.106  
(-1.075-0.745) 

0.132  
(-0.131-0.224) 

-0.591  
(-1.219-0.497) 

30 Months 0.029  
(-0.244-0.196) 

-0.106  
(-1.069-0.743) 

0.133  
(-0.144-0.234) 

-0.590  
(-1.218-0.488) 

36 Months 0.030  
(-0.250-0.225) 

-0.106  
(-1.054-0.739) 

0.152  
(-0.153-0.240) 

-0.587  
(-1.217-0.480) 
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Table 3.21  Binary Estimates of Selected Baseline Covariates on C Diagnosis or Death 
Among Children Who Initiated A Asymptomatically in First 6 Months of Life* 
Baseline Covariate (W) Unadjusted Odds Ratio 
Term of Pregnancy 
 

0.72 (0.56 – 0.95) 

*Covariates selected by D/S/A.  Variables from which the treatment mechanism model 
was selected included the following:  pregnancy term, sex, race, prenatal care, birth 
weight, and time indicator variables.   
 
Table 3.22:  Causal Treatment Specific Parameters Related to Triple Therapy on C 
Diagnosis or Death:  Therapy Initiation Under 6 Months Among Asymptomatic or 
Symptomatic Children (36 Months of Follow-up) 
 Triple Therapy Among 

Asymptomatic 
Triple Therapy Among 
Symptomatic 

Time 
Interval 

 (all treated) 
Ψ1(p0)(tk) 

 (all 
untreated) 
Ψ0(p0)(tk) 

 (all treated) 
Ψ1(p0)(tk) 

 (all untreated) 
Ψ0(p0)(tk) 

6 Months 0.92 (0.62-1.00) 0.87 (0.85-0.91) 0.92 (0.81-0.96) 0.90 (0.81-0.90) 
12 Months 0.85 (0.40-1.00) 0.76 (0.72-0.81) 0.84 (0.67-0.92) 0.80 (0.65-0.80) 
18 Months 0.78 (0.31-1.00) 0.67 (0.62-0.74) 0.77 (0.55-0.89) 0.72 (0.58-0.72) 
24 Months 0.75 (0.27-1.00) 0.62 (0.53-0.68) 0.70(0.49-0.88) 0.65 (0.53-0.68) 
30 Months 0.75 (0.26-1.00) 0.62 (0.53-0.67) 0.70 (0.49-0.88) 0.64 (0.53-0.67) 
36 Months 0.73 (0.22-1.00) 0.59 (0.51-0.65) 0.64 (0.42-0.88) 0.58 (0.49-0.65) 
 
 
Table 3.23:  Causal Effects of Triple Therapy on C Diagnosis or Death:  Therapy 
Initiation Under 6 Months Among Asymptomatic or Symptomatic Children (36 Months 
Follow-up) 
 Triple Therapy Among 

Asymptomatic 
Triple Therapy Among 
Symptomatic 

Time 
Interval 

Marginal 
Additive 
Difference  
ΨAD(p0)(tk) 

Marginal log 
Hazard Ratio 
ΨHZ(p0)(tk) 

Marginal 
Additive 
Difference  
ΨAD(p0)(tk) 

Marginal log 
Hazard Ratio 
ΨHZ(p0)(tk) 

6 Months 0.049  
(-0.236-0.145) 

-0.518  
(-17.75-1.131) 

0.018  
(-0.063-0.135) 

-0.204  
(-1.494-0.452) 

12 Months 0.088  
(-0.339-0.269) 

-0.516  
(-17.74-1.108) 

0.033  
(-0.105-0.238) 

-0.204  
(-1.488-0.447) 

18 Months 0.118  
(-0.366-0.376) 

-0.515  
(-17.74-1.098) 

0.045  
(-0.131-0.285) 

-0.204  
(-1.486-0.443) 

24 Months 0.131  
(-0.374-0.466) 

-0.514  
(-17.73-1.094) 

0.054  
(-0.195-0.305) 

-0.204  
(-1.485-0.633) 

30 Months 0.133  
(-0.376-0.466) 

-0.514  
(-17.73-1.093) 

0.055  
(-0.188-0.308) 

-0.204  
(-1.485-0.605) 

36 Months 0.140  
(-0.380-0.490) 

-0.514  
(-17.72-1.086) 

0.062  
(-0.178-0.319) 

-0.204  
(-1.485-0.556) 
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Table 3.24  Binary Estimates of Selected Baseline Covariates on C Diagnosis or Death 
Among Children Who Initiated A Asymptomatically in the First 12 Months of Life* 
Baseline Covariate (W) Unadjusted Odds Ratio 
Term of Pregnancy 
 

0.72 (0.56 – 0.95) 

*Covariates selected by D/S/A.  Variables from which the treatment mechanism model 
was selected included the following:  pregnancy term, sex, race, prenatal care, birth 
weight, and time indicator variables.   
 
 
Table 3.25:  Causal Treatment Specific Parameters Related to Triple Therapy on C 
Diagnosis or Death:  Therapy Initiation Under 12 Months Among Asymptomatic or 
Symptomatic Children (36 Months of Follow-up) 
 Triple Therapy Among 

Asymptomatic 
Triple Therapy Among 
Symptomatic 

Time 
Interval 

 (all treated) 
Ψ1(p0)(tk) 

 (all 
untreated) 
Ψ0(p0)(tk) 

 (all treated) 
Ψ1(p0)(tk) 

 (all untreated) 
Ψ0(p0)(tk) 

6 Months 0.90 (0.58-0.97) 0.87 (0.84-0.91) 0.91 (0.81-0.96) 0.89 (0.81-0.90) 
12 Months 0.80 (0.51-0.93) 0.76 (0.72-0.83) 0.83 (0.67-0.92) 0.80 (0.65-0.80) 
18 Months 0.72 (0.47-0.92) 0.67 (0.63-0.76) 0.75 (0.55-0.89) 0.72 (0.58-0.72) 
24 Months 0.68 (0.44-0.89) 0.62 (0.58-0.69) 0.69(0.49-0.88) 0.64 (0.53-0.68) 
30 Months 0.67 (0.43-0.88) 0.62 (0.58-0.68) 0.68 (0.49-0.88) 0.64 (0.53-0.67) 
36 Months 0.65 (0.38-0.85) 0.59 (0.51-0.66) 0.62 (0.42-0.88) 0.57 (0.49-0.65) 
 
 
Table 3.26:  Causal Effects of Triple Therapy on C Diagnosis or Death:  Therapy 
Initiation Under 12 Months Among Asymptomatic or Symptomatic Children (36 Months 
Follow-up) 
 Triple Therapy Among 

Asymptomatic 
Triple Therapy Among 
Symptomatic 

Time 
Interval 

Marginal 
Additive 
Difference  
ΨAD(p0)(tk) 

Marginal log 
Hazard Ratio 
ΨHZ(p0)(tk) 

Marginal 
Additive 
Difference  
ΨAD(p0)(tk) 

Marginal log 
Hazard Ratio 
ΨHZ(p0)(tk) 

6 Months 0.022  
(-0.303-0.080) 

-0.207  
(-1.263-1.495) 

0.016  
(-0.063-0.135) 

-0.173  
(-1.494-0.452) 

12 Months 0.039  
(-0.276-0.148) 

-0.206  
(-1.247-1.027) 

0.029  
(-0.105-0.238) 

-0.172  
(-1.488-0.447) 

18 Months 0.052  
(-0.200-0.176) 

-0.205  
(-1.238-0.659) 

0.038  
(-0.131-0.285) 

-0.171  
(-1.486-0.443) 

24 Months 0.057  
(-0.200-0.221) 

-0.205  
(-1.222-0.607) 

0.046  
(-0.195-0.305) 

-0.170  
(-1.485-0.633) 

30 Months 0.058  
(-0.202-0.233) 

-0.205  
(-1.218-0.606) 

0.046  
(-0.188-0.308) 

-0.169  
(-1.485-0.605) 

36 Months 0.061  
(-0.208-0.267) 

-0.205  
(-1.205-0.601) 

0.052  
(-0.178-0.319) 

-0.168  
(-1.485-0.556) 
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Table 3.27.  Binary Estimates of Selected Baseline Covariates on Death Among Children 
Who Initiated A Asymptomatically In the First 6 Months of Life* 
Baseline Covariate (W) Unadjusted Odds Ratio 
Term of Pregnancy2 
 

    0.74 (0.54-1.02) 

Prenatal Care2      0.79 (0.59 – 1.05) 
*Covariates selected by D/S/A.  Variables from which the treatment mechanism model 
was selected included the following:  pregnancy term, sex, race, prenatal care, birth 
weight, and time indicator variables.   
 
 
 
 
 
 
 
 
Table 3.28  Binary Estimates of Selected Baseline Covariates on Death Among Children 
Who Initiated A Symptomatically in the First 6 Months of Life* 
Baseline Covariate (W) Unadjusted Odds Ratio 
Term of Pregnancy 
 

    0.74 (0.54 – 1.02) 

*Covariates selected by D/S/A.  Variables from which the treatment mechanism model 
was selected included the following:  pregnancy term, sex, race, prenatal care, birth 
weight, and time indicator variables.   
 
 
Table 3.29:  Causal Treatment Specific Parameters Related to Triple Therapy on Death:  
Therapy Initiation Under 6 Months Among Asymptomatic or Symptomatic Children (60 
Months of Follow-up) 
 Triple Therapy Among 

Asymptomatic 
Triple Therapy Among 
Symptomatic 

Time 
Interval 

 (all treated) 
Ψ1(p0)(tk) 

 (all untreated) 
Ψ0(p0)(tk) 

 (all treated) 
Ψ1(p0)(tk) 

 (all untreated) 
Ψ0(p0)(tk) 

6 Months 0.97 (0.91-1.00) 0.96 (0.96-0.97) 0.97 (0.95-1.00) 0.96 (0.96-0.98) 
12 Months 0.94 (0.84-1.00) 0.93 (0.90-0.95) 0.95 (0.91-1.00) 0.93 (0.91-0.95) 
18 Months 0.91 (0.78-1.00) 0.89 (0.87-0.91) 0.92 (0.87-1.00) 0.89 (0.88-0.92) 
24 Months 0.86 (0.71-1.00) 0.84 (0.81-0.89) 0.88 (0.45-1.00) 0.84 (0.82-0.88) 
30 Months 0.85 (0.68-1.00) 0.82 (0.79-0.86) 0.86 (0.45-1.00) 0.82 (0.80-0.86) 
36 Months 0.82 (0.44-0.90) 0.79 (0.76-0.83) 0.84 (0.45-1.00) 0.79 (0.77-0.83) 
42 Months 0.81 (0.44-0.89) 0.79 (0.74-0.81) 0.84 (0.45-1.00) 0.79 (0.75-0.81) 
48 Months 0.79 (0.45-0.87) 0.76 (0.71-0.79) 0.81 (0.45-1.00) 0.76 (0.72-0.78) 
54 Months 0.76 (0.45-0.86) 0.73 (0.68-0.76) 0.79 (0.45-1.00) 0.73 (0.69-0.76) 
60 Months 0.74 (0.45-0.84) 0.70 (0.65-0.74) 0.77 (0.45-1.00) 0.70 (0.65-0.74) 
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Table 3.30:  Causal Effects of Triple Therapy on Death:  Therapy Initiation Under 6 
Months Among Asymptomatic or Symptomatic Children (60 Months Follow-up) 
 Triple Therapy Among 

Asymptomatic 
Triple Therapy Among 
Symptomatic 

Time 
Interval 

Marginal 
Additive 
Difference  
ΨAD(p0)(tk) 

Marginal log 
Hazard Ratio 
ΨHZ(p0)(tk) 

Marginal 
Additive 
Difference  
ΨAD(p0)(tk) 

Marginal log 
Hazard Ratio 
ΨHZ(p0)(tk) 

6 Months 0.005  
(-0.056-0.039) 

-0.162  
(-15.37-1.084) 

0.010  
(-0.020-0.039) 

-0.304  
(-15.298-0.577) 

12 Months 0.001  
(-0.099-0.076) 

-0.161  
(-15.37-1.045) 

0.019  
(-0.039-0.074) 

-0.303  
(-15.298-0.577) 

18 Months 0.015  
(-0.132-0.127) 

-0.161  
(-15.37-1.005) 

0.027  
(-0.056-0.109) 

-0.303  
(-15.298-0.576) 

24 Months 0.022  
(-0.157-0.146) 

-0.161  
(-15.37-0.964) 

0.040  
(-0.415-0.143) 

-0.302  
(-15.296-1.522) 

30 Months 0.024  
(-0.175-0.179) 

-0.160  
(-15.37-0.921) 

0.043  
(-0.389-0.175) 

-0.302  
(-15.297-1.522) 

36 Months 0.028  
(-0.397-0.103) 

-0.160  
(-0.774-1.519) 

0.050  
(-0.335-0.207) 

-0.302  
(-15.297-1.200) 

42 Months 0.029  
(-0.372-0.116) 

-0.160  
(-0.774-1.365) 

0.051  
(-0.260-0.092) 

-0.302  
(-15.297-1.088) 

48 Months 0.032  
(-0.348-0.129) 

-0.160  
(-0.774-1.231) 

0.057 
(-0.313-0.237) 

-0.302  
(-15.297-0.989) 

54 Months 0.034  
(-0.325-0.141) 

-0.160  
(-0.774-1.114) 

0.063 
(-0.292-0.293) 

-0.301  
(-15.297-0.901) 

60 Months 0.038  
(-0.302-0.153) 

-0.160  
(-0.774-1.008) 

0.068  
(-0.253-0.320) 

-0.301  
(-15.297-0.820) 

 
Table 3.31.  Binary Estimates of Selected Baseline Covariates on Death Among Children 
Who Initiated A Asymptomatically in the First 12 Months of Life* 
Baseline Covariate (W) Unadjusted Odds Ratio 
Term of Pregnancy2 
 

    0.74 (0.54-1.02) 

Prenatal Care2      0.79 (0.59 – 1.05) 
*Covariates selected by D/S/A.  Variables from which the treatment mechanism model 
was selected included the following:  pregnancy term, sex, race, prenatal care, birth 
weight, and time indicator variables.   
 
 
Table 3.32.  Binary Estimates of Selected Baseline Covariates on Death Among Children 
Who Initiated A Symptomatically in the First 12 Months of Life* 
Baseline Covariate (W) Unadjusted Odds Ratio 
Term of Pregnancy 
 

    0.74   (0.54 – 1.02) 

*Covariates selected by D/S/A.  Variables from which the treatment mechanism model 
was selected included the following:  pregnancy term, sex, race, prenatal care, birth 
weight, and time indicator variables.   
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Table 3.33:  Causal Treatment Specific Parameters Related to Triple Therapy on Death:  
Therapy Initiation Under 12 Months Among Asymptomatic or Symptomatic Children (60 
Months of Follow-up) 
 Triple Therapy Among 

Asymptomatic 
Triple Therapy Among 
Symptomatic 

Time 
Interval 

 (all treated) 
Ψ1(p0)(tk) 

 (all 
untreated) 
Ψ0(p0)(tk) 

 (all treated) 
Ψ1(p0)(tk) 

 (all untreated) 
Ψ0(p0)(tk) 

6 Months 0.97 (0.84-1.00) 0.96 (0.95-0.97) 0.97 (0.96-0.99) 0.96 (0.96-0.98) 
12 Months 0.94 (0.80-1.00) 0.93 (0.91-0.95) 0.95 (0.92-0.98) 0.93 (0.91-0.94) 
18 Months 0.91 (0.77-1.00) 0.89 (0.87-0.92) 0.93 (0.87-0.97) 0.90 (0.87-0.92) 
24 Months 0.86 (0.74-1.00) 0.84 (0.77-0.90) 0.88 (0.71-0.96) 0.84 (0.80-0.88) 
30 Months 0.85 (0.72-1.00) 0.82 (0.75-0.88) 0.86 (0.70-0.96) 0.81 (0.79-0.87) 
36 Months 0.82 (0.53-0.91) 0.79 (0.73-0.85) 0.84 (0.69-0.95) 0.78 (0.76-0.83) 
42 Months 0.81 (0.53-0.90) 0.79 (0.70-0.83) 0.84 (0.68-0.94) 0.78 (0.75-0.81) 
48 Months 0.79 (0.53-0.88) 0.76 (0.68-0.81) 0.81 (0.67-0.94) 0.75 (0.72-0.79) 
54 Months 0.76 (0.53-0.87) 0.73 (0.66-0.79) 0.79 (0.64-0.93) 0.72 (0.70-0.77) 
60 Months 0.74 (0.53-0.86) 0.70 (0.63-0.77) 0.77 (0.61-0.92) 0.70 (0.67-0.75) 

 
 
 
 
 
Table 3.34:  Causal Effects of Triple Therapy on Death:  Therapy Initiation Under 12 
Months Among Asymptomatic or Symptomatic Children (60 Months Follow-up) 
 Triple Therapy Among 

Asymptomatic 
Triple Therapy Among 
Symptomatic 

Time 
Interval 

Marginal 
Additive 
Difference  
ΨAD(p0)(tk) 

Marginal log 
Hazard Ratio 
ΨHZ(p0)(tk) 

Marginal 
Additive 
Difference  
ΨAD(p0)(tk) 

Marginal log 
Hazard Ratio 
ΨHZ(p0)(tk) 

6 Months 0.007  
(-0.119-0.046) 

-0.167  
(-15.137-1.497) 

0.010  
(-0.010-0.028) 

-0.340  
(-1.445-0.306) 

12 Months 0.012  
(-0.126-0.089) 

-0.167  
(-15.137-1.073) 

0.020  
(-0.020-0.065) 

-0.340  
(-1.368-0.306) 

18 Months 0.016  
(-0.126-0.131) 

-0.166  
(-15.137-0.846) 

0.028  
(-0.028-0.085) 

-0.339  
(-1.387-0.306) 

24 Months 0.027  
(-0.119-0.170) 

-0.166  
(-15.137-0.684) 

0.043  
(-0.112-0.104) 

-0.338  
(-1.398-0.562) 

30 Months 0.025  
(-0.109-0.208) 

-0.166  
(-15.137-0.554) 

0.050  
(-0.095-0.123) 

-0.338  
(-1.405-0.445) 

36 Months 0.029  
(-0.261-0.105) 

-0.166  
(-15.297-1.009) 

0.057  
(-0.079-0.140) 

-0.338  
(-1.411-0.348) 

42 Months 0.030  
(-0.232-0.119) 

-0.166  
(-15.297-0.871) 

0.058  
(-0.070-0.157) 

-0.338  
(-1.415-0.305) 

48 Months 0.033 
(-0.203-0.133) 

-0.165  
(-15.297-0.775) 

0.064 
(-0.075-0.174) 

-0.337  
(-1.418-0.305) 

54 Months 0.036  
(-0.176-0.145) 

-0.165  
(-15.297-0.693) 

0.070 
(-0.080-0.190) 

-0.337  
(-1.421-0.305) 

60 Months 0.039  
(-0.156-0.158) 

-0.165  
(-15.297-0.621) 

0.075  
(-0.084-0.205) 

-0.336  
(-1.423-0.305) 
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Table 3.35:  Comparison of Estimates from G-Comp and Traditional Techniques Therapy 
Initiation Under 6 Months or Under 12 Months (36 Months of Follow-up) 

 Triple Therapy Initiated  
First 6 Months 

Triple Therapy Initiated  
First 12 Months 

 
Outcome Marginal 

Additive 
Difference 
ΨAD(p0)(tk) 

Marginal log 
Hazard Ratio 
ΨHZ(p0)(tk) 

Mean 
Marginal 
Log HR 
over tk 

Cox PH 
Model 

Marginal 
Additive 
Difference  
ΨAD(p0)(tk) 

Marginal log 
Hazard Ratio 
ΨHZ(p0)(tk) 

Mean 
Marginal 
Log HR 
over tk 

Cox PH 
Model 

 Overall Overall 

C 
Diagnosis 

0.120  
(-0.127, 
0.270)1 

-0.466  
(-1.457, 
0.397)1 

-0.470 
(-1.468, 
1.353)1 

-0.476 
(-1.486, 
0.534)1 

0.087  
(-0.065, 
0.151)1 

-0.321  
(-0.588, 
0.212)1 

-0.324 
(-0.617, 
0.217) 1 

-0.407 
(-0.876, 
0.062)1 

C 
Diagnosis 
or Death 

0.108  
(-0.110, 
0.311) 

-0.369  
(-1.588, 
0.300) 

-0.369 
(-1.634, 
0.822) 

-0.346 
(-1.249, 
0.558) 

0.055  
(-0.150, 
0.158) 

-0.180  
(-0.599, 
0.445) 

-0.179 
(-0.625, 
0.468) 

-0.431 
(-0.875, 
0.012) 

 Asymptomatic Asymptomatic 

C 
Diagnosis 

0.115  
(-0.327-
0.446) 

-0.429  
(-16.23, 
0.948) 

-0.429 
(-16.27, 
1.438) 

-0.712 
(-1.445, 
0.022) 

0.030  
(-0.250, 
0.225)2 

-0.106  
(-1.054, 
0.739)2 

-0.106  
(-1.138, 
2.105) 2 

-0.516 
(-1.134, 
0.102)2 

C 
Diagnosis 
or Death 

0.140  
(-0.380-
0.490)2 

-0.514  
(-17.72, 
1.086)2 

-0.515 
(-17.76, 
1.316) 2 

-0.570 
(-1.231, 
0.091)2 

0.061  
(-0.208, 
0.267)2 

-0.205  
(-1.205, 
0.601)2 

-0.206 
(-1.279, 
1.906) 2 

-0.471 
(-0.523, 
0.004)2 

 Symptomatic Symptomatic 

C 
Diagnosis 

0.146  
(-0.214-
0.355)3 

-0.563  
(-14.34-
0.653)3 

-0.570 
(-14.42, 
0.755) 3 

-0.634 
(-2.041, 
0.774)3 

0.152  
(-0.153-
0.240)3 

-0.587  
(-1.217-
0.480)3 

-0.594 
(-15.65, 
1.529) 3 

-0.068 
(-0.610, 
0.474)3 

C 
Diagnosis 
or Death 

0.062 
(-0.236-
0.403) 

-0.204  
(-14.75-
0.683) 

-0.204 
(-14.73, 
0.766) 

-0.291 
(-0.951, 
0.369) 

0.052  
(-0.255-
0.319)3 

-0.168  
(-1.526-
0.709)3 

-0.171 
(-15.36, 
2.807) 3 

-0.214 
(-0.749, 
0.320)3 

1 Adjusted for sex, race, and pregnancy term 
2 Adjusted for pregnancy term 
3 Adjusted for an interaction between prenatal care and a time indicator variable for 25-30 months and an interaction between sex and 
pregnancy term 
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Figures 
 
Figure 3.1:  Causal Assumptions Within This Study of the Effect of Triple Therapy 
Initiated in First 6 Months of Life on Time to C Diagnosis and/or Death 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2:  Causal Assumptions Within This Study of the Effect of Triple Therapy 
Initiated in First 6 Months of Life on Time to C Diagnosis and/or Death After 
Adjustment 
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Figure 3.3: Directed Acyclic Graph (DAG) describing possible association between 
initiation of HAART and mortality from HIV/AIDS 
 

 
 

 
 
                                             
    
                                           
                                                               

             
 
 
                                                                                                 
 
 
 
                                                                  
 

     
 
 
  

 
Figure 3.4: Directed Acyclic Graph (DAG) describing possible association between 
initiation of HAART and C Diagnosis 
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Figure 3.5a: 

 
Figure 3.5b: 

 
 
 
 
 
 
 
 



   

 124 

Figure 3.6a: 
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Figure 3.7a:   
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Figure 3.8a: 
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Figure 3.9a: 
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Figure 3.10a: 
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Figure 3.11a: 
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Figure 3.12a: 
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Figure 3.13a: 
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4.1  Abstract 
Researchers view randomized controlled trials (RCTs) as the gold standard when 
estimating the effect of highly active antiretroviral therapy (HAART) on human 
immunodeficiency virus (HIV) disease progression and/or death.  In the absence of RCT 
data, epidemiologists are tasked with asserting causal inference, assuming no unmeasured 
confounding, from observational data.  Previously calendar periods have been used as a 
proxy for HAART use as HAART was introduced in mid-1996 in the U.S.(1-12)  This 
approach, referred to as an instrumental variable analysis, can be biased because of 
misclassification of HAART use.(1)   
 
Methods 
In the present study I perform an adapted instrumental variable analysis of 267 HIV-
positive children living in Northern California from 1988 to 2009 in order to estimate the 
causal effect of HAART on the hazard of AIDS events or death.  In this adapted 
instrumental variable analysis, previously proposed by Cain et al, researchers can adjust 
for noncompliance corrections similar to adjustments performed in RCTs.(1)  The two 
instruments used for the primary analyses were defined as:  1) before 1997/1997 and 
after; 2) before 1998/1998 and after.  Further, I performed separate analyses estimating 
the causal effect of HAART on the hazard of AIDS events alone under each instrumental 
variable scenario.    
 
Results 
During 61,847 person-days, 113 HIV-positive children received an AIDS diagnosis or 
died.  The naïve rate ratio comparing the early-defined instrumental variable (1997 cut-
off) non-HAART era with the HAART era was estimated at 2.17 (95% CI 1.34-3.52).  As 
a result of HAART use misclassification by calendar era, an instrumental variable 
estimator was used, yielding an instrumental variable rate ratio of 3.91 (95% CI 2.41, 
6.34), 80% higher than the naïve result. For the latter-defined instrumental variable (cut-
off 1998), the naïve rate ratio comparing the non-HAART era with the HAART era was 
estimated at 2.27 (95% CI 1.34, 3.85).  As a result of HAART use misclassification by 
calendar era, an instrumental variable estimator was used, yielding an instrumental 
variable rate ratio of 4.87 (95% CI 2.87, 8.26), more than 2 times higher than the naïve 
result.  To adjust for variables associated with both calendar era and the outcome, 
weighting by the inverse probability of calendar era given selected covariates was 
performed.  Weighted estimates were not noticeably different than unweighted estimates.   
 
Discussion 
Noncompliance adjustments in instrumental variable analyses may help bridge the gap 
between RCT and observational study evidence.  In this analysis, I assumed that calendar 
period is an appropriate instrument for HAART use as defined by Greenland et al.(13)  
Further, I assumed exchangeability between calendar eras.  This assumption is likely 
satisfied as Detels et al have previously shown that alternative explanations of the effect 
of HAART, including HIV-related, non-HAART therapies or use of health care, are not 
supported because neither of these factors vary significantly across calendar periods.(7) 
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4.2  Introduction 
 
At a time when the call for action for better treatment for patients with human 
immunodeficiency virus (HIV) was a prevailing theme in the scientific community, 
researchers introduced in 1996, a new breed of antiretroviral therapy, highly active 
antiretroviral therapy (HAART).  Unlike its predecessors, which included antiretroviral 
therapy (ART) regimens in mono and dual therapy form, HAART consisted of a drug 
regimen of 2 nucleoside reverse transcriptase inhibitors plus a protease inhibitor.(14)  In 
fact, HAART has proved to be a significant factor in delaying time to acquired immune 
deficiency syndrome (AIDS) and death, while previous ART regimens did not fare as 
well in either randomized controlled trials (RCTs)(15; 16) or in observational studies(3; 
5; 7; 17).    
 
The gold standard in research, results from randomized controlled trials are often the first 
steps in estimating treatment effects of specific therapies.  Research from RCTs has 
established HAART’s protective effect on time to AIDS or death before researchers had 
the ability to estimate HAART’s population-level effect.  In 1997, using AIDS Clinical 
Trials Group 320 data, Hammer et al found a reduced risk of AIDS or death among 
patients who were assigned to receive indinavir, zidovudine, and lamivudine combination 
therapy when compared to patients assigned to receive zidovudine and lamivudine 
therapy alone (HR = 0.11; 95% 0.33-0.76).(15)  The risk of mortality alone was estimated 
as HR = 0.43; 95% CI 0.19-0.99.  In early clinical trials of the protease inhibitor, 
ritonavir, the risk of AIDS or death among patients assigned to receive ritonavir therapy 
decreased when compared a placebo patient group (HR = 0.53; 95% CI 0.42-0.66).(16) 
Ritonavir’s effect on viral load and CD4 count was also noted by Markowitz et al in 
1995.(18)  Similarly, Gulick et al found that the effect of a three drug combination 
therapy, consisting of indinavir, zidovudine, and lamivudine, reduced the viral load over 
24 weeks significantly more than treatment groups not receiving the triple therapy (p 
value < 0.001).(19)  
 
The protective effect of HAART on delaying time to an AIDS-defining illness and/or 
death is well-established in observational study findings in several study settings and 
countries and support the findings from clinical trial research.(3; 5; 7; 17)  Furthermore, 
results from observational studies have allowed researchers to estimate HAART’s effect 
on a population level.(7)  In a Swiss cohort, Egger et al found among the later time 
periods 1991-92 [RR=0.82 (95% CI 0.73-0.93)], 1993-94 [RR=0.77 (95% CI 0.65-0.91)], 
and 1995-96 [RR=0.27 (95% CI 0.18-0.39)], reduced relative risks of progression to 
AIDS diagnoses when compared to earlier calendar periods (1988-90).(17)  Similarly, 
mortality was reduced by 19%, 26%, and 62% over respective time periods when 
compared to the mortality risks in 1988-90.  When considering the role of antiretroviral 
therapies has played on AIDS risk, Egger et al found the risk of AIDS diagnoses after 
CD4 counts drop below 200 cells decreased by 16% with monotherapy, by 24% dual 
therapy, and by 42% with triple therapy when compared to no antiretroviral 
treatment.(17) Similarly, mortality was reduced by 23%, 31%, and 65% over respective 
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time periods when compared to the mortality risks with no antiretroviral therapy.(17)  
The EuroSIDA Study group found that among European patients the incidence of AIDS-
defining illnesses (ADIs) declined from 30.7 per 100 patient years (1994) to 2.5 per 100 
patient years (1998) (p value < 0.001 test for trend).(3)  Furthermore, after stratification 
by CD4 count (<=50, 51-200, and > 200 cell/mL), patients not on HAART had a higher 
rate of ADIs when compared to patients taking HAART.  In a US-based cohort, Detels et 
al found the relative hazard of AIDS was similar between the time periods of 1990-July 
1993 and 1993-July 1995 (RH 1.04; 95% CI 0.73-1.48).(7)  However, the relative hazard 
decreased in July 1995-July 1997 when compared to the earliest time period (RH 0.35; 
95% CI 0.20-0.61).  Similarly, the relative hazard of death decreased in July 1995-July 
1997 when compared to the earliest time period (RH 0.62; 95% CI 0.38-1.01).  Lastly, 
the CASCADE collaboration studied HIV patient populations in Europe, Australia, and 
Canada.   Researchers compared the risk of death between the pre-HAART era, defined 
by the researchers as before 1997, and post-ART.  The hazard ratio for death was 
estimated as 0.47 (95% CI 0.39-0.56) in 1997 and 0.16 (95% CI 0.12–0.22) in 2001 when 
compared to the pre-HAART era.(5)  The hazard ratio for AIDS progression also 
decreased and was estimated as 0.46 (95% CI 0.38-0.55) in 1997 and 0.13 (95% CI 0.09-
0.21) by 2001 when compared to the pre-HAART era.(5)    
 
Data from RCTs are most often analyzed using the intention to treat (ITT) principle.  
Under this rule, once person A is randomized to a treatment X, he should be included in 
any future analyses comparing treatment assignment arms as if he actually received 
treatment X despite actual receipt of treatment X.  In this respect, ITT is actually 
determining the effect of assigning person A to treatment X and/or everything else 
downstreatm (all pathways) of treatment assignment.  In a well-run RCT in which few 
participants are censored or change treatment assignments, the causal effect of the 
treatment and ITT effects are similar.  Alternatively, if randomization failed or treatment 
assignments were rarely followed, non-compliance adjustments are needed to ensure the 
results are a true reflection of the causal effect of treatment X.(20-22)  In this respect, the 
estimates produced using an ITT approach will likely be biased toward the null 
hypothesis if 100% compliance is not realized. 
 
Though results seen in RCTs, with strict random allocation principles, are often 
supported by observational data, confounding biases are a persistent, inherent problem 
found in observational studies.  For example, while an RCT randomizes study 
participants to receive treatments, the physicians or the participants themselves select 
receipt of treatments in an observational study.   Therefore, in the latter scenario, an 
argument for causality is difficult because the effect seen could either be a result of the 
treatment or it could be a result arising from the reason for selecting the treatment.(23) 
 
Though RCTs provide the best epidemiologic scenario for estimating the causal effect of 
therapy on disease progression, often researchers are somewhat restricted to analyze 
observational data because of ethical concerns that are inherent with implementing RCTs.  
For example, when randomizing children to either receive a far superior drug (e.g. 
HAART) or receive mono or dual therapy drug regimens, it would be hard to justify the 
excess illnesses and deaths for this trial if there were already a strong effect suspected.   
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One of the methods that were developed to deal with the difficulties with asserting 
causality in observational data, assuming no unmeasured confounding, was instrumental 
variables (IV).  The use of IVs can be dated back over a half-century when they have 
been found in econometric theory.(24)  Unlike the case with many epidemiologic studies, 
data found in economics are often sparse and lack randomization.  To account for these 
disadvantages in their data economists developed IVs.  The earliest application of IVs 
analyzing HIV/AIDS data, with methods explicitly identifying an instrumental variable, 
was in 2001.(9) In a study of population effectiveness of antiretroviral therapy in 
reducing AIDS diagnoses in an HIV positive population, Tarwater et al used calendar 
year as an external time-dependent variable.(9) This allowed the researchers to account 
for different infection durations.  As discussed in Ch. 2, of all causal inference techniques 
developed to better account for biases commonly found in observational data, 
instrumental variables are one of the most under-utilized.    
 
Like the principle of random allocation to treatments in RCTs, traditionally instrumental 
variables are variables that only affect the outcome through their effect on the treatment 
or exposure alone.(23) Instrumental variables methods attempt to estimate mean 
difference (rates) in counterfactual distributions as if everyone complied with the 
intended treatment.  Moreover, though it is often difficult to assert a variable can serve as 
an IV, randomization assures that the treatment assignment is completely exogenous, and 
thus independent of any future counterfactual outcomes.  Unless noncompliance is 
rampant, the IV will be highly correlated with the treatment assignment. In the current 
context, noncompliance does not refer to clinical adherence, but rather use of HAART 
during the HAART era.  In the present analysis, I assume that calendar period is an 
appropriate instrument for HAART use.  This assumption is based on three key 
characteristics of the IV:  1) is independent of variables that affect both HAART and 
outcome; 2) is associated with HAART; 3) is independent of the outcome given HAART 
and covariates that affect both HAART and the outcome.(13)  The third assumption is 
particularly important as if it does not hold true and the instrument is directly related to 
the outcome, the results will be biased.(25)  
 
The use of directed acyclic graphs (DAGs) helps justify the use of a specific IV.  In 
Figures 4.1 calendar year is only related to the outcome (death) through the exposure 
(ART).  In this manner, calendar year presumably makes for a plausible instrumental 
variable.  As a result, the researcher will be able to estimate how much the variation in 
ART that is explained by the calendar year affects death.  Detels et al has previously 
shown that alternative explanations of the effect of HAART, including HIV-related, non-
HAART therapies or use of health care, are not supported as neither of these factors vary 
significantly across calendar periods.(7)  
 
While using the era of HAART (post HAART introduction in 1996) as a proxy for actual 
HAART use in an instrumental variable approach is not a panacea for inherent problems 
found in HIV/AIDS observational data, there are some unique benefits.  Researchers have 
shown that any confounding by indication is presumably removed.(26)  That is to say, the 



   

 143 

confounding bias seen in observational studies where there are differences in underlying 
health conditions between the treated and untreated populations is minimized.  In 
situations where there is no misclassification of HAART exposure, calendar year 
performs well as a proxy for actual HAART use.  However, if the calendar period, e.g. 
pre-1997 and 1997 onwards in the present case, is not 100% representative of actual 
HAART exposure, information bias can be introduced.(1)  Furthermore, some covariates 
may have associations with calendar period and the outcome of interest, violating a 
principle concept of instrumental variables—their independence of the outcome given 
treatment and covariates that affect both treatment and the outcome. 
 
To account for possible information bias introduced by calendar year, noncompliance 
correction in RCTs has been previously adapted for use in observational HIV/AIDS 
data.(1)  In clinical trials, this correction method is useful in situations where 
randomization fails.(22)  Unfortunately, often treatment contamination (the use of the 
intervention among controls) remains a possibility in RCTs, especially in prevention 
trials, or is an inherent attribute of the trial design.(1)  As a result, baseline risks for 
compliers and non-compliers may be different, negating the benefits of randomization.  
As opposed to an ITT analysis, which ignores compliance and simply estimates the mean 
difference between treatment assignment arms, and to adjust for covariates that may be 
associated with calendar period and AIDS or death, I have employed methods previously 
adapted and modified by Cain et al(1) to estimate the effect of HAART on AIDS or death 
in a population of HIV infected children in Northern California.   
 
 

4.3  Methods 
 

4.3.1 Study Population 
 
The Pediatric Spectrum of Disease (PSD) is a multicenter active surveillance program 
specifically for children who have been exposed to HIV perinatally.(27) Since 1988 this 
program has been located at Stanford University and has a surveillance catchment area of 
12 counties in northern California with a total population of approximately 6 million. 
Through this program, I have identified and defined a population-based cohort of HIV 
positive northern Californian children.   
 
Researchers working with the PSD database examine records from the California 
Children Services program, which provides case management services for HIV infected 
children, and medical records at hospital-based clinics.  Study nurses visited pediatric 
HIV clinics biannually for data extraction from medical records and to identify new 
patients entering the PSD database.  Medical records for all children under 18 years of 
age were followed until they were lost to follow up, died, or their status was definitely 
negative.  Vertical transmission was determined by the CDC classification system for 
HIV in children younger than 13 years of age.(28; 29)  An alphanumeric code combined 
with the birth date was used as a unique identifier to preserve confidentiality and avoid 
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record duplication.  For the ongoing surveillance for the PSD database, institutional 
review board approval has been granted annually by the enrolling hospitals for the 
children and by Stanford University.  For the present study, approval was obtained from 
the institutional review boards of Stanford University and University of California-
Berkeley.  In the present study, all N=113 children reached one of two possible 
endpoints—a C diagnosis (AIDS) or death, and were all assumed to be infected in utero.   
 

4.3.2 Exposure Assessment 
 
Antiretroviral therapy use is identified by information from medical record extracts.  At 
each study visit, I defined the treatment received as either HAART or non-HAART and 
defined as a drug regimen of 2 nucleoside reverse transcriptase inhibitors plus a protease 
inhibitor or nonnucleotide reverse transcriptase inhibitor.   
 
To estimate each child’s person-time within calendar periods, I separated the calendar 
periods by pre-HAART and HAART eras.  To explore the possibility of allowing enough 
time for complete HAART availability, two definitions of calendar year partitioning were 
explored:  1) pre-HAART (before 1997) and HAART (1997 and beyond); 2) pre-HAART 
(before 1998) and HAART (1998 and beyond).  To act as a proxy for HAART use, an 
indicator variable for HAART calendar eras was created.   
 
To help illustrate the appropriateness and applicability of this instrumental variable 
approach, Figure 4.2 shows the association of calendar period, Z, therapy use, X, the 
outcome of interest Y, measured covariates V, and unmeasured covariates U.   
The properties of instrumental variables, as defined by Greenland,(13) are assumed to be 
satisfied.  Again, calendar period:  1) is independent of variables that affect both HAART 
and outcome; 2) is associated with HAART; 3) is independent of the outcome given 
HAART and covariates that affect both HAART and the outcome.  In Figure 4.2, the 
absence of a link between Z and U illustrates that Z cannot be affected by indications for 
treatment with HAART, satisfying condition 1.  Additionally, condition 2 is supported by 
the link between Z and X resulting from antiretroviral therapies being introduced over 
time; calendar period is associated with HAART.  Lastly, from previous published work 
by Detels et al,(7) condition 3 is satisfied as Z has been shown to be independent of AIDS 
given HAART treatment initiation indications and actual HAART use.  This condition is 
represented by the absence of an arrow between Z and Y.   
 
There remains the possibility that condition 3 may be too restrictive as there may be some 
covariates, V, that are related with both calendar period, Z, and the outcome, Y (see 
Figure 4.2).  Potential examples of these variables are length of infection, age at 
seroconversion, or race/ethnicity.  Therefore, I removed the arrow from V to Z in Figure 
4.2 (e.g. removed the association between V and Z) by creating a weighted pseudo-
population by using inverse probability weighting as described in Robins et al.(30)  As a 
result, the new observations in this pseudo-population are now weighted by the inverse of 
the probability of calendar period given V.  
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4.3.3 Endpoint Assessment 
 
The outcomes of interest were time from assumed HIV seroconversion to a category C 
diagnosis (AIDS) and/or death.  While children vertically infected with HIV can 
seroconvert in utero, at delivery, or post-partum, I assumed all children were infected at 
birth.  The presence of an AIDS-defining illness was determined by a clinician and noted 
within the child’s medical records.  Using the Centers for Disease Prevention and 
Control’s guidelines for disease classification, children with one of the identified illnesses 
(e.g. C diagnosis) were determined as progressing to AIDS.  See Appendix A.3 for 
details.  Censoring occurred at three potential time points—time of AIDS diagnosis, time 
of death, or never attaining either outcome by the end of the study period in January 
2009.   
 
 

4.3.4 Statistical Methods 
 
Using similar script found in Cain et al,(1) subscript i indexes the 1 to N=113 children, j 
indexes the 1 to Ji visits for each child i.  The maximum number of visits was 58.  
HAART use is indexed by subscript x, where 1 is HAART use and 0 non-HAART use.   
When a child experiences the outcome, a diagnosis of an AIDS defining illness or death, 
the script Dijxz = 1 is used to indicate that child i experienced the outcome between visits j 
and j + 1 during calendar period z while using therapy x. Dijxz = 0 indicates that child did 
not experience the outcome.  The number of person-days that each child i contributed 
between visits j – 1 and j while using therapy x during calendar period z is indicated by 
Tijxz.  Identified covariates for each child i at visit j, variables include both time-varying 
and time-fixed alike, are included in vector Vij.  Among the possible covariates included 
in Vij are race/ethnicity, age at randomization, age (i.e. time since randomization). 
             113  Ji 
Furthermore, Txz=∑ ∑  Tijxz is the total number of person-days contributed 
                         i=1  j=1 
 
while using therapy x during calendar period z summed over all children I and visits. 
         113  Ji 
Dxz=∑ ∑ Dijxz is the total number of events experienced while using therapy x 
       i=1  j=1 
during calendar period z summed over all children I and visits J.  As described in Cain et 
al, let αxz be the conditional probability of using therapy x given calendar period z, as 
estimated by the proportion of person-days while treated with therapy x during calendar 
period z.  That is to say, αxz = P(X = x| Z = z) = Txz/T+z where  
              1 
T+z = ∑ Txz. 
         x=0 
 In a traditional approach, a researcher could analyze the observational data with a 
standard ITT analysis—compare rates between calendar periods (before HAART and 
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HAART eras), regardless of actual HAART use.  Specifically, the estimator for ITT of 
the average causal effect is: 
 
            α10 X (D10/T10) + α00 X (D00/T00)      (D+0/T+0) 
βITT  = ----------------------------------------- = -------------. 
            α11 X (D11/T11) + α01 X (D01/T01)      (D+1/T+1) 
 
 
Akin to the noncompliance corrections proposed by Curzick et al for RCT data,(22) I will 
compare rates between calendar periods among those who would have used non-HAART 
in the era prior to HAART and those who would have used HAART in the era of 
HAART—therapy “compliers”.  Assuming that calendar periods are exchangeable and 
that calendar period is a valid instrument, the estimator is: 
 
            α00 X (D00/T00) - α01 X (D01/T01)                                           
βIV  = ----------------------------------------- =  
            α11 X (D11/T11) - α10 X (D10/T10)         
 
               βITT 

                 --------------------------------------------------------------------------------------- 
                 [α00 X (D00/T00) - α01 X (D01/T01)] X [α00 X (D00/T00) + α01 X (D01/T01)] 
    [α11 X (D11/T11) - α10 X (D10/T10)] X [α10 X (D10/T10) + α01 X (D01/T01)] 
 
The ITT estimator divided by the estimator of the association between the exposure and 
the IV, as illustrated in the lower ratio, depicts a traditional βIV analysis.  In the absence 
of contamination or non-compliers, which would occur if no one contributes person-time 
to the non-HAART calendar period while using HAART and if no one contributes 
person-time to the HAART calendar period while not using HAART, then βIV = βITT and 
α10 = α01 = 0. 
 
Although I duplicate precisely the analysis of Cain et al, I note that a different approach 
would be used if Vij were on the causal pathway of calendar year.  Inverse probability of 
calendar period weights, Wij+Z , were estimated to adjust for measured confounders, Vij.  
Specifically, we used stabilized standardized weights(1) Wij+z = P(Z=z)/P(Z=z|Vij = v) for 
i = 1 to 113, j = 1 to Ji, where max(Ji) = 58 and z = 0 or 1.  By reintroducing the observed 
distribution of Z into the weights, maximum efficiency and stabilization of weights are 
realized.(31)  This stabilization is accomplished by the numerator in the weights—an 
estimate of the probability of being in the same calendar period as what is observed.  In 
contrast, the denominator represents the probability of being in the same calendar period 
as what is observed, given the covariates.   
 
To select the covariates Vij from a set of potentially influential variables associated with 
both AIDS/death and calendar period, I have employed super learner software -- 
Deletion/Substitution/Addition (D/S/A).  By using this data-adaptive machine learning 
algorithm, and its cross-validation based on likelihood, I am avoiding the problems 
inherent with traditional approaches and model building.  Specifically, D/S/A was used to 
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search through function forms using deletion, substitution, and addition actions.  Sinisi 
and van der Laan have applied this algorithm to fit the initial hazard on pooled data over 
time.(32) The covariates selected by D/S/A from the candidate covariates in V for each 
instrumental variable analysis are identified within each analysis subsection.  Similar to 
the covariates used by Cain et al, the pool of covariates D/S/A selected from included age 
(e.g. time since seroconversion), age at randomization, and race/ethnicity (defined as 
White or non-White).    
 
The new weighted instrumental variable estimator of the causal rate ratio among 
compliers can be written as: 
   
         wα00 X (wD00/wT00) - wα01 X (wD01/wT01)                                           
wβIV  = --------------------------------------------------  
                 wα11 X (wD11/wT11) - wα10 X (wD10/wT10)   
 
                                                              113  Ji                                               113  Ji 
where wαxz = wTxz/wT+z, wDxz=∑ ∑ Dijxz X Wijxz, and wTxz=∑ ∑  Tijxz X Wijxz.   
                                                          i=1  j=1                                                i=1  j=1 
 
Confidence intervals for unweighted ITT and IV estimates were calculated by formulas 
described by Rothman et al.(33)  The 95% confidence intervals for the weighted ITT and 
IV estimates were estimated by bootstrap.  
 
 

4.4  Results 
 
To better understand the patient population, basic demographics and baseline 
characteristics are outlined in Table 4.1.  The estimates are proportions from the main 
analysis which included children who either progressed to AIDS or died.  The sample 
was mostly females (55.8%) of non-White ethnicity (69.0%) and at least 42 percent of 
mothers received prenatal care.  
 
 

4.4.1 Instrumental Variable:  Calendar Periods 
Pre-1997 and 1997-Beyond 

 
AIDS or Death 
 
The distribution of AIDS events or death, person-days, and rates by calendar period and 
HAART use are described in Table 4.2.  Overall, 113 AIDS events or deaths occurred 
over 61,847 person-days.  In the pre-HAART era there were no misclassified events, 
though a small proportion of person-time was misclassified as 2,501 of 42,195 (5.9%) 
person-days were observed while the participant was using HAART.  During the 
HAART era, 12 out of 20 events (60.0%) and 10,437 out 19,652 person-days (53.1%) 
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were misclassified as the participants were not observed using HAART during this 
period.   The rate of AIDS progression or death was estimated at 2.09 events per 1,000 
person-days for the children in the non-HAART therapy group.  For children in the 
HAART therapy group, the rate of AIDS progression or death was estimated at 0.68 
events per 1,000 person-days.  Overall, the rate of AIDS progression or death was 1.83 
events per 1,000 person-days.    
 
The distribution of events of AIDS or death and person-days by calendar period for the 
weighted and unweighted data is described in Table 4.3.  When considering the 
unweighted data, the intent-to-treat rate ratio was estimated at uRRITT = 2.17 (95% CI 
1.34-3.52) when comparing the pre-HAART era with the HAART era.  The intent-to-
treat rate difference was estimated at uRDITT = 1.19 (95% CI 0.56-1.82).  The 
instrumental variable rate ratio using the unweighted data was estimated at uRRIV = 3.91 
(95% CI 2.41-6.34) when comparing the pre-HAART era with the HAART era.   
 
When considering the weighted data, the super-learner, D/S/A, only selected one 
covariate to include in the most efficient vector of variables for Vij--race/ethnicity. 
The weighted intent-to-treat rate ratio was estimated at wRRITT = 2.14 (95% CI 0.86–
3.38) when comparing the pre-HAART era with the HAART era.  The intent-to-treat rate 
difference was estimated at wRDITT = 1.16 (95% CI -0.04-2.21).  The instrumental 
variable rate ratio using the weighted data was estimated at wRRIV = 3.84 (95% CI 2.45-
12.13) when comparing the pre-HAART era with the HAART era. 
 
Adapted from Cain et al, Figure 4.3 helps illustrate how the calculation of the unweighted 
estimators in Table 4.3 was derived for βITT and βIV.  There are 3 divisions of person-days 
and events:  1) the first division shows the total number of events and total amount of 
person-days in the study sample; 2) the second division illustrates the how the events and 
person-time by calendar period were divided; 3) lastly, the third row shows within 
calendar period eras the use of HAART division.  With the assumption that calendar 
period as defined is an appropriate instrument for HAART use, the last row depicts how 
events and person-days would have been classified in the cases of correctly classified 
children.  Under any given calendar period z = 0,1 the possible therapy use is shown as 
xz.   
 
The person-days of last row of the tree diagram are calculated before the number of 
events.  The conditional probability of HAART use (αxz) of one calendar period is used 
to divide up the person-time in the other calendar period.  For example, in the HAART 
era and HAART use groups, the 9,215 person-days are divided based on the conditional 
probabilities of non-HAART use (α00) and HAART use (α01) in the pre-HAART era 
group:  8,668.8 ~ (1-0.06) X 9,215 and 546.2 ~ 0.06 X 9,215, respectively.  (Note:  
rounding error of αxz does not provide for exact answers in this example.)  Next, the 
events for one calendar period are subdivided such that the rate of those who always use 
HAART or the rate of those who never use HAART is equitable to the rate of non-
compliance in the other calendar period.  So, in my present example, the number of AIDS 
events or deaths in the group of users of HAART from the HAART period who would 
have used HAART had they been in the non-HAART era is selected such that their rate is 
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equitable to the rate in the group of users of HAART in the non-HAART era: 0 = 
(0/2,501) X 546.2.  And lastly, I distributed the remaining events 8.0 = (8.0 - 0) as users 
of HAART from the HAART calendar era who would not have used HAART had they 
been in the non-HAART era. 
 
To compare the unweighted data ITT estimates comparing pre-HAART calendar era with 
the HAART era from Figure 4.3 to Table 4.3, one would use the rates from the second 
level of Figure 4.3.  In the present example, the estimates from Figure 4.3 and Table 4.3 
are identical:  2.17=(93/42,195)/(20/19,652).  Similarly, the unweighted estimate of the 
instrumental variable, an estimate of the complier-average causal effect, is calculated by 
using the rates from the bottom row of Figure 3 and is comparable to the instrumental 
variable estimate in Table 4.3.  The complier-average causal effect can be interpreted as 
the rate ratio for the children in the pre-HAART era who were non-users of HAART but 
would have used HAART if they were in the HAART era, compared to the HAART-
using children in the HAART era who would not have used HAART had they been 
members of the pre-HAART era:  3.68 = (71.6/21,081.1)/(8.0/8,668.8).  In the present 
example, the uRRIV from Table 4.3 is 3.84—a slightly higher estimate than one would 
have estimated from Figure 4.3.  A likely artifact of rounding error, had the weighted 
number of HAART-using children who would not have used HAART had they been 
member of the pre-HAART era been estimated at 7.5 rather than 8.0, the RRIV from both 
Table 4.3 and Figure 4.3 would have been identical. 
 
AIDS Alone 
The distribution of AIDS events, person-days, and rates by calendar period and HAART 
use are described in Table 4.  Overall, 100 AIDS events occurred over 61,860 person-
days.  In the pre-HAART era there were no misclassified events, though a small 
proportion of person-time was misclassified as 2,501 of 42,208 (5.9%) person-days were 
observed while the participant was using HAART.  During the HAART era, 8 out of 16 
events (50.0%) and 10,437 out 19,652 person-days (53.1%) were misclassified as the 
participants were not observed using HAART during this period.   The rate of AIDS 
progression was estimated at 1.83 events per 1,000 person-days for the children in the 
non-HAART therapy group.  For children in the HAART therapy group, the rate of AIDS 
progression was estimated at 0.68 events per 1,000 person-days.  Overall, the rate of 
AIDS progression was 1.62 events per 1,000 person-days. 
 
The distribution of events of AIDS and person-days by calendar period for the weighted 
and unweighted data is described in Table 5.  When considering the unweighted data, the 
intent-to-treat rate ratio was estimated at uRRITT = 2.44 (95% CI 1.44-4.18) when 
comparing the pre-HAART era with the HAART era.  The intent-to-treat rate difference 
was estimated at uRDITT = 1.18 (95% CI 0.75-1.61).  The instrumental variable rate ratio 
using the unweighted data was estimated at uRRIV = 3.89 (95% CI 2.28-6.64) when 
comparing the pre-HAART era with the HAART era.  
 
When considering the weighted data, the super-learner, D/S/A, only selected one 
covariate to include in the most efficient vector of variables for Vij--race/ethnicity.  The 
weighted intent-to-treat rate ratio was estimated at wRRITT = 2.39 (95% CI 0.91-5.40) 
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when comparing the pre-HAART era with the HAART era.  The intent-to-treat rate 
difference was estimated at wRRITT = 1.14 (95% CI -0.17-2.19).  The instrumental 
variable rate ratio using the weighted data was estimated at uRRIV = 3.79 (95% CI 1.97-
13.77) when comparing the pre-HAART era with the HAART era. 
 
Figure 4.4 helps illustrate how the calculation of the unweighted estimators in Table 4.5 
was derived for βITT and βIV. The person-days of last row of the tree diagram are 
calculated before the number of events.  The conditional probability of HAART use (αxz) 
of one calendar period is used to divide up the person-time in the other calendar period.  
For example, in the HAART era and HAART use groups, the 9,215 person-days are 
divided based on the conditional probabilities of non-HAART use (α00) and HAART use 
(α01) in the pre-HAART era group:  8,669 ~ (1-0.06) X 9,215 and 546 ~ 0.06 X 9,215, 
respectively.  (Note:  rounding error of αxz does not provide for exact answers in this 
example.)  Next, the events for one calendar period are subdivided such that the rate of 
those who always use HAART or the rate of those who never use HAART is equitable to 
the rate of non-compliance in the other calendar period.  So, in my present example, the 
number of AIDS events in the group of users of HAART from the HAART period who 
would have used HAART had they been in the non-HAART era is selected such that 
their rate is equitable to the rate in the group of users of HAART in the non-HAART era: 
0 = (0/2,501) X 546.0.  And lastly, I distributed the remaining events 8.0 = (8.0 - 0) as 
users of HAART from the HAART calendar era who would not have used HAART had 
they been in the non-HAART era. 
 
To compare the unweighted data ITT estimates comparing pre-HAART calendar era with 
the HAART era from Figure 4.4 to Table 4.5, one would use the rates from the second 
level of Figure 4.4.  In the present example, the estimates from Figure 4.4 and Table 4.6 
are identical:  2.44=(84/42,208)/(16/19,652).  Similarly, the unweighted estimate of the 
instrumental variable, an estimate of the complier-average causal effect, is calculated by 
using the rates from the bottom row of Figure 4.4 and is comparable to the instrumental 
variable estimate in Table 4.5.  The complier-average causal effect can be interpreted as 
the rate ratio for the children in the pre-HAART era who were non-users of HAART but 
would have used HAART if they were in the HAART era, compared to the HAART-
using children in the HAART era who would not have used HAART had they been 
members of the pre-HAART era:  3.58 = (69.73/21,088)/(8.0/8,669).  In the present 
example, the RRIV from Table 4.5 is 3.79—a slightly higher estimate than one would 
have estimated from Figure 4.4.  A likely artifact of rounding error, had the weighted 
number of HAART-using children who would not have used HAART had they been 
member of the pre-HAART era been estimated at 7.5 rather than 8.0, the RRIV from both 
Table 4.5 and Figure 4.4 would have been identical. 
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4.4.2 Instrumental Variable:  Calendar Periods 
Pre-1998 and 1998-Beyond 

 
AIDS or Death 
 
The distribution of AIDS events or death, person-days, and rates by calendar period and 
HAART use are described in Table 4.6.  Overall, 113 AIDS events or deaths occurred 
over 61,847 person-days.  In the pre-HAART era there were only 2 misclassified events 
out of 97 (2.1%), while a small proportion of person-time was misclassified as 3,099 out 
of 45,000 (6.9%) person-days were observed while the participant was using HAART.  
During the HAART era, 10 out of 16 events (62.5%) and 8,230 out of 16,847 person-
days (48.9%) were misclassified as the participants were not observed using HAART 
during this period.   The rate of AIDS progression or death was estimated at 2.09 events 
per 1,000 person-days for the children in the non-HAART therapy group.  For children in 
the HAART therapy group, the rate of AIDS progression or death was estimated at 0.68 
events per 1,000 person-days.  Overall, the rate of AIDS progression or death was 1.83 
events per 1,000 person-days. 
 
The distribution of events of AIDS or death and person-days by calendar period for the 
weighted and unweighted data is described in Table 7.  When considering the unweighted 
data, the intent-to-treat rate ratio was estimated at uRRITT = 2.27 (95% CI 1.34-3.85) 
when comparing the pre-HAART era with the HAART era.  The intent-to-treat rate 
difference was estimated at uRDITT = 1.21 (95% CI 0.58-1.84).  The instrumental 
variable rate ratio using the unweighted data was estimated at uRRIV = 4.87 (95% CI 
2.87-8.26) when comparing the pre-HAART era with the HAART era.   
 
When considering the weighted data, the super-learner, D/S/A, only selected one 
covariate to include in the most efficient vector of variables for Vij--race/ethnicity.  The 
weighted intent-to-treat rate ratio was estimated at wRRITT = 2.25 (95% CI 0.90-4.19) 
when comparing the pre-HAART era with the HAART era.  The intent-to-treat rate 
difference was estimated at wRDITT = 1.19 (95% CI -0.27-1.95).  The instrumental 
variable rate ratio using the weighted data was estimated at wRRIV = 4.83 (95% CI 2.62-
15.29) when comparing the pre-HAART era with the HAART era. 
 
Figure 4.5 helps illustrate how the calculation of the unweighted estimators in Table 4.7 
was derived for βITT and βIV.  The person-days of last row of the tree diagram are 
calculated before the number of events.  The conditional probability of HAART use (αxz) 
of one calendar period is used to divide up the person-time in the other calendar period.  
For example, in the HAART era and HAART use groups, the 8,617 person-days are 
divided based on the conditional probabilities of non-HAART use (α00) and HAART use 
(α01) in the pre-HAART era group:  8,014 ~ (1-0.07) X 8,617 and 603 ~ 0.07 X 8,617, 
respectively.  (Note:  rounding error of αxz does not provide for exact answers in this 
example.)  Next, the events for one calendar period are subdivided such that the rate of 
those who always use HAART or the rate of those who never use HAART is equitable to 
the rate of non-compliance in the other calendar period.  So, in my present example, the 
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number of AIDS events or deaths in the group of users of HAART from the HAART 
period who would have used HAART had they been in the non-HAART era is selected 
such that their rate is equitable to the rate in the group of users of HAART in the non-
HAART era: 0.38 = (2/3,099) X 593.4.  And lastly, I distributed the remaining events 
5.62 = (6 – 0.38) as users of HAART from the HAART calendar era who would not have 
used HAART had they been in the non-HAART era. 
 
To compare the unweighted data ITT estimates comparing pre-HAART calendar era with 
the HAART era from Figure 4.5 to Table 4.7, one would use the rates from the second 
level of Figure 4.5.  In the present example, the estimates from Figure 4.5 and Table 4.7 
are identical:  2.27=(97/45,000)/(16/16,847).  Similarly, the unweighted estimate of the 
instrumental variable, an estimate of the complier-average causal effect, is calculated by 
using the rates from the bottom row of Figure 4.5 and is comparable to the instrumental 
variable estimate in Table 4.7.  The complier-average causal effect can be interpreted as 
the rate ratio for the children in the pre-HAART era who were non-users of HAART but 
would have used HAART if they were in the HAART era, compared to the HAART-
using children in the HAART era who would not have used HAART had they been 
members of the pre-HAART era:  4.81 = (69.0/20,469.2)/(5.62/8,023.6).  In the present 
example, the RRIV from Table 4.7 is 4.87—a slightly higher estimate than one would 
have estimated from Figure 4.5—and is a likely artifact of rounding error.  
 
AIDS Alone 
The distribution of AIDS events, person-days, and rates by calendar period and HAART 
use are described in Table 4.8.  Overall, 100 AIDS events occurred over 61,860 person-
days.  In the pre-HAART era there were 2 misclassified events out of 88 (2.3%), while a 
small proportion of person-time was misclassified as 3,099 of 45,013 (6.9%) person-days 
were observed while the participant was using HAART.  During the HAART era, 6 out 
of 12 events (50.0%) and 8,230 out 16,847 person-days (48.9%) were misclassified as the 
participants were not observed using HAART during this period.   The rate of AIDS 
progression was estimated at 1.83 events per 1,000 person-days for the children in the 
non-HAART therapy group.  For children in the HAART therapy group, the rate of AIDS 
progression was estimated at 0.68 events per 1,000 person-days.  Overall, the rate of 
AIDS progression was 1.62 events per 1,000 person-days. 
 
The distribution of events of AIDS and person-days by calendar period for the weighted 
and unweighted data is described in Table 4.9.  When considering the unweighted data, 
the intent-to-treat rate ratio was estimated at uRRITT = 2.74 (95% CI 1.50 – 5.01) when 
comparing the pre-HAART era with the HAART era.  The intent-to-treat rate difference 
was estimated at uRDITT = 1.24 (95% CI 0.67-1.81).  The instrumental variable rate ratio 
using the unweighted data was estimated at uRRIV = 4.99 (95% CI 2.73 – 9.12) when 
comparing the pre-HAART era with the HAART era.   
 
When considering the weighted data, the super-learner, D/S/A, only selected one 
covariate to include in the most efficient vector of variables for Vij--race/ethnicity.  The 
weighted intent-to-treat rate ratio was estimated at wRRITT = 2.71 (95% CI 1.11-6.45) 
when comparing the pre-HAART era with the HAART era.  The intent-to-treat rate 
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difference was estimated at wRRITT = 1.22 (95% CI 0.16-2.13).  The instrumental 
variable rate ratio using the weighted data was estimated at wRRIV = 4.94 (95% CI 2.37-
16.85) when comparing the pre-HAART era with the HAART era. 
 
Figure 4.6 helps illustrate how the calculation of the unweighted estimators in Table 4.9 
was derived for βITT and βIV.  The person-days of last row of the tree diagram are 
calculated before the number of events.  The conditional probability of HAART use (αxz) 
of one calendar period is used to divide up the person-time in the other calendar period.  
For example, in the HAART era and HAART use groups, the 8,617 person-days are 
divided based on the conditional probabilities of non-HAART use (α00) and HAART use 
(α01) in the pre-HAART era group:  8,014 ~ (1-0.07) X 8,617 and 603 ~ 0.07 X 8,617, 
respectively.  (Note:  rounding error of αxz does not provide for exact answers in this 
example.)  Next, the events for one calendar period are subdivided such that the rate of 
those who always use HAART or the rate of those who never use HAART is equitable to 
the rate of non-compliance in the other calendar period.  So, in my present example, the 
number of AIDS events in the group of users of HAART from the HAART period who 
would have used HAART had they been in the non-HAART era is selected such that 
their rate is equitable to the rate in the group of users of HAART in the non-HAART era: 
0.38 = (2/3,099) X 593.3.  And lastly, I distributed the remaining events 5.62 = (6 – 0.38) 
as users of HAART from the HAART calendar era who would not have used HAART 
had they been in the non-HAART era. 
 
To compare the unweighted data ITT estimates comparing pre-HAART calendar era with 
the HAART era from Figure 4.6 to Table 4.9, one would use the rates from the second 
level of Figure 4.6.  In the present example, the estimates from Figure 4.6 and Table 4.9 
are identical:  2.74=(88/45,013)/(12/16,847).  Similarly, the unweighted estimate of the 
instrumental variable, an estimate of the complier-average causal effect, is calculated by 
using the rates from the bottom row of Figure 4.6 and is comparable to the instrumental 
variable estimate in Table 4.9.  The complier-average causal effect can be interpreted as 
the rate ratio for the children in the pre-HAART era who were non-users of HAART but 
would have used HAART if they were in the HAART era, compared to the HAART-
using children in the HAART era who would not have used HAART had they been 
members of the pre-HAART era:  4.91 = (70.37/20,475.6)/(5.62/8,023.7).  In the present 
example, the RRIV from Table 9 is 4.99—a slightly higher estimate than one would have 
estimated from Figure 4.6—and is a likely artifact of rounding error.  
   
Table 4.10 summarizes the causal estimates derived from the two different instruments 
used, weighted and unweighted.  Regardless of the definition of the HAART era and 
weighted or unweighted estimates, the effect of HAART on prevention of AIDS events in 
this population is just as strong as the effect of HAART on prevention AIDS events or 
deaths.  By redefining the instrument as before 1998/1998 and after rather than before 
1997/1997 and after, the unweighted and weighted estimates of the effect of HAART on 
prevention of AIDS events or death increases (uRRIV=4.87 vs uRRIV=3.91; wRRIV=4.83 
v wRRIV=3.84, respectively).  Similarly, the estimate of the effect of HAART on 
prevention of AIDS events alone increases when the instrument is redefined to the latter 
period (uRRIV=4.99 vs uRRIV=3.89; wRRIV=4.94 v wRRIV=3.79, respectively).  When 
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the instrumental variable is defined as before 1997/1997 and after, the weighted RRIV 
decreases slightly, suggesting that Vij only mildly confounded the unweighted RRIV.  
Similarly, when the instrumental variable is defined as before 1998/1998 and after, the 
weighted RRIV decreases, again suggesting that Vij mildly confounded the unweighted 
RRIV.  The complier average causal effect of HAART on AIDS events or deaths increases 
in the latter defined calendar period when compared to the earlier defined calendar period 
(complier causal effectavg= 4.83 vs complier causal  effectavg= 3.70).  This effect is 
similar in the estimate of the complier average causal effect of HAART on AIDS events 
alone (complier causal effectavg= 4.91 vs complier causal effectavg= 3.60).   
 
 

4.5  Discussion 
 
In the early-defined instrument—before 1997/1997 and after--analyses exploring the 
effect of HAART on AIDS events and deaths suggest that the ITT rate ratios are biased 
toward the null, likely a result from the substantial event and person-time exposure 
misclassifications (60.0% and 53.1%, respectively).  Exposure to non-HAART increased 
the hazard of an AIDS event or death 3.91 times when compared to HAART exposure, 
using an instrumental variable estimator.  This IV estimate is 80%  (3.91/2.17) higher 
than the result one would see from a traditional ITT approach using calendar period.  I 
weighted the number of events and amount of person-days by inverse probability of 
calendar period given race/ethnicity.  In turn, the weighted rate ratios were estimated, 
which were expanded from basic instrumental variable methods,(22) after adjusting for 
measured covariates.   
 
In the latter-defined instrument—before 1998/1998 and after--analyses exploring the 
effect of HAART on AIDS events and deaths suggest that the rate ratios are similarly 
biased toward the null, likely a result from the substantial event and person-time exposure 
misclassifications (62.5% and 48.9%, respectively).  Exposure to non-HAART increased 
the hazard of an AIDS event or death 4.87 times when compared to HAART exposure, 
using an instrumental variable estimator.  This IV estimate is more than twice (4.87/2.27) 
higher than the result one would see from a traditional ITT approach using calendar 
period.  
 
Analyses exploring the effect of HAART on AIDS events alone using the early-defined 
instrument—before 1997/1997 and after--suggest that the rate ratios are biased toward 
the null, likely a result from the substantial event and person-time exposure 
misclassifications (50.0% and 53.1%, respectively).  Exposure to non-HAART increased 
the hazard of an AIDS event or death 2.10 times when compared to HAART exposure, 
using an instrumental variable estimator.  This IV estimate is 15%  (2.10/1.82) higher 
than the result one would see from a traditional ITT approach using calendar period.  
 
Analyses exploring the effect of HAART on AIDS events alone using the latter-defined 
instrument—before 1998/1998 and after--suggest that the rate ratios are biased toward 
the null, likely a result from the substantial event and person-time exposure 
misclassifications (62.5% and 48.9%, respectively).  Exposure to non-HAART increased 
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the hazard of an AIDS event or death 4.44 times when compared to HAART exposure, 
using an instrumental variable estimator.  This IV estimate is 68%  (4.44/2.65) higher 
than the result one would see from a traditional ITT approach using calendar period.  
 
In the present analysis, I assume that calendar period is an appropriate instrument for 
HAART use.  As previously described, the three assumptions regarding instrumental 
variables are assumed satisfied in the present analysis.  Specifically, conditional on 
controlled confounders (e.g. race/ethnicity), the instrumental variable should have the 
following characteristics:  1) is independent of variables that affect both HAART and 
outcome; 2) is associated with HAART; 3) is independent of the outcome given HAART 
and covariates that affect both HAART and the outcome.(13)  The second principle has 
been repeatedly shown to be true.(2-12)  Unfortunately, in our data the first and third 
principles are not testable.  In order to relax the third principle such that the calendar 
period is presumably independent of AIDS events or death conditional on HAART 
exposure and adjusted confounders, the use of inverse probability of calendar period 
weights were used.  This has been used previously to address this third principle.(1) 
 
Furthermore, similar to Cuzick et al’s assumptions,(22) this instrumental variable 
estimator analysis assumes exchangeability between calendar eras.  For example, among 
the children who used HAART during the HAART era, my analysis assumes that, had 
these children been observed during the non-HAART era, the same proportion of their 
person-time would have been on HAART as for the children who in fact were observed 
in the pre-HAART era.  Similarly, for children who were non-HAART users in the non-
HAART era, had they been observed during the HAART era, the same proportion of their 
person-time would have been on non-HAART therapy as for the children who were in 
fact observed in the HAART era.  This assumption is expanded such that the rate among 
HAART using children during the HAART era who would have used HAART had they 
been observed in the non-HAART era is equal to the rate among the HAART using 
children during the non-HAART era.  Similarly, the rate among non-HAART using 
children during the non-HAART era who would have used non-HAART therapies had 
they been observed in the HAART era is equal to the rate among the non-HAART using 
children during the HAART era.  It has been previously suggested that one of the few 
times this assumption could be violated is if a new, non-HAART HIV therapy that could 
decrease the risk of AIDS or death was introduced during the HAART era.(1; 7)  In this 
unlikely scenario, time trends would affect calendar era comparability.     
 
My results are contingent on the assumption that the model for weights has within it all 
possible determinants of calendar era and AIDS events or death.  The algorithm D/S/A 
selected only race/ethnicity for the final model, ignoring age at seroconversion and time 
since seroconversion.  
 
The impact of the choice of calendar period on the estimates is not negligible.  In fact, 
when using the latter calendar period cut-off for the analysis of risk of AIDS events or 
death, the unweighted instrumental variable estimates are 25% higher than the 
unweighted instrumental variable estimates from the earlier calendar period (uRRIV=4.87 
and uRRIV=3.91, respectively); and weighted instrumental estimates are 26% higher than 
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the estimates from the earlier calendar period cut-off.  In contrast, the unweighted ITT 
estimates are 5% higher when using the 1998 cut-off rather than the 1997 cut-off; 
similarly, the weighted ITT estimates are 5% higher when using the 1998 cut-off rather 
than the 1997 cut-off. Similar differences were also seen with the analysis of risk of 
AIDS events alone.  I chose 1997 as a cut-off for the first calendar period in the one 
analysis as HAART was only first introduced in mid-1996.  To allow for the possibility 
that the use of HAART was not widely available until later, I explored 1998 as a cut-off 
in a second analysis.  Cain et al performed a similar analysis using 1996 and 1998 as 
separate instrumental variable cut-offs.(1)  They found the unweighted and weighted ITT 
estimates 3% and 8% higher when using the 1998 calendar year cut-off than using the 
1996 calendar year cut-off.  The researchers also found that the 1998 unweighted and 
weighted instrumental variables estimates were 5% and 4% higher than the 1996 
instrumental variable estimates.   
 
The current analysis only considered HAART or non-HAART therapy exposure and only 
2 calendar periods.  Future research using calendar periods as instrumental variables may 
benefit from using separate calendar periods representing different treatment eras:  no 
therapy; monotherapy; dual therapy; and HAART.  In fact, Detels et al performed a 
similar analysis in which therapy exposures were classified as monotherapy, combination 
therapy, and potent antiretroviral therapy groups.  The calendar period in which protease 
inhibitors (a component of the most potent antiretroviral therapy groups) were introduced 
had the lowest relative hazard (RH=0.35; 95% CI 0.20-0.61) versus the comparison 
calendar period (1990-1983).(7)  Perhaps expanding this instrumental variable estimator 
method to allow for multiple calendar years and multiple therapies is the next step. 
  
Despite efforts to estimate the effect of HAART using an adapted instrumental variable 
approach, the present study still has limitations.  Children in this population may have 
already been treated with HAART before entering the cohort if they moved from another 
state or region of California.  If this occurred during the pre-HAART era, 
misclassification of therapy exposure would have increased.  Additionally, there were 
only 8 events (i.e. AIDS events or death) among children treated with HAART, which 
could have increased the variability in the weighted estimates.  The small number of 
events may have also influenced the complier average causal effect of HAART.  In turn, 
the complier causal effects, which are estimated from the data in the figures representing 
each subsection, are not exactly equal to the effects that would have been obtained from 
the information from the tables alone.  It is important to note, however, that rounding 
error is the likely explanation for the differences between the unweighted instrumental 
variable estimates and the complier causal effects.  For example, α01 in Figure 3 is 
indicated as 0.06 when in fact the exact estimate is 0.055.  In turn, rounded estimates 
influence the complier causal effects.  In the early-defined calendar era, the estimates for 
the effect of HAART on the hazard of AIDS events or death are similar but not exact 
(e.g. uRRIV=3.91 vs complier causal effect=3.70).  In the latter-defined calendar era, the 
estimates for the effect of HAART on the hazard of AIDS events or death are much more 
similar (e.g. uRRIV=4.87 vs complier causal effect=4.83).   
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If the instrument used is before 1998/1998 and after, the unweighted effect of HAART on 
prevention of AIDS events or death appears to be positively confounded by 
race/ethnicity.  This is seen as the unweighted estimate of effect for HAART in this 
scenario is uRRIV=4.87 (2.87, 8.26) and the weighted estimate of effect for HAART is 
wRRIV=4.83 (2.62, 15.29) suggesting a slight overestimation of the true strength of 
association in the unweighted estimates.   
 
This mild confounding is also noticed if the instrument used is before 1997/1997 and 
after--the unweighted effect of HAART on prevention of AIDS events or death appears 
to be positively confounded by race/ethnicity.  This is seen as the unweighted estimate of 
effect for HAART in this scenario is uRRIV=3.91 (2.41- 6.34) and the weighted estimate 
of effect for HAART is wRRIV=3.84 (2.45-12.13) suggesting an underestimation of the 
true strength of association in the unweighted estimates.   
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Tables 
 

Table 4.1.  Patient Demographics and Baseline Characteristics for Main Analysis 
Including Children Who Progressed to AIDS or Died (N=113) 
Baseline Covariate    N (%) 
Male Sex 
  

50 (44.2) 

White Ethnicity 
 

35 (31.0) 

Mother had Prenatal Care 
  Yes 
  No 
  Unknown  
 

 
48 (42.5) 
14 (12.4) 
51 (45.1) 

 
 
 
 
 
Table 4.2:  Distribution of Events (AIDS events or deaths), Person-Days, and Rates by 
Calendar Period (Before 1997/1997 and After) and HAART Use 

Calendar Period No. of AIDS Events 
or Death No. of Person Days Rate 

Non-HAART Therapy 
Pre-HAART 93 39,694 2.34 
HAART 12 10,437 1.15 
Total 105 50,131 2.09 

HAART Therapy 
Pre-HAART 0 2,501 0.00 
HAART 8 9,215 0.87 
Total 8 11,716 0.68 

Total 
Pre-HAART 93 42,195 2.20 
HAART 20 19,652 1.02 
Total 113 61,847 1.83 
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Table 4.3:  Distribution of Events (AIDS events or deaths) and Person-Days by Calendar 
Period (Before 1997/1997 and After) 

Intent To Treat Instrumental 
Variable Calendar 

Period 

No. of 
AIDS 

Events or 
Death 

No. of 
Person-

Days 
Rate Rate 

Difference 
95% 
CI 

Rate 
Ratio 

95% 
CI 

Rate 
Ratio 

95% 
CI 

                                                                       Unweighted 
Pre-
HAART 93 42,195 2.20 1.19 (0.56, 

1.82) 2.17 (1.34,
3.52) 3.91 (2.41, 

6.34) 
HAART 20 19,652 1.02 0  1  1  
Total 113 61,847 1.83       
                                                                          Weighted 
Pre-
HAART 90.79 41,774 2.17 1.16 (0.04, 

2.21) 2.14 (0.86, 
3.38) 3.84 (2.45, 

12.1) 
HAART 15.44 15,173 1.02 0  1  1  
Total 106.2 56,947 1.87       
 
 
 
 
 
Table 4.4:  Distribution of Events (AIDS events alone), Person-Days, and Rates by 
Calendar Period (Before 1997/1997 and After) and HAART Use 

Calendar Period No. of AIDS Events  No. of Person Days Rate 
Non-HAART Therapy 

Pre-HAART 84 39,707 2.12 
HAART 8 10,437 0.77 
Total 92 50,144 1.83 

HAART Therapy 
Pre-HAART 0 2,501 0.00 
HAART 8 9,215 0.87 
Total 8 11,716 0.68 

Total 
Pre-HAART 84 42,208 1.99 
HAART 16 19,652 0.81 
Total 100 61,860 1.62 
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Table 4.5:  Distribution of Events (AIDS events alone) and Person-Days by Calendar 
Period (Before 1997/1997 and After) 

Intent To Treat Instrumental 
Variable Calendar 

Period 

No. of 
AIDS 

Events  

No. of 
Person-

Days 
Rate Rate 

Difference 
95% 
CI 

Rate 
Ratio 

95% 
CI 

Rate 
Ratio 

95% 
CI 

                                                                       Unweighted 
Pre-
HAART 84 42,208 1.99 1.18 (0.75, 

1.61) 2.44 (1.44, 
4.18) 3.89 (2.28, 

6.64) 
HAART 16 19,652 0.81 0  1  1  
Total 100 61,860 1.62       
                                                                          Weighted 
Pre-
HAART 81.45 41,784 1.95 1.14 (-0.2, 

2.2) 2.39 (0.91, 
5.40) 3.79 (1.97, 

13.8) 
HAART 12.36 15,178 0.81 0  1  1  
Total 93.81 56,963 1.65       
 
 
 
 
 
 
 
 
Table 4.6:  Distribution of Events (AIDS events or deaths), Person-Days, and Rates by 
Calendar Period (Before 1998/1998 and After) and HAART Use 

Calendar Period No. of AIDS Events 
or Death No. of Person Days Rate 

Non-HAART Therapy 
Pre-HAART 95 41,901 2.27 
HAART 10 8,230 1.22 
Total 105 50,131 2.09 

HAART Therapy 
Pre-HAART 2 3,099 0.65 
HAART 6 8,617 0.70 
Total 8 11,716 0.68 

Total 
Pre-HAART 97 45,000 2.16 
HAART 16 16,847 0.95 
Total 113 61,847 1.83 
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Table 4.7:  Distribution of Events (AIDS events or deaths) and Person-Days by Calendar 
Period (Before 1998/1998 and After) 

Intent To Treat Instrumental 
Variable Calendar 

Period 

No. of 
AIDS 

Events or 
Death 

No. of 
Person-

Days 
Rate Rate 

Difference 
95% 
CI 

Rate 
Ratio 

95% 
CI 

Rate 
Ratio 

95% 
CI 

                                                                       Unweighted 
Pre-
HAART 97 45,000 2.16 1.21 (0.58, 

1.84) 2.27 (1.34, 
3.85) 4.87 (2.87, 

8.26) 
HAART 16 16,847 0.95 0  1  1  
Total 113 61,847 1.83       
                                                                          Weighted 
Pre-
HAART 95.71 44,746 2.14 1.19 (-0.3, 

2.0) 2.25 (0.90, 
4.19) 4.83 (2.62, 

15.3) 
HAART 12.35 13,007 0.95 0  1  1  
Total 108.1 57,753 1.87       
 
 
 
 
Table 4.8:  Distribution of Events (AIDS events alone), Person-Days, and Rates by 
Calendar Period (Before 1998/1998 and After) and HAART Use 

Calendar Period No. of AIDS Events  No. of Person Days Rate 
Non-HAART Therapy 

Pre-HAART 86 41,914 2.05 
HAART 6 8,230 0.73 
Total 92 50,144 1.83 

HAART Therapy 
Pre-HAART 2 3,099 0.64 
HAART 6 8,617 0.70 
Total 8 11,716 0.68 

Total 
Pre-HAART 88 45,013 1.95 
HAART 12 16,847 0.71 
Total 100 61,860 1.62 
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Table 4.9:  Distribution of Events (AIDS events alone) and Person-Days by Calendar 
Period (Before 1998/1998 and After) 

Intent To Treat Instrumental 
Variable Calendar 

Period 

No. of 
AIDS 

Events  

No. of 
Person-

Days 
Rate Rate 

Difference 
95% 
CI 

Rate 
Ratio 

95% 
CI 

Rate 
Ratio 

95% 
CI 

                                                                       Unweighted 
Pre-
HAART 88 45,013 1.95 1.24 (0.67, 

1.81) 2.74 (1.50, 
5.01) 4.99 (2.73, 

9.12) 
HAART 12 16,847 0.71 0  1  1  
Total 100 61,860 1.62       
                                                                          Weighted 
Pre-
HAART 86.55 44,758 1.93 1.22 (0.16, 

2.13) 2.71 (1.11,
6.45) 4.94 (2.37, 

16.9) 
HAART 9.27 13,012 0.71 0  1  1  
Total 95.82 57,770 1.66       
 
 
 
 
Table 4.10:  Comparison of Causal Estimates Derived from Different Instrumental 
Variables 

AIDS Events or Deaths 
Before 1997/1997 and After Before 1998/1998 and After 

Unweighted RRIV Weighted RRIV Unweighted RRIV Weighted RRIV 
3.91 (2.41- 6.34) 3.84 (2.45-12.13) 4.87 (2.87-8.26) 4.83 (2.62-15.29) 

Complier Average Causal Effect of HAART1 
3.70 4.83 

AIDS Events Alone 
Before 1997/1997 and After Before 1998/1998 and After 

Unweighted RRIV Weighted RRIV Unweighted RRIV Weighted RRIV 
3.89 (2.28- 6.64) 3.79 (1.97-13.77) 4.99 (2.73-9.12) 4.94 (2.37-16.85) 

Complier Average Causal Effect of HAART1 
3.60 4.91 

1. Complier Average Causal Effect is defined as the rate ratio for children in the non-HAART era who did 
not use HAART but would have used HAART had they been in the HAART era, compared with the 
children in the HAART era who used HAART therapy but would not have used HAART had they been in 
the non-HAART era. 
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Figures 
 
Figure 4.1.  Traditional instrumental variable approach 
 

 
 
 
Figure 4.2:  Adapted Instrumental Variable Approach  
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Figure 4.3:  Tree Diagram Illustrating the Subdivision of AIDS Events or Deaths and 
Person-Days By:  Calendar Period, z (Before 1997/1997 and After); HAART use, x; and 
Potential Therapy Use, xz among PSD HIV-Infected Children. 
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Figure 4.4: Tree Diagram Illustrating the Subdivision of AIDS Events and Person-Days 
By:  Calendar Period, z (Before 1997/1997 and After); HAART use, x; and Potential 
Therapy Use, xz among PSD HIV-Infected Children. 
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Figure 4.5: Tree Diagram Illustrating the Subdivision of AIDS Events or Deaths and 
Person-Days By:  Calendar Period, z (Before 1998/1998 and After); HAART use, x; and 
Potential Therapy Use, xz among PSD HIV-Infected Children.  
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Figure 4.6: Tree Diagram Illustrating the Subdivision of AIDS Events and Person-Days 
By:  Calendar Period, z (Before 1998/1998 and After); HAART use, x; and Potential 
Therapy Use, xz among PSD HIV-Infected Children. 
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5.1  Synopsis of Results 
 
Below I summarize the findings from Chapter 2, 3, and 4 and each chapter’s main 
principles.  Descriptive summaries and overarching conclusions about causal inference 
methods as they relate to HIV/AIDS data and their application to pediatric observational 
data are summarized from each chapter and in accompanying tables.   
 

Chapter 2  
 
The use of causal inference techniques has become increasingly popular over the last ten 
years.  Observational HIV/AIDS data are a significant contribution to the understanding 
of treatment effects and can have public health implications.  In Chapter 2 I briefly 
introduce four different causal inference techniques--propensity scores; instrumental 
variables, marginal structural models, and structural equation models—and describe the 
temporal trends in publications.  Additionally, I performed a quality assessment and 
constructed network diagrams of the authors and institutions of the described techniques 
within HIV/AIDS settings.  As the application of these techniques increases, the 
likelihood of the studies publishing comparative results with traditional techniques, or 
other details about study quality and interpretability is not increasing.  However, there is 
a geographic shift of institutions publishing results as the earliest papers were published 
more at East Coast institutions and more recently it seems more are published at West 
Coast institutions.  A summary of my goals and key conclusions from Chapter 2 is 
described in Table 5.1.  
 
Table 5.1 Summary of Goals, Key Conclusions, and Page References from Chapter 2 
Goals Conclusions Page 

References 
Quantify the temporal trends in 
publications using causal 
inference techniques on 
HIV/AIDS data 

Trends are increasing for all methods, 
but this is especially true for studies 
using MSMs. 

30, 33, 40, 
55 

   
Identify the proportion of studies 
comparing causal inference 
results with traditional results 

The majority of all studies compared 
results with traditional methods, 
though studies using SEMs made no 
comparisons. 

32, 33, 60 

   
Describe the proportion of studies 
that identify causal inference-
specific assumptions 

Only IV and MSM studies were 
likely to discuss assumptions, while 
studies using propensity scores or 
SEMs were less likely.   

32, 33, 34, 
60 

(Continued on next page) 
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Table 5.1 Summary of Goals, Key Conclusions, and Page References from Chapter 2 
(Continued) 
   
Identify the proportion of studies 
that discuss the details of the 
instrument or treatment model 
selection 

A large majority of all studies 
described the model or instrument 
selection.  MSM publications were 
the least likely to publish details 
about model or instrument selection 
as only about half described the 
selection process.  

32, 33, 34, 
60 

   
Identify the most commonly 
published authors using these 
techniques on HIV/AIDS data 

Hernan MA has the most affiliated 
publications.  Petersen M has the 
most first authorships out of all 
authors.  

31, 32, 56, 
57, 58 

   
Identify the journals with the 
most publications using causal 
inference techniques. 

AIDS, American Journal of 
Epidemiology, Journal of Acquired 
Immune Deficiency Syndromes, and 
Statistics in Medicine were the most 
common journals. 

31, 32, 59 

   
Describe how MSM studies 
derived the inference for 
estimates.  

The majority of MSM studies 
described how they derived 
inference.  The most common 
technique was bootstrapping. 

35, 51 

   
Identify the networks of 
institutions of affiliated authors 
for published studies. 

The institutions with the most 
publications shifted more recently to 
other institutions in recent years for 
most causal inference methods. 

35, 36, 61-
66 

 
Chapter 3  
 
In Chapter 3, among a population-based cohort of HIV positive children the effect of 
triple therapy (e.g. HAART) on the time to AIDS or death was estimated using the MSM 
estimator, g-comp.  Over all children, regardless of symptoms at treatment initiation, the 
effect of treatment in the first 6 or 12 months of life was estimated.  Similarly, the effect 
was estimated for two subgroups—asymptomatically and symptomatically treated 
children.  The goal of this analysis was to determine if the recently adopted treatment 
initiation guidelines for HIV positive children could be supported with observational 
study data.  To mitigate the effects of unknown confounding and to avoid inherent 
problems with traditional model building techniques, I used a causal inference approach 
with a data-adaptive model selection procedure.  A summary of my findings and goals is 
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described in Table 5.2.  In general, though not statistically significant, the effect of 
HAART in the first 6 months of life was stronger than the effect of HAART in the first 
12 months of life—suggesting that the current treatment guidelines, which dictate 
treatment as soon as the child’s status is known, are supported with these data.  For 
comparative purposes, traditional Cox proportional hazards models were used to estimate 
similar effects; generally the Cox estimates were only slightly more null-biased.  When 
considering time to a C diagnosis, children symptomatically treated appear to benefit the 
most from early HAART as the estimated effect is stronger than among children 
asymptomatically treated.  However, delaying treatment until symptoms may have a 
detrimental effect on a child’s risk for death as asymptomatically treated children appear 
to have a lower mortality risk than symptomatically treated.   
 
Table 5.2 Summary of Goals, Key Conclusions, and Page References from Chapter 3 
Goals Conclusions Page 

References 
Determine the effect of HAART 
in first 6 months of life on time to 
AIDS or death using g-comp 

HAART in the first 6 months of life 
seemingly has a protective effect on 
time to AIDS or death.  

90, 91, 92, 
110, 111, 
112 

   
Determine the effect of HAART 
in first 12 months of life on time 
to AIDS or death using g-comp 

HAART in the first 12 months of life 
has a protective effect on time to 
AIDS or death, but the effect is not as 
strong as the effect for children 
treated earlier in life. 

90, 91, 92, 
110, 111, 
112 

   
Determine if g-comp estimates 
are qualitatively different than 
traditional approaches 

For estimates of the effect of therapy 
within the first 6 months of life, 
estimates from both approaches yield 
similar results. 

100, 118 

   
Describe the effects of HAART in 
first 6 or 12 months of life within 
subgroups of asymptomatic or 
symptomatic children on C 
diagnosis 

Children symptomatically treated 
appear to benefit the most from early 
HAART as the estimated effect is 
stronger than among children 
asymptomatically treated. 

93, 94, 95, 
96, 112-
115 

   
Describe the effects of HAART in 
first 6 or 12 months of life within 
subgroups of asymptomatic or 
symptomatic children on C 
diagnosis or death 

In contrast, children 
asymptomatically treated appear to 
benefit the most from early HAART 
as the estimated effect on C diagnosis 
or death is stronger than among 
children symptomatically treated. 

96, 97, 98, 
112-115 

(Continued on next page) 
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Table 5.2 Summary of Goals, Key Conclusions, and Page References from Chapter 3 
(continued) 
   
Determine if treatment guidelines 
are supported by results 

The recently changed treatment 
guidelines to initiate HAART early 
for all children regardless of 
symptoms appear to be supported by 
these results. 

101 

 
 

Chapter 4 
 
In Chapter 4, I perform an adapted instrumental variable analysis of 267 HIV-positive 
children living in Northern California from 1988 to 2009 in order to estimate the causal 
effect of HAART on the hazard of AIDS events or death.  I summaryize my goals and 
key conclusions from Chapter 4 in Table 5.3.  I adjusted for noncompliance and used 
inverse probability weighting to remove any possible confounding from variables 
associated with both calendar year and the outcome.  As a result of HAART use 
misclassification by calendar era, the instrumental variable estimator yielded a rate ratio 
80% higher than the naïve result when using an earlier calendar year cut-off.  The 
complier average causal effect of HAART, the rate ratio for children in the non-HAART 
era who did not use HAART but would have used HAART had they been in the HAART 
era compared with the children in the HAART era who used HAART but would not have 
used HAART had they been in the non-HAART era, was estimated at 3 to 4 depending 
on the selection of calendar year cut-off.  Weighted estimates were not noticeably 
different than unweighted estimates.  The decision of which calendar year cut-off, 
however, has an impact on both the unweighted and weighted estimates.   
 
Table 5.3 Summary of Goals, Key Conclusions, and Page References from Chapter 4 
Goals Conclusions Page 

References 
Use traditional ITT approach on 
pediatric HIV observational data 
to assess population-level impact 
of HAART 

Children in the pre-HAART era have 
a hazard of AIDS or death more than 
twice that of children in the HAART 
era.  

145-151, 
157-159 

   
Determine if adjusting for 
noncompliance affects estimated 
effects 

Without noncompliance adjustments, 
the effects are biased toward the null. 

145-151, 
157-159 

(Continued on next page) 
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Table 5.3 Summary of Goals, Key Conclusions, and Page References from Chapter 4 
(Continued) 
   
Determine if covariates associated 
with calendar year and outcome 
have impact on IV estimates 

The selected covariates had little 
impact on the IV estimator. 

146, 147, 
149-151, 
157-159 

   
Describe the impact of choice of 
calendar year cut-off. 

The selection of a latter calendar 
period for a cut-off slightly increased 
the estimate sizes. 

151-152, 
157-160 

 
5.2    Conclusions 
 
Causal Inference Applications Using HIV/AIDS Observational Data 
 
In this dissertation I have described the history of use of so-called causal inference 
methods applied to HIV/AIDS data and applied two techniques to describe the effect of 
therapy among HIV-positive children.  Though temporal trends suggest that these 
techniques are being used more often than in previous years (see Table 2.3 and Figure 
2.7), there is still a gap in their application with pediatric HIV/AIDS data as only 3 
previous studies have employed any causal inference technique using pediatric data.   
 
Ideally, HIV/AIDS researchers will attempt to minimize as much bias as possible in their 
study design and analysis.  Unfortunately, as described in sections 2.4.6-2.4.9, the year of 
a study’s publication does not seem to influence the likelihood that the authors were 
transparent about all their analysis methods.  As causal inference methods appear in the 
HIV/AIDS epidemiological literature more frequently, the readership should be able to 
understand the basis for the technique used so that in turn the technique can be replicated 
in their own research.   
 
Contributions to Pediatric HIV Research 
 
The use of these techniques on pediatric data is of particular importance now because the 
long-term effects of HAART are not fully understood in a context of pediatric HIV 
populations.  In turn, as HIV and health governing bodies consider mandating changes in 
treatment guidelines, they will need guidance and support for the proposed 
recommendations. Previously, treatment guidelines have been modified, opening the door 
for considerable criticism from evidence-based medicine advocates for a lack of 
evidence.  In 2009, the National Institutes of Health updated their pediatric HIV 
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treatment initiation guidelines, but cited only 1 randomized controlled trial as the 
backbone of their supporting evidence.(1)  Some health governing bodies, such as the 
WHO, have mandated new approaches for evidence-based medicine (EBM) to include 
using approaches like GRADE.(2)  While this tool is useful in evaluating health care 
information,(3) critics have called into question its usefulness regarding rare disease 
studies(4) or observational data.(5)  I have shown that the proposed guidelines to treat all 
HIV positive children as soon as their status is known is supported with these data using 
marginal structural models.  In particular, I have shown that if the child waits to be 
treated until later in life (some time in the first 12 months as opposed to the first 6 
months) or until he is symptomatic, the effect of HAART on time to a C diagnosis or 
death is somewhat nullified when compared earlier treatment (see Tables 3.13, 3.23, 
3.26).  Unfortunately, despite the use of causal inference techniques, most evidence 
grading approaches would likely not consider the evidence very strong at all as it is 
derived from observational study data. 
 
Estimating the population level effects of HAART among an HIV positive pediatric 
population can yield important supporting evidence to implementing a more conservative 
national treatment initiation recommendation.  My results in Chapter 4 give credence to 
the new “treat all infected infants” approach recommended by the CDC, WHO, and 
PENTA.(6)  Specifically, children have a much lower risk for AIDS or death during the 
HAART era than children had during the pre-HAART era (see Tables 4.3 and 4.7).  It is 
unlikely that this effect is explained by other HIV-related, non-HAART therapies or use 
of health care.(7) 
 
Future Directions 
 
The data used for Chapters 3 and 4 could also be used to explore the impact of treatment 
modification among HIV positive children.  To date, there are no studies using causal 
inference methods that have considered treatment modification.  Furthermore, an 
instrumental variable approach that considered sub-categories of treatment, such as 
monotherapy or dual therapy, may be a reasonable extension of the adapted instrumental 
variable approach used in Chapter 4.    
 
Though not possible with the PSD dataset, research is currently underway to explore the 
possibility of interrupting ARV treatment in children after several years.(8) The theory is 
that since the immune systems are already reconstituted after several years of therapy, 
they will likely live a healthy life even without continued therapy.  Though this treatment 
termination approach was explored among HIV positive adults with disastrous 
outcomes,(9) researchers believe that the developing immune system in children will 
provide better protection for the children.(8)  
 
Final Remarks 
As non-randomized studies will likely always outnumber clinical trial evidence, the 
experience and tools regarding causal inference techniques within this dissertation aim to 
provide direction for HIV researchers and investigators.  Furthermore, the information 
contained within this project will likely inform researchers such that they can better 
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interpret the results of studies using causal inference techniques within their own 
scientific fields.  Similarly, using the present examples as a backdrop, treatment guideline 
working groups may have a better understanding of the observational evidence 
supporting treatment recommendations about when and why to initiate HAART among 
HIV infected infants.   
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Appendix A 
 
Additional Reference Materials 
 
 
 

A.1 List of All Institutions and Their Abbreviations 
 
Harvard; Massachusetts General Hospital (Mass.Gen); University of California Los 
Angeles (UCLA); Stanford; RAND; Johns Hopkins; University of California San 
Francisco (UCSF); Columbia; Calcutta National Medical College (Calcutta); Cook 
County Hospital (Cook County); Georgetown; Sant’Anna School of Advanced Studies, 
Pisa, Italy (Sant.Anna); Centro Operativo AIDS, Istituto Superiore di Sanita, Rome, Italy 
(Rome); St Paul’s Hospital, Vancouver, BC, Canada (Saint. Pauls); University of British 
Columbia, Vancouver, BC, Canada (UBC); Centers for Disease Control and Prevention 
(CDC); Duke; Yale; Institut National de la Sante et de la Recherche Medical (INSERM); 
Vanderbilt; Thailand Ministry of Public Health (TMOPH); Phuket PH Office (Phuket); 
Nigerian Institute of Social and Economic Research (Nigeria); Bamrasnaradura Institute, 
Nonthaburi, Thailand (Bamrasnaradura); RTI, North Carolina (RTI); Northwestern; 
Brown; Cambridge; Chinese Academy of Sciences; University of Amsterdam; Ghent 
University (Ghent); CONRAD, Arlington, Virginia (CONRAD); University of Hong 
Kong; Queen Elizabeth Hospital; National Institute of Public Health, Oslo, Norway 
(NIPH Norway); University of Connecticut; Rhode Island College; Medical College of 
Wisconsin; University of North Carolina Chapel Hill (UNC Chapel Hill); National 
University of Singapore; Chinese University; University of Miami; Wayne State 
University; Uppsala University; Cung-Ang University; University of Pittsburgh; 
University of Colorado Denver; University of California Berkeley (UC Berkeley); 
Samsung; University of Washington; NY Academy of Medicine; University of East 
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Anglia; University of the Free State, SA; Escuela Valenciana de Estudios en Salud, 
Valencia, Spain (EVES, Spain); Instituto Nacional de Ciencias Medicas y Nutricion, 
Salvador Zubiran, Mexico (INCMN, Mexico); Lincoln Medical, NY; Kaiser; Universite 
de Lyon; Institut de Recherche pour le Developpement, Montpellier, France (IRD, 
France); University of Cape Town; Boston University (Boston); Ministry of Health, 
Mexico (MOH, Mexico); Beth Israel Hospital; Brandeis University ; National 
Development and Research Institutes, New York (National Development and Research 
Institutes); Utrecht University; Drug Policy Research Center; Montefiore Medical Center; 
University of Southern California (USC); National Institute of Cholera and Enteric 
Diseases Calcutta; STD/HIV Intervention Project Calcutta; Foundation for Innovative 
New Diagnostics Geneva; Veterans’ Affairs, Connecticut (VA Connecticut); George 
Washington University; Baylor; Veterans’ Affairs Houston, TX (VA Houston); Veterans’ 
Affairs Palo Alto, California (VA Palo Alto); Comprehensive Care Center Nashville; 
Office of Disease Prevention and Control Thailand; Chiang Rai Provincial PH Office; 
Research Institute of Tuberculosis Tokyo; Bangkok Metropolitan Health Administrtation; 
National Institute of Allergy and Infectious Diseases; Medical Research Council Clinical 
Trials Unit London; Imperial College London; University of Arizona; University of 
Western Ontario; State University of New York Buffalo (SUNY Buffalo); University of 
Puerto Rico; University of Illinois Chicago; California School of Profession Psychology 
(CA School of Professional Psychology); Hunter College; City University of NY; 
Children's Hospital of Michigan; Innsbruck Medical University Austria; Karolinska 
University Hospital Sweden; University of Manchester; Denver PH Dept; Veterans’ 
Affairs San Francisco (VA SF); State University of New York, Brooklyn (SUNY 
Brooklyn); Kenneth Norris Cancer Hospital LA; Howard University; Fred Hutchinson 
Cancer Research Center Seattle; The Polyclinic Seattle; Universitat d'Alacant Spain; 
Universidad Miguel Hernandez Spain; Makerere University Uganda; Chiang Mai 
University Thailand; University of Zimbabwe; Case Western Reserve University; Family 
Health International; Fann University Teaching Hospital Senegal; Military Hospital 
Senegal; Hopital Bichat-Claude Bernard France; National AIDS Program Senegal; 
University of Toronto; Childrens Hospital LA; Lusaka District Health Management Team 
Zambia; University of Zambia; Tulane University; University of Pennsylvania; 
University of Zurich; University of Bristol; Basel University; University of Berne; Swiss 
HIV Cohort Study; Cornell University; i3 Drug Safety; Naval Medical Center; Walter 
Reed Army Medical Center, Washington, DC (Walter Reed); Wilford Hall United States 
Air Force Medical Center, San Antonio, TX (Wilford Hall); National Naval Medical 
Center; Uniformed Services University of the Health Sciences, Bethesda, Maryland 
(Uniformed Services University); Institute of Clinical Infectious Diseases, Catholic 
University of the Sacred Heart, Rome, Italy (University of the Sacred Heart); Royal Free 
and University College Medical School, UCL, London, UK (University College Medical 
School UK); National Institute for Infectious Diseases ‘Lazzaro Spallanzani’, Rome, 
Italy; Institute of Infectious and Tropical Diseases, University of Milan, Italy (University 
of Milan); SS Annunziata Hospital, Taranto, Italy (SS Annunziata Hospital); Ospedali 
Riuniti, Foggia, Italy (Ospedali Riuniti); University La Sapienza, Rome, Italy (University 
La Sapienza). 
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A.2 WHO’s Treatment Initiation Guidelines Among HIV+ Children (pre-2008) 

Age-specific recommendation to initiate ART Immunological 
marker <= 11 months 12 months to 35 

months 36 to 59 months >= 5 years 

%CD4+ <25% <20% <15% <15% 

CD4 Count <1500 
cells/mm3 <750 cells/mm3 <350 cells/mm3 <200 cells/mm3 

 
 
 
 
 
 
 
 
 
A.3 Centers for Disease Prevention and Control Definition of Clinical HIV Disease  

Progression Among Children  
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A.4 PENTA’s Treatment Initiation Guidelines For HIV+ Children (2002) 

Infants Children over 12 months of age 
Always start if any: 

• Clinical stage C or 
• CD4 < 20% 
• Rapidly falling CD4% (irrespective 

of value), and for viral load 
persistently > 104 copes/ml 

 

Always start ART if: 
• Clinical stage C or 
• CD4 < 15% 

Consider ART if: 
Irrespective of clinical or immunological 
stage 

Consider ART if: 
• Clinical stage B or 
• CD4 < 20% or 
• Viral load > 5 log 

 Defer ART if: 
• Stage N or A disease and 
• CD4 > 20% and 
• Low viral load < 5 log 

 
 
 
Appendix A.5:  Power Calculation For Chapter 3 Analyses 
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Manuscripts Submitted for 
Publication 
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B.1 Review of Causal Inference Methods Used in 
HIV/AIDS Epidemiologic Studies  

 
This review will be submitted for publication in the American Journal of Epidemiology 
in May 2010.   
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Review of Causal Inference Methods Used in HIV/AIDS Epidemiologic Studies 

 
Word Count exclusive of abstract, tables, and figures: 3,955 

Word Count of abstract: 199 

Abstract: 
In this review of causal inference methods used with HIV data--propensity scores, 

instrumental variables, marginal structural models, and structural equation models, we 

explored the temporal trends of their appearance in the literature, the frequency of 

publications by authors and journals, assessed the transparency and quality of the 

methods employed, and explored the networks of affiliated institutions. We included 70 

studies that satisfied the eligibility criteria. Approximately 43% of all included studies 

were published in 2007 and 2008. Hernan has the most affiliated publications with 12 

included studies; Petersen had the most first authorships with 5 publications.  Studies 

using MSMs were more likely to relate causal inference results to those generated from 

more traditional methods than studies using any other causal inference method (OR=4.87;  

95% CI 1.77-14.71).  Studies using MSMs were also more likely to discuss specific 

model assumptions than other studies (OR=5.87; 95% CI 1.98-20.23). Among MSM 

studies published before 2007, the largest network was associated with Harvard 

University with 9 affiliated publications; the largest networks shifted to Johns Hopkins 

and University of California-San Francisco for MSM studies published in 2007/2008. 

Regardless of year of publication, all HIV studies are deficient by varying degrees in all 

assessed areas.  

Key terms: Acquired Immunodeficiency Syndrome* HIV* propensity score* structural 

models*  
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To adequately prevent disease spread or treat patients with Human Immunodeficiency 
Virus (HIV) and Acquired Immune Deficiency Syndrome (AIDS), epidemiologists and 
biostatisticians are charged with finding the true impact of interventions or treatments.  
Unfortunately, the true effects are often obscured by nuisance factors and special analysis 
techniques are needed to address these factors.  The analytic techniques that estimate a 
true causal relationship are referred to as causal inference methods.  In this review of 
causal inference methods used with HIV/AIDS data, we will explore the temporal trends 
of their appearance in the literature, the frequency of publications by authors and 
journals, assess the transparency and quality of the methods employed, and explore the 
networks of affiliated institutions.  We will review 4 causal inference methods that have 
relevance to addressing common data and statistical problems found in HIV/AIDS 
studies:  propensity scores, instrumental variables, marginal structural models, and 
structural equation models.    
   
The accepted gold standard for testing clinical effectiveness of treatments is the 
randomized controlled trial (RCT).  However, often an RCT cannot be performed 
because of ethical or plausibility reasons and researchers are left with data from 
observational studies.  Randomized controlled trials ensure in study design that person 
A’s treatment allocation is not dependent on information connected to outcome Y, also 
known as the randomization assumption.(1)  Essentially, this assumption ensures a lack 
of confounding. 
 
Confounding, however, is not limited to baseline covariate or treatment distribution 
between two exposure groups; it can vary over time and may predict future treatment 
exposure.  For example, antiretroviral therapy is often started in patients with worse 
baseline HIV disease (as measured by lower CD4+ counts); ART will have an impact on 
later HIV disease progression, which will later affect the probability of treatment.   
 
One of the traditional methods for controlling the biases introduced by measured 
confounders is by using multivariable regression techniques.  However, regression 
techniques are only as good as the measured confounder data.(2)  Moreover, model 
building can become cumbersome even with comprehensive confounder data collected; 
often investigators will settle for model interpretability over adequate adjustment for 
bias.(2) 
 
Time-dependent confounding is often addressed by using methods such as extended Cox 
regression models in which one would add an interaction term made up of the time-
dependent variable of interest and some function of time.(3)  Under two specific 
conditions, these conventional methods fail:  C1) when there is a time-dependent risk 
factor of an event that also predicts subsequent treatment; and C2) when previous 
treatment history predicts a future risk factor.(4)  These conditions are reintroduced later 
in the introduction of marginal structural models.  
 
Propensity scores  
Propensity scores (PS) were developed in 1983 by Rosenbaum and Rubin to control for 
known confounding bias and yet preserve model interpretability.(5) Sixteen years later, 
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McLaughlin et al published what is assumed to be the first HIV/AIDS study using 
propensity scores.(6)  The propensity score is defined as a subject’s conditional 
probability of treatment or exposure as opposed to another treatment or exposure, given 
the observed potential confounders and are described more thoroughly in Rosenbaum and 
Rubin.(2; 6)  
 
Instrumental Variables 
The use of IVs can be dated back over a half-century when they have been found in 
econometric theory.(7)  Unlike the case with many epidemiologic studies, data found in 
economics is often sparse and lack randomization.  To account for these disadvantages in 
their data economists developed IVs.  The earliest application of IVs analyzing 
HIV/AIDS data and meeting our inclusion criteria was in 2001.(8)  Like the principle of 
random allocation to treatments in RCTs, instrumental variables (IV) are variables that 
only affect the outcome through their effect on the treatment or exposure alone.(9)  
 
Marginal Structural Models  
A method proposed by Robins as early as 1997 and later emerging as a significant step 
forward in causal inference methods is the marginal structural model (MSM).(10)  This 
method is unique in that despite the presence of time-dependent covariates, often 
simultaneously intermediate variables and confounders, it can estimate the causal effect 
of a time-dependent treatment.(11)  By using inverse probability of treatment weighted 
(IPTW) estimators, the MSM parameters can be estimated, though G-computation and 
double robust are other appropriate methods, as well.  Selecting the correct treatment 
model is imperative to ensure unbiased estimates.  There are numerous ways of selecting 
models, including Monte Carlo cross-validation,(12) the use of Akaike Information 
Criterion (AIC), stepwise regression techniques, and learning programs like the algorithm 
Deletion/Substitution/Addition (DSA). Some options for producing confidence intervals 
for the MSM parameters include robust or sandwich estimators.  Bootstrapping also helps 
to make a case for a probability-based inference about an effect based on an estimated 
effect using a population-based sample.(10; 13)  
 
Structural Equation Models  
Often used in psychology research, structural equation modeling (SEM) involves a 
network of independence assumptions and equations.(14)  In this network of equations, 
each variable may only appear as a dependent variable once, but may appear in any 
equation as a causal variable.  As such, the network of equations allows the researchers to 
see how each dependent variable changes as its causal variables change.  
 
Materials and Methods 
Literature Search and Study eligibility 
We performed a systematic review of studies that used causal inference methods in the 
context of HIV/AIDS research.  The initial search strategy collected all publications 
through December 2008 using Medline.  Articles containing the textwords “propensity”, 
or “instrumental AND variable”, or “marginal structural model”, or “structural equation 
model” and indexed to include “HIV” or “AIDS” textwords were selected with MeSH 
subject headings “Acquired Immunodeficiency Syndrome”, “AIDS-Associated 
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Nephropathy”, “AIDS Dementia Complex”, "AIDS Serodiagnosis”, “AIDS-Related 
Opportunistic Infections”, “AIDS-Related Complex”, “AIDS Vaccines”, “HIV 
Seropositivity”, “HIV Long-Term Survivors”, “HIV", or “HIV Infections”.  Once the 
eligible articles were identified, a cross-reference search using Web of Science was 
performed.  All studies citing the included Medline publications were included for the 
initial review.  Following identification of eligible cross-referenced publications from 
Web of Science, a final search was performed on the bibliographies of methods-based 
researchers who are either first or senior authors of more than 2 eligible publications.  
These authors include:  Cole S, Hernán M, van der Laan M, Petersen M, and Robins J.  
The eligibility criteria are summarized in Table 1.  All analyses were performed using 
R.(15) 
 
Qualitative Study Assessment  
The interpretability of the study design to measure the causal effect of antiretroviral 
therapy and an HIV-related outcome was evaluated for each study based on the following 
4 fields:  1) traditional interpretability; 2) discussion of statistical analysis-specific 
assumptions; 3) discussion of confounding measures; and 4) model or instrument 
selection.  The rubric used to assess these fields is illustrated in Table 2.   
 

Traditional Interpretability 
To assess the interpretability of results from HIV/AIDS studies that employ causal 
inference methods, epidemiology and biostatistics literacy criteria were established.  Our 
aim was to explore the frequency HIV/AIDS researchers compare their causal inference 
results to results they would have achieved had they used traditional methods.  With 
studies using propensity scores, we were also exploring whether the researchers 
demonstrated the benefit of using propensity adjustment by showing the distribution of 
covariates before and after adjustment.  
 

Statistical Analysis Assumptions 
All statistical methods have important assumptions that should either be tested or at least 
discussed in papers using them, particularly if the methods are more contemporary or 
highly specific. Often studies will not list the methods-specific assumptions, but the 
researchers will rather acknowledge the assumptions through their discussion of methods 
or limitations.  
 

Confounding Measures 
As estimating the causal effect of x on y while minimizing bias is the main objective of 
causal inference methods, it is important for studies to identify specifically which 
covariates may bias this causal effect.  A general discussion of confounder adjustment 
may not help future studies trying to expound on the study’s results.    
 
 Model or Instrument Selection 
It is not enough to simply employ these methods to control for confounding and reduce 
bias.  The technique by which the researcher selects his model or instrument is just as 
important as the researcher recognizing a priori the necessity to perform the causal 
inference.  In studies using propensity scores, a case for the specific variables used to 
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model the propensity of treatment is helpful to understand their influence on the 
estimated effect and control of bias.  Similarly, the variables included in the treatment 
model for marginal structural models should not only be identified but also justified.  
Some of the model selection procedures may be as basic as an acknowledged prior 
knowledge or research, but may also include stepwise addition or deletion techniques, 
Akaike information criterion, or super learning applications like Deletion/Substitution/ 
Addition (DSA) algorithm.  A discussion about the ways the authors selected the 
included variables (e.g. based on prior studies) is enough to satisfy this criterion.  A 
justification for using a specific instrument in studies using instrumental variables is 
necessary to understand its influence, or lack thereof, on the estimated causal effect.    
 
Results 
Literature Search 
The initial search on Medline, Web of Science, and selected bibliographies yielded 1535 
potential studies, of which 932 were later removed based on publication date, duplication, 
title, or abstract details.  The remaining 603 papers were reviewed for eligibility and 70 
satisfied the eligibility criteria and were included in this review.  The selection flow is 
detailed in Figure 1. 
 
Temporal Trends 
Though some of the included causal inference methods were developed by the onset of 
the HIV epidemic, the highest concentration of these methods in the HIV/AIDS literature 
was not apparent for about two decades.  Propensity scores were introduced near the 
early stages of the HIV epidemic, however the first appearance of these methods in the 
HIV/AIDS literature was in 1999 (McLaughlin et al).(6) The trend in propensity score 
publications is markedly increasing as about 42% of all HIV studies using these methods 
were published in 2007 and 2008.(16-23)  The appearance of IVs in HIV/AIDS literature 
occurred in 2001 (Tarwater et al).(8)  Though only seven IV  studies are known to have 
been published before 2009,(8; 9; 24-28) four of the seven were published in the last four 
years.(9; 24; 27; 28)  In 2000 the first MSM study appeared in the literature (Hernan et 
al),(29) and every subsequent year saw an increase in publications using these methods 
on HIV/AIDS data.  Approximately half (47%) of the studies using MSMs were 
published in 2007 and 2008.(24; 30-45)  The use of SEMs on HIV/AIDS data has its 
origin in 1991 (Van der Velde et al).(46)  Only one other publication using this method 
would appear in the 1990s,(47) while the majority (54.6%) was published since the end 
of 2005.(48-53) Approximately forty-three percent of all HIV/AIDS studies using the 
listed methods were published in 2007 and 2008.  Temporal trends in the appearance of 
causal inference methods in HIV/AIDS publications are described in Table 3 and 
illustrated in Figure 2.   
 
Causal Inference Publication Characteristics 
Figure 3 is a dot-chart showing the frequency of causal inference publications analyzing 
HIV/AIDS data among all affiliated researchers with at least two included papers.  
Hernan has the most affiliated publications with 12 included studies; Cole had 10 and 
Robins had 9 associated publications.  Petersen had the most first authorships with 5 
publications, followed by Hernan with 4 and Cole with 3 publications (data not 
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displayed).  About one in six (17.1%) of all included studies was principally authored by 
one of these three researchers.  It should be noted, however, that all of the publications 
that were principally authored by these researchers employed marginal structural models.  
Robins had the most senior authorships with 7 publications, followed by van der Laan 
with 3 publications (data not displayed). 
 
Over one-third (37.1%) of all the studies were published in AIDS, American Journal of 
Epidemiology, Journal of Acquired Immune Deficiency Syndromes, or Statistics in 
Medicine (see Figure 4). The most common exposure or outcome was antiretroviral 
therapy or HIV disease progression (64.3%).   
 
Epidemiology of Studies 
All studies using propensity scores had unique first authors and all but two (AIDS) were 
published in unique journals.  Antiretroviral therapy or HIV disease progression were the 
most common exposure or outcome studied (47.4%).  High-risk behaviors were the 
second most common exposure or outcome studied (21.1%) in publications using 
propensity scores (data not displayed).   
 
All studies using IVs had unique first authors and all but two (American Journal of 
Epidemiology) were published in unique journals (data not displayed).  Additionally, all 
but one of these studies explored the impact of ART on disease progression or high-risk 
behavior.   
 
Among publications using MSMs, several researchers were the primary authors on more 
than one publication (data not displayed).  Peterson was the first author of five 
HIV/AIDS studies using MSMs,(33-36; 43) Hernan was the primary author on four,(4; 
29; 54; 55) and Cole(31; 56; 57) was the primary author for three studies.  Lopez-
Gatell,(32; 40) Brumback,(58; 59) and Patel(41; 42) were the primary authors for two 
studies each.  Over a third (36.1%) of all HIV/AIDS studies using MSMs were published 
in AIDS or American Journal of Epidemiology.  Antiretroviral therapy or HIV disease 
progression was the most common exposure or outcome studied (80.6%).   
 
Studies using SEMs were authored by unique authors and generally published in different 
journals, though AIDS and Behavior had two publications (data not displayed).  All 
publications using SEMs explored either ART adherence or high-risk behaviors.   
 
Summary of Study Quality Assessment Results 
Application of the quality assessment tool for these studies revealed that the most 
common weaknesses were traditional interpretability, a discussion of model or instrument 
selection, and a discussion of assumptions, though these results are highly method-
dependent.  The results are described in detail in Tables 4-7.  Figure 5 illustrates the 
proportion of causal inference studies which satisfied the specific study assessment 
criteria.   
 
Nearly two-thirds (63.0%) of all studies made comparisons between causal inference 
results and results using traditional methods; two-thirds (68.5%) of all HIV/AIDS studies 
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referenced any causal inference method-specific assumptions.  Nearly all studies (95.9%) 
had a discussion about the type of confounding being controlled for using the causal 
inference method and listed the specific potential confounders.  Over two-thirds (67.1%) 
of all studies discussed in detail the instrument or (treatment) model selection.   
 
Over a third of all HIV/AIDS studies using propensity scores (36.8%) did not relate the 
causal inference results with results using traditional methods or failed to show the 
benefit of applying these techniques to the study data.  Furthermore, propensity score 
studies were not likely to discuss any causal inference method-specific assumptions 
(42.1%).   
 
Studies using IVs were likely to have causal effects compared to traditional methods 
(71.4%).  Additionally, studies using IVs were just as likely to discuss the method-
specific assumptions made as specific instrument selection (85.7%).   
 
No studies using SEMs made comparisons of their results with results from traditional 
methods.  Nearly half (45.5%) of these studies discussed their inherent assumptions.  All 
studies using SEMs discussed their specific mediating variables and model selection.    
 
Studies using MSMs were likely to have causal effects compared to traditional methods 
(80.6%).   Additionally, studies using MSMs were likely to discuss the method-specific 
assumptions made (86.1%).  Nearly all MSM studies discussed in detail the confounding 
variables they aimed to control (97.2%).  Just over half of MSM studies (52.8%) stated 
the method by which the treatment model was selected.     
 
Relationships between year of publication and temporal trends, traditional interpretability 
discussion of assumptions, discussion of confounding, and a discussion of treatment 
model/instrument selection were explored and no significant associations were noted. 
 
Comparison of Studies Using MSMs Vs Any Other Causal Inference Method 
Studies using MSMs are more likely to relate causal inference results to those generated 
from more traditional methods than studies using any other causal inference method 
(OR=4.87;  95% CI 1.77-14.71).  Studies using MSMs are also more likely to discuss 
specific model assumptions than studies using any other causal inference method 
(OR=5.87; 95% CI 1.98-20.23).  However, studies using MSMs are no more likely to 
discuss specific confounding or to discuss model selection than studies using any other 
causal inference method. 
 
MSM-Specific Study Assessment  
Among studies using MSMs, whether the authors stated specifically how they estimated 
their confidence intervals or standard errors for the causal effect of interest was 
investigated.  Approximately eighty-six percent of all MSM studies reported their source 
of inference (data not dispayed).  Specifically, approximately 22% used the bootstrapping 
method to estimate their standard errors or confidence intervals, 14% used the 
“sandwich” method, eight percent used generalized estimating equations, and 42% used a 
non-specific robust method.    
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There are three common methods of estimating the parameters in MSMs:  G-comp, 
double robust, or IPTW.  Though all three of these methods control for confounding, 
albeit in different ways, only two studies used any method other than IPTW to estimate 
the MSM parameters.(35; 36) Both of these studies used all three methods to compare 
results.    
 
Network of Publishing Institutions 
The network of institutions represented by all the listed authors is illustrated in Figures 
6a-7b.  Institution abbreviations are detailed in Appendix A.   
 
Among MSM studies published before 2007 (Figure 6a), the largest network is associated 
with Harvard University with 9 affiliated publications.  Among MSM studies published 
in 2007 or 2008 (Figure 6b), the largest networks were among Johns Hopkins and 
University of California-San Francisco each with 7 publications, followed by University 
of California-Berkeley with 6 publications. Among propensity scores studies published 
before 2007 (Figure 7a), the largest network is associated with University of California-
Los Angeles with 4 publications, followed by Johns Hopkins University with 3 affiliated 
publications.  The networks for propensity score papers published in 2007 or 2008 are 
shown in Figure 7b.  The Centers for Disease Control and Prevention has the largest 
network with 3 affiliated publications among these publications.  No networks of studies 
using IVs and SEMs had a network larger than 2 (data not shown).  
 
Discussion 
We have performed a systematic review of the HIV/AIDS literature for studies using 
causal inference methods including propensity scores, IVs, MSMs, and SEMs.  We have 
found an increasing trend in appearance of most of these methods as over forty percent of 
studies using one of the listed methods were published in 2007 or 2008.  Compared to all 
other methods, publications using MSMs had the highest proportion published in 2007 or 
2008 (47.2%), followed by propensity score studies (42.1%).  HIV/AIDS studies using 
IVs and SEMs have not seen the resurgence that other studies using other causal 
inference methods have.   
 
The journals in which the studies were published may have some impact on the method’s 
future use.  Likely due to method-specific technical issues and readership, some methods 
are more often found in statistical or economics journals (e.g. IVs).  Moreover, IVs have 
their origins in economics and have yet to be adopted as a common technique in 
epidemiology.(riersol)[38]  Figure 4 illustrates the frequency of appearance of causal 
inference publications in specific journals.  The highest frequencies are found in the 
journals AIDS, American Journal of Epidemiology, Journal of Acquired Immune 
Deficiency Syndrome, and Statistics in Medicine.  As some of the most technical methods 
are published more often in journals such as AIDS and American Journal of 
Epidemiology, the readership may begin to employ the methods within their own 
research.      
 



   

 193 

Some authors and affiliated institutions have contributed greatly to the dissemination of 
causal inference methods used for HIV data.  As described in Figure 3, Hernan, Robins, 
and Cole have authored more HIV/AIDS studies using causal inference methods than any 
other researcher.  As a result, their respective affiliated institutions, Johns Hopkins and 
Harvard University have some of the largest networks.  It should be noted, however, that 
there was a geographical and institutional shift in network size for MSM studies from 
pre-2007 to 2007-2008 as Johns Hopkins, University of California-San Francisco, 
University of California-Berkeley, and University of California-Los Angeles had the 
largest networks most recently, while Harvard University was the most prolific producer 
of MSM studies prior to 2007.     
 
The study assessments found that, regardless of year of publication, all HIV studies are 
deficient by varying degrees in traditional interpretability, assumption discussion, 
covariate and confounding discussion, and model and instrument selection discussion.  
Over all studies, traditional interpretability was the most common deficiency, but this is 
likely due to no study using structural equation models making any comparisons to 
traditional methods.  Though not seen in our review, as a method has been used long 
enough, a traditional results comparison may be less important in the eyes of the 
researcher as limited space may be predicated on other results.  Studies using IVs were 
most deficient in having a traditional interpretability component.  While this is likely a 
reflection of the difficulty in making such comparisons with these methods, it remains an 
important aspect of promoting the use of a method.   
 
Often some assumptions are not testable, but acknowledging them in the analysis should 
be policy to ensure study validity.  Some assumptions, like the experimental treatment 
assignment (ETA) for MSMs, are often testable(60) and should be adequately described.  
Publications using propensity scores were most deficient in discussing inherent methods-
specific assumptions.   
 
The most deficient area for studies using MSMs was a discussion of their treatment 
model selection.  Not only is this key for other researchers to understand fully how to 
implement MSMs, but it is also particularly important to ensure unbiased results.  If 
incorrect covariates are used in building the treatment model, biased estimators are 
possible.(61)  In particular, the inclusion of variables which predict only treatment, i.e. 
not confounders, can affect the estimator’s performance.  Regarding confounders and 
other covariates, most studies, regardless of causal inference method, described or listed 
the variables the method hoped to control for.  In turn, future studies of similar research 
questions may be able to control for similar confounding.   
 
Most studies using MSMs reported robust or sandwich confidence intervals.  By 
explicitly stating the source of their confidence intervals, researchers once again have the 
opportunity for not only making a case for a true causal effect, but allow other 
researchers to learn from their methods.    
 
Studies using MSMs are more likely to discuss their results as they relate to conventional 
methods than studies using any other causal inference method.  Moreover, MSM-based 
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HIV publications are more likely to discuss the (treatment) model selection than the 
treatment or instrument model in any other causal inference method.  Though in 
comparison to the most technically difficult methods MSMs are not terribly difficult to 
understand, perhaps the fact that most of the MSM studies make comparisons to 
traditional methods partly describes their increase in publication frequency.   
 
There are several limitations concerning this review that should be considered.  Firstly, 
though every attempt was made to capture all relevant studies, some may have been 
missed.  A problem encountered when performing this review was that often studies will 
employ a method that is technically an included causal inference method, but the 
researchers fail to identify the method as specifically one of the included methods.  We 
did not include these studies, as it would not have been reasonable to capture all of these 
studies using unidentified causal inference methods.  In turn, we could have ended up 
with a skewed sample of only the studies with an identified causal inference method 
found on Medline and studies with an unidentified causal inference method found by our 
cross-referencing search.  Secondly, as inherent in any review, we have to consider 
publication and author bias as a potential issue.  If a prominent researcher is one of the 
authors on a causal inference paper, it may be more likely to be published.  As the 
techniques and methods increase in complexity, many technical experts are required to 
collaborate.  As a result, multiple institutions will likely have representation as either the 
problem necessitates or as the method becomes more recognized.(62) Thirdly, non-health 
related journals, like economics journals, might have more studies with HIV data.  These 
results may not be generalizeable to studies of other diseases.  In fact, the trends found in 
HIV studies may not be indicative of the trends among all epidemiologic studies.  Some 
of the study assessments may not be as high as they could be because authors would 
reference previous work on the data in an attempt to avoid discussing technical details.  
Journal limitations may prevent authors from discussing further.  
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Tables 

 
Table 1 Causal Inference Study Eligibility Criteria  
1)  Prospective or retrospective study published in peer-reviewed journal before 
calendar year 2009 
2)  At least 1 of the following endpoints was ascertained: 

i. Incident AIDS 
ii. Incident HIV 
iii. Stage of HIV disease 
iv. Response of HIV/AIDS to therapy 
v. HIV/AIDS disease progression 
vi. Death 

Or, behavioral or clinical risks were assessed within an exclusively HIV positive 
population.   
3)  One of the causal inference techniques described above explicitly stated and used in 
analysis (propensity scores, instrumental variables, MSM, structural equation model) 
4)  Results from application of method to dataset (not a subset of data for illustrative 
purposes) are published and have not been published previously elsewhere 
 
 
 
Table 2:  Quality Assessment Rubric Tool Applied To All Studies  

Traditional 
Interpretability 

Is the method described as appropriate when compared 
to other methods?    

Or, are results from both causal inference and 
traditional methods given?  (Alternatively, are before- 

and after- propensity score analyses done?) 
Discussion of Statistical 

Analysis-Specific 
Assumptions 

Are assumptions discussed generally and as they apply 
to the study data?   

Discussion of 
Confounding Measures 

Are the specific confounders the causal inference 
method aims to control or the type of (potential) 

confounding adjusted for discussed? This may also 
include mediating factors found in SEMs.  

Model and Instrument 
Selection 

Is the model or instrument selection technique 
discussed? 
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Table 3  Trends of Causal Inference Methods Used in Studies of HIV and HIV Risk  

Statistical method Total No. of 
articles  

No. of 
articles  

No. of 
articles  

No. of 
articles  

No. of 
articles  

  Pre-00 2001-02 2003-04 2005-06 2007-08 
Propensity 
scoring±,1 

19 
(26.0%) 

1 
(5.3%) 

0 
(0.0%) 

3 
(15.8%) 

7 
(36.8%) 

8 
(42.1%) 

Instrumental 
Variables±,2 

7 
(9.6%) 

0  
(0.0%) 

1 
(14.3%) 

2 
(28.6%) 

2 
(28.6%) 

2 
(28.6%) 

Marginal Structural 
Models± 

36 
(49.3%) 

1 
(2.8%) 

3 
(8.3%) 

7 
(19.4%) 

8 
(22.2%) 

17 
(47.2%) 

Structural Equation 
Models± 

11 
(15.1%) 

3 
(27.3%) 

0 
(0.0%) 

2 
(18.2%) 

2 
(18.2%) 

4 
(36.4%) 

Total3 73 5 
(6.8%) 

4 
(5.5%) 

14 
(19.2%) 

19 
(26.0%) 

31 
(42.5%) 

±Proportions reported are among studies using that statistical method 
1. One of these publications is also included in Marginal Structural Models 
2. Two of these publications are also included in Marginal Structural Models 
3. Sum of total is more than sum of included studies due to papers using multiple 
methods 
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Table 4:  Results of Study Quality Assessment of Propensity Scores Publications 

Lead Author 
Data 

Country 
of Origin 

Traditional 
Interpretability 

Assumptions 
Discussed 

Confounding Or 
Mediating 
Variables 
Discussed 

Model/ 
Instrument 
Selection 
Discussed 

Zule(48)  
(2008) US Yes No Yes Yes 

Sanguan-
wongse(41)  

(2008) 
Thailand Yes Yes Yes Yes 

Mahal(47)  
(2008) Nigeria No Yes Yes Yes 

Anuwatnon-
thakate(46)  

(2008) 
Thailand Yes Yes Yes Yes 

Tai(45)  
(2007) US Yes No Yes Yes 

Potard(42)  
(2007) France No Yes Yes Yes 

Braithwaite(43)  
(2007) US Yes No Yes No 

Albalak(44)  
(2007) US No No No No 

Nosyk(73)  
(2006) Canada Yes No Yes No 

Merito(74)  
(2006) Italy Yes No Yes Yes 

Liu(76)  
(2006) US No No Yes Yes 

Liu(75)  
(2006) US Yes Yes Yes Yes 

Gangopadhyay(81)  
(2005) India No No Yes No 

El-Bassel(78)  
(2005) US No Yes Yes Yes 

Chu(77)  
(2005) US Yes Yes Yes Yes 

Wenzel(79)  
(2004) US Yes No Yes Yes 

Rotheram-
Borus(80)  

(2003) 
US Yes No No No 

Brumback(40)  
(2003) US Yes Yes Yes Yes 

McLaughlin(32)  
(1999) US No No Yes No 
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Table 5:  Results of Study Quality Assessment of Instrumental Variable Publications 

Lead Author 
Data 

Country 
of Origin 

Traditional 
Interpretability 

Assumptions 
Discussed 

Confounding Or 
Mediating 
Variables 
Discussed 

Model/ 
Instrument 
Selection 
Discussed 

Instrumental Variables 
Shiels(24)  

(2008) US No Yes Yes Yes 

Bond(6)  
(2007) Europe Yes Yes Yes Yes 

Lakdawalla(51)  
(2006) US Yes Yes Yes Yes 

Cain(52)  
(2006) US No Yes Yes Yes 

Hogan(50)  
(2004) US Yes Yes Yes Yes 

Bhattacharya(49)  
(2003) US Yes Yes Yes Yes 

Tarwater(34)  
(2001) US No No Yes No 

 
Table 6:  Results of Study Quality Assessment of Marginal Structural Model Publications 

Lead Author 
Data 

Country 
of Origin 

Traditional 
Interpretability 

Assumptions 
Discussed 

Confounding Or 
Mediating 
Variables 
Discussed 

Model/ 
Instrument 
Selection 
Discussed 

Marginal Structural Models 
Shiels(24)  

(2008) US No  No Yes No 

Peterson(23)  
(2008) US No Yes Yes Yes 

Patel.2(21)  
(2008) US Yes Yes Yes No 

Patel.1(22)  
(2008) US Yes Yes Yes No 

Lopez-Gatell(20)  
(2008) US Yes Yes Yes No 

Fox(25)  
(2008) Zambia Yes Yes No Yes 

Fairall(19)  
(2008) 

South 
Africa Yes Yes Yes No 

Dolev(18)  
(2008) US No No Yes No 

De Beaudrap(17)  
(2008) Senegal No Yes Yes Yes 
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Table 6:  Results of Study Quality Assessment of Marginal Structural Model Publications 
(continued) 

Lead Author 
Data 

Country 
of Origin 

Traditional 
Interpretability 

Assumptions 
Discussed 

Confounding Or 
Mediating 
Variables 
Discussed 

Model/ 
Instrument 
Selection 
Discussed 

Peterson.1(13)  
(2007) US Yes Yes Yes Yes 

Peterson.2(14)  
(2007) US No Yes Yes Yes 

Peterson.3(16)  
(2007) US Yes Yes Yes Yes 

Peterson.4(15)  
(2007) US Yes Yes Yes Yes 

Lopez-Gatell(12)  
(2007) US Yes Yes Yes No 

Cole(11) 
(2007)  US Yes Yes Yes No 

Brown(10)  
(2007) 

Zim-
babwe/  
Uganda 

Yes Yes Yes Yes 

Perez(53)  
(2007) Spain Yes Yes Yes No 

Hogg(82)  
(2006) Canada Yes Yes Yes Yes 

Hernan(64)  
(2006) France Yes Yes Yes Yes 

De Luca(83)  
(2006) Italy Yes No Yes No 

Brookhart(89)  
(2006) US Yes Yes Yes Yes 

Bachmann(88)  
(2006) 

South 
Africa Yes No Yes No 

Wang(90)  
(2005) US Yes Yes Yes Yes 

Sterne(84)  
(2005) 

Switzer-
land Yes Yes Yes No 

Cole(66)  
(2005) US Yes Yes Yes Yes 

Hogan(50)  
(2004) US Yes Yes Yes Yes 

Casper(85)  
(2004) US No No Yes Yes 

Brumback(67)  
(2004) US No Yes Yes No 

Barron(86)  
(2004) US Yes Yes Yes No 
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Table 6:  Results of Study Quality Assessment of Marginal Structural Model Publications 
(continued) 

Lead Author 
Data 

Country 
of Origin 

Traditional 
Interpretability 

Assumptions 
Discussed 

Confounding Or 
Mediating 
Variables 
Discussed 

Model/ 
Instrument 
Selection 
Discussed 

Ko(87)  
(2003) US Yes Yes Yes Yes 

Cole(65)  
(2003) US Yes Yes Yes Yes 

Brumback(40)  
(2003) US Yes Yes Yes Yes 

Hernan(63)  
(2002) US Yes Yes Yes No 

Eisenberg(91)  
(2002) US Yes Yes Yes Yes 

Hernan(62)  
(2001) US Yes Yes Yes No 

Hernan(37)  
(2000) US Yes Yes Yes Yes 

 
Table 7:  Results of Study Quality Assessment of Structural Equation Models 
Publications 

Lead Author 
Data 

Country 
of Origin 

Traditional 
Interpretability 

Assumptions 
Discussed 

Confounding Or 
Mediating 
Variables 
Discussed 

Model/ 
Instrument 
Selection 
Discussed 

Structural Equation Models 
Rice(61)  
(2008) US  No No Yes Yes 

Cha(60)  
(2008) US No No Yes Yes 

Bull(59)  
(2008) US No Yes Yes Yes 

Sodergard(58)  
(2007) Sweden No No Yes Yes 

Naar-King(57)  
(2006) US No No Yes Yes 

Llabre(56)  
(2006) US No Yes Yes Yes 

Prado(92)  
(2004) US No No Yes Yes 
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Table 7:  Results of Study Quality Assessment of Structural Equation Models 
Publications (continued) 

Lead Author 
Data 

Country 
of Origin 

Traditional 
Interpretability 

Assumptions 
Discussed 

Confounding Or 
Mediating 
Variables 
Discussed 

Model/ 
Instrument 
Selection 
Discussed 

Structural Equation Models 
Lim(93)  
(2003) Singapore No No Yes Yes 

Sengupta(94)  
(2000) US No Yes Yes Yes 

Kraft(55)  
(1995) Norway No Yes Yes Yes 

Van der Velde(54)  
(1991) 

Nether-
lands No Yes Yes Yes 
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Figures 

 
Figure 1.  Study Selection Flow 
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Figure 2.  Histograms Showing Temporal Trends in Appearance of Causal 
Inference Methods in HIV/AIDS Publications  
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Figure 3  Dot Chart of Frequency of Publications (with a minimum of 2) By All 
Associated Authors Using Causal Inference Methods With HIV/AIDS  
 
      Author  Publications Using Causal Inference Methods By All Associated Authors 
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Figure 4.  Dot Chart of Frequency of Appearance of Publications Using Causal 
Inference Methods With HIV/AIDS Data By Journal  
 
                 Journals                                        Publications Using Causal Inference Methods By Journal 
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Figure 5. Bar-plots of Results of Study Quality Assessments By Method  
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Figure 6a.  Network of Institutions and Affiliated Authors of HIV-Related Studies 
Published Before 2007 Using Marginal Structural Models  
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Figure 6b.  Network of Institutions and Affiliated Authors of HIV-Related Studies 
Published In 2007-08 Using Marginal Structural Models                
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Figure 7a.  Network of Institutions and Affiliated Authors of HIV-Related Studies 
Published Before 2007 Using Propensity Scores 
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Figure 7b.  Network of Institutions and Affiliated Authors of HIV-Related Studies 
Published In 2007 Or 2008 Using Propensity Scores 
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B.2 The Effect of Early Triple Therapy Among HIV-
Infected Children:  A Causal Inference Approach 
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The Effect of Early Triple Therapy in HIV-Infected Children:   
A Causal Inference Approach 

 
Word Count exclusive of abstract, tables and figures:  5,600 
 
Word Count of abstract: 500 
 

ABSTRACT 
Background 
Worldwide, particularly in areas with no treatment availability or antenatal programs, 
approximately 1600 children are diagnosed with HIV every day,(2) and over 300,000 
deaths among infected children occur annually worldwide.(3)  In 1996, the advent of 
highly active antiretroviral therapy (HAART) dramatically reduced the risk of mortality 
from HIV.  However, the long-term effects of HAART, or triple therapy, are not yet fully 
understood. In the present study, I use marginal structural models as estimated by G-
Computation to estimate the causal effect of triple therapy (HAART) on time to C 
diagnosis, and time to C diagnosis/death among HIV-infected children.  
 

Methods 
The Pediatric Spectrum of Disease (PSD) is a multicenter active surveillance program 
specifically for children who have been exposed to HIV perinatally.(5) Through this 
program, I have identified and defined a population-based cohort of HIV positive 
northern Californian children who were vertically infected from 1988-2008. Causal 
inference methods are alternative techniques with causal effect interpretations.  I defined 
binary levels of A, A ∈ {0,1} in triple therapy (HAART) initiated in the first 6 months 
versus no triple ARV therapy initiated in the first 6 months and defined binary levels of 
A, A ∈ {0,1} in triple therapy (HAART) initiated in the first 12 months versus no triple 
ARV therapy initiated in the first 12 months.  Two subgroup analyses will be performed 
by further restricting A to triple therapy initiated within the first 6 or 12 months of life 
among symptomatic children and triple therapy initiated within the first 6 or 12 months of 
life among asymptomatic children.  I have defined a vector of baseline covariates, W, 
which includes immune status at treatment initiation, length of pregnancy (full-term or 
less than full-term), child’s race, sex, whether mothers received prenatal care, and 
birthweight (< 2500 grams or >= 2500 grams).  
 

Results 
The sample comprised of N=217 HIV infected children whose infection is assumed to 
occurred in utero or at delivery. The majority of the sample is female (56.2%) and non-
White ethnicity (71.9%). Immune impairment at ARV treatment initiation was common 
as 40.1% were severely impaired and 32.3% were moderately impaired.  Eight percent of 
the children received triple therapy in their first 6 months of life, while 45% received 
triple therapy within the first 12 months of life.  
 
Though no results were statistically significant, there are some trends that should be 
highlighted.  Among children who initiated triple therapy within 6 months of birth the 
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causal effect of treatment in delaying a C diagnosis, ΨHZ(p0)(tk)= -0.466 (95% CI -1.20-
0.565), is seemingly stronger than children who initiated therapy within 12 months of 
birth (ΨHZ(p0)(tk)= -0.321 (95% CI -1.151-0.300)).  Additionally, the effect of triple 
therapy initiated within the first 6 or 12 months of life on time to C diagnosis is greater 
among symptomatic children (12 Months: ΨHZsymptomatic (p0)(t36): -0.587 (95% CI -1.217-
0.480)) than among asymptomatic children (12 Months: ΨHZasymptomatic (p0)(t36): -0.106 
(95% CI -1.054-0.739)).  
 

Discussion 
The WHO, in 2006, developed clinical and immunologic guidelines for treatment 
initiation in asymptomatic children in resource-limited settings based on HIV Pediatric 
Prognostic Markers Collaborative Study (HPPMCS) data.(4) In 2008, WHO amended 
their recommendations for treatment initiation for HIV-positive children as a result from 
an RCT in South Africa.(7) The results from the present analysis may be interpreted as 
supportive of the current WHO treatment guidelines for initiating treatment among all 
HIV positive children, regardless of symptoms.   
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Introduction 
Today, over 90% of the estimated 2.5 million HIV infected children worldwide live in 
sub-Saharan Africa.(3) Over 300,000 deaths among infected children occur annually 
worldwide.(3) The burden of pediatric HIV infections lies in the poorest regions of sub-
Saharan Africa, where approximately only 10% of mothers have access to antenatal 
programs aimed at preventing mother-to-child-transmission (MTCT).(19) As access to 
care in developing areas continues to affect the health of future mothers, so too does it 
affect their children’s health.  A recent study in South Africa found that 85% of HIV-
infected, infants who were exposed to single dose nevirapine (sdNVP) perinatally were 
moderately or severely immuno-compromised (CD4 % < 25) by 6 months post-
partum,(17) suggesting these children were particularly vulnerable due to the severity of 
infection in their mothers. Though it is the standard treatment for prevention of MTCT, 
about 10% of children exposed to sdNVP will still develop HIV even before 
breastfeeding.(17; 18)  
 
In 1996, the advent of highly active antiretroviral therapy (HAART) dramatically reduced 
the risk of mortality from HIV.  Results from birth cohort studies of HIV+ children 
indicate that approximately 70-80% of children left untreated will survive to age five.(23-
25) Patel et al, with the use of marginal structural models, estimated the weighted, 
adjusted proportional hazard for mortality as 0.24 (95% CI 0.11–0.51) when comparing 
HAART treated children to untreated children.(27)  Similarly, Gortmaker et al found a 
reduced hazard ratio for death (HR 0.33; 95% CI 0.19-0.58)(26) and de Martino et al 
found a reduced RH of death (RH 0.29; 95% CI 0.13-0.67) among triple therapy initiated 
children compared to untreated children.(23) HAART is used as a first-line treatment 
now among HIV infected children in order to recuperate from HIV-associated illnesses 
and re-establish immuno-compentence.(29-33)  
 
Researchers are still trying to establish the most ideal time to initiate antiretroviral 
therapy in vertically infected children.  Weighing the benefits and risks of early initiation 
of HAART or triple therapy is a necessary component in making treatment guidelines 
recommendations.  Treatment recommendations vary between the Centers for Disease 
Control (CDC), World Health Organization (WHO), and Ministries of Health within 
individual European countries.(4) The WHO recently changed the treatment guidelines to 
include all children under 12 months regardless of immunologic status.  Previously, 
treatment for pediatric HIV infection was only recommended for children who presented 
symptomatically. The implications for these treatment guidelines are particularly 
important for the infected infants who will now have to be on HAART for life.  Once a 
child begins therapy, he must remain on treatment for life, or he risks developing drug 
resistance, or other health concerns.(48; 49)  
 
For numerous reasons, not the least of which are the inherent ethical issues, randomized 
controlled trials (RCT) exploring the best time to initiate HAART in HIV positive 
children are very uncommon.  In fact, the only published randomized trial estimating the 
effect of early HAART versus delayed HAART on mortality among HIV positive infants 
prematurely terminated in 2008 as a result of an unbalanced, disproportionate number of 
deaths in the delayed group.(35) One other RCT was conducted to explore the impact of 
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delaying HAART initiation on clinical disease progression, however this study was a 
small feasibility study in preparation for another, larger RCT which will likely be 
completed in 2011.  Moreover, the study population only included HIV positive children 
1-12 years of age, excluding all positive infants.(36) Prior to the HAART era, the 
PENTA 1 study conducted a similar study of delayed versus early initiation of 
zidovudine monotherapy.(37)  Their results suggest that early initiation of ART has no 
added benefit on clinical outcomes.  Among non-RCTs, Newell et al from the European 
Collaborative Study, a prospective study of a birth cohort of 131 HIV infected children, 
conclude that initiating ART in the first 5 months of life and the use of HAART were 
both highly predictive of an improved CD4 z-score 6 months after treatment 
initiation.(38)  In one of the only other identified observational studies evaluating the 
impact of delayed treatment initiation among HIV positive infants, Chiappini et al found 
children treated early with HAART had significantly lower viral load than deferred 
treatment children and they were also less likely to progress to a C diagnosis.(39)  
 
Particularly a problem in HIV/AIDS literature, observational studies are often biased as 
traditional analysis methods are employed to estimate the effect of a treatment on an 
outcome of interest.  Causal inference methods have been developed to overcome many 
of these biases and will be employed in the present study.  
 
To overcome the inherent issue of correct model specification in time to event 
observational studies, I intend to use g-computation, a marginal structural models (MSM) 
estimator, to estimate the causal effect of HAART (interchangeably referred to as triple 
therapy) on reducing AIDS/death among children who were infected in utero.  
Additionally, I will perform a subanalysis of symptomatic and asymptomatic children.   
 
Methods 
The Pediatric Spectrum of Disease (PSD) is a multicenter active surveillance program 
specifically for children who have been exposed to HIV perinatally.(5) Maldonado et al 
have previously described this population.  
 
Statistical Methods 
Data Structure 
In the present analysis, I have done a time to event analysis to explore the effect of 
treatments (triple ARV therapy, or no triple ARV therapy), A, have on the amount of 
time, T, it takes for a child to experience an event (1: Category C; 2: Category C 
diagnosis or death).  
 
I have looked at binary levels of A, A ∈ {0,1} in triple therapy (HAART) initiated in the 
first 6 months versus no triple ARV therapy initiated in the first 6 months.  To allow for a 
less restrictive treatment assignment, I have also looked at binary levels of A, A ∈ {0,1} 
in triple therapy (HAART) initiated in the first 12 months versus no triple ARV therapy 
initiated in the first 12 months.  Two subgroup analyses were performed by further 
restricting A to triple therapy initiated within the first 6 or 12 months of life among 
symptomatic children and triple therapy initiated within the first 6 or 12 months of life 
among asymptomatic children.  I have defined a vector of baseline covariates, W, which 
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includes immune status at treatment initiation (not included in subgroup analyses), length 
of pregnancy (full-term or less than full-term), child’s race, sex, whether mothers 
received prenatal care, and birthweight (< 2500 grams or >= 2500 grams).   I have 
defined T as a discrete variable with values {1,….,K}, where K is last time point children 
are monitored.  In contrast, I defined censoring, C, as the last time point children are 
observed.  My data structure also defines whether an event has occurred as N1 and a 
similar scenario for censoring with N2.  In turn, all time points until the event occurs are 
denoted by dN1(t) = 0 and dN1(t) = 1 at the time point the event occurs.   All time points 
until a child is censored are denoted by dN2(t) = 0 and dN2(t) = 1 at the time of censoring.  
The long form of my observed data can be expressed as n iid observations of O = 
(A,W,dN1(t), dN2(t): t=1, …, K) ~ po, where po is the density of the my observed data, O.      
 
The likelihood of the observed data is described as: 
 
                                        k  
L(0) = P(W)P(A|W) Π P(dN1(t) | dN1(t-1) = 0, dN2(t-1) =0,A,W)   (1) 
             t=1 
            P(dN2(t) | dN1(t) = 0, dN2(t-1) = 0, A, W) 
 
Where,  
 

Q10(W) ≡ P(W) is the distribution of baseline covariates, W; 
Q20(N1(t),A,W) ≡ P(dN1(t) | dN1(t-1) = 0, dN2(t-1) =0,A,W) is the  

conditional hazard of the event (C diagnosis and/or death) given 
the treatment (A) and baseline covariates, W; 

g10(A,W) ≡ P(A | W) is the treatment mechanism; 
g20(N2(t), A,W) ≡ P(dN2(t) | dN1(t) = 0, dN2(t-1) = 0, A, W) is the  

censoring mechanism—the conditional hazard of censoring given 
the subject did not yet experience an event, no previous censoring, 
and given the treatment, A, and baseline covariates.   

 
In turn, the likelihood (equation 1) factorizes the distribution of W, baseline covariates, 
the missingness mechanism, g, and the conditional hazard of the outcome of interest.  To 
estimate the survival, that is, the probability of surviving to time k given treatment, A, 
and baseline covariates, W, one would define S0(tk | A, W) = P(T > tk | A,W).  Then one 
would take the cumulative product of 1 minus the conditional hazard of C diagnosis 
and/or death to estimate survival (see equation 2):   
  tk 
S0(tk | A, W) = ∏(1- Q20(N1(t),A,W))       (2) 
  t=1 
 
Traditional Methods for Confounding Adjustment 
One of the traditional methods for controlling the biases introduced by measured 
confounders is by using multivariable regression techniques.  However, regression 
techniques are only as good as the measured confounder data.(6)  Moreover, model 
building can become cumbersome even with comprehensive confounder data collected; 
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often investigators will settle for model interpretability over adequate adjustment for 
bias.(6) Researchers will often a priori specify a parametric hazard model in traditional 
techniques exploring the effect of a treatment, A, on a time to event outcome, and test if 
A is different from zero.  Covariates are selected for inclusion in these traditional 
approaches usually in a rudimentary way—selecting and deleting covariates based on 
their influence on A’s effect on the outcome. One of the most common approaches for 
time to event scenarios is the Cox proportional hazard model, or logistic regression in the 
case of discrete time outcomes.  Furthermore, time will often be fit and a linear model 
will be employed to estimate the effect of A and the covariates.  The parameters in 
conditional hazard models are estimated with a maximum likelihood approach.  The 
central feature here is to evaluate whether the parameter representing the treatment, A, is 
significantly different from 0.  Again, these estimates are heavily dependent on how well 
the model is specified.  In turn, the parameters within hazard models may not be correctly 
specified, though this may go unnoticed unless the selected hazard model is contrasted 
with alternative models.  It should be noted that the parameter estimating the effect of A 
on the outcome of interest is only relevant within that specific model.  In the optimistic 
case of correctly specifying the hazard model, then this parameter represents the log odds 
ratios of the event occurring at each time point for A, and only in the context of that 
specific model.   
 
G-Computation Approach 
For example, let us define our parameter of interest as a function of our data generating 
distribution, Ψ (p0).  If one is interested in the survival at time point, tk, the specific 
survival curve may be expressed as P(Ta > tk).  If a subject’s treatment level were to be 
set at a, then Ta would be the event time, T, one would have observed, regardless of 
whether that subject’s true observed treatment is at level a, often referred to as the 
counterfactual.  Had this subject been treated with a different level of a than what is 
expressed in P(Ta > tk), then this is a counterfactual description of his survival curve.   
 
In order to quantify the causal effect of A, triple therapy, on death/category C diagnosis, 
the effect will be estimated using these counterfactuals.  More specifically, I will be using 
a marginal additive difference ΨRD(p0)(tk), in the probability of survival.  That is, 
 
Ψ1 (p0)(tk) ≡P(Ta > tk) [all treated] – Ψ0 (p0)(tk) ≡ P(Ta > tk) [all untreated]  (5) 
 
My parameters established in this fashion may also be influenced by baseline covariates, 
defined previously as W.  As such, I can estimate the counterfactual survival at tk setting 
other baseline variables at 0 or 1.  Additionally, the marginal log hazard ratio is defined 
by: 
 
ΨRH (p0)(tk) = log ((log(Ψ1 (p0)(tk)))/(log(Ψ0 (p0)(tk))))    (6) 
 
In order to express the mean counterfactual outcomes, as described by equations 5 and 6, 
I will employ the G-computation estimator.  Because it is important to estimate the 
distributions of my baseline covariates, W, the conditional hazard of the event given their 
treatment, A, and W, and the conditional survival of the outcome of interest, as related to 
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the conditional hazard, I will employ super learner software (D/S/A-
Deletion/Substitution/Addition). Sinisi and van der Laan have applied this algorithm to fit 
the initial hazard on pooled data over time.(62)  The empirical distribution of my baseline 
covariates in my data will estimate non-parametrically the marginal distribution of W.  
By using this data-adaptive machine learning algorithm, and its cross-validation based on 
likelihood, I am avoiding the problems inherent with traditional approaches and model 
building.  All confidence intervals for G-computation estimates were calculated by 
bootstrap sampling.     
 
In the present study, I will estimate the causal effect of triple therapy on mortality or C 
diagnosis in the first 36 months of life in children enrolled in a population-based study 
using marginal structural models as estimated by G-computation methods.  For 
comparison, the log-rank statistic in a Cox proportional hazards model was estimated for 
each comparison, as well, while adjusting for the same baseline covariates selected by 
D/S/A in the marginal structural approach.   
 
Results 
Demographics and Baseline Characteristics 
The sample was comprised of N=217 HIV infected children whose infection was 
assumed to occur in utero or at delivery. Patient characteristics are outlined in Table 1.  
The majority of the sample was female (56.2%) and non-White ethnicity (71.9%).  
Approximately half of the mothers of the children included received prenatal care.  Over 
one-quarter of the children were born low birth weight (29.5%) and about forty-three 
percent were not full-term.  Immune impairment at ARV treatment initiation was 
common as 40.1% were severely impaired and 32.3% were moderately impaired.  Eight 
percent of the children received triple therapy in their first 6 months of life, while 45% 
received triple therapy within the first 12 months of life.  About 55% of the sample either 
never received triple therapy or initiated therapy after 12 months of life.   
 
The associations between the baseline covariates (W) and triple therapy initiation in the 
first 6 months and in the first 12 months are described in Table 2.  As the immune status 
deteriorated to moderate or severe immune suppression, children were more likely to 
initiate therapy within their first 6 months of life (cOR = 1.61; p value 0.12). as the 
immune status worsens at treatment initiation, the odds of starting triple therapy in the 
first 12 months are increased 1.82 times (p value = 0.03).  The odds of beginning triple 
therapy in the first 12 months among White children decrease to 0.28 when compared to 
non-White children  (p value = 0.05). 
 
A total of n=75 children were diagnosed with a C diagnosis within the first 36 months of 
life.  Bivariate estimates of W and C diagnosis within the first 36 months of life are listed 
in Table 3.  Both ethnicity and immune status at treatment initiation are strongly 
associated with C diagnosis in the first 36 months.  Specifically, a child of White 
ethnicity is more than two times more likely to be diagnosed with a C diagnosis than a 
non-White child (cOR = 2.39; p value < 0.01); the worse the immune status at treatment 
initiation the more likely the child was to be diagnosed with a C diagnosis (cOR = 2.17; p 
value < 0.01). A total of n=84 children were either diagnosed with a C diagnosis or died 



   

 227 

within 36 months of birth.  Again, White children were twice as likely to either be 
diagnosed with a C diagnosis or die within the first 36 months of life (cOR = 2.01; p 
value < 0.01).  A worsening of immune status at treatment initiation would increase a 
child’s odds of being diagnosed with a C diagnosis or dying within the first 3 years of life 
by nearly two-fold (cOR = 1.90; p value < 0.01). 
 
For the sub-analyses, the sample populations were limited to children who were treated 
asymptomatically and children who were treated symptomatically at treatment initiation.  
N=10 symptomatic children were treated with triple therapy within their first 6 months of 
life, and n=8 asymptomatic children were similarly treated (see Table 7).  Forty-eight 
children were treated with triple therapy symptomatically within their first 12 months of 
life.  In contrast, n=50 children were asymptomatic at treatment initiation in their first 12 
months of life (see Table 8). there are no significant associations between any baseline 
covariate and triple therapy initiation within 6 or 12 months among symptomatic and 
asymptomatic children.   
 
Time to Event Analysis:  A G-Computation Approach 
 
The data were expanded such that time to event outcomes could be estimated. To 
estimate the survival, specifically the probability of surviving to time k given treatment, 
A, and baseline covariates, W, I defined S0(tk | A, W) = P(T > tk | A,W).   
Additionally, I estimated the cumulative product of 1 minus the conditional hazard of 
experiencing the event to estimate survival:   
 
 
  tk 
S0(tk | A, W) = ∏(1- P(dN1(t) | dN1(t-1) = 0, dN2(t-1) =0,A,W))     
  t=1 
 
The marginal log hazard ratios at time k=36, denoted by ΨHZ(p0)(tk), and marginal 
additive differences at time k=36, ΨAD(p0)(tk), are given for each comparison in Table 4.  
For illustrative purposes, the G-computation survival curves for the causal effect of triple 
therapy initiated in the first 6 months of life on time to C diagnosis among all children are 
displayed in Figure 1. 
 
Over all children, regardless of symptoms, the marginal additive difference of effect of 
triple therapy on time to C diagnosis among children who initiated therapy within 6 
months was estimated at 0.120 (95% CI -0.192-0.276), while the marginal additive 
difference of effect among children treated within 12 months was 0.087 (95% CI -0.099-
0.264).  The marginal log hazard ratio for children who initiated treatment within 6 
months of birth is -0.466 (95% CI -1.20-0.565) and -0.321 (95% CI -1.151-0.300) among 
children who were treated within 12 months of birth.  The Cox proportional hazards 
parameter at 36 months comparing children treated within the first 6 months of life and 
children not treated within the first 6 months of life is HR=-0.476 (p value = 0.356) and 
HR=-0.407 (p value = 0.089) comparing children treated within the first 12 months of life 
and children not treated within 12 months. 



   

 228 

 
The marginal additive difference of effect of triple therapy on time to C diagnosis or 
death among children who initiated therapy within 6 months was estimated at 0.108 (95% 
CI -0.231-0.261) and 0.055 (95% CI -0.252-0.208) for children treated within 12 months. 
The marginal log hazard ratio for children who initiated treatment within 6 months of 
birth is -0.369 (95% CI -1.058-0.730) and -0.180 (95% CI -0.786-0.792) for children 
treated within 12 months of birth.  For comparison purposes, the Cox proportional 
hazards parameter at 36 months comparing children treated within the first 6 months of 
life is HR=-0.346 (p value = 0.454) and HR=-0.431 (p value = 0.058) for children treated 
within the first 12 months of life. 
 
For subgroup analyses, I explored the effect of triple therapy among asymptomatically 
and symptomatically treated children. The marginal additive difference of effect of triple 
therapy on time to C diagnosis among asymptomatic children who initiated therapy 
within 6 months was estimated at 0.115 (95% CI -0.327-0.446) and 0.146 (95% CI -
0.055-0.415) among symptomatic children.  The marginal log hazard ratio for children 
treated asymptomatically within the first 6 months of life is -0.429 (95% CI-16.225-
0.948) and -0.563 (95% CI -15.314-0.178) for children treated symptomatically.  The Cox 
proportional hazards parameter at 36 months comparing children asymptomatically 
treated within the first 6 months of life is HR=-0.712 (p value = 0.057) and HR=-0.531 (p 
value = 0.459) for symptomatically treated children.   
 
Looking at an expanded definition of treatment, the marginal additive difference of effect 
of triple therapy on time to C diagnosis among asymptomatic children who initiated 
therapy within 12 months was estimated at 0.030 (95% CI-0.250-0.225) and 0.152 (95% 
CI -0.153-0.240) among symptomatic children. The marginal log hazard ratio for children 
treated asymptomatically within the first 12 months of life is -0.106 (95% CI -1.054-
0.739) and -0.587 (95% CI -1.217-0.480) for symptomatically treated children. The Cox 
proportional hazards parameter at 36 months comparing children asymptomatically 
treated within the first 12 months of life is HR=-0.516 (p value = 0.102) and HR=-0.008 
(p value = 0.997) for symptomatically treated children. 
 
The marginal additive difference of effect of triple therapy on time to C diagnosis or 
death among asymptomatic children who initiated therapy within 6 months was estimated 
at 0.140 (95% CI -0.380-0.490) and 0.062 (95% CI -0.178-0.319) among symptomatic 
children. The marginal log hazard ratio estimating the causal effect of triple therapy on 
time to C diagnosis or death among asymptomatically treated children was estimated as -
0.514 (95% CI -17.719-1.086) and -0.204 (95% CI-1.485-0.556) among symptomatically 
treated children.  The Cox proportional hazards parameter at 36 months comparing 
children asymptomatically treated within the first 6 months of life is HR=-0.570 (p value 
= 0.091) and HR=-0.291 (p value = 0.388) for symptomatically treated children.   
 
The marginal additive difference of effect of triple therapy on time to C diagnosis or 
death among asymptomatic children who initiated therapy within 12 months was 
estimated at 0.061 (95% CI -0.208-0.267) and 0.052 (95% CI -0.178-0.319) for 
symptomatically treated children.  The marginal log hazard ratio estimating the causal 
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effect of triple therapy on time to C diagnosis or death among asymptomatically treated 
children, -0.205 (95% CI -1.205-0.601), is greater than the marginal log hazard ratio 
among symptomatically treated children -0.168 (95% CI -1.485-0.556). The Cox 
proportional hazards parameter at 36 months comparing children asymptomatically 
treated within the first 12 months of life is HR=-0.204 (p value = 0.455) and HR=-0.154 
(p value = 0.571) for children symptomatically treated. 
 
Discussion 
The optimal timing of initiation of HAART among HIV-infected children is an on-going 
debate and recommendations for treatment initiation vary.(63) Guidelines in the United 
States and in Europe in previous years were based on 2-5 year risk of disease progression 
estimates calculated from observational studies.(63)  In contrast, more recent guidelines 
(2003) have been based on estimates of the 12-month risk of disease progression as 
reported by the HIV Pediatric Prognostic Markers Collaborative Study (HPPMCS) 
Group, a collection of studies conducted in the developed world or in high-resource 
settings.(64)  The WHO, in 2006, developed clinical and immunologic guidelines for 
treatment initiation in asymptomatic children in resource-limited settings based on 
HPPMCS data.(4)  In 2008, WHO amended their recommendations for treatment 
initiation for HIV-positive children partially as a result from an RCT in South Africa.(7)  
Though not statistically significant, the results from the present analysis may be 
interpreted as supportive of the current WHO treatment guidelines. 
 
In an attempt to use the data available to fit the most efficient model, the present study 
estimated the causal effects of triple therapy initiated at different thresholds on time to C 
diagnosis, and time to C diagnosis or death. The sampled children were more likely to be 
non-White females.  The unbalanced distribution of gender may not be important as 
studies in high-resource settings have previously found no difference in survival or 
disease progression between genders.(64) Additionally, studies have found increasing 
trends in risk of death among children of non-White ethnicities, though not statistically 
significant.(64) In the present study, over 70% of the children were either moderately or 
severely immunologically impaired at the time of triple therapy treatment initiation.  
Moreover, nearly 90% of the children remained untreated with HAART through the first 
12 months of life. This could be both a reflection of the treatment guidelines at the time 
or the availability of some drugs at the time of disease progression.      
 
To illustrate the causal assumptions for the present study, I could assign all my subjects 
to treatment a, triple therapy, and their censoring, dN2(t), to not censored at all t 
throughout the study.  In turn, I will have my counterfactual outcome—treated with triple 
therapy and not censored.  In an intent-to-treat approach, I assumed the initial treatment, 
whether mono, dual, or triple therapy, was unmodified throughout the study.  For a 
detailed description of the algorithm employed to identify the children who were assumed 
to be infected in utero, see Appendix X.  Additionally, in Appendix Y I have highlighted 
the algorithm that identified which children were asymptomatic and symptomatic at time 
of treatment initiation.  For reference to treatment guidelines, see Appendix X2. 
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Traditional approaches in estimating the effects of treatments on time to event data, to 
include Cox proportional hazards models, often rely heavily on correct model 
specification.  Using a data generating distribution approach avoids the inherent problems 
of employing traditional Cox methods, even if baseline covariates are included in the Cox 
model.(60)  In turn, as opposed to using parameters selected by stepwise inclusion 
techniques or similar approaches, using an approach that uses parameters that are 
naturally selected based on the data allows for easier interpretation of the model and its 
parameters.  For example, using a more traditional approach, the data suggest that 
ethnicity is a baseline confounder because it is significantly associated with both 
treatment initiation and C diagnosis (and death).  Furthermore, immune function at 
treatment initiation was significantly associated with treatment and our events of interest.  
However, D/S/A did not select either of these variables for inclusion in our analysis, 
therefore preventing any unnecessary loss in precision in my estimates.   
 
The causal effect of triple therapy among all children in delaying the time to a C 
diagnosis and/or death, regardless of immune status at treatment initiation, appears to be 
stronger among children who initiated therapy within 6 months rather than within 12 
months of birth.  Though no study has explored optimal treatment initiation in a pediatric 
HIV population using causal inference methods, this study’s results seem to be in tune 
with previous, traditional analyses in early therapy initiation.  Chiappini et al found that 
children who were treated with HAART early, as defined by:  treatment initiation within 
6 months of birth; category N, A, or B disease before treatment initiation; in 
immunologic category CDC 1 or 2 before treatment initiation, had significantly lower 
risk of progression to category C disease than not-early treated children (p value < 
0.0001).(39)  Similarly, Newell et al found that HIV positive children who started ART 
before 5 months of age were significantly more likely to have an improved immunologic 
response (time to a 20% increase in CD4 z score), after adjusting for immunocompetence 
status at treatment initiation.(38)  It should be noted, however, that the authors were 
unable to find any added benefit in early treatment on sustained CD4 cell count after 6 
months.  In contrast, some laboratory research suggests that the positive immune 
response in children who have been treated early versus children who have been treated 
later in life may only be an artifact of younger age and not truly associated with early 
treatment.(64)  
 
An RCT in South Africa recently concluded that children who were assigned to early 
treatment initiation, regardless of symptoms, had a significantly lower mortality risk and 
risk of progression to category C disease when compared to children whose treatments 
were deferred until they became symptomatic.(35) The results from this RCT were the 
catalyst in the WHO’s revised treatment guidelines.   Similarly, the results, though not 
statistically significant, from the present analysis suggest that the effect of triple therapy 
initiated within the first 12 months of life on time to death is stronger among 
asymptomatic children (12 Months: ΨHZasymptomatic (p0)(t36): -0.336 (95% CI -1.423-
0.305)) than among symptomatic children (12 Months: ΨHZsymptomatic (p0)(t36): -0.165 
(95% CI -15.297-0.621)).  This suggests that the mortality risk is, in fact, potentially 
reduced among HIV positive children who initiate HAART early rather than deferring 
treatment until symptoms arise.  In contrast, the present study found that the effect of 
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triple therapy initiated within the first 6 or 12 months of life on time to C diagnosis is 
greater among symptomatic children (12 Months: ΨHZsymptomatic (p0)(t36): -0.587 (95% CI 
-1.217-0.480)) than among asymptomatic children (12 Months: ΨHZasymptomatic (p0)(t36): -
0.106 (95% CI  -1.054-0.739)).  This suggests that the gained benefit in initiating 
HAART by reducing the risk of disease progression is perhaps more fully realized among 
children who are already severely immune-compromised.   
 
Despite the added efficiency in parameters as a result of using a causal inference 
approach, the present study has several limitations.  Death was somewhat a rare outcome 
and the data do not provide enough power to show an effect of triple therapy.  Though an 
attempt to increase the number of events seen during the follow up period was made by 
expanding the follow up to 60 months, there was no added significance in the findings.  
There were no data available regarding income, so the impact of socio-economic status 
could not be measured.   
 
Though the data do not provide the opportunity to calculate the impact of socio-economic 
status, it is possible the children who were born to poor mothers were less likely to have 
access to the same health care as other children.  Evaluating the use of prenatal care 
within the sample allows one to speculate about the proportion of children who had 
access to care.  Furthermore, the proposed DAG showing the impacts of variables on 
triple therapy initiation and C diagnosis and/or death suggests that SES affects access to 
prenatal care and maternal ARVs at delivery and during pregnancy.  Though I was not 
able to control for SES, I did have data on the child’s race.  Nearly three-quarters of this 
study sample was non-White ethnicity.  Late initiation of HAART and low drug 
adherence have been seen more among non-White populations in the U.S. than among 
White populations, which in turn results in more advanced disease and increases in 
mortality risk.(65)  
 
Though an attempt to isolate children who were likely infected in utero or at birth was 
made in the present analysis, there is still a risk that some children included in the study 
were infected postnatally via breastfeeding.  Data on breastfeeding practices were not 
collected and it was assumed to have not occurred if women received prenatal care.  
 
These data were extracted from the children’s medical records, which may not offer a 
complete picture of maternal ARV exposure.  Unfortunately, it was difficult to accurately 
estimate the proportion of mothers who were exposed to ARV during pregnancy or at 
delivery.  Moreover, maternal HIV disease severity was not assessed.  The severity of 
disease in mothers has been linked not only to the transmission of HIV, but also the 
severity in disease in vertically infected children.(15) 
 
Viral load was not a variable analyzed in the present study as most of the children did not 
have these data collected.  While CD4% is the primary source of clinical treatment 
guidance, viral load would likely also be an acceptable proxy for immuno-competence.  
Though immune function (as measured by clinical diagnoses and CD4 count or percent) 
at treatment initiation was adjusted, there could be residual confounding from a child’s 
overall immune function that is unaccounted for.  Thus, it is possible that these results 
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could be indicative of the unmeasured severity of immune suppression at treatment 
initiation rather than a true causal effect of triple therapy initiated at 6 or 12 months.     
 
Losses to follow-up were a formidable threat in this study.  Because the population was 
dynamic, children could have been any age at their first HIV clinic visit.  I established t0, 
first day of study entry, as the birth date, assuming all children were infected in utero or 
at delivery.  Unfortunately, some children may have first visited the clinic after the first 6 
or 12 months, which would include them as untreated children in the study.  At a 
minimum n=68 children were considered untreated in this analysis because their first 
study data were collected after the first 6 months.  Furthermore, n=44 children were 
untreated in the analyses with A defined by treatment starting in the first 12 months 
because their first study data were collected after the first 12 months.  These children 
could have moved into the catchment area later and may have already been receiving 
triple therapy.  Additionally, it is possible that the healthiest children stop going to clinic 
after a period of time.  Similarly, it is possible that sicker children either begin to go to 
the clinic after symptoms arise or cease going to the clinic because they were too ill.  A 
sensitivity analysis on the data showed that the children who were censored before the 
end of the follow up period in the C diagnosis analyses were slightly more likely to be 
severely immuno-compromised at treatment initiation than children who were 
uncensored (44% vs 38%).  Similarly, the children who were censored before the end of 
the follow up period in the C diagnosis/death analyses were more likely to be severely 
immuno-compromised at treatment initiation than children who were uncensored (45% vs 
38%).  Not surprisingly, this suggests that the children who were censored, which 
included death, reached a C diagnosis, or lost to follow up, were sicker than the children 
who survived beyond the follow-up time.  Children who were treated within 6 months 
were slightly more likely to be censored than children who were untreated within 6 
months of birth (33% vs 28%).  This was likely due to the fact the children who started 
treatment early were sicker than children who delayed treatment.  Children who were 
treated within 12 months were slightly less likely to be censored than children who were 
untreated within 12 months of birth (24% vs 31%).  This was likely due to the possibility 
that the children who started treatment early were able to regain their health quicker than 
children who delayed treatment. 
 
Adherence and resistance are always a threat in studies of ARV effectiveness.  The 
present study was not able to assess the rates of adherence among the HIV positive 
children; this is likely heavily dependent on the mother’s own ARV adherence.  As a 
result, it is possible that some children who were started on triple therapy treatment early 
did not continuously receive the therapy, which in turn could create a drug resistance.  If 
this child later restarted triple therapy, he may have poorer clinical and immunologic 
outcomes than other children who were continuously treated.     
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Tables  
 
Table 1.  Patient Demographics and Baseline Characteristics  (N=217) 
Baseline Covariate (W) N (%) 
Male Sex 
  95 (43.8) 

White Ethnicity 
 61 (28.1) 

Mother had Prenatal Care  
 110 (50.7) 

Not Low Birth weight  
 153 (70.5) 

Full-Term Pregnancy 
 123 (56.7) 

Immune Status at Treatment Initiation 
   Untreated 
   No or Mild Impairment 
   Moderate Impairment 
   Severe Impairment 
 

 
14 (6.5) 
46 (21.2) 
70 (32.3) 
87 (40.1) 

HAART Initiation 
  First 6 Months of Life 
  First 12 Months of Life 
  After First 12 Months of Life or Never 

 
18   (8.3) 
98   (45.2) 
119 (54.8) 

 
 
Table 2:  Sample Baseline Characteristics and Associations With Triple Therapy 
Initiation (N=217) 
Baseline 
Covariate (W) 

Triple Therapy In 
First 6 Months 

(cOR) 
P Value 

Triple Therapy In First 
12 Months 

(cOR) 
P Value 

Male Sex 0.62 0.35 0.87 0.73 
White Ethnicity 0.49 0.27 0.28 0.05 
Mother had 
Prenatal Care  1.47 0.20 1.41 0.17 

Not Low Birth 
weight  0.63 0.36 0.81 0.64 

Full-Term 
Pregnancy 0.84 0.57 0.86 0.56 

Immune Status at 
Treatment 
Initiation 

1.61 0.12 1.82 0.03 
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Table 3:  Sample Characteristics and Associations With C Diagnosis With 36 Months 
 Associations 

With C 
Diagnosis 

(cOR) 

P Value 

Associations 
With C Diagnosis 

or Death 
(cOR) 

P Value 

Male Sex 0.86 0.60 0.87 0.62 
White Ethnicity 2.39 < 0.01 2.01 0.02 
Mother had Prenatal 
Care  1.00 0.98 0.96 0.82 

Not Low Birth 
weight  1.23 0.51 0.98 0.95 

Full-Term 
Pregnancy 0.87 0.43 0.83 0.31 

Immune Status at 
Treatment Initiation 2.17 < 0.01 1.90 < 0.01 
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Table 4: Comparison of Estimates from G-Comp and Traditional Techniques Therapy 
Initiation Under 6 Months or Under 12 Months (36 Months of Follow-up) 

 Triple Therapy Initiated  
First 6 Months 

Triple Therapy Initiated  
First 12 Months 

 
Outcome Marginal 

Additive 
Difference 
ΨAD(p0)(tk) 

Marginal log 
Hazard Ratio 
ΨHZ(p0)(tk) 

Mean 
Marginal 
Log HR 
over tk 

Cox PH 
Model 

Marginal 
Additive 
Difference  
ΨAD(p0)(tk) 

Marginal log 
Hazard Ratio 
ΨHZ(p0)(tk) 

Mean 
Marginal 
Log HR 
over tk 

Cox PH 
Model 

 Overall Overall 

C 
Diagnosis 

0.120  
(-0.127, 
0.270)1 

-0.466  
(-1.457, 
0.397)1 

-0.470 
(-1.468, 
1.353)1 

-0.476 
(-1.486, 
0.534)1 

0.087  
(-0.065, 
0.151)1 

-0.321  
(-0.588, 
0.212)1 

-0.324 
(-0.617, 
0.217) 1 

-0.407 
(-0.876, 
0.062)1 

C 
Diagnosis 
or Death 

0.108  
(-0.110, 
0.311) 

-0.369  
(-1.588, 
0.300) 

-0.369 
(-1.634, 
0.822) 

-0.346 
(-1.249, 
0.558) 

0.055  
(-0.150, 
0.158) 

-0.180  
(-0.599, 
0.445) 

-0.179 
(-0.625, 
0.468) 

-0.431 
(-0.875, 
0.012) 

 Asymptomatic Asymptomatic 

C 
Diagnosis 

0.115  
(-0.327-
0.446) 

-0.429  
(-16.23, 
0.948) 

-0.429 
(-16.27, 
1.438) 

-0.712 
(-1.445, 
0.022) 

0.030  
(-0.250, 
0.225)2 

-0.106  
(-1.054, 
0.739)2 

-0.106  
(-1.138, 
2.105) 2 

-0.516 
(-1.134, 
0.102)2 

C 
Diagnosis 
or Death 

0.140  
(-0.380-
0.490)2 

-0.514  
(-17.72, 
1.086)2 

-0.515 
(-17.76, 
1.316) 2 

-0.570 
(-1.231, 
0.091)2 

0.061  
(-0.208, 
0.267)2 

-0.205  
(-1.205, 
0.601)2 

-0.206 
(-1.279, 
1.906) 2 

-0.471 
(-0.523, 
0.004)2 

 Symptomatic Symptomatic 

C 
Diagnosis 

0.146  
(-0.214-
0.355)3 

-0.563  
(-14.34-
0.653)3 

-0.570 
(-14.42, 
0.755) 3 

-0.634 
(-2.041, 
0.774)3 

0.152  
(-0.153-
0.240)3 

-0.587  
(-1.217-
0.480)3 

-0.594 
(-15.65, 
1.529) 3 

-0.068 
(-0.610, 
0.474)3 

C 
Diagnosis 
or Death 

0.062 
(-0.236-
0.403) 

-0.204  
(-14.75-
0.683) 

-0.204 
(-14.73, 
0.766) 

-0.291 
(-0.951, 
0.369) 

0.052  
(-0.255-
0.319)3 

-0.168  
(-1.526-
0.709)3 

-0.171 
(-15.36, 
2.807) 3 

-0.214 
(-0.749, 
0.320)3 

1 Adjusted for sex, race, and pregnancy term 
2 Adjusted for pregnancy term 
3 Adjusted for an interaction between prenatal care and a time indicator variable for 25-30 months and an interaction between sex and 
pregnancy term 
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Figures 
 
Figure 1: 
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Appendices 
The CDC’s clinical categories of HIV disease among children helps determine the 
progress of the disease and establish immune suppression.  Though the CDC’s treatment 
guidelines include all HIV positive children under 12 months, previous algorithms were 
employed to determine treatment eligibility.  Essentially, severe disease was determined 
by a combination of clinical presentations and immunologic measurements (CD4 count 
or preferably CD4%).  These criteria are outlined in Attachment B.  In contrast, the 
Pediatric European Network for the Treatment of AIDS (PENTA) group’s treatment 
recommendations are less aggressive; essentially, treatment is recommended among 
infants if they have a C diagnosis or CD4% less than 20% (see Appendix C).(50) 
 
Appendix A:  WHO’s Treatment Initiation Guidelines Among HIV+ Children (pre-2008) 

 
 
Appendix B:  CDC Definition of Clinical HIV Disease Progression Among Children  
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Appendix C:  PENTA’s Treatment Initiation Guidelines For HIV+ Children (2002) 
 

 
 
 
Appendix D: 
Two separate, primary analyses were explored regarding timing of initiation of 
HAART—a) starting triple therapy in the first six months of life, b) starting triple therapy 
in the first twelve months of life. However, since the early 1990s as researchers have 
learned more about the spread of the infection within children, the majority of HIV 
infections in children are attributed to mother-to-child-transmission (MTCT). 
Specifically, there are three avenues of infection via MTCT:  in utero; at delivery; and 
through breastfeeding.  It is estimated that the probability of infection in utero and at time 
of delivery is approximately 15-30%, though breastfeeding from 18-24 months the 
overall probability of vertical transmission increases to about 30-45%.(1) 
 
In order to establish t=0, that is the first day of follow-up for each child, I employed an 
algorithm to include only children who were assumed to be infected in utero or delivery.  
In turn, I excluded n=60 children who were likely infected postnatally via breastfeeding, 
which could have occurred any time throughout breastfeeding.  This approach included 
children whose mothers were assumed to be knowledgeable about their infection as 
breastfeeding was likely discouraged among these women.  To identify these children, an 
algorithm was applied that identified children whose mothers showed HIV symptoms 
during their pregnancy, symptoms during their delivery, were known to have taken HIV 
medication, or were known to have received prenatal care, as mandatory HIV testing for 
pregnant women began in 1987. 
 
Appendix E: 
For my subgroup analyses of children who were asymptomatic and symptomatic at time 
of treatment initiation, I constructed an algorithm to identify their disease status.  The 
definition of asymptomatic children was adapted from the CDC’s definition of 
severe/moderate/mild immune suppression among children (see Appendix B).  In short, 
somewhat similar to PENTA’s previous treatment initiation guidelines (see Appendix C), 
asymptomatic children were described as not having a C diagnosis and not having a 
CD4% below 15%.  In the absence of CD4% data, the CD4 count as it relates to the 
immune competence age-specific threshold was used.  To ensure children who began 
ART were asymptomatic, another algorithm was applied to identify children who were 
diagnosed with a C diagnosis 4 weeks or more after the initial treatment.  Previously, it 
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has been shown that at least four weeks of ARV treatment are needed to have any clinical 
effectiveness.(61) Additionally, this algorithm identified the CD4% or CD4 counts within 
four weeks of ARV treatment initiation to ensure that the immunological data (CD4% 
and CD4 count) at (or near) treatment initiation were likely unaffected by ARV initiation.    
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B.3 The Effect of Highly Active Antiretroviral  
Therapy Use Among HIV Positive Children on 
the Hazard of AIDS or Death Using Calendar 
Year as an Instrumental Variable 

 
 
This study will be submitted for publication in the journal AIDS in Spring 2010.   
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Abstract	  
Objective:	  	  In	  the	  absence	  of	  randomized	  data,	  epidemiologists	  are	  tasked	  with	  
asserting	  causal	  inference	  from	  observational	  data.	  	  Previously	  calendar	  periods	  
have	  been	  used	  as	  a	  proxy	  for	  Highly	  Active	  Antiretroviral	  Therapy	  (HAART)	  use,	  
first	  introduced	  in	  the	  U.S.	  in	  mid-‐1996	  (1-‐12).	  	  This	  approach,	  referred	  to	  as	  an	  
instrumental	  variable	  analysis,	  can	  be	  biased	  because	  of	  misclassification	  of	  HAART	  
use,	  also	  known	  as	  non-‐compliance	  adjustment	  (1).	  	  	  
	  
Design:	  	  Retrospective	  clinical	  cohort.	  
	  
Methods:	  	  We	  performed	  an	  adapted	  instrumental	  variable	  analysis	  of	  267	  
perinatally	  HIV-‐infected	  children	  living	  in	  Northern	  California	  from	  1988	  to	  2009	  to	  
estimate	  the	  causal	  effect	  of	  HAART	  on	  the	  hazard	  of	  progression	  to	  CDC	  Category	  C	  
diagnosis.	  	  	  
	  
Results:	  	  During	  61,860	  person-‐days,	  100	  HIV-‐positive	  children	  received	  their	  initial	  
C	  diagnosis.	  	  The	  intention	  to	  treat	  (ITT)	  rate	  ratio	  of	  C	  diagnosis	  comparing	  the	  pre-‐
HAART	  and	  HAART	  eras	  was	  estimated	  at	  2.74	  (95%	  CI	  1.50	  -‐	  5.01).	  	  An	  
instrumental	  variable	  estimator	  was	  used	  to	  adjust	  for	  HAART	  use	  misclassification,	  
yielding	  an	  instrumental	  variable	  rate	  ratio	  of	  4.99	  (95%	  CI	  2.73	  -‐	  9.12).	  	  A	  
secondary	  analysis	  followed	  65	  HIV-‐positive	  children	  previously	  diagnosed	  with	  a	  B	  
illness	  until	  they	  received	  their	  first	  C	  diagnosis.	  	  The	  ITT	  rate	  ratio	  was	  estimated	  at	  
3.08	  (95%	  CI	  1.52	  –	  6.23)	  while	  the	  instrumental	  variable	  estimator	  yielded	  a	  rate	  
ratio	  of	  4.74	  (95%	  CI	  2.34	  -‐	  9.58).	  	  Weighting	  by	  the	  inverse	  probability	  of	  calendar	  
era	  given	  selected	  covariates	  was	  performed,	  which	  did	  not	  significantly	  alter	  the	  
results.	  	  
	  
Conclusions:	  	  Noncompliance	  adjustments	  in	  instrumental	  variable	  analyses	  may	  
help	  bridge	  the	  gap	  in	  understanding	  the	  evidence	  of	  HAART’s	  effectiveness	  from	  
both	  randomized	  controlled	  trial.	  
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Introduction	  
Following	  its	  advent	  in	  1996,	  highly	  active	  antiretroviral	  therapy	  (HAART)	  for	  the	  
pediatric	  HIV-‐infected	  population	  has	  proved	  to	  be	  a	  significant	  factor	  in	  delaying	  
time	  to	  acquired	  immune	  deficiency	  syndrome	  (AIDS)	  and	  death	  (13-‐17).	  	  
	  
The	  gold	  standard	  in	  research,	  results	  from	  randomized	  controlled	  trials	  (RCTs)	  are	  
often	  the	  first	  steps	  in	  estimating	  treatment	  effects	  of	  specific	  therapies.	  	  Research	  
from	  an	  RCT	  has	  established	  HAART’s	  protective	  effect	  on	  time	  to	  AIDS	  or	  death	  
before	  researchers	  had	  the	  ability	  to	  estimate	  HAART’s	  population-‐level	  effect	  (13).	  	  
	  
The	  protective	  effect	  of	  HAART	  on	  delaying	  time	  to	  an	  AIDS-‐defining	  illness	  and/or	  
death	  is	  well-‐established	  in	  observational	  study	  findings	  in	  several	  study	  settings	  
and	  countries	  and	  support	  findings	  from	  clinical	  trial	  research	  (14-‐17).	  	  However,	  
no	  study	  has	  been	  published	  that	  applied	  an	  instrumental	  variable	  analysis	  on	  a	  
pediatric	  population.	  	  Furthermore,	  results	  from	  observational	  studies	  have	  allowed	  
researchers	  to	  estimate	  HAART’s	  effect	  on	  a	  population	  level	  (7).	  
	  
Data	  from	  RCTs	  are	  most	  often	  analyzed	  using	  the	  intention	  to	  treat	  (ITT)	  principle.	  	  
Under	  this	  rule,	  once	  person	  A	  is	  randomized	  to	  a	  treatment	  X,	  he	  should	  be	  
included	  in	  any	  future	  analyses	  comparing	  treatment	  assignment	  arms	  as	  if	  he	  
actually	  received	  treatment	  X.	  	  In	  this	  respect,	  ITT	  is	  actually	  determining	  the	  effect	  
of	  assigning	  person	  A	  to	  treatment	  X.	  	  In	  a	  well-‐run	  RCT	  in	  which	  few	  participants	  
are	  censored	  or	  change	  treatment	  assignments,	  the	  causal	  effect	  of	  the	  treatment	  
and	  ITT	  effects	  are	  similar.	  	  Alternatively,	  if	  randomization	  failed	  or	  treatment	  
assignments	  were	  rarely	  followed,	  non-‐compliance	  adjustments	  are	  needed	  to	  
ensure	  the	  results	  are	  a	  true	  reflection	  of	  the	  causal	  effect	  of	  treatment	  X	  (18-‐20).	  	  In	  
the	  absence	  of	  a	  non-‐compliance	  adjustment,	  the	  estimates	  produced	  using	  an	  ITT	  
approach	  will	  likely	  be	  biased	  toward	  the	  null	  hypothesis	  if	  100%	  compliance	  is	  not	  
realized.	  
	  
Though	  results	  seen	  in	  RCTs,	  with	  strict	  random	  allocation	  principles,	  are	  often	  
supported	  by	  observational	  data,	  confounding	  biases	  are	  a	  persistent,	  inherent	  
problem	  in	  observational	  studies.	  	  For	  example,	  while	  an	  RCT	  randomizes	  study	  
participants	  to	  receive	  treatments,	  the	  physicians	  or	  the	  participants	  themselves	  
select	  receipt	  of	  treatments	  in	  an	  observational	  study.	  	  Therefore,	  an	  argument	  for	  
causality	  is	  difficult	  in	  observational	  studies	  because	  the	  effect	  seen	  could	  either	  be	  
a	  result	  of	  the	  treatment	  or	  it	  could	  be	  a	  result	  of	  the	  reason	  for	  selecting	  the	  
treatment	  (21).	  
	  
Though	  RCTs	  provide	  the	  best	  epidemiologic	  scenario	  for	  estimating	  the	  causal	  
effect	  of	  therapy	  on	  disease	  progression,	  often	  researchers	  are	  somewhat	  restricted	  
to	  the	  analysis	  of	  observational	  data	  because	  of	  limitations	  in	  funding,	  recruiting	  
adequate	  sample	  sizes,	  as	  well	  as	  the	  ethical	  concerns	  inherent	  with	  implementing	  
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RCTs.	  	  Thus,	  instrumental	  variables	  (IV)	  was	  a	  method	  developed	  to	  deal	  with	  the	  
difficulties	  with	  asserting	  causality	  in	  observational	  data.	  Initially	  implemented	  in	  
econometric	  theory(22),	  IV	  account	  for	  the	  lack	  of	  randomization	  and	  sparse	  data	  
found	  in	  the	  economic	  literature.	  	  Used	  initially	  in	  HIV/AIDS	  data	  in	  2001,	  Tarwater	  
et	  al	  used	  calendar	  year	  as	  an	  external	  time-‐dependent	  variable	  in	  assessing	  the	  
effect	  of	  HAART	  on	  AIDS	  diagnoses	  (9).	  	  Of	  causal	  inference	  techniques,	  IV	  are	  
underutilized	  as	  a	  means	  of	  accounting	  for	  biases	  commonly	  found	  in	  observational	  
data	  (23).	  	  
	  
Like	  the	  principle	  of	  random	  allocation	  to	  treatments	  in	  RCTs,	  traditionally	  IV	  only	  
affect	  the	  outcome	  through	  their	  effect	  on	  the	  treatment	  or	  exposure	  alone	  (21).	  
Moreover,	  referring	  to	  two	  principle	  concepts-‐-‐the	  counterfactual	  framework	  and	  
the	  randomization	  assumption,	  all	  counterfactual	  observations	  are	  independent	  of	  
the	  process	  of	  treatment	  allocation.	  	  Additionally,	  the	  variation	  in	  the	  identified	  
instrument	  is	  assumed	  to	  be	  substantial	  enough	  to	  cause	  variation	  in	  the	  treatment.	  	  
The	  first	  assumption	  is	  particularly	  important	  as	  if	  it	  is	  rejected	  and	  the	  instrument	  
is	  directly	  related	  to	  the	  outcome,	  the	  results	  will	  be	  biased	  (24).	  Though	  this	  
assumption	  may	  not	  be	  directly	  evaluable,	  the	  use	  of	  directed	  acyclic	  graphs	  (DAGs)	  
can	  help	  justify	  the	  use	  of	  a	  specific	  IV.	  
	  
Figure	  1	  illustrates	  that	  calendar	  year	  is	  only	  related	  to	  the	  outcome	  (death)	  through	  
the	  exposure	  (HAART),	  making	  calendar	  year	  an	  ideal	  IV.	  	  As	  a	  result,	  the	  researcher	  
will	  be	  able	  to	  estimate	  how	  much	  the	  variation	  in	  the	  antiretroviral	  regimen	  is	  
explained	  by	  the	  calendar	  year.	  	  Detels	  et	  al	  has	  previously	  shown	  that	  confounders	  
of	  HAART’s	  effect,	  including	  HIV-‐related,	  non-‐HAART	  therapies	  and	  use	  of	  health	  
care,	  are	  not	  supported	  as	  neither	  of	  these	  factors	  vary	  significantly	  across	  calendar	  
periods	  (7).	  	  Regarding	  the	  assumption	  of	  assumed,	  incurred	  variation,	  the	  results	  
from	  more	  traditional	  approaches	  such	  as	  ordinary	  least	  squares	  (OLS)	  will	  be	  
similar	  to	  IV	  results	  if	  the	  variation	  seen	  in	  the	  instrument	  used	  does	  not	  create	  
variation	  in	  the	  treatment	  variable	  (24).	  	  
	  
An	  important	  contribution	  of	  IVs	  is	  their	  ability	  to	  control	  known	  as	  well	  as	  
unknown	  confounding.	  	  The	  details	  of	  individual	  health	  characteristics	  and	  disease	  
severity	  are	  usually	  of	  no	  consequence	  if	  an	  RCT	  is	  performed	  because	  their	  
influence	  would	  be	  mitigated	  through	  the	  random	  allocation	  assumption.	  	  In	  
observational	  studies,	  however,	  these	  particular	  details	  can	  incur	  confounding	  bias	  
on	  the	  estimated	  effect	  (e.g.	  ART	  and	  death).	  	  
	  
While	  IV	  analysis	  is	  not	  a	  panacea	  for	  inherent	  problems	  in	  the	  HIV/AIDS	  
observational	  data,	  there	  are	  benefits	  to	  using	  the	  HAART	  era	  (post	  HAART	  
introduction	  in	  1996)	  as	  a	  proxy	  for	  actual	  HAART	  use.	  	  In	  this	  approach,	  the	  
confounding	  bias	  seen	  in	  observational	  studies	  where	  there	  are	  differences	  in	  
underlying	  health	  conditions	  between	  the	  treated	  and	  untreated	  populations	  is	  
minimized	  (24).	  	  In	  situations	  where	  there	  is	  no	  misclassification	  of	  HAART	  
exposure,	  calendar	  year	  performs	  well	  as	  a	  proxy	  for	  actual	  HAART	  use.	  	  However	  
information	  bias	  can	  be	  introduced	  if	  the	  calendar	  period,	  pre-‐1998	  and	  1998	  
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onwards	  in	  the	  present	  case,	  is	  not	  representative	  of	  actual	  HAART	  exposure	  (1).	  	  
Furthermore,	  some	  covariates	  may	  have	  associations	  with	  calendar	  period	  and	  the	  
outcome	  of	  interest,	  violating	  a	  principle	  concept	  of	  IV—their	  independence	  of	  the	  
outcome	  given	  treatment	  and	  covariates	  that	  affect	  both	  treatment	  and	  the	  outcome.	  
	  
To	  account	  for	  possible	  information	  bias	  introduced	  by	  calendar	  year,	  
noncompliance	  correction	  in	  RCTs	  has	  been	  previously	  adapted	  for	  use	  in	  
observational	  HIV/AIDS	  data(1).	  	  In	  clinical	  trials,	  this	  correction	  method	  is	  useful	  in	  
situations	  where	  randomization	  fails(20).	  	  Unfortunately,	  often	  treatment	  
contamination	  (the	  use	  of	  the	  intervention	  among	  controls)	  remains	  a	  possibility	  in	  
RCTs,	  especially	  in	  prevention	  trials,	  or	  is	  an	  inherent	  attribute	  of	  the	  trial	  design(1).	  	  
As	  a	  result,	  baseline	  risks	  for	  compliers	  and	  non-‐compliers	  may	  be	  different,	  
negating	  the	  benefits	  of	  randomization.	  	  As	  opposed	  to	  an	  ITT	  analysis,	  which	  
analyzes	  subjects	  as	  if	  they	  actually	  received	  the	  intervention	  they	  were	  randomized	  
to	  receive,	  non-‐compliance	  methods	  have	  been	  developed	  for	  these	  circumstances	  
of	  contamination.	  
	  
To	  account	  for	  the	  potential	  for	  misclassification	  of	  HAART	  exposure	  and	  to	  adjust	  
for	  covariates	  that	  may	  be	  associated	  with	  calendar	  period	  and	  AIDS	  or	  death,	  we	  
employed	  methods	  (1)	  to	  estimate	  the	  effect	  of	  HAART	  on	  AIDS	  or	  death	  in	  a	  
population	  of	  perinatally	  HIV-‐infected	  children	  in	  Northern	  California.	  	  	  
	  
Methods	  
Study	  Population	  

The	  Northern	  California	  Pediatric	  Spectrum	  of	  Disease	  (PSD)	  project	  is	  a	  
prospective,	  longitudinal,	  multi-‐center	  pediatric	  HIV	  surveillance	  project.	  The	  
surveillance	  area	  includes	  12	  counties	  in	  Northern	  California,	  with	  a	  total	  
population	  of	  approximately	  10	  million.	  All	  HIV-‐infected	  children	  included	  in	  this	  
study	  were	  identified	  through	  the	  PSD	  surveillance	  system,	  which	  included	  hospital	  
surveillance	  and	  record	  matching,	  as	  described	  previously	  (15).	  	  Study	  nurses	  went	  
to	  each	  study	  site	  in	  consecutive	  6	  month	  intervals.	  At	  these	  visits,	  chart	  
abstractions	  performed	  on	  all	  perinatally	  exposed	  infants	  and	  these	  infants	  were	  
then	  followed	  longitudinally.	  All	  children	  born	  to	  HIV-‐infected	  mothers	  were	  
followed	  longitudinally	  until	  definitive	  HIV	  serostatus	  was	  determined	  based	  on	  
case	  definitions	  from	  the	  US	  Centers	  for	  Disease	  Control	  and	  Prevention	  (CDC)	  (25).	  
Thereafter,	  cumulative	  chart	  updates	  were	  done	  on	  known	  HIV-‐infected	  children	  at	  
minimum	  6	  month	  intervals.	  XX	  (number	  of	  infants)	  perinatally	  infected	  infants	  
enrolled	  from	  1988	  through	  2009	  who	  reached	  the	  primary	  endpoint	  of	  a	  1994	  CDC	  
Revised	  Classification	  System	  C	  Diagnosis(25)	  are	  included	  in	  the	  present	  analysis.	  
	  
Exposure	  Assessment	  

By	  current	  guidelines,	  antiretroviral	  use	  is	  optimal	  with	  three	  drugs	  from	  at	  
least	  two	  classes(26).	  Triple	  antiretroviral	  therapy	  was	  defined	  as	  3	  antiretroviral	  
agents	  of	  any	  class,	  so	  long	  as	  there	  were	  two	  classes	  represented.	  	  All	  treatment	  
decisions	  were	  made	  at	  the	  discretion	  of	  the	  treating	  physician.	  Treatment	  regimens	  
were	  recorded	  at	  each	  study	  visit	  and	  entered	  into	  a	  standardized	  database.	  
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To	  estimate	  each	  child’s	  person-‐time	  within	  calendar	  periods,	  we	  created	  an	  
indicator	  variable	  for	  HAART	  calendar	  eras:	  pre-‐HAART	  (before	  1998)	  and	  HAART	  
(1998	  and	  beyond).	  	  As	  defined	  by	  Greenland,	  (22)	  the	  properties	  of	  an	  IV	  are	  
assumed	  to	  be	  satisfied	  in	  the	  present	  analysis.	  	  Specifically,	  calendar	  period	  meets	  
three	  conditions:	  	  1)	  is	  independent	  of	  unmeasured	  confounding	  between	  HAART	  
and	  outcome;	  2)	  is	  associated	  with	  HAART;	  3)	  is	  independent	  of	  the	  outcome	  given	  
HAART	  and	  unmeasured	  confounding	  between	  HAART	  and	  the	  outcome.	  	  
	  
Adapting	  these	  noncompliance	  methods	  in	  RCTs	  for	  use	  in	  observational	  studies,	  
requires	  estimating	  the	  rate	  rather	  than	  the	  risk	  (20).	  	  Additionally,	  there	  remains	  
the	  possibility	  that	  condition	  3,	  described	  above,	  may	  be	  too	  restrictive	  as	  there	  may	  
be	  some	  covariates,	  V,	  that	  are	  related	  with	  both	  calendar	  period,	  Z,	  and	  the	  
outcome,	  Y.	  	  Potential	  examples	  of	  these	  variables	  are	  length	  of	  infection,	  age	  at	  
seroconversion,	  or	  race/ethnicity.	  	  Therefore,	  we	  attempted	  to	  remove	  these	  
possible	  associations	  by	  creating	  a	  weighted	  pseudo-‐population	  by	  using	  inverse	  
probability	  weighting	  (27).	  	  As	  a	  result,	  the	  new	  observations	  in	  this	  pseudo-‐
population	  are	  now	  weighted	  by	  the	  inverse	  of	  the	  probability	  of	  calendar	  period	  
given	  V.	  	  
	  
Endpoint	  Ascertainment	  
Two	  populations	  were	  defined	  by	  outcome	  of	  interest.	  	  To	  explore	  the	  dynamics	  of	  
disease	  progression,	  we	  followed	  children	  from	  their	  first	  day	  of	  follow	  up	  until	  
their	  first	  Category	  C	  diagnosis.	  We	  also	  looked	  at	  a	  subgroup	  of	  children	  from	  their	  
first	  date	  of	  a	  Category	  B	  diagnosis	  and	  followed	  them	  until	  their	  first	  Category	  C	  
diagnosis.	  
	  
While	  children	  vertically	  infected	  with	  HIV	  can	  seroconvert	  in	  utero,	  at	  delivery,	  or	  
post-‐partum,	  we	  assumed	  all	  children	  were	  infected	  at	  birth.	  	  The	  presence	  of	  a	  CDC	  
Category	  C	  diagnosis	  determined	  by	  a	  clinician	  and	  noted	  within	  the	  child’s	  medical	  
records.	  	  The	  CDC	  1994	  Revised	  Classification	  System	  system(insert	  ref),	  was	  used	  
to	  identify	  children	  who	  reached	  Category	  C	  diagnosis.	  	  See	  Appendix	  A	  for	  details.	  	  
Censoring	  occurred	  at	  three	  potential	  time	  points—time	  of	  C	  diagnosis,	  time	  of	  
death,	  or	  the	  end	  of	  the	  study	  period.	  	  	  
	  
Statistical	  Methods	  
HAART	  use	  is	  indexed	  by	  subscript	  x,	  where	  1	  is	  HAART	  use	  and	  0	  non-‐HAART	  use.	  	  	  
When	  a	  child	  experiences	  the	  outcome,	  a	  diagnosis	  of	  an	  AIDS	  defining	  illness	  or	  
death,	  the	  script	  Dijxz	  =	  1	  is	  used	  to	  indicate	  that	  child	  i	  experienced	  the	  outcome	  
between	  visits	  j	  and	  j	  +	  1	  during	  calendar	  period	  z	  while	  using	  therapy	  x.	  Dijxz	  =	  0	  
indicates	  that	  child	  did	  not	  experience	  the	  outcome.	  	  The	  number	  of	  person-‐days	  
that	  each	  child	  i	  contributed	  between	  visits	  j	  –	  1	  and	  j	  while	  using	  therapy	  x	  during	  
calendar	  period	  z	  is	  indicated	  by	  Tijxz.	  	  Identified	  covariates	  for	  each	  child	  i	  at	  visit	  j,	  
variables	  include	  both	  time-‐varying	  and	  time-‐fixed	  alike,	  are	  included	  in	  vector	  Vij.	  	  
Among	  the	  possible	  covariates	  included	  in	  Vij	  are	  race/ethnicity,	  age	  at	  
randomization,	  age	  (time	  since	  randomization).	  
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In	  a	  traditional	  IV	  approach,	  observational	  data	  would	  be	  analyzed	  with	  a	  standard	  
ITT	  approach—comparing	  rates	  between	  calendar	  periods	  (before/during	  the	  
HAART	  era),	  regardless	  of	  actual	  HAART	  use.	  	  Between	  calendar	  periods,	  we	  
compared	  rates	  of	  therapy	  “compliers”:	  non-‐HAART	  users	  in	  pre-‐HAARTera	  and	  
those	  who	  used	  HAART	  in	  the	  HAART-‐era	  (19).	  See	  Appendix	  B	  for	  statistical	  
details.Therapy	  “non-‐compliers”	  refer	  to	  those	  who	  use	  HAART	  during	  the	  pre-‐
HAART	  era,	  or	  do	  not	  receive	  HAART	  in	  the	  HAART-‐era.	  In	  the	  absence	  of	  
contamination,	  or	  non-‐compliers,	  the	  IV	  estimator	  equals	  the	  ITT	  estimator.	  	  	  
	  
Inverse	  probability	  of	  calendar	  period	  weights,	  Wij+Z	  ,	  were	  estimated	  to	  adjust	  for	  
Vij.	  	  Specifically,	  Wij+z	  =	  P(Z=z)/P(Z=z|Vij	  =	  v)	  for	  i	  =	  1	  to	  the	  number	  of	  children	  who	  
experienced	  event,	  j	  =	  1	  to	  Ji,	  where	  z	  =	  0	  or	  1.	  	  By	  reintroducing	  the	  observed	  
distribution	  of	  Z	  into	  the	  weights,	  maximum	  efficiency	  and	  stabilization	  of	  weights	  
are	  realized(28).	  	  This	  stabilization	  is	  accomplished	  by	  the	  numerator	  in	  the	  
weights—an	  estimate	  of	  the	  probability	  of	  being	  in	  the	  same	  calendar	  period	  as	  
what	  is	  observed.	  	  In	  contrast,	  the	  denominator	  represents	  the	  probability	  of	  being	  
in	  the	  same	  calendar	  period	  as	  what	  is	  observed,	  given	  the	  covariates.	  	  	  
	  
To	  select	  the	  covariates	  Vij	  from	  a	  set	  of	  potentially	  influential	  variables	  associated	  
with	  both	  AIDS,	  death	  and	  calendar	  period,	  we	  employed	  super	  learner	  software	  -‐-‐	  
Deletion/Substitution/Addition	  (DSA).	  	  By	  using	  this	  data-‐adaptive	  machine	  
learning	  algorithm	  and	  its	  cross-‐validation	  based	  on	  likelihood,	  we	  avoid	  the	  
problems	  inherent	  with	  traditional	  approaches	  and	  model	  building.	  	  Specifically,	  
DSA	  was	  used	  to	  search	  through	  function	  forms	  using	  deletion,	  substitution,	  and	  
addition	  actions	  as	  previously	  described	  (29).	  Similar	  to	  the	  covariates	  used	  by	  Cain	  
et	  al,	  the	  pool	  of	  covariates	  DSA	  selected	  from	  included	  age	  (i.e.	  time	  since	  
seroconversion),	  age	  at	  randomization,	  and	  race/ethnicity	  (defined	  as	  White	  or	  non-‐
White)(1).	  	  	  	  
	  
The	  weighted	  IV	  estimator	  of	  the	  causal	  rate	  ratio	  among	  compliers	  is	  described	  in	  
Appendix	  B.	  	  Confidence	  intervals	  for	  unweighted	  ITT	  and	  IV	  estimates	  were	  
calculated	  (30).	  	  The	  95%	  confidence	  intervals	  for	  the	  weighted	  ITT	  and	  IV	  
estimates	  were	  estimated	  by	  bootstrap.	  	  
	  
Results	  
	  
CDC	  Category	  C	  Diagnosis	  Among	  Children	  with	  Previous	  Category	  B	  Diagnosis	  
The	  study	  population	  (n=65)	  was	  55.4%	  males	  of	  non-‐White	  ethnicity	  (61.5%)	  and	  
over	  half	  (50.8%)	  of	  their	  mothers	  received	  prenatal	  care	  (data	  not	  shown).	  	  
	  
Among	  children	  with	  a	  previous	  Category	  B	  diagnosis,	  the	  distribution	  of	  first	  
Category	  C	  diagnosis	  events,	  person-‐days,	  and	  rates	  by	  calendar	  period	  and	  HAART	  
use	  are	  described	  in	  Table	  1.	  	  In	  the	  pre-‐HAART	  era	  there	  were	  2	  of	  56	  misclassified	  
events	  (2.1%)	  	  as	  well	  as	  3,056	  of	  34,032	  (6.9%)	  misclassified	  person-‐days.	  	  During	  
the	  HAART	  era,	  3	  out	  of	  9	  events	  (62.5%)	  and	  8,230	  out	  of	  16,847	  person-‐days	  
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(48.9%)	  were	  misclassified	  as	  the	  participants	  did	  not	  use	  HAART	  during	  this	  
period.	  	  The	  rate	  of	  AIDS	  progression	  was	  estimated	  at	  1.45	  events	  per	  1,000	  
person-‐days	  for	  the	  children	  using	  non-‐HAART	  regimens.	  	  For	  children	  using	  
HAART,	  the	  rate	  of	  AIDS	  progression	  was	  estimated	  at	  0.69	  events	  per	  1,000	  person-‐
days.	  	  Overall,	  the	  rate	  of	  AIDS	  progression	  or	  death	  was	  1.28	  events	  per	  1,000	  
person-‐days.	  
	  
The	  unweighted	  ITT	  rate	  ratio	  was	  estimated	  at	  uRRITT	  =	  3.08	  (95%	  CI	  1.52,	  6.23)	  
when	  comparing	  the	  pre-‐HAART	  era	  with	  the	  HAART	  era.	  	  The	  ITT	  rate	  difference	  
was	  estimated	  at	  uRDITT	  =	  1.12	  (95%	  CI	  0.57	  -‐	  1.67).	  	  The	  instrumental	  variable	  rate	  
ratio	  using	  the	  unweighted	  data	  was	  estimated	  at	  uRRIV	  =	  4.74	  (95%	  CI	  2.34,9.58)	  
when	  comparing	  the	  pre-‐HAART	  era	  with	  the	  HAART	  era.	  	  	  
	  
When	  considering	  the	  weighted	  data,	  the	  super-‐learner,	  DSA,	  only	  selected	  one	  
covariate	  to	  include	  in	  the	  most	  efficient	  vector	  of	  variables	  for	  Vij-‐-‐race/ethnicity	  
for	  all	  analyses.	  The	  weighted	  ITT	  rate	  ratio	  was	  estimated	  at	  wRRITT	  =	  3.01	  (95%	  CI	  
1.01-‐6.87)	  when	  comparing	  the	  pre-‐HAART	  era	  with	  the	  HAART	  era.	  	  The	  ITT	  rate	  
difference	  was	  estimated	  at	  wRDITT	  =	  1.07	  (95%	  CI	  0.01-‐1.80).	  	  The	  IV	  rate	  ratio	  
using	  the	  weighted	  data	  was	  estimated	  at	  wRRIV	  =	  4.64	  (95%	  CI	  1.71-‐12.95)	  when	  
comparing	  the	  pre-‐HAART	  era	  with	  the	  HAART	  era.	  
	  
C	  Diagnosis	  Among	  All	  Children	  
The	  study	  population	  (n=100)	  was	  equally	  distributed	  by	  gender,	  non-‐White	  
ethnicity	  (65.0%)	  and	  at	  least	  48	  percent	  of	  mothers	  received	  prenatal	  care	  (data	  
not	  shown).	  	  
	  
The	  distribution	  of	  first	  Category	  C	  diagnosis	  events	  (regardless	  of	  previous	  
Category	  B	  diagnosis),	  person-‐days,	  and	  rates	  by	  calendar	  period	  and	  HAART	  use	  
are	  described	  in	  Table	  3.	  	  Using	  1998	  as	  a	  cut-‐off,	  100	  AIDS	  events	  occurred	  over	  
61,860	  person-‐days.	  	  In	  the	  pre-‐HAART	  era	  there	  were	  2	  misclassified	  events	  out	  of	  
88	  (2.3%),	  as	  well	  as	  3,099	  of	  45,013	  (6.9%)	  misclassified	  person-‐days.	  	  During	  the	  
HAART	  era,	  6	  out	  of	  12	  events	  (50.0%)	  and	  8,230	  out	  16,847	  person-‐days	  (48.9%)	  
were	  misclassified	  as	  the	  participants	  were	  not	  observed	  using	  HAART	  during	  this	  
period.	  	  The	  rate	  of	  AIDS	  progression	  was	  estimated	  at	  1.83	  events	  per	  1,000	  
person-‐days	  for	  the	  children	  using	  non-‐HAART	  regimens.	  	  For	  children	  using	  
HAART,	  the	  rate	  of	  AIDS	  progression	  was	  estimated	  at	  0.68	  events	  per	  1,000	  person-‐
days.	  	  Overall,	  the	  rate	  of	  AIDS	  progression	  was	  1.62	  events	  per	  1,000	  person-‐days.	  
	  
The	  distribution	  of	  events	  and	  person-‐days	  by	  calendar	  period	  for	  the	  weighted	  and	  
unweighted	  data	  is	  described	  in	  Table	  4.	  	  When	  considering	  the	  unweighted	  data,	  
the	  ITT	  rate	  ratio	  was	  estimated	  at	  uRRITT	  =	  2.74	  (95%	  CI	  1.50	  –	  5.01)	  when	  
comparing	  the	  pre-‐HAART	  era	  with	  the	  HAART	  era.	  	  The	  ITT	  rate	  difference	  was	  
estimated	  at	  uRDITT	  =	  1.24	  (95%	  CI	  0.67-‐1.81).	  	  The	  IV	  rate	  ratio	  using	  the	  
unweighted	  data	  was	  estimated	  at	  uRRIV	  =	  4.99	  (95%	  CI	  2.73	  –	  9.12)	  when	  
comparing	  the	  pre-‐HAART	  era	  with	  the	  HAART	  era.	  	  The	  weighted	  ITT	  rate	  ratio	  
was	  estimated	  at	  wRRITT	  =	  2.71	  (95%	  CI	  1.11-‐6.45)	  when	  comparing	  the	  pre-‐HAART	  
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era	  with	  the	  HAART	  era.	  	  The	  ITT	  rate	  difference	  was	  estimated	  at	  wRRITT	  =	  1.22	  
(95%	  CI	  0.16-‐2.13).	  	  The	  IV	  rate	  ratio	  using	  the	  weighted	  data	  was	  estimated	  at	  
wRRIV	  =	  4.94	  (95%	  CI	  2.37-‐16.85)	  when	  comparing	  the	  pre-‐HAART	  era	  with	  the	  
HAART	  era.	  
	  
Discussion	  
In	  the	  analyses	  exploring	  the	  effect	  of	  HAART	  on	  Category	  C	  diagnoses	  among	  
children	  previously	  diagnosed	  with	  a	  Category	  B	  diagnosis	  suggest	  that	  the	  ITT	  rate	  
ratios	  are	  biased	  toward	  the	  null	  when	  exposure	  misclassification	  is	  not	  considered.	  	  
Using	  an	  IV	  estimator,	  exposure	  to	  non-‐HAARTregimens	  increased	  the	  hazard	  of	  a	  
Category	  C	  diagnosis	  4.74	  times	  when	  compared	  to	  HAART	  exposure.	  	  This	  IV	  
estimate	  is	  54%	  (4.74/3.08)	  higher	  than	  the	  result	  one	  would	  see	  from	  a	  traditional	  
ITT	  approach	  using	  calendar	  period.	  	  We	  weighted	  the	  number	  of	  events	  and	  
amount	  of	  person-‐days	  by	  inverse	  probability	  of	  calendar	  period	  given	  
race/ethnicity.	  	  In	  turn,	  the	  weighted	  rate	  ratios	  were	  estimated,	  which	  were	  
expanded	  from	  basic	  instrumental	  variable	  methods,(20)	  after	  adjusting	  for	  
measured	  covariates.	  Similar	  biases	  toward	  the	  null	  were	  also	  seen	  for	  the	  analyses	  
using	  an	  earlier	  defined	  instrument	  and	  for	  the	  analyses	  among	  all	  children	  
regardless	  of	  previous	  B	  diagnosis.	  	  	  
	  
In	  the	  present	  analysis,	  we	  assume	  that	  calendar	  period	  is	  an	  appropriate	  
instrument	  for	  HAART	  use.	  	  This	  assumption	  is	  based	  on	  three	  key	  characteristics	  of	  
the	  IV:	  1)	  is	  independent	  of	  unmeasured	  confounding	  between	  HAART	  and	  
outcome;	  2)	  is	  associated	  with	  HAART;	  3)	  is	  independent	  of	  the	  outcome	  given	  
HAART	  and	  unmeasured	  confounding	  between	  HAART	  and	  the	  outcome.	  The	  
second	  principle	  is	  well	  established	  from	  previous	  research	  (1;	  5;	  7).	  However,	  we	  
were	  unable	  to	  test	  the	  first	  and	  third	  principle	  with	  our	  data.	  	  In	  an	  attempt	  to	  
address	  the	  third	  principle,	  we	  employed	  inverse	  probability	  of	  calendar	  period	  
weights	  which,	  the	  assumption	  that	  calendar	  year	  is	  independent	  of	  the	  outcome	  
given	  HAART	  (actual	  use)	  and	  measured	  confounding	  (indications	  for	  actual	  HAART	  
use),	  as	  previously	  described(1).	  Thus,	  this	  IV	  estimator	  analysis	  assumes	  
exchangeability	  between	  calendar	  eras	  (20).	  	  	  
	  
Our	  results	  are	  contingent	  on	  the	  assumption	  that	  the	  model	  for	  weights	  has	  within	  
it	  all	  possible	  determinants	  of	  calendar	  era	  and	  Category	  C	  diagnoses.	  	  The	  
algorithm	  DSA	  selected	  only	  race/ethnicity	  for	  the	  final	  model,	  ignoring	  age	  at	  
seroconversion	  and	  time	  since	  seroconversion.	  	  
	  
The	  impact	  of	  the	  choice	  of	  calendar	  period	  on	  the	  estimates	  is	  not	  negligible.	  We	  
chose	  1998	  as	  a	  cut-‐off	  for	  the	  first	  calendar	  period	  as	  HAART	  was	  only	  first	  
introduced	  in	  mid-‐1996.	  	  To	  allow	  for	  the	  possibility	  that	  the	  use	  of	  HAART	  was	  not	  
widely	  available	  until	  later,	  we	  explored	  1997	  as	  a	  cut-‐off	  in	  a	  second	  analysis.	  	  Cain	  
et	  al	  performed	  a	  similar	  analysis	  using	  1996	  and	  1998	  as	  separate	  instrumental	  
variable	  cut-‐offs(1).	  	  They	  found	  the	  unweighted	  and	  weighted	  ITT	  estimates	  3%	  
and	  8%	  higher	  when	  using	  the	  1998	  calendar	  year	  cut-‐off	  than	  using	  the	  1996	  
calendar	  year	  cut-‐off.	  	  The	  researchers	  also	  found	  that	  the	  1998	  unweighted	  and	  



   

 255 

weighted	  instrumental	  variables	  estimates	  were	  5%	  and	  4%	  higher	  than	  the	  1996	  
instrumental	  variable	  estimates.	  	  When	  using	  the	  1998	  calendar	  period	  cut-‐off	  for	  
our	  present	  analysis	  of	  risk	  of	  first	  Category	  C	  diagnosis	  among	  all	  children,	  the	  
unweighted	  IV	  estimates	  are	  28%	  higher	  than	  the	  unweighted	  IV	  estimates	  we	  
would	  have	  calculated	  using	  the	  1997	  calendar	  period	  (uRRIV=4.99	  and	  uRRIV=3.89,	  
respectively).	  	  In	  contrast,	  the	  unweighted	  ITT	  estimates	  are	  5%	  higher	  when	  using	  
the	  1998	  cut-‐off	  rather	  than	  the	  1997	  cut-‐off	  (data	  not	  shown).	  	  	  
	  
Despite	  efforts	  to	  estimate	  the	  effect	  of	  HAART	  using	  an	  adapted	  IV	  approach,	  the	  
present	  study	  has	  limitations.	  	  Children	  in	  this	  population	  may	  have	  already	  been	  
treated	  with	  HAART	  before	  entering	  the	  cohort	  if	  they	  moved	  from	  another	  state	  or	  
region	  of	  California.	  	  This	  would	  increase	  misclassification	  of	  therapy	  exposure	  if	  it	  
occured	  during	  the	  pre-‐HAART	  era.	  	  Additionally,	  there	  were	  only	  8	  Category	  C	  
events	  among	  children	  treated	  with	  HAART,	  which	  could	  have	  increased	  the	  
variability	  in	  the	  weighted	  estimates.	  	  The	  small	  number	  of	  events	  may	  have	  also	  
influenced	  the	  complier	  average	  causal	  effect	  of	  HAART.	  	  
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Tables	  

	  
	  
Table	  1:	  	  Distribution	  of	  Events	  (first	  Category	  C	  diagnosis),	  Person-‐Days,	  and	  Rates	  
by	  Calendar	  Period	  and	  HAART	  Use	  Among	  Children	  With	  a	  Previous	  Category	  B	  
Diagnosis	  
Calendar	  Period	  
(Before	  1998/	  
1998	  and	  After)	  

No.	  of	  events	  of	  
first	  C	  Diagnosis	   No.	  of	  Person	  Days	   Rate1	  

Non-HAART	  Use/Regimen?	  
Pre-‐HAART	   54	   30,976	   1.74	  
HAART	   3	   8,230	   0.36	  
Total	   57	   39,206	   1.45	  

HAART	  Use/Regimen?	  
Pre-‐HAART	   2	   3,056	   0.65	  
HAART	   6	   8,617	   0.70	  
Total	   8	   11,673	   0.69	  

Total	  
Pre-‐HAART	   56	   34,032	   1.65	  
HAART	   9	   16,847	   0.53	  
Total	   65	   50,879	   1.28	  
1.	  Events	  per	  1,000	  person-‐days	  
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Table	  2:	  	  Distribution	  of	  Events	  (first	  Category	  C	  diagnosis)	  and	  Person-‐Days	  by	  
Calendar	  Period	  Among	  Children	  With	  a	  Previous	  Category	  B	  Diagnosis	  

Intent	  To	  Treat	  
Instrumental	  
Variable	  

Calendar	  
Period	  
(Before	  
1998/	  

1998	  and	  
After)	  

No.	  of	  
events	  of	  
first	  C	  

Diagnosis	  

No.	  of	  
Person-‐
Days	  

Rate1	   Rate	  
Difference	  

95%	  
CI	  

Rate	  
Ratio	  

95%	  
CI	  

Rate	  
Ratio	  

95%	  
CI	  

Unweighted	  
Pre-‐
HAART	   56	   34,032	   1.65	   1.12	   (0.57,	  

1.67)	   3.08	   (1.52,	  
6.23)	   4.74	   (2.34,

9.58)	  
HAART	   9	   16,847	   0.53	   0	   	   1	   	   1	   	  
Total	   65	   50,879	   1.28	   	   	   	   	   	   	  

Weighted	  
Pre-‐
HAART	   54.21	   33,724	   1.61	   1.07	   (0.01,	  

1.80)	   3.01	   (1.01,	  
6.87)	   4.64	   (1.71,	  

13.0)	  
HAART	   7.24	   13,549	   0.53	   0	   	   1	   	   1	   	  
Total	   61.45	   47,273	   1.30	   	   	   	   	   	   	  
1.	  Events	  per	  1,000	  person-‐days	  
	  
	  
	  
	  
	  
	  
Table	  3:	  	  Distribution	  of	  Events	  (first	  Category	  C	  diagnosis),	  Person-‐Days,	  and	  Rates	  
by	  Calendar	  Period	  and	  HAART	  Use	  
Calendar	  Period	  
(Before	  1998/	  
1998	  and	  After)	  

No.	  of	  events	  of	  
first	  C	  Diagnosis	   No.	  of	  Person	  Days	   Rate1	  

Non-HAART	  Use/Regimen?	  
Pre-‐HAART	   86	   41,914	   2.05	  
HAART	   6	   8,230	   0.73	  
Total	   92	   50,144	   1.83	  

HAART	  Use/Regimen?	  
Pre-‐HAART	   2	   3,099	   0.64	  
HAART	   6	   8,617	   0.70	  
Total	   8	   11,716	   0.68	  

Total	  
Pre-‐HAART	   88	   45,013	   1.95	  
HAART	   12	   16,847	   0.71	  
Total	   100	   61,860	   1.62	  
1.	  Events	  per	  1,000	  person-‐days	  
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Table	  4:	  Distribution	  of	  Events	  (first	  Category	  C	  diagnosis),	  and	  Person-‐Days	  by	  
Calendar	  Period	  

Intent	  To	  Treat	   Instrumental	  
Variable	  

Calendar	  
Period	  
(Before	  
1998/	  

1998	  and	  
After)	  

No.	  of	  
events	  of	  
first	  C	  

Diagnosis	  

No.	  of	  
Person-‐
Days	  

Rate1	   Rate	  
Difference	  

95%	  
CI	  

Rate	  
Ratio	  

95%	  
CI	  

Rate	  
Ratio	  

95%	  
CI	  

Unweighted	  
Pre-‐
HAART	   88	   45,013	   1.95	   1.24	   (0.67,	  

1.81)	   2.74	   (1.5,	  
5.0)	   4.99	   (2.7,	  

9.1)	  
HAART	   12	   16,847	   0.71	   0	   	   1	   	   1	   	  
Total	   100	   61,860	   1.62	   	   	   	   	   	   	  

Weighted	  
Pre-‐
HAART	   86.55	   44,758	   1.93	   1.22	   (0.16,	  

2.13)	   2.71	   (1.1,
6.5)	   4.94	   (2.4,	  

16.9)	  
HAART	   9.27	   13,012	   0.71	   0	   	   1	   	   1	   	  
Total	   95.82	   57,770	   1.66	   	   	   	   	   	   	  
1.	  Events	  per	  1,000	  person-‐days	  
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Figures	  
	  
Figure	  1.	  	  Traditional	  instrumental	  variable	  approach	  
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Appendix	  A	  
Centers	  for	  Disease	  Prevention	  and	  Control	  Definition	  of	  Clinical	  HIV	  Disease	  
Progression	  Among	  Children:	  	  Category	  C	  Severely	  Symptomatic	  	  
--  Serious bacterial infections, multiple or recurrent (i.e., any combination of 
    at least two culture-confirmed infections within a 2-year period), of the 
    following types: septicemia, pneumonia, meningitis, bone or joint infection, 
    or abscess of an internal organ or body cavity (excluding otitis media, super- 
    ficial skin or mucosal abscesses, and indwelling catheter-related infections) 
--  Candidiasis, esophageal or pulmonary (bronchi, trachea, lungs) 
--  Coccidioidomycosis, disseminated (at site other than or in addition to lungs 
    or cervical or hilar lymph nodes) 
--  Cryptococcosis, extrapulmonary 
--  Cryptosporidiosis or isosporiasis with diarrhea persisting >1 month 
--  Cytomegalovirus disease with onset of symptoms at age >1 month (at a site 
    other than liver, spleen, or lymph nodes) 
--  Encephalopathy (at least one of the following progressive findings present for 
    at least 2 months in the absence of a concurrent illness other than HIV 
    infection that could explain the findings): a) failure to attain or loss of 
    developmental milestones or loss of intellectual ability, verified by standard 
    developmental scale or neuropsychological tests; b) impaired brain growth or 
    acquired microcephaly demonstrated by head circumference measurements or brain 
    atrophy demonstrated by computerized tomography or magnetic resonance imaging 
    (serial imaging is required for children <2 years of age); c)acquired 
    symmetric motor deficit manifested by two or more of the following: paresis, 
    pathologic reflexes, ataxia, or gait disturbance 
--  Herpes simplex virus infection causing a mucocutaneous ulcer that persists for 
    >1 month; or bronchitis, pneumonitis, or esophagitis for any duration 
    affecting a child >1 month of age 
--  Histoplasmosis, disseminated (at a site other than or in addition to lungs or 
    cervical or hilar lymph nodes) 
--  Kaposi's sarcoma 
--  Lymphoma, primary, in brain 
--  Lymphoma, small, noncleaved cell (Burkitt's), or immunoblastic or large cell 
    lymphoma of B-cell or unknown immunologic phenotype 
--  Mycobacterium tuberculosis, disseminated or extrapulmonary 
--  Mycobacterium, other species or unidentified species, disseminated (at a site 
    other than or in addition to lungs, skin, or cervical or hilar lymph nodes) 
--  Mycobacterium avium complex or Mycobacterium kansasii, disseminated (at site 
    other than or in addition to lungs, skin, or cervical or hilar lymph nodes) 
--  Pneumocystis carinii pneumonia 
--  Progressive multifocal leukoencephalopathy 
--  Salmonella (nontyphoid) septicemia, recurrent 
--  Toxoplasmosis of the brain with onset at >1 month of age 
--  Wasting syndrome in the absence of a concurrent illness other than HIV 
    infection that could explain the following findings: a) persistent weight loss 
    >10% of baseline OR b) downward crossing of at least two of the following 
    percantile lines on the weight-for-age chart (e.g., 95th, 75th, 50th, 25th, 
    5th) in a child >=1 year of age OR c) <5th percentile on weight-for-height 
    chart on two consecutive measurements, >=30 days apart PLUS a) chronic 
    diarrhea (i.e., at least two loose stools per day for >30 days) OR b) 
    documented fever (for >=30 days, intermittent or constant) 
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Appendix	  B	  
Subscript	  i	  indexes	  the	  1	  to	  N=65	  children,	  j	  indexes	  the	  1	  to	  Ji	  visits	  for	  each	  child	  i.	  	  
The	  maximum	  number	  of	  visits	  was	  57.	  	  HAART	  use	  is	  indexed	  by	  subscript	  x,	  where	  
1	  is	  HAART	  use	  and	  0	  non-‐HAART	  use.	  	  	  When	  a	  child	  experiences	  the	  outcome,	  a	  
diagnosis	  of	  an	  AIDS	  defining	  illness	  or	  death,	  the	  script	  Dijxz	  =	  1	  is	  used	  to	  indicate	  
that	  child	  i	  experienced	  the	  outcome	  between	  visits	  j	  and	  j	  +	  1	  during	  calendar	  
period	  z	  while	  using	  therapy	  x.	  Dijxz	  =	  0	  indicates	  that	  child	  did	  not	  experience	  the	  
outcome.	  	  The	  number	  of	  person-‐days	  that	  each	  child	  i	  contributed	  between	  visits	  	  
j	  –	  1	  and	  j	  while	  using	  therapy	  x	  during	  calendar	  period	  z	  is	  indicated	  by	  Tijxz.	  	  
Identified	  covariates	  for	  each	  child	  i	  at	  visit	  j,	  variables	  include	  both	  time-‐varying	  
and	  time-‐fixed	  alike,	  are	  included	  in	  vector	  Vij.	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  65	  	  Ji	  
Let	  Txz=∑	  ∑	  	  Tijxz,	  the	  total	  number	  of	  person-‐days	  contributed	  
	  	  	  	  	  	  	  	  	  	  	  	  	  i=1	  	  j=1	  
while	  using	  therapy	  x	  during	  calendar	  period	  z	  summed	  over	  all	  children	  I	  and	  visits.	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  65	  	  Ji	  
And	  let	  Dxz=∑	  ∑	  Dijxz,	  the	  total	  number	  of	  events	  experienced	  while	  using	  therapy	  x	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  i=1	  	  j=1	  
during	  calendar	  period	  z	  summed	  over	  all	  children	  I	  and	  visits	  J.	  	  As	  described	  in	  
Cain	  et	  al,	  let	  αxz	  be	  the	  conditional	  probability	  of	  using	  therapy	  x	  given	  calendar	  
period	  z,	  as	  estimated	  by	  the	  proportion	  of	  person-‐days	  while	  treated	  with	  therapy	  x	  
during	  calendar	  period	  z.	  	  That	  is	  to	  say,	  αxz	  =	  P(X	  =	  x|	  Z	  =	  z)	  =	  Txz/T+z	  where	  	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  1	  
T+z	  =	  ∑	  Txz.	  
	  	  	  	  	  	  	  	  	  x=0	  
	  In	  a	  traditional	  IV	  approach,	  the	  estimator	  for	  ITT	  of	  the	  average	  causal	  effect	  is:	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  α10	  X	  (D10/T10)	  +	  α00	  X	  (D00/T00)	  	  	  	  	  	  (D+0/T+0)	  
βITT	  	  =	  -‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  =	  -‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐.	  
	  	  	  	  	  	  	  	  	  	  	  	  α11	  X	  (D11/T11)	  +	  α01	  X	  (D01/T01)	  	  	  	  	  	  (D+1/T+1)	  
	  
Assuming	  that	  calendar	  periods	  are	  exchangeable	  and	  that	  calendar	  period	  is	  a	  valid	  
instrument,	  the	  estimator	  is:	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  α00	  X	  (D00/T00)	  -‐	  α01	  X	  (D01/T01)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
βIV	  	  =	  -‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  =	  	  
	  	  	  	  	  	  	  	  	  	  	  	  α11	  X	  (D11/T11)	  -‐	  α10	  X	  (D10/T10)	  	  	  	  	  	  	  	  	  
	  
	   	  	  	  	  	  	  	  	  	  	   	   	   	   	   βITT	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  -‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [α00	  X	  (D00/T00)	  -‐	  α01	  X	  (D01/T01)]	  X	  [α00	  X	  (D00/T00)	  +	  α01	  X	  (D01/T01)]	  
	   	  	  	  [α11	  X	  (D11/T11)	  -‐	  α10	  X	  (D10/T10)]	  X	  [α10	  X	  (D10/T10)	  +	  α01	  X	  (D01/T01)]	  
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	  The	  ITT	  estimator	  divided	  by	  the	  estimator	  of	  the	  association	  between	  the	  exposure	  
and	  the	  IV,	  as	  illustrated	  in	  the	  lower	  ratio,	  depicts	  a	  traditional	  βIV	  analysis.	  	  In	  the	  
absence	  of	  contamination	  or	  non-‐compliers,	  which	  would	  occur	  if	  no	  one	  
contributes	  person-‐time	  to	  the	  non-‐HAART	  calendar	  period	  while	  using	  HAART	  and	  
if	  no	  one	  contributes	  person-‐time	  to	  the	  HAART	  calendar	  period	  while	  not	  using	  
HAART,	  then	  βIV	  =	  βITT	  and	  α10	  =	  α01	  =	  0.	  
	  
Inverse	  probability	  of	  calendar	  period	  weights,	  Wij+Z	  ,	  were	  estimated	  to	  adjust	  for	  
Vij.	  	  Specifically,	  Wij+z	  =	  P(Z=z)/P(Z=z|Vij	  =	  v)	  for	  i	  =	  1	  to	  65,	  j	  =	  1	  to	  Ji,	  where	  	  
max(Ji)	  =	  57	  and	  z	  =	  0	  or	  1.	  	  
	  
The	  new	  weighted	  instrumental	  variable	  estimator	  of	  the	  causal	  rate	  ratio	  among	  
compliers	  can	  be	  written	  as:	  
	  
	  	  	  	  	  	  	  	  	  	  	  wα00	  X	  (wD00/wT00)	  -‐	  wα01	  X	  (wD01/wT01)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
wβIV	  	  =	  -‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  wα11	  X	  (wD11/wT11)	  -‐	  wα10	  X	  (wD10/wT10)	  	  	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  65	  	  Ji	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  65	  	  Ji	  
where	  wαxz	  =	  wTxz/wT+z,	  wDxz=∑	  ∑	  Dijxz	  X	  Wijxz,	  and	  wTxz=∑	  ∑	  	  Tijxz	  X	  Wijxz.	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  i=1	  	  j=1	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  i=1	  	  j=1	  

 




