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ABSTRACT OF THE DISSERTATION

Visual Spheres of Expanding Thurston Maps:

Their Weak Tangents and Porous Subsets

by

Angela A. Wu

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2019

Professor Mario Bonk, Chair

We study certain approximately self-similar metric spaces that arise from expanding

Thurston maps f : S2 → S2 called visual spheres. It is known[HP09, Theorem 4.2.11][BM17,

Theorem 18.1(ii’)] that the quasisymmetry class of a visual sphere of f is related to the

rationality of f . We prove that a visual sphere is indeed approximately self-similar if f

does not have periodic critical points. This is done by picking a nice visual metric of an

expanding Thurston map. Using the nice metric, we study the solenoid of f . We put a

specific metric on the leaves of f and show that the leaves and weak tangents are almost the

same thing. We then study the visual spheres of expanding Thurston maps with an emphasis

on a quasisymmetric invariant, called the Ahlfors regular conformal dimension. We show

that the Ahlfors regular conformal dimension of any weak tangent of a visual sphere is the

same as the Ahlfors regular conformal dimension of the visual sphere itself, and that the

Ahlfors regular conformal dimension of any weak tangent is attainable if and only if Ahlfors

regular conformal dimension of the visual sphere is attainable. We show by an example that

the same does not hold for more general metric spaces. Finally, we show that a visual sphere

has p-thick curve family supported on an f -invariant porous subset if f has a irreducible

p-thick f -stable multicurve. We give an example to show that when p = 2, the condition of

a p-thick f -stable multicurve is sharp.
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CHAPTER 1

Introduction

This dissertation explores the dynamics on S2 induced by expanding Thurston maps and the

geometries that they induce.

Expanding Thurston Maps: What Are They and Why Do They Matter?

Expanding Thurston Maps are maps that look like the following rational maps:

z 7→ 4z(z − 1)(z + 1)

(z2 + 1)2
.

The Julia set of this rational map is Ĉ. This map is an example of an Expanding Thurston

map with no periodic critical point.

A branched covering map f : S2 → S2 is a map that looks like a power map everywhere,

i.e., for every x ∈ X, there is a open neighborhood U of x, a positive integer m, and

homeomorphisms ϕ : U → D, ψ : f(U)→ D such that the following diagram commutes:

U f(U)

D D.

ϕ

f

ψ

z 7→zd

The best known branched covering maps on S2 are rational maps on the Riemann sphere.

However, there are branched covering maps that are not rational maps. One example comes

from the map

A : (x, y) 7→ (2x, 3y) : T2 → T2.

This map descends to a map f : S2 → S2 in the following way:
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T2 T2

S2 S2.

∼

A

∼

f2,3

Here the map ∼ identifies (x, y) and (−x,−y). The map f2,3 is a branched covering map,

but it does not come from a rational map.

Thurston studied a restricted collection of branched covering maps, called Thurston

Maps. A branched covering map f is a Thurston map if its postcritical set of f post(f) =

{fn(c) ∈ S2 : n ∈ N, c a critical point} is finite. These maps are called Thurston maps. Given

a Thurston map f : S2 → S2, Thurston asked when f is Thurston equivalent to a rational

map, i.e., when there exists a rational map R : Ĉ→ Ĉ and homeomorphisms ϕ, ψ : S2 → Ĉ

such that ϕ and ψ are isotopic rel post(f) and the following diagram commutes:

S2 S2

Ĉ Ĉ.

f

ϕ ϕ

R

It turned out that, at least among generic Thurston maps f , the rational maps are charac-

terized by the topological behavior of f .

In [BM17], Bonk and Meyer introduced the notion of expanding Thurston maps. Similar

notions are studied by Häıssinsky and Pilgrim in [HP09] and their subsequent papers [HP08]

and [HP14]. An expanding Thurston maps that behaves like a rational Thurston map whose

Julia set is the whole Riemann sphere Ĉ. Rigorously speaking, a Thurston map is expanding

if there exists an open cover {Ui}i∈I of the 2-sphere such that

lim
n→∞

sup{diam(V ) : i ∈ I, V connected component of f−1(Ui)} = 0.

Any rational Thurston map with J (f) = Ĉ is an expanding Thurston map. The map f2,3

in the commutative diagram (1), which is not Thurston equivalent to any rational maps, is

also an expanding Thurston map.

When a Thurston map f is expanding, one can put a metric on the 2-sphere, called a

visual metric with respect to f , such that f is lipschitz and locally bilipschitz away from the
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critical points. The 2-sphere S2, equipped with a visual metric, is called a visual sphere. See

Chapter 2, Section 2.5 for the precise definition of visual spheres. In [HP09] and [BM17],

rational maps are characterized by the geometries of visual spheres:

Theorem 1.0.1. [HP09, Theorem 4.2.11][BM17, Theorem 18.1(ii’)] An expanding Thurston

map f with no periodic critical points is Thurston equivalent to a rational map if and only

if one of its corresponding visual spheres is quasisymmetric to the standard 2-sphere.

Here, quasisymmetries are maps that sends balls to sets that look like balls. A homeomor-

phism f : X → Y between two metric spaces (X, dX) and (Y, dY ) is a quasisymmetry if there

is a homeomorphism η : [0,∞)→ [0,∞) such that for all x, y, z ∈ X, with x 6= z, we have

dY (f(x), f(y))

dY (f(x), f(z))
≤ η

(
dX(x, y)

dX(x, z)

)
.

Quasisymmetries define an equivalence relation on metric spaces. Given an expanding

Thurston map f , and two visual metrics ρ, ρ̃ with respect to f , the identity map id : (S2, ρ)→

(S2, ρ̃) is a quasisymmetry. Thus the quasisymmetric equivalence of a visual sphere with re-

spect to f to the standard 2-sphere in Theorem 1.0.1 depends only on f and not on the

choice of the visual sphere.

The study of expanding Thurston maps is related to Cannon’s conjecture in geometric

group theory. One of the equivalent formulations of Cannon’s conjecture concerns quasisym-

metric classes of metric spaces that are topologically 2-spheres:

Conjecture 1.0.2 (Cannon’s conjecture). Let G be a Gromov hyperbolic group. If ∂∞G is

homeomorphic to the 2-sphere, then ∂∞G is quasisymmetrically equivalent to the standard

2-sphere.

Just as rational Thurston maps can be considered as nice Thurston maps, Gromov hyperbolic

groups whose boundaries at infinity are quasisymmetrically equivalent to the standard 2-

sphere can be considered as nice Gromov hyperbolic groups:

Theorem 1.0.3. [KB02] A Gromov hyperbolic group G admits a hyperbolic action on H3 if

and only if ∂∞G is quasisymmetrically equivalent to S2.

3



As we can see, the study of expanding Thurston maps has motivation stemming from

complex dynamics and geometric group theory. In fact, the two fields are often said to be

connected by Sullivan’s dictionary[Sul85]. In Sullivan’s dictionary, the dynamics of rational

maps are compared to the actions of by Kleinian groups G on the boundary at infinity of

their Cayley graphs ∂∞G. However, it is not clear what should be the complex dynamical

analogue of the Cayley graphs of a Gromov hyperbolic group. One possible analogue is

called a tile graph of an expanding Thurston map, studied by Yin[Yin11] in her dissertation.

The definition of a tile graph of f is given in Chapter 6, Section 6.2. Yin showed that visual

spheres are boundaries at infinity of these tile graphs:

Theorem 1.0.4. [Yin11, Proposition IV.7] Let f be an expanding Thurston map. There

exists a Gromov hyperbolic space Γ, with a preferred based point, called the tile graph of f ,

such that ρ is a visual metric on S2 with respect to f if and only if ρ is a visual metric on

∂∞Γ under the preferred based point.

See also [HP09, Chapter 3], where Häıssinsky and Pilgirm made a similar construction

and proved the same result.

In [HP09], Häıssinsky and Pilgrim proposed several additions to Sullivan’s dictionary.

See also [Yin16] for more possible entries in Sullivan’s dictionary. In particular, Theorem

1.0.1 and Theorem 1.0.3 could form one entry in Sullivan’s dictionary.

What Have We Done?

In this work study visual spheres expanding Thurston maps with an emphasis on quasisym-

metric invariant called the Ahlfors regular conformal dimension.

Let Q > 0 be a constant. A metric space (X, d) is said to be Q-Ahlfors regular if there

exists C > 1 such that for any x ∈ X and r ≤ diam(X),

C−1rQ ≤ HQ(B(x, r)) ≤ CrQ.

When our metric spaces are Ahlfors regular, as they are for visual spheres of expanding
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Thurston maps, we can define the notion of Ahlfors regular conformal dimension:

dimAR([X]) = inf{dimH(Y ) : Y Ahlfors regular, there exists a quasisymmetry f : X → Y }.

Visual spheres of expanding Thurston maps without periodic critical points are Ahlfors

regular, but little is known of their Ahlfors regular conformal dimensions, except for those

whose Ahlfors regular conformal dimensions are guaranteed to be 2 by Theorem 1.0.1 and

visual spheres of Lattès type maps[Yin11, Corollary III.17]. In [HP14], Häıssinsky and

Pilgrim proved that the Ahlfors regular conformal dimension of a visual sphere of a generic

expanding Thurston map without periodic critical points is not attainable.

In Chapter 2, we make some important definitions that will be used throughout the

dissertation.

Chapter 3 serves two purposes. The first is to clarify certain folklore beliefs about visual

metrics of expanding Thurston maps without periodic critical points that, unfortunately,

have not been well-documented in the literature.

Theorem 1.0.5. Let f be an expanding Thurston map without periodic critical points. Then

for any visual metric ρ of f , the visual sphere (S2, ρ) is approximately self-similar.

Here we take the definition of approximate self-similarity from [Kle06, Section 3]. Ap-

proximate self-similarity of these visual spheres has been helpful the study of their weak

tangents. See, for instance, [HP14].

We proved the proposition by considering a particularly nice visual metric. Since we

are interested in quasisymmetric invariants, and any pair of visual metrics of an expanding

Thurston map f are quasisymmetrically equivalent, we will base the rest of the dissertation

of this particular visual metric.

The second goal of Chapter 3 is to study the solenoid S(f) of an expanding Thurston

map f , especially the path-components of S(f), also known as leaves of S(f). The solenoid

S(f) of f is the inverse limit of the system

· · · S2 S2 S2.
f f f

5



Thus we have natural projection maps πn : S(f) → S2. Having fixed a visual metric ρ of

f on S2, we introduce a metric dL on each leaf L of S(f). Leaves are related to the weak

tangents of the visual sphere. Roughly speaking, a weak tangent of a metric space (X, d) is

a limit of (X, xn, λnd), where xn is a sequence of points in X and λn is a sequence of positive

real numbers tending to +∞. We will define the definition of a weak tangent of a metric

space in Chapter 2.

The following theorems, roughly speaking, say that every leaf is a weak tangent and

every weak tangent is a branched covering of a leaf. These results suggest that solenoids are

unions of weak tangents of visual spheres.

Theorem 1.0.6. Let x = {xn}n∈N0 be a point in S(f), and let L be the leaf in S(f) contain-

ing x. Then the sequence {(S2, xn,Λ
nρ)}n∈N0 converges in pointed-Gromov-Hausdorff sense

to (L, x, dL).

Theorem 1.0.7. Let (T, a, d) be the weak tangent of (S2, ρ) with associated data (an, rn), and

suppose {xn}n∈N0 ∈ S(f) represents (an, rn). Let L be the leaf of S(f) containing {xn}n∈N0.

Then the following statements hold.

(i) There exists a branched covering π : T → L.

(ii) If supn∈N0
Λnρ(xn, post(f)) =∞, then the map π is an isometry.

(iii) If p = {pn}n∈N0 ∈ L is a periodic sequence of postcritical points, then p is the only

possible branched locus of π, and π−1(p) has exactly one point.

(iv) Let b = π−1(p). Then there exists n0 ∈ N such that deg(π, b) = deg(fn0).

(v) There exists q0 ∈ f−n0(p0) such that for all R > 0 there exists k ∈ N0 and an isometry

ı : BT (q, R)→ BρΛn0+k(q0, R) such that the following diagram commutes:

B(T,dT )(b, R) B(L,dL)(p,R)

B(S2,Λk+n0ρ)(q0, R) B(S2,Λkρ)(p0, R).

π

ı πk

fn0
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In Chapter 4, we compare the Ahlfors regular conformal dimension of visual spheres with

that of their weak tangents.

Theorem 1.0.8. Let f be an expanding Thurston map f without periodic critical points.

Let (S2, ρ) be a visual sphere of f . Let (T, x) be a weak tangent of (S2, ρ). Then

dimAR(S2, ρ) = dimAR(T ),

and dimAR(S2, ρ) is attainable if and only if dimAR(T ) is attainable.

When the Ahlfors regular conformal dimension in the above theorem is 2 and attainable,

we obtain the following corollary:

Theorem 1.0.9. Let (S2, ρ) be a visual sphere of an expanding Thurston map f without

periodic critical points. The following are equivalent:

(i) (S2, ρ) is quasisymmetrically equivalent to the standard 2-sphere.

(ii) Every weak tangent of (S2, ρ) is quasisymmetrically equivalent to the Euclidean plane

R2.

(iii) There exists a weak tangent of (S2, ρ) that is quasisymmetrically equivalent to the Eu-

clidean plane R2.

See also [Li18].

Theorem 1.0.8 and Theorem 1.0.9 roughly say that one can understand the geometry

of visual spheres by looking at their weak tangents. The same assertion does not hold for

arbitrary metric spaces. Chapter 5 offers the following complementary result.

Theorem 1.0.10. For every n ≥ 2, there exists a doubling, linearly locally contractible

metric space X, topologically an n-sphere, such that every weak tangent of X is isometric to

(Rn, 0) but X is not quasisymmetrically equivalent to the standard n-sphere.

In Chapter 6 we return to our investigation on expanding Thurston maps and their visual

spheres. Let f be an expanding Thurston map without periodic critical points. Chapter 6

concerns f -invariant porous subsets of f .

7



Let (X, d) be a metric space, and K a compact subset of X. We say that K is porous

in X if there exists a ∈ (0, 1) such that for all x ∈ K, and for every r > 0, there exists

y ∈ BX(x, r) such that B(y, ar) ∩K = ∅. A porous subset K ⊂ S2 is said to be f -invariant

if f(K) = K.

Definition 1.0.11. A family Γ of curves in (S2, ρ) is said to be p-thick if

inf
γ∈Γ

diam(γ) > 0

and

lim sup
n→∞

modp(Γ, ε) > 0.

For any p ≥ 2, we ask when there can be a a p-thick curve family. The existence and

nonexistence of p-thick curve family is related to Ahlfors regular conformal dimension:

Ahlfors regular conformal dimension of visual spheres of expanding Thurston maps with

no periodic critical points are known to be related to Thurston matrices. Thurston matrices

encode how expanding Thurston maps interact with simple closed curves γ in S2. A simple

closed curve γ in S2\ post(f) is peripheral if one of the components of S2\γ contains at most

one point in P , and non-peripheral otherwise. A multicurve is a finite collection of simple,

closed disjoint non-homotopic, non-peripheral curves in S2\ post(f). A multicurve Γ is said

to be f -stable if, for all γ ∈ Γ, each non-peripheral simple closed curve in f−1(γ) is homotopic

to a curve in Γ in S2\ post(f).

Let Γ = {γ1, . . . , γn} be an f -stable multicurve Γ. For each i, j ∈ {1, . . . , n}, let γi,j,α be

the components of f−1(γj) homotopic to γi in S2\ post(f), and let di,j,α > 0 be the degree

of the restriction map f |γi,j,α : γi,j,α → γj. Let p > 0 be arbitrary. Define

fΓ,p : RΓ → RΓ

by

fΓ,p(γj) =
∑
γi∈Γ

∑
α

d1−p
i,j,αγi.

Since fΓ,p is represented by a non-negative square matrix, Perron-Frobenius Theorem implies

that the matrix fΓ,p has a real non-negative eigenvalue λ(fΓ,p) equal to its spectral radius.

8



A multicurve Γ is called irreducible if there exists an iterate fnΓ,p of fΓ,p such that every

entry of fnΓ,p is positive. If Γ contains an irreducible multicurve, then the function

p 7→ Λ(Γ, p)

is strictly decreasing on [1,∞) ([HP08, Lemma A2]), and there exists unique Q(Γ) ≥ 1 such

that Λ(Γ, Q(Γ)) = 1. If Γ contains an irreducible multicurve, we define Q(Γ) = 0. Define

Q(f) = sup{Q(Γ) : Γ multicurve} ∨ 2.

Definition 1.0.12. A family Γ of curves in (S2, ρ) is said to be p-thick if

inf
γ∈Γ

diam(γ) > 0

and

lim sup
n→∞

modp(Γ,Λ
−n) > 0.

Definition 1.0.13. An irreducible f -stable multicurve Γ is said to be p-thick if either one

of the following condition holds:

1. λ(Γ, p) > 1; or

2. λ(Γ, p) = 1 and there exists γ ∈ Γ such that f−1(γ) contains a peripheral component.

We prove the following theorem:

Theorem 1.0.14. Let f be an expanding Thurston map with no periodic critical point, and

let p ≥ 2. If there exists a p-thick f -stable multicurve, then there exists a curve family Γ

supported on a f -invariant porous subset such that Γ is p-thick.

The above results are anticipated by Häıssinsky and Pilgrim, who proved the following

inequality.

Theorem 1.0.15 (Häıssinski, Pilgrim). If f is an expanding Thurston map with no periodic

critical point, then

pf ≤ dimAR(f). (1.0.1)

9



Ultimately, all our work is related to the following conjecture:

Conjecture 1.0.16.

pf = dimAR(f).

10



CHAPTER 2

Preliminaries

2.1 A note on inequalities

Let A(x) and B(x) be two positive valued functions in x. We write

A(x) . B(x)

if there exists a constant C, independent of x, such that for all x,

A(x) ≤ CB(x).

Similarly, we write

A(x) & B(x)

if there exists a constant C, independent of x, such that for all x,

A(x) ≥ CB(x).

Lastly, we write

A(x) ∼ B(x)

if A(x) . B(x) and A(x) & B(x).

2.2 Notations on metric spaces

Let (X, d) be a metric space. For any x ∈ X and r > 0, we write

B(X,d)(x, r) = {y ∈ X : d(x, y) < r}.
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We also shorthand B(X,d)(x, r) as B(x, r) when the underlying metric space is understood,

and write B(X,d)(x, r) as BX(x, r) when there is a need to emphasize the underlying metric

space. Occasionally we need to deal with multiple metrics on the same set X. In this case

we write BX,d(x, r) as Bd(x, r) when the underlying set X is understood.

Let A,B ⊂ X be two subsets of a metric space (X, d). We define the distance between A

and B by

d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}.

If A = {a} is a singleton, we also write d(a,B) for d(A,B).

Let A ⊂ X be a subset of X. We define the diameter of A by

diamd(A) = sup{d(a, b) : a, b ∈ A}.

When there is no ambigurity, we write diamd(A) as diam(A).

2.3 Quasisymmetry

In this section we introduce the notion of quasisymmetry. We mention several related notions

in metric geometry that will appear frequently in the later chapters.

Definition 2.3.1. Let (X, dX) and (Y, dY ) be two metric spaces. A homeomorphism f :

X → Y is bilipschitz if there exists a positive constant L > 1 such that for all x, y ∈ X, we

have

L−1dX(x, y) ≤ dY (f(x), f(y)) ≤ LdX(x, y).

If there exists a bilipschitz homeomorphisms between two metric spaces (X, dX) and (Y, dY ),

then we say that (X, dX) and (Y, dY ) are bilipschitz equivalent.

Definition 2.3.2. Let (X, dX) and (Y, dY ) be two metric spaces. Let η : [0,∞) → [0,∞)

be a homeomorphism. A homeomorphism f : X → Y is an η-quasisymmetry if for all

x, y, z ∈ X, with x 6= z, we have

dY (f(x), f(y))

dY (f(x), f(z))
≤ η

(
dX(x, y)

dX(x, z)

)
.

12



A homeomorphism is a quasisymmetry if it is an η-quasisymmetric for some η. The function

η is called the distortion function of f .

Note that if f : X → Y is a quasisymmetry, then f−1 : Y → X is a quasisymmetry.

Definition 2.3.3. We say that X and Y are quasisymmetrically equivalent if there exists

a quasisymmetry f between X and Y .

Definition 2.3.4. Let d1, d2 be two metrics on X. We say that d1 and d2 are quasisymmet-

rically equivalent if the identity map id : (X, d1)→ (X, d2) is a quasisymmetry.

Below we list several properties of metric spaces that play crucial roles in our discussion.

Definition 2.3.5. Let N > 0. A metric space is N -doubling if for all R > 0, every open

ball of radius 2R can be covered by N balls of radius R. A metric space is doubling if it is

N-doubling for some N > 0.

Definition 2.3.6. A metric space X is uniformly perfect if there exists constant C ≥ 1 such

that for each x ∈ X and for each r > 0, the set B(x, r)\B(x, r/C) is nonempty whenever

the set X\B(x, r) is nonempty.

Definition 2.3.7. Let C ≥ 1. A metric space is C-bounded turning if every pair of points

x, y in the space can be joined by a curve whose diameter dow not exceed C |x− y|. A metric

space is bounded turning if it is C-bounded turning for some C ≥ 1.

Recall that a continuum is a non-empty compact connected set.

Definition 2.3.8. Let C ≥ 1 be a constant. A metric space X is said to be C-linearly

locally connected if, for every open ball B(x,R), every pair of points in B(x,R) can be

joined in B(x,CR) by a continuum and every pair of points in X\B(x,R) can be joined in

X\B(x,R/C) by a continuum.

Doubling, uniform perfectness, bounded-turningness, and linear local connectivity are all

preserved under quasisymmetries([Hei01]).
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Finally, we introduce the notion of Ahlfors regularity and Ahlfors regular conformal

dimension.

Let Q be a positive real number. A metric space (X, d) is Q-Ahlfors regular, or Q-AR if

there exists C > 1 such that for all x ∈ X and 0 < r < diamd(X), we have

C−1rQ ≤ HQ(B(x, r)) ≤ CrQ,

where HQ is the Hausdorff Q-measure of (X, r).

We say that (X, d) is Ahlfors regular if it is Q-AR for some Q > 0. In this case, we have

Q = dimH(X), where dimH(X) denotes the Hausdorff dimension of X.

Proposition 2.3.9. [Hei01, Corollary 14.15] A complete metric space is quasisymmetrically

equivalent to an Ahlfors regular space if and only if it is uniformly perfect and doubling.

Let (X, d) be an Ahlfors regular metric space. Define the Ahlfors regular conformal

dimension

dimAR(X) = inf{dimH(ϕ(X)) : ϕ quasisymmetry, ϕ(X) Ahlfors regular}.

We say that the Ahlfors regular conformal dimension of X is attainable if the infimum in

the above definition can be attained. We say that the Ahlfors regular conformal dimension

of X is attained if dimAR(X) = dimH(X).

2.4 Gromov-Hausdorff limits and Weak Tangents

In this section, we review some basic concepts about Gromov-Hausdorff convergence of

pointed metric spaces. The notion of Gromov-Hausdorff limit allows us to make sense of

convergence of metric spaces that are not necessarily bounded. For example, we can “blow

up” a metric space at a point to get what we call the weak tangent of the space. Most of the

material in this section is standard. See Chapter 7 of [BBI01] or Chapter 11 of [HKST15]

for reference.

Let (X, d) be a metric space and A be a subset of X. For any ε > 0, we write

Nε(A) = {x ∈ X : diam(x,A) < ε}.
14



Let A and B be two nonempty subsets of X. The Hausdorff distance between A and B is

dXH(A,B) := inf{ε > 0 : A ⊂ Nε(B) and B ⊂ Nε(A)}.

The function dXH defines a metric on the collection of all nonempty compact subsets of X.

Definition 2.4.1. A pointed metric space is a triple (X, a, d), where X is a set, a is a point

in X, and d is a metric on X.

Let X, Y bet two sets, a be a point in X, and b be a point in Y . A function f : (X, a)→

(Y, b) is a function f : X → Y such that f(a) = b.

Definition 2.4.2. Let X be a metric space and let ε > 0. We say that Y ⊂ X is ε-dense in

X if for all x ∈ X, d(x, Y ) < ε.

Definition 2.4.3. Let (X, a, dX) and (Y, b, dY ) be pointed metric spaces and let ε > 0. We

say that f : (X, a) → (Y, b) is an ε-rough embedding of (X, a, dX) and (Y, b, dY ) if for all

x, y ∈ X,

dX(x, y)− ε ≤ dY (f(x), f(y)) ≤ dX(x, y) + ε.

The map f is an ε-rough isometry if, in addition, f(X) is ε-dense in X.

Note that ε-rough embeddings and ε-rough isometries need not be continuous or injective.

We are now ready to define a notion of distance between two pointed metric spaces that

generalizes Hausdorff distance.

Definition 2.4.4. Let (X, a) and (Y, b) be two bounded pointed metric spaces. The pointed-

Gromov-Hausdorff distance between (X, a) and (Y, b) is defined as

dGH((X, a), (Y, b)) = inf{ε > 0 : ∃ε-rough isometry f : (X, a)→ (Y, b)}.

We are ready to define the notion of pointed-Gromov-Hausdorff convergence of pointed

metric spaces.

Definition 2.4.5. Let (Xn, an, dn), n = 1, 2, . . ., and (X, a, d) be a complete pointed metric

spaces. We say that the sequence of pointed metric spaces (Xn, an, dn) converges to (X, a, d)
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in the pointed-Gromov-Hausdorff sense, and write (Xn, an, dn)
GH−−→ (X, a, d), if for all r > 0

and ε > 0 there exists N ∈ N such that for all n ≥ N , there exists a map f : BXn(an, r)→ X

such that

1. f(an) = a,

2. f is a ε-rough embedding of BXn(an, r) and BX(a, r).

3. f(BXn(an, r)) is ε-dense of BX(a, r).

The following propositions are related to existence and uniqueness of pointed-Gromov-

Hausdorff limits.

Proposition 2.4.6. [Don11, Section 3.2] Let N be a natural number. LetM be the set of all

isometry classes of N-doubling pointed metric spaces. Then the pointed-Gromov-Hausdorff

convergence on M induces a metrizable topology on M.

Proposition 2.4.7 (Gromov’s compactness theorem). [HKST15, Theorem 11.3.16] Let N

be a positive integer, and let (Xn, an, dn) be a sequence of pointed metric spaces such that

(Xn, dn) is N-doubling. Then there exists a subsequence of (Xn, an, dn) that converges in

pointed-Gromov-Hausdorff sense to a proper pointed metric space.

Some properties of metric spaces are retained by the Gromov-Hausdorff limits.

Proposition 2.4.8. Let {(Xn, an, dn)}n∈N be a sequence of pointed metric spaces and suppose

(Xn, an, dn)
GH−−→ (X, a, d).

1. [HKST15, Proposition 11.3.14] If each Xn is proper, then X is proper.

2. [HKST15, Proposition 11.3.17] If there is an integer N such that each Xn is N-

doubling, then X is N2-doubling.

We now define the notion of weak tangent.

Definition 2.4.9. Let (X, d) be a metric space. We say that (T, b, dT ) is a weak tangent of

(X, d) if there exists a sequence {an} of points in X and a sequence {λn} of positive numbers

such that λn →∞ and that (X, an, λnd) converges to (T, b, dT ) in Gromov-Hausdorff sense.
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In particular, we have (X, xn, λndX)→ (T, p, dT ) if for all R > 0, and for all ε > 0 there

exists N > 0 such that for all n ≥ N ,

dGH
(
BλndX (xn, R), BdT (p,R)

)
≤ ε.

The following proposition is a consequence of Proposition 2.4.7

Proposition 2.4.10. If (X, d) is a doubling metric space, then for any an ∈ X and any

sequence {λn} of positive numbers such that λn → ∞, the spaces (X, an, λnd) contains a

subsequence that converges to some pointed metric space (T, b, dT ).

We end this section by stating the theorem that quasisymmetries pass over to weak

tangents.

Proposition 2.4.11. [KL04, Lemma 2.4.7] Let {(Xn, pn, dn)} and {Yn, qn, ln)} be sequences

of proper pointed metric spaces that converge to (X, p, d) and (Y, q, l) respectively. Let fn :

Xn → Yn be η-quasisymmetric homeomorphism for each n ∈ N, where η is fixed. Further

assume that fn(pn) = qn, and that there exists C > 0, and that there exists a sequence {xn}

of points in Xn such that for every n ∈ N,

C−1 ≤ dn(pn, xn) ≤ C and C−1 ≤ ln(qn, f(xn)) ≤ C.

Then, after passing to a subsequence, the functions {fn} converges to some η-quasisymmetric

homeomorphism between X and Y .

As a particular instance of Proposition 2.4.11, we have the following statement about

weak tangents.

Proposition 2.4.12. Let X, Y be doubling metric spaces, let f : X → Y be a quasisymmetry,

and let (T, x) be a weak tangent of X. Then there exists a weak tangent (S, y) of Y such that

T and Y are quasisymmetrically equivalent.

2.5 Expanding Thurston maps and Visual Metrics

Let X and Y be topological spaces. A map f : X → Y is a branched covering map if f is

continuous, open (i.e. image of open sets are open), and discrete (i.e. preimage of a point is
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a discrete set). If X and Y are topological 2-manifolds, then by Stoilow’s Theorem [Sto28,

p. 372][LP19], for every x ∈ X, there is a open neighborhood U of x, a positive integer m,

and homeomorphisms ϕ : U → D, ψ : f(U)→ D such that the following diagram commutes:

U f(U)

D D.

ϕ

f

ψ

z 7→zd

The number d is the degree of f at x. The point x is a critical point of f if m 6= 1. Let

crit(f) be the set of critical points of f and let post(f) = {fn(c) : c ∈ crit(f), n ≥ 1} be the

set of postcritical points of f .

A Thurston map is a postcritically finite branched covering map f : S2 → S2. For any

n ≥ 1, the point fn(x) is said to be a postcritical point of f . Here, and in what follows, fn

means the n-th iterate of f .

A Thurston map is an expanding Thurston map if there exists an open cover {Uα} of S2

such that

lim
n→∞

sup{diamρ V : V connected component of f−n(Uα)} = 0.

Here ρ is any metric on S2 that generates the topology.

We have the following fact:

Proposition 2.5.1. [BM17, Theorem 15.1] Let f : S2 → S2 be an expanding Thurston map

with postcritical set post(f). Then there exist a natural number N ∈ N and a Jordan curve

C ⊂ S2 such that post(f) ⊂ C and fN(C) ⊂ C.

We say that C is f -invariant if f(C) ⊂ C. Replacing f by a higher iterate fN , we may

assume that there exists f -invariant Jordan curve C containing the postcritical set.

Suppose C ⊂ S2 is an f -invariant Jordan curve such that post(f) ⊂ C. The Jordan curve

C divides S2 into two connected components. The closure of each of the two complement

components of C is called a 0-tile. In general, the preimages of C under fn divide S2 into

several connected components. The closure of each such connected component is called an

n-tile. Each n-tile is contained in a unique (n− 1)-tile. We let Dn(S2) denote the collection
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of all n-tiles, and let D(S2) =
⋃
n∈NDn(S2) be the collection of all tiles. If τ ∈ Dn(S2), we

call n the level of τ .

Let W,B be the two 0-tiles. The tile W will be called the white 0-tile and B will be

called the black 0-tile. For all n ∈ N, a tile τ ∈ Dn(S2) is a white n-tile if fn(τ) = W and

a black n-tile if fn(τ) = B. A tile is white if it is a white n-tile for some n ∈ N0, and it is

black if it is a black n-tile for some n ∈ N0.

A 0-edge is a subarc of C with endpoints in post(f) and contains no other postcritical

point. For all n ∈ N0, an n-edge is a subset e of a n-tile such that fn(e) is a 0-edge.

Given an expanding Thurston map f , we define the notion of visual metric. Following

[BM17, Chapter 8], for any pair of distinct points x, y ∈ S2, x 6= y, we define

m(x, y) = mf,C(x, y) = max{n ∈ N0 : there exist non-disjoint n-tiles X, Y

for (f, C) with x ∈ X, y ∈ Y }

and

m′(x, y) = m′f,C(x, y) = min{n ∈ N0 : there exist -disjoint n-tiles X, Y

for (f, C) with x ∈ X, y ∈ Y }

We also define, for all x ∈ S2,

m(x, x) = m′(x, x) =∞.

There exists constant k ∈ N such that |m(x, y)−m′(x, y)| ≤ k for all x, y ∈ S2 with x 6= y

[BM17, Lemma 8.7(v)].

A metric ρ on S2 is a visual metric with respect to f , or a visual metric of f , if there

exists Λ > 1 and A > 1 such that

A−1Λ−m(x,y) ≤ ρ(x, y) ≤ AΛ−m(x,y).

The number Λ is then called the expansion factor of the visual metric ρ, and the metric

space (S2, ρ) is called a visual sphere of f .
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One can show ([BM17, Proposition 8.3]) that a visual metric exists. The collection of

tiles D and the value of the function m depend on the choice of C; but whether a metric is

a visual metric or not is independent of C([BM17, Proposition 8.3]).

In general, the notion of visual metric can be defined without a metric. See [BM17,

Chapter 7] for more detail. We have the following proposition:

Proposition 2.5.2. [BM17, Proposition 8.3] Let f be an expanding Thurston map, and let

n be a positive integer. A metric ρ on S2 is a visual metric for f with expansion factor Λ if

and only if ρ is a visual metric for fn with expansion factor Λn.

We list two facts about visual spheres that we will need:

Proposition 2.5.3. [BM17, Proposition 18.5(iii)] Any visual sphere is linearly locally con-

nected.

Proposition 2.5.4. [BM17, Proposition 18.1(i) and Lemma 18.6] Let f be an expanding

Thurston map and ρ a visual metric of f . Then the following are equivalent.

1. (S2, ρ) is doubling.

2. f does not have any periodic critical points.

3. There exists N ∈ N such that for all p ∈ S2 and n ∈ N,

deg(fn, p) ≤ N.

Finally, we state one fact about weak tangents of visual spheres of expanding Thurston

maps without periodic critical points, which we will need later on:

Proposition 2.5.5. Let f be an expanding Thurston map without periodic critical points.

Then every weak tangent of a visual sphere of f is doubling and linearly locally connected.

Proof. Let ρ be a visual metric with respect to f . By Proposition 2.5.4, (S2, ρ) is doubling.

By Proposition 2.4.8, for every weak tangent (T, x) of (S2, ρ), T is doubling.

20



To see that T is linearly locally connected, we need a stronger condition on (S2, ρ) called

annular linear local connectedness, defined in [BM17, Section 18.1]. It can be shown[Mac10]

that weak tangents of annular linear local connectedness metric spaces are annularly lin-

early locally connected. Since every visual sphere is annularly linearly locally connected,

every weak tangent of the visual sphere (S2, ρ) is annularly linearly locally connected. This

implies[Mac10] that every weak tangent of (S2, ρ) is linearly locally connected.

2.6 A Note on Inverse Limits

In one of the later chapters we will use the language of inverse limits from category theory.

For the sake of completeness, we include a short section on those terms. Readers can also

consult any standard reference on category theory.

We are concerned with the category of topological spaces and continuous maps only. Let

I be a set and ≤ be a relation on a subset of I × I such that

1. for all i ∈ I, i ≤ i;

2. for i, j ∈ I, if i ≤ j and j ≤ i, then i = j;

3. for all i, j, k ∈ I, if i ≤ j and j ≤ k, then i ≤ k; and

4. for all i, j ∈ I, there exists k ∈ I such that k ≤ i and k ≤ j.

An inverse system of topological spaces is a family {Xi}i∈I of topological spaces together

with continuous functions fi,j : Xi → Xj whenever i ≤ j such that fj,k ◦ fi,j = fi,k for all

i ≤ j ≤ k. An inverse limit of the inverse system {Xi}i∈I is the space

X = {{ai}i∈I : fi,j(ai) = aj∀i ≤ j} .

From the definition of inverse limit, we see that there exists continuous maps πi : X → Xi,

defined by

πi({aj}j∈I) = ai.
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Proposition 2.6.1 (The universal property of inverse limit). Let {Xi}i∈I be an inverse

system of topological spaces and let X be the inverse limit of {Xi}i∈I . Let Y be another

topological space and {ϕi : Y → Xi}i∈I be continuous maps such that for each i ≤ j,

fi,j ◦ ϕi = ϕj. Then there exists a continuous map u : Y → X such that for each i ≤ j, we

have the following commutative diagram:

Y

X

Xi Xj.

ϕi

u

ϕj

πi πj
fi,j
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CHAPTER 3

Visual Spheres and Their Weak Tangents

3.1 Introduction

Let f : S2 → S2 be an expanding Thurston map. Let crit(f) be the set of critical points of

f and let post(f) = {fn(c) : c ∈ crit(f), n ≥ 1} be the set of postcritical points of f . In

[BM17, Chapter 16] Bonk and Meyer obtained the following result:

Theorem 3.1.1. [BM17, Theorem 16.1] Given an expanding Thurston map f , there exists

Λ0(f) > 1, called the combinatorial expansion factor of f , such that whenever 1 < Λ < Λ0(f),

there exists a visual metric ρ on S2 with expansion factor Λ, such that for every x ∈ S2, there

exists rx > 0 such that for every y ∈ B(x, rx),

ρ(f(x), f(y)) = Λρ(x, y).

A stronger result can be found in [HP14]:

Theorem 3.1.2. [HP14, Lemma 2.1] Let f be an expanding Thurston map without any

periodic critical points. There exists λ > 1, a visual metric ρ of f with expansion factor Λ,

and r0 > 0 such that for all x ∈ X, for all 0 < r < r0, and k ∈ N0, we have

fk(B(x,Λ−kr)) = B(fk(x), r),

and if fk is injective on B(x, 4rΛ−k), then

∣∣fk(a)− fk(b)
∣∣ = Λ−k |a− b| ,

for all a, b ∈ B(x,Λ−kr).
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In Section 3.2, we study this special visual metric ρ in greater detail. We are particularly

interested in the possible value for rx in Theorem 3.1.1 and when fk in Theorem 3.1.2 is

injective. When the point f(x) is away from the postcritical point, we establish an estimate

for the value rx:

Proposition 3.1.3. Given an expanding Thurston map f and a visual sphere ρ from the

above theorem with expansion factor Λ. There exists c ∈ (0, 1) such that for all x ∈ S2 with

f(x) 6∈ post(f), we can take rx = cρ(f(x), post(f)).

Suppose f does not have any periodic critical point. When the point f(x) is in post(f),

we obtain the following statement:

Proposition 3.1.4. Let f be an expanding Thurston map without periodic critical points,

and let ρ be the visual sphere from the above theorem with expansion factor Λ . Let p ∈ S2 be

a postcritical point of f such that f(p) = p. Let q ∈ S2 be another point such that f(q) = p.

Then there exists r > 0 and a scaling map f ′ : B(q, r) → B(q,Λr) such that the following

diagram commutes:

B(q, r) B(p,Λr)

B(q,Λr) B(p,Λ2r)

f

f ′ f

f

Moreover, both f ′ : B(q, r)→ B(q,Λr) and f : B(p,Λr)→ B(p,Λ2r) are invertible.

Towards the end of the section, we prove that the visual sphere is self-similar in some

sense.

Theorem (Theorem 1.0.5). Let f be an expanding Thurston map without periodic critical

points, for any visual metric ρ of f , the visual sphere (S2, ρ) is approximately self-similar.

The definition of approximate self-similarity will be defined in Section 3.2.

Having clarified some basic properties of the visual metric ρ, we move on to study the

solenoids of an expanding Thurston map f without periodic critical points. The solenoid

S(f) of f is the inverse limit of the system
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· · · S2 S2 S2.
f f f

Thus we have natural projection maps πn : S(f)→ S2. When restricted to a path-connected

component, also called a leaf, of S(f), these maps πn are branched coverings (Theorem 3.3.8).

Detailed discussion on the solenoid can be found in Section 3.

Leaves of the solenoid are closely related to weak tangents of the visual sphere. In Sections

4 and 5, we will see that a leaf of a solenoid is a weak tangent of the visual sphere:

Theorem (Theorem 1.0.6). Let x = {xn}n∈N0 be a point in S(f), and let L be the leaf

in S(f) containing x. Then the sequence {(S2, xn,Λ
nρ)}n∈N0 converges in pointed-Gromov-

Hausdorff sense to (L, x, dL).

Conversely, Theorem 1.0.7 states, among other conclusions, that every weak tangent T

of a visual sphere is a branched covering of a leaf of the solenoid:

Theorem (Theorem 1.0.7). Let (T, a, d) be the weak tangent of (S2, ρ) with associated

data (an, rn), and suppose {xn}n∈N0 ∈ S(f) represents (an, rn). Let L be the leaf of S(f)

containing {xn}n∈N0 . Then the following statements hold.

(i) There exists a branched covering π : T → L.

(ii) If supn∈N0
Λnρ(xn, post(f)) =∞, then the map π is an isometry.

(iii) If p = {pn}n∈N0 ∈ L is a periodic sequence of postcritical points, then p is the only

possible branched locus of π, and π−1(p) has exactly one point.

(iv) Let b = π−1(p). Then there exists n0 ∈ N such that deg(π, b) = deg(fn0).

(v) There exists q0 ∈ f−n0(p0) such that for all R > 0 there exists k ∈ N0 and an isometry

ı : BT (q, R)→ BρΛn0+k(q0, R) such that the following diagram commutes:

B(T,dT )(b, R) B(L,dL)(p,R)

B(S2,Λk+n0ρ)(q0, R) B(S2,Λkρ)(p0, R).

π

ı πk

fn0
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3.2 A visual metric

In this section we construct a visual metric on S2. This construction first appears in [BM17,

Chapter 16]. We reexamine the metric ρ. Towards the end of the section, we generalize

Theorem 15.1 of [BM17] and Lemma 2.1 of [HP14].

A tile chain joining x and y is a sequence of tiles X1, X2, . . . , Xn, such that x ∈ X1,

y ∈ Xn, and for all i = 1, 2, . . . , n−1, Xi∩Xi+1 6= ∅. Given a tile chain γ = {X1, X2, . . . , Xn}

joining two points in a sphere, we define the length of γ by

`(γ) :=
n∑
i=1

Λ−mi ,

where mi is the level of Xi. Let Λ > 1. For x, y ∈ S2, define

ρ(x, y) = `(γ),

where the infimum is taken over all possible tile chains γ joining x and y.

Lemma 3.2.1. [BM17, Lemma 16.6 and Lemma 16.7] There exists Λ0(f) > 1 such that for

all 1 < Λ < Λ0, ρ is a visual metric. Moreover, for each x ∈ S2, there exists r(x) > 0 such

that for all y ∈ B(x, r(x)), we have

ρ(f(x), f(y)) = Λρ(x, y).

Lemma 3.2.2. Let x, y ∈ S2. If ρ(x, y) ≤ 1, then

ρ(f(x), f(y)) ≤ Λρ(x, y).

Proof. First assume that ρ(x, y) < 1. Given ε ∈ (0, 1 − ρ(x, y)), there exists a tile chain

γ = {X1, X2, . . . Xn} joining x and y such that

ρ(x, y) + ε ≥ `(γ) =
n∑
i=1

Λ−mi .

where mi is the level of Xi. If ρ(x, y) < 1, then mi ≥ 1 for all i = 1, . . . , n, and f(Xi) is

a (mi − 1)-tile. The tile chain f(γ) := {f(X1), f(X2), . . . , f(Xn)} joins f(x) and f(y), and

hence

ρ(f(x), f(y)) ≤ `(f(γ)) = Λ−m1+1 + · · ·+ Λ−mn+1 ≤ Λ (ρ(x, y) + ε) .

Letting ε→ 0, we get ρ(f(x), f(y)) ≤ Λρ(x, y).
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Lemma 3.2.3. There exists c > 0 such that for all x, x′ ∈ S2, if f(x) = f(x′) and ρ(x, x′) ≤

cΛ−1ρ(f(x), crit(f)\{f(x)}), then x = x′.

Proof. Suppose the lemma is false. Then for all n ∈ N, there exists xn, x
′
n ∈ S2 such that

xn 6= x′n, f(xn) = f(x′n) and

ρ(xn, x
′
n) < Λ−nρ(f(xn), post(f)\{f(xn)}).

Hence ρ(xn, x
′
n) → 0. Since S2 is compact, we may, by taking a subsequence of (xn, x

′
n) if

necessary, assume that xn converges to some x∗ ∈ S2. Then x′n converges to x∗ as well.

If f(xn) = f(x′n) = f(x∗), then because f−1(f(x∗)) is finite, xn = x′n for all sufficiently

large n, a contradiction to our assumption that xn 6= x′n. Thus f(xn) = f(x′n) 6= f(x∗)

for large n. We claim that x∗ is a critical point. Suppose not. Then there exists an open

neighborhood U of x∗ on which f is injective. For all large n, xn, x
′
n ∈ U . Therefore it is

impossible to have xn 6= x′n and f(xn) = f(x′n) simultaneously. Thus x∗ must be a critical

point. Without loss of generality we assume that xn, x
′
n 6= x∗ and that xn, x

′
n are not critical

points for all n ∈ N. Moreover, for all n ∈ N, we will assume that f(xn) is close enough to

f(x∗) ∈ post(f) that f(xn) 6∈ post(f).

For each n ∈ N, choose a tile chain {Xn
1 , . . . , X

n
k(n)} joining xn and x′n such that Xn

i ∈

Dmni (S2) for all i = 1, 2, . . . , k(n), such that

k(n)∑
i=1

Λ−m
n
i < Λ−nρ(f(xn), post(f)).

Let δ0 be the minimal distance between any pair of distinct postcritical points. Since f is

postcritically finite, by Lemma 3.2.1, there exists 0 < δ < δ0/3 such that for all r ∈ N0, and

for all y ∈ S2, if

ρ(f r(y), f r(x∗)) < δ,

then

ρ(f r+1(y), f r+1(x∗)) = Λρ(f r(y), f r(x∗)).

For each n ∈ N, choose rn such that

Λ−1δ ≤ Λrρ(x, x∗) < δ.
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Applying f rn to each Xn
i we get a tile chain {f(Xn

1 ), . . . , f(Xn
k(n)))} joining f rn(xn) and

f rn(x′n) = f rn(xn). By Lemma 3.2.2, we have

k(n)⋃
i=1

f rn(Xn
i ) ⊂ B(f rn(x∗), δ).

Therefore the set
⋃k(n)
i=1 f

rn(Xn
i ) does not contain any postcritical point other than possibly

f r(x∗). Since xn 6= x′n, there exists a Jordan curve γn ⊂
⋃k(n)
i=1 f

rn(Xn
i ) passsing through

f rn(xn) such that either γ is not null-homotopic in S2\ (post(f)\{f rn(x∗)}), or γ contains

f rn(x∗). Let Kn be the closure of one component of S2\post(f), and Ln be the closure of

another component of S2\post(f). Then

inf
n∈N

diam(Kn), inf
n∈N

diam(Ln) ≥ ρ(f rn(xn), post(f)) > 0,

and

lim sup
n→∞

diam(γn) ≤ lim sup
n→∞

Λrn

k(n)∑
i=1

Λ−m
n
i

≤ lim sup
n→∞

Λ−nΛrnρ(f(xn), post(f)\{f(xn)})

≤ C lim sup
n→∞

Λ−n

= 0.

Thus along a subsequence of n, {Kn} converges in Hausdorff sense to some compact set K,

{Ln} converges in Hausdorff sense to some compact set L, and γn = {Kn ∩Ln} converges in

Hausdorff sense to some compact set γ, such that diam(γ) = 0, but diam(Kn), diam(Ln) > 0.

But this is impossible since (S2, ρ) is topologically a 2-sphere.

Lemma 3.2.4. Take c′ = 1
2

min{c, 1}, where c is the constant in Lemma 3.2.3. If ρ(x, y) ≤

c′Λ−1ρ(f(x), post(f)\{f(x)}), then ρ(f(x), f(y)) ≥ Λρ(x, y).

Proof. Let x, y ∈ S2 be fixed such that

ρ(x, y) ≤ c′Λ−1ρ(f(x), post(f)\{f(x)}).
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By Lemma 3.2.2, we have

ρ(f(x), f(y)) ≤ c′ρ(x, y) =
1

2
min{c, 1}ρ(f(x), post(f)\{f(x)}).

For any ε > 0, we can find a tile chain {Y1, Y2, . . . , Yn} joining f(x) and f(y) such that

each Yi is an mi-tile and
n∑
i=1

Λ−mi − ε < ρ(f(x), f(y)) ≤
n∑
i=1

Λ−mi .

For each z ∈
⋃n
i=1 Yi, we have

ρ(z, post(f)\{f(x)}) ≥ ρ(f(x), post(f)\{f(x)})− ρ(f(x), z)

≥ ρ(f(x), post(f)\{f(x)})−
n∑
i=1

Λ−mi

≥ ρ(f(x), post(f)\{f(x)})− (ρ(f(x), f(y)) + ε)

≥ 1

2
ρ(f(x), post(f)\{f(x)})− ε.

If ε is sufficiently small, then Y2, . . . , Yn do not contain any postcritical points except possibly

f(x). There exists a lift of the tile chain {Y1, . . . , Yn} to a tile chain {X1, . . . , Xn} such that

y ∈ Xn. Let x′ ∈ X1 be the point such that f(x′) = f(x). Then

ρ(x′, y) ≤
n∑
i=1

Λ−mi−1 ≤ Λ−1 (ρ(f(x), f(y)) + ε) ≤ ρ(x, y) + Λ−1ε.

Therefore

ρ(x, x′) ≤ ρ(x, y) + ρ(x′, y) ≤ 2ρ(x, y) + Λ−1ε.

Letting ε→ 0, we have

ρ(x, x′) ≤ 2ρ(x, y) ≤ cρ(f(x), post(f)\{f(x)}).

By Lemma 3.2.3, we have x = x′. Thus X1, . . . , Xn is a tile chain that joins x and y, and

ρ(x, y) ≤
n∑
i=1

Λ−mi−1 ≤ Λ−1 (ρ(f(x), f(y)) + ε) .

Letting ε→ 0, we conclude that

ρ(x, y) ≤ Λ−1ρ(f(x), f(y)).
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Combining Lemma 3.2.2 and Lemma 3.2.4, we obtain the following propositions:

Proposition 3.2.5. There exists c′ ∈ (0, 1] such that for all x, y ∈ S2, if

ρ(x, y) ≤ c′Λ−1ρ(f(x), post(f)\{f(x)}),

then

ρ(f(x), f(y)) = Λρ(x, y).

Let (X, dX) and (Y, dY ) be two metric spaces. A map f : X → Y from X onto Y is a

scaling map with scaling factor Λ > 0, or a Λ-scaling map, if for all x1, x2 ∈ X, we have

dY (f(x1), f(x2)) = ΛdX(x1, x2).

Proposition (Proposition 3.1.3). Let c′′ = c′

2+c′
, where c′ is the constant in Proposition 3.2.5.

Let x′ be a point in S2, and suppose that x = f(x′) 6∈ post(f). Let R = ρ(x, post(f)\{x}).

Then the map

f : B(x′,Λ−1c′′R)→ B(x, c′′R)

is a Λ-scaling map.

Proof. Since c′′ < 1 and R ≤ 1, Lemma 3.2.2 implies f(B(x′,Λ−1c′′R)) ⊂ B(x, c′′R).

For any y ∈ B(x, c′′R), let Y1, . . . , Yk be a tile chain joining x and y, and let m1, . . . ,mk

be the respective levels of Y1, . . . , Yk. Assume

k∑
i=1

Λ−mi < c′′R.

This is possible since ρ(x, y) < c′′R. Then Yi ⊂ B(x, c′′R) for all i = 1, . . . , k. Since B(x, c′′R)

contains no postcritical points other than possibly x, By [BM17, Lemma A.19], we can lift

Y1, . . . , Yk to a tile chain X1, . . . , Xk such that f(Xi) = Yi for all i and x′ ∈ X1. This tile

chain has length
k∑
i=1

Λ−mi−1 < Λ−1c′′R.
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Therefore X1, . . . , Xk is a tile chain in B(x′,Λ−1c′′R). Since y ∈ Yk = f(Xi), y = f(y′) for

some y′ ∈ Xi ⊂ B(x′,Λ−1c′′R). This proves that the map

f : B(x′,Λ−1c′′R)→ B(x, c′′R)

is surjective.

Let y′, z′ ∈ B(x′,Λ−1c′′R), and let y = f(y′). Then

ρ(y′, z′) < 2Λ−1c′′R.

Since x, y 6∈ post(f), we have post(f)\{y} = post(f)\{x}. Therefore

ρ(y, post(f)\{y}) ≥ ρ(y, post(f)\{x})

≥ ρ(x, post(f)\{x})− ρ(x, y)

≥ R− c′′R

For our choice of c′′, we have

ρ(y′, z′) ≤ 2Λ−1c′′R ≤ c′(R− c′′R) ≤ c′ρ(y, post(f)\{y}).

By Proposition 3.2.5, we have

ρ(f(y′), f(z′)) = Λρ(y′, z′).

In other words, away from f−1(post(f)), f is locally a scaling map with scaling factor Λ.

The next proposition describes the behavior of f near a preimage of a postcritical point.

Proposition (Proposition 3.1.4). Suppose f is an expanding Thurston map without periodic

critical points. Let p ∈ S2 be a postcritical point of f such that f(p) = p. Let q ∈ S2 be

another point such that f(q) = p. Then there exists r > 0 and a scaling map f ′ : B(q, r)→

B(q,Λr) such that the following diagram commutes:

B(q, r) B(p,Λr)

B(q,Λr) B(p,Λ2r)

f

f ′ f

f
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Moreover, both f ′ : B(q, r)→ B(q,Λr) and f : B(p,Λr)→ B(p,Λ2r) are invertible.

Proof. The point p is a periodic postcritical point, so it cannot be a critical point. The same

argument as the proof of the previous proposition shows that the map

f : B(p, 2Λr)→ B(p, 2Λ2r)

is surjective for sufficiently small r. By choose an even smaller r, we may assume that 2Λr

and the above map is also injective. We claim that by the map

f : B(p,Λr)→ B(p,Λ2r)

is a scaling map with scaling factor Λ. Let y, z ∈ (p,Λr). Then ρ(f(y), f(z)) < 2Λ2r.

Let ε ∈ (0,Λ2 − max{ρ(f(y), f(p)), ρ(f(z), f(p))}). We can therefore find a tile chain γ =

{Y1, . . . , Yn} joining f(y) and f(z) such that

`(γ) ≤ ρ(f(y), f(z)) + ε < 2Λ2r.

For any x ∈
⋃n
i=1 Yi, we have

ρ(p, x) ≤ min{ρ(p, y) + ρ(y, x), ρ(p, z) + ρ(z, x)} < 2Λr.

Therefore
⋃n
i=1 Yi ⊂ B(p, 2Λ2r). The tile chain {Y1, . . . , Yn} has a unique lift to a tile chain

{X1, . . . , Xn} in B(p, 2Λr). The tile chain {X1, . . . , Xn} joins y and z by injectivity of

f : B(p,Λr)→ B(p,Λ2r). Thus

ρ(y, z) ≤ Λ−1`(γ) < Λ−1 (ρ(f(y), f(z)) + ε) .

Letting ε→ 0, we get

ρ(y, z) ≤ Λ−1ρ(f(y), f(z)).

Combining this inequality with Lemma 3.2.2, we get the desired conclusion.

Since the maps

f : B(q, r)\{q} → B(p,Λr)\{p}

and

f : B(q,Λr)\{q} → B(p,Λ2r)\{p}
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are covering maps of the same degree at q, we can lift f to a bijective map

f ′ : B(q, r)\{q} → B(q,Λr)\{q}

such that the following diagram commutes:

B(q, r)\{q} B(p,Λr)\{p}

B(q,Λr)\{q} B(p,Λ2r)\{p}.

f

f ′ f

f

By continuity of f , we can extend f ′ continuously to a bijection

f ′ : B(q, r)→ B(q,Λr)

such that the following diagram commutes:

B(q, r) B(p,Λr)

B(q,Λr) B(p,Λ2r).

f

f ′ f

f

Moreover, f ′ maps an n-tile in B(q, r) to an (n− 1)-tile in B(q,Λr).

Let r′ = r/2. For any x, y ∈ B(q, r′), we can find a tile chain Y1, . . . , Yk with levels

m1, . . . ,mk joining f ′(x) and f ′(y) such that

k∑
i=1

Λ−mi < 2Λr′.

For all i = 1, 2, . . . , k, we have

ρ(q, Yi) ≤ min{ρ(q, f ′(y)) + ρ(f ′(y), Yi), ρ(q, f ′(x)) + ρ(f ′(x), Yi)}

≤ Λr′ +
1

2

k∑
i=1

Λ−mi < 2Λr′ = Λr.

Therefore Yi ⊂ B(q,Λ2r) for all i. The tile chain Y1, . . . , Yk can be lifted to a tile chain

X1, . . . , Xk joining x and y, and hence

ρ(x, y) ≤
k∑
i=1

Λ−mi−1.
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Infimizing over all tile chains joining f ′(x) and f ′(y), we get

ρ(x, y) ≤ Λ−1ρ(f ′(x), f ′(y)).

Thus the map

f : B(q,Λr′)→ B(q,Λ2r′)

is a scaling map with scaling factor Λ.

Lastly, we prove that the visual sphere is self-similar in some sense.

Definition 3.2.6. A bounded metric space (X, d) is called approximately self-similar if there

exists R > 0 and L > 1 such that for all x ∈ X and r < R, there exists a injective map

f : B(x, r)→ X such that for all x1, x2 ∈ B(x, r), we have

L−1d(f(x1), f(x2)) ≤ R

r
d(x1, x2) ≤ Ld(f(x1), f(x2)). (3.2.1)

See [Kle06, Section 3] for more discussion on approximate self-similarity.

Theorem (Theorem 1.0.5). If f is an expanding Thurston map without periodic critical

points, then the visual sphere (S2, ρ) is approximately self-similar.

Proof. There exists n ∈ N such that every periodic postcritical point of f is a fixed point

of fn. For instance, we can take n to be a common multiple of the periods of all periodic

postcritical points. By taking a sufficiently large multiple of n, we may assume that for every

critical point c of fn, f 2n(c) is a postcritical fixed point. Let us assume n = 1.

By Proposition 3.1.4, for each x ∈ f−1(post(f)), there exists rx > 0 and scaling maps

f ′ : B(x, rx)→ B(x,Λ2rx).

of scaling factor Λ2. By Proposition 3.1.3, for each x ∈ S2\f−1(post(f)), there exists rx > 0

such that the map

f 2 : B(x, rx)→ B(f 2(x),Λ2rx)

is a scaling map by a factor Λ2. The collection {B(x, rx)}x∈S2 is an open cover of S2,

therefore there exists x1, x2, . . . , xn ∈ S2 such that {B(xi, rxi)}ni=1 covers S2. Let ri = rxi

34



and let Bi = B(xi, ri). Then there exists R > 0 such that every open ball of radius R in S2

is contained in one of Bi. We say that an open ball B(x, r) in S2 is good if there exists a

scaling map g : B(x, r)→ X with scaling factor λ2 such that Λ−2R ≤ λr ≤ R.

Note that every ball of radius r in the range [Λ−2R,R] is good, because the identity map

id : B(x, r) → X is a scaling map with scaling factor 1, and Λ−2R ≤ r ≤ R. Suppose not

every ball of radius less than R is good. Let r0 be the supremum of the radii of the balls

B(x, r), with r < R, that are not good. Then every ball of radius r > r0 is good but there

exists a ball B(x, r) of radius r ∈ (Λ−2r0, r0] that is not good.

Since r < R, the ball B(x, r) is in one of the Bi’s, and there exists a scaling map

f ′ : Bi → X with scaling factor Λ2. The same map f ′, restricted to B(x, r), gives a scaling

map with scaling factor Λ2 from B(x, r) to another ball B(y,Λ2r) of S2. By our hypothesis

on r, B(y,Λ2r) is good, i.e., there exists a map g : B(y,Λ2r) → X with scaling factor λ

such that Λ−2R ≤ λΛ2r ≤ λR. The composition g ◦ f ′ : B(x, r) → X is then a scaling

map with scaling factor Λ2λ. This implies that B(x, r) is good, a contradiction to our choice

of B(x, r). Thus every open ball is good. In particular, the visual sphere is approximately

self-similar.

3.3 Solenoids and Leaves: Definitions

Given an expanding Thurston map f without periodic critical points, we define the solenoid

S(f) = S(S2, f) =
{
{an}n∈N0 ∈ (S2)N0 : f(an+1) = an∀n ∈ N0

}
.

The solenoid S(f), as a subset of the product space (S2)N0 , inherits the product topology of

(S2)N0 . It is the inverse limit of

· · · S2 S2 S2.
f f f

(3.3.1)

Let ρ be the visual metric constructed in the previous section, and let Λ be the expansion

factor of ρ. We define a relation ∼ on S(f) by {xn}n∈N0 ∼ {yn}n∈N0 if and only if

sup
n→N0

Λnρ(xn, yn) <∞.
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An equivalence class in S(f) is called a leaf of S(f).

Proposition 3.3.1. The relation ∼ is an equivalence relation.

Proof. This is a consequence of the triangle inequality.

Lemma 3.3.2. Let {xn}n∈N0 ∈ S(S2, f) be arbitrary. If the condition

sup
n∈N0

Λnρ(xn, post(f)) <∞

holds, then {xn}n∈N0 ∼ {pn}n∈N0 for one and only one periodic sequence {pn}n∈N0 of post-

critical points in S(f).

Proof. Because post(f) is finite, there exists ε > 0 so that the distance between any two

distinct points in post(f) is at least ε. If supn∈N0
Λnρ(xn, post(f)) < ∞, then there exists

N ∈ N0 such that

M = sup
n∈N0

Λnρ(xn, post(f)) <
ε

2
ΛN .

For each n ∈ N0, there exists pn ∈ post(f) such that

ρ(xn, pn) ≤MΛ−n.

Thus for all n ≥ N ,

ρ(pn, f(pn+1)) ≤ ρ(xn, pn) + ρ(f(xn+1), f(pn+1))

≤ ρ(xn, pn) + Λρ(xn+1, pn+1)

< MΛ−n +MΛ−n

< ε.

Therefore f(pn+1) = pn. In other words, {pn+N}n∈N0 , and therefore {fN(pn+N)}n∈N0 , belongs

to S(S2, f). As there are only finitely many postcritical points, {fN(pn+N)}n∈N0 is a periodic
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sequence of postcritical points, and

sup
n∈N0

Λnρ(xn, f
N(pn+N)) ≤ sup

n<N
Λnρ(xn, f

N(pn+N)) + sup
n≥N

Λnρ(xn, f
N(pn+N))

= sup
n<N

Λnρ(xn, f
N(pn+N)) + sup

n≥N
Λnρ(xn, pn)

< sup
n<N

Λnρ(xn, f
N(pn+N)) +M

< +∞.

Suppose {qn}n∈N0 ∈ S(f) is another periodic sequence of postcritical points such that

{xn}n∈N0 ∼ {qn}n∈N0 . Then {pn}n∈N0 ∼ {qn}n∈N0 . In other words,

sup
n∈N0

Λnρ(pn, qn) = C <∞.

Therefore, for all n ∈ N0, we have

ρ(pn, qn) ≤ CΛ−n. (3.3.2)

Since post(f) is a finite set, for all large n, (3.3.2) forces pn = qn. But if pn = qn, then

pn−1 = f(pn) = f(qn) = qn−1. Thus {pn}n∈N0 = {qn}n∈N0 as points in S(f).

The equivalence relation ∼ is the same as path-connectedness. To prove this we introduce

a few lemmas.

Lemma 3.3.3. For any {xn}n∈N0 in S(f), there exists N ∈ N0 such that for all n > N , xn

is not a critical point.

Proof. Suppose not. Then {xn}n∈N0 contains infinitely many critical points. Since the set

crit(f) is finite, there exists 0 ≤ n1 < n2 such that xn1 = xn2 ∈ crit(f). Since fn2−n1(xn2) =

xn1 , the point xn2 is a periodic critical point, contradicting our assumption on f .

Lemma 3.3.4. Let {xn}n∈N0 be a point in S(f). Then for all R > 0, there exists N > 0

such that for all n > N , the map

f : BΛnρ(xn, R)→ BΛn−1ρ(xn−1, R)

is an isometry.
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Proof. Case 1: supn∈N0
Λnρ(xn, post(f)) = +∞. Let N1 ∈ N0 be an integer such that

whenever n > N1, the point xn is not a critical point of f . Lemma 3.3.3 guarantees the

existence of such N1. Since supn∈N0
Λnρ(xn, post(f)) = +∞, by Proposition 3.1.3, there

exists c > 0 such that for all n > N1 and for all r < cρ(xn−1, post(f)\{xn−1}), the map

f : B(xn,Λ
−1r)→ B(xn−1, r) (3.3.3)

is a Λ-scaling map. For any R > 0, there exists N ≥ N1 such that

R < cΛNρ(xN , post(f)\{xN}).

By induction on n and the fact that the map in (3.3.3) is a Λ-scaling map with scaling factor

Λ, for every n ≥ N , we have

R < cΛnρ(xn, post(f)\{xn}).

Hence

f : BΛnρ(xn, R)→ BΛn−1ρ(xn−1, R)

is an isometry.

Case 2: supn∈N0
Λnρ(xn, post(f)) < +∞. Then by Lemma 3.3.2, there exists a periodic

sequence of postcritical points {pn}n∈N0 ∈ S(f) such that supn∈N0
Λnρ(xn, pn) < ∞. Let ε

be the minimum distance between pairs of distinct points in post(f). We have

sup
n∈N0

Λnρ(pn, post(f)\{pn}) ≥ sup
n∈N0

Λnε = +∞.

The same arguement as in the previous case concludes for every R > 0, there exists N ∈ N0

such that for all n > N , the map

f : BΛnρ(pn, R + sup
n∈N0

Λnρ(xn, pn))→ BΛn−1ρ(pn−1, R + sup
n∈N0

Λnρ(xn, pn))

is an isometry. Since

BΛnρ(xn, R) ⊂ BΛnρ(pn, R + sup
n∈N0

Λnρ(xn, pn)),

the map

f : BΛnρ(pn, R)→ BΛn−1ρ(pn−1, R)

is an isometry.
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Proposition 3.3.5. Two points {xn} and {yn} in S(S2, f) are connected by a path in C(f)

if and only if {xn} ∼ {yn}.

Proof. Suppose {xn} and {yn} in S(S2, f) are connected by a path γ : [0, 1]→ S(S2, f). We

can write γ = {γ0, γ1, . . .}, where each path γn : [0, 1]→ S2 joins xn and yn and f ◦γn+1 = γn.

We have

ρ(xn, yn) ≤ diam(γn) . Λ−n,

where the implicit constant is independent of n. Here the last inequality follows from [BM17,

Lemma 8.9]. Taking supremum over all n ∈ N, we get

sup
n∈N0

Λnρ(xn, yn) <∞.

Conversely, suppose supn∈N0
Λnρ(xn, yn) < ∞. Let R = 2 supn∈N0

Λnρ(xn, yn). By

Lemma 3.3.4, there exists N ∈ N0 such that for all n > N , the map

f : BΛnρ(xn, R)→ BΛn−1ρ(xn−1, R)

is an isometry.

Note that yN ∈ BΛNρ(xN , R). Let γN be a curve in BΛNρ(xN , R) joining xN and yN . For

all n ≥ N , we can lift γN by fn−N to a curve γn in BΛnρ(xn, R) that joins xn and yn. For all

n = 0, 1, . . . , N − 1, let γn = fN−n(γN). This sequence {γn}n∈N0 gives a path in S(f) joining

{xn}n∈N0 and {yn}n∈N0 .

By Proposition 3.3.5, a leaf of S(S2, f) is a path-connected component of S(S2, f).

Let L ⊂ S(S2, f) be a leaf. For x = {xn}, y = {yn} ∈ L, define

dL(x, y) = sup
n∈N0

Λnρ(xn, yn).

Proposition 3.3.6. The function dL is a metric on L.

Proof. By the definition of ∼ and Proposition 3.3.5, we see that 0 ≤ dL(x, y) < ∞ for all

x, y ∈ L. Moreover dL(x, y) = 0 if and only if ρ(xn, yn) = 0 for all n ∈ N0 if and only if

x = y.
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The symmetry of dL is inherited from the symmetry of ρ.

Let x = {xn}, y = {yn}, z = {zn} be three elements in L. We have

dL(x, y) + dL(y, z) = sup
n∈N0

Λnρ(xn, yn) + sup
n∈N0

Λnρ(yn, zn)

≥ sup
n∈N0

Λn (ρ(xn, yn) + ρ(yn, zn))

≥ sup
n∈N0

Λn (ρ(xn, zn))

= dL(x, z).

Proposition 3.3.7. The metric space (L, dL) is complete.

Proof. Suppose xk = {xkn} is a Cauchy sequence in (L, dL). Then for all n ∈ N0,

ρ(xkn, x
l
n)→ 0

as k, l→∞, which implies xkn converges to some xn as k →∞. As the space S(f) is closed

under the product topology of (S2)N0 , {xn} ∈ S(f). For all n ∈ N0,

Λnρ(x1
n, xn) ≤ lim sup

k∈N0

Λnρ(x1
n, x

k
n) + Λnρ(xkn, xn) ≤ sup

k∈N0

Λnρ(x1
n, x

k
n) ≤ sup

k∈N0

dL(x1, xk).

Therefore

sup
n∈N0

Λnρ(x1
n, xn) ≤ sup

n∈N0

sup
k∈N0

dL(x1, xk) = sup
k∈N0

dL(x1, xk) <∞.

For all k ∈ N0, let πk : S(f)→ S2 denote the map

{xn}n∈N0 7→ xk.

Theorem 3.3.8. Let L be a leaf of S(f). Regard L as a metric space equipped with the

metric dL. Then n ∈ N0, the map

πn|L : L→ S2

defines a branched covering from (L, dL) to S2. The only branched loci of πn are points in

post(f).
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Proof. We prove the theorem for π0. By Lemma 3.3.2, there exists x = {xn}n∈N0 in S(f)

that satisfies one of the two conditions in Lemma 3.3.4. Fix r > 0. By Lemma 3.3.4, there

exists N ∈ N0 such that the map

πN : B(L,dL)(x, r)→ B(S2,ΛNρ)(xN , r)

is an isometry. Postcomposing πN with fN , we conclude that on B(L,dL)(x, r), the map π0 is

a continuous, open and discrete. This proves that π0|B(L,dL)(x,r) is a branched covering. The

argument works for all r > 0. Thus π0 is a branched covering. The branched loci of fN ◦ πN

are the branched loci of fN , which have to be in post(f).

The maps πn enable us to define the notion of tiles on leafs. The map

π0 : T\π−1
0 (postP )→ S2\ post(f)

is a covering map. For any tile σ in S2, and any point x ∈ L such that π0(x) ∈ σ\ post(f),

the map π0 lifts σ\ post(f) uniquely to a subset τ ⊂ L such that x ∈ τ . The closure of τ in

L is called a lift of σ, and if σ is an n-tile, we call τ an n-tile in L.

3.4 Weak Tangents and Leaves

In this section, we investigate the relation between weak tangents and leaves.

Theorem (Theorem 1.0.6). Let x = {xn}n∈N0 be a point in S(f), and let L be the leaf

in S(f) containing x. Then the sequence {(S2, xn,Λ
nρ)}n∈N0 converges in pointed-Gromov-

Hausdorff sense to (L, x, dL).

Proof. Let us first suppose that {xn}n∈N0 satisfies either one of the two conditions in Lemma

3.3.4. Let R > 0 be arbitrary. By Lemma 3.3.4, there exists N ∈ N0 such that for all n > N ,

the map

f : BΛnρ(xn, R)→ BΛn−1ρ(xn−1, R)

is an isometry. Hence the map

πn : BL(x,R)→ BΛnρ(xn, R)
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is an isometry. This proves that (L, x, dL) is the pointed-Gromov-Hausdorff limit of the

sequence {(S2, xn,Λ
nρ)}n∈N0 .

Theorem 1.0.6 implies that every leaf of the solenoid is a weak tangent of the visual sphere

(S2, ρ). In what follows let (T, a, dT ) be a weak tangent of (S2, ρ). Then (T, a, dT ) is a pointed-

Gromov-Hausdorff limit of a sequence (S2, an,Λ
rnρ), where an is a sequence of points in S2,

and rn is a sequence of positive real numbers tending to +∞. The pointed-Gromov-Hausdorff

limit of the sequence (S2, an,Λ
rnρ) is bilipschitz equivalent to the pointed-Gromov-Hausdorff

limit of the sequence (S2, an,Λ
drneρ). Since we are interested in studying the visual spheres

up to quasisymmetric equivalence, we will assume that each rn is a positive integer. The

pointed metric space (T, a, dT ) is said to be a weak tangent of (S2, ρ) with associated data

(an, rn).

Proposition 3.4.1. Suppose T is a weak tangent of the visual sphere (S2, ρ) with associated

data (an, rn). Then we can find a subsequence, indexed by nk, such that for each m ∈ N0,

the limit

lim
k→∞

f rnk−m(ank)

exists. Moreover, if xm := limk→∞ f
rnk−m(ank), then {xm}n∈N0 ∈ S(f).

Proof. Since (S2, ρ) is sequentially compact, for each m ∈ N0, the sequence f rn−m(an) sub-

converges in (S2, ρ). By diagonalization, we can replace (an, rn) by a subsequence, indexed

by nk, such that for all m, the limit limk→∞ f
rnk−m(ank) exists. By continuity of f ,

f(xm+1) = f( lim
k→∞

f rnk−(m+1)(ank))

= lim
k→∞

f(f rnk−(m+1)(ank))

= lim
k→∞

f rnk−m(ank)

= xm.

Therefore {xm}m∈N0 ∈ S(f).
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We say that the point {xm}m∈N0 ∈ S(f) represents (an, rn), or {xm}m∈N0 is a represen-

tative of (an, rn), if for all m ∈ N0, we have

xm = lim
n→∞

f rn−m(an).

Thus (an, rn) may not always have a representative, but by Proposition 3.4.1, there exists a

subsequence (ank , rnk) of (an, rn) such that (ank , rnk) has a representative.

The following proposition shows that any point {xn}n∈N0 in S(f) represents (xn, n).

Proposition 3.4.2. Let {xn}n∈N0 ∈ S(f). Then xn = limk→∞ f
k−n(xk). In other words,

{xn}n∈N0 represents (xn, n).

Proof. For each n ∈ N0 and each k ∈ N0 such that k > n, we have

fk−n(xk) = xk−(k−n) = xn

Theorem (Theorem 1.0.7). Let (T, a, d) be the weak tangent of (S2, ρ) with associated

data (an, rn), and suppose {xn}n∈N0 ∈ S(f) represents (an, rn). Let L be the leaf of S(f)

containing {xn}n∈N0 . Then the following statements hold.

(i) There exists a branched covering π : T → L.

(ii) If supn∈N0
Λnρ(xn, post(f)) =∞, then the map π is an isometry.

(iii) If p = {pn}n∈N0 ∈ L is a periodic sequence of postcritical points, then p is the only

possible branched locus of π, and π−1(p) has exactly one point.

(iv) Let b = π−1(p). Then there exists n0 ∈ N such that deg(π, b) = deg(fn0).

(v) There exists q0 ∈ f−n0(p0) such that for all R > 0 there exists k ∈ N0 and an isometry

ı : BT (q, R)→ BρΛn0+k(q0, R) such that the following diagram commutes:

B(T,dT )(b, R) B(L,dL)(p,R)

B(S2,Λk+n0ρ)(q0, R) B(S2,Λkρ)(p0, R).

π

ı πk

fn0

Theorem 1.0.7 is, in some sense, a converse of Theorem 1.0.6.
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3.5 The Proof of Theorem 1.0.7

This section is devoted to the proof of Theorem 1.0.7.

Lemma 3.5.1. Let (T, a, d) be a weak tangent of (S2, ρ) with associated data (an, rn). Let

{bn}n∈N0 be a sequence of points in S2 such that

lim
n→∞

Λrnρ(an, bn) <∞.

Then there exists b ∈ T such that d(a, b) = limn→∞ Λrnρ(an, bn) and (T, b) is a weak tangent

of the visual sphere (S2, ρ) with associated data (bnk , rnk), where (bnk , rnk) is a subsequence

of (bn, rn).

Proof. Without loss of generality we may assume that for all n ∈ N0 there exists a 1
n
-rough

embedding ϕn : BΛrnρ(an, n) → T such that ϕn(an) = a and ϕn(BΛrnρ(an, n)) is 1
n
-dense in

BT (a, n).

For all large n, Λrnρ(an, bn) < n, and hence ϕn(bn) is well-defined. Moreover, we have

Λrnρ(an, bn)− 1

n
≤ d(a, ϕn(bn)) ≤ Λrnρ(an, bn) +

1

n
.

As (T, d) is a complete doubling metric space, the sequence {ϕn(bn)} has a subsequence

{ϕnk(bnk)} such that {ϕnk(bnk)} converges to some point b ∈ T whose distance from a is

d(a, b) = lim
k→∞

Λrnkρ(ank , bnk).

We will assume that nk = n and that d(ϕn(bn), b) < 1
n
.

For each n ∈ N0, define

ψn : BΛrnρ(bn, n− Λrnρ(an, bn))→ T

by ψn(bn) = b and ψn = ϕn on BΛrnρ(bn, n − Λrnρ(an, bn))\{b}. Since each ϕn is a 1
n
-rough

isometry, it follows that each ψn is a 2
n
-rough isometry. As n→∞, n−Λrnρ(an, bn)→ +∞.

We conclude that (T, b) is the weak tangent with associated data (bnk , rnk), where (bnk , rnk)

is a subsequence of (bn, rn).
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Lemma 3.5.2. Let (T, a, d) be a weak tangent of (S2, ρ) with associated data (an, rn). Sup-

pose {xn}n∈N0 ∈ S(f) represents (an, rn). Then for each k ∈ N there exists bk ∈ f−rk(x0)

such that

lim
k→∞

Λrkρ(bk, ak) = 0,

and for all n ∈ N0, there exists K ∈ N such that for all k ≥ K, f rk−n(bk) = xn.

Proof. For all k, we can choose a path γk that joins x0 and f rk(ak). Since x0 = limk→∞ f
rk(ak),

we may assume that γk lies within B(x0, ρ(x0, 2f
rk(ak)). Any lift of γk by f rk that lifts f rk(ak)

to ak will have another endpoint bk ∈ f−rk(x0).

Let r = c′ρ(x0, post(f)\{x0}), where c′ is the constant defined in Lemma 3.2.5. Since

x0 = limk→∞ f
rk(ak), for all sufficiently large n, ρ(x0, f

rk(ak)) < c′r/2, and the path γk lies

inside B(x0, c
′ρ(x0, r)). By Lemma 3.2.5,

ρ(bk, ak) = Λ−rkρ(x0, f
rk(ak)).

Therefore

lim
k→∞

Λrkρ(bk, ak) = lim
k→∞

ρ(x0, f
rk(ak)) = 0.

Moreover, for each n ∈ N0, Lemma 3.2.5 gives

lim
k→∞

ρ(f rk−n(bk), f
rk−n(ak)) = Λ−nρ(f rk(bk), f

rk(ak)) = Λ−nρ(x0, f
rk(ak)) = 0.

Therefore

lim
k→∞

f rk−n(bk) = lim
k→∞

f rk−n(ak) = xn.

But for every k ∈ N0 with rk ≥ n, f rk−n(bk) ∈ f−n(x0). Since |f−n(x0)| < ∞, we must be

able to find K ∈ N0 such that whenever k ≥ K, f rk−n(bk) = xn.

Lemma 3.5.3. Let (T, a) be the weak tangent of (S2, ρ) with associated data (an, rn), and

let {xn}n∈N0 ∈ S(f) be the representative of (an, rn). Suppose {xn}n∈N0 ∼ {p}n∈N0 for some

p ∈ post(f) such that f(p) = p. Then there exists b ∈ T , q ∈ crit(f) ∪ post(f), and a

sequence of natural numbers sk tending to +∞ such that (S2, q,Λskρ) converges in pointed-

Gromov-Hausdorff sense to (T, b).
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Proof. Let {bk}k∈N0 be a sequence given by Lemma 3.5.2. Then f rk(bk) = x0 for all k ∈ N0.

Let γ = {γn}n∈N0 : [0, 1] → S(f) be a path in S(f) such that γ(0) = {xn}n∈N0 and γ(1) =

{p}n∈N0 . For each k ∈ N0, let nk be the largest integer such that 0 ≤ nk ≤ rk and

f rk−nk(bk) = xnk .

Let γk be a lift of γnk by f rk−nk such that γk(0) = bk, and set γk(1) = b′k. Then f rk(b′k) = p.

We verify that

sup
k∈N0

Λrkρ(ak, b
′
k) ≤ sup

k∈N0

Λrkρ(ak, bk) + sup
k∈N0

Λrkρ(bk, b
′
k) ≤ 0 + sup

k∈N0

Λrk diam(γk) <∞.

Here we use Lemma 8.9 of [BM17] for the last inequality. By Lemma 3.5.1, there exists

b ∈ T such that a subsequence of (S2, b′k,Λ
rkρ) converges in pointed-Gromov-Hausdorff sense

to (T, b). For the rest of the proof, we will assume that (S2, b′k,Λ
rkρ) converges in pointed-

Gromov-Hausdorff sense to (T, b)

Let sk be the largest possible integer such that sk ≤ rk and f rk−sk(b′k) ∈ crit(f)∪post(f).

Since crit(f) ∪ post(f) is a finite set, we may assume by taking a subsequence of {(ak, rk)}

that there exists q ∈ crit(f)∪post(f) such that f rk−sk(b′k) = q for all k ∈ N0. We claim that

limk→∞ sk = +∞. To prove out claim, let N ∈ N be arbitrary. By Lemma 3.5.2 there exists

K ∈ N0 such that for all k ≥ K,

f rk−n(bk) = xN .

Therefore nk ≥ n. We have

f rk−N(b′k) = fnk−N(f rk−nk(b′k)) = fnk−N(p) = p ∈ crit(f) ∪ post(f).

This implies that rk − N ≤ sk. Since limrk→∞, there exists K1 ≥ K such that whenever

k ≥ K1, we have sk ≥ N . This proves our claim.

It remains to prove that (S2, q,Λskρ) subconverges to (T, b). If sk < rk for only finitely

many k ∈ N, then b′k = q and (S2, q,Λskρ) = (S2, b′k,Λ
rkρ) along a subsequence so that

they have the same pointed-Gromov-Hausdorff limit (T, b). If instead sk < rk for infinitely

many k ∈ N, then by taking a subsequence we may assume that sk < rk for all k, and that

degbk(f
rk−sk) = 1.
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By Proposition 3.1.3, there exists R0 > 0 such that for all r < R0 and k ∈ N0, the map

f rk−sk : Bρ(b
′
k,Λ

−(rk−sk)r)→ Bρ(q, r)

is a scaling map with scaling factor of Λrk−sk . Fix R > 0. Since limk→∞ sk = +∞, there

exists K ∈ N0 such that for all k ≥ K, we have R < Λsk min{R0, R1}, and therefore the map

f rk−sk : BΛrkρ(b
′
k, R)→ BΛskρ(q, R)

is an isometry. This induces an isometry

BT (b, R)→ BΛskρ(q, R).

Thus (S2, q,Λskρ) subconverges to (T, b).

We are ready to prove Theorem 1.0.7.

Proof of Theorem 1.0.7. We divide the proof into two cases:

Case 1: supn∈N0
Λnρ(xn, post(f)) =∞.

Fix R > 0. By Lemma 3.3.4, there exists N ∈ N0 such that for every n ≥ N , the map

f : Bρ(xn+1,Λ
−(n+1)R)→ Bρ(xn,Λ

−(n)R)

is an isometry.

Take {bk} as defined in Lemma 3.5.2. Then there exists K ′ > N such that for every

k ≥ K ′, f rk−N(bk) = xN . The map

f rk−N : BΛrkρ(bk, R)→ BΛNρ(xN , R)

is an isometry sending bk to xN . This induces an isometry

π : BT (b, R)→ BL(x,R)

where (T, b, dT ) is the limit of (S2, bk,Λ
rkρ). This holds for all R > 0. Thus we get an

isometry

π : T → L.
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Case 2: supn∈N0
Λnρ(xn, post(f)) <∞.

By Lemma 3.3.2, there exists a periodic sequence {pn}n∈N0 in S(f) such that pn ∈ post(f)

for each n ∈ N0 and supn∈N0
Λnρ(xn, pn) < ∞. Let n0 be the period of {pn}n∈N0 , and let

g = fn0 . By Lemma 3.5.3, there exist b ∈ T , q0 ∈ crit(g) ∪ post(g) and a sequence sk of

positive integers tending to +∞ such that g(q0) = p0 and (T, b, dT ) is the weak tangent with

associated data (q0, sk). Let R > 0. By Proposition 3.3.4, there exists k ∈ N0 such that the

map

g : BΛkρ(p0, R)→ BΛk−1ρ(p0, R)

is an isometry and there exists an isometry

g′ : BΛn0(k+1)ρ(q, R)→ BΛn0kρ(q, R)

such that the following diagram commutes:

BΛn0(k+1)ρ(q0, R) BΛn0kρ(q0, R)

BΛn0kρ(p0, R) BΛn0(k−1)ρ(p0, R).

g′

g g

g

From the above commutative diagram, and by the definitions of (T, c) and (L, a′), we have

BT (b, R)

· · · BΛn0(k+3)ρ(q0, R) BΛn0(k+2)ρ(q0, R) BΛn0(k+1)ρ(q0, R)

· · · BΛn0(k+2)ρ(p0, R) BΛn0(k+1)ρ(p0, R) BΛn0kρ(p0, R).

BL(p,R)

ık+3
ık+2

ık+1

g′ g′

g

g′

g g

g g g

πn0(k+2)

πn0(k+1)
πn0k

Here p = {pn}n∈N0 ∈ S(f) is the constant sequence of postcritical points, and ık+1, ık+2, . . .

are isometries. The two open balls BT (b, R) and BL(p,R) are inverse limit of the two inverse

systems as above, and the arrows pointing to BT (a,R) and BL(p,R) are all bijective maps.

By the universal property of inverse limits, we obtain a branched covering map

πR : BT (b, R)→ BL(p,R)
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The only possible locus π|R is p, and b ∈ T is the only point in π−1(p).

Since π|R1 = πR2 on BT (b,min{R1, R2}), we get a branched covering π : T → L as

required in (i). The point p ∈ L is the only possible branched locus, and π−1(b) has exactly

1 point, yielding (ii). The local degree of π on π−1(b) is the local degree of g at q0, yielding

(iv). Taking ı = ın0(k+1), we get the communicative diagram in (v).

3.6 Tiles on Leafs and Weak Tangents

In this section we will define the notion of tiles on leafs and weak tangents, using the branched

covering maps we obtained in Theorem 3.3.8 and Theorem 1.0.7.

Let L be a leaf of S(f). We extend the inverse system (3.3.1) as follows:

S(f)

· · · S2 S2 S2 · · · ,

π1 π0
π−1

f f f f

(3.6.1)

where the maps πi for i ∈ Z are the natural projection maps from S(f) to S2. By Theorem

3.3.8, for every non-negative integer i, the maps πi : L → S2, restricted to L, is a branched

covering map. When i is a negative integer, then πi : L→ S2 is the composition of branched

covering maps, hence it is a branched covering map. Moreover, for every i ∈ N0, all the

branched loci of πi are contained in post(f).

Let k ∈ Z, and let a ∈ L\π−1
−k(post(f)) be a point. Suppose π−k(a) is a point in the 0-tile

τ ∈ D0(S2). Then there exists a unique lift σ of τ by π−k such that a ∈ σ. More precisely,

since the map π−k : L\π−1
k (post(f)) → S2\ post(f) is a covering map, there exists a unique

lift σ′ of τ\ post(f) by π−k such that a ∈ σ′, and σ is the closure of σ′. We call σ a k-tile

of L, and we say that k is the level of σ. We also call σ a tile of L when we do not wish to

specify the level of L.

For k ∈ Z, let Dk(L) be the collection of k-tiles of L. Let D(L) =
⋃
k∈ZDk(L) be the

collection of tiles in L.

Proposition 3.6.1. Let k, l ∈ Z, and suppose k+ l ≥ 0. Then for all σ ∈ Dk(L), πl(σ) is a
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(k + l)-tile in S2.

Proof. Let τ = πl(σ). Then f (k+l)(τ) = f (k+l)(πl(σ)) = π−k(σ) is a 0-tile. The map π−k :

σ → π−k(σ) is injective, and π−k(∂σ) = ∂(π−k(σ)) = C is the f -invariant Jordan curve,

therefore τ ∩ f−k(C) = ∂τ . We conclude that τ is a (k + l)-tile.

Proposition 3.6.2. For all k ∈ Z and σ ∈ Dk(L), we have

diam(σ) ∼ Λ−k,

where the implicit constant of ∼ is independent of σ or k.

Proof. For each k ∈ Z, it follows from Proposition 3.2.2 and the definition of the metric dL

on L that

πk|L : L→ S2.

is a Λ−k-lipschits map. Let σ ∈ Dk(L) be arbitrary. We have

diam(π−k(σ)) ≤ Λk diam(σ).

But π−k(σ) is a 0-tile. This proves

diam(σ) ≥ Λ−k.

To prove the other inequality, let x = {xn}n∈N0 and y = {yn}n∈N0 be two points in σ.

Let l ∈ N0 be a non-negative integer such that k + l ≥ 0. Then πl(σ) is a (k + l)-tile in S2,

therefore

ρ(xl, yl) ∼ Λ−(k+l),

where the similarity constant does not depend on l, k, x, y. For l′ > l, we have the same

inequality

ρ(xl′ , yl′) ∼ Λ−(k+l′),

with the same implicit constants. For l < l′, we have

ρ(xl′ , yl′) ≤ Λl−l′ρ(xl, y
′
l) ∼ Λ−(k+l′).
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Therefore

dL({xn}n∈N0 , {yn}n∈N0) = sup
n∈N0

Λnρ(xn, yn) ∼ Λ−k.

This completes our proof.

Let (T, x) be a weak tangent of S2. We can similarly define the notion of tiles in T by

considering the branched covering map π : T → L, where L is a suitable leaf of S(f), and

π is the branched covering map in Theorem 1.0.7. If τ ∈ Dk(L) is a tile in L, and a ∈ T is

a point such that π(a) is not a postcritical point, then there exists a unique lift σ of τ into

T by π such that a ∈ σ. We call σ a k-tile of T if τ is a k-tile of S2. Let Dk(T ) be the

collection of k-tiles in T and D(T ) =
⋃
k∈ZDk(T ) be the collection of tiles in T .

Proposition 3.6.3. For all k ∈ Z and τ ∈ Dk(L), we have

diam(τ) ∼ Λ−k,

where the implicit constant of ∼ is independent of τ or k.

Proof. This follows from Proposition 3.6.2 and Theorem 1.0.7(ii) and (v).
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CHAPTER 4

Ahlfors Regular Conformal Dimension of Visual

Spheres and Their Weak Tangents

4.1 Introduction

The goal of this chapter is to prove the following theorem:

Theorem (Theorem 1.0.8). Let f be an expanding Thurston map f without periodic critical

points. Let (S2, ρ) be a visual sphere of f . Let (T, x) be a weak tangent of (S2, ρ). Then

dimAR(S2, ρ) = dimAR(T ),

and dimAR(S2, ρ) is attainable if and only if dimAR(T ) is attainable.

We will offer two proofs for the if part. The second proof is shorter, but the first proof

illustrates the use of gauge functions. Most of the chapter will be devoted to the first proof.

In the last section, we discuss the second proof.

We restate Theorem 1.0.8 to provide a different perspective:

Theorem (Theorem 1.0.8, alternative formulation). Let f be an expanding Thurston map

f without periodic critical points. Let (S2, ρ) be a visual sphere of f . Let (T, x) be a weak

tangent of (S2, ρ). For any Q > 0, (S2, ρ) is quasisymmetrically equivalent to a Q-Ahlfors

regular space if and only if T is quasisymmetrically equivalent to a Q-Ahlfors regular space.

One implication of Theorem 1.0.8 holds in greater generality.

Theorem 4.1.1. Let X be a complete doubling metric space, and let T be a weak tangent of

X. If X is quasisymmetrically equivalent to a Q-Ahlfors regular space, then T is quasisym-

metrically equivalent to a Q-Ahlfors regular space.
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See [MT10, Section 6.1] for a proof of Theorem 4.1.1. The converse of Theorem 4.1.1

does not hold, as we will see in the next chapter.

To prove the “if” implication of Theorem 1.0.8, suppose T is quasisymmetrically equiva-

lent to a Q-AR space TQ. We first prove that every weak tangent T of a visual sphere (S2, ρ)

is a branched covering of (S2, ρ). Then we make use of the branched covering π : T → S2

and the quasisymmetry between T and TQ to construct a Q-Ahlfors regular metric on S2.

Note that the above statement is independent of the choice of visual metric ρ since

any two visual metrics are quasisymmetrically equivalent to each other, and if X and Y

are two quasisymmetrically equivalent metric spaces, then any weak tangent TX of X is

quasisymmetrically equivalent to some weak tangent TY of Y . Thus we will only prove

under a particular visual metric, which we constructed in Section 3.2. This visual metric

simplifies our proofs because it gives rise to isometries instead of bilipschitz maps.

In Section 4.2, we define a notion of gauge functions on visual spheres. Gauge functions

are used to construct an new metric on a metric space so that the new metric is quasisym-

metrically equivalent to the old one. In Section 4.3, we show how we can construct a gauge

function on S2 from a gauge function on a weak tangent T of the visual sphere. Section 4.4

contains the proof Theorem 1.0.8 based on the material built up in Section 4.2 and Section

4.3. We also mention an application of Theorem 1.0.8. In Section 4.5, we give an alterna-

tive proof of Theorem 1.0.8. The second proof made use of a quasisymmetric gluing result,

proven in [Häı09], and has the potential to be generalized.

4.2 Gauge Functions on Visual Spheres

In this section, we introduce a tool to construct a Q-Ahlfors regular metric on the visual

sphere (S2, ρ). Our tool, Proposition 4.2.2, is a modification of Theorem 1.1 of [CP13]. See

also [KL04, Proposition 5.1.1] and [Kig18] for uses of gauge functions in the study of Ahlfors

regular conformal dimension. Roughly speaking, instead of constructing a new metric on S2

directly, we assign each tile a new diameter. If the new diameters of the tiles are well-selected,

then we show that there exists a metric on S2 realizing those new diameters.
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Definition 4.2.1. Let Q > 1 be a constant. A function g : D(S2) → [0,∞) is called a

Q-gauge function on (S2, ρ) if g satisfies the following conditions:

(i) There exists 0 < η1 < η2 < 1 such that for all n ∈ N0, τ ∈ Dn(S2) and τ ′ ∈ Dn+1(S2)

with τ ′ ⊂ τ .

η1 ≤
g(τ ′)

g(τ)
≤ η2,

(ii) There exists a constant K0 ≥ 1 such that for all n ∈ N0 and for all τ ′, τ ∈ Dn(S2) with

τ ∩ τ ′ 6= ∅,
g(τ ′)

g(τ)
≤ K0,

(iii) There exists K1 > 0 such that for all x, y ∈ S2, for all τ ∈ Dm(x,y)(S2) such that x ∈ τ

or y ∈ τ , and for all tile chains γ = {τ1, τ2, . . . , τn} joining x and y, we have

`g(γ) :=
n∑
i=1

g(τi) ≥ K−1
1 g(τ).

(iv) There exists a constant K2 ≥ 1 such that for all n ∈ N0, for all τ ∈ Dn(S2), and for

all m ≥ n, we have

K−1
2 g(τ)Q ≤

∑
τ ′∈Dm(S2),τ ′∩τ 6=∅

g(τ ′)Q ≤ K2g(τ)Q.

(v) We have g(τ) 6= 0 for all τ ∈ D0(S2).

Proposition 4.2.2. Let g : D(S2) → [0,∞) be a Q-gauge function on S2. For x, y ∈ S2,

define

q(x, y) = inf{`g(γ) : γ tile chain joining x and y}.

Then q is a Q-Ahlfors regular metric on S2, and the identity map id : (S2, ρ) → (S2, q) is a

quasisymmetry.

The proof of Proposition 4.2.2 will be broken up into Proposition 4.2.3, Proposition 4.2.4,

and Proposition 4.2.10.

Proposition 4.2.3. The function q defined in Proposition 4.2.2 is a metric.
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Proof. We have q(x, x) = 0. If x 6= y, then condition (iii) implies that

q(x, y) ≥ K−1
1 g(τ),

where τ is any m(x, y)-tile containing x or y. By condition (i) and (v), we have

q(x, y) ≥ K−1
1 g(τ) ≥ K−1

1 η
m(x,y)
1 min

τ∈D0

g(τ) > 0. (4.2.1)

Therefore q is positive definite.

The symmetry of q follows from the fact that any tile chain γ = {τ1, τ2, . . . , τn} joining x

and y corresponds to the tile chain γ′ = {τn, τn−1, . . . , τ1} joining y and x, and `g(γ) = `g(γ
′).

If x, y, z ∈ S2 are three points, γ is tile chain joining x and y, and γ′ is a tile chain joining

y and z, then γ ∪ γ′ is a tile chain joining x and z. We have

q(x, z) ≤ `g(γ ∪ γ′) = `g(γ) + `g(γ
′).

Infimizing over all possible choice of γ and γ′, we get

q(x, z) ≤ q(x, y) + q(y, z).

Thus q is a metric on S2.

Proposition 4.2.4. The identity map id : (S2, ρ)→ (S2, q) is a quasisymmetry.

Proof. For all x, y ∈ S2, and all τ ∈ Dm(x,y)(S2) such that x ∈ τ , there exists τ ′ ∈ Dm(x,y)(S2)

such that y ∈ τ ′ and τ ∩ τ ′ 6= ∅. The tile chain {τ, τ ′} joins x and y, therefore

q(x, y) ≤ `g({τ, τ ′}) = g(τ) + g(τ ′) ≤ g(τ) +K0g(τ). (4.2.2)

Combining (4.2.1) and (4.2.2), we get

K−1
1 g(τ) ≤ q(x, y) ≤ (1 +K0)g(τ).

For all x, y, z ∈ S2 with x 6= z, let τ1 be an m(x, y)-tile and τ1 be an m(x, z)-tile such that

x ∈ τ1 ∩ τ2. Assume that τ1 ⊂ τ2 or τ2 ⊂ τ1. If m(x, y) ≥ m(x, z), then τ1 ⊂ τ2, and

q(x, y)

q(x, z)
≤ K1(1 +K0)

g(τ1)

g(τ2)

≤ K1(1 +K0)η
(m(x,y)−m(x,z))
2

≤ A
ρ(x, y)

ρ(x, z)

− log η2
log Λ

,
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where A is a constant. If m(x, y) ≤ m(x, z), then τ2 ⊂ τ1, and

q(x, y)

q(x, z)
≤ K1(1 +K0)

g(τ1)

g(τ2)

= K1(1 +K0)η
−(m(x,z)−m(x,y))
1

≤ B
ρ(x, y)

ρ(x, z)

− log η1
log Λ

,

where B is a constant. Thus the map id : (S2, ρ)→ (S2, q) is an η-quasisymmetry with

η(t) = max{At
− log η2

log Λ , Bt
− log η1

log Λ }.

For each k ∈ N0 and x ∈ S2, let T (x, k) be the union of all k-tiles τ in D(S2) such that

τ ∩ τ ′ 6= ∅ for another τ ′ ∈ Dk(S2) with x ∈ τ ′.

Lemma 4.2.5 (Tiles are quasi-balls). There exists a constant K3 > 0 such that for all

n ∈ N0 and τ ∈ Dn(S2), there exists x ∈ τ such that

B(x,K3g(τ)) ⊂ τ ⊂ B(x, g(τ)).

Proof. There exists n0 ∈ N0 such that for all for all n ∈ N0 and τ ∈ Dn(S2) there exists

x ∈ τ such that T (x, n+ n0) ⊂ τ . If y 6∈ T (x, n+ n0), then

q(x, y) ≥ K−1
1 g(τ ′),

where τ ′ is another (n + n0)-tile such that τ ′ ⊂ T (x, n + n0). By Property (ii) of the gauge

function g, we have

g(τ ′) ≥ ηn0
1 g(τ).

Therefore

B(x,K−1
1 ηn0

1 g(τ)) ⊂ T (x, n+ n0) ⊂ τ.

Conversely, if y ∈ τ , then {τ} is a tile chain joining x and y, and we have

q(x, y) ≤ g(τ).
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This proves

B(x,K3g(τ)) ⊂ τ ⊂ B(x, g(τ)),

where K3 = K−1
1 ηn0

1 .

Corollary 4.2.6. For every τ ∈ Dn(S2) we have

K3g(τ) ≤ diam(τ) ≤ 2g(τ),

where K3 is the constant in Lemma 4.2.5.

Lemma 4.2.7. For any x ∈ S2, and r < η1 min{g(τ):τ∈D0(S2)}
K1

, there exists k ∈ N such that

B(x, r) ⊂ T (x, k) and if τ is a k-tile in T (x, k), then

K1

K0

r ≤ g(τ) ≤ K4r

where K4 = K2
0K1η

−1
1 .

Proof. Let k be the largest integer such that

g(τ) ≥ K1r

for all k-tile containing x. Note that for every 1-tile τ , we have

g(τ) ≥ η1 min{g(τ) : τ ∈ D0(S2)} ≥ K1r.

Therefore k ≥ 1.

For all y 6∈ T (x, k), m(x, y) ≤ k − 1, therefore

q(x, y) ≥ K−1g(τ) ≥ r

for any k-tile containing x. This implies y 6∈ B(x, r). Therefore B(x, r) ⊂ T (x, k).

IF τ is a k-tile containing x and τ ′ is another k-tile such that τ ′ ⊂ T (x, k), then

g(τ ′) ≥ K−1
0 g(τ) ≥ K−1

0 K1r.

57



Since k is the largest integer such that g(τ) ≥ K1r, if τ ′′ is a (k + 1)-tile such that

σ ⊂ T (x, k + 1), and τ ′ is a k-tile such that τ ′′ ⊂ τ ′, and τ is a k-tile containing x, then

τ ∩ τ ′ 6= ∅, and we have

g(τ ′′) ≥ η1g(τ ′) ≥ η1K
−1
0 g(τ).

Therefore

g(τ) ≤ K0η
−1
1 K1r.

Finally, if τ ′′′ is another k-tile such that τ ⊂ T (x, k), then

g(τ ′′′) ≤ K0g(τ) ≤ K2
0K1η

−1
1 r.

Lemma 4.2.8. For any x ∈ S2, and r < min{diamq(τ):τ∈D0(S2)}
2

, there exists τ ∈ D(S2) such

that τ ⊂ B(x, r) and

η1r ≤ diam(τ) ≤ r.

Proof. If τ ∈ D(S2) contains x and diam(τ) < r, then τ ⊂ B(x, r). Let k be the smallest

integer such that there exists τ ∈ Dk(S2) with τ ⊂ B(x, r). By our assumption on r, k ≥ 1.

Moreover, if τ ′ is a (k − 1)-tile containing τ , then diam(τ ′) ≥ r. We have

g(τ) ≥ η1g(τ ′) ≥ η1 diam(τ ′) ≥ η1r.

Proposition 4.2.9. Let HQ be the Hausdorff Q-measure of (S2, q). Then

HQ(τ) ∼ g(τ)Q

for all τ ∈ D(S2).

Proof. For all τ ∈ D(S2) and for all large n, {τ ′ ∈ Dn(S2), τ ′ ⊂ τ} is a cover of τ , therefore

HQ(τ) ≤ lim sup
n→+∞

∑
τ ′∈Dn(S2),τ ′⊂τ

diam(τ ′)Q

≤ lim sup
n→+∞

∑
τ ′∈.Dn(S2),τ ′⊂τ

g(τ ′)Q ≤ K2g(τ)Q.
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Conversely, fix ε > 0 and suppose that {B(xi, ri)}ni=1 is an open cover of τ such that

HQ(τ) ≥
n∑
i=1

rQi − ε.

For each i = 1, 2, . . . , n, there exists ki ∈ N0 such that B(xi, ri) ⊂ T (x, ki) and for each

τ ∈ Dki(S2), g(τ) ∼ ri. Thus

rQi ∼
∑

τ ′∈Dki (S
2),τ ′⊂T (x,ki)

g(τ ′)Q.

Let kmax = max{k1, . . . , kn}. By condition (iv) of the function g,∑
τ ′∈Dki (S

2),τ ′⊂T (x,ki)

g(τ ′)Q ∼
∑

τ ′∈Dkmax (S2),τ ′⊂T (x,ki)

g(τ ′)Q.

Therefore

HQ(τ) + ε ≥
n∑
i=1

rQi &
n∑
i=1

∑
τ ′∈Dkmax (S2),τ ′⊂T (x,ki)

g(τ ′)Q.

As {B(xi, ri)}ni=1 covers τ , {T (x, ki)}ni=1 covers τ , and

HQ(τ) + ε &
n∑
i=1

∑
τ ′∈Dkmax (S2),τ ′⊂T (x,ki)

g(τ ′)Q &
∑

τ ′∈Dkmax (S2),τ ′⊂τ

g(τ ′)Q & g(τ)Q.

Proposition 4.2.10. The metric q defined in Proposition 4.2.2 is Q-Ahlfors regular.

Proof. By Lemma 4.2.8, for every r < min{diamq(τ):τ∈D0(S2)}
2

, and every x ∈ S2, there exists

τ ∈ D(S2) such that τ ⊂ B(x, r) and diam(τ) ≥ η1r. Applying Proposition 4.2.9, we get

HQ(B(x, r)) ≥ HQ(τ) ∼ diam(τ)Q ∼ r.

where the implicit constant is independent of x and r.

Conversely, by Lemma 4.2.7, for every r < η1 min{g(τ):τ∈D0(S2)}
K1

, and for every x ∈ S2, there

exists k ∈ N0 such that B(x, r) ⊂ T (x, k), and g(τ) ∼ r. Applying Proposition 4.2.9, we get

HQ(B(x, r)) ≤ HQ(T (x, k))

≤
∑

τ∈Dk(S2),τ⊂T (x,k)

HQ(τ)

. |{τ ∈ Dk(S2) : τ ⊂ T (x, k)}|max{g(τ) : τ ∈ Dk(S2), τ ⊂ T (x, k)}Q

. rQ.
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Here supx,k |{τ ∈ Dk(S2) : τ ⊂ T (x, k)}| < ∞ since supn∈N0
supx∈S2 degx(f

n) < ∞, and if

x ∈ f−n(post(f)), then the number of n-tiles containing x is equal to 2 degx(f
n).

We can similarly define the notion of gauge function on a tile τ of S2.

Definition 4.2.11. Let Q > 1 be a constant. Let τ be a tile in S2 and let D(τ) = {τ ′ ∈

D(τ) : τ ′ ⊂ τ}. A function g : D(τ) → [0,∞) is called a Q-gauge function on (τ, ρ) if g

satisfies the following conditions:

(i) there exists 0 < η1 < η2 < 1 such that for all n ∈ N0, τ ∈ Dn(τ) and τ ′ ∈ Dn+1(τ) such

that τ ′ ⊂ τ , we have

η1 ≤
g(τ ′)

g(τ)
≤ η2,

(ii) there exists a constant K0 ≥ 1 such that for all n ∈ N0 and for all τ ′, τ ∈ Dn(τ) such

that τ ∩ τ ′ 6= ∅, we have
g(τ ′)

g(τ)
≤ K0,

(iii) there exists K1 > 0 such that for all x, y ∈ S2, for all τ ∈ Dm(x,y)(τ) such that x ∈ τ

or y ∈ τ , and for all tile chain γ = {τ1, τ2, . . . , τn} joining x and y, we have

`g(γ) :=
n∑
i=1

g(τi) ≥ K−1
1 g(τ).

(iv) there exists a constant K2 ≥ 1 such that for all n ∈ N0, for all τ ∈ Dn(τ), and for all

m ≥ n, we have

K−1
2 g(τ)Q ≤

∑
τ ′∈Dm(τ),τ ′∩τ 6=∅

g(τ ′)Q ≤ K2g(τ)Q.

(v) g(τ) 6= 0 for all τ ∈ D0(τ)

Proposition 4.2.12. Let τ be a tile in S2. Let g : D(τ)→ [0,∞) be a Q-gauge function on

S2. Then (τ, ρ) is qusisymmetrically equivalent to a Q-Ahlfors regular metric space.

The proof for Proposition 4.2.2 also works for Proposition 4.2.12.
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4.3 Construction of a Gauge Function

Let T be a weak tangent of the visual sphere (S2, ρ), let TQ be a Q-Ahlfors regular metric

space, and let ϕ : T → TQ be a quasisymmetry. We construct a gauge function on the set

D(S2) of tiles on the visual sphere. Let π : T → S2 be a composition of a branched covering

map in Theorem 1.0.7, and π0 restricted to an appropriate leaf. By Theorem 3.3.8, the map

π is a branched covering map.

Fix x ∈ C\ post(f). Let {xn}n∈N be an enumeration of the preimages of x under π in T .

Let W be the white 0-tile in S2, and let B be the black 0-tile in S2. For each n ∈ N, let

jn(W ) be the unique lift of W by ϕ in T that contains xn and let jn(B) be the unique lift

of the B by ϕ in T that contains xn. Let

Kn =
⋃
k≤n

jn(W ) ∪ jn(B).

let

∂n = #{τ : τ a 0-tile of T, τ ⊂ Kn, τ ∩ ∂Kn 6= ∅}.

Here ∂Kn is the boundary of Kn as a subspace in T . By enumerating xn appropriately we

may assume there exists a strictly increasing sequence {nk}k∈N of natural numbers such

lim
k→∞

∂nk
nk

= 0.

Let τ ∈ (S2) be an m-tile. Then for each n ∈ N there exists a unique m-tile σ ∈ D(T ) such

that σ ⊂ jn(W ) ∪ jn(B) and π(σ) = τ . We write jn(τ) = σ.

For every tile σ in T , let

g(σ) =
diam(ϕ(σ))

diam(ϕ(σ0))
,

where σ0 is a 0-tile in T that contains σ.

For all τ ∈ D(S2), and for all n ∈ N, let

gn(τ) =

(
1

n

(
(g(j1(τ)))Q + · · ·+ (g(jn(τ)))Q

)) 1
Q

.

Since D(S2) =
⋃
m∈N0

Dm(S2) is countable, and gn(τ) ∈ [0, 1] for all n ∈ N and τ ∈ D(S2),

by an Arzela-Ascoli argument there exists a subsequence {nr}r∈N of {nk}k→∞ such that for
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all τ ∈ D(S2),

g∞(τ) = lim
r→+∞

gnr(τ)

exists.

Proposition 4.3.1. The function g∞ : D(S2)→ [0,∞) verifies all the conditions in Propo-

sition 4.2.2.

Proof. Verification of condition (i): If τ (1) ∈ Dm(S2) and τ (2) ∈ Dm+k(S2) are two tiles

in S2 such that τ (2) ⊂ τ (1), then for all n ∈ N, jn(τ (2)) ⊂ jn(τ (1)), and

diam(ϕ(jn(τ (2))))

diam(ϕ(jn(τ (1))))
≤ Aη

(
c
diam(jn(τ (2)))

diam(jn(τ (1)))

)
≤ A′η

(
c′Λ−k

)
≤ K0(k),

where A,A′, c, c′ are constant, and K0(k) constants depending only on k. Since K0(k)→ 0 as

k →∞, by taking a higher iterate of f if necessary, we may assume that 0 < η2 = K0(1) < 1.

Since ϕ−1 is also quasisymmetry, when k = 1, we have

diam(ϕ(jn(τ (2))))

diam(ϕ(jn(τ (1))))
≥ η1 > 0.

As this is true for all n ∈ N, condition (i) is verified.

Verification of condition (ii): For all m ∈ N0, there exists Km > 0 such that for all

τ ∈ Dm(S2) and n ∈ N, we have

L(m) ≤ g(τn) ≤ K(m),

where 0 < L(m) ≤ K(m) are constants depending only on m. Also note that if σ, σ′ ∈ D(T )

are adjacent tiles in T at the same level, then

diam(ϕ(σ))

diam(ϕ(σ′))
≤ A′′η

(
c

diam(σ)

diam(σ′)

)
≤ K ′0

where K ′0 is a constant. If σ0, σ
′
0 are 0-tiles in T such that σ ⊂ σ0 and σ′ ⊂ σ′0, then

σ0 ∩ σ′0 6= ∅, therefore

g(σ)

g(σ′)
≤ diam(ϕ(σ))

diam(ϕ(σ′))

diam(ϕ(σ0))

diam(ϕ(σ′0))
≤ K0,

where K0 = (K ′0)2 is a constant.
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Now, suppose τ (1), τ (2) ∈ Dm(S2) are two adjacent m-tiles in S2. For any n ∈ N, at most

δn-manym-tiles among j1(τ (1)), . . . , jn(τ (1)) are not adjacent to a tile among j1(τ (2)), . . . , jn(τ (2)).

Moreover, there exist distinct numbers a1, . . . , an−δn ∈ {1, 2, . . . , n} and distinct numbers

b1, . . . , bn−δn ∈ {1, 2, . . . , n} such that jai(τ
(1)) ∩ jbi(τ (2)) 6= ∅ for all i = 1, 2, . . . , n− δn. We

have

gn(τ (1)) =

(
1

n

(
g(j1(τ (1)))Q + · · ·+ g(jn(τ (1)))Q

)) 1
Q

≤

((
1 +

δn
N − δn

(
K(m)

L(m)

)Q)(
g(ja1(τ (1)))Q + · · ·+ g(jaδn (τ (1)))Q

)) 1
Q

and

gn(τ (2)) =

(
1

n

(
g(j1(τ (2)))Q + · · ·+ g(jn(τ (2))Q

)) 1
Q

≤

((
1 +

δn
N − δn

(
K(m)

L(m)

)Q)(
g(ja1(τ (2)))Q + · · ·+ g(jaδn (τ (2)))Q

)) 1
Q

Therefore

gn(τ (1))

gn(τ (2))
≤

1 + δn
n−δn

(
K(m)
L(m)

)Q
1 + δn

n−δn

(
L(m)
K(m)

)Q g(ja1(τ (1)))Q + · · ·+ g(jan−δn (τ (1)))Q

g(jb1(τ (2)))Q + · · ·+ g(jbn−δn (τ (2)))Q


1
Q

≤

1 + δn
n−δn

(
K(m)
L(m)

)Q
1 + δn

n−δn

(
L(m)
K(m)

)Q


1
Q

K0.

By our assumption that limr→∞
δnr
nr

= 0, we obtain

g∞(τ (1))

g∞(τ (2))
= lim

r→∞

gnr(τ
(1))

gnr(τ
(2))

= K0.

Thus we have prove condition (ii).

Verification of condition (iii): Let x, y ∈ S2 and τ ∈ Dm(x,y)(S2) be a tile containing

x. By enlarging K1 if necessary, we may assume that ρ(x, y) < d0, where d0 > 0 is the

shortest length of any tile chain that joins opposite 0-edges in S2. Let γ = {τ (1), . . . , τ (k)}

be a tile chain in S joining x and y, and suppose that τ (i) ∈ Dmi(S2). Since q is a bounded

metric, the inequality in (iii) always hold if `g(γ) is large. In particular, we may assume
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that γ does not join opposite edges of C. We also assume that no tile appear in γ twice, for

otherwise we may remove a portion of γ and form a tile chain γ′ such that `g(γ
′) < `g(γ).

By the same logic we employed to verify condition (ii), for any n ∈ N, there exists

integers ai,j, where i = 1, . . . , k, and j = 1, . . . , n− kδn, such that 1 ≤ ai,j ≤ n, ai,j 6= ai,j′ if

1 ≤ j < j′ ≤ n− kδn, and for each j = 1, 2 . . . , n− kδn,

γj = {ja1,j
(τ (1)), . . . , jak,j(τ

(k))}

is a tile chain in T . Moreover, there exists distinct integer b1, b2, . . . , bn−δn ∈ {1, . . . , n} such

that γj contains a tile that intersect τbj for each j = 1, 2, . . . , n− kδn.

Fix j ∈ {1, 2, . . . , n− kδn}. Let σ1, . . . , σl be all the 0-tiles in T whose intersection with⋃
σ∈γj σ is nonempty. Since γ does not join opposite sides of C, σ1, . . . , σl must intersect at

a common point p ∈ T . Therefore for any ∗, † ∈ {1, . . . , `},

1

K ′0
≤ diam(ϕ(σ∗))

diam(ϕ(σ†))
≤ K ′0.

By triangle inequality, we have

diam(ϕ(ja1,j
(τ (1))) + · · ·+ diam(ϕ(jak,j(τ

(k))) ≥ |ϕ(x)− ϕ(y)|TQ ,

where |ϕ(x) − ϕ(y)|TQ denotes the distance between ϕ(x) and ϕ(y) in TQ. Since ϕ is qua-

sisymmetry, and the distance between x and y in T is proportional to diam(jbj(τ)), we

have

diam(ϕ(ja1,j
(τ (1)))) + · · ·+ diam(ϕ(jak,j(τ

(k))))

diam(ϕ(jbj(τ)))
≥
|ϕ(x)− ϕ(y)|TQ
diam(ϕ(jbj(τ)))

≥ K ′1, (4.3.1)

where K ′1 is a constant independent of x, y, γ, jbj(τ). We thus have

g(ja1,j
(τ (1))) + · · ·+ g(ja1,j

(τ (1)))

g(jbj(τ))
≥ K ′1
K ′0
≥ K−1

1 .

Here K1 ≥ 1 is a constant independent of x, y, γ, jbj(τ). We have

n
1
Q

k∑
i=1

gn(τ (i)) ≥
k∑
i=1

((
1 +

δn
n− kδn

(
L(mi)

K(mi)

)Q)(n−kδn∑
j=1

g
(
jai,j(τ

(i))
)Q)) 1

Q

≥ min
i=1,2,...,k

(
1 +

δn
n− kδn

(
L(mi)

K(mi)

)Q) 1
Q k∑

i=1

(
n−kδn∑
j=1

g
(
jai,j(τ

(i))
)Q) 1

Q

.
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By Minkowski inequaltiy and (4.3.1), we have

k∑
i=1

(
n−kδn∑
j=1

g
(
jai,j(τ

(i))
)Q) 1

Q

≥

n−kδn∑
j=1

(
k∑
i=1

g
(
jai,j(τ

(i))
))Q

 1
Q

≥ K−1
1

(
n−kδn∑
j=1

(
g
(
jbj(τ)

))Q) 1
Q

.

Thus

n
1
Q

k∑
i=1

gn(τ (i)) ≥ K−1
1 min

i=1,2,...,k

(
1 +

δn
n− kδn

(
L(mi)

K(mi)

)Q) 1
Q
(
n−kδn∑
j=1

(
g
(
jbj(τ)

))Q) 1
Q

≥ K−1
1 E(n)n

1
Q gn(τ),

where m = m(x, y) is the level of τ , and

E(n) = min
i=1,2,...,k

(
1 +

δn
n− kδn

(
L(mi)

K(mi)

)Q) 1
Q
(

1 +
δn

n− kδn

(
L(m)

K(m)

)Q)−Q
.

Again using limr→∞
δnr
n

= 0, we get

lim
r→∞

E(nr) = 1.

Therefore
k∑
i=1

g∞(τ (i)) ≥ K−1
1 gn(τ).

Verification of condition (iv): Condition (iv) holds for all gn,. Therefore it holds for

g∞.

4.4 The First Proof of Theorem 1.0.8

Theorem (Theorem 1.0.8). Let (S2, ρ) be a visual sphere of an expanding Thurston map

f with no periodic critical point. Let (T, x) be a weak tangent of (S2, ρ). For any Q > 0,

(S2, ρ) is quasisymmetrically equivalent to a Q-Ahlfors regular space if and only if T is

quasisymmetrically equivalent to a Q-Ahlfors regular space.

Proof. As mentioned in the introduction of this chapter, the “only if” implication holds in

greater generality. To prove the “if” implication, suppose T is quasisymmetrically equivalent
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to a Q-Ahlfors regular space TQ. By Theorem 4.3.1, there exists a gauge function g on the

collection D(S2) of tiles on S2 satisfying all the conditions of Theorem 4.2.2. By Theorem

4.2.2, there exists a Q-Ahlfors regular metric q on S2 such that the identity map id : (S2, ρ)→

(S2, q) is a quasisymmetry.

The case when the Ahlfors regular conformal dimension is attainable as 2 is of particular

interest.

Theorem 4.4.1. Let (S2, ρ) be a visual sphere of an expanding Thurston map f with no

periodic critical point. The followings are equivalent:

(i) (S2, ρ) is quasisymmetrically equivalent to the standard 2-sphere.

(ii) Every weak tangent of (S2, ρ) is quasisymmetrically equivalent to the Euclidean plane

R2.

(iii) There exists a weak tangent of (S2, ρ) that is quasisymmetrically equivalent to the Eu-

clidean plane R2.

Proof. (i) =⇒ (ii): The standard 2-sphere is 2-Ahlfors regular. If (S2, ρ) is quasisymmetri-

cally equivalent to a 2-Ahlfors regular space, then by Theorem 1.0.8, every weak tangent T

of (S2, ρ) is quasisymmetrically equivalent to a 2-Ahlfors regular space. But T is LLC. By

[Wil08], the T is quasisymmetrically equivalent to the Euclidean plane.

(ii) =⇒ (iii) is clear.

(iii) =⇒ (i): If a weak tangent of (S2, ρ) is quasisymmetrically equivalent to the

Euclidean plane R2, then by Theorem 1.0.8, (S2, ρ) is quasisymmetrically equivalent to a

2-Ahlfors regular space. Since (S2, ρ) is LLC, by [BK02], (S2, ρ) is quasisymmetrically equiv-

alent to the standard 2-sphere.

4.5 An Alternative Proof of Theorem 1.0.8

As promised, we offer an alternative proof of the “if” implication of Theorem 1.0.8.
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Lemma 4.5.1. For every tile τ ∈ D(S2), ∂τ is a porous subset of σ.

Proof. Suppose τ is a k-tile. Let x ∈ ∂τ be arbitrary, and suppose Λ−(n+1) ≤ r < Λ−n for

some n ≥ k. Regarding τ as a metric space, every open ball in τ with radius r contains a

(n + k)-tile (cf [BM17, Lemma 8.11]). This tile contains a ball B of radius cr, where c > 0

is a constant independent of x, r, and n, such that B ∈ τ and B ∩ ∂τ = ∅.

Lemma 4.5.2. Let (T, x) be a weak tangent of S2. Every tile σ ∈ D(T ) is quasisymmetrically

equivalent to a Q-AR metric space.

Proof. This is a consequence of Theorem 4.2.12.

Theorem 4.5.3. [Häı09, Proposition 4.1] Let X1, X2 be proper metric spaces containing

at least two points. Let us assume that Y1 ⊂ X1, Y2 ⊂ X2 are two closed uniformly perfect

subsets, and f : Y1 → Y2 is a quasisymmetry. Suppose that X1 is bounded if Y1 is. Suppose

further that Y1 and Y2 are porous, and X1 and X2 are both Q-AR. Then there exists a metric

d̂ on X̂ = X1 ∪X2/(f) and a constant c > 0 such that

(1) For any (x1, x2) ∈ X1 ×X2, d̂(x1, x2) ≥ c · infy∈Y1 d̂(x1, y) + d̂(f(y), x2).

(2) For j = 1, 2, the map id : Xj → X̂ is quasisymmetric.

(3) X̂ is Q-AR.

Theorem (Theorem 1.0.9). Let (S2, ρ) be a visual sphere of an expanding Thurston map f

with no periodic critical point. Let (T, x) be a weak tangent of (S2, ρ). If T is quasisymmet-

rically equivalent to a Q-Ahlfors regular space, then (S2, ρ) is quasisymmetrically equivalent

to a Q-Ahlfors regular space.

Proof. Let (T, x) be a weak tangent of S2. By Theorem 1.0.7(ii) and (v), and by how we

defined tiles on T , there exists a white tile τW in S2 that is quasisymmetrically equivalent

to a white tile in T . By Lemma 4.5.2, τW is quasisymmetrically equivalent to a Q-Ahlfors

regular space. Since τW is bilipschitz equivalent, therefore quasisymmetrically equivalent, to

the white 0-tile W , the white 0-tile W in S2 is also quasisymmetrically equivalent to a Q-AR

67



space. Similarly, the black 0-tile in S2 is quasisymmetrically equivalent to a Q-AR space. By

Lemma 4.5.1, W ∩ B is porous in W as well as B. Therefore we can apply Theorem 4.5.3

to conclude that (S2, ρ) is quasisymmetrically to a Q-Ahlfors regular space.
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CHAPTER 5

A Metric Sphere Not a Quasisphere but Whose Weak

Tangents are Euclidean

5.1 Introduction

In [Kin17] Kinneberg characterized metric circles that are quasisymmetric to the standard

circle in terms of weak tangents:

Theorem 5.1.1 (Kinneberg, [Kin17]). A doubling metric circle C is quasisymmetrically

equivalent to the standard circle S1 if and only if every weak tangent of C quasisymmetrically

equivalent to the real line R based at 0.

In this paper we prove that Kinneberg’s result cannot be extended to higher dimensions:

Theorem (Proposition 1.0.10). For every n ≥ 2, there exists a doubling, linearly locally

contractible metric space X, topologically an n-sphere, such that every weak tangent of X

is isometric to (Rn, 0) but X is not quasisymmetrically equivalent to the standard n-sphere.

When n = 2, one can compare our result with the following Theorem:

Theorem 5.1.2 (Bonk and Kleiner, [BK02]). Let Z be a 2-Ahlfors regular metric space

homeomorphic to S2. Then Z is quasisymmetric to S2 if and only if Z is linearly locally

contractible.

Theorem 1.0.10 shows that the conclusion of Theorem 5.1.2 is false if we replace 2-Ahlfors

regularity with Q-Ahlfors regularity for Q > 2.

Our study is also related to the following theorem, proven in [GW18]:
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Theorem 5.1.3. Let (Z, d) be a doubling metric space homeomorphic to S2. The following

are equivalent:

(i) (Z, d) is quasisymmetrically equivalent to the standard 2-sphere.

(ii) For every x ∈ Z, there exists an open neighborhood U of x in Z such that U is qua-

sisymmetrically equivalent to D.

Roughly speaking, Theorem 5.1.3 says local properties promote to global properties. Since

weak tangents are local, one could ask the following question:

Question 5.1.4. Suppose (Z, d) is doubling and linearly locally connected. Are the following

two statements equivalent?

(i) Z is quasisymmetrically equivalent to the standard d-sphere Sd

(ii) Every weak tangent of Z is quasisymmetrically equivalent to Rd.

When Z is a doubling and linearly locally connected metric sphere, statement (i) implies

statement (ii). However, our construction shows that statement (ii) does not imply statement

(i).

5.2 The First Construction

In this section, we will outline the construction of a doubling, linearly locally contractible

metric space X ′, homeomorphic to the 2-sphere, such that every weak tangent of X ′ is

bilipschitz equivalent to (R2, 0) but X ′ itself is not quasisymmetrically equivalent to the

standard 2-sphere. The construction of X ′ is not enough to prove Theorem 1.0.10, because

the weak tangents of X ′ are only bilipschitz equivalent to R2. However, the construction

of X ′ motivates the less intuitive second construction that proves Theorem 1.0.10. It is

therefore helpful to understand the first construction.

Our first construction is based on the idea of discretizing von-Koch snowflakes.
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Figure 5.1: L1
2,L2

2, and L3
2.

For each n ∈ N, let L0
n be the unit interval [0, 1]. Let L1

n be the the curve obtained by

dividing L0
n into 2n+1 intervals of equal length, and replacing the middle interval with three

sides of a square. Thus each L1
n has 2n+ 3 segments of length 1/(2n+ 1). For each k ∈ N0,

we divide each segment in Lkn into 2n + 1 smaller intervals of equal length and replace the

middle interval with three sides of a square to obtain Lk+1
n . Figure 5.1 shows L1

2, L2
2, and

L3
2. The sequence Lkn converges in Hausdorff sense in R2 to a curve Ln, whose Hausdorff

dimension is

dimH(Ln) =
log(2n+ 3)

log(2n+ 1)
.

The curves Ln are called snowflake curves. It is well-known that Ln is bilipschitz equivalent

to the metric ([0, 1], dαn), where d is the Euclidean metric and

αn =
1

dimH(Ln)
.

Lkn is called the k-step iteration of the curve Ln.

We need the following two lemmas:

Lemma 5.2.1. Let σ be the chordal metric on the 2-sphere S2. Let A,B ⊂ S2 be two subsets

such that σ(A,B), the distance between A and B, is positive. Let Γ(A,B) be the family of

curves joining A and B. Then

mod2(Γ(A,B)) . π

(
1 +

min{diam(A), diam(B)}
σ(A,B)

)2
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Lemma 5.2.2. Let L be a rectifiable curve of length `, X = L × [0, 1], A = L × {0},

B = L× {1}. Then

mod2(Γ(A,B)) ≥ `.

Motivated by these two lemmas, and the belief that 2-moduli should behave well under

quasisymmetry, we choose a sequence kn of positive integers such that

lim
n→∞

`(Lknn ) =∞.

Here `(L) denotes the length of a curve L. We choose a sequence sn of positive real numbers

such that sn < 1
n
− 1

n+1
. Let an = 1

n
− sn and bn = 1

n
, so that [an, bn] is a segment in

[ 1
n+1

, 1
n
] of length sn. For each n ∈ N, we construct a new metric space on R by replacing the

segments [an, bn] with the snowflake curves Lknn scaled by a factor sn. Call this topologically

1-dimensional space Γ. Then we form Γ × [0, 1] to produce a metric space of topological

dimension 2. FInally, we smooth the boundary of Γ× [0, 1] and embed the construction into

the standard 2-sphere. We call the fimal metric sphere X ′.

The two lemmas above imply that X ′ is not quasisymmetric to the standard 2-sphere.

We now give a heruistic argument that every weak tangent of X ′ is bilipschitz equivalent to

(R2, 0). The metric space X ′ is obtained by modifying part of the standard 2-sphere into

Γ× [0, 1]. Every weak tangnet of the standard 2-sphere is isometric to (R2, 0). Every weak

tangent of Lknn is bilipschitz equivalent to (R, 0), thus every weak tangent of Lknn × [0, 1] is

bilipschitz equivalent (R2, 0). Finally, if we zoom in near the point 0, then the curves Lknn

becomes milder in the sense that the curves Lknn become closer to a line segment. Thus every

the weak tangents of our metric space is bilipschitz equivalent to R2.

One can verify that X ′ is doubling and linearly locally contractible. This completes our

discussion of the first construction.
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5.3 The Second Construction

In this section, we replace Lknn with another “discretized snowflake curve”. To begin the

construction let α ∈ (0, 1) and c ∈ (0, 1) and define

ϕα,c(x) =


L(α, c)x, x ∈ [0, c](
x−c(1−α)
1−c(1−α)

)α
, x ∈ [c, 1],

where

L(α, c) =
1

c

(
cα

1− c(1− α)

)α
.

Lemma 5.3.1. The function ϕα,c : [0, 1]→ +∞ is the unique function on [0, 1] that has the

following properties:

(3.1) ϕα,c(0) = 0,

(3.2) ϕα,c(1) = 1,

(3.3) ϕα,c is linear on [0, c],

(3.4) There exists a, b ∈ R, with a 6= 0, such that ϕα,c(x) = (ax− b)α when x ∈ [c, 1],

(3.5) ϕα,c is continuous and differentiable at c.

In addition to properties (3.1) - (3.5), ϕα,c has the following extra properties:

(3.6) ϕα,c : [0, 1]→ [0, 1] is a homeomorphism,

(3.7) ϕα,c is concave on [0, 1].

Lemma 5.3.2. For any α ∈ (0, 1), c ∈ (0, 1], and a, b ∈ [0, 1], we have

ϕα,c(ab) ≤ ϕα,c(a)ϕα,c(b).

Proof. For fixed α ∈ (0, 1), the function c 7→ L(α, c) is decreasing on (0, 1). Therefore if

0 < c1 ≤ c2 ≤ 1, then

ϕα,c1 ≥ ϕα,c2 .
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Let

ϕ∗(x) =
ϕα,c(ax)

ϕα,c(a)
.

The function ϕ∗ satisfies conditions (1)-(5) listed above for the same α and c∗ = ca−1 ∈ [c, 1],

therefore ϕ∗ = ϕα,c∗ . This implies that ϕ∗ ≤ ϕα,c(x) for all x ∈ [0, 1]. Taking x = b, we have

ϕα,c(ab) ≤ ϕα,c(a)ϕα,c(b).

Lemma 5.3.3. For any α ∈ (0, 1), c ∈ (0, 1), and 0 ≤ t ≤ x ≤ 1, we have

0 ≤ ϕα,c(t) + ϕα,c(x− t)− ϕα,c(x) ≤ (2− 2α)ϕα,c(x/2).

Proof. When x ≤ c, we have

ϕα,c(t) + ϕα,c(x− t)− ϕα,c(x) = 0

for all t ∈ [0, x]. When x ≥ 2c is fixed, ϕα,c(t) + ϕα,c(x− t)− ϕα,c(x) is maximized when

ϕ′α,c(t)− ϕ′α,c(x− t) = 0,

which is possible only if x− t = t i.e. 2t = x. Thus we have

ϕα,c(t)+ϕα,c(x− t)− ϕα,c(x) ≤ 2ϕα,c(x/2)− ϕα,c(x)

≤ 2ϕα,c(x/2)− 2αϕα,c(x/2) = (2− 2α)ϕα,c(x/2).

When c < x < 2c, we have

ϕα,c(t) + ϕα,c(x− t) ≤ L(α, c)x =
x

c
ϕα,c(c).

By the concavity of ϕα,c, we also have

ϕα,c(x)

x
≥ ϕα,c(2c)

2c
.

Therefore

ϕα,c(t) + ϕα,c(x− t)− ϕα,c(x) ≤ x

c
ϕα,c(c)−

xϕα,c(2c)

2c
=

x

2c
(2ϕα,c(c)− ϕα,c(2c)) .
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But since

2ϕα,c(c)− ϕα,c(2c) ≤ (2− 2α)ϕα,c(c) = (2− 2α)cL(α, c),

we obtain

ϕα,c(t) + ϕα,c(x− t)− ϕα,c(x) ≤ x

2c
(2− 2α)cL(α, c) = (2− 2α)ϕα,c(x/2).

For any α ∈ (0, 1), we have

lim
c→0+

L(α, c) = +∞. (5.3.1)

Let αn be an increasing sequence in (0, 1) such that limn→∞ αn = 1. By (5.3.1), we can

choose cn ∈ (0, 1) such that cn → 0, and

lim
n→∞

L(αn, cn) = +∞.

Let ϕn = ϕαn,cn . Choose a sequence sn such that sn < 2
(

1
n
− 1

n+1

)
, snL(αn, cn) is decreasing

in n, and
∑

n∈N snL(αn, cn) <∞.

For all n ∈ N, let an = 1
n
− sn and bn = 1

n
. Write In = [an, bn], and equip In with the

metric δn = snϕn ◦ (s−1
n d), where d is the usual Euclidean metric on In. Note that

(i) The distance between the two endpoints of In is δn(an, bn) = sn.

(ii) In is rectifiable and the length of In is `(In) = snL(αn, cn).

For x ≤ y, define

δ(x, y) =



d(x, y), if x, y ∈ R\
⋃
i≥ Ii,

δn(x, y), if x, y ∈ In,

d(x, an) + δn(an, y), if x ∈ R\
⋃
i∈N Ii, y ∈ In,

δn(x, bn) + d(bn, y), if x ∈ In, y ∈ R\
⋃
i∈N Ii,

δn(x, bn) + d(bn, am) + dm(am, y), if x ∈ In, y ∈ Im.

For x > y, define δ(x, y) = δ(y, x). Then δ is a metric on R.
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5.4 The Weak Tangents of (R, δ)

The goal of this section is to prove the following proposition that describes all the weak

tangents of (R, δ).

Proposition 5.4.1. For all an ∈ R, and for all positive integers λn → +∞, (R, an, λnδ)

converges in pointed Gromov-Hausdorff sense to (R, 0, d).

Note that Proposition 5.4.1 guarantees the existence of weak tangents of (R, δ). To prove

the above proposition we will use the following three lemmas:

Lemma 5.4.2. Suppose x, y, z ∈ R are three points so that x ≤ y ≤ z. Suppose N = inf{n ∈

N : {x, y, z} ∩ In 6= ∅} <∞. Then

0 ≤ δ(x, y) + δ(y, z)− δ(z, x) ≤ (2− 2αN ) min{sN , δ(x, y)}

Proof. If N = +∞, then δ(x, y) + δ(y, z)− δ(z, x) = 0. Otherwise, let

a = sup{an ≤ y : n ∈ N} ∨ sup{bn ≤ y : n ∈ N} ∨ x

b = inf{an ≥ y : n ∈ N} ∧ inf{bn ≥ y : n ∈ N} ∧ z

We have x ≤ a ≤ y ≤ b ≤ z. By definition of δ, we have

δ(x, y) + δ(y, z)− δ(x, z) = (δ(x, a) + δ(a, y)) + (δ(y, b) + δ(b, z))

− (δ(x, a) + δ(a, b) + δ(b, z))

= δ(a, y) + δ(y, b)− δ(a, b).

Bu our choice of a and b, either a, y, b ∈ In for some n ≥ N , or (a, b) ∩
⋃
n∈N In = ∅. In the

latter case, we have

δ(x, y) + δ(y, z)− δ(z, x) = δ(a, y) + δ(y, b)− δ(a, b) = 0.

In the former case, Lemma 5.3.3 gives

0 ≤ δ(x, y) + δ(y, z)− δ(z, x) = δ(a, y) + δ(y, b)− δ(a, b)

≤ (2− 2αn) δ(a, b) = (2− 2αN ) min{sN , δ(x, y)}.

Since αN ≤ αn ≤ 1, we have our desired conclusion.
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Lemma 5.4.3. Let p ∈ R and r > 0 be arbitrary. Suppose N = inf{n ∈ N : Bδ(p, r) ∩ In 6=

∅} <∞. Let a = inf{x ∈ R : δ(x, p) ≤ r} and b = sup{x ∈ R : δ(x, p) ≤ r}. Then the map

ψ : ([a, b], p, δ)→ ([−r, r], 0, d)

ψ(x) =


−δ(p, x), x ≤ p

δ(p, x), x > p.

is an ε-rough isometry, where ε = (2− 2αN ) min{sN , 2r}.

Proof. Since ψ is surjective and fixes p, it remains to check that for all x, y ∈ [a, b], we have

(d(ψ(x), ψ(y))− δ(x, y)) ≤ ε.

Suppose x ≤ y. If x ≤ y ≤ p, then

|d(ψ(x), ψ(y))− δ(x, y)| = ||δ(p, x)− δ(p, y)| − δ(x, y)|

= |δ(p, y)− δ(p, x)− δ(x, y)|

≤ (2− 2αN ) min{sN , δ(p, x)}

= (2− 2αN ) min{sN , 2r}.

The second to last inequality is a consequence of Lemma 5.4.2. If x ≤ p ≤ y, then

|d(ψ(x), ψ(y))− δ(x, y)| = ||δ(p, x)− δ(p, y)| − δ(x, y)|

= |δ(p, y) + δ(p, x)− δ(x, y)|

≤ (2− 2αN ) min{sN , δ(x, y)}

= (2− 2αN ) min{sN , 2r}.

If p ≤ x ≤ y, then following a similar argument as when x ≤ y ≤ p, we get

|d(ψ(x), ψ(y))− δ(x, y)| ≤ (2− 2αN ) min{sN , 2r}

This verifies that ψ is an ε-rough isometry.

Lemma 5.4.4. For r ∈ (0, 1), we have

sup
p∈R

dGH((Bδ(p, r), p, δ), (Bd(0, r), 0, d)) = o(r)

as r → 0.
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Proof. Let p ∈ R and r > 0 be arbitrary. Let N = inf{n ∈ N : Bδ(p, r) ∩ In 6= ∅}. If

N = +∞, then δ = d on Bδ(p, r). We have

dGH((Bδ(p, r), p, δ), (Bd(0, r), 0, d)) = 0.

If N <∞, we consider two cases:

Case 1: r ≥ sN
2
ϕN(cN). As r → 0, N → +∞, and therefore (2− 2αN ) → 0. In this case

Lemma 5.4.3 implies

dGH((Bδ(p, r), p, δ), (Bd(0, r), 0, d)) ≤ 2 (2− 2αN ) r = o(r).

Case 2: r < sN
2
ϕN(cN). In this case, δ is a length metric on [a, b], and ψ is an isometry

between two length spaces. Thus we have

dGH((Bδ(p, r), p, δ), (Bd(0, r), 0, d)) = 0.

Proof of Proposition 5.4.1. Let {an}n∈N be a sequence in R and {λn}n∈N be a sequence of

positive numbers that diverges to +∞. By Lemma 5.4.4,

dGH
(
(Bλnδ(an, R), an, λnδ), (Bλnd(0, R), 0, λnd)

)
= λndGH

(
(Bδ(an, λ

−1
n R), an, δ), (Bd(0, λ

−1
n R), 0, d)

)
= λno(λ

−1
n R).

But (Bλnd(0, R), 0, λnd) = Bd(0, R), 0, d)) by the symmetry of R. As n → ∞, λ−1
n R → 0,

and we have

(Bλnδ(an, R), an, δ)→ Bd(0, R), 0, d).

This is true for all R > 0. We conclude that (R, an, λnδ)→ (R, 0, d).

5.5 Linear Local Contractibility and Assouad Dimension of (R, δ)

In this section we establish two properties of the space (R, δ). These properties often appear

in the study of quasisymmetry classes of metric spheres. Both properties are discussed in

detail in [Hei01].
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Definition 5.5.1. Let C > 1 be a constant. A metric space is C-linearly locally contractible

if every small ball is contractible inside a ball whose radius is C times larger. A metric space

is linearly locally contractible if it is C-linearly locally contractible for some C > 0.

Definition 5.5.2. Let N > 0. A metric space is N-doubling if for all R > 0, every open ball

of 2R can be covered by N balls of radius R. A metric space is doubling if it is N-doubling

for some N > 0.

Both doubling and linear local contractibility are preserved under quasisymmetry. The

Euclidean spaces Rn or Sn are doubling and linearly locally contractible. The doubling

property also ensures the existence of weak tangents.

Proposition 5.5.3. The space (R, δ) is 1-linearly locally contractible.

Proof. Any open ball B in (R, δ) is an open interval (a, b). Denote p the center of B (in

(R, δ).) Note that the map x 7→ δ(p, x) is increasing on {x ∈ R : x ≥ p, and decreasing on

{x ∈ R : x ≤ p}. Therefore the map H(x, t) = tx + (1 − t)p is a homotopy of (a, b) to {p}

in B. This proves that (R, δ) is 1-linearly locally contractible.

Proposition 5.5.4. The space (R, δ) is doubling.

If a metric space X is doubling, then there exists β > 0 and C > 0 such that for all

ε ∈ (0, 1/2) and r > 0, any set of diameter r in X can be covered by at most Cε−β subsets

of diameter at most εr. The function ε 7→ Cε−β is called the covering function of X. The

Assouad dimension of X is defined to be the infimum of all β so that a covering function of

the form ε 7→ Cε−β of X exists. Conversely, any metric space of finite Assouad dimension is

doubling. Proposition 5.5.4 will follow from the stronger proposition below.

Lemma 5.5.5. For each n ∈ N, the function fn(ε) = 2ε−α
−1
n is a covering function of (In, δ).

Proof. Every subinterval of In of δ-diameter r ∈ [0, sn] has d-diameter snϕ
−1
n (s−1

n r). Thus

our goal is to show that for every r ∈ [0, sn], and every ε ∈ (0, 1/2), every subset of In of

d-diameter snϕ
−1
n (s−1

n r) can be covered by no more than (ε−αn + 1) subintervals of In of
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d-diameter at most snϕ
−1
n (s−1

n εr). The number of subintervals we need can be bounded from

above by

snϕ
−1
n (s−1

n r)

snϕ−1
n (s−1

n εr)
+ 1 ≤ sup

y∈(0,1]

ϕ−1
n (y)

ϕ−1
n (εy)

+ 1 = sup
y∈[ϕn(cn),1]

ϕ−1
n (y)

ϕ−1
n (εy)

+ 1.

We claim that the last supremum is attained when y = 1. This is equivalent to

ϕn(ϕ−1
n (εy))

ϕn(ϕ−1
n (y))

≤ ϕn

(
ϕ−1
n (εy)

ϕ−1
n (y)

)
, (5.5.1)

which follows from Lemma 5.3.2.

Suppose ϕn(x0) = ε. When ε > ϕn(cn), we have x0 > cn, and

εα
−1
n =

x0 − c(1− αn)

1− c(1− αn)
≤ x0.

When 0 < ε < ϕn(cn), we have x0 < cn and ε = ϕn(x0) = x0

c
ϕn(cn). As ϕn(cn)α

−1
n ≤ c, we

have

1

x0

=
ϕ(c)

cε
= ε−α

−1
n

(
ε

ϕ(c)

)α−1
n −1

ϕ(c)α
−1
n

c
≤ ε−α

−1
n .

In any case, we can take the covering function of In to be

ε−α
−1
n + 1 ≤ 2ε−α

−1
n .

Proposition 5.5.6. The Assouad dimension of (R, δ) is 1.

Proof. Let β > 1 be arbitrary. There exists N ∈ N such that when n ≥ N , α−1 < β. Let

C = maxn<N{2α
−1
n −β} ≥ 1. Then the function ε 7→ 2Cε−β, where ε ∈ (0, 1/2], is a covering

function of (In, δ) for all n ∈ N. Thus ε 7→ 4Cε−β is a covering function of (R, δ).

5.6 The Proof of Theorem 1.0.10

Let d ≥ 2. We will denote by dEuclid the Euclidean metric on Rd. Let

Xd =

(
R× Rd−1,

√
δ2 + d2

Euclid

)
be the product of (R, δ) and (Rd−1, dEuclid). Write ρn =

√
δ2 + d2

Euclid. Here are some facts

about Xd.
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Proposition 5.6.1. (a) Every weak tangent of Xd is isometric to (Rd, 0, dEuclid).

(b) Xd is doubling and linearly locally contractible.

Proof. (a) Every weak tangent of Xd is of the form (T × Rn−1, (x, 0), dT × dEuclid), where

(T, x, dT ) is a weak tangent of (R, δ).

(b) Recall that (R, δ) is doubling (Proposition 5.5.4). Xd is the product of doubling

metric spaces, hence doubling. By Proposition 5.5.3, (R, δ) is C-linearly locally contractible

for some C > 1. Let x = (x1, x2) be any point in R×Rd−1, and r > 0 be arbitrary. The ball

B(x, r) in Xd can first be contracted to {x1} × B(x2, r) within a B(x,Cr), which can then

be contracted to the point {x1, x2}.

Every finite segment in (R, δ) is rectifiable. Let µ1 be a the measure on (R, δ) given

by length. For d ≥ 2, let µd be the product measure µ1 × λd−1 on Xd, where λd−1 is the

(d− 1)-dimensional Lebesgue measure on Rd−1.

In the remaining of this section we show that Xd is not quasisymmetrically equivalent to

Rd. To do that we consider a geometric quantity, roughly preserved under quasisymmetry,

called modulus. Given a family Γ of curves in a measured metric space (X, dX , µ), we say

that a Borel function ρ : X → [0,∞) is admissible if for all locally rectifiable γ ∈ Γ,∫
γ

ρ(x) ds ≥ 1.

Let Q > 0. We define the Q-modulus of Γ as

modQ(Γ) = inf{
∫
X

ρQ dµ : ρ admissible }.

Let E,F ⊂ X be two disjoint nondegenerate continua in X. Let ΓE,F to be the collection

of all rectifiable curves joining E and F . We write modQ(E,F ) = modQ(ΓE,F ).

Moduli behave nicely under quasisymmetry, as illustrated by the following theorem.

Theorem 5.6.2 (Tyson, [Tys98]). Let X, Y be locally compact, connected, Q-Ahlfors regular

metric spaces, where Q > 1, and let f : X → Y be a quasisymmetric homeomorphism. Then

there exists C > 1 such that for all curve family Γ ⊂ X, we have

1

C
modQ(Γ) ≤ modQ(f(Γ)) ≤ C modQ(Γ).
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See the next section for the definition of Q-Ahlfors regularity.

We can now prove that Xd is not quasisymmetrically equivalent to Rd. The idea is

that if the two spaces are quasisymmetrically equivalent, then Γ and f(Γ) should have

comparable moduli for any curve family Γ. We know that Rd has the property that any

disjoint nondegenerate continua E,F in Rd satisfy

modd(E,F ) ≤ φ

(
d(E,F )

diam(E) ∧ diam(F )

)
. (5.6.1)

for some non-increasing function φ : [0,∞) → (0,∞). However, Proposition 5.6.3 below

shows that some sequence disjoint nondegenerate continua En, Fn in Xd do not satisfy (5.6.1).

The only problem is that Xd is not d-Ahlfors regular, so we cannot apply Theorem 5.6.2

directly. In Proposition 5.6.4, however, we will show that the inequality

modd(En, Fn) ≤ C modd(f(En), f(Fn))

holds for some C independent of C.

From now on, we will denote ∆(E,F ) = d(E,F )
diam(E)∧diam(F )

.

Proposition 5.6.3. There exists En, Fn ⊂ Xd such that ∆(En, Fn) = d(En,Fn)
diamEn∧diamFn

= 1

and modd(En, Fn)→ +∞.

Proof. Take En = In × {0} × [0, sn]d−2, Fn = In × {sn} × [0, sn]d−2. Then d(En, Fn) = sn,

and diamEn = diamFn = sn, therefore

∆(En, Fn) =
d(En, Fn)

diamEn ∧ diamFn
= 1.

For each n ∈ N, and for x ∈ In and (v2, . . . , vd−1) ∈ [0, sn]d−2, let γx,v2,...,vd−1
be the path

t 7→ (x, t, v2, . . . , vd−1) , t ∈ [0, sn].

Let

Γn = {γx,v2,...,vd−1
: x ∈ In, (v2, . . . , vd−1) ∈ [0, sn]d−2}

be the family of straight lines joining En and Fn that meet En orthogonally. Then

modd(En, Fn) ≥ modd(Γn).
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Let ρ : Xd → R≥0 be an admissible function for Γn. This means for all γx,v2,v3,...,vd−1
∈ Γn,

we have ∫
γx,v2,v3,...,vd−1

ρ(t) dt =

∫ sn

0

ρ(x, t, v2, . . . , vd−1) dt ≥ 1.

Integrating over In × [0, sn]d−2 and applying Fubini’s theorem, we get∫
In×[0,sn]d−2

dµ1 × λd−2 ≤
∫
In×[0,sn]d−2

∫
γx,v2,v3,...,vd−1

ρ(t) dt d(µ1 × λd−2)

=

∫
In×[0,sn]d−1

ρ dµd.

Applying Hölder’s inequality, we get∫
In×[0,sn]d−1

ρ dµd ≤
(∫

In×[0,sn]d−1

dµd

) 1
δ
(∫

In×[0,sn]d−1

ρd dµd

) 1
d

where δ is the conjugate exponent of d (so 1
δ

+ 1
d

= 1). Thus we have

∫
In×[0,sn]d−1

ρd dµd ≥
(∫

In×[0,sn]d−1

dµd

)− d
δ
(∫

In×[0,sn]d−2

dµ1 × λd−2

)d
=
(
(sn)(d−1)`(In)

)− d
δ
(
(sn)d−2`(In)

)d
= 2n`(In).

This is true for all admissible function ρ, therefore

modd(Γn) ≥ s−1
n `(In).

As n→∞, s−1
n `(In) = L(αn, cn)→ +∞. We have

modd(En, Fn) ≥ modd(Γn)→ +∞.

Proposition 5.6.4. Xd is not quasisymmetrically equivalent to any subset of Rd.

Proof. For each n ∈ N, and for x ∈ In, (v2, . . . , vd−1) ∈ [0, sn]d−2}, let γx,v2,...,vd−1
be the path

t 7→ (x, t, v2, . . . , vd−1) , t ∈ [0, sn].
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Let

Γn = {γx,v2,...,vd−1
: x ∈ In, (v2, . . . , vd−1) ∈ [0, sn]d−2}

be the family of straight lines joining En and Fn that meet En orthogonally. Suppose

f : Xd → Rd is an η-quasisymmetric embedding. By abuse of notation, we also write γ for

the image of the path γ. For a path family Γ, define Γ∗ =
⋃
γ∈Γ γ, and define diam(Γ) =

inf{diam γ : γ ∈ Γ}.

Choose En and Fn as in Proposition 5.6.3. We know from diam(En) ∧ diam(Fn) =

d(En, Fn) that
d(f(En), f(Fn))

diam(f(En)) ∧ diam(f(Fn))
∼ 1,

where the implicit constant for ∼ depends only on η. For the same reason, there exists

α > 1, depending only on α, β > 1, depending only on η, so that f(Γn)∗ ⊂ Bn for a ball Bn

with diameter rn ≤ α d(En, Fn) ≤ β diam(f(Γ)).

For each n ∈ N, we can cover Γ∗ by squares {Ri}i∈In of diameter snϕn(cn) so that their

sides are either parallel to the paths in Γ or orthogonal to the paths in Γ. We can choose

{Ri} so that these Ri’s don’t overlap and their union is precisely Γ∗. For each rectifiable

path γ, denote by `(γ) its length. Let

ρn = (diam f(Γn))−1
∑
i∈In

diam(f(Ri))

diam(Ri)
1f−1(Bn)∩Ri .

be a function on Xd. For all γ ∈ Γn,

We have ∫
γ

ρn(s) ds = (diam f(Γn))−1
∑
i∈In

diam(f(Ri))

diam(Ri)
`(f−1(Bn) ∩Ri ∩ γ).

For each i, f−1(Bn)∩Ri ∩ γ = Ri ∩ γ. When Ri ∩ γ 6= ∅, `(Ri ∩ γ) = diam(Ri). As {Ri}i∈In
covers Γ∗, we have∫

γ

ρn(s) ds ≥ (diam f(Γn))−1
∑

i∈In,Ri∩γ 6=∅

diam(f(Ri)) ≥ (diam f(Γn))−1 diam(f(γ)) ≥ 1.
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This means ρn is admissible for Γn. We have

modd Γn ≤
∫
ρdn dµd = (diam f(Γn))−d

∑
i∈In

(
diam(f(Ri))

diam(Ri)

)d
µd(f

−1(Bn) ∩Ri)

= (diam f(Γn))−d
∑
i∈In

(
diam(f(Ri))

diam(Ri)

)d
µd(Ri)

= (diam f(Γn))−d
∑
i∈In

(
diam(f(Ri))

diam(Ri)

)d
diam(Ri)

d.

For the last equality, we make use of the fact that Ri are chosen so small that µd(Ri) =

diam(Ri)
d. We get

modd Γn . (diam f(Γn))−d
∑
i∈In

(diam(f(Ri)))
d . (diam f(Γn))−d

∑
i∈In

λd(f(Ri)).

Here we use the fact that the Lebesgue λd on Rd is d-Ahlfors regular and that f is a

quasisymmetric. Since {f(Ri)}n∈N are disjoint subsets of Bn, we have

modd Γn . (diam f(Γn))−dλd(Bn) . 1.

where all the implicit constants for . depends only on η. But this is a contradiction to

Proposition 5.6.3.

From Proposition 5.6.1 and Proposition 5.6.4, Xd is homeomorphic to Rd, doubling and

linearly locally connected, it is not quasisymmetric to Rd. Our proof shows that the any ball

in Xd centered at 0 cannot be quasisymmetrically embedded into Rd.

We conclude this section with a proof of Theorem 1.0.10.

Proof of Theorem 1.0.10. The d-dimensional unit ball B(0, 1) in Rd, equipped with the met-

ric

ρ̃(x, y) =
ρ
(

x
1−|x| ,

y
1−|y|

)
1 + ρ

(
x

1−|x| ,
y

1−|y|

) .
The completion of the space (B(0, 1), ρ̃) is B(0, 1), and the metric on the boundary is same as

the Euclidean metric. gluing the space B(0, 1) with another hemisphere to form a topological

d-sphere. This d-sphere is doubling, locally linearly contractible, and every weak tangent is

isometric to Rd, but it cannot be a quasisphere.
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5.7 Ahlfors Regularity

Let Q > 0. A measured metric space (X, d, µ) is said to be Q-Ahlfors regular if for all x ∈ X

and r ≤ diamX, we have

µ(B(x, r)) ∼ rQ.

Ahlfors regularity and Assouad dimension are related concepts. We record a result from

[Hei01]:

Theorem 5.7.1. [Hei01, Theorem 14.6] Let X be a complete, connected metric space of finite

Assouad dimension β. Then for each Q > β, there exists a quasisymmetric homeomorphism

of X onto a closed Q-Ahlfors regular subset of some RN .

With these facts our example gives:

Theorem 5.7.2. For every Q > 2, there exists a Q-Ahlfors regular and linearly locally

contractible metric space X that is topologically a 2-sphere such that every weak tangent is

uniformly quasisymmetric to R2 but X is not quasisymmetric to the standard 2-sphere.

Proof. Let Q > 2. By Proposition 5.5.6, the Assouad dimension of X2 is 2. Proposition

5.7.1 says that there exist a distortion function η : [0,∞)→ [0,∞) and an η-quasisymmetry

ϕ : X2 → X ′, where X ′ is a closed Q-Ahlfors regular subset of RN . By Proposition 5.6.4

and Proposition 5.6.1(b), X ′ is not quasisymmetric to the standard 2-sphere, but every weak

tangent of X ′ is η-quasisymmetric to (R2, 0).
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CHAPTER 6

Porous Subsets of Visual Spheres

6.1 Introduction

In this chapter, we study the f -invariant porous subsets of the visual sphere. We ask whether

there are porous subset that are large in some sense. This question turns out to be related

to the topological data of f that can be described by multicurves.

A simple closed curve γ in S2\ post(f) is peripheral if one of the components of S2\γ

contains at most one point in post(f), and non-peripheral otherwise. A multicurve is a

finite, disjoint, non-isotopic collection of non-peripheral simple closed curves in S2\ post(f).

A multicurve Γ is said to be f -stable if, for all γ ∈ Γ, each non-peripheral simple closed

curve in f−1(γ) is isotopic relative post(f) to a curve in Γ.

Let Γ = {γ1, . . . , γn} be an f -stable multicurve Γ. For each i, j ∈ {1, . . . , n}, let γi,j,α be

the components of f−1(γj) isotopic to γi in S2\ post(f), and let di,j,α > 0 be the degree of

the restriction map f |γi,j,α : γi,j,α → γj. Let p > 0 be arbitrary. Define

M(f,Γ, p) : RΓ → RΓ

by

M(f,Γ, p)(γj) =
∑
γi∈Γ

∑
α

d1−p
i,j,αγi.

Since M(f,Γ, p) is represented by a non-negative square matrix, the Perron-Frobenius The-

orem implies that the matrix M(f,Γ, p) has a real non-negative eigenvalue Λ(M(f,Γ, p))

equal to its spectral radius.

When p = 2, the matrix fΓ,2 is usually referred to as the Thurston matrix associated to f

and Γ. Let Λ(Γ, p) be the largest eigenvalue of M(f, p,Γ). Thurston gave a characterization
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of the rationality of f in terms of these matrices if f has hyperbolic orbifold. An orbifold of

f can be described by a function α : S2 → N ∪ {∞}, such that α(x) is the lowest common

divisor of {degx′(f
n) : n ∈ N, fn(x′) = x}. Notice that α(x) = 1 for every x ∈ S2\ post(f).

The Thurston map f is said to have hyperbolic orbifold if

2−
∑

x∈post(f)

1− 1

α(x)
< 0.

Theorem 6.1.1 (Thurston’s obstruction). A Thurston map f with hyperbolic orbifold is not

equivalent to a rational map if and only if there exists an f -stable family Γ of non-isotopic

non-peripheral simple closed curves such that Λ(Γ, 2) greater than or equal to 1.

The exact statement and the proof are contained in [DH93] and [Pil01].

A multicurve Γ is called irreducible if there exists an iterate fn of f such that every entry

of M(fn,Γ, p) is positive. If Γ contains an irreducible multicurve, then the function

p 7→ Λ(Γ, p)

is strictly decreasing on [1,∞) ([HP08, Lemma A2]), and there exists unique Q(Γ) ≥ 1 such

that Λ(Γ, Q(Γ)) = 1. If Γ does not contain any irreducible multicurve, we define Q(Γ) = 0.

Define

Q(f) = sup{Q(Γ) : Γ multicurve}.

When f is an expanding Thurston map without periodic critical points, we have the

following inequality.

Theorem 6.1.2 (Haissinski-Pilgrim, [HP08]).

Q(f) ≤ dimAR(f).

We are interested in the porous subsets of visual spheres.

Definition 6.1.3. Let (X, d) be a metric space, and K a compact subset of X. Let a ∈ (0, 1).

We say that K is a-porous in X if for all x ∈ K, and for every 0 < r < diamd(X), there

exists y ∈ BX(x, r) such that B(y, ar) ∩K = ∅. We say that K is porous if it is a-porous

for some a ∈ (0, 1). A compact subset K of a visual sphere of f is said to be f -invariant if

f(K) ⊂ K.
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We would like to know when f exists a “thick” family of curves.

Definition 6.1.4. An f -stable multicurve Γ is said to be p-thick if either one of the following

conditions holds:

1. Λ(Γ, p) > 1; or

2. Λ(Γ, p) = 1 and there exists γ ∈ Γ such that f−1(γ) contains a peripheral component.

The existence of a p-thick f -stable multicurve is related to the existence of a curve

family having large discrete p-modulus. For each n ∈ N, let Gn be the graph with vertex

set Vn = Dn(S2), and join two tiles τ, τ ′ ∈ Dn by an edge if and only if τ ∩ τ ′ 6= ∅. Given a

curve family Γ on a graph Gn = (Vn, En), we say that ρ : Vn → [0,∞) is Γ-admissible if, for

all γ ∈ Γ, we have ∑
τ∈Vn:τ∩γ 6=∅

ρ(τ) ≥ 1.

Given p > 0, we define

modp(Γ,Λ
−n) = inf{

∑
τ∈Vn

ρ(τ)p : ρ is Γ-admissible}.

Definition 6.1.5. A family Γ of curves in (S2, ρ) is said to be p-thick if

inf
γ∈Γ

diam(γ) > 0

and

lim sup
n→∞

modp(Γ,Λ
−n) > 0.

Theorem 6.1.6. Let f be an expanding Thurston map without periodic critical points, and

let p ≥ 2. If there exists a p-thick f -stable multicurve, then there exists a curve family Γ

supported on an f -invariant porous subset such that Γ is p-thick.

When p = 2, we give an example (Example 6.9.3) to show that if f does not have 2-thick

f -stable multicurve, then every curve family Γ supported on a f -invariant porous subset is

not 2-thick.
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6.2 Discrete Moduli

Discrete moduli, also called combinatorial moduli, are used to study metric spaces that do

not have many locally rectifiable curves. They are particularly useful in the study of Ahlfors

regular conformal dimension. See [KL04], [HP08], and [CP13]. In this section we define

discrete moduli of metric spaces and prove a few basic properties about discrete moduli.

Let G = (V,E) be a connected graph. A sequence of points γ = {v1, v2, . . . , vn} is called

a curve in G if vi neighbors vi+1 for all i = 1, 2, . . . , n− 1. A curve γ in G is simple closed if

vn neighbors v1 and vi’s are distinct. For any function ρ : V → [0,∞), we define the ρ-length

of γ to be

`ρ(γ) =
∑
v∈γ

γ(v).

Note that γ may not be simple, but each vertex appears at most once in the above sum. Let

Γ be a family of curves in V . We say that ρ is Γ-admissible if `ρ(γ) ≥ 1 for all γ ∈ Γ. Let

p > 0. Define the p-modulus of Γ in G by

modp(Γ, G) = inf
ρ
{
∑
v∈V

ρ(v)p},

where the infimum is taken over all Γ-admissible function ρ.

We list some basic properties of modulus. These propositions are related to the Serial

Law and Parallel Law from the theory of electrical networks, hence their names.

Proposition 6.2.1 (The Parallel Law). Let G = (V,E) be a connected graph, and let Γ be

a family of disjoint curves. Then

modp(Γ, G) =
∑
γ∈Γ

modp({γ}, G).

Proof. If ρ : V → [0,∞) is a Γ-admissible function, then for each γ ∈ Γ, the function

ργ(v) =


ρ(v), if v ∈ γ

0, otherwise
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is {γ}admissible. We have∑
v∈V

ρ(v)p ≥
∑
γ∈Γ

∑
v∈Γ

ρ(v)p ≥
∑
γ∈Γ

modp({γ}, G).

Infimizing over all possible choice of ρ we get

modp(Γ, G) ≥
∑
γ∈Γ

modp({γ}, G).

Conversely, for each γ ∈ Γ, let ργ be an admissible function for {γ} on G. Then the function

ρ′γ(v) =


ργ(v), if v ∈ γ

0, otherwise

is {γ}-admissible. Let ρ =
∑

γ∈Γ ρ
′
γ. Then ρ is Γ-admissible, and we have

modp(Γ, G) ≤
∑
v∈V

ρ(v)p =
∑
γ∈Γ

∑
v∈γ

ρ′γ(v)p ≤
∑
γ∈Γ

∑
v∈γ

ργ(v)p

Infimizing over all possible choice of ργ, we get

modp(Γ, G) ≤
∑
γ∈Γ

modp({γ}, G).

We can view G as a topological space on the underlying set V ∪ E, such that each edge

in E is homeomorphic to the unit interval [0, 1] joining two vertices in V .

Proposition 6.2.2 (The Serial Law). Let G = (V,E), G̃ = (Ṽ , Ẽ) be two connected graphs

and let π : G̃→ G be a covering map such that π−1(V ) = Ṽ and π(Ṽ ) = V . Let Γ = {γ} be

a family of closed curves in G and Γ̃ be a family of closed curves in G such that the map π

lifts each curve γ in Γ to a curve γ′ in Γ′. Let us further assume that there exists an integer

d ∈ N0 such that for all γ ∈ Γ, `(γ′) = d`(γ). Then

modp(Γ̃, G̃) ≤ d1−p modp(Γ, G).

Proof. Given a Γ-admissible function ρ on G, we define ρ̃ : Ṽ → [0,∞) by the formula

ρ̃ = 1
d
ρ ◦ π. Then ρ̃ is Γ̃-admissible on G̃, and we have∑

v∈Ṽ

ρ̃(v)p = d
∑
w∈V

1

dp
ρ(w)p = d1−p

∑
w∈V

ρ(w)p.
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Infimizing over all possible choices of ρ, we get the inequality

modp(Γ̃, G̃) ≤ d1−p modp(Γ, G).

Following [CP13], we describe the notion of hyperbolic filling of a doubling and uniformly

perfect metric space. Similar constructions can be found in [BP03], [Lin16], and [BS18],

among other works. We do not need the full construction of a hyperbolic filling, but we

describe the construction in full regardless, as we believe this gives the reader the right

perspective.

Let (X, d) be a doubling and uniformly compact metric space. Let V be a cover of

(X, d). Suppose that there exists ε > 0 such each τ ∈ V contains a point xτ ∈ X such that

B(xτ , ε) ⊂ τ , and if τ, τ ′ ∈ V are two different sets, then B(xτ , ε)∩B(xτ ′ , ε) = ∅. We call V

a ε-thick ε-separated cover of (X, d).

Let V be a ε-thick ε-separated cover of (X, d). We construct a graph G, called the graph

of V , whose vertex set is V , and τ, τ ′ ∈ V are connected by an edge if and only if τ 6= τ ′ and

τ ∩ τ ′ 6= ∅.

Let (X, d) be a metric space, let V be a cover of X, and let G = (V,E) be a connected

graph. For each curve γ : [0, 1]→ X, we say that the curve γ′ = {v1, . . . , vn} is a projection

of γ onto G if there exists a increasing onto map ϕ : [0, 1]→ {1, 2, . . . , n} such that γ(t)) ∈

γ′(ϕ(t)). Given a family Γ of curves in X, let ΓG be the collection of projections of curves

in Γ onto G, and call ΓG the projection of Γ onto G. For any p ≥ 0, we write

modp(Γ, G) = modp(ΓG, G).

Proposition 6.2.3. Let V, V ′ be two ε-thick ε-separated covers of (X, d). Let G,G′ be the

graphs of V and V ′ respectively. Assume

sup
v∈V ′
|{w ∈ V : w ∩ v 6= ∅}| = C1 <∞,

and

sup
w∈V
|{v ∈ V ′ : w ∩ v 6= ∅}| = C2 <∞.
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Then there exists C > 1, depending only on C1 and C2, such that for all curve family Γ in

(X, d), and for any p ≥ 1, we have

C−1 modp(Γ, G) ≤ modp(Γ, G
′) ≤ C modp(Γ, G).

Proof. Let ρ be an admissible function on Gn. Define ρ̃ : V ′ → [0,∞) by

ρ̃(v) =
∑

w∈V :w∩v 6=∅

ρ(w).

Let γ′ ∈ ΓG′ be a curve. Then γ′ is a projection of some γ̃ ∈ Γ. Let γ ∈ ΓG be a

projection of γ̃ onto Gn. Then for every w ∈ γ, there exists v ∈ γ′ such that w ∩ v ∩ γ 6= ∅.

Thus ∑
v∈V ′:γ′∩v 6=∅

ρ̃(v) =
∑
v∈γ′

∑
w∈V :w∩v 6=∅

ρ(w) ≥
∑

w∈V :w∩γ 6=∅

ρ(w) ≥ 1.

This shows that ρ̃ is admissible in G.

Using the definitions of C1 and C2, we get

∑
v∈V

ρ̃(v)p =
∑
v∈V

 ∑
w∈V :w∩v 6=∅

ρ(w)

p

≤
∑
v∈V

Cp−1
2

∑
w∈V :w∩v 6=∅

ρ(w)p

= Cp−1
2

∑
w∈V

∑
v∈V :w∩v 6=∅

ρ(w)p

≤ Cp−1
2

∑
w∈V

C1ρ(w)p

= C1C
p−1
2

∑
w∈V

ρ(w)p.

Thus

modp(ΓG, G) ≤ C1C
p−1
2

∑
w∈V

ρ(w)p.

The above inequality holds for every function ρ that is admissible for ΓGn on Gn. We conclude

that

modp(ΓG, G) ≤ C modp(ΓG, G).

where C = C1C
p−1
2 . The other symmetry is obtained by switching the role of G and G′.
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We say that V is an (ε, ε′)-discretization of (X, d) if V is a ε-thick ε-separated cover of

(X, d), and there exists ε′ > ε such that for each τ ∈ V , τ ⊂ B(xτ , ε
′).

Fix a ∈ (0, 1) and λ > 1, and suppose that for each n ∈ N, Vn is a (an, λan)-discretization

of (X, d). Let V =
∐

n∈N Vn be the disjoint union of the sets Vn. Let G whose vertex set is

V such that τ, τ ′ ∈ V are joined by an edge when τ ∩ τ ′ 6= ∅ and τ ∈ Vn and τ ′ ∈ Vn for

some m,n ∈ N with |m− n| ≤ 1. The graph G is called a hyperbolic filling of (X, d) with

parameter a, λ.

Let Gn be the graph of Vn. Let p > 0. For each τ ⊂ Vn, and k ≥ 1, let B be a ball

with radius λan such that τ ∈ B, and let Γτ,n+k be the set of paths in Gn+k that connect an

element in {τ ∈ Vn+k : τ ∩ B 6= ∅} and an element in {τ ∈ Vn+k : τ ∩ (X\2B) 6= ∅}. Here

λB is the ball with the same center as B and λ times the radius of B. Define

Mp,k := sup
τ∈V

modp(Γτ,n+k, Gn+k).

Let

QN = inf{p ∈ (0,∞) : lim inf
k→∞

Mp,k = 0}.

Theorem 6.2.4. [CP13, Theorem 1.2] Let (X, d) be a doubling, uniformly perfect, compact

metric space. Then the dimAR(X) = QN .

Note that by Proposition 6.2.3, whether QN = 0 or not does not depend on the choice

of the hyperbolic filling V .

We are interested in the case that (X, d) is a visual sphere of an expanding Thurston map

f with no periodic critical point. Given such f , Yin[Yin11] constructed an object called the

tile graph of f . In that construction, the set Vn is taken to be the collection Dn of tiles at

level n. The graphs Gn are constructed by joining tiles τ, τ ′ ∈ Dn such that τ ∩ τ ′ 6= ∅. We

call Gn the level n tile graph.

Theorem 6.2.5. [BM17, Lemma 8.11] Let (S2, ρ) be the visual sphere constructed in Chapter

3. Then there exists a constant κ ≥ 1 such that for every n-tile τ ∈ D, there exists a point

p ∈ τ such that

Bρ(p, κ
−1Λ−n) ⊂ τ ⊂ Bρ(p, κΛ−n).
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Very similar mathematical objects were considered by Häıssinsky and Pilgrim’s [HP09,

Chapter 2], and similar result as the above one is obtained. In view of Proposition 6.2.3 and

Theorem 6.2.5, for any curve family Γ in the visual sphere, and any p > 1, we write

modp(Γ,Λ
−n) = modp(Γ, Gn)

6.3 Symbolic Dynamics on Curves

Let Γ0 be a f -stable multicurve in S2\ post(f). For all n ≥ 1, let Γn be the union of all

non-peripheral components of f−n(γ) over all γ ∈ Γ0.

We view curves in Γn as functions from S1 onto S2\ post(f). To do that, for each γ ∈ Γ0,

we choose a parameterization of γ, which we also denote as γ. Thus γ can either be a

injective function from S1 to S2 post(f) or the image of the function. Now suppose γi ∈ Γ1 is

a component in f−1(γ). Then there exists unique integer di ∈ Z\{0} and a parameterization

γi : S1 → post(f) such that the following diagram commutes:

S2\f−1(post(f))

S1 S1 S2\ post(f).

fγi

dj γ

Thus each γi can also be regarded as a function γi : S1 → post(f).

Let A1 = {1, 2, . . . , |Γ1|}. For each j ∈ A1, γj is isotopic to γ for exactly one γ ∈ Γ0. Let

Hj : S1 × [0, 1]→ S2\ post(f)

be an isotopy such that Hj(·, 0) = γj and Hj(·, 1) = γ. Suppose γi ∈ Γ1 is a component in

f−1(γ). Then there exists a unique isotopy

Hij : S1 × [0, 1]→ S2\f−1(post(f))

such that Hij(·, 1) = γi and

S2\f−1(post(f))

S1 × [0, 1] S1 × [0, 1] S2\ post(f).

f
Hij

di×id Hj
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Let γij(·) = Hij(·, 0).

Let i1, . . . , in ∈ {1, 2, . . . |Γ1|}. We say that i1i2 . . . in is an admissible word of length n for

(f,Γ0) if for each k = 1, 2, . . . , k − 1, γik ∈ Γ1 is isotopic to a component of the preimage of

γik+1
∈ Γ1 or the inverse of γik+1

. Let An be the collection of all admissible words of length

n for (f,Γ0). We inductively define the parameterizations γi1...,in : S1 → S2\ post(f) and the

isotopies Hi1...,in : S1 × [0, 1]→ S2\ post(f) in the following way.

Let i1 . . . in be an admissible word for (f,Γ0). Suppose γi2...in : S1 → S2\ post(f) and

Hi2,...,in : S1× [0, 1]× S2\ post(f) are defined. Then there exists unique Hi1...in such that the

following diagram commutes:

S2\f−1(post(f))

S1 × [0, 1] S1 × [0, 1] S2\ post(f).

f
Hi1...in

di1×id Hi2...in

Now we set γi1...in(·) = Hi1...in(·, 0).

The following estimate follows from [BM17, Lemma 8.9].

Lemma 6.3.1. There exists a constant C > 0 such that for all n ∈ N, i1 . . . in+1 ∈ An+1,

and (x, t) ∈ S1 × [0, 1], we have

|Hi1...in(x, t)−Hi1...in+1(x, t)| ≤ CΛ−n.

Let i1, i2, . . . ∈ {1, . . . , |Γ1|} be a sequence of letters. We say that i1i2 . . . is an admissible

infinte word for (f,Γ0) if and only if i1 . . . in ∈ An for all n ∈ N. Let A∞ be the collection

of admissible infinte words for (f,Γ0). As a corollary of Lemma 6.3.1, we have the following

proposition:

Proposition 6.3.2. Let i1i2 . . . ∈ A∞ be an admissible infinite word for (f,Γ0). Then the

sequence γi1i2...,in : S1 → S2 converges uniformly as a sequence of functions to a function

S1 → S2, which we denote by γi1i2....

Proposition 6.3.2 allows us to make sense of γω for an admissible infinite word ω for

(f,Γ0). Let Γ∞ = {γω : ω ∈ A∞}.
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Proposition 6.3.3.

inf
γ∈Γ∞

diam(γ) > 0.

Proof. First note that there exists c > 0 such that every simple closed curve γ in S2\ post(f)

that is isotopic to a curve in Γ0 satisfies

diamρ(γ) > c.

Thus for any n ∈ N,

inf
γ∈Γn

diam(γ) ≥ c.

Taking the Hausdorff limit, we get

inf
γ∈Γ∞

diam(γ) ≥ c > 0.

6.4 Invariant Porous Subsets of Visual Spheres

In this section, we gave a few basic facts about existence and behavior of invariant porous

subsets of visual spheres.

Lemma 6.4.1. A compact subset K of S2 is f -invariant if and only if K = S2\
⋃∞
n=0 f

−n(S2\K).

Proof. Since f(K) ⊂ K, we have K ⊂ f−1(K) ⊂ f−2(K) ⊂ · · · , therefore for all n ∈ N,

S2\
∞⋃
n=0

f−n(S2\K) =
∞⋂
n=0

f−n(K) = K.

Conversely, if K = S2\
⋃∞
n=0 f

−n(S2\K) =
⋂∞
n=0 f

−n(K), then

f(K) = f(
∞⋂
n=0

f−n(K)) ⊂
∞⋂
n=0

f(f−n(K)) ⊂
∞⋂
n=0

f−n(f(K)) ⊂
∞⋂
n=0

f−n(K) = K.

Lemma 6.4.2. An f -invariant subset K of the visual sphere is either S2 or porous.
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Proof. Suppose K 6= S2. Then there exists an open ball B = B(x0, ε) such that B ∩K 6= ∅.

We may even assume, by choosing a smaller open ball if necessary, that B does not intersect

that f -invariant Jordan curve C. Without loss of generality, we may assume that B is in the

white 0-tile.

Let x ∈ K be a point. Then there exists n0 ∈ N0 such that for all n ∈ N0, the open

ball B(x, r) contains a white (n+ n0)-tile τ such that x 6∈ τ . By Theorem 3.2.2, f−n(B)∩ τ

contains a ball of radius Λ−nε. Thus K is porous.

Lemma 6.4.3. If K is an fn-invariant compact porous subset, then f(K) is compact, fn-

invariant, and porous.

Proof. Since f is continuous, f(K) is compact. The set K is fn-invariant since

fn(f(K)) = f(fn(K)) ⊂ f(K).

Since fn(K) ⊂ K and K 6= S2, we have fn−1(f(K)) = fn(K) 6= S2. Therefore f(K) 6= S2.

By Lemma 6.4.2, f(K) is porous.

Lemma 6.4.4. Let n ∈ N. Every fn-invariant subset of the visual sphere (S2, ρ) of f is

contained in a f -invariant porous subset of the visual sphere.

Proof. Let K be a fn-invariant porous subset of the visual sphere. By Lemma 6.4.3,

f(K), f 2(K), . . . , fn−1(K) are compact and porous. We claim that

K ′ = K ∩ f(K) ∩ . . . ∩ fn−1(K)

is compact, f -invariant and porous.

For each r ∈ N, the map f r is continuous, therefore f r(K) is compact. Union of compact

subsets are compact, thus K ′ = K ∩ f(K) ∩ . . . ∩ fn−1(K) is compact. Using the fact that

fn(K) ⊂ K, we have

f(K ′) = f(K ∩ f(K) ∩ . . . ∩ fn−1(K))

⊂ f(K) ∩ f 2(K) ∩ . . . ∩ fn(K)

⊂ f(K) ∩ f 2(K) ∩ . . . ∩K

= K ′.
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Thus K ′ is f -invariant.

Suppose K, f(K), f 2(K), . . . , fn−1(K) are a-porous for some a ∈ (0, 1). Suppose x ∈ K ′,

and let 0 < r < diamρ(S2). If B(x, r/2)∩K = ∅, then the ball B(x, ar/2) is a ball in B(x, r)

and B(x, ar/2) ∩ K = ∅. If instead B(x, r/2) ∩ K 6= ∅, then for any y1 ∈ B(x, r/2) ∩ K,

there by porosity of K there exists a ball B(x1, ar/2) ⊂ B(y1, r/2) ⊂ B(x, r) such that

B(x1, ar/2) ∩K = ∅. In any case, we can find x1 ∈ B(x, r) such that B(x1, ar/2) ⊂ B(x, r)

and B(x1, ar/2)∩K 6= ∅. Similarly, there exists x2 ∈ B(x1, ar/2) such that B(x2, (a/2)2r) ⊂

B(x1, ar/2) and B(x2, (a/2)2r) ∩ f(K) = ∅. By induction, there exists xn ∈ B(x, r) such

that B(xn, (a/2)nr) ⊂ B(x, r) and B(xn, (a/2)nr)∩K ∩ f(K)∩ · · · ∩ fn−1(K) = ∅. Thus K ′

is (a/2)n-porous.

Recall from Section 6.4 that Ak is the space of all admissible words of length k, and A∞

is the space of all admissible infinite words. We define a shift map on A∞ and study subsets

of A∞ that are invariant under the shift map.

Lemma 6.4.5. Let n ≥ 2, and let i1, . . . , in ∈ {1, . . . , |Γ0|}. If i1i2 . . . ik ∈ Ak, then i2 . . . ik ∈

Ak−1.

Proof. If i1i2 . . . in ∈ Ak, then for each k = 1, 2, . . . , k−1, γik ∈ Γ1 is isotopic to a component

of the preimage of γik+1
∈ Γ1 or the inverse of γik+1

. In particular, γik ∈ Γ1 is isotopic to a

component of the preimage of γik+1
∈ Γ1 or the inverse of γik+1

for each k = 2, 3, . . . , k − 1.

Therefore i2 . . . ik ∈ Ak−1.

Here is a corollary of Lemma 6.4.5.

Corollary 6.4.6. Let i1, i2, . . . ∈ {1, . . . , |Γ0|} If i1i2i3 . . . ∈ A∞, then i2i3 . . . ∈ A∞.

Let σ : A∞ → A∞ be the map σ(i1i2i3 . . .) = i2i3 . . .. We call σ the shift map on A∞.

We say that E ⊂ A∞ is σ-invariant if σ(E) ⊂ E.

Lemma 6.4.7. For any ω ∈ E, f(γω) ⊂ γσ(ω).
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Proof. Write ω = i1i2i3 . . .. For each n ∈ N, we have

f(γi1...in) = γi2...,in

as sets. Taking Hausdorff limits on both sides, and noting that f is continuous, we have the

desired conclusion.

For any subset E ⊂ A∞, let ΓE = {γω ∈ Γ∞ : ω ∈ E}, and let KE =
⋃
ω∈E γω.

Lemma 6.4.8. If E ⊂ A∞ is σ-invariant, then KE is f -invariant.

Proof.

f(KE) = f

(⋃
ω∈E

γω

)
=
⋃
ω∈E

f(γω) =
⋃
ω∈E

γσ(ω) ⊂
⋃
ω∈E

γω.

6.5 Constructing the Porous Subsets

If A is a square matrix with positive entries, then by the Perron-Frobenius theorem, there

exists λ > 0 such that λ is an eigenvalue of A, that the eigenspace of A with eigenvalue λ

is 1-dimensional, and that λ is the spectral radius of A. We let ρ(A) = λ and call ρ(A) the

Perron-Frobenius root of A.

The proof of the following lemma comes from [js2].

Lemma 6.5.1. Let n ≥ 1 be an integer. Let A, B be two n × n matrices with positive

entries. Let v be an eigenvector of A with eigenvalue ρ(A). Let κ(A) = ‖v‖−1
∞ > 0. Then

|ρ(A)− ρ(B)| ≤ κ(A) max
i,j
|Ai,j −Bi,j| .

Proof. Let Bt be the transpose of B, and let w be an eigenvector of B with eigenvalue ρ(B).

Let (·, ·) denote the usual dot product on Rn. Then

((A−B)v, w) = (Av,w)− (v,Btw) = (ρ(A)− ρ(B))(v, w).
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Note that

(v, w) ≥ κ(A) ‖w‖1 ,

and

((A−B)v, w) ≤ κ(A) max
i,j
|Ai,j −Bi,j| ‖w‖1 .

Note that ‖w‖1 > 0. Therefore

|ρ(A)− ρ(B)| ≤ κ(A) |Ai,j −Bi,j| .

Let p be a positive number such that p ≥ 2. Assume Γ0 is a p-thick f -invariant multicurve.

Let us rewrite the matrix M(f,Γ0, p), as follows. Define functions

p :
∐
n∈N

An → Γ0

h :
∐
n∈N

An → Γ0

d :
∐
n∈N

An → N,

so that for any n ∈ N and ω ∈ An, γω ∈ Γn is a component of the preimage of p(ω) ∈ Γ0

under fn, γω is isotopic to h(ω) ∈ Γ0, and deg(f |γω) = d(ω). Then For each γ ∈ Γ0, we have

M(f,Γ0, p)(γ) =
∑

i∈A1:p(i)=γ

d(i)1−ph(i).

One can verify that for all n ≥ 1,

M(f,Γ0, p)
n(γ) =

∑
ω∈An:p(ω)=γ

d(ω)1−ph(ω) = (fn)Γ0,p.

Recall that Λ(Γ0, p) is the Perron-Frobenius root of M(f,Γ0, p), which is also the spectral

radius of M(f,Γ0, p).
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Lemma 6.5.2. Let Γ0 be an irreducible f -stable multicurve. Let M = M(f,Γ0, p), and

λ = Λ(M(f,Γ0, p)). If λ > 1, then there exists N ∈ N and ω0 ∈ AN such that the matrix

defined by

Mω0(γ) =
∑

ω∈AN\{ω0}:p(i)=γ

d(i)1−ph(i),

has positive entries and ρ(M ′) > 1.

Proof. Let v be an eigenvector of M with eigenvalue λ. Then for each n ∈ N, v is an

eigenvector of Mn with eigenvalue λn. Since Γ0 is irreducible, there exists N ′ ∈ N such

that for every n ≥ N ′, every entry of Mn is positive. Suppose ω = i1i2 . . . in ∈ An. Then

d(ω) = d(i1)d(i2) . . . d(in) ≥ 2n. Therefore for all ω0 ∈ An, if we set

Mω0 =
∑

ω∈An\{ω0}:p(ω)=γ

d(ω)1−ph(ω) = (fn)Γ0,p,

then every entry of M ′ is positive, and the absolute value of any entry in Mn−Mω is bounded

from above by 2(1−p)n. By Lemma 6.5.1, we have

|ρ(Mn)− ρ(Mω0)| ≤ κ(M)2(1−p)n.

Therefore

ρ(Mω0) ≥ λn − κ(M)2(1−p)n.

Since λ > 1 and 1− p < 0, by choosing sufficiently large N ≥ N ′, we nave

ρ(Mω) > 1

for arbitrary choice of ω in AN .

6.6 Modulus Estimates

Throughout this section, we assume that Γ0 is an irreducible p-thick curve. We also assume

either one of the following:

Case 1: There exists γ ∈ Γ0 with a peripheral component in f−1(γ). In this case, we let

E∞ = A∞, and for every n ∈ N, we let En = A∞. We also let

M = M(f,Γ0, p).
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Case 2: M(f,Γ0, p) > 1, and there exists i0 ∈ A1 such that every entry of the matrix

M =
∑

i∈A1\{i0}

d(i)1−ph(i).

is positive, and ρ(M) > 1. In this case, we let E∞ be the set of admissible infinite words for

(f,Γ0) that onto i0, and for every n ∈ N, we let En be the set of admissible finite words of

length n for (f,Γ0) that do not contain the letter i.

In both cases, for every n ∈ N, let Γ′n = {γω : ω ∈ En}, and let Kn =
⋃
ω∈En γω. Also let

Γ′∞ = ΓE∞ , and let K∞ = KEn .

To complete proof, we replace Γ0 by a slightly easier choice to work with, and we choose

an integer k ∈ N such that Gn is a sufficiently fine discretization for each n ≥ k.

Lemma 6.6.1. There exists a collection Γ∗0 of f -stable multicurves and a bijection j : Γ∗0 →

Γ0 such that for all γ ∈ Γ∗0, j(γ) and γ are isotopic in S2\ post(f), and there exists k ∈ N

such that for all n ≥ k, every simple closed curve in the subset
⋃
τ∈Dn(S2),γ∩τ 6=∅ τ of S2 is

either isotopic in S2\ post(f) to γ or null-isotopic in S2\ post(f), and for every γ, γ′ ∈ Γ∗0

with γ 6= γ′, we have
⋃
τ∈Dn(S2),γ∩τ 6=∅ τ ∩

⋃
τ∈Dn(S2),γ′∩τ 6=∅ τ = ∅.

Proof. Since curves in Γ are disjoint and avoid post(f), there exists k ∈ N0 such that if

γ, γ′ ∈ Γ0 are distinct, then for all n ≥ k, we have

⋃
τ∈Dn(S2),γ∩τ 6=∅

τ ∩
⋃

τ∈Dn(S2),γ′∩τ 6=∅

τ = ∅,

and

post(f) ∩
⋃

τ∈Dn(S2),γ∩τ 6=∅

τ = ∅.

Each γ can be replaced by a simple closed curve γ̃ in f−k(C) such that

γ̃ ⊂
⋃

τ∈Dk(S2),γ∩τ 6=∅

τ.

such that γ̃ is isotopic to γ. This gives us the f -stable multicurve Γ∗0. Since γ̃ ⊂ f−k(C), for

every large n, every simple closed curve in the subset
⋃
τ∈Dn(S2),γ∩τ 6=∅ τ of S2 is either isotopic

in S2\ post(f) to γ or null-isotopic in S2\ post(f).
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For the rest of this section, we will assume that Γ0 = Γ∗0 and k be the positive integer as

in Lemma 6.6.1.

Lemma 6.6.2. There exists a vector w ∈ R|Γ0| with positive entries such that for all n ∈ N0,

we have

modp(Γ
′
n,Λ

−(n+k)) ∼ vt (M(f,Γ, p))nw.

where v = (1, 1, . . . , 1)t is the column vector of |Γ0|-entries, each entry being 1.

Proof. Note that by our choice of f , for every n ≥ 1 and I ∈ An, the map

fn :
(
τ : τ ∈ Dn+k(S2), γI ∩ τ 6=

)
→
(
τ : τ ∈ Dk(S2), fn(γI) ∩ τ 6= ∅

)
is a covering map satisfying the condition in Proposition 6.2.2, with d = deg(fn|γI) = dI.

Moreover, if I ∈ An, then every simple closed curve in the subset
⋃
τ∈Dn+k(S2),γI∩τ 6=∅ τ of S2 is

either isotopic in S2\ post(f) to γI or it is null-isotopic in S2\ post(f), and that if I,J ∈ An

are distinct, then  ⋃
τ∈Dn+k(S2),γI∩τ 6=∅

τ

 ∩
 ⋃
τ∈Dn+k(S2),γJ∩τ 6=∅

τ

 = ∅.

By the Parallel Law (Proposition 6.2.1),

modp(Γ
′
n,Λ

−(n+k)) =
∑
I∈An

modp(γI,Λ
−(n+k)). (6.6.1)

For each n ∈ N and I ∈ An, the map

fn :
(
τ : τ ∈ Dn+k(S2), γI ∩ τ 6=

)
→
(
τ : τ ∈ Dk(S2), fn(γI) ∩ τ 6= ∅

)
is a normal covering map as described in the Serial Law (Proposition 6.2.2), hence the Serial

Law applies and we get

modp(γI,Λ
−(n+k)) = deg(fn|γI)1−p modp(f

n(γI),Λ
−k). (6.6.2)

We compute that if I = i1i2 . . . in, then

deg(fn|γI) = |di1di2 . . . din| .
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Combining (6.6.1) and (6.6.2), we get

modp(Γ
′
n,Λ

−(n+k)) = vtMnw,

where v = (1, 1, . . . , 1)t is the column vector of |Γ0|-entries, each entry being 1, and

w = (modp(γ,Λ
−k))γ∈Γ0

is a vector with positive entries.

Lemma 6.6.3. For every k ∈ N0, we have

modp(Γ
′
∞,Λ

−(n+k)) & modp(Γ
′
n,Λ

−(n+k))

where the implicit constants are independent of n.

Proof. By Lemma 6.3.1 and Lemma 6.2.3 we have

modp(Γ
′
∞,Λ

−(n+k)) ∼ modp(Γ
′
∞, G

C
(n+k)),

where C is the constant in 6.3.1, so that for all k ∈ N, we have the inclusion

(Γ′∞)GC
(n+k)

⊃ (Γ′n)Λ−(n+k) .

The above inclusion implies that

modp(Γ
′
∞, G

C
(n+k)) & modp(Γ

′
n,Λ

−(n+k)).

Lemma 6.6.4. The set KE∞ is compact, f -invariant and porous.

Proof. Suppose x is a point in the closure of KE∞ . Then there exists a sequence {ωn}n∈N in

E∞ such that ρ(x, γωn) → 0 as n → +∞. Since the alphabet set A1 is finite, there exists a

subsequence ωnk of ωn and a sequence {ik}k∈N of letters such that for each k ∈ N, the first k

letters of ωnk is i1i2 . . . ik. Let ω = i1i2 . . .. By Proposition 6.3.1, γωnk : [0, 1]→ S2 converges

uniformly as functions to γω. Therefore

ρ(x, γγn) ≤ lim
n→∞

ρ(x, γωnk ) = 0.
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This proves that KE∞ is compact.

Since E is σ-invariant, by Lemma 6.4.8, KE∞ is f -invariant. We claim that KE∞ 6= S2.

By Lemma 6.4.2, KE∞ is then porous.

To prove our claim, for each n ∈ N, we count the number of n-tiles that intersect KE∞ .

Let k ∈ N be as in Lemma 6.6.1. Then Let A be a positive |Γ0| × |Γ0| matrix, defined by

A(γ) =
∑

i∈E1:p(i)=γ

d(i)h(i)

for each γ ∈ Γ0. Note that for each γ ∈ Γ0,∑
i∈E1:p(i)=γ

d(i) ≤ deg(f),

where deg(f) is the global degree of f . Moreover, by our choice of E1, there exists γ ∈ Γ0

such that equality does not hold. This implies ρ(A) < deg(f). For each n ∈ N, we have

#{τ ∈ Dn+k : τ ∩KEn 6= ∅} = vtAnw.

Here v = (1, 1, . . . , 1)t is the column vector of |Γ0|-entries, each entry being 1, and

w = (#{τ ∈ Dn+k : τ ∩ γ 6= ∅})γ∈Γ0

is a vector with non-negative entries. Since the graph Gn+k has uniformly bounded vertex

degree, By Lemma 6.4.8, we have

#{τ ∈ Dn+k : τ ∩KE∞ 6= ∅} = CvtAnw,

where C is a constant. We have

lim
n→∞

#{τ ∈ Dn+k : τ ∩KE∞ 6= ∅}
#Dn+k

= lim
n→∞

CvtAnw

2 deg(f)(n+k)

= lim
n→∞

(
ρ(A)

deg(f)

)n
C

2 deg(f)k
vt

An

ρ(A)n
w

= 0.

Thus there exists n ∈ N such that {τ ∈ Dn+k : τ ∩ KE∞ 6= ∅} 6= Dn+k. Thus KE∞ 6=

∅(S2).
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Proposition 6.6.5. The curve family Γ∞ is supported on KE∞ with

lim inf
n→∞

modp(Γ∞, Gn) > 0.

Proof. By the definition of KE∞ , Γ∞ is supported on KE∞ . By Proposition 6.6.3, for all

n ∈ N0, we have

modp(Γ
′
∞,Λ

−(n+k)) & modp(Γ
′
n,Λ

−(n+k)).

By Proposition 6.6.2, we have

modp(Γ
′
n,Λ

−(n+k)) ∼ vtMnw.

where v = (1, 1, . . . , 1)t is the column vector of |Γ0|-entries, each entry being 1, and w ∈ R|Γ0|

is a vector with positive entries. Thus

modp(Γ
′
∞,Λ

−(n+k)) & vtMnw.

By the Perron-Frobenius Theorem,

lim
n→∞

∣∣∣∣vt Mn

ρ(M)n
w

∣∣∣∣ ∈ (0, 1).

Since ρ(M) > 1, we have

lim inf
n→∞

modp(Γ
′
∞,Λ

−(n+k)) & vtMnw & lim
n→∞

∣∣∣∣vt Mn

ρ(M)n
w

∣∣∣∣ ρ(M)n =∞.

6.7 The Proof of Theorem 6.1.6

We are ready to put together the proof of Theorem 6.1.6.

Proof of Theorem 6.1.6. Let p > 0. Let Γ0 be a p-thick irreducible f -stable multicurve.

Then either one of the two cases hold:

Case 1: There exists γ ∈ Γ0 with a peripheral component in f−1(γ). In this case we take

r = 1.
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Case 2: M(f,Γ0, p) > 1. Then by Lemma 6.5.1, there exists r ∈ N and ω0 ∈ Ar such that

every entry of the matrix

M =
∑

ω∈Ar\{ω0}

d(ω)1−ph(ω).

is positive, and ρ(M) > 1.

In either case, we can apply Lemma 6.3.3, Proposition 6.6.4 and Proposition 6.6.5 to f r and

Γ0 to conclude the exists a curve family Γ supported on an f r-invariant porous subset K for

some r ∈ N that is p-thick. By Proposition 6.4.4, there exists an f -invariant porous subset

K ′ such that K ⊂ K ′. This completes the proof of Theorem 6.1.6.

6.8 Flap construction

In this section we describe a procedure to construct a new expanding Thurston map from an

old one. The procedure, which we call the flap construction, was studied in by Pilgrim and

Tan in [PT98] where the construction took the name “blowing-up the arc”. However, the

existence of f -invariant Jordan curves gives us a straightforward combinatorial description

of the procedure when f is an expanding Thurston map.

Our description of the procedure relies on the notion of two-tile subdivision rules, stated

in [BM17, Chapter 12]. We start by recalling some language about two-tile subdivision rules.

Our exposition for cell decomposition mainly follows [BM17, Sections 5.1 and 5.2].

Let X be a locally compact Hausdorff space. For each n ∈ N, a n-cell in X is a set c ⊂ X

that is homeomorphic to the closed unit ball Bn in Rn. We denote by ∂c the set of points

corresponding to ∂Bn, and we denote by int(c) the set of points corresponding to Bn. We

also write dim(c) = n. A 0-cell in X is a singleton in X . In this case we define ∂c = ∅,

int(c) = c, and dim(c) = 0.

Definition 6.8.1 (Cell decompositions). Let X be a locally compact Hausdorff space. Sup-

pose that D is a collection of cells in a locally compact Hausdorff space X . We say that D

is a cell decomposition of X if the following conditions are satisfied:

1. the union of all cells in D is equal to X ,
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2. if σ, τ ∈ D are two distinct cells, then int(σ) ∩ int(τ) = ∅.

3. if τ ∈ D, then ∂τ is a union of cells in D.

4. every point in X has a neighborhood that meets only finitely many cells in D.

Definition 6.8.2 (Refinement). Let D′ and D be two cell decompositions of the space X .

We say that D′ is a refinement of D if the following conditions are satisfied:

1. every cell σ ∈ D′ is a subset of a cell τ ∈ D.

2. every cell τ ∈ D is the union of the cells σ ∈ D′ such that σ ⊂ τ .

Definition 6.8.3 (Cellular maps and cellular Markov partition). Let D and D′ be two cell

decompositions of X , and let f : X → X be a continuous map. Then f is cellular for (D′,D)

if, for all σ ∈ D′, f(σ) is a cell in D and f |σ is a homeomorphism of σ onto f(σ). If f is

cellular with respect to (D′,D) and D′ is a refinement of D, then the pair (D′,D) is called a

cellular Markov partition for f .

If X = S2, then any cell decomposition D of S2 has to have finite number of cells, and

the dimension of each cell is at most 2. A 2-cell c in a cell decomposition D of S2 is an n-gon

if c contains exactly n distinct 0-cells of D.

An orientation on S2 is a triple (c0, c1, c2), where diam(ci) = i for i = 0, 1, 2, and

c0 ⊂ c1 ⊂ c2. Two triples (c0, c1, c2) and (c′0, c
′
1, c
′
2) give the same orientation on S2 if

and only if there exists an orientation-preserving homeomorphism f : S2 → S2 such that

ϕ(ci) = c′i for i = 0, 1, 2. One can check that there are two equivalence classes of orientations

on S2.

Definition 6.8.4 (Labeling). Let D1,D0 be two cell decompositions of S2. A map L : D1 →

D0 is a labeling of (D1,D0) if the following conditions hold:

1. dim(L(τ)) = dim(τ) for all τ ∈ D1,

2. for all σ, τ ∈ D1, if σ ⊂ τ , then L(σ) ⊂ L(τ).
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3. if σ, τ, c ∈ D1, σ, τ ⊂ c and L(σ) = L(τ), then σ = τ .

Definition 6.8.5. A labeling L of (D1,D0) is orientation-preserving if for all (c0, c1, c2) in

D1, (L(c0), L(c1), L(c2)) and (c0, c1, c2) have the same orientation.

Definition 6.8.6 (Two-tile subdivision rules). A two-tile subdivision rule for S2 is a triple

(D1,D0, L) of cell decompositions D0 and D1 of S2 and an orientation preserving labeling

L : D1 → D0 such that

1. D0 has precisely two 2-cells.

2. D1 is a refinement of D0, and D1 contains more than two 2-cells.

3. If k is the number of 0-cells in D0, then k ≥ 3 and every tile in D1 is a k-gon.

4. Every 0-tile in D1 is contained in an even number of 2-cells in D1.

Given a Thurston map f : S2 → S2 and an f -invariant Jordan curve C, define D0(f, C)

to be the cell decomposition of S2 consisting of the following cells: The 0-cells for D will be

{x} for x ∈ post(f). The 1-cells are the segments c of D bounded by two points in post(f)

such that int(c) ∩ post(f) = ∅. The 2-cells of D are the closures of the two components of

S2\C.

Proposition 6.8.7. [BM17, Lemma 5.12 and Proposition 12.2] If f : S2 → S2 is a Thurston

map with post(f) ≥ 3 and C is an f -invariant Jordan curve, then there exists unique cell-

decomposition D1(f, C) of S2 and a labeling L : D1 → D0 such that for all τ ∈ D1, L(τ) =

f(τ). Moreover, (D1(f, C),D0(f, C), L) is a two-tile subdivision rule.

We call (D1(f, C),D0(f, C)) in the above theorem the two-tile subdivision rule of (f, C).

In fact, every two-tile subdivision rule comes from an orientation preserving Thurston map.

Theorem 6.8.8. [BM17, Proposition 12.2 and Proposition 12.3] Let (D1,D0, L) be a two-

tile subdivision rule on S2. Then there exists a Thurston map f : S2 → S2 and an f -invariant

Jordan curve C such that D0 = D0(f, C), D1 = D1(f, C) and for all τ ∈ D1, f(τ) = L(τ).
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Let C be a f -invariant Jordan curve in S2, and (D1,D2) be the corresponding two tile-

subdivision rule. A 2-cell c of D1 is said to join two opposite sides of C if |post(f)| = 3 and

there exists e, e′ ∈ D1 such that c ∩ e, c ∩ e′ 6 ∅ and c ∩ e ∩ e′ = ∅, or if |post(f)| ≥ 4 and

there exists e, e′ ∈ D0 such that e ∩ e′ = ∅ and c ∩ e, c ∩ e′ 6= ∅. The above theorem gives a

combinatorial characterization of expanding Thurston maps among Thurston maps.

Theorem 6.8.9. Let f be a Thurston map, and let C be a f -invariant Jordan curve in S2.

Let (D1,D2, L) be the corresponding two-tile subdivision rule. Suppose that no 2-cell c in D1

joins two opposite sides. Then the map f is Thurston equivalent to an expanding Thurston

map. Conversely, if f is an expanding Thurston map, then there exists n ∈ N and an fn-

invariant Jordan curve C such that in the corresponding two-tile subdivision rule (D1,D0, L)

for fn, no 2-cells c in D1 join opposite sides of C.

We can now define the notion of flap constructions. Let f be an expanding Thurston map

with no periodic critical points, and let C be an f -invariant Jordan curve. Let (D1,D0, L)

be a two-tile subdivision rule for (f, C). Let α be a 1-cell in D1 such that α ∩ post(f) = ∅.

We will construction a new 2-tile subdivision rule (D̃1, D̃0, L̃)

Think of D0 and D1 as cell decompositions of Ĉ, such that the union of 1-cells of D0

is ∂D. Suppose α is a 1-cell of D1 in D. Fix an orientation on D0. Let c+ and c− be the

two 2-cells adjacent to α, and let p1 and pn be the two 0-cells in ∂α such that (p1, α, c+) is

positively oriented. Then (p1, α, c−) is negatively oriented.

Let X = Ĉ\α. Let Y = Ĉ\D. Then there exists a conformal map h : Y → X . This

conformal map h can be extended continuously to a map Ĉ\D → Ĉ, which we will also

denote by h. The map h is surjective, h−1(α) = ∂D, and for each p ∈ ∂α, |h−1(p)| = 1. By

precomposing h with a suitable Möbvious transformation, we may assume that h−1(∂(α)) =

{−1, 1}.

We would like to build a new cell decomposition on Ĉ by gluing a cell decomposition

on Y = Ĉ\D and cell decomposition on D. The cell decomposition on Y is essentially

the pullback of the cell decomposition D1 on X . To be precise, let n = |post(f)|. Let

p1 = {−1} and pn = {1} be two 0-cells in Y corresponding to the two points of h̃−1(∂(α)).
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Let α− = {eiθ : θ ∈ [0, π]}, and let α+ = {eiθ : θ ∈ [π, 2π]}. For every τ ∈ D1\{α, ∂(α)},

either τ ∈ X , therefore h−1(τ) is a cell in Y , or τ is not a 0-cell and int(τ) ⊂ X , therefore

h−1(int(τ)) is a cell in Y . Let h−1(D1)′ be the collection of cells in Y obtained by one of the

2 ways described above. Let

h−1(D1) = h−1(D1)′ ∪ {α+, α−, p1, p2}.

Then h−1(D1) is a cell decomposition of Y . Moreover, the map

h : Y → cX

gives us a map

h
1

: h−1(D1)→ D1

sending τ to h(τ). Let us orient h−1(D1) such that h
1

is orientation preserving.

We now construct a cell-decomposition on D, illustrated in Figure 6.1. For j = 2, . . . , n−

1, let pj = {2(j−1)
n−1

− 1} (this formula holds for j = 1, n as well). For j = 1, 2, . . . , n − 1, let

ej = [2(j−1)
n−1

− 1, 2j
n−1
− 1] . Let cn,+ = D ∩ {Im(z) ≤ 0} and cn,− = D ∩ {Im(z) ≥ 0}. Then

{p1, . . . , pn, e1, . . . , en−1, α+, α−, cn,+, cn,−} is a cell decomposition of D, which we call D1
n.

two 2-cells in such that ∂(cn,+) =
⋃n−1
i=1 ei ∪ α−, and ∂(cn,−) =

⋃n−1
i=1 ei ∪ α+. Then

for each i = 1, 2, . . . , n − 1, (pi, ei, cn,−) is positively oriented, and (pi, ei, cn,+) is negatively

oriented.

Let

D̃1 = h−1(D1) ∪ D1
n.

Define

D̃0 = {h−1(τ) : τ ∈ D0\{D}} ∪ {D}.

We have a bijection

h̃0 : D̃0 → D0

given by

h̃0(τ) =


h(τ), if τ 6= σ0

S2\σ0, if τ = σ0.
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p1 p2 p3 p4

e1 e2 e3

α−

α+

cn,−

cn,+

Figure 6.1: The cell decomposition D with | post(f)| = 4

Proposition 6.8.10. The cell decomposition D̃1 is a refinement of D̃0, and there exists

an orientation preserving labeling map L̃ : D̃1 → D̃0 such that (D̃1, D̃0, L̃) is a two-tile

subdivision rule.

Proof. On h−1(D1), we define

L̃ =
(
h̃0
)−1

◦ L ◦ h̃1.

Let q1, q2, . . . , qn be the n 0-cells in D0, and f1, . . . , fn be the n 1-cells in D0 such that

∂fi = qi ∪ qi+1 for i = 1, 2, . . . , n− 1, L(h̃(p1)) = q1, L(h̃(pn)) = qn, and L(α) = fn. Define

L̃(pi) =
(
h̃0
)−1

(qi) ∀i = 1, . . . , n.

L̃(ei) =
(
h̃0
)−1

(fi) ∀i = 1, . . . , n− 1.

L̃(α+) = L̃(α−) =
(
h̃0
)−1

◦ L(α).

L̃(cn,+) =
(
h̃0
)−1

◦ L(c+).

L̃(cn,−) =
(
h̃0
)−1

◦ L(c−).

Then (D̃1, D̃0, L̃) is a two-tile subdivision rule on Y ∩ c = S2.

Proposition 6.8.11. The two tile subdivision rule (D̃1, D̃0, L̃) is the two-tile subdivision rule

of (g, C̃), where g is an expanding Thurston map without periodic critical points and C̃ is a

g-invariant Jordan curve.
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Proof. By Theorem 6.8.8, two tile subdivision rule (D̃1, D̃0, L̃) is the two-tile subdivision rule

of (g, C̃), where g is a Thurston map and C is a g-invariant Jordan curve. By our assumption

that no 2-cells in D1 join opposite sides of C, and the fact that the new 2-cells added to D̃1

do not join opposite sides of C̃, no 2-cells in D̃1 join opposite sides of C̃. By Theorem 6.8.9, g

is an expanding Thurston map. Finally, every 0-cell q in D̃0 is still adjacent to only 2 2-cells

in D̃1, therefore g does not have periodic critical points.

6.9 Examples

In this section we mention some important examples in the study of expanding Thurston

maps.

Example 6.9.1 (m×n subdivision rule). The first example we are interested in comes from

affine maps on R2. Let m and n be two integers greater than 1. Let

A =

n 0

0 m

 .
Then the matrix A can be viewed as an affine map on R2. There exists fA : S2 → S2 that

makes the following diagram commute:

R2 R2

S2 S2.

A

π π

fA

where π is the map we obtained by identifying z ∈ R2 with z + w for all w ∈ Z2 and

identifying z with −z. The map fA leaves {k+ ıy : k ∈ 1
2
Z, y ∈ R}∪{x+ ık : x ∈ R, k ∈ 1

2
Z}

fixed, therefore there exists an fA-invariant curve C in S2.

The visual sphere is two isometric copies of Rickman’s rugs glued together along the

boundaries. A Rickman’s rug is a metric space of the form ([0, 1], d)× ([0, 1], dα, where d is

the usual Euclidean metric on [0, 1] and α ∈ (0, 1). For the visual sphere, each Rickman’s rug

is of the form α = log(mn)
log(m∧n)

. The fA-invariant Jordan curve C corresponds to the boundary

of the two Rickman’s rug.
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A a

b

B a

d

c

d

a

b

a

d D

c

d C

Figure 6.2: 3× 2-subdivision rule.

By Theorem 6.8.7, (fA, C) gives us a two-tile subdivision subdivision rule. Figure 6.2

shows one side of the two-tile subdivision subdivision rule for n = 3,m = 2. The other side

is at the “back” of Figure 6.2. When n = 3,m = 2, each 0-tile is a quadrilateral with vertices

A,B,C,D. The 1-tiles subdivide each 0-tile into 2× 3-many small quadrilaterals. The map

fA sends vertices marked by a small letter to the vertices with the corresponding capital

letter. The shaded 1-tiles are sent to the large 0-tile at the back of the picture, whereas the

white 1-tiles are sent to the large 0-tile at the front of the picture.

If m = n, then A is a conformal map on R2, hence the induced map fA : S2 → S2

is Thurston equivalent to a rational map. Conversely, if m 6= n, then fA has a Thurston

obstruction. In this case the Ahlfors regular conformal dimension of the visual sphere is

log(mn)
log(m∧n)

, and this Ahlfors regular conformal dimension is attainable.

Example 6.9.2 (2× 2 subdivision rule with flaps). Let

A =

2 0

0 2

 ,
and let fA be the map defined in Example 6.9.1. We add a flap to the subdivision to obtain

a new subdivision rule, shown in Figure 6.3.

Let the new expanding Thurston map be g1. Then g has hyperbolic orbifold, and a

horizontal loop γ separating {A,D} and {B,D} gives a irreducible g1-stable multicurve
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A a

b

B a

d

c

d

a D

b

a C

a d

Figure 6.3: The Two-tile subdivision rule for 2× 2 subdivision rule with a flap.

Γ0 = {γ} such that

Λ(Γ0, 2) = 1.

Thus g1 is not Thurston equivalent to a rational map. Moreover, since g−1
1 (Γ0) has a periph-

eral component, there exists a 2-thick curve family Γ0 supported on a g1-invariant porous

subset. The porous subset can also be obtained by removing the 2 flaps added to the subdi-

vision rule and their preimages under the map gn1 for n ∈ N. Yet another way to visualize the

porous subset is to take a square, cut off certain open intervals with dyadic endpoints, then

take the completion of the metric space equipped with the length metric, to form a Sierpiński

carpets, and glue two Sierpiński carpets together. See Figure 6.4 for an illustration. Similar

Sierpiński carpets have been studied in [HL19].

Example 6.9.3 (2× 4 subdivision rule with flaps). Let

A =

2 0

0 2

 ,
and let fA be the map defined in the previous example. We add eight flaps to the subdivision

to obtain a new subdivision rule. Figure 6.5 shows the position of 4 new flaps. The other 4

new flaps are at the “back” of Figure 6.5, so that the front and the back of the subdivision

rules are the same. Let the new expanding Thurston map be g2. Then g2 has hyperbolic

orbifold, and a vertical loop γ separating {A,D} and {B,D} gives a g2-stable multicurve
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Figure 6.4: An invariant porous subset in a visual sphere of the 2× 2 subdivision rule with

flaps.

A a

b

B a

d

c

d

a

b

a

a d d a

d

c

d

a D

b

a C

a d d a

Figure 6.5: The Two-tile subdivision rule for 2×4 subdivision rule with 4 flaps on each side.

Γ = {γ} such that

Λ(Γ, 2) = 1.

Thus g2 is not Thurston equivalent to a rational map. In contrast with Example 6.9.2, there

are no 2-thick curve families supported on any g2-invariant porous subset of the visual sphere.

This is because any g2-invariant porous subset K of the visual sphere must omit a tile τ that

avoids post(f). Let h be a new expanding Thurston map obtained by adding a flap at each

edge of τ . Then h is a Thurston map with hyperbolic orbifold and h and every h-stable

multicurve Γ0 in S2\ post(h) satisfies Λ(Γ0, p) < 1. By Thurston’s obstruction theorem, h

is Thurston equivalent to a rational map. By Theorem 5.1.2, any visual sphere (S2, ρ) of h
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is quasisymmetrically equivalent to the standard 2-sphere. But the porous subset K can be

embedded quasisymmetrically into (S2, ρ), therefore K is quasisymmetrically equivalent to

a porous subset of the standard 2-sphere. The non-existence of g2-invariant porous subset

supporting a 2-thick curve families follows from the following Lemma:

Lemma 6.9.4. Let σ is the chordal metric on the standard 2-sphere, and let ρ be a visual

metric of an expanding Thurston map f with no periodic critical points on S2 with expansion

factor Λ. Assume that id : (S2, ρ)→ (S2, σ) is a quasisymmetry. Let K be a compact subset

of S2 with Lebesgue measure 0. Let Γ be a curve family in S2 supported on K such that

inf
γ∈Γ

diamρ(γ) > 0.

Then

lim sup
n→∞

mod2(Γ,Λ−n) = 0.

Proof. First observe that

inf
γ∈Γ

diamσ(γ) > 0.

To see why, assume there exists γn ∈ Γ such that diamσ(γn) < 1
n
. Since each γn is a compact

subset of S2, a subsequence of γn converges in Hausdorff sense to some compact subset

γ ∈ S2. We have

diamρ(γ) ≥ inf
n∈N

diamρ(γn) > 0

and

diamσ(γ) ≤ lim
n→∞

diamσ(γn) = 0,

a contradiction.

Let

L = inf
γ∈Γ

diamσ(γ).

For each n ∈ N, define ρε : Dn(S2)→ [0,∞) by

ρn(τ) =


L−1 diamσ(τ), if τ ∩K 6= ∅

0, otherwise.
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For any curve γ ∈ ΓG, the collection {τ ∈ Dn(S2) : τ ∩ γ 6= ∅} forms a cover of γ, therefore

∑
τ∈Dn(S2):τ∩γ 6=∅

ρn(τ) ≥ L−1 diamσ(γ) ≥ 1.

Thus ρn is Γ-admissible. Let τ1, . . . , τk be all the n-tiles that intersect K. Using the fact

that tiles in D(S2) are uniform quasiballs (Proposition 6.2.5) and that quasisymmetry sends

quasiballs to quasiballs quantitatively, we get

|τ | ∼ diamσ(τ)2

where |E| is the Lebesgue measure of E. We have

∑
τ∈Dn(S2)

ρn(τ)2 .
∑

τ∈Dn(S2),τ∩K 6=∅

|τ | . |
⋃

τ∈Dn(S2),τ∩K 6=∅

τ | ≤ |Nε(n)(K)|,

where ε(n) = supτ∈Dn(S2) diamσ(τ). As n→∞, ε(n)→ 0. Therefore

lim sup
n→∞

∑
τ∈Dn(S2)

ρn(τ)2 . |K| = 0.
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