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Abstract 

This paper outlines the issues involved in automating nondestructive evaluation techniques. 
Nondestructive evaluation techniques are used to inspect a variety of parts during manufacturing 
and service. Currently, humans analyze the output obtained from test techniques by looking for 
features which indicate that a defect is located in the material. This evaluation is dependent on both 
the experience and alertness of the technician performing the test. Automation of these processes 
should improve the consistency of results and enhance the testing of more complex materials. 
Machine learning and pattern recognition techniques are being investigated to automate the process. 

1.0 Introduction 

Nondestructive evaluation (NDE) techniques are used to inspect a variety of parts during 
manufacturing and service. A wide variety of industries apply NDE to their processes, including 
aircraft manufacturers who use NDE techniques during the production of aircraft. Airline 
operators also utilize NDE techniques to maintain and inspect their fleets in service. Current NDE 
technologies are being challenged by demands for increased accuracy, increased speed, and 
increased reliability, but lower costs. 

The growing use of advanced composite materials in current and future aircraft and the inspection 
requirements of aging aircraft fleets require inspection capabilities that often test the limits of 
current technology. The problems of stress, corrosion, and fatigue cracking are receiving 
increased attention as more aircraft continue in longer productive service. As requirements on 
minimum detectable crack sizes become more stringent, it becomes harder to discriminate the crack 
indication from noise. Other influences, such as crack orientation, corrosion, grain size, 
transducer coupling, and improper calibration, can cause false indications. 

Douglas Aircraft Company (DAC) is exploring the use of artificial intelligence (AI) to automate the 
NDE process. This research is being conducted in conjunction with McDonnell Douglas Research 
Laboratories in St. Louis and with two universities: University of California-Irvine and University 
of Missouri-Rolla Research has focused on the application of machine learning techniques to the 
construction and maintenance of knowledge-based systems which are capable of evaluating the 
readings from nondestructive tests that have been performed on aircraft components. 
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This paper describes the preliminary results obtained from this research. Section two describes the 
NDE test environment and outlines areas which need improvement Sections three and four 
describe the application of a symbolic machine learning algorithm, ID3, to the NDE problem. ID3 
has been used by Douglas Aircraft to classify defects in sets of standard NDE reference blocks. 
Preliminary results are presented in section five. Based on these preliminary results, a need for an 
improved method of distinguishing features in the test waveforms is identified. Section six 
outlines a feature extraction approach from pattern recognition, called scale-space filtering, which 
can be used to preprocess data for input into a classification algorithm such as ID3. 

2.0 Nondestructive Evaluation 

While several NDE techniques are used for evaluating aircraft components, one of the techniques 
most often used by aircraft manufacturers and operators is the ultrasonic test. Ultrasonic 
inspection methods are used extensively during the fabrication and in-service periods of an 
aircraft's life cycle. · 

Ultrasonic testing utilizes ultrasonic sound waves in the 1 MHz to 25 MHz frequency range to 
measure the thickness of a material or to examine the internal structure of a material for possible 
defects such as voids, delaminations, and cracks. By transmitting a sound wave through the 
material and examining the amount of sound energy that is transmitted or reflected, it is possible to 
make determinations about the internal structure of the material.1•2 

To produce a sound wave in a test piece, a transmitter applies high frequency electrical pulses to a 
"piezoelectric" crystal. Piezoelectricity refers to a reversible phenomenon whereby a crystal, when 
vibrated, produces an electric current; or conversely, when an electric current is applied to the 
crystal, the crystal vibrates. When energized with electrical pulses, the crystal transforms the 
electrical energy into mechanical vibrations and transmits the vibrations through a coupling 
medium, such as water or oil, into the test material. These pulsed vibrations propagate through the 
object with a velocity that depends on the density and elasticity of the test material. They are 
modified by the geometry of the medium and by intervals of discontinuity within the material. 
When sound waves strike a discontinuity in the material, most of the energy is reflected. These 
reflections may then be picked up by a second crystal or transducer, or the emitting crystal can be 
used to pick up the reflected signal. 

Ultrasonic waveforms can be displayed using three different formats, A-scan, B-scan, and C-scan. 
A pulse-echo A-scan displays reflected sound amplitude as a function of time (depth) for a 
particular location on the test specimen. A typical defect-free wave form will show high 
amplitudes for the front and back surfaces of the sample and low amplitudes in the interior. A 
waveform indicating a defect will have additional high amplitude indications between the front and 
back surfaces. Figure 1 shows an A-scan representation of an aluminum block with no defect, 
while Figure 2 shows the A-scan results of the same type of aluminum block in which there is a 
defect. Both samples were taken from a standard set of reference blocks known as Alcoa Series B, 
or Hitt Block. These blocks are used as a reference standard in NDE tests. The B-scan display is 
a cross sectional view of the test specimen showing the depth of any flaw indications. The C-scan 
display gives a plan-view of the sample and any defects but does not indicate the depth of the 
defects. 

2.1 Shortcomings of Current Operational Approach 

Most in-service ultrasonic tests are currently being done manually using the A-scan display of the 
ultrasonic signal. Typically, a technician scans the probe over the part being tested, and observes 
the resulting wave pattern on a CRT. Based on the technician's level of training and experience in 



conducting the particular test, the technician will make a subjective decision as to whether the part 
is defective or good. 
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Figure 1. Typical A-scan representation of no-defect 
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Figure 2. Typical A-scan representation of defect 

Manual NDE methods have several deficiencies which limit their capabilities on advanced 
materials. The following outlines some of these problems: 

1. Analysis of test results is subjective; it depends on the operator's judgement and state of 
alertness. 

2. It is not always possible to duplicate test results gathered from the same test specimen, due to 
the fact that NDE technicians often manually alter the setup parameters on different tests. 

3. The minimum detectable defect size depends on the initial setup parameters and can vary for 
different tests. The initial calibration of the instrument affects the amplitude to noise ratio of the 
wave pattern, which is the major factor in determining the minimum detectable defect size. 

4. All relevant features of the wave pattern associated with each test case are not known. 

5. It is not easy to extract all the relevant features (known and unknown) from the wave pattern. 

Often, the weakest link in the inspection process is the human. Experience, training, and fatigue 
can significantly impact inspection reliability. Inaccurate inspections can result from faulty 
instrument calibrations, incorrect probe selection, or inaccurate interpretation of inspection results. 



The human factor, when combined with variations in instrumentation, contribute to a lack of 
consistency in inspection results and interpretation. Numerous incidents (including a few well 
known airline accidents) show the potentially catastrophic results of undetected defects. 

3.0 An Artificial Intelligence Approach to NDE 

One of the major problems in NDE is the consistent and correct evaluation of test patterns. To 
automate the classification of defects from the analysis of NDE test patterns, a knowledge-based 
system is desired which will take test patterns as input and produce a classification as output The 
basic idea is represented in Figure 3. 

Input 
Pattern 

Knowledge-based 
System 

Classification 

Figure 3. Basic automated system for NDE 

The input pattern would be obtained from NDE test equipment. The knowledge-based system 
would evaluate the input pattern and report defect depth and size or the fact that no defect was 
present. The knowledge-based system would have knowledge about NDE and the ability to 
perform some type of "reasoning" over this knowledge in order to determine whether or not a 
defect was present. A fundamental issue is the design, implementation, and maintenance of the 
knowledge base. 

One area of AI which suggests a solution to these problems is machine learning. The knowledge 
base could be constructed by a machine learning algorithm which is shown the waveforms 
resulting from both good and defective parts. The algorithm would then learn to distinguish 
between the patterns of good and bad parts. This knowledge would be used by the knowledge­
based system to classify test patterns which it has never seen. If the algorithm has successfully 
learned the training data, it should then be able to classify new test data accurately. Any changes in 
the knowledge base necessitated by changes in test equipment or in the geometry of parts being 
classified could easily be implemented by rerunning the machine learning algorithm. 

Symbolic inductive machine learning algorithms are a possible solution to this problem. These 
algorithms learn concepts by examining a set of training instances and then constructing a set of 
rules to describe the domain being analyzed. Two basic types of symbolic inductive algorithms 
can be found in the literature: decision-tree classifiers,3-6 and rule-set builders.7•8 Decision-tree 
classifier systems use training instances to build "optimal" decision trees. Rule-set builders 
construct a set of rules to describe the training instances observed. A decision-tree classifier was 
chosen for this research because of two reasons: 1) Results are output as a decision-tree which can 
be examined to determine which features are considered "most significant" by the machine learning 
algorithm; 2) The execution time required to produce the decision-tree is r~latively small. 

3.1 Decision-Tree Classifier Systems 

Decision-tree classifier systems take training examples as input and produce one or more 
classification trees as output. This type of algorithm is exemplified by Quinlan's ID3.4 To ID3, 
each training instance, t, is a tuple of attribute values and a corresponding classification value, viz. 



The value alb• represents the h-th value of the first attribute A1, etc. The attributes Ai are taken 
from a predetermined description space, 

where each Ai represents a discrete-valued attribute. The value cj is the associated classification 
taken from the set of all classifications C. 

ID3 represents learned concepts in the form of decision trees. Figure 4 illustrates a typical tree. 
Each path from the root of the tree to a leaf denotes a concept These concepts can also be thought 
of as rules. For example, the highlighted path in the decision tree in Figure 4 is analogous to the 
rule: 

or equivalently: 

If the value of attribute A1 is a11, and 
the value of attribute A4 is a43, and 
the value of attribute A2 is ai2• 

then all classifications cj e N4 may be assumed. 

The set, N4 !;;: C, is the set of one or more conclusions (classifications), cj e C which occur at 

this node. The expression C(N~ indicates that all classifications cj e N4 may be asserted. 
Ideally, each path in the tree would terminate with a leaf node containing a single conclusion 
(INil = 1 for all i). Such a classification tree would be able to completely differentiate each of the 

concepts it has learned. 9 

Figure 4. Decision tree showing 
A 1 (au) A A4(a43) A A2( a22) => C(N4) 



During construction of the tree, the decision-tree classifier must determine the "best" attribute to be 
used to expand the tree at each node. It must also determine when no further attributes should be 
added to a path of the tree. Quinlan uses an entropy measurement to select the best attribute. This 
attribute will expand the tree width while minimizing tree depth. Mingers has experimented with 
the use of other attribute selection metrics. 10 

Induction of decision trees may be incremental or nonincremental. ID3 represents nonincremental 
induction, since all training instances are processed at one time and the decision tree created. At 
this point, the learning process is considered completed. In incremental induction, learning is 
performed each time the decision tree is used to classify a new instance. Two incremental versions 
of ID3 have been developed: ID4 by Schlimmer and Fisher,5 and ID5 by Utgoff.6 

4.0 Application of Machine Learning to NDE 

It appears that NDE problems naturally lend themselves to characterization by machine learning 
techniques. It is desired to have the machine learning technique identify patterns and the 
classifications which describe those patterns. Then, given a new pattern, the resulting program 
should characterize the pattern and indicate what classification best represents that pattern. There 
are several factors which simplify/complicate the characterization of NDE results by machine 
learning techniques: 1) The testing setup is precisely defined, thus filtering out many 
environmental conditions; 2) Preprocessing of data is required to facilitate the determination of 
features; and 3) Machine learning techniques require that features be in a specific representation. 
Each of these will be discussed in more detail below. 

Current NDE processing specifications precisely define the specific conditions under which a test 
should be performed. These specifications include the type of equipment, type of probe, 
equipment settings, and location of probe. In addition, a calibration sample is often provided to 
align and verify operation of the test equipment. Thus, a precise testing environment is defined. 
This control is intended to minimize the effects of varying environmental conditions as much as 
possible. However, the human operators do not always follow the processing specifications 
correctly. Since varying conditions would introduce "noise" into the feature data and in some 
cases could be so pronounced that they might influence learning techniques to concentrate on 
"incorrect features," this environmental control should contribute positively to the success of 
machine learning techniques in NDE. Automation of the calibration and set-up process would 
control correct processing of specifications for each test and also improve the test results and 
reduce the chances of mixing noise with the feature data 

Machine learning techniques attempt to build a classifier system that will accurately allow the 
program to distinguish between classifications, given input data. The machine learning algorithms 
take a set of given input features and follow a procedure to determine which subset of input 
features do the "best" job of predicting the correct category. Each technique also determines how 
and in what order the features should be combined. Thus, given the identified features, the 
machine learning algorithm constructs a "best attempt" to predict classifications. The results 
obtained, however, are greatly influenced by how well the chosen features accurately reflect the 
classifications. As an example, suppose it is desired to learn the difference between tall (L/W > 1) 
and wide (L/W < 1) boxes. lfwe calculate the ratio L/W for each box and use that as an attribute 
to a machine learning algorithm to predict the classifications tall and wide, the results will be 
straightforward and very accurate. However, if the simple attributes L and W had been used 
without preprocessing, the results would not have been as encouraging. In the same sense, it is 
anticipated that raw NDE data will have to be preprocessed to provide consistent, accurate results. 
Humans analyze the waveforms resulting from NDE by looking for shifts in the waveforms and 
unusual shapes appearing in unexpected locations. Preprocessing may require several 
transformations. 



In addition to preprocessing to highlight features, it is also sometimes necessary to preprocess 
NDE data so that it can be used by a particular machine learning technique. Raw ultrasonic data is 
usually represented in terms of several hundred continuous-valued attributes. This raw data must 
be preprocessed and grouped into discrete classes. The "discretization" process then assigns a 
symbolic value to each class. This approach prevents the development of overspecialized rules. 
Thus it is anticipated that preprocessing will be required to accommodate the machine learning 
techniques that are used. 

5.0 Preliminary Results 

To evaluate the effectiveness of using the 103 algorithm, data was obtained from standard NDE 
test blocks which are used to calibrate test equipment These blocks are carefully manufactured to 
have a defect at a known depth and a specific location in the block. Several readings were taken 
from each block in positions where no defect was present and also in positions where a defect was 
known to exist Figures 1 and 2 represent typical waveforms that were obtained for no-defect and 
defect conditions. 

Preprocessing was used to convert the continuous-valued waveforms into equivalent discrete 
symbolic values. The preprocessed waveforms were used as training instances for the ID3 
algorithm. The input data is a set of tuples which represent the amplitude of the waveform at a 
specified time (amplitude-at-time-t). The initial results of applying the 103 algorithm to the 
preprocessed data were encouraging. Decision-trees produced by the 103 algorithm indicated that 
the ID3 algorithm focused on the features that are also used by humans to evaluate waveforms: 
1) The amplitude of the energy which represents the back surface (defects result in a decrease in 
the amplitude); and 2) The presence of significant vertical deflections in the waveform between the 
front and back surfaces (defects reflect a significant amount of energy). However, when these 
decision-trees were used to classify waveforms that were obtained at a later time, the decision-trees 
failed to correctly classify some of the waveforms. Two conditions contributed to this situation. 

First, when the test data was obtained, one of the set up parameters, 'the zero offset, was altered. 
As a result, the training data set had a different zero offset than the testing data set. Second, it was 
apparent that there can be a slight shift in amplitude and location of some of the features associated 
with wave patterns taken from an identical test specimen. These fluctuations and shifts in the wave 
patterns were sufficient enough for the test data to often be misclassified. 

This representation of data as amplitude-at-time-tis also inadequate for another reason. 'Parts can 
have a continuum of defect sizes and a continuum of defect locations. Clearly, the problem is to 
look at an ultrasound reading and "see" the defect - see where it is and how big it is. This is 
currently what the human operators are doing - a nontrivial task to say the least! The waveform 
should be represented in terms of the location of peaks and their size (not amplitudes at single 
times). 

Furthermore, in the hope of keeping the classification algorithm as simple as possible, it is 
desirable to use a qualitative description of these peaks, rather than using all the information on a 
peak that is available in the signal. For example, a peak could be described as beginning at 
approximately time tl, ending at approximately time t2, and having a size which corresponds to the 
maximum amplitude in this time interval. To address these issues a more robust method of 
preprocessing is proposed. 

6.0 Feature Extraction Using the Scale-Space Method 

A common task in machine vision is the identification of the "edges" present iil an image. 
Consider a measurement of light intensity along a one dimensional, linear cut through the image. 
An edge in this intensity data occurs when the first derivative of the intensity reaches a local 



extremum. At such an inflection point in the data, the second derivative goes to zero, and "a zero­
crossing" is said to occur. Graphically, an edge is located at the point on the "side of a hill" in the 
data at which the slope is a local extremum. 

The identification of edges is useful in machine vision because they provide a basis for parsing an 
image into meaningful parts. However, a problem of scale occurs: should all edges be 
considered, regardless of the size of intensity variation between them, or should small variations be 
filtered out, resulting in a scene described only in terms of "major" edges? Computational 
efficiency suggests the latter course - parse the image into significant regions based on the 
identification of edges of a certain strength. Thus the image is described in terms of primitives 
called "edges." These edges provide a qualitative description of the intensity data. Any technique 
that provides such a description can be applied to any one dimensional, quasi-continuous set of 
data One particular technique for obtaining qualitative descriptions, called the scale-space method, 
was introduced by Witkin.11 This method has been used to extract qualitative descriptions of NDE 
waveforms. 

A common technique in machine vision for extracting features from data is to perform a discrete 
convolution of the data set with a Gaussian filter. The amount of smoothing produced by the filter 
depends on the width of the Gaussian function used. Each smoothing results in a certain degree of 
fine-grained features being obliterated, while coarser features survive. 

One problem that occurs in using Gaussian filters is that a degree of smoothing that works well for 
certain segments of the data might also obliterate what are considered significant (interesting) 
features in other segments of the data. The particular Gaussian filter used, in essence, selects a 
scale of detail to preserve in the data. The problem is that no fixed finite set of scales suffice to 
provide good descriptions of a variety of data. It is this "scale problem" that is addressed by the 
scale-space method. 

The scale-space method works by smoothing the data at many different scales and plotting the 
zero-crossings as a function of their location and the scale at which they are produced. The scale 
dimension is represented by the parameter CJ, which is the standard deviation of the Gaussian filter 
used, and gives a measure of the width of the Gaussian. Figure 5 shows the scale-space plot for 
the data from Figure 2. The plotted zero-crossings can be arranged into lines rising vertically 
through the scale-space. Each line, called a "contour," is associated with a single inflection point 
as it survives across successive degrees of smoothing. In general, contours vanish in pairs 
corresponding to two inflection points approaching and meeting each other as the common peak 
that they bound is smoothed out. These two contours can be traced down to the time axis where 
they identify the two inflection points in the unsmoothed data. Thus, pairs of contours allow the 

identification of a feature, and the max CJ to which the contours survive give an indication of how 
difficult it was to smooth out that feature. 

In Figure 5, in addition to the three robust contours corresponding to the front surface, defect, and 
back surface of the block (the three contours on the left that survive above CJ= 43), there is also an 
undesired long-lived contour on the far right. This contour is generated by inflection points in a 
region of the data that contains relatively small variations in amplitude. On the other hand, the 
relatively large amplitude peak associated with the defect does not survive as long; its inflection 

points are smoothed out by a = 50. This phenomenon was found to be disappointing. It was 
hoped that the smoothing operations would eventually filter out all the small peaks in a way that, 
above some CJ threshold, only the three peaks that have "significant" amplitudes in the original data 
would still have contours. 
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Figure 5. Scale-space plot for data from figure 2 

Upon examining the second derivative of the smoothed data at different as, we noticed that the 
zero-crossings for the significant peaks invariable had greater slopes, by about an order of 
magnitude, than the slopes for all other contours. Based on this, we introduce a test on the slope at 
the zero-crossings that filters out most of the zero-crossings associated with insignificant features. 

The test is: for a given scale a, if the absolute value of the slope of a zero-crossing is less than 
0.005 of the highest absolute slope of all the zero-crossings, then that zero-crossing is filtered out. 
The value 0.005 was chosen (by hand) as working well over as many of the blocks as possible. 
Figure 6 shows the zero-crossings for the Figure 2 data that survived this test 
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Figure 6. Scale-space plot with zero crossing test 

6.1 The Extracted Qualitative Descriptions 

500 

The filtered scale-space technique lets us identify time bounds for significant features. For each 

block, a a value was chosen to sample the surviving contours. These contours are traced back to 
the time axis to give bounding times for each feature. Then the maximum amplitude of the 



unsmoothed signal within each pair of time bounds is determined. Thus, each significant peak in 
the waveform is represented as a triple (tl, t2, amplitude). Three significant features were found in 
samples with a defect: the front surface, the defect, and the back surfa~. Two significant features 
were found in samples without a defect: the front surface and the back surf ace. These features can 
be used as input to a machine learning algorithm. 

7 .0 Conclusion 

This paper has outlined how nondestructive evaluation is performed on materials and how machine 
learning and pattern recognition techniques could be used to automate the process. Preliminary 
results indicate that it is possible to utilize machine learning techniques to build a system that can 
identify materials which have defects. In particular, it is encouraging that the machine learning 
techniques focus on features that are also used by humans to identify defects. However, ultrasonic 
waveforms are complex and the results are subject to environmental conditions. For this reason it 
is necessary to develop preprocessing methods that are tolerant of noise and focus on the 
qualitative features of an ultrasonic waveform. Scale-space methods seem to provide a means of 
extracting such features. The extracted features will be used as input to a machine learning 
algorithm. 
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