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In the community of computer vision, human pose estimation and human action recognition

are two classic and also of particular important tasks. They always serve as basic preprocess-

ing steps for other high-level tasks such as group activity analysis, visual search and human

identification and they are also widely used as key components in many real applications

such as intelligent surveillance system and human-computer interaction based system. The

two tasks are closely related for understanding human motion, most methods, however, learn

separate models and combine them sequentially.

In this dissertation, we build systems for pursuing a unified framework to integrate train-

ing and inference of human pose estimation and action recognition in a spatial-temporal

And-Or Graph (ST-AOG) representation. Particularly, we study different ways to achieve

this goal:

(1) A two-level And-Or Tree structure is utilized for representing action as animated

pose template (APT). Each action is a sequence of moving pose templates with transition

probabilities. Each Pose template consists of a shape template represented by an And-node

capturing part appearance, and a motion template represented by an Or-node capturing part

motions. The transitions between moving pose templates are governed in a Hidden Markov

Model. The part locations, pose types and action labels are estimated together in inference.

(2) In order to tackle actions from unknown and unseen views we present a multi-view
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spatial-temporal And-Or Graph (MST-AOG) for cross-view action recognition. As a compo-

sitional model, the MST-AOG compactly represents the hierarchical combinatorial structures

of cross-view actions by explicitly modeling the geometry, appearance and motion variations.

The model training takes advantage of the 3D human skeleton data obtained from Kinect

cameras to avoid annotating video frames. The efficient inference enables action recognition

from novel views. A new Multi-view Action3D dataset has been created and released.

(3) To further represent part, pose and action jointly and improve performance, we

represent action at three scales by a ST-AOG model. Each action is decomposed into poses

which are further divided into mid-level spatial-temporal parts (ST-parts) and then parts.

The hierarchical model structure captures the geometric and appearance variations of pose

at each frame. The lateral connections between ST-parts at adjacent frames capture the

action-specific motions. The model parameters at three scales are learned discriminatively

and dynamic programming is utilized for efficient inference. The experiments demonstrate

the large benefit of joint modeling of the two tasks.

(4) The last but not the least, we study a novel framework for full-body 3D human pose

estimation which is a essential task for human attention recognition, robot-based human

action prediction and interaction. We build a two-level hierarchy of Long Short-Term Mem-

ory (LSTM) network with tree-structure to predict the depth on 2D human joints and then

reconstruct the 3D pose. Our two-level model utilizes two cues for depth prediction: 1) the

global features from 2D skeleton. 2) the local features from image patches of body parts.
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CHAPTER 1

Introduction

1.1 Motivation

In the research area of computer vision, human pose estimation and action recognition are

two very classic and of particular important tasks. As shown in Figure 1.1 the goal of pose

estimation is to localize the human joints from images and action recognition is targeting

at classifying human actions from images or videos. The two tasks always serve as the pre-

processing steps for other high-level tasks such as group activity analysis, human attention

recognition and human tracking. They are also key components for many real applications in

industry such as intelligent surveillance system, human-computer interaction based system,

content-based image and video retrieval. The researchers in computer vision have paid a lot

of attention to these two tasks over the past few years because of the easy acquisition of

big data and rapid development of computer hardware. The robust and high-performance

algorithms for the two tasks are urgently needed not only in research area but also in industry.

Despite their different goals they are highly related. However, most previous works train

models for the two tasks separately and combine them in a sequential order: using pose

estimation as an input for action recognition or estimating poses for each action respectively.

We believe that it is desirable to study them in a unified framework due to the following

reasons:

(1) Many human actions are defined on human postures like running, walking, jumping,

bending, pointing and so on. For those actions, the human poses naturally provide enough

information for inferring action labels which means the actions can be recognized easily

solely based on human poses. There are some actions defined on the interaction between
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people and objects such as typing keyboard, reading book, throwing ball and so on. Those

actions can be recognized by human poses combined with contextual objects. A robust pose

estimation method will help action recognition a lot undoubtedly.

(2) Human actions also provide strong priors on the placement and movement of hu-

man poses, especially in video based systems. The action label from video provides strong

constraints on the geometric relations of human parts in each frame and also defines the

movement of poses among several frames. In real applications, the number of interesting ac-

tions is limited which enables us to discover the action-specific motion information to benefit

pose estimation.

(3) Many previous methods take the pose estimation as a preprocess step for action

recognition. The main drawback of such methods is that the performance of action recogni-

tion highly relies on the output of pose estimation. However, the most discriminative parts

such as arms, hands, legs and feet are often miss-detected in pose estimation due to the

large pose variation and complex background, thereby the subsequent action recognition is

deteriorated. The action-specific large motion of those parts are critical cues for the part

localization. There are also some methods of action recognition bypass body poses and only

use coarse/mid-level features which are not explainable and hard to be analyzed.

Taking the above reasons into consideration, a unified framework is needed to represent

human pose and action explicitly and joint the learning and inference of pose estimation

and action recognition. In this dissertation, we propose a Spatial-Temporal And-Or Graph

model to integrate the two tasks so they can benefit each other during training and testing.

Specifically we studied several ways to achieve this goal:

1. We represent action as animated pose template (APT) by utilizing the two-level

And-Or Tree structure. Each action is composed by a sequence of moving pose templates

(MPT) with transition probabilities. Each MPT consists of a shape template represented

by an And-node capturing appearance and a motion template represented by an Or-node

capturing motions. The transitions between MPT are controlled by a Hidden Markov Model.

The part locations, pose types and action labels are inferred together.

2



2. A multi-view Spatial-Temporal And-Or Graph model is presented for cross-view action

recognition. In the MST-AOG, the geometry, appearance and motion variations are explicitly

modeled. Each action is composed of 3D poses each of which can be projected into arbitrary

views. In training, we take advantages of the 3D human skeleton data obtained from Kinect

cameras to avoid cumbersome annotation of human poses. The efficient inference enables

action recognition from novel viewpoints. We also collect a new Multi-view action3D dataset

and release it to public.

3. We represent action at three scales by a Spatial-Temporal And-Or Graph model:

coarse level capturing overall motion and appearance of the video, middle level capturing the

action-specific motions among the spatial-temporal parts (ST-parts), fine level representing

appearance of small parts at highest resolution. To further improve the performance, we

also integrate deep learned features into this hierarchical structure.

The last but not the least, we propose a novel framework based on deep networks for

full-body 3D human pose estimation. Specifically, a two-level LSTM network is utilized to

predict the depth on human joints, thus the 3D pose is reconstructed from predicted depth

values. Our deep network has tree-structure defined on the skeleton kinematic relation and

can help broadcast the information between different joints in a top-down manner.

1.2 Overview of the Dissertation

Our research in this dissertation aims to provide a framework to unify the two tasks which

are naturally coupled and should be studied together: human pose estimation and human

action recognition. The proposed unified framework should enable the joint training and

inference of the two tasks so they can complement each other. Towards this goal, we study

several ways by using ST-AOG models.

Firstly, in chapter 2, we characterize each action as just an evolution of different poses

and we represent animated pose template (APT) using a two-level And-Or tree structure for

detecting short-term, long-term and contextual actions in videos. Each APT is a sequence of

motion pose templates (MPTs) with transitions between the neighbors. Each MPT consists

3



Figure 1.1: The goal of (a) pose estimation and (b) action recognition. Circles with different

colors represent different human joints. We draw edges connecting joints only for better

visual effect.

of two components: i) a motion template specifying the motion of the parts by the Histogram

of Optical-Flows (HOF) features. ii) a shape template with deformable parts represented

in an And-node whose appearance are represented by the Histogram of Oriented Gradient

(HOG) features. Each Shape template may have several motion templates represented by

an Or-node capturing different motion directions of the same part. The MPT is suitable for

detection short-term action snippets in 2-5 frames. We extend MPTs to APT by adding the

temporal constraints in a Hidden Markov Model (HMM). In order to detection action with

contextual objects, we treat objects as additional parts of the MPT and also add spatial

constraints between parts. To train the model, we manually annotate part locations on

several key frames of each video and cluster them into pose templates using EM. We learn

model parameters by applying a Semi-Supervised Structural SVM algorithm (SS-SVM) that

iterates between two steps: i) updating model parameter using labeled data. ii) imputing

the unlabeled data with parameters learned from the previous step. In inference, we use

dynamic programming to efficiently compute the best sequence of pose templates for each

action. We evaluate our method on several public dataset and the results demonstrate that

our method achieves comparable or better performance on both action recognition and pos
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estimation compared to state-of-the-art methods.

Secondly, in chapter 3, we propose a multi-view spatial-temporal And-Or graph (MST-

AOG) representation for cross-view action recognition. One big limitation of the proposed

APT and most current methods is the unpredictable performance in the situation that the

testing actions are from viewpoints which are totally different from the training data because

the visual features are very different from different views. As a compositional model, MST-

AOG compactly represents the hierarchical combinatorial structures of cross-view actions

by explicitly modeling the geometry, appearance and motion variations. In MST-AOG,

each action is composed of a sequence of 3D key poses each of which can be projected

onto 2D image under a certain viewpoint. Another challenge of modeling action by poses

is the cumbersome annotations of poses. In the training, we take the advantage of the 3D

human skeleton produced by Kinect sensors for avoiding the error-prone and time-consuming

human annotations. This 3D information is only available in training and not be used in

testing. Our method uses a set of discrete views in training to interpolate arbitrary novel

views in testing. The extensive experiments demonstrate that our new action representation

significantly improves the accuracy and robustness for cross-view action recognition on 2D

videos. We also crate and release a new Multi-view 3D action dataset.

In our proposed APT and MST-AOG model, the specific motion information of different

actions are characterized by the transitions of key poses which is too coarse to prevent miss-

detecting of parts with small resolutions such as arms, legs and ankles. To further represent

the relations of actions, pose and parts compactly and jointly, we represent actions at three

scales by a Spatial-Temporal And-Or Graph (ST-AOG) model in chapter 4. Each action is

decomposed into poses which are further divided into mid-level ST-parts and then fine-level

parts. The ST-parts is a combination of three parts at highest resolution and discretized

into several components by clustering. The ST-parts within the same component have small

variation of appearance and deformation, thus they are much easier to be detected than

parts at fine-level. The geometrical deformations between different ST-parts are treated

independently in single frame. To capture the specific action motion we add lateral connec-

tions between ST-parts at adjacent frames in the ST-AOG. The lateral edges represent both
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deformation and transition of ST-parts. The model parameters for three scales are learned

discriminatively by S-SVM. In inference we use dynamic programming to infer the best ST-

part sequence of each action because of the independency of ST-parts. To further improve

the performance we ground our model on deep learned features. The ST-parts candidates

are then extracted from the deep convolutional network. The experiment results show that

our approach achieves state-of-art accuracy in action recognition while also improving pose

estimation, thus demonstrate the huge benefit of joint modeling of the two tasks.

In chapter 5, we propose a novel framework focusing on estimation of full-body human

3D pose. A two-level hierarchy of Long Short-Term memory (LSTM) network is proposed to

predict the depth on human joints and then reconstruct the 3D human pose. The first level

of our model contains two key components which captures different information from two

data sources: 1) the skeleton-LSTM network which takes the predicted 2D joint locations to

predict joint depth. The global skeleton feature can help to remove the physically implausible

3D joint configurations. 2) the patch-LSTM network which uses the local image patches of

body parts to predict depth. Considering using the kinematic relation of human skeleton,

we have manually defined tree-structure in our deep network so the information at different

joints are broadcasted in top-down manner during training. Two LSTM networks at the first

level are aggregated in the second level for final depth prediction. The extensive experiments

on two public 3D datasets demonstrate our better qualitative and quantitative performance

compared to state of the art methods.

1.3 Literature Review

Since our goal is the joint modeling of pose estimation and action recognition, our work is

related to these two streams of research in literatures and we will review them respectively.

Researchers have made a lot of progress in the two areas during the past few years and we

select some classic and popular articles to review. We begin by reviewing literatures of pose

estimation.
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1.3.1 Pose Estimation

The pose estimation methods can be categorized by two different types of input data: single

RGB image and video. Most video pose estimation methods are based on single image pose

estimation with additional temporal constraints added among poses at different frames, so we

focus on reviewing single RGB image based pose estimation. The methods of pose estimation

on single image are reviewed with two aspects: pose estimation with pictorial structure, pose

estimation by deep convolutional neural networks (ConvNets).

The pictorial structure has achieved notable success in the area of object detection

[FMR08, FGM10b] and is applied successfully to many other applications [YR12, LHW13,

YWZ14]. The main idea of pictorial structure is to model the deformable parts of the objec-

t. Each part is always parameterised by its position, orientation and scale. The likelihood

function of a configuration of parts consists of unary potentials measuring the local image

evidence given the position of parts and binary potentials evaluating the relative deforma-

tion of two parts. The relative deformation of parts are usually modeled as a tree structure

which enable the efficient inference by dynamic programming. As shown in Figure 1.2 the

pictorial structure can be naturally applied to human pose estimation by representing hu-

man pose as deformable human parts. Yang and Ramanan [YR12] build a tree-structure

spring model to capture both spatial and co-occurrence relations between parts. Each part

has several components which represents different orientations. The deformation of a part is

only conditioned on its parent. The model is trained in max-margin framework and dynamic

programming is used for inference. Brandon et al. [RPZ13] uses a compositional And-Or

Graph (AOG) model to represent the large appearance and geometry variation of pose. The

large appearance variation among people is handled by substituting parts with their variants.

Each variant has its own deformation and context-sensitive compatibility with neighboring

part variants. They incorporate the background region segmentation to better estimate the

contrast of a part region from its cluttered surroundings. The Structure-SVM (SSVM) is ap-

plied for training model parameters. Pinshchulin et al. [PAG13] extends the basic pictorial

model to a more flexible structure with stronger local appearance representations including
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Figure 1.2: A visualization of four different mixtures of human pose from [YR12]. The ap-

pearance of each part is represented by Histogram of Gradients (HOG). The edges connecting

parts represents the location deformation and part type compatibility. The tree structure

enables efficient inference by dynamic programming.

rough part detectors and mixtures of several specific part detectors. They combine the mid-

level representation based on semi-global poselets [BM09] with local appearance templates.

The poselets can capture the appearance of different spatial configuration of parts.

Over past few years the powerfulness of deep ConvNets have been demonstrated in many

computer vision tasks such as object classification [KSH12, SZ14b] and detection [GDD14,

Gir15, RHG15], video analysis [SZ14a, WQT15], image to text [KL15, MXY15] and so on.

The networks used in those works are consists of many linear and non-linear layers so they

are much deeper than conventional methods which are shallow and use handcrafted features.

Recently many works have explored deep ConvNets for human pose estimation. Toshev and

Szegedy [TS14a] formulate the pose estimation as a regression problem based on the cascade

of Deep CNN networks. The initial joint locations are predicted by a DCNN and then a few

subsequent DCNNs are applied to refine the predictions gradually. The input of the refining

DCNN at each stage is the sub image cropped based on the predictions from last stage.
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Xianjie et al. [CY14] combines the pictorial graphical model with DCNN. Both the unary and

binary potential in their model are learned with a DCNN. The pairwise relationship between

parts are predicted from the local image measurement. Tompson et al. [TJL14] combines a

ConvNet part detector with a part-based spatial model into a unified learning framework.

The multi-resolution feature representation with overlapping receptive fields is utilized in

their ConvNet architecture. The spatial model is applied to approximate MRF loopy belief

propagation. The two models are trained jointly by back-propagation. Newell et al. [NYD16]

propose a novel convolutional network architecture to directly predict the probability maps

of parts end to end. As shown in Figure 1.3 the network has repeated bottom-up and top-

down structures with intermediate supervision. The features are processed across different

scales and consolidated to best capture the various spatial relationships of parts. Wei et

al. [WRK16] implicitly model long range dependencies between parts by designing a multi-

stage architecture based on several convolutional networks. The network at each stage

directly operates on the confidence maps computed from previous stages and produces refined

estimates for the next stage. Cao et al. [CSW17] represent a framework with two ConvNets to

do multi-person pose estimation. One ConvNet is applied for generating candidates for each

part and another ConvNet aims to estimate the limb orientation densely at each position on

the human skeleton. The likelihood of connecting two parts to form a limb is the summation

of likelihoods of points on this limb. The inference of multiple poses is formulated as a set

of bipartite matching problems over a tree skeleton.

We also review two works of pose estimation from videos. Cherian et al. [CMA14] extends

the pictorial model with temporal edges between parts at adjacent frames. The geometric,

appearance and motion compatibility between parts are captured by different cues from

local image features and optical flows between two frames. The approximate inference is

performed on the highly loopy graphical model. Instead of using a graphical model Shen

et al. [SYM14] formulates the problem as matching dense trajectories from 2D video with

the projection of 3D trajectories from a 3D human motion library. The 3D trajectories are

projected onto 2D space under different viewpoints during inference.

With the success of deep networks on a wide range of computer vision tasks and especially

9



Figure 1.3: A visualization of deep network for end-to-end pose estimation from [NYD16].

The multiple stacked hourglass modules with repeated bottom-up top-down layers allow for

prediction from features at multiple scales.

2D human pose estimation, the 3D pose estimation from monocular image using deep net-

works [LC14, LZC15, RS16, YIK16, ZZL16] have received lots of attentions recently. Some

approaches [LC14, LZC15] directly predict the 3D pose from images so their training and

testing are restricted to the 3D MoCap data in a constrained environment. Li et al. [LC14]

applies a deep network to regress 3D pose and detect 2D body parts simultaneously. In

this method there is no explicit constraint to guarantee that the predicted 3D pose can be

projected to the detected 2D part locations. Li et al. [LZC15] learn the common embedding

space for both image and 3D pose using a deep network. Some methods [YIK16, ZZL16] use

two different data sources for training 2D pose estimator and 3D pose predictor. The benefit

is that their 2D pose estimators can be trained from another data source instead of the 3D

Mocap data which is captured in a constrained environment. Zhou et al. [ZZL16] predict

3D poses from a video sequence by using temporal information. The 3D pose estimation is

conducted via an EM type algorithm over the entire sequence and the 2D joint uncertainties

are marginalized out during inference. Yasin et al. [YIK16] propose a dual-source approach

to combine 2D pose estimation with 3D pose retrieval. The first data source only contains

images with 2D pose annotations for training 2D pose estimator and the second source con-

sists of 3D MoCap data for 3D pose retrieval. Another work worth mention is [KG15] which

use regression forest to infer the depth information and estimate 3D joint location proba-

bilities from image patches. The independent joint probabilities are used with the pictorial
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structure model to infer the full skeleton.

1.3.2 Action Recognition

Here we divide the methods of action recognition into three categories: coarse/mid-level

feature based methods, pose feature based methods and end-to-end action recognition by

deep learning.

Coarse/mid-level feature based action recognition. Aaron et al. [BD01] proposes

a whole template representation of human movement and formate the action recognition

as a matching problem. The video is encoded by two images: one is the motion energy

image which captures whether the pixel has motion and another is the motion history im-

age which captures how long the motion of the pixel has. Lena et al. [GBS05] represents

video as a whole spatial-temporal shape generated by the moving foreground. The local

and global features are extracted from the spatial-temporal shape for matching actions in a

database. Another popular stream of framework for action recognition is to build classifiers

on bag-of-words (BoW) representation on spatial-temporal interest points such as cubiods

[DRC05] and 3D Harris corner [LC05]. This category of method can be thought as the di-

rect extension of object detection using 2D spatial interest points. With the interest points

detected, the appearance and motion features like Histogram of Gradients (HOG) [DT05]

and Histogram of Optical Flows (HOF) [LMS08] are extracted and used for clustering to get

bag-of-words representation. Finally a discriminative classifier is trained on BoW. Instead

of using features around interest points, Wang et al. [WKS13] extracts dense trajectories

by optical flow and builds a bag-of-words representation on trajectory aligned features. Al-

though the coarse/mid-level feature based methods have achieved quite high performance

on some datasets, they offer no intuition about the relations between pose and action and

cannot be analyzed easily.

Pose feature based action recognition. Due to the great progress made in pose

estimation on single image, many action recognition approaches apply the pose estimation

as the preprocessing step and extract pose features for the subsequent action recognition.
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Yao et al. [YL12] first estimates the 2D poses from single images and then matches the

estimated poses with a set of representative poses from actions in the training data. Desai

et al. [DR12] proposes phraselet to representation actions. Each phraselet is a combination

of human pose and objects. The DPM [FMR08] framework is applied for detecting actions,

poses and objects together. Maji et al. [MBM11] uses distribution of activations from poselet

[BM09] detectors to represent actions. Yao et al. [YGG12] tries to couple action recognition

and pose estimation. The pose estimation is formulated as an optimization over a set of

action specific manifold. The two tasks are inferred iteratively. However, they require that

each video is captured from multiple views simultaneously which limits the applicability of

this method in common environment.

End to end action recognition by deep learning. With the successfulness of deep

learning on many computer vision tasks, the trend of designing end to end action recogni-

tion method becomes very popular. Karpathy et al. [KTS14] provides extensive empirical

evaluation of deep CNNs with different structures for large-scale video classification on a

new dataset of 1 million videos collected from YouTube. They study different approaches

for extending the connectivity of CNN in time domain to capture the local spatial-temporal

information. Simonyan et al. [SZ14a] propose a two-stream deep CNN architecture which

incorporates spatial and temporal networks. The inputs for spatial network are still frames

and for temporal network are optical flows. They also demonstrate that the multi-task

learning on two different action datasets can largely increase the amount of training data

and improve the performance of both. Donahue et al. [DHG15] proposes a novel recurrent

convolutional architecture for large-scale action recognition. The recurrent structure consist-

s of a ConvNet processing single frame and a Long-Short Term Memory (LSTM) network

processing a sequence of frames. Each single frame is first encoded into a deep feature by

the ConvNet and the LSTM aims to deal with the long-term dependencies in actions. This

framework can also predict the action label for each frame instead of the whole video so it

can be applied for action parsing.
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CHAPTER 2

Animated Pose Templates for Modeling and Detecting

Human Actions

2.1 Introduction

2.1.1 Backgrounds and Motivations

In recent years, human action recognition has attracted a lot of research attentions from

computer vision because that it is needed in a wide range of applications from intelligent

video surveillance system, human computer interaction to content based video retrieval.

There are challenges at multiple levels for building a robust system for real-world human

action understanding: 1) classifying the action category; 2) localizing the area of interest; 3)

explaining the interactions between contextual objects and action agents. Recent works has

made huge progress on the first challenge in the datasets which only contain one person doing

action with static or uncluttered background, however, the action understanding from in-

the-wild videos is still a hard problems because of the cluttered background and background

motion. In general, actions have diverse complexities in space and time: 1) In space, actions

can be defined by the movement of body parts such as clapping and waving, or by the

human-object interactions such as making coffee and washing dishes. In the later case, the

contextual information from objects are critical for classifying the action; 2) In time, actions

can be defined on a single frame such as sitting and standing or 2-5 frames such as waving

hand and pushing bottom, or a few seconds such as making coffee and mopping floor.

We review the related literatures in four categories in the following.

i) Action recognition by template matching. The idea of template matching is ex-
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ploited in the early stage of action recognition. There approaches are intuitive and attempt

to represent the motion by 2D templates or 3D volumes from video sequences. For example,

Bobick et al. [BD01] use motion history images to capture both motion and shape informa-

tion to represent actions, The global descriptors motion energy image and motion history

image are introduced and used as templates which can be matched to stored templates of

known actions. Gorelick et al. [GBS07] extend the concept of template matching from 2D

motion templates to 3D space-time volumes. The space-time features such as local space-

time saliency, action dynamics, shape structures and orientations are extracted for template

matching. The common disadvantage of those template matching methods is that they rely

on the static and simple background which allows for segmenting out the foreground and

they are sensitive to appearance and view-point variations. In our method, we don’t need

the foreground segmentation.

ii) Action recognition by spatial-temporal interest points. In order to capture the

large appearance and geometric variations from action videos, researchers extracted spatial-

temporal interested points (STIP) and HoG and HOF features around them, and train

classifier in max-margin framework [LMS08]. They either pooled the features in a bag-of-

word (BoW) representation [DRC05, SLC04] or pyramid structure [KG10]. There are some

shortcomings for these methods: 1) BoW cannot represent human body parts explicitly and

the K-mean clustering for quantization rely on low-level features and is often unreliable. 2)

the spatial relations between body parts are missing. 3) The motion information for each

part and pose is not modeled.

iii) Action recognition by pose estimation. Due to the great progress made by

human detection and pose estimation, recently people attempt to use pose estimation for

action recognition. Mori et al [YYM10] use HoG features and SVM classifiers for action

recognition and they show that it is beneficial to treat poses as latent variables in the SVM

training because the same type of action may contain multiple poses. Yang and Ramanan

[YR12] propose a mixture-of-parts model for pose estimation. In their work, the strong

supervision of body parts is reported to be better than laten part models.

iv) Action recognition by scene context. Some actions are defined by human-object
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Figure 2.1: action snippets contain rich appearance, geometry and motion information in 3

frames. 1) the static pose; 2) the short-term motion velocities (blue arrows)

interactions instead of poses. Lan et al. [LWY10] utilizes contextual information between

single person and a group for better action and group activity recognition. Most recent

works [PJZ11, YF10] try to model the body body configuration and object location jointly.

Most of these works detect objects and poses in static images and the motion patterns are

not considered.

2.1.2 Method Overview

In order to overcome the shortcomings of current methods and represent actions of different

space-time complexity, we propose the Animated Pose Templates (APT) to classify the short-

term, long-term and contextual actions from videos. We overview our model and method in

the following.

i) Short-term actions as moving pose templates. We propose moving pose tem-

plates (MPT) to represent the short-term actions or the so-called action snippets which refer

to actions with length 3-5 frames. Two examples for clapping and drinking are shown in

Figure []. The long term action is always composed of several short-term actions. We learn

the dictionary of MPT by clustering the action snippts. Each MPT consists of 1) a shape

template (ST) which captures the body part appearance by HOG features and 2) a motion

template (MT) specifying the motion information of part by the HOF features. Note that

the different action snippet may share the shape template and differ in the motion template.

ii) Long-term actions as animated pose templates. We propose animated pose

template (APT) to represent the long-term action which is composed of a sequence of moving
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pose templates. The APT is a generative model based on the MPTs. We track the bounding

boxes for the root node and parts over time by HMM model which captures the spatial

constraints of parts and also the transition between different type of MPT.

iii) Animated pose template with contextual objects. In order to recognize the

actions which are defined on the contextual objects. We annotate the objects with bounding

boxes and treat them as additional parts in moving pose templates.

iv) Inference by dynamic programming. Since our MPT has an And-Or tree struc-

ture and APT is modeled by HMM in temporal transition, the dynamic programming can

be naturally adopted for effective inference in two steps: 1) Detecting the human pose can-

didates for the MPT by dynamic programming. 2) Computing the APT with contextual

objects in time by beam search using the pose candidates from the first step.

v) Learning by semi-supervised structural SVM (SS-SVM). We annotate body

parts and contextual objects as several key-frames for each video clip of each action category.

We have two sets of unknown parameters: 1) the latent variables for the unannotated frames

including pose labels and part locations. 2) model parameters such as the weights for HOG

and HOF features, coefficients for pose transitions and part deformations. We use the SS-

SVM [TJH05] for training which iterates between two steps: 1) updating model parameters

by solving the structural SVM optimization; 2) imputing missing variables with parameters

learned from the previous step. This algorithm belongs to a family of optimization methods

known as the concave-convex procedure (CCCP) which converge to a local optimal.

We evaluate our method on several public action datasets and another challenging our-

door action dataset collected by ourselves. The results demonstrate that our method can

discover the key poses of actions as well as the contextual objects, and achieve comparable

or better performance relative to state-of-the-art methods.

Our main contribution is a comprehensive model - animated pose templates (APT) to

represent actions with diverse space-time complexities. The And-Or tree structure in space

and the HMM structure in time enables fast inference by dynamic programming in time

and space. The results show that we achieve comparable or better performance than the

16



state-of-the-arts in several challenging datasets.

The remainder of the chapter is organized as follows: In Section 2.2, we introduce the

formulations of animated pose templates. In Section 2.3, several inference strategies are in-

troduced for detecting short-term action snippets and long-term actions. Section 2.4 presents

the learning algorithm. In Section 2.5, we present the experimental results and comparison

with other state-of-the-art methods on 4 public datasets and a contextual action dataset we

collected.

2.2 Representation

In this section, we present formulates for moving pose templates (MPT), animated pose

templates (APT) and APT augmented with contextual objects.

2.2.1 Moving Pose Templates (MPT)

Each action consists of a sequence of key poses or action snippets each of which is represented

by a moving pose template. Figure 2.2 illustrates 3 poses for one example of hand-clapping

action from the MSR dataset. Each key pose is composed of a shape template and two

motion template depending on the motion direction of the arms.

The moving pose templates are denoted by

Ωmpt = MPTi = (STi,MTi) : i = 1, ..., n (2.1)

where each shape template STi contains a root templte STi0 for the whole person and m

templates STij for body parts: STi = (Ti0, Ti1, ..., Tim). This is similar to DPM model for

human detection [FGM10b]. Each template Tij has the following components to describe

the geometry and appearance:

i) the body label aij indicates the body part category. The parts are different in different

actions and aij ∈ Ωpart,Ωpart = ′figure′,′ head′,′ torso′, .... In training videos, the bounding

boxes for the root and parts are annotated in key frames.
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Figure 2.2: Each moving pose template is composed of a shape template of HOG feature

and a motion template of HOF feature. The shape template has a root template for entire

bounding box and several part templates. The deformation of part template relative to the

root template is governed by 2D gaussian function whose mean and variance are visualized by

ellipses. Each shape template is associated with 2 motion templates represent the different

movement of body parts. The small arrows represent the dominant flow directions. The

3 shape templates multiplied by 2 motion templates represent total 6 action snippets in

the And-Or tree where and-node represents composition and or-nodes represents selections

between alternative choices.

ii) Zij represents the image domain for the root or part templates. It includes the upper-

left corner, window width and height. We allow each part to rotate in −20o, 0,+200.

iii) Xij represents the HOG feature vector extracted from Zij.

iv) hij represents vector of latent variables of the template. It includes the displacement

dij = (dx, dx2, dy, dy2) relative to the anchor point. Similar to DPM, we use a 2D quadratic
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function to penalize the dij, then the deformation is governed by a 2D gaussian function

which is illustrated as ellipses in Figure 2.2. The rotation is not penalized.

The motion template MTi is a vector for m parts: MTi = (Vi1, Vi2, ..., Vim) where Vij

represents motion for each part. We use the variation of the HOF features [LMS08]. Instead

of projecting velocities of each each pixel onto 4 bins in [LMS08], we use 8 bins and find

empirically that the finer orientations and continuous scale works better. For certain parts

which do not have motions, the motion features will be all zeros.

We use li to denote the label of MPTi with different ST and MT. The model parameters

for each MPTi is a vector wi with the same length as the feature vector for the appearance,

deformation and motion features, wi = (wAi , w
D
i , w

M
i ). The following score function is used

for evaluating the mptt at frame t,

S(mptt) =
m∑
j=0

< ωAij, X
t
ij > +

m∑
j=1

< ωDij , d
t
ij > +

m∑
j=1

< ωMij , V
t
ij > (2.2)

The score function can be interpreted as a log-posterior probability up to a constant. In

inference, the scores for all possible mpt at each time frame are computed and only the top

candidates kept.

2.2.2 Animated Pose Templates (APT)

The animated pose template (APT) is a sequence of moving pose templates with the tran-

sition probability p. Each possible APT in the time interval [ts, te] is written as a stochastic

set,

Ωapt = apt[ts, te] = (mpt(t
s), ...,mpt(t

e)) (2.3)

The markov chain probability controls the transition in the sequence,

p(mpt(t
s))

te∏
t=ts

p(mpt(t+1)|mpt(t)) (2.4)
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where the initial probability p(mpt(t
s)) is uniform over all MPTs. The trainsition proba-

bility p(mpt(t+1)|mpt(t) includes two components:

i) The transition probability p(lt+1|lt) between MPT label lt and lt+1. As Figure [] shows,

we use two types of HMM model: 1) an ergodic HMM which allows flexible transition between

any MPT label. 2) a left-right HMM which only allow the state to either transit to a certain

state or stay in the current state. The probability of staying at current state indicates the

speed of the action.

ii) The tracking probability p(Zt+1|Zt) between parts at adjacent frames. We assume

that the parts are conditionally independent given the root template position, therefore the

probability can be factorized as

p(Zt+1|Zt) =
m∏
j=0

p(Zt+1
l(t+1)j |Zt

l(t)j) (2.5)

where p(Zt+1
l(t+1)j |Zt

l(t)j
) is governed by a gaussian distribution on the position (x,y) and scale

s. We use a six-dimensional vector to express the quadratic function: φtij = (dxij, dx
2
ij, dyij, dy

2
ij, dsij, ds

2
ij).

We use a score function to represent the logarithm of the transition probability between

two MPTs,

S(mptt+1|mptt) = log(p(lt+1|lt)) +
m∑
j=0

< ωTltj, φ
t
ltj > (2.6)

In summary, an animated pose template hypothesis apt[ts, te] is evaluated in the following

score function,

S(apt[ts, te]) =
te∑
t=ts

S(mptt) +
te−1∑
t=ts

S(mptt+1|mptt) (2.7)

The inference algorithm searches for the APT which maximizes the above score function.

This is equivalent to maximizing the posterior probability except that the model parameters

are learned discriminatively.
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2.2.3 Animated Pose Templates with contextual objects

In order to represent actions which are defined by contextual objects, we augment the MPT

by adding contextual objects as additional human parts. We use Ωobj = ′torch′,′ button′,′ cup′, ...

to denote the set of possible objects in actions. For example, Figure 2.3 illustrates one in-

stance of an action interacts with objects: the person walks on the ’ground’ and then push

’button’, and pick up the merchandise at the ’outlet’.

As illustrated in Figure 2.4, we treat objects in the same way as body parts except

that they don’t have motion features. We use CO = (Tim+1, ..., Tim+m′) to denote the m′

objects. Each object template Tij has the same variables as the body parts such as aij for

object name, Zij for the object bounding box, Xij for the HOG feature inside Zij and dij

for the deformation relative to the body part. The bounding boxes and labels of objects are

annotated in key frames of training data. We add the following term into the score function

S(mptt),

S(COt) =
m+m′∑
j=m+1

(< ωAij, X
t
ij > + < ωDij , d

t
ij >) (2.8)

The positions and labels of objects are inferred together with body parts and action

labels.

2.3 Inference

2.3.1 The Objectives of Inference

Our inference algorithm do the following three tasks in a single framework by dynamic

programming in space and time.

i) Firstly we detect the action snippets at each frame using the learned moving pose

templates. This includes localizing the body parts Zt and classify the MPT label lt. The

contextual objects are also localized if the action has any object.

ii) Secondly, with detected candidates of MPTs, we recognize the animated pose templates
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Figure 2.3: The APT includes three MPTs: 1) walking on the ’ground’ to approach the

vending machine; 2) pushing ’button’ at the vending machine; 3) picking up the merchandise

at the ’outlet’. In the And-Or structure, open squares are the body parts and solid squares

are added to represent the objects: ground (purple), button (green), outlet (yellow). These

objects have spatial relations with body parts. Below the And-Or tree, we show learned

HOG template for body parts and their deformations. The bottom row of the figure shows

the actual detected poses on a video sequence.

based on the MPT scores and the transition probability.

All variables are included in APT thus the objective is to optimize the score function in
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Figure 2.4: The drinking action contains six body parts and one additional part which

represents the cup interacting with the head.

Eqn 2.7 for a given time interval [ts, te],

apt∗[ts,te] = argmaxS(apt[ts, te]) (2.9)

We may interpret the score function S as a log-posterior probability, however, it is different

from the log-posterior probability in the Bayesian network because it only explains the images

inside the bounding box in a certain time interval [ts, te].

iii) Finally we detect multiple action instances in the video. We use a greedy way to

find multiple APTs each of which corresponds to an action instance. The sliding window is

applied in the image pyramid over all time interval lengths to calculate MPTs, then the best

APT is calculated based on the MPT candidates. After selecting the APT with the highest

score, we remove all MPTs in this APT and calculate the next best APT until the score of

APT is below a threshold.
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2.3.2 DP for detecting MPT in space

We maximize the score function in Eqn 2.2 to detect the action snippets,

mptt = argmaxS(mpt) (2.10)

For every 3 image frame I t, I t+1, I t+2, we extract the HOG feature on the image pyramid

at 18 orientations and 3 octaves similar to the DPM model in the literature. We also

calculate the HOF feature from by the Lucas-Kanade [LK81]. The two optical flow maps

between frames [I t, I t+1] and frames [I t+1, I t+2] are calculated respectively, then the HOF

features are derived by projecting optical flows over an 8x8 image window in space and 2

frames in time. We use 8 bins for 8 directions and the value of each bin is the sum of optical

flow vectors. The sigmoid function is used to normalize the value to [0,1].

Since the MPT is represented by the And-Or Tree structure, the MPT with highest score

can be inferred by standard dynamic programming algorithm. The speed for detecting a

single action snippets is around 2 frames per second for the video with resolution 240x320

using an i7 PC.

2.3.3 DP for detecting APT in time

At each image frame, we output several MPT candidates by the dynamic programming. Each

time the algorithm will find the best MPT if score S(mpt) is above the threshold τ1, then

then window of the current candidate will be blocked and the next best MPT candidate will

be calculated. The threshold τ1 is determined using the approximately admissible threshold

strategy similar to [FGM10a]. It is actually the lowest score for the person to be detected

in the training data.

Suppose we detect several MPT candidates α(t) in each time frame between ts and te

and nt is the number of MPT candidates at time t. We illustrate those candidates in Figure

2.5. For those candidates, we compute two quantities for action detection: 1) the total score

of the MPT candidate α(t): s(α(t)) = S(mptα(t)). If there is MPT detected then the score
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is set to -inf which means that we do not go back to adjust the MPT detection because it

is very expensive and do not improve the performance too much; 2) The transition scores

between two candidates at two adjacent frames: s(α(t), α(t+ 1)) = S(mptα(t+1)|mptα(t)).

We plug the two quantities into Eqn 2.9 and get,

apt∗[ts, te] = argmax

te∑
t=ts

s(α(t)) +
te−1∑
t=ts

s(α(t), α(t+ 1)) (2.11)

This can be solved by standard dynamic programming. The algorithm for detecting

action is outlined below,

Algorithm 1 Action detection algorithm

Input: Video I[ti : tj], thresholds τ1 and τ2;

Output: Detected actions in a list ListA;

Perform MPT detection on each frame and add a candidate mptk to a candidate list ListC

if S(mptk) > τ1 by Eqn. (2.2)

Connect all candidates at consecutive frames mpt
(t)
i ↔mpt

(t+1)
j of the same action type,

and compute their transition cost S(mpt
(t+1)
j |mpt

(t)
i ) by Eqn. (2.6).

repeat

Find an optimal path apt using DP, and compute its S(apt)⇒ s by Eqn. (2.7).

if s < τ2 then

return ListA;

else

Remove all the MPTs in apt from ListC and add them into ListA

end if

until ListC = ∅.

return ListA;

The threshold τ2 is determined from all positive training examples. For each action, τ2 is

the lowest score of the positive APT on the positive example so that it does not prune any

optimal configuration.
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Figure 2.5: At each frame we detect several MPT candidates which are visualized with

colored balls. Green stands for ’clapping’, red stands for ’hand waving’ and blue is ’boxing’.

The lines connecting balls are detected APTs.

2.4 Learning

We employ the semi-supervised structure SVM method for learning the modeling parameters

in MPT and APT. Suppose we have the first n frames annotated with structured labels

yi, i = 1, 2, ..., n where the label y includes the action label, MPT label and bounding boxes

for the whole person and body parts, thus the labels of remaining frames are hidden: hi, i =

n + 1, n + 2, ..., N . We use D to denote our training data, D = ({xi, yi}ni=1, {xi, hi}Ni=n+1)

where x is the feature at frame i including HOG and HOF features.

The learning algorithm includes three steps in the following,

i) Initialize the MPT and APT models. We cluster the annotated frames to get

the dictionary of MPT using EM in the joint space of HOG and HOF features. Each MPT

corresponds to a pose template with a certain viewpoint, part configuration and motion

velocity. With MPT clusters, we also initialize the transition probabilities between two

MPT A(lt+1|lt).

ii) Train the MPT parameters by structure SVM. With annotated frames and MP-

T labels, we train the MPT parameters ω = (ωA, ωD, ωM) for appearance, deformation and

motion by structure SVM. We treat it as a multi-class classification problem and minimize

the following function,
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min
ω

1

2
‖ω‖2 +

C

n

n∑
i=1

ξi, (2.12)

s.t. max
ŷ∈Y

ωT (φ(xi, yi)− φ(xi, ŷi)) ≥ ∆(yi, ŷi)− ξi,

This optimization problem can be solved by the cutting-plane algorithm [TJH05].

iii) Train the APT model by semi-supervised structure SVM. We add unlabeled

frames into the training process and train the transition probabilities between MPTs. The

latent SVM learning process optimize the following objective function,

ω = arg min
ω∈Rd

(
1

2
||ω||2 +

n∑
i=1

g(xi, yi;ω) +
N∑

i=n+1

max
h∈Y

g(xi, hi;ω)

)
(2.13)

where g(x, y;ω) is the upper bound function for the risk of the latent structure SVM,

g(x, y;ω) = max{0,∆(y, ŷ) + ωT (φ(x, ŷ)−max
h∗

φ(x, h∗))} (2.14)

The Eqn 2.13 is a sum of convex and concave function and the local optimal can be found

by the CCCP procedure iteratively.

In experiments we find that it is not good to add all unlabeled examples into the training

process at the beginning because that the incorrect label may lead to a very bad local

minimal. Inspired by the curriculum learning strategy in [KPK10], we gradually add high

scored examples into training and update the parameters ω. This helps the algorithm to

converge to a good local minimum smoothly.

2.5 Experiments

2.5.1 Datasets

In this section, we evaluate our method on four datasets, three of which are public datasets:

the KTH dataset [SLC04], Microsoft Research Action II dataset [CLH10] and The Coffee &

Cigarette dataset [LMS08]. The fourth dataset is collected by ourselves at UCLA campus
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and can be downloaded at: http://vcla.stat.ucla.edu/dataset/animated pose.html. Note

that some datasets do not provide the bounding box annotations for body parts, therefore,

we manually add the annotations to all training data.

2.5.2 Action Classification on KTH dataset

The KTH dataset has six types of human actions and each action is performed multiple

times by 25 actors. We use the same experimental setting as in [SLC04], so 16 of 25 persons

are used for training and the rest 9 are used for testing. The training data has total 2391

action clips. We only test the classification accuracy because the background of this dataset

is quite clean, thus the detection is very easy.

We use 40 key-frames for each training video clip. 10 parts are annotated in each key-

frame: head, torso, upper/lower arms and upper/lower legs. We cluster the key-frames to

get 3 MPTs for each action class. We also test APT model with latent parts instead of

annotated parts. The appearance and motion template for each part are initialized in the

same way as DPM [FGM10b].

The results are reported in Table 2.1. Clearly the latent parts do not perform as well as

the annotated parts which we believe is due to the bad local minimum by poor initializa-

tion. With only 20 annotated key-frames, our method achieves the best performance. The

performance is not improved much with doubled number of annotations.

2.5.3 Action Detection on the MSR dataset

The MSR dataset has 54 video clips and three actions: hand waving, clapping and boxing.

These videos have cluttered background such as walking people and outdoor traffic. Multiple

action instances may happen in one video clip, therefore it is necessary to localize the action

of interest in each frame. The bounding boxes of person are annotated in all videos. Only

6 upper body parts are annotated because the three action are only related to upper body.

We follow the same experiment setting as in Cao et al. [CLH10] so half of the videos are

used for training and the rest half for testing.
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Supervision Work Average

weakly-sup Schuldt et al. [SLC04] 71.71%

weakly-sup Dollar et al. [DRC05] 80.66%

weakly-sup Niebles and Fei-Fei [NWF08] 83.92%

weakly-sup Laptev et al. [LMS08] 91.81%

weakly-sup Liu and Shah [LLS09] 94.16%

weakly-sup Cao et al. [CLH10] 95.02%

weakly-sup APT with latent parts 84.70%

semi-sup APT, 10 annotated frames 92.70%

semi-sup APT, 20 annotated frames 94.24%

semi-sup APT, 40 annotated frames 94.53%

Table 2.1: Comparison of classification on the KTH dataset.

We first evaluate the detection performance for action snippets using moving pose tem-

plates. As shown in Figure 2.6(a), the action ’boxing’ achieves the best performance because

the poses of ’waving’ and ’clapping’ are quite similar.

Secondly we evaluate the detection performance for action clips. We use a sliding window

with 15 frames to search for the action instances. Following the same criterion in [CLH10],

we denote the bounding boxes for a ground truth action as Qg = Qg
1, Q

g
2, ..., Q

g
m and for a

detected action as Qd = Qd
1, Q

d
2, ..., Q

d
n. We use HG(Qg

i ) to denote if the ground truth Qg
i is

detected, and TD(Qd
j ) to denote if the detected Qd

j is correct,

HG(Qg
i ) =


1, ∃Qd

k, s.t.
|Qd

k∩Q
g
i |

|Qg
i |

> δ1

0, otherwise

TD(Qd
j ) =


1, if ∃Qg

k, s.t.
|Qd

k∩Q
d
j |

|Qd
j |

> δ2

0, otherwise

where |.| denotes the area of the bounding box and δ1, δ2 are set to 1/4. Based on HG and

TD we can compute the precision and recall for action detection. The precision-recall curve is

reported in Figure 2.6 (b). Our APT model outperforms others when full supervision is used.

We also test the performance when using different amount of annotated key-frames. The
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Figure 2.6: (a) Detection performance for action snippets using MPT model.(b)Performance

comparison with different amount of annotated key-frames used for initialization. (c) Perfor-

mance comparison with different number of MPTs used for each action class. The comparison

between final system and using only shape or motion template are also included.

improvement with more annotations is diminishing which indicates that 50% of annotations

are enough to get a good result and more annotations are not very helpful. As shown in

Figure 2.6 (c), we consider the effect of the number of poses. Using only two MPTs hurts the

performance a lot, but using 4 or 5 MPTs does not improve the performance in all actions,

therefore we use 3 MPTs in the experiments. We also compare the effect of different features

in Figure 2.6 (c). From the results we can see that the shape template achieve better results

than motion template. It is worth noting that the shape template is much more important

than motion template in the action ’boxing’. With only shape templates, our method already

outperforms others.

2.5.4 Coffee and Cigarette dataset

The Coffee & Cigarette dataset is collected from a movie and has 11 short videos with differ-

ent scenes and actors. There are two action classes: ’drinking’ and ’smoking’. For the action

drinking, there are 106 training samples and 38 testing samples. For the action smoking,

there are 78 training samples and 42 testing samples. For each example, we annotate 40

key-frames with 6 upper body parts and one contextual object.
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Figure 2.7: We only show the red bounding boxes for body head and blue bounding boxes

for the contextual objects.

We first show some detection results in Figure 2.7. The action instance is correctly

detected if the predicted spatial-temporal volume overlaps with the ground-truth volume at

least 20%. The average precision of our method and others are reported in Table 2.2.

Three method variations are compared: 1) only using MPT without transitions between

MPTs. 2) using the APT with latent parts instead of annotated parts. 3) using APT with

annotated contextual parts. The results show that our APT model with objects achieves

better performance than others on this task. The same as the MSR dataset, the APT model

with latent parts performs worse than the strong supervision with annotated parts. Without

supervision, the object cannot be detected well during the learning process because they have

larger appearance variations than body parts.

2.5.5 UCLA contextual action detection dataset

Our dataset consists of videos of 10 scenes taken from everyday living places such as campus

plaza, food court and so on. Each video contains about 10 instances from 6 action categories:

purchasing from a vending machine, using elevator, throwing trash into a can, using water

dispenser , picking up newspapers from a paper stand and sitting down on a chair then get

up and leave. There are six body parts annotated in each frame: ’head’, ’torso’, ’upper-arm’,
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Drinking Smoking

MPT w/ contextual parts 29% 14%

APT w/ contextual parts 58% 31%

APT w/ latent parts 43% 26%

Laptev et al. [LP07] 43% -

Willems et al. [WBT09] 45% -

Table 2.2: Results on Coffee & Cigarettes. AP performance for spatio-temporal localizations

in percent. The first two rows report the performance of our algorithm. The remaining results

from recent literatures.

’lower-arm’, ’upper-leg’ and ’lower-leg’.

To minimize the effect of over-fitting, we apply a 5-fold cross-validation by randomly

choosing different combinations of training and testing actions. The average detection pre-

cision is measured for six event classes as shown in Table 2.3. Since the APT with latent

parts method does not use the contextual information, it is much worse than the full APT

model.

Event APT-full APT w/ latent parts

vending machine 82% 43%

elevator 92% 67%

throw trash 86% 58%

water dispenser 87% 62%

news-stand 89% 74%

sit down then get up 90% 66%

Table 2.3: Detection performance on UCLA vending machine dataset.
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2.6 Summary

In this chapter, we study the joint representation of action and pose using moving pose

template (MPT) which models a short duration action snippets and animated pose template

(APT) which is based on a sequence of MPTs and models a long duration action. Each MPT

contains a shape template capturing appearance feature and a motion template capturing

motion features. Due to the And-Or tree structure of MPT and the chain structure of

APT, the dynamic programming us used for effective inference. The parameters are learned

discriminatively through latent structure SVM. This method has two main drawbacks and

can be improved in the following aspects: 1) it is view-dependent. For different views, more

pose templates are needed. The model which is capable of recognizing actions under unseen

viewpoints is needed. 2) The temporal transition is modeled on the level of MPT which is

too rough to capture the important motion information with body parts. A deeper And-Or

Graph representation is needed for modeling the detailed motion changing and appearance

variations.
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CHAPTER 3

Cross-view Action Modeling, Learning and Recognition

3.1 Introduction

3.1.1 Backgrounds and Motivations

In the research area of video-based action recognition, most existing works focus on recog-

nizing actions from viewpoints which are similar to training data, therefore their general

limitation is the unpredictable performance in the situation where the actions need to be

recognized from a novel view. Due to the large difference between the visual appearances

from different views and the difficulty to find view-invariant features, it is desirable to build

models for cross-view action recognition, i.e., recognizing video actions from views that are

unseen in the training videos. Despite some recent attempts [JDL08, LSK11], this problem

has not been well explored.

One possible approach for cross-view action recognition is to enumerate a sufficiently

large number of views and build dedicated feature and classifier for each view. Clearly this

approach is too time consuming because it requires annotating a large number of videos for

all views and all action categories. Another possible approach is to interpolate across views

via transfer learning [LSK11]. This method learns a classifier from one view, and adapts

the classifiers to new views. The performance of this approach is largely limited by the

discrimination power of the local spatio-temporal features in practice.

In this section, we tackle this problem from a new perspective: creating a cross-view video

action representation by exploiting the compositional structure in spatio-temporal patterns

and geometrical relations among views. We call this model multiview spatio-temporal AND-

34



OR graph model (MST-AOG), inspired by the expressive power of AND-OR graphs in

object modeling [SZ13]. This model includes multiple layers of nodes, creating a hierarchy

of composition at various semantic levels, including actions, poses, views, body parts and

features. Each node represents a conjunctive or disjunctive composition of its children nodes.

The leaf nodes are appearance and motion features that ground the model to images. An

important feature of the MST-AOG model is that the grounding does not have to be at

the lowest layer (as in conventional generative models), but can be made at upper layers

to capture low resolution spatial and temporal features. This compositional representation

models geometry, appearance, and motion properties for actions. Once the model is learned,

the inference process facilitates cross-view pose detection and action classification.

The AND/OR structure of this MST-AOG model is intuitive and simple, but the major

challenges lie in the learning of geometrical relations among different views. This paper

proposes novel solutions to address this difficult issue by taking advantage of the 3D human

skeleton produced by Kinect sensors. This 3D skeleton information is only needed for train-

ing, and not used for cross-view action recognition. The projection of the 3D poses enables

explicit modeling of the 2D views. Our model uses a set of discrete views in training to

interpolate arbitrary novel views in testing. The appearances and motion are learned from

the multiview training video and the 3D pose skeletons.

In order to learn the hierarchical structure of our MST-AOG, we design a new discrimina-

tive data mining method to discover the discriminative poses for each action automatically.

This data driven method provides a very effective way to learn the structure for the action n-

odes. Since this hierarchical structure enables information sharing (e.g., different view nodes

share certain body part nodes), MST-AOG largely reduces the enormous demands on data

annotation, while improving the accuracy and robustness of cross-view action recognition,

as demonstrated in our extensive experiments.
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3.1.2 Contributions

Compare to other existing methods for action recognition, our proposed cross-view action

recognition method makes the following contributions:

• The proposed spatial-temporal and-or graph structure is a expressive and compact

model for representing action with multiple viewpoints and unifies the modeling of

geometry, appearance and motions.

• The human skeleton information is not need in testing. Once trained, our model only

needs 2D videos to recognize actions from novel views.

• We propose a novel and effective methods to learn the nodes in our MST-AOG model

discriminatively. The different upper-level nodes share some low-level nodes which

enables effective computation.

3.2 Multi-view Spatial Temporal And-Or Graph (MST-AOG)

3.2.1 Model Overview

We propose a spatial-temporal And-Or Graph model for representing multi-view actions.

As a multi-layer hierarchical compositional model, it is able to compactly accommodate the

combinatorial configurations for cross-view action modeling. There are three types of nodes

in our ST-AOG and each node is associated with a score: 1) The AND node models the

conjunctive relationship of its children nodes, therefore the score takes the summation over

its children nodes. 2) The OR node captures the disjunctive relationship or the mixture of

possibilities of its children nodes, thus its score takes the maximum over its children. 3)

The LEAF node or terminal node is observable and is associated directly with images, thus

grounds the model. We visualize the structure of model in Figure 3.1. The root node on the

top layer is an OR node representing the mixture of the set of different actions. Each action

is decomposed into a sequence of discriminative 3D poses. A 3D pose exhibits a mixture of

its projections on a set of 2D views. A 2D view includes a set of spatio-temporal parts, and
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Figure 3.1: The MST-AOG action representation. The geometrical relationship between

parts in different views are modeled jointly by projecting the 3D poses into the given view.

The parts are discriminatively mined and shared by all actions.

each part is associated with its appearance and motion features. Thus, the action nodes,

view nodes and part nodes are AND nodes, and pose nodes are OR nodes. We will discuss

the scores and parameters for these nodes in the following subsections.

The strong expressive power of an AOG lies in the structure of layered conjunctive and

disjunctive compositions. Moreover, MST-AOG shares the part nodes across different views

via interpolation. An example will be given when discussing the action node in Section 3.2.4.

3.2.2 Pose/View Nodes and 3D Geometry

We first introduce the pose and view nodes in our MST-AOG for cross-view action modeling.

A pose node is an OR node that models the association of spatio-temporal patterns to a 3D
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Figure 3.2: 3D parts and projected parts in different views.

pose which can be projected to various views each of which is represented by a view node.

For each view node, it captures the AND relationship of a number of parts (i.e., the limb

of the human). Each part node captures its visual appearance and motion features under a

specific view θ. Specifically, we use a star-shaped model for the dependencies among body

parts, inspired by the DPM model [FGM10b], as Figure 3.2 shows. Their 2D locations are

denoted by V = v0, v1, , vN , where v0 is for the root part (the whole pose). I denotes the

image frame. We define the score associated with the ith part node to be SR(vi, I, θ).

Two factors contribute to the score of a view node: the score of its children part nodes

SR(vi, I, θ) and the spatial regularization among them Si(v0, vi, θ) that specifies the spatial
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relationship between the root part and each child part. Such spatial regularization measures

the compatibility among the parts under view θ. Here we only consider the rotation angle.

The total compatibility score of a view node is written as:

SV (v0, θ) =
N∑
i=0

SR(vi, I, θ) +
N∑
i=1

Si(v0, vi, θ) (3.1)

where vi denotes the location of part i, N is the total number of parts and θ indicates the

current view. The 2D global location of a 2D pose is set to be the location of the root part

v0. As the pose node is an OR node, the score for a pose node is computed by maximizing

the scores from its children nodes which are view nodes:

Sp(v0) = max
θ
Sv(v0, θ) (3.2)

The evaluation of the spatial regularization of the parts needs a special treatment, because

a pose node represents a 3D pose and it can be projected to different views which lead to

different part relationships explicitly, as illustrated in Figure 3.2.

The 3D geometrical relationship of the parts is modeled as the 3D offsets of the ith part ui

with respect to the root part u0. Each offset can be modeled as a 3D Gaussian distribution

with the mean ui as well as diagonal covariance matrix Σi.

logP (∆pi) ∝ −
1

2
(∆pi − ui)TΣ−1i (∆pi − ui)) (3.3)

where ∆pi = (∆xi ,∆yi ,∆zi) is the 3D offset between the part i and root part. Here ui

can be estimated from the 3D training data captured by Kinect sensor. The Σi can also be

learned from training data.

We project the 3D parts into 2D parts under a certain viewpoint. The projected 2D parts

also follow a Gaussian distribution. Here we assume the projection is scaled orthographic

and denote it by Qθ
i ,
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Qθ
i =

k1cosθ 0 −k1sinθ

0 k2 0

 (3.4)

where θ is the rotation angle under the view, and k1, k2 are scale factors for two image

axes. In training, we take advantage of the 3D skeleton data from Kinect sensors. Since

we have the ground truth 3D positions of parts and their projected 2D positions, these

parameters can be easily estimated. We use the orthographic projection to approximate the

perspective projection because that the actors are sufficiently far way from the camera when

performing actions. Since Qθ
i is linear transformation, the projected 2D offset also follows a

Gaussian distribution with mean vθi = Qθ
iui and variance-covariance matrix Σθ

i = Qθ
iΣ(Qθ

i )
T .

Thus the 2D spatial pairwise relationship score Si(v0, vi, θ) can be written as,

Si(vo, vi, θ) = ((Σθ
i )
−1
11 , (Σ

θ
i )
−1
22 , (Σ

θ
i )
−1
12 )T · (3.5)

(−(∆vxi )2,−(∆vyi )
2,−2∆vxi ∆vyi )

where (∆vx = vxi − vx0 ,∆vy = vyi − v
y
0) is the 2D deformation between i-th part vi and the

root part v0. This 3D geometrical relationship is shared and can be learned cross different

views. The 2D geometrical relationship in novel views can be obtained by projecting the 3D

geometrical relationship to the novel views under the rotation angle θ.

3.2.3 Part Node and Motion/Appearance

The spatial-temporal patterns of a part under a view are captured by its motion and appear-

ance features. Each part has an appearance node with score Ai(vi, I, θ), and a motion node

with score Mi(vi, I, θ). They capture the likelihood (or compatibility) of the appearance and

motion of part i located at vi under view θ at image I respectively. Thus the score associated

with a part node is written as,

SR(vi, I, θ) = Ai(vi, I, θ) +Mi(vi, I, θ) (3.6)
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We apply the commonly used HOG [FGM10b] and HOF [LMS08] features to represent

the appearance and motion of a given part respectively. In order to model the difference

and correlation of the appearance and motion for one part in different views, we discretize

the view angle into M discrete bins each of which corresponds to a view node. We use

exponential interpolation to obtain the appearance and motion features in the view bins

which do not appear in training data. The appearance score function Ai(vi, I, θ) is defined

as,

Ai(vi, I, θ) =

∑M
m=1 e

−d2(θ,θm)φTi,mφ(I, vi, θ)∑M
m=1 e

−d2(θ,θm)
(3.7)

where e−d
2(θ,θm) denotes the exponential angular distance between the view θ and the

view at bin m, φ(I, vi, θ) is the HOG feature at location vi in image I under the view θ. φi,m

is the HOG template of view bin m, and can be learned from the training data with view at

bin m. The motion score function Mi(vi, I, θ) is defined and learned in the same way as the

appearance features.

The part nodes of different actions are shared across different views via interpolation,

therefore we can learn the appearance and motion templates of the part nodes for the novel

views via interpolation.

3.2.4 Action Node

In the second layer of our ST-AOG model, an action is decomposed into a number of Np 3D

discriminative poses, however, it is insufficient for an action node to include only a set of

pose nodes for two reasons. First, when the image resolution of the human subject is low,

further decomposing the human into body parts is not plausible, as detecting and localizing

such tiny body parts will not be reliable. Instead, low resolution visual features may allow

the direct detection of rough poses. Suppose we have NL low resolution features, denoted

by φi, i = 1, 2, , NL. We simply use a linear prediction function
∑NL

i ωTi ϕi to evaluate

low-resolution-feature action prediction score. The weights ωi can be learned for each low-

resolution features. We use two low-resolution features: intensity histogram and size of the
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bounding boxes of the foreground.

Therefore, an action node consists of two types of children nodes: a Np number of pose

nodes and a NL number of leaf nodes for low-resolution grounding. With low-resolution

features, we rewrite the score of an action node as,

SA(l) =

Np∑
i

SiP (v0) +

NL∑
i

ωTi ϕi (3.8)

where Sip(v0) is the score of the i-th pose node as we defined in Equation 3.2. ωi is the

weights for the low-resolution features ϕi.

3.3 Inference

Given an input video from a novel view, the inference of MST-AOG calculates the scores

of all the nodes to achieve cross-view action classification. Since this MST-AOG model is

tree-structured, inference can be done effectively via dynamic programming. The general

dynamic programming process contains bottom-up phase and top-down phase, which is

similar to sum-product and max-product algorithm in graphical model.

3.3.1 Cross-View Pose Detection

The states of the pose nodes, view nodes, and part nodes are their locations and scales. The

score for a view node is defined in Equation 3.1, and the score for a pose node is defined in

Equation 3.2. The inference of a pose node is simply comparing the scores of all the child

view nodes at each location and scale, and finding the maximum score.

For a view node, since the score function in Equation 3.1 is convex, we can maximize

the score in terms of the locations of the parts v0, v1, ..., vN very efficiently using distance

transform [FGM10b]. The inference step can be achieved by convolving HOG and HOF

features of the input image with the appearance and motion templates of all parts from

different views and obtain the response maps. Then for each view bin, we can compute its

projected part offset relationship. Using the distance transform, we can efficiently calculate
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the response map for the poses under this view bin. This also enables the estimation of the

novel view by finding the view bin that has the largest view score.

3.3.2 Action Classification

We apply the spatio-temporal pyramid to represent the spatio-temporal relationship of poses

and low-resolution features for action recognition. The scores of the pose nodes and the low-

resolution feature nodes at different locations and frames constitute a sequence of response

maps. We apply the max-pooling over a spatio-temporal pyramid. The response of a cell in

the pyramid is the maximum among all responses in this cell.

We divide one whole video into 3-level pyramid in the spatial-temporal dimensions. This

yields 1 + 8 + 64 = 73 dimensional vector for each response map. Then, we can use the

linear prediction function defined in Equation 3.8 to compute the score of an action. The

action node with the maximum score corresponds to the predicted action. Although this

representation only acts as a rough description of the spatial-temporal relationships between

the poses, we find it achieves very good results on our experiments.

3.4 Learning

The learning process has two tasks. The first task is learning the MST-AOG parameters,

e.g., the appearance and motion templates of each part in the part nodes, 3D geometrical

relationship in the view and pose nodes, and the classification weights in the action nodes.

The second task is discovering a dictionary of discriminative 3D poses to determine the

structure of the MST-AOG model. We describe the details of the two tasks in the following.

3.4.1 Learning MST-AOG Parameters

Learning MST-AOG parameters for the part and view nodes can be formulated as a latent

structural SVM problem. The parameters of the latent SVM include: the variance Σi in

Equation 3.3, the appearance and motion templates in Equation 3.7.
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Although we have all part locations and the view labels in the training data, since we

are more interested in predicting the action rather than the precise location of each part and

the view, we treat the locations of the parts vj and the view θ as latent variables. And we

apply a latent SVM to learn the our model using the labeled location of the parts and the

view angle as initialization. This treatment is more robust to the noise in the training data.

For each example xn, we have its class label yn ∈ {−1,+1}, n ∈ {1, 2, ..., N}. The

objective function is,

min
ω

1

2
||ω||2 + C

N∑
n=1

max(0, 1− ynSp(v0|xn)) (3.9)

where Sp(v0|xi) is defined in Equation 3.2, which is the total score for example xi. ω is

the concatenation of all model weights.

The learning is done by iterating between optimizing weights ω and computing the part

locations and views of the positive examples in training data.

For each key-pose, we use the samples whose distances are less than a certain threshold

to this pose in the positive data as positive examples and randomly sample 5000 negative

training examples from negative data. Two bootstrapping is applied for mining hard nega-

tives during the learning process. Since the action score in Equation 3.8 is a linear function,

the parameters can be easily learned by a standard linear SVM solver.

3.4.2 Mining 3D Pose Dictionary

In order to learn the structure of our MST-AOG, we propose an effective data mining method

to discover the 3D poses which are discriminative to different actions. Each 3D pose is a

specific spatial configuration of a subset of body parts.

3.4.2.1 Part Representation

We employ the 3D joint positions to characterize the 3D pose of the human body. The

3D skeleton information from Kinect sensor has total 21 joint positions and each join-
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t j has 3 location coordinates pi(t) = (xi(t), yi(t), zi(t)) and a motion vector mj(t) =

(∆xj(t),∆yj(t),∆zj(t)). Each joint has a visibility label hj(t) which indicates that j-th

joint is visible in frame t with value 1 and invisible with value 0. The location coordinates

are normalized so that they are invariant to absolute position, orientation and scale. The

joints are grouped into multiple parts manually.

3.4.2.2 Part Clustering

Since the poses in one action are highly redundant, we cluster the examples of each part to

reduce the size of the search space, and to enable part sharing. Let part k be one of the K

parts of the person and Jk be the set of the joints of this part. For each joint j ∈ Jk in this

part, we have pj = (xj, yj, zj),m(j) = (∆x,∆y,∆z), and hi ∈ {0, 1} as its 3D position, 3D

motion and visibility map, respectively. For a certain part, given the 3D joint positions of

the two examples s and r, we can define their distance:

Dk(s, r) =
∑

j∈Jk(1 + hs,r(t))(||psj(t)− Sprj(t)||22 (3.10)

+||ms
j(t)− Smr

j(t)||22)

where S is a similarity transformation matrix which minimizes the distance between the

part k of the example s and the example r. The term hs,r is a penalty term based on the

visibility of the joint j in two examples: hs,r(j) = a if vs(j) = vr(j) and is 0 otherwise.

Since this distance is non-symmetric, we define the final symmetric distance as D̄(s, r) =

(D(s, r) +D(r, s))/2.

Spectral clustering is performed on the distance matrix. We remove the clusters that

have too few examples, and use the rest of the clusters as the candidate part configurations

for mining. We denote the set of all candidates part configurations for the part k as: Tk =

t1k, t2k, ..., tNkk, where each tik is called a part item represented by the average joint positions

and motions in the cluster.
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3.4.2.3 Mining Representative and Discriminative Poses

The discriminative power of a single part is usually limited. We need to discover poses (the

combinations of the parts) that are discriminative for action recognition.

For a pose P that contains a set of part items T (P ), with each part item in this set

belonging to different part. we define the spatial configuration of a poses as the 3D joint

positions and motions of all the part items in this pose.

We first compute the activations of each pose P at all videos. The activation of a pose P

with configuration Pp in a video vi is defined as,

ap(i) = minte
−D(Pp,P t

p) (3.11)

where P t
p is the 3D joint positions of the poses P in the t-frame of the video i, and

D(...) is the distance defined in Equation 3.10. If very similar poses exist in this video, the

activation is high. Otherwise, the activation is low. One discriminative pose should have

large activation in the videos in a given category, while having low activation vector in other

categories. We define the support of the pose P for category c as:

Suppp(c) =

∑
ct=c

ap(i)∑
ct=c

1
(3.12)

where c is the category label for the video i. We define the discrimination of the pose p

as,

Discp(c) =
Suppp(c)∑
c′ 6=c Suppp(c

′)
(3.13)

Our goal is to discover the poses with large support and discrimination, therefore these

poses can distinguish different action categories well. Since adding one part item into a pose

always creates another pose with lower support, i.e. Suppp(c) < suppp′(c) if T (P ) ⊃ T (P ′).

Thus we use the A prior like algorithm to find the discriminative poses. Specifically, we

remove the non-maximal poses from the discriminative pose pool. For a pose P, if there
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exist a pose P ′ such that T (P ) ⊂ T (P ′) and both P and P ′ are in the set of discriminative

and representative poses, then P is a non-maximal pose.

This algorithm usually produces an excessive large number of poses, we prune the sets of

discriminative poses with the following criteria. Firstly, we remove poses that are similar to

each other. This can be modeled as a set-covering problem, and can be solved with a greedy

algorithm. We choose a pose P with highest discrimination, and remove the poses whose

distance is less than a given threshold. Secondly, we remove the poses with small validation

scores for the detectors trained for these poses.

3.5 Experiments

We evaluate our method and compare it with other stat-of-the-art methods on two datasets:

the MSR-DailyActivity3D dataset [WLW12] and the Multiview Action3D dataset which is

collected by ourselves. In all experiments we only use the videos from a single view for

testing and do not use the skeleton information and videos from multiple views.

3.5.1 Northwestern UCLA Multiview Action3D Dataset

Northwestern-UCLA Multiview 3D event dataset contains RGB, depth and human skeleton

data captured simultaneously by three Kinect cameras. Ten action categories are annotated

in this dataset: pick up with one hand, pick up with two hands, drop trash, walk around,

sit down, stand up, donning, doffing, throw, carry. Each action is performed by 10 actors.

Figure 3.4 shows some example frames of this dataset. The view distribution is shown in

Figure 3.3. This dataset contains data taken from a variety of viewpoints.

The comparison of the recognition accuracy of the proposed algorithm with the baseline

algorithms is shown in Table 3.1. We compare with virtual views [LZ12], Hankelet [LCS12],

Action Bank [SC12] and Poselet [MBM11]. For Action Bank, we use the actions provided

by [SC12] as well as a portion of the videos in our dataset as action banks. For Poselet,

we use the Poselets provided by [MBM11]. We also compare our model with training one
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Figure 3.3: The view distribution of the Multiview-Action3D dataset(left) and MSR Daily-

Activity3D dataset (right).

dedicated model for each view, which is essentially a mixture of deformable part models

(DPM), to compare the robustness of the proposed method under different viewpoints with

DPM model. We have 50 pose nodes for all the actions and 10 child view nodes for one pose

node for both mixture of DPM and MST-AOG. The number of the part nodes in DPM and

MST-AOG is both 1320 (different poses can have different number of parts). MST-AOG also

has 2 child low-resolution feature nodes for each action node. These parameters are chosen

via cross-validation. In MST-AOG, the appearance/motion and geometrical relationship of

the part nodes are shared and learned across different view nodes, but the mixture of DPM

treats them independently.

The recognition experiments are conducted under the following three settings:

1) cross-subject setting: We use the samples from 9 subjects as training data, and leave

out the samples from 1 subject as testing data.

2) cross-view setting: We use the samples from 2 cameras as training data, and use the
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Figure 3.4: Sample frames from Multiview Action3D dataset and MSR DailyActivity3D

dataset [WLW12].

samples from 1 camera as testing data.

3) cross-environment setting: We apply the learned model to the same action but cap-

tured in a different environment. Some of the examples of the cross environment testing

data are shown in Figure 3.4.

These settings can evaluate the robustness to the variations in different subjects, from

different views, and in different environments.

The proposed algorithm achieves the best performance under all three settings. Moreover,

the proposed method is rather robust under the cross-view setting. In contrast, although

the state-of-the-art local-feature-based cross-view action recognition methods [LZ12, LCS12]

are relatively robust to viewpoint changes, the overall accuracy of these methods is not

very high, because the local features are not enough to discriminate the subtle differences

of the actions in this dataset. Moreover, these methods are sensitive to the changes of the

environment. The Poselet method is robust to environment changes, but it is sensitive to

viewpoint changes. Since the mixture of DPM does not model the relations across different
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Method C-Subject C-View C-Env

Virtual View [LZ12] 0.507 0.478 0.274

Hankelet [LCS12] 0.542 0.452 0.286

Action Bank [SC12] 0.246 0.176 N/A

Poselet [MBM11] 0.549 0.245 0.485

Mixture of DPM 0.748 0.461 0.688

MST-AOG w/o low-S 0.789 0.653 0.719

MST-AOG w Low-S 0.816 0.733 0.793

Table 3.1: Recognition accuracy on Multiview-3D dataset.

view, its performance degrades significantly under cross-view setting. The comparison of the

recognition accuracy of the different methods under crossview setting is shown in Figure 3.5.

We also observe that utilizing low-resolution features can increase the recognition accuracy,

and the proposed method is also robust under cross environment setting.

Figure 3.5: The recognition accuracy under cross-view setting on The recognition accuracy

under cross-view setting.

The confusion matrix of the proposed methods with low resolution features under cross-

view setting is shown in Figure 3.6. The actions that cause most confusion are pick up with

one hand versus pick up with two hands, because the motion and appearance of these two
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actions are very similar. Another action that causes a lot of confusion is drop trash, because

the movement of dropping trash can be extremely subtle for some subjects.

Figure 3.6: The confusion matrix of MST-AOG on multiview data under cross-view setting

(with low-resolution features).

3.5.2 MSR Daily Activity3D Dataset

The MSR-DailyActivity3D dataset is a daily activity dataset captured by a Kinect device.

It is a widely used as a Kinect action recognition benchmark. There are 16 activity types:

drink, eat, read book, call cellphone, write on a paper, use laptop, use vacuum cleaner,

cheer up, sit still, toss paper, play game, lay down on sofa, walk, play guitar, stand up, sit

down. If possible, each subject performs an activity in two different poses: sitting on sofa

and standing. Some example frames are shown in Figure 3.4. The view distribution of this

dataset can be found in Figure 3.3. Although this dataset is not a multiview dataset, we

compare the performance of the proposed method with the baseline methods to validate its

performance on single view action recognition.
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Method Accuracy

STIP [LC05] 0.545

Action Bank [SC12] 0.230

Poselet [MBM11] 0.238

Actionlet Ensemble [WLW12] 0.835

MST-AOG 0.731

Table 3.2: Recognition accuracy for DailyActivity3D dataset. The result of [WLW12] is not

directly comparable with MST-AOG, because it uses 3D skeleton.

We use the same experimental setting as [WLW12], using the samples of half of the

subjects as training data, and the samples of the rest half as testing data. This dataset is

very challenging if the 3D skeleton is not used. The results are reported in Table 3.2. The

Poselet method [MBM11] achieves 23.75% accuracy, because many of the actions in this

dataset should be distinguished with motion information, which is ignored in the Poselet

method. STIP [LC05] and Action Bank [SC12] do not perform well on this dataset, either.

The proposed MST-AOG method achieves a recognition accuracy of 73.5%, which is much

better than the baseline methods.

Note that the accuracy of Actionlet Ensemble method in [WLW12] achieves 85.5% ac-

curacy. However, the proposed method only needs one RGB video as input during testing,

while Actionlet Ensemble method requires depth sequences and Kinect skeleton tracking

during testing.

The confusion matrix of the proposed method on MSRDailyActivity3D dataset is shown

in Figure 3.7. We can see that the proposed algorithm performs well on the actions that

are mainly determined by poses or motion, such as stand up, sit down, toss paper, cheer

up, call cellphone. However, recognizing some actions requires us to recognize objects, such

as playing guitar and play games. Modeling the human-object interaction will improve the

recognition accuracy for these actions.
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Figure 3.7: The confusion matrix of MST-AOG on MSRDailyActivity3D dataset.

3.6 Summary

In this section, We study a new cross-view action representation and propose the MST-

AOG model which can effectively express the geometry, appearance and motion variations

across multiple view points with a hierarchical compositional model. It takes advantage of

3D skeleton data to train, and achieves 2D video action recognition from unknown views.

Our extensive experiments have demonstrated that MST-AOG significantly improves the

accuracy and robustness for cross-view, cross-subject and cross-environment action recogni-

tion. The proposed MST-AOG can also be employed to detect the view and locations of the

actions and poses. This will be our future work.
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CHAPTER 4

Joint Pose Estimation and Action Recognition from

video

4.1 Introduction

In chapter 2, we discussed our method for action detection and body part detection us-

ing moving pose template and animated pose template. In this chapter, we extend the

model in chapter 2 to a more sophisticate model to incorporate appearance information

at different scales and detailed motion information of fine-level body part movement. The

spatial-temporal And-Or graph model is introduced to joint the learning of pose estimation

and action recognition more closely.

4.1.1 Motivation and Objective

As we mentioned in our introduction, action recognition and pose estimation are important

tasks for vision-based human motion understanding, and they are highly coupled because

that most action are defined by poses and also the pose configuration and movement is

controlled and guided by actions. Despite they have different goals, it is desirable to study

them in a common framework. However, existing methods train the models for the two tasks

separately and combine them sequentially.

The main drawback of existing methods is that the accuracy of action recognition relies

on the performance of pose estimation because the latter always provides part locations for

the former. Due to the large pose variation and complex background in action datasets, the

most discriminative parts (arms, hands, legs, feet, etc.) for action recognition are always
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Figure 4.1: (a) Single frame human poses estimated by [YR12]. (b) The action label and

poses estimated by our approach.

miss-detected in pose estimation, thus the subsequent action recognition is deteriorated by

the bad body part localization result. Once the pose estimation is done, the missed body

parts cannot be recovered by action recognition in this sequential way. However, those human

parts often have large motions and can be recovered by action-specific motion information to

some extent. Figure 4.1 shows that the arms and legs miss-detected by the pose estimation

are successfully detected by our method. Besides the motion information on arms and

legs, actions also provide strong priors on the movement of poses and also provide strong

constraints on the possible poses in space and time.

The prevailing methods for pose estimation from static images employ probabilistic and

compositional graphical models in which nodes represent body part appearance and edges

represent geometrical deformation and part type compatibility. The errors of pose estimation

mainly come from small parts like forearms and wrists due to the large appearance variations

and similarity with cluttered backgrounds. For pose estimation in videos, the human motion

can become much larger and the changing of viewpoints make appearance inconsistent at

adjacent frames. As shown in Figure 4.1, we improve the estimation of part locations by
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considering action specific information.

Most methods for action recognition bypass body poses and achieves promising results by

using coarse/mid-level features for action classification on public datasets. In this chapter,

we study the joint learning of action and pose by combing coarse/mid-level features with

find-level body part features.

4.1.2 Method Overview

In this chapter, We focus on designing a common framework to integrate the training and

testing of video pose estimation and action recognition. In training, the information from

both tasks are utilized for optimizing the model parameters and in testing the human pose

at each frame and the action label of the whole video are inferred jointly in our framework.

We start with building a spatial-temporal And-Or graph model [LWZ14, SWJ13] to

represent actions and poses jointly. The hierarchical structure of our model can represent the

top-down decomposition of human pose in a single frame and temporal transitions between

mid-level/fine-level body parts in subsequent frames. On the top layer, the information of

action in low resolution is captured by coarse-level features and then action is decomposed

into poses at each frame. Each pose is further decomposed into five mid-level spatial-temporal

parts (ST-parts) which can cover a large portion of human body. The five ST-parts can

deform independent of each other. They are more robust to image variations than fine-level

parts. All ST-parts are quantized into several components by clustering. The ST-parts in the

same component can be seen as a poselet [BM09] which has small appearance and geometric

variations. Each component is represented by mid-level and fine-level features.

In order to capture the specific motion information of each action and detect fine-level

body parts with detailed motion, we connect ST-parts at subsequent frames in the And-Or

graph and model their temporal co-occurrence relationship of part types and deformations.

The model parameters at three levels are first trained separately by structure SVM (SSVM)

and then combined by a mixture of experts method, therefore the features at different levels

has different importance for action recognition. Due to the independence between ST-parts
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of each pose, we effectively infer both action label and poses by dynamic programming.

4.1.3 Our Contributions

To our best knowledge, Yao et al. [YGG12] is the only paper trying to couple action recog-

nition and pose estimation. They formulate the pose estimation as an optimization problem

over a set of action specific manifold and conducts the two tasks iteratively, however, we

represent action and human pose in the hierarchical structure and do the training and in-

ference simultaneously. They also need training videos captured from multiple views but we

can work on videos which are captured from a single view.

In this chapter we study the unified framework to combine action recognition and video

pose estimation. Specifically we employ a spatial-temporal And-Or Graph model to repre-

sent the two tasks in a hierarchical manner. We make three contributions to both action

recognition and video pose estimation:

i) We propose a spatial-temporal AOG model to integrate action recognition and video

pose estimation. The two tasks are mutually benefit from each other in both training and

inference.

ii) We represent actions at three scales. Coarse and middle level features are trained

jointly with pose features, and our method give different weights to the features at different

scales through the mixture of expert method.

ii) We outperform state-of-art action recognition and pose estimation methods on t-

wo action datasets: Penn Action dataset and sub-JHMDB dataset. The experiments also

demonstrate the large benefit of modeling the two tasks together.
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Figure 4.2: (a) Our spatial-temporal AOG model for action ”Baseball pitch”. The action is

decomposed into poses, ST-parts, and parts. Each ST-part is an Or-Node that represents

the mixture components. For simplicity we only draw all nodes at the second frame. The

orange edges represent geometric deformations between ST-parts and parts. (b) The three

feature levels. Action nodes, ST-part nodes and part nodes connect to terminal nodes that

represent coarse-level, mid-level and fine-level features respectively. (c) An example of tem-

poral relation on ST-part ’left arm’. The purple edges connecting five ST-parts at adjacent

frames capture the temporal co-occurrence and deformation relations. During inference we

select the best component (red rectangle) for each ST-part.
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4.2 Representation and Modeling

4.2.1 Spatial Temporal And-Or Graph Model

Figure 4.2 shows our spatial-temporal And-Or Graph model for representing action and

poses. There are three kinds of nodes: And nodes, Or nodes and Terminal nodes. The And

nodes capture the decomposition of a large entity. In our case the action and poses are

represented by And nodes because they are decomposed into several small entities. The Or

nodes represent structural variations and alternative choices. Here each ST-part is an Or

node since it could belong to different component. The Terminal node is observable and here

we directly associate them with image evidence. We define three kinds of terminal nodes to

represent actions at three scales. The terminal nodes associated with action and ST-parts

represent coarse and mid-level features respectively. The terminal nodes at bottom level

represent fine-level body part features.

In the top level of our AOG model, each action instance A is decomposed to a sequence

of poses pt,

A = {p1, p2, ..., pT} (4.1)

where T is the number of frames of this actio instance. Each pose pt is represented by an

And node and decomposed into several Spatial-Temporal mid-level parts li (Figure 4.2(a)),

pt = {l1, l2, ..., lM} (4.2)

where M is the number of ST-parts of pose pt. Each ST-part li is associated with its

label ci and several fine-level parts oj,

li = {o0, ..., oNi−1, ci} (4.3)

where oj = (xj, yj) denotes the location of the part which could be one of the human

joints, oj ∈ Ωpart,Ωpart = {′head′,′ torso′,′ leftarm′,′ rightarm′, ...}. Ni is the number of
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fine-level parts in this ST-part and o0 is the root part. ci is the label of this ST-part and

ci ∈ {1, 2, ..., zi}, zi is the number of labels. The ST-parts with the same label have small

appearance and deformation variations. Each ST-part also represent a movement phase of

the action. The learning of ST-parts will be discussed later in this chapter.

We divide the feature vectors of the nodes in our And-Or Graph into two categories:

classification features which focus on distinguishing different action categories and de-

tection features which focus on recognizing actions from background (non-action video

clips).

Classification feature includes two terms: ψ(li) and ψ(ci). ψ(li) = [d1 d2 ... dzi ]
T cap-

tures the deformation of ST-parts relative to root part. dj = (o0− uj) is the normalized Eu-

clidean distance between the root part and the center of ST-part. ψ(ci) = [0, 0,1(ci), ..., 0, 0]

represents the label of ST part and it is a zi dimension indicator where the entry correspond-

ing to component ci is one and the others are zero.

Detection feature contains two terms: the part score
∑Ni

j=0 S(oj) and the deformation

score
∑Ni

j=1 S(oj, o0). The two scores can be directly obtained from any off-the-shelf single

image pose estimation. Here we use the method from [YR12]. Those features can be treated

as the regularization for action classification.

There are two types of edges capturing binary relationship in our And-Or graph model:

the edges with orange color represent the geometric deformation of ST-parts/find-level parts

in a singe frame and edges with purple color represent the smoothness and temporal co-

occurrence of ST-parts at subsequent frames. We use three kinds of features for those binary

relations:

Deformation feature is a four-dimensional vector which models the deformation be-

tween ST-part and fine-level part as a 2D gaussian distribution: ψ(Ed) = [dx, dy, dx2, dy2]T , Ed ∈

ΩD.

Temporal co-occurrence feature at ST-part i of frame t is a zi × zi dimensional

indicator: ψ(Eo) = [0, 0,1(ct)1(ct+1), ..., 0], Eo ∈ ΩO which means that only the entry corre-

sponding to labels ct and ct+1 is set to one and the others are zeros.
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Smoothness feature d(lti, l
t+1
i ) is the negation of Euclidean distance between root part-

s lti and lt+1
i . This feature is designed for giving penalty to large movement of poses at

subsequent frames.

Although the action is represented by a sequence of poses, it is insufficient to only use

pose features for action recognition because low resolutions makes part detection unreliable.

As shown in Figure 2.2 we directly ground the action node at top-level and ST-part nodes

onto image evidence which means that the coarse-level and mid-level features are also utilized

for action recognition. For the coarse feature ψL, we follow the framework of [WKS13] to

extract the bag-of-words features based on dense trajectories. For the mid-level feature ψM ,

we extract HOG and HOF features in the window of each selected ST-part and concatenate

them to a long vector.

4.2.2 Score Functions

In this section we introduce the score functions of our hierarchical model in a bottom up

manner from fine-level parts to ST-parts, and then pose and actions. For simplicity we ignore

the action label because all score functions are the same for different action labels.

The terminal nodes in our model ground nodes to image data. Note that besides the

terminal nodes at the bottom layer like previous grammar models, we also have terminal

nodes at other layers for coarse-level action features and mid-level ST-part features. Instead

of training fine-level part templates with action jointly, we train them independently by

the off-the-shelf pose estimation method [YR12], thus the fine-level part scores and their

deformation scores are obtained directly from [YR12].

We first define the score for a ST-part i,

S(li) = Sd(li) + Sh(li) + λ

Ni∑
j=0

S(oj) + λ

Ni∑
j=1

S(oj, o0) (4.4)

There are four terms contributing to the ST-part score. The first two terms are scores

based on classification features and the last two terms are based on detection features.
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Sd(li) =< ωlid , ψ(li) > measures the compatibility of deformation of current ST-part li and

current action label. Sh(li) =< ωlih , ψ(ci) > measures the compatibility of the ST-part label

ci and current action label. S(oj) is the score of fine-level part j and S(oj) = log(P (oj))

where P (oj) is the marginal probability from pose estimation. S(oj, o0) =< ωij, ψ(Eij
d ) >

is the deformation score of part j related to the root part. Parameter λ is the weight for

detection score. The inference algorithm will search all possible ST-parts in the feature

pyramid and output a top candidate list at each image frame.

Each pose is consists of M ST-parts, therefore the score for a ST-part is the summation

of score of its children,

S(pt) =
M∑
i=1

S(lti) (4.5)

We assume that all ST-parts in each image frame are independent and we don’t consider

their geometric relationships. This assumption help us avoid the loopy graph structure which

is a common case in video pose estimation. In inference, we use dynamic programming to

infer the best ST-part sequence for each type of ST-part effectively. The details of inference

is discussed in Section 4.3.

As shown in the top level of Figure 2.2, each action instance is decomposed to a sequence

of full-body poses and their transitions at adjacent frames, thus the total score of an action

is formulated as,

SH(A) =
T∑
t=1

S(pt) +
T−1∑
t=1

S(pt+1|pt) (4.6)

where S(pt) is the score for ST-part pt and S(pt+1|pt) evaluate the transition between

two poses. The relation between two poses is characterized by the transitions between their

child ST-parts, thus it is thus written as,

S(pt+1|pt) =
M∑
i=1

S(lt+1
i |lti) (4.7)

The transition score between two ST-parts is defined as,
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S(lt+1
i |lti) = S(cti, c

t+1
i ) + ωlid(lti, l

t+1
i ) (4.8)

where S(cti, c
t+1
i ) =< ωlio , ψ(E

cti,c
t+1
i

o ) > is the score based on temporal co-occurrence

feature and ωlid(lti, l
t+1
i ) is the score based on smoothness feature.

We rewritten the score of the action based on notations of ST-parts,

SH(A) =
M∑
i=1

(
T∑
t=1

S(lti) +
T−1∑
t=1

S(lt+1
i |lti)) (4.9)

From the above equation we can clearly see that the action score is only related to the ST-

parts. Our inference algorithm search for the positions and labels of ST-parts to maximize

this score.

4.2.3 Mixture of Experts

As we discussed in Section 4.1, using only pose features for action recognition is not robust

because of the low resolution images which make part detection difficult. The Equation 4.9

can be seen as the classifier with information from poses. Here we also utilize the coarse-level

feature SL(A) and mid-level features SM(A) for classifying action at low resolutions. We first

train independent classifiers for SH(A), SM(A) and SL(A) and apply the mixture of experts

framework on top of the three classifiers. With coarse-level and mid-level scores, the action

score can be written as,

S(A) = πL(A)SL(A) + πM(A)SM(A) + πH(A)SH(A) (4.10)

SL(A) =< ωL, ψL(A) > is coarse-level score and SM(A) =< ωM , ψM(A) > is mid-level

score. The weights πL(A) =< ω′L, φ
′
L(A) >, πM(A) =< ω′M , φ

′
M(A) > and πH(A) =<

ω′H , φ
′
H(A) > are linear functions on features of action example A. Equation 4.10 will decide

how much information from each classifier will be used for the action recognition based on

the observable features.
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4.3 Inference

t=1 t=2 t=3 

1 

2 

3 

1 

2 

3 
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3 

(a) (b) 

Figure 4.3: An example of our inference method. (a) For each frame we generate a list of

ST-part candidates and compute the best sequence for action label by dynamic programming.

(b) The ST-part is represented by the mid-level features (HOG and HOF template) and

fine-level features (scores of knee and ankle).

Since we joint action recognition and pose estimation, the objective of our inference is

to find the action label of the whole video and body part locations at each frame. The

inference of part locations is conducted by optimizing the fine-level action score SH(A) in

equation 4.9. The inference of action label is done by computer the S(A) in equation 4.10.

The coarse-level score SL(A) and mid-level score SM(A) are trained by linear-SVM so the

inference is the dot-product between SVM weights and corresponding features. As illustrated

in Figure 4.3, the fine-level action scoe SH(A) is divided into M independent terms, each

of which corresponds to the summation of unary and binary scores of one spatial-temporal
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part. Due to the independence of M ST-parts, we apply dynamic programming to compute

the optimal sequence of each type of ST-part,

[l1i , l
2
i , ..., l

T
i ] = argmax

T∑
t=1

S(lti) +
T−1∑
t=1

S(lt+1
i |lti) (4.11)

The above equation is repeated M times to find the total M optimal sequence for each

action label. Finally the action score is computed by Equation 4.10 with coarse-level score

and mid-level score.

The final action label is obtained by finding the maximum score in Equation 4.10 and

we trace back to the best ST-part sequence for this action and then get all joint locations.

Note that the joint ’left shoulder’ can be either from the ST-part ’head shoulder’ or ’left

arm’ and we pick it from ’head shoulder’ which is easier to be detected than ’left arm’. The

joint ’right shoulder’ is also shared by ’head shoulder’ and ’right arm’ and we pick it from

’head shoulder’.

Searching ST-parts over the image pyramid is too time consuming because we need to

computer pose at each image frame. As shown in Figure 4.3, to speed up computation, we

first run [PR11] for each frame and compute response maps for all ST-parts. After non-

maximum suppression we pick the ST-part candidates which have scores greater than τ ,

then we connect all candidates on consecutive frames and compute their binary transition

scores. To determine the optimal threshold τ , we compute the scores on the ground truth

ST-parts for all training images and pick the highest value as the threshold that does not

prune any ground truth ST-part.

4.4 Learning

Our learning process contains two main stages: 1) learning type of ST-parts for each action

label. 2) learning the model parameters for coarse-level, mid-level and fine-level action.

Specifically we need to learn weights for unary ST-part scores , temporal transition scores

between ST-parts in subsequent frames and classification weights for each action.
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（a） （b） （c）

Figure 4.4: (a) The 13 parts used in our model. They are divided into five ST-parts each

of which contains three parts. (b) Some examples of pose annotations in training data and

their generated ST-parts. (c) Some examples for five ST-parts with two types.

As a mid-level representation of human pose, ST-parts are much more robust to image

variations than fine-level parts, especially on action datasets containing large appearance,

geometric and motion variations which are main challenges for detecting body parts. We

have annotations of part locations in the training data and we can learn configurations of

ST-parts from those annotations.

4.4.1 ST-part Representation

We use 13 fine-level parts to represent the human pose. As shown in Figure 4.4(a) the 13

parts are divided into 5 groups each of which corresponds to one spatial temporal part:

’head-shoulder’,’left arm’,’right arm’,’left leg’,’right leg’. Each ST-part includes three fine-

level parts. In order to compute deformation we define root part for each ST-part: head,

left elbow, right elbow, left knee, right knee. Each ST-part is encoded by a feature vector:

f(lti) = [∆p1,∆p2,∆p
t
0,∆p

t
1,∆p

t
2] (4.12)

where ∆p1 = p1−p0 and ∆p2 = p2−p0 are the offsets of parts relative to the root parts in

one frame. ∆pt0 = [pt−10 − pt0, pt+1
0 − pt0] is the temporal offset of root part at two subsequent
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frames. ∆pt1 and ∆pt2 are defined in the same way as ∆pt0. Using the temporal offset as a

feature is important for getting diverse ST-parts because some of them have the same joint

configuration and can only be distinguished by motions. To make the feature invariant to

scale, we use head length to estimate the full-body pose scale st at each frame, and then

normalize the feature vector: f(lti) = f(lti)/st.

4.4.2 ST-part Clustering

To capture the large appearance and motion variations and let actions share ST-parts, we

represent each ST-part as a mixture of components model and the components are obtained

by doing k-means clustering on the features f(lti). Each component indicates one type of

ST-part. In order to make the ST-part component compact in appearance and motion, we

first run k-means on the training examples with same action label and view label to get many

small clusters, hence each cluster has small variation in appearance and motion. Clusters

that have few examples and belong to only one video are removed as annotation errors.

Finally we combine these clusters according to their distance to let them to be shared by

different actions and viewpoints. We show some examples of ST-parts in Figure 4.4(c). We

can see that the examples of the same ST-part component have similar configurations of

fine-level parts.

4.4.3 Learning Model Parameters

The coarse-level template ωL is learned by linear-SVM using the dense trajectory features[WKS13].

These features don’t use any pose information and they try to capture the appearance and

short-term motion on the moving blocks which are tracked by optimal flows. The mid-level

information is captured by HOG/HOF features of ST-parts. Following[FGM10b], we first

train HOG/HOF templates on our ST-part components with linear-SVM, then convolute

those templates on image pyramid to extract response maps of ST-part candidates. The

feature vector is constructed by performing spatial-temporal max-pooling on response maps,

and the template ωM is learned by another linear-SVM.
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The parameters we need to learn for the fine-level action score include ωlid and ωlih for the

deformation compatibility score and label compatibility score of each ST-part, ωlio for the

ST-part co-occurrence score. We adapt latent Structure-SVM for learning those parameters

with regularization. Although all training data have part annotations, ground truth for part

locations and ST-part components, only using ground truth may hurt performance because

that it is very difficult to annotate all parts precisely at each frame in challenging action

datasets. Thus we allow the parts to move between the top N detected parts which are

within a certain distance of the ground truth part locations. The Learning process iterates

between the following two steps until convergence:

i) To train parameters w = [ωl1d ω
l1
h ω

l1
o ...ω

lM
d ωlMh ωlMo ], we ignore the detection scores

λ
∑Ni

j=0 S(oj) and λ
∑Ni

j=1 S(oj, o0) and the smoothness score βd(lti, l
t+1
i ) and train the pa-

rameters with detected poses hi. For the first iteration, h0 is set to ground truth poses. This

is formulated as a supervised multi-class classification problem,

minωt

1
2
‖ωt‖2 + C

n

∑n
i=1 ξi, (4.13)

s.t. maxŷ∈Y ω
T
t (φ(xi, y

t
i)− φ(xi, ŷ

t
i)) ≥ ∆(yi, ŷi)− ξi,

Here yti = (ai, h
t
i) where ai is action label. ∆(yi, ŷi) is 1 if ai = âiand 0 otherwise. t indexes

the iteration.

ii) After computing parameters at iteration t, we add the detection score and the smooth-

ness score back into the fine-level score function and infer the poses for each training example.

λ and β are determined by cross-validation on training data. Similar to the inference pro-

cess, we first generate the top N ST-parts candidates within a certain distance around the

ground truth and find the best sequence for each ST-part among those candidates under the

ground truth action label by Equation 4.11. Then we get the hidden variables ht+1
i from the

inferred ST-parts and go back to step 1.

After learning the parameters for the three levels, we obtain the scores from the classifiers

of the three levels separately. Finally we learn the weights πL(A), πM(A) and πH(A) to

combine the three classifiers for the final action recognition. We formulate the combination
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of three different classifiers in the mixture of experts framework [JJ93] where each expert

corresponds to a classifier in each level. The weights are computed based on each action

example, so the values of weights indicate which expert the example prefers to use for

classification. Here we concatenate scores of different categories at each level as features to

learn the weights.

4.5 Experiments

We test our method on two public action datasets: the Penn Action dataset [ZZD13] and

the sub-JHMDB dataset [JGZ13]. Both datasets are proposed for the purpose of action

recognition but they also provide annotations of human joints which are required by our

training approach. The performance of both action recognition and pose estimation are

evaluated on each dataset.

4.5.1 Evaluation on Penn Action Dataset

The Penn Action Dataset contains 15 action categories and the annotations include action

labels, rough view labels and 13 human joints for each image. The occlusion label of each

joint is also provided. We follow [ZZD13] to split the data into 50/50 for training/testing.

The action ’playing guitar’ and several other videos are removed because less than one third

of a person is visible in those data. We find that there exist some un-annotated joints that

always remain at the left-top corner of image. To correct those errors we train a regression

model to predict positions of un-annotated joints by using the visible neighbor joints from

videos with the same action and view label. In order to get diverse poses to train [YR12]

we first cluster the training data based on whole pose features to get 500 clusters. Then we

uniformly select total 5000 images from those clusters as training images. We use the code

provided by [YR12], and we set part mixture number to 8: 6 for visible joints and 2 for

occluded joints.

The number of mixture components of 5 S-T parts are 43, 37, 31, 56, 58. We find

that more components does not improve performance but increase training burden greatly.
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The hyper parameters λ = 10 and β = 0.01 for detection score and smooth score are

determined by cross-validation on the training data. Training converges in only 3 iterations.

The coarse-level action templates are trained by the code from [WKS13] and the mid-level

action templates are trained by public library of svm. The number of candidates of the

ST-part ’head-shoulder’ is around 200 and of other ST-parts is around 1000 because the

parts ’head’ and ’shoulder’ only have high scores on a few locations whereas other parts have

much larger variations on the response map.

Method Accuracy

STIP[ZZD13] 82.9%

Dense[WKS13] 73.4%

MST[WNX14] 74.0%

Action Bank[ZZD13] 83.9%

Actemes[ZZD13] 79.4%

Ours(fine) 73.4%

Ours(all) 85.5%

Table 4.1: Recognition accuracy on Penn Action dataset. Action Bank is not directly com-

parable since it uses other training dataset.

Table.4.1 compares the action recognition accuracy between previous methods and ours.

We use the numbers of STIP, Dense, Action Bank and Actemes from [ZZD13]. Ours(fine) is

trained by only fine-level features and Ours(all) is trained with all feature levels. With only

fine-level features, the performance is not very good, but when coarse/mid-level features are

added in the performance is improved due to the low resolution and heavy occlusion that

make part detection unreliable and not good enough to classify actions.

The confusion matrix of Ours(all) is shown in Figure 4.5. Our approach performs well on

the actions such as ’bowl’, ’pull up’, ’push up’ and ’squat’, however we achieve low accuracy

on actions with fast movement such as ’tennis forehand’ because the motion blur makes the

positions of critical parts like wrists always wrong.
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Figure 4.5: The confusion matrix of our method on Penn Action Dataset.
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Penn Action Dataset

Head Shou Elbo Wris Hip Knee Ankle mean

[YR12] 57.9 51.3 30.1 21.4 52.6 49.7 46.2 44.2

[PR11] 62.8 52.0 32.3 23.3 53.3 50.2 43.0 45.3

[CMA14] − − − − − − − −

Ours 64.2 55.4 33.8 24.4 56.4 54.1 48.0 48.0

Table 4.2: Pose estimation accuracy in %.

sub-JHMDB Dataset

Head Shou Elbo Wris Hip Knee Ankle mean

[YR12] 73.8 57.5 30.7 22.1 69.9 58.2 48.9 51.6

[PR11] 79.0 60.3 28.7 16.0 74.8 59.2 49.3 52.5

[CMA14] 47.4 18.2 0.08 0.07 − − − 16.4

Ours 80.3 63.5 32.5 21.6 76.3 62.7 53.1 55.7

Table 4.3: Pose estimation accuracy in %.

We compare pose estimation accuracy with Yang et al. [YR12] and Park et al. [PR11].

We use their evaluation criteria and set the threshold to 0.2. The results are illustrated in

Table 4.2 and Table 4.3. Our method outperforms theirs at every part. It is reasonable that

the action specific motion information can help our method to select better parts which are

not always detected with highest score the single image based pose estimation.

4.5.2 Evaluation on sub JHMDB Dataset

The sub-JHMDB dataset contains 316 clips with 12 action categories. It provides action

labels, rough-view labels and 15 human joints for each frame. All joints are inside the image

and there are no un-annotated joints. We use 13 human joints to train the single image pose

estimation. We also do clustering on all frames using the whole pose features and select a

total 1500 images from clusters for training. The part mixture number is set to 6.

We use the 3-fold cross validation setting provided by the dataset to do experiments.
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The number of mixture components of 5 ST parts are 36, 42, 39, 64 and 64. The parameters

λ = 20 and β = 0.01 for detection score and smooth score are decided by cross-validation

and the training converges in 3 iterations.

Method Accuracy

Dense[JGZ13] 46.0%

MST[WNX14] 45.3%

Pose[JGZ13] 52.9%

Ours(fine) 55.7%

Ours(all) 61.2%

Table 4.4: Pose estimation accuracy in %.

Table 4.4 compares our action recognition performance with others. We use the numbers

of ’Dense’ and ’Pose’ from [JGZ13]. For Pose[JGZ13], we use the highest number they

obtained by using pose features extracted from pose estimation. With only fine-level features

our method already outperforms others. With coarse/mid features the accuracy is increased

by nearly 6 percent because there are many low-resolution videos with large errors of pose

estimation.

The comparison of pose estimation is illustrated in Table 4.2 and Table 4.3. Our method

outperforms [YR12] a lot for parts ’Head’ and ’Hip’ by nearly 7%, however for the parts

’Elbows’ and ’Wrists’ our performance is similar to theirs which we believe is caused by that

those parts are very subtle and the specific action motion information may prefer the dis-

tinguished part locations which are never in the right positions. To compare with [CMA14],

we re-train their method on our dataset, and they only estimate the joints in upper body.

Results demonstrate that the pairwise smoothness features used in their method are not

working well in the action dataset because of the large motion and appearance variations.
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Penn

sub-JHMDB

Figure 4.6: Some pose estimation results of our method on the two datasets. The last two

columns show failure examples with red rectangle.

4.6 Incorporating Deep Neural Networks (DNN)

In this section, we integrate deep neural networks with our spatial-temporal and-or graph

model to further improve the performance of pose estimation and action recognition. Most

recently the method based on deep architectures have achieved huge progress in 2D human

pose estimation [TJL14, CSW17, CY14, TS14a]. In those works, the appearance and de-

formation variation of human pose are implicitly modeled in feed-forward computations in

networks with deep structures. The learned filters at different layers can also address the

self-occlusion problem quite well. Another benefit of those methods is that they can train the

models by back-prorogation and the inference can be done in the end-to-end manner. The

GPU can be also utilized in those models for largely accelerating the computation speed. Re-

cently there are many methods trying to recognize actions by deep networks and they achieve

comparable or better performance than previous methods which use hand-crafted features

and carefully designed models. They either train the action recognition with DNN in the

end-to-end fashion [SZ14a, KTS14, DHG15] or combine deep features with other non-deep

models [WQT15].

We borrow the strength from deep neural networks in the following way: We use the
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output from DNN to represent the terminal nodes for fine-level parts of our ST-AOG model.

Previously we use the method from [YR12] to compute the response map of each fine-level

part, however, here we replace it with a deep network to directly output the response maps

so the fine-level part score S(oj) in Equation 4.4 is from DNN. We generate our fine-level part

and ST-part candidates from those response maps following the same way as we mentioned

in Chapter 4.3.

We visualize the structure of the deep neural network used for our part localization in

Figure 4.7. The feed-forward computation in this network can be divided into two processes

based on the feature map size: 1) the top-down process which takes the whole image as input

and use many convolutional layers to generate feature map with size 14x14x512. 2) In order

to get high resolution part locations, the bottom up process generates enlarge the feature

map to 56x56x384 by two deconvolutional layers. The last convolutional layer classifies the

part types at each location so the response maps for all parts are computed. To train the

network, we generate the ground-truth response maps by adding 2D gaussian centered on

the joint location with standard deviation of 2 pixels. The mean squared error (MSE) loss

is applied to compare the network output and ground-truth response maps. The training

takes one day on a 12GB NIVIDA TitanX GPU.

Figure 4.7: The structure of the deep neural network used for our part localization.

75



We evaluate our method with deep network on Penn Action dataset for both pose esti-

mation and action recognition. We use the same training/testing split and evaluation metric

from Section 4.5.1. The results are reported in Table 4.5 where ’ours(deep)’ denotes our

method with deep network. The action classification accuracy is further improved by abso-

lute 5.8% which we believe is due to the much better part candidates extracted from the deep

network instead of [YR12]. The results of pose estimation are reported in Table 4.6. Besides

comparing with our previous method without DNN (denoted as ’ours’), we also compare

with [GTJ16] which also utilizes deep networks. We can see that the deep network clearly

improves part localization accuracy a lot over our previous method. We also outperform

[GTJ16] which combines deep convolutional network with recurrent network for video pose

estimation. The results also demonstrate the benefit of joint modeling of action and pose in

our spatial-temporal and-or graph. Some qualitative results of part localization with deep

network are shown in Figure 4.8.

Method Accuracy

STIP[ZZD13] 82.9%

Dense[WKS13] 73.4%

MST[WNX14] 74.0%

Action Bank[ZZD13] 83.9%

Actemes[ZZD13] 79.4%

Ours(all) 85.5%

Ours(deep) 91.3%

Table 4.5: Recognition accuracy on Penn Action dataset. Action Bank is not directly com-

parable since it uses other training dataset.

4.7 Summary

In this section, we study a new framework to combine action recognition and pose estimation.

The Spatial-Temporal And-Or Graph is proposed to represent action and pose jointly and the
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Penn Action Dataset

Head Shou Elbo Wris Hip Knee Ankle mean

[GTJ16] 95.6 93.8 90.4 90.7 91.8 90.8 91.5 91.8

Ours 64.2 55.4 33.8 24.4 56.4 54.1 48.0 48.0

Ours(deep) 97.4 96.0 91.0 90.5 94.5 92.8 93.2 93.3

Table 4.6: Pose estimation accuracy in %.

Figure 4.8: Some examples of our part localization with deep network. The dots with

different colors represent different body parts.
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training and inference for the two tasks are conducted simultaneously. Our framework can

also embrace the powerfulness of deep neural network (DNN) by replacing the terminal nodes

with output from DNNs. The experiment results demonstrate our superior performance over

other stat-of-the-art methods and also the benefits of joint modeling of action and pose. One

limitation of our method is that we do not handle the self-occlusion explicitly which always

appears in action dataset and also a big challenge for pose estimation. In the future, we plan

to integrate the 3D pose estimation with current framework because that the occlusion issue

can be solved to some extent with the help of 3D information.
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CHAPTER 5

Monocular 3D Human Pose Estimation by Predicting

Depth on Joints

5.1 Introduction

5.1.1 Motivation and Objective

In this Chapter, we aim at reconstructing full-body 3D human poses from a single RGB

image. Specifically we want to localize the human joints in 3D space. Estimating 3D

human pose is a classic task in computer vision and serves as a key component in many

human related practical applications such as intelligent surveillance system, human-robot

interaction system, human activity analysis, human attention recognition and so on. There

are some existing works which estimate 3D poses in constrained environment from depth

images [YWY11, SFC11] or RGB images captured simultaneously at multiple viewpoints

[YGG12, HG12]. Different from them, here we focus on recognizing 3D pose directly from a

single RGB image which is easier to be captured from general environment.

Estimating 3D human poses from a single RGB image is a challenging problem due to

two main reasons: 1) the target person in the image always exhibits large appearance and

geometric variation because of different clothes, postures, illuminations, camera viewpoints

and so on. The highly articulated human pose also brings about heavy self-occlusions. 2)

even the ground-truth 2D pose is given, recovering the 3D pose is inherently ambiguous since

that there are infinite 3D poses which can be projected onto the same 2D pose when the

depth information is unknown.

One inspiration of our work is the huge progress of 2D human pose estimation made by
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recent works based on deep architectures [TJL14, NYD16, WRK16, CSW17]. In those works,

the appearance and geometric variation are implicitly modeled in feed-forward computations

in networks with hierarchical deep structure. The self-occlusion is also addressed well by

filters from different layers capturing features at different scales. Another inspiration of our

work is the effectiveness that deep CNN has demonstrated for depth map prediction from

monocular image [EPF14, WSL15, LSL15] instead of stereo images or videos. Most of those

approaches directly predict the pixel-wise depth map using deep networks and some of them

build markov random fields on the output of deep networks. The largest benefit is that they

are not bothered by designing geometric priors or hand-crafted features, and most models

can be trained end-to-end using back-propagation. Based on the two above inspirations, in

this paper, we propose a novel framework to address the challenge of lifting 2D pose to 3D

pose by predicting the depth of joints from two cues: global 2D joint locations and local

body part images. The 2D joint locations are predicted from off-the-shelf pose estimation

methods.

5.1.2 Method Overview

Our approach is built on a two-level hierarchy of LSTM networks to predict the depth on

human joints and then recover 3D full-body human pose. The first level of our model contains

two key components: 1) the skeleton-LSTM network which takes the predicted 2D joint

locations to estimate depth of joints. This is based on the assumption that the global human

depth information such as global scale and rough depth can be inferred from the correlation

between 2D skeleton and 3D pose. This global skeleton feature can help to remove the

physically implausible 3D joint configuration and predict depth with considerable accuracy;

2) the patch-LSTM network which takes the local image patches of body parts as input

to predict depth. This network addresses the correlation between human part appearance

and depth information. To better model the kinematic relation of human skeletons, the

two recurrent networks have tree-structures which are defined on human skeletons. During

training, the features at different joints are broadcasted through the whole skeleton and in

testing the depth are predicted for each joint in top-down fashion. The skeleton-LSTM is
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first pre-trained on 2D-3D pose pairs without any image so infinite training examples can be

generated by projecting 3D poses onto 2D space under arbitrary viewpoint. The patch-LSTM

is pre-trained on human body patches extracted around 2D joints. To increase appearance

variation and reduce overfitting we employ multi-task learning on the combination of two

data sources: the MoCap data with the task of depth regression and in-the-wild pose data

with the task of 2D pose regression. The two networks are aggregated in the second layer

and finetuned together for final depth prediction. We evaluate our method extensively on

Human3.6M dataset [IPO14] using two protocols. To test the generalization ability, we test

our method on HHOI dataset using the model trained on Human3.6M dataset. The results

demonstrate that we achieve better performance over state of the art quantitatively and

qualitatively.

The contribution of our approach is three-fold:

i) We explore the ability of deep network for predicting the depth of human joints and then

recover 3D pose. Our framework is more flexible than others because complex optimization

is not needed and model can be trained end-to-end.

ii) We incorporate both global 2D skeleton features and local image patch features in a

two-level LSTM network and the tree-structure topology of our model naturally represents

the kinematic relation of human skeleton. The features at different joints are aggregated in

top-down fashion.

iii) The extensive experiments demonstrate the superior quantitative and qualitative

performance of our work relative to other state of the art methods.

5.2 Models

In this section, we will first describe the relationship between 3D pose estimation and depth

prediction, and then introduce our model and its corresponding formulations.
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3D pose library

Skeleton-LSTM Patch-LSTMFinal
LSTM

+

4 fc
4 conv+1 fc

Mocap images
Depth regression Depth regression 2D pose regression

Depth regression

Figure 5.1: Overview of our model structure and training process. In the first level, the

skeleton-LSTM is pre-trained with 2D-3D pose pairs to predict depth from global skeleton

features. The patch-LSTM predicts depth from local image patch evidence of body parts.

The tree-structure of two networks are defined on the kinematic relation of human joints,

so the state of current joint is composed of the hidden states of its parents and the input

feature of itself. The two networks are integrated into another LSTM at the second level for

end-to-end training. To reduce overfitting of patch-LSTM, we borrow in-the-wild 2D pose

images and train the network with multi-task loss: the depth prediction loss and 2D pose

regression loss.
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5.2.1 Recover 3D Pose by Depth Prediction

The 3D human pose is represented by a set of locations of human joints in 3D space. We use

W ∈ R3×N to denote the 3D pose in the world’s coordinate system where N is the number

of joints. Each 3D joint location in W is denoted by the 3D coordinate wi = [Xi, Yi, Zi],

i ∈ 1, ..., N . The 2D pose is defined in the same way as S ∈ R2×N and each 2D joint

is denoted as si = [xi, yi]. The relationship between each 3D joint and 2D joint can be

described as a perspective projection:

zi ·


xi

yi

1

 = f · [R|T ] ·


Xi

Yi

Zi

1

 , i ∈ 1, ..., N (5.1)

where R ∈ R3×3 denotes the camera rotation matrix, f denotes focal length and zi denotes

depth of joint i. Note that in Eqn 5.1 there is no weak perspective assumption about the

relationship between 3D pose and 2D pose. Given 2D joint locations [xi, yi] and focal length

f we need the depth value for each joint zi, global rotation R and translation T to recover

all 3D joint locations. Since there are infinite combinations of transformation matrix [R|T ]

and world coordinate [Xi, Yi, Zi] which can produce the same [xi, yi] and zi with unknown

camera position, therefore in this work we focus on predicting z = [z1, ..., zN ] to recover the

3D pose in the camera’s coordinate system Ŵ = [R|T ] · [W |1]T .

In order to predict the depth, we define the joint distribution of depth z, 2D pose S and

image I:

P (z, S, I) = P (z|S, I) · P (S|I) · P (I) (5.2)

where P (S|I) represents the 2D pose estimation from single image I which can be handled

by any off-the-shelf 2D pose estimation method. The separate estimation of depth and 2D

pose allows P (S|I) to be modeled by any complex method. Any improvement made in

P (S|I) can be immediately plugged into P (z, S, I) and re-training of the whole system is

not needed. P (z|S, I) is modeled as a two-level hierarchy of LSTM which utilizes the 2D
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pose S and image evidence I in the first level, and integrates two networks in the second

level for final depth prediction. The details of our model are described below.

5.2.2 Components of our Model

To take advantage of the global skeleton feature and local image feature to predict depth, we

use a deep structure of LSTMs with two levels. As shown in Figure 5.1, the first level consists

of two recurrent networks: a skeleton-LSTM stacked with a 2D pose encoding network which

takes the predicted 2D pose S as input and a patch-LSTM stacked with image patch encoding

network which takes the local image patches I(si), i ∈ [1, ..., N ] around 2D joints as input.

The hidden states of the two networks at each joint are max pooled and forwarded to the

LSTM at the second level to predict the final real valued depth di for each joint.

Inspired by those graphical model based pose estimation methods [YR12, RPZ13, PAG13],

we represent human pose as a tree structure based on the kinematic relation of skeleton. The

articulated relation are better represented and the correlation of features at parent joint and

child joint are better captured within tree structure than the flat or sequential structure.

Similar to the framework of [?], we adapt the tree-structured LSTM for modeling human

pose and integrating global and local features. The aggregated contextual information are

propagated efficiently through the edges between joints. In experiments we evaluate different

choices of model structure and demonstrate the empirical strength of tree-structure over the

flat or sequential model.

The three tree-structured LSTMs in our model share the same equation and only differ

in the input data. At joint j, the state of the LSTM unit is composed of the current input

feature xj, all hidden states hk and memory states ck from its parents, and the output is the

hidden state hj and memory state cj which is forwarded to the child joint:

(hj, cj) = LSTM(xj, {hk}k∈N(j), {ck}k∈N(j),W, U) (5.3)

where W and U are weight matrices. To obtain a fixed dimension of the input feature,

the hidden states from all parents of joint j are mean pooled:
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h̄j = (
∑

k∈N(j)
hk)
/
|N(j)| (5.4)

h̄j is used to compute LSTM gates of joint j as below:

ij = σ(W ixj + U ih̄j + bi)

fjk = σ(W fxj + U fhk + bf )

oj = σ(W oxj + U oh̄j + bo)

c̃j = tanh(W cxj + U ch̄j + bc)

cj = ij � c̃j +
∑

k∈N(j)
(fjk � ck)

hj = oj � tanh(cj)

(5.5)

where ij is the input gate, fjk is the forget gate of parent k, oj is the output gate, σ

denotes the sigmoid function and � denotes the element-wise multiplication. Note that our

LSTM has different forget gates for different parent joint and the multiplication of each fjk

and ck indicates the influence of parent k on current joint j.

2D pose encoding. As shown on the left of Figure 5.1, the skeleton-LSTM utilize

the global information from 2D skeleton S to predict the depth. In order to have a better

representation of the 2D skeleton, we apply a multi-layer perceptron network shared by all

joints to extract the global pose feature. The input feature of the skeleton-LSTM at joint j

is xsj = MP (Ŝj) where Ŝj is the normalized 2D pose by subtracting each joint location by

the current joint location [xj, yj]. The structure of the multi-layer perceptron is visualized

in Figure 5.2. It is trained together with the skeleton-LSTM.

image patch encoding. As shown on the right of Figure 5.1, the patch-LSTM utilizes

the local information from image patches of body parts for depth prediction. The input of

LSTM unit at joint j is the encoded feature of the corresponding image patch around that

joint. We use xpj = CNN(I(xj, yj)) to denote the input feature which is the last layer of a

small ConvNet shared by all joints. The structure of the ConvNet is visualized in Figure

5.3.

For the final LSTM at the second layer, the input feature at joint j is the element-wise
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Figure 5.2: The multi-layer perceptron network for 2D pose encoding.

max pooling of hidden states from skeleton-LSTM and patch-LSTM: xj = max(hsj , h
p
j).

The real-value depth in log space log(zj) at each joint is predicted by attaching another

fully-connected layer on the hidden state hj: log(zj) = σ(W zhj + bz).
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Figure 5.3: The convolutional network for image patch encoding.

5.3 Learning

The model weights that we need to learn include the weights of three LSTMs, and the weights

of the 2D pose encoding network and image patch encoding network. The learning process

consists of three phrases:

1) The skeleton-LSTM and skeleton encoding network are first pre-trained from Mocap

data using the 2D-3D pose pairs with depth prediction loss. The RGB images are not needed

and infinite 2D-3D pose pairs can be generated by projecting each 3D pose into 2D poses

under different camera viewpoints.
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2) The patch-LSTM and image encoding network are first pre-trained on RGB images

from both MoCap dataset and in-the-wild 2D pose dataset with multi-task loss. Although

the 2D pose dataset does not have depth data, they act as a regulariser with loss function

of 2D pose regression.

3) The last step is to combine the two LSTMs in the second layer for end-to-end training.

5.3.1 Loss Function

The loss functions for depth regression at the above three phrases share the same formulation

but use different input feature and hyper parameters. Inspired by [EPF14], we define the

loss based on both relative error and absolute error:

di = log(zi)− log(z∗i )

dij = (log(zi)− log(zj))− (log(z∗i )− log(z∗j ))

L(z, z∗) = λ
1

n

n∑
i=1

d2i + β
1

|E|
∑

(i,j)∈E

d2ij

(5.6)

where z is the vector of all depth values on joints, n is the number of joints and E denotes

the set of edges in the tree structure. The first term of L(z, z∗) is the mean squared error

which enforces the absolute depth at each joint to be correct and the second term penalizes

the difference of relative depth between each parent-child pairs. Instead of considering all

pairwise depth relations in [EPF14], we focus on the parent-child depth relations represented

by edges in the tree structure of our model. The hyper parameters λ and β control the

balance between absolute depth loss and relative depth loss. We set different λ and β for

training skeleton-LSTM and patch-LSTM since they are good at minimizing different losses

with different features.

5.3.2 Multi-task learning for patch-LSTM

As mentioned in Section 3.1, the patch-LSTM needs to be trained on image data with depth

values of joints, and the images from Mocap data are captured from a highly constrained

environment with small appearance variation which may lead to severe over-fitting. To
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decrease over-fitting, we argument training data using in-the-wild images with annotations

of 2D poses from public pose datasets. Although the 2D pose datasets do not have depth,

we apply the multi-task learning [?] to combine it with Mocap dataset in the same network.

Specifically, we add another fully-connect layer on top of the hidden state of LSTM to regress

the 2D joint locations which are normalized following [TS14b]. The overall training loss is

the sum of depth prediction loss which only operates on Mocap data and 2D pose regression

loss which operates on both Mocap data and 2D pose data.

5.4 Experiment Results

Datasets. For empirical evaluation of our 3D pose estimation we use two datasets: Hu-

man3.6M dataset (H3.6M) [IPO14] and UCLA Human-Human-Object Interaction Dataset

(HHOI) [SRZ16]. The Human3.6M dataset is a large-scale dataset which includes accurate

3.6 million 3D human poses captured by Mocap system. It also includes synchronized videos

and projected 2D poses from 4 cameras so the 2D-3D pose pairs are available. There are

total 11 actors performing 15 actions such as Sitting, Waiting and Walking. This dataset

is captured in a controlled indoor environment. The HHOI dataset contains human interac-

tions captured by MS Kinect v2 sensor. It includes 3 types of human-human interactions:

shake hands, high five and pull up and 2 types of human-object-human interactions: throw

and catch, hand over a cup. There are 8 actors performing 23.6 instances per interaction on

average. The data is collected in a common office with clutter background. For in-the-wild

2D pose dataset, we use the MPII-LSP-extended dataset [PIT16] which is a combination of

the extend LSP and the MPII dataset. After flipping each image horizontally, we get a total

of 80000 images with 2D pose annotations.

Implementation details. We use the public deep learning library Keras to implement

our method. The training and testing are conducted on a single NVIDIA Titan X (Pascal)

GPU. To train the skeleton-LSTM, we use the 2D-3D pose pairs down-sampled at 5 fps from

Human3.6M dataset. Each 3D pose is projected onto 2D poses under 4 camera viewpoints.

The 2D pose encoding network is stacked with skeleton LSTM for joint training with param-
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Figure 5.4: Qualitative results from HHOI dataset. We visualize ten frames and their es-

timated 3D poses from action ’Pull Up’ and ’Hand Over’. Besides the original results, we

show pose rendering results for better visualization.
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eter λ = 0.5 and β = 0.5. To train the patch-LSTM, we use image frames down-sampled at

25 fps from Human3.6M and all images from MPII-LSP-extended dataset. The image patch

encoding network is stacked with patch-LSTM for joint training with parameter λ = 0.2 and

β = 0.8. After the separate training of the two networks, we finally combine them with the

final LSTM for end to end training using λ = β = 0.5. RMSprop [TH] is used for mini-batch

gradient descent and the learning rate is 0.00001 for all networks. The batch size is 128 for

skeleton-LSTM and 64 for others.

Baseline. In addition to comparing our final system with state of the art methods, we

also use two variations of our method as baselines : 1) To isolate the impact of image feature,

we only keep the skeleton-LSTM and the 2D pose encoding network and train them jointly

to predict the depth and then recover 3D pose. This baseline is denoted as ”ours(s)”; 2) We

only keep patch-LSTM and image patch encoding network and it is denoted as ”ours(p)”.

5.4.1 Evaluation on Human3.6M Dataset

We compare our results with state of the art approaches in 3D pose estimation on Hu-

man3.6M dataset. We follow the evaluation protocol in [YIK16]. The image frames and

poses from subject S1, S5, S6, S7, S8 and S9 are used for training and S11 for testing. The

testing data from S11 is down-sampled at 64fps and some poses without synchronized images

are removed so the total testing set has 3612 poses. The training set has around 1.8 million

2D/3D poses with synchronized images. The 3D pose error is measured by the mean per

joint position error (MPJPE) [IPO14] at 13 joints up to a rigid transformation. We refer to

this protocol by P1.

The quantitative results are presented in Table 5.1. The method ”our(s)” and ”our(p)”

are two method variations and ”our(s+p)” is our final system. In all model variations, we

apply the pre-trained off-the-shelf 2D pose estimator from [HL16] to detect 2D poses without

any re-training or fine-tuning because it is easy for the model to overfit the Human3.6M

dataset which is captured in a highly constrained environment with limited appearance

variation. Yasin et al. [YIK16] applies the pictorial structure model to represent 2D pose.
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Methods Direct Discuss Eat Greet Phone Pose Purchase Sit SitDown Smoke Photo Wait Walk WalkDog WalkTo Mean

Yasin[YIK16] 88.4 72.5 108.5 110.2 97.1 81.6 107.2 119.0 170.8 108.2 142.5 86.9 92.1 165.7 102.0 110.2

Gall[KG15] − − − − − − − − − − − − − − − 115.7

Rogez[RS16] − − − − − − − − − − − − − − − 88.1

our(s) 70.8 71.0 81.0 83.2 87.6 73.3 80.7 103.4 121.7 95.1 91.2 80.8 71.8 89.3 73.0 84.9

our(p) 93.5 88.0 116.7 105.4 111.3 80.0 99.7 136.7 173.2 111.5 117.6 86.9 89.1 118.8 97.5 108.4

our(s+p) 62.8 69.2 79.6 78.8 80.8 72.5 73.9 96.1 106.9 88.0 86.9 70.7 71.9 76.5 73.2 79.5

Table 5.1: Quantitative comparison of mean per joint errors (mm) on Human3.6M dataset

(Protocol 1).

Gall et al. [KG15] and Rogez et al. [RS16] predict the 3D poses without explicit 2D pose

modeling.

Table 5.1 shows that our model variation ”our(s)” outperforms other approaches which

demonstrates the powerfulness of predicting depth from only 2D pose. The human 2d pose

can be seen as a strong cue to estimate the corresponding 3D pose. Although there are some

ambiguities in the perspective projection, with only 2D pose features our model already

captures helpful information to predict the depth of joint. This result also indicates that

predicting the joint depth is more robust than predicting the whole 3D pose.

Our method variation ”our(p)” achieves similar results with [KG15] which also uses image

patches to predict 3D joint locations. To train the patch-LSTM, we focus on the pairwise

relative losses as shown in Eqn 5.6 because it is hard to predict the absolute depth with

resized body part images. After integrating the skeleton-LSTM and patch-LSTM we further

decrease the error to 79.5mm which outperforms the second best result by 9.8%.

We also report results for protocol 2 (P2) which is employed in [ZZL16, TRL16, RS16].

The 2D/3D poses and image frames of subject S1, S5, S6, S7 and S8 are used for training

and S7, S9 are used for testing. The estimated 3D pose and ground truth pose are aligned

with their root locations and MPJPE is calculated without rigid transformation. The results

of our final system and state-of-the-art approaches are presented in Table 5.2. Our method

clearly outperforms the second best result [ZZL16] by 13.72% even though they use temporal

information to help 3D pose estimation.
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Methods Direct Discuss Eat Greet Phone Pose Purchase Sit SitDown Smoke Photo Wait Walk WalkDog WalkTo Mean

Tekin[TRL16] 102.4 158.5 87.9 126.8 118.4 185.0 114.7 107.6 136.2 205.7 118.2 146.7 128.1 65.9 77.2 125.3

Zhou[ZZL16] 87.4 109.3 87.1 103.2 116.2 143.3 106.9 99.8 124.5 199.2 107.4 118.1 114.2 79.4 97.7 113.0

Rogez[RS16] − − − − − − − − − − − − − − − 121.2

our(s+p) 90.1 88.2 85.7 95.6 103.9 92.4 90.4 117.9 136.4 98.5 103.0 94.4 86.0 90.6 89.5 97.5

Table 5.2: Quantitative comparison of mean per joint errors (mm) on Human3.6M dataset

(Protocol 2).

5.4.2 Evaluation on HHOI Dataset

To evaluate how our method can be generalized to data from a totally different environment,

we train model on Human3.6M dataset and test it on HHOI dataset which is captured with

Kinect sensor in a casual environment. We pick 13 joints defined by Kinect and also use

mean per joint error as the evaluation metric. Each action instance is down-sampled at 10fps

for efficient computation and both persons in each action are evaluated. We still use the

focal length from Human3.6M to recover 3D poses and the poses are compared up to a rigid

transformation and also scale transformation. The method of [HL16] is used to produce 2D

poses. Some qualitative results are presented in Fig 5.4. For better visualization of 3D pose,

we do pose rendering using the code released from [ZJZ16]. The two poses at each frame are

recovered independently so their relative depth may not be correct. We regress the relative

mean depth between two persons using the 2d distance on y axis between two persons’ feet.

There is no public code for recent methods compared in Human3.6M dataset so we im-

plement another baseline ’Nearest’ which match the predicted 2D pose with 2D poses from

Human3.6M and select the depth from the 3D pose paired with the nearest 2D pose as

the predicted depth. Note that the Kinect may produce unreasonable 3D poses because of

occlusions and the evaluation with those poses cannot reflect true performance of compared

methods, thus we looked at each action video and carefully select some of them for quanti-

tative comparison. Specifically we keep all videos from ’PullUp’ and ’HandOver’, and a few

videos from ’HighFive’ and ’ShakeHands’. We select the smaller error calculated among the

predicted pose and its flipped one due to the left-right confusion of Kinect. The quantitative

92



results are summarized in Table 5.3. The action ’Pull Up’ gets the biggest error among all

actions due to the large pose variation. Our final model outperforms other baselines in three

actions.

Method PullUp HandOver HighFive ShakeHands

Nearest 161.2 126.2 117.3 129.6

our(s) 139.8 105.2 98.4 113.1

our(p) 132.4 102.5 103.0 129.0

our(s+p) 124.8 101.9 96.1 118.6

Table 5.3: Quantitative comparison of mean per joint errors (mm) on HHOI dataset.

5.4.3 Diagnostic Experiments

To better justify the contribution of each component of our method, we do several diagnostic

comparisons in the following. The Human3.6M and protocol 1 is used for all comparisons.

Effect of 2D poses. We first evaluate our method on 3D pose estimation when ground

truth 2D poses are given and compare it with [YIK16]. The results are presented in Table

5.4 (a) and indicate the potential of improvement when a more accurate 2D pose estimator

is available.

(a)

Method Error

Yasin et al. [YIK16] 70.3

our(s) 46.3

our(p) 79.3

our(s+p) 42.9

(b)

Method No scale scale

our(s) 84.9 80.6

our(p) 108.4 105.4

our(s+p) 79.5 74.0

Table 5.4: Quantitative comparison of mean per joint errors (mm) on Human3.6M (a) given ground

truth 2D poses; (b) with and without scale transformation.

We also consider the effect of performance of 2D pose estimation. To generate 2D poses
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with different errors, we add disturbance to locations of different number of joints. Specif-

ically, for each testing 2D pose, we randomly choose certain number of joints and add a

uniform random noise in the range [0, e], e = 0.1 ·max(h,w), where h and w are the height

and width of the pose respectively. The absolute depth error and 3D pose error are calcu-

lated at each number of disturbed joints. The results are visualized in Fig 5.5. Although

the absolute depth error increases quickly with the error of 2D pose estimation, the 3D pose

error increases slowly which indicates that the relative depth relations are not effected too

much by the disturbed 2D pose.

Figure 5.5: Depth and 3D pose error with different number of disturbed joints.

Scale transformation. In general, it is impossible to estimate the global scale of the

person from monocular image so we evaluate different variations of our model with a scale

transformation. The results are presented in Table 5.4 (b) which show that there is a

consistent improvement on all model variations when the scale transformation is allowed.
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Different model structures. We consider the effect of model structure on the 3D pose

estimation performance when only 2D skeleton features are used. We compare the following

structures with the loss function defined in Eqn. 5.6:

-ske-econding. We remove the tree-structure LSTM network and only keep the 2D pose

encoding network. In this setting, the effect of explicit modeling of relations between joints

are removed.

-ske-seq. We change the tree structure of the skeleton LSTM to a sequential chain

structure with a fixed order of joints. It is impossible to evaluate all permutations of joints

so we choose the order which is more similar to the tree structure: head-left limb-right limb.

-ske-tree. The skeleton-LSTM used in our final system.

We also evaluate the effect of the model structure when only body part image features

are used. We remove 2D pose features and compare the three model variations:

-whole-vgg. We apply the VGG model [SZ14b] to predict the depth from the cropped

image of the whole person instead of body part.

-patch-seq. It has the same sequential structure as ske-seq.

-patch-tree. The patch-LSTM used in our final system.

The results are shown in Table 5.5. The method with LSTM network boost performance a

lot on both skeleton features (84.9 vs 113.0) and image patch features (108.4 vs 169.8) which

demonstrates that the modeling of relationships between joints are essential for predicting

depth. The comparison between sequential chain structure and tree structure demonstrates

that the latter is more appropriate for modeling human skeleton than the former on both

features.

5.5 Summary

In this Chapter, we propose a framework to predict the depth of human joints and recover

the 3D pose. Our approach is built on a two level hierarchy of LSTM by utilizing two

cues: the 2D skeleton feature which is captured by skeleton-LSTM and image feature of
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Method Error

ske-encoding 113.0

ske-seq 89.0

ske-tree 84.9

whole-vgg 169.8

patch-seq 118.6

patch-tree 108.4

Table 5.5: Comparison between different model structures.

body part which is captured by patch-LSTM. The whole framework can be trained end to

end and it allows any off-the-shelf 2D pose estimator to be plugged in. The experiments

demonstrate our better performance qualitatively and quantitatively. In the future work, we

plan to extend this work to video-domain and combine it with 3D scene reconstruction by

considering temporal constraints and person-object relations.
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CHAPTER 6

Conclusion

In computer vision, human pose estimation and action recognition are two essential tasks not

only for other research areas but also for building real-world applications. In this dissertation,

we propose several novel approaches for the two tasks and the extensive experiment results

on public datasets demonstrate the superiority and effectiveness of our methods. Specifically

we study several ways to joint the training and inference of the two tasks so they can improve

the performance of each other.

Firstly we propose animated pose template (APT) to represent actions and key poses in a

two-level And-Or Tree structure. In this hierarchical model, each action consists of a sequence

of moving pose templates (MPT) each of which corresponds to the key pose in the action. The

MPTs can transit to each other with learned transition probabilities. Each MPT contains two

templates: 1) a shape template represented by an And-node capturing appearance from one

static frame. 2) a motion template represented by an Or-node capturing motion information

within 2-5 frames. The transitions between MPT are modeled by a Hidden Markov Model.

During inference, the key poses candidates are extracted first and then the sequences of key

poses for each action are computed effectively by dynamic programming.

Secondly, in order to recognize actions with unseen viewpoints, we propose a multi-view

Spatial-Temporal And-Or Graph (MST-AOG) model to represent the cross-view action.

Within the multiple layers in MST-AOG, the geometry, appearance and motion variations

are explicitly modeled. We use the 3D key poses to represent action from arbitrary views

and each 3D key pose is projected into different quantized views. The appearance features

at unseen views are interpolated from features of known views and the 2D geometry features

can be projected from 3D geometry. To train the model, we take advantages of 3D human

97



skeleton data which are obtained from Kinect cameras. We only use RGB videos for testing

and the 3D skeletons are not needed. A new Multi-view action3D dataset is collected by us

and released to public.

Thirdly, we study the joint modeling of action and pose in a deeper way so that the

fine-level parts of pose can also be localized. We employ a deeper Spatial-Temporal And-Or

Graph (ST-AOG) to model the action and pose. The ST-AOG captures information at three

scales: 1) the coarse level captures the rough motion and appearance of action. With coarse

level feature we don’t need to infer pose for classifying actions. 2) the middle level captures

the action specific motions by using the spatial-temporal parts (ST-parts). 3) the fine level

captures the appearance of fine level parts so the all parts can be localized in this level. We

train classifiers for the features at each level and they are integrated by mixture of experts

algorithm. We also demonstrate the ability of our model to incorporate features from deep

neural networks. The performance is improved a lot with the deep learned features.

The last but not the least, we propose a novel framework based on deep networks for full-

body 3D human pose estimation which is quite essential for several high-level tasks such as

human attention prediction in 3D scene, robot-based human action prediction and human-

robot interaction. Our method is built on a two-level Long Short-Term Memory (LSTM)

network to utilize two cues: the global features from 2D human skeleton and local features

from image patches of body parts. With the tree-structure of our network defined on human

skeleton, the information between different joints are broadcasted in top-down manner. The

experiments demonstrate that our method can be generalized to in-the-wild dataset even the

model is trained by only 3D dataset captured in a constrained environment.

98



REFERENCES

[BD01] A. Bobick and J. Davis. “The Recognition of Human Movement Using Temporal
Templates.” PAMI, 23(3):257–267, 2001.

[BM09] L. Bourdev and J. Malik. “Poselets: Body Part Detectors Trained Using 3D
Human Pose Annotations.” In ICCV, 2009.

[CLH10] L. Cao, Z. Liu, and T. Huang. “Cross-dataset action detection.” In CVPR, 2010.

[CMA14] A. Cherian, J. Mairal, K. Alahari, and C. Schmid. “Mixing Body-Part Sequences
for Human Pose Estimation.” In CVPR, 2014.

[CSW17] Z. Cao, T. Simon, S. Wei, and Y. Sheikh. “Realtime Multi-person 2D Pose
Estimation using Part Affinity Fields.” In CVPR, 2017.

[CY14] X. Chen and A. Yuille. “Articulated pose estimation by a graphical model with
image dependent pairwise relations.” In NIPS, 2014.

[DHG15] J. Donahue, L. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan,
K. Saenko, and T. Darrell. “Long-Term Recurrent Convolutional Networks for
Visual Recognition and Description.” In CVPR, 2015.

[DR12] C. Desai and D. Ramanan. “Detecting Actions, Poses, and Objects with Rela-
tional Phraselets.” In ECCV, 2012.

[DRC05] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. “Behavior Recognition via
Sparse Spatio-Temporal Features.” In ICCV VS-PETS, 2005.

[DT05] N. Dalal and B. Triggs. “Histograms of Oriented Gradients for Human Detec-
tion.” In CVPR, 2005.

[EPF14] D. Eigen, C. Puhrsch, and R. Fergus. “Depth Map Prediction from a Single
Image using a Multi-Scale Deep Network.” In NIPS, 2014.

[FGM10a] P. Felzenszwalb, R. Girshick, and D. McAllester. “Cascade object detection with
deformable part models.” In CVPR, 2010.

[FGM10b] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. “Object Detection
with Discriminatively Trained Part Based Models.” PAMI, 32(9), 2010.

[FMR08] P. Felzenszwalb, D. McAllester, and D. Ramanan. “A Discriminatively Trained,
Multiscale, Deformable Part Model.” In CVPR, 2008.

[GBS05] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri. “Actions as Space-
Time Shapes.” In ICCV, 2005.

[GBS07] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri. “Actions as space-
time shapes.” PAMI, pp. 2247–2253, 2007.

99



[GDD14] R. Girshick, J. Donahue, T. Darrell, and J. Malik. “Rich feature hierarchies for
accurate object detection and semantic segmentation.” In CVPR, 2014.

[Gir15] R. Girshick. “Fast R-CNN.” In ICCV, 2015.

[GTJ16] G. Gkioxari, A. Toshev, and N. Jaitlv. “Chained Predictions Using Convolutional
Neural Networks.” In ECCV, 2016.

[HG12] M. Hofmann and D. M. Gavrila. “Multi-view 3D Human Pose Estimation in
Complex Environment.” IJCV, 96(1):103–124, 2012.

[HL16] Shuqin Xie Haoshu Fang and Cewu Lu. “RMPE: Regional Multi-person Pose
Estimation.” arXiv preprint arXiv:1612.00137, 2016.

[IPO14] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu. “Human3.6m: Large scale
datasets and predictive methods for 3d human sensing in natural environments.”
PAMI, 36(7):1325–1339, 2014.

[JDL08] I. N. Junejo, E. Dexter, I. Laptev, and P. Patrick. “Cross-View Action Recogni-
tion from Temporal Self-Similarities.” In ECCV, 2008.

[JGZ13] H. Jhuang, J. Gall, S. Zuffi, C. Schmid, and M. J. Black. “Towards understanding
action recognition.” In ICCV, 2013.

[JJ93] M. I. Jordan and R. A. Jacobs. “Hierarchical mixtures of experts and the EM
algorithm.” In IJCNN, 1993.

[KG10] A. Kovashka and K. Grauman. “Learning a hierarchy of discriminative space-
time neighborhood features for human action recognition.” In CVPR, 2010.

[KG15] I. Kostrikov and J. Gall. “Depth sweep regression forests for estimating 3D
human pose from images.” In BMVC, 2015.

[KL15] A. Karpathy and F. Li. “Deep Visual-Semantic Alignments for Generating Image
Descriptions.” In CVPR, 2015.

[KPK10] M. P. Kumar, B. Packer, and D. Koller. “Curriculum Learning for Latent Struc-
tural SVM.” In NIPS, 2010.

[KSH12] A. Krizhevsky, I. Sutskever, and G. Hinton. “Imagenet classification with deep
convolutional neural networks.” In NIPS, 2012.

[KTS14] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and F. Li. “Large-
scale Video Classification with Convolutional Neural Networks.” In CVPR, 2014.

[LC05] I. Laptev and R. Cedex. “On Space-Time Interest Points.” IJCV, 64(2-3):107–
123, 2005.

[LC14] S. Li and A. Chan. “3D Human Pose Estimation from Monocular Images with
Deep Convolutional Neural Network.” In ACCV, 2014.

100



[LCS12] B. Li, O. I. Camps, and M. Sznaier. “Cross-view activity recognition using
hankelets.” In CVPR, 2012.

[LHW13] B. Li, W. Hu, T. Wu, and S. Zhu. “Modeling Occlusion by Discriminative AND-
OR Structures.” In ICCV, 2013.

[LK81] B. Lucas and T. Kanade. “An iterative image registration technique with an
application to stereo vision.” In Proc. of the 7th intl joint conf. on Artificial
intelligence, 2081.

[LLS09] J. Liu, J. Luo, and M. Shah. “Recognizing realistic actions from videos.” In
CVPR, 2009.

[LMS08] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. “Learning realistic human
actions from movies.” In CVPR, 2008.

[LP07] I. Laptev and P. Perez. “Retrieving actions in movies.” In ICCV, 2007.

[LSK11] J. Liu, M. Shah, B. Kuipers, and S. Savarese. “Cross-view action recognition via
view knowledge transfer.” In CVPR, 2011.

[LSL15] F. Liu, C. Shen, and G. Lin. “Deep Convolutional Neural Fields for Depth
Estimation from a Single Image.” In CVPR, 2015.

[LWY10] T. Lan, Y. Wang, W. Yang, and G. Mori. “Beyond actions: Discriminative
models for contextual group activities.” In NIPS, 2010.

[LWZ14] B. Li, T. Wu, and S. C. Zhu. “Integrating context and occlusion for car detection
by hierarchical and-or model.” In ECCV, 2014.

[LZ12] R. Li and T. Zickler. “Discriminative virtual views for cross-view action recog-
nition.” In CVPR, 2012.

[LZC15] S. Li, W. Zhang, and A. Chan. “Maximum-Margin Structured Learning With
Deep Networks for 3D Human Pose Estimation.” In ICCV, 2015.

[MBM11] S. Maji, L. Bourdev, and J. Malik. “Action recognition from a distributed rep-
resentation of pose and appearance.” In CVPR, 2011.

[MXY15] J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang, and A. Yuille. “Deep Captioning
with Multimodal Recurrent Neural Networks (m-RNN).” In ICLR, 2015.

[NWF08] J. Niebles, H. Wang, and L. Fei-fei. “Unsupervised learning of human action
categories using spatial-temporal words.” IJCV, 2008.

[NYD16] A. Newell, K. Yang, and J. Deng. “Stacked hourglass networks for human pose
estimation.” In ECCV, 2016.

[PAG13] L. Pishchulin, M. Andriluka, P. Gehler, and B. Schiele. “Strong Appearance and
Expressive Spatial Models for Human Pose Estimation.” In ICCV, 2013.

101



[PIT16] L. Pishchulin, E. Insafutdinov, S. Tang, B. Andres, M. Andriluka, P.V. Gehler,
and B. Schiele. “Deepcut: Joint subset partition and labeling for multi person
pose estimation.” In CVPR, 2016.

[PJZ11] M. Pei, Y. Jia, and S.-C. Zhu. “Parsing video events with goal inference and
intent prediction.” In ICCV, 2011.

[PR11] D. Park and D. Ramanan. “N-Best Maximal Decoders for Part Models.” In
ICCV, 2011.

[RHG15] S. Ren, K. He, R. Girshick, and J. Sun. “Fast R-CNN.” In NIPS, 2015.

[RPZ13] B. Rothrock, S. Park, and S.C. Zhu. “Integrating Grammar and Segmentation
for Human Pose Estimation.” In CVPR, 2013.

[RS16] G. Rogez and C. Schmid. “Mocap-guided data augmentation for 3d pose estima-
tion in the wild.” In NIPS, 2016.

[SC12] S. Sadanand and J. Corso. “Action bank: A high-level representation of activity
in video.” In CVPR, 2012.

[SFC11] J. Shotton, A. W. Fitzgibbo, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kip-
man, and A. Blake. “Real-time human pose recognition in parts from single depth
images.” In CVPR, 2011.

[SLC04] C. Schuldt, I. Laptev, and B. Caputo. “Recognizing human actions: A local
SVM approach.” In ICPR, 2004.

[SRZ16] T. Shu, M. S. Ryoo, and S. Zhu. “Learning Social Affordance for Human-Robot
Interaction.” In IJCAI, 2016.

[SWJ13] X. Song, T. Wu, Y. Jia, and S. C. Zhu. “Integrating context and occlusion for
car detection by hierarchical and-or model.” In CVPR, 2013.

[SYM14] H. Shen, S. Yu, D. Meng, and A. Hauptmann. “Unsupervised video adaptation
for parsing human motion.” In ECCV, 2014.

[SZ13] Z. Si and S.-C. Zhu. “Learning AND-OR Templates for Object Recognition and
Detection.” PAMI, 2013.

[SZ14a] K. Simonyan and A. Zisserman. “Two-stream convolutional networks for action
recognition in videos.” In NIPS, 2014.

[SZ14b] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for Large-
Scale Image Recognition.” CoRR, abs/1409.1556, 2014.

[TH] T. Tieleman and G. Hinton. “Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude.” In Coursera: Neural networks for
machine learning.

102



[TJH05] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. “Large Margin Meth-
ods for Structured and Interdependent Output Variables.” JMLR, pp. 1453–1484,
2005.

[TJL14] J. Tompson, A. Jain, Y. LeCun, and C. Bregler. “Joint Training of a Convolu-
tional Network and a Graphical Model for Human Pose Estimation.” In NIPS,
2014.

[TRL16] B. Tekin, A. Rozantsev, V. Lepetit, and P. Fua. “Direct prediction of 3d body
poses from motion compensated sequences.” In CVPR, 2016.

[TS14a] A. Toshev and C. Szegedy. “DeepPose: Human Pose Estimation via Deep Neural
Networks.” In CVPR, 2014.

[TS14b] A. Toshev and C. Szegedy. “DeepPose: Human pose estimation via deep neural
networks.” In CVPR, 2014.

[WBT09] G. Willems, J. Becker, T. Tuytelaars, and L. Van Gool. “Exemplar-based action
recognition in video.” In BMVC, 2009.

[WKS13] H. Wang, A. Klaser, C. Schmid, and C. Liu. “Dense trajectories and motion
boundary descriptors for action recognition.” IJCV, 103(1):60–79, 2013.

[WLW12] J. Wang, Z. Liu, Y. Wu, and J. Yuan. “Mining Actionlet Ensemble for Action
Recognition with Depth Cameras.” In CVPR, 2012.

[WNX14] J. Wang, B. X. Nie, Y. Xia, Y. Wu, and S. C. Zhu. “Cross-view Action Modeling,
Learning and Recognition.” In CVPR, 2014.

[WQT15] L. Wang, Y. Qiao, and X. Tang. “Action recognition with trajectory-pooled
deep-convolutional descriptors.” In CVPR, 2015.

[WRK16] S. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. “Convolutional Pose Ma-
chines.” In ECCV, 2016.

[WSL15] P. Wang, X. Shen, Z. Lin, S. Cohen, B. Price, and A.L. Yuille. “Towards Unified
Depth and Semantic Prediction from a Single Image.” In CVPR, 2015.

[YF10] B. Yao and L. Fei-Fei. “Modeling mutual context of object and human pose in
human-object interaction activities.” In CVPR, 2010.

[YGG12] A. Yao, J. Gall, and L. Gool. “Coupled action recognition and pose estimation
from multiple views.” In IJCV, 2012.

[YIK16] H. Yasin, U. Iqbal, B. Kruger, A. Weber, and J. Gall. “A dualsource approach
for 3d pose estimation from a single image.” In CVPR, 2016.

[YL12] B. Yao and F. Li. “Action Recognition with Exemplar Based 2.5D Graph Match-
ing.” In ECCV, 2012.

103



[YR12] Y. Yang and D. Ramanan. “Articulated Human Detection with Flexible Mixtures
of Parts.” PAMI, 35(12):2878–2890, 2012.

[YWY11] M. Ye, X. Wang, R. Yang, L. Ren, and M. Pollefeys. “Accurate 3D Pose Esti-
mation From a Single Depth Image.” In ICCV, 2011.

[YWZ14] L. Yang, T. Wu, and S. Zhu. “Online Object Tracking, Learning, and Parsing
with And-Or Graphs.” In CVPR, 2014.

[YYM10] W. Yang, Y.Wang, and G. Mori. “Recognizing human actions from still images
with latent poses.” In CVPR, 2010.

[ZJZ16] Yixin Zhu, Chenfanfu Jiang, Yibiao Zhao, Demetri Terzopoulos, and Song-Chun
Zhu. “Inferring Forces and Learning Human Utilities From Videos.” In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[ZZD13] W. Zhang, M. Zhu, and K. Derpanis. “From Actemes to Action: A Strongly-
supervised Representation for Detailed Action Understanding.” In ICCV, 2013.

[ZZL16] X. Zhou, M. Zhu, S. Leonardos, K. G. Derpanis, and K. Daniilidis. “Sparseness
meets deepness: 3d human pose estimation from monocular video.” In CVPR,
2016.

104




