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ABSTRACT OF THE DISSERTATION

Visual Spheres of Expanding Thurston Maps:
Their Weak Tangents and Porous Subsets

by

Angela A. Wu
Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2019

Professor Mario Bonk, Chair

We study certain approximately self-similar metric spaces that arise from expanding
Thurston maps f : S* — S? called visual spheres. It is known[HP09, Theorem 4.2.11][BM17,
Theorem 18.1(ii")] that the quasisymmetry class of a visual sphere of f is related to the
rationality of f. We prove that a visual sphere is indeed approximately self-similar if f
does not have periodic critical points. This is done by picking a nice visual metric of an
expanding Thurston map. Using the nice metric, we study the solenoid of f. We put a
specific metric on the leaves of f and show that the leaves and weak tangents are almost the
same thing. We then study the visual spheres of expanding Thurston maps with an emphasis
on a quasisymmetric invariant, called the Ahlfors regular conformal dimension. We show
that the Ahlfors regular conformal dimension of any weak tangent of a visual sphere is the
same as the Ahlfors regular conformal dimension of the visual sphere itself, and that the
Ahlfors regular conformal dimension of any weak tangent is attainable if and only if Ahlfors
regular conformal dimension of the visual sphere is attainable. We show by an example that
the same does not hold for more general metric spaces. Finally, we show that a visual sphere
has p-thick curve family supported on an f-invariant porous subset if f has a irreducible
p-thick f-stable multicurve. We give an example to show that when p = 2, the condition of

a p-thick f-stable multicurve is sharp.
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CHAPTER 1

Introduction

This dissertation explores the dynamics on S? induced by expanding Thurston maps and the

geometries that they induce.

Expanding Thurston Maps: What Are They and Why Do They Matter?

Expanding Thurston Maps are maps that look like the following rational maps:

4z(z — 1)(z + 1)

'_>
: (22 +1)2

The Julia set of this rational map is C. This map is an example of an Expanding Thurston

map with no periodic critical point.

A branched covering map f : S* — S? is a map that looks like a power map everywhere,
i.e., for every x € X, there is a open neighborhood U of z, a positive integer m, and

homeomorphisms ¢ : U — D, ¢ : f(U) — D such that the following diagram commutes:

The best known branched covering maps on S? are rational maps on the Riemann sphere.
However, there are branched covering maps that are not rational maps. One example comes
from the map

A (z,y) — (22,3y) : T* — T

This map descends to a map f : S* — S? in the following way:



T2 —4, T2
Nl lw

S? —— S2.
f2,3

Here the map ~ identifies (z,y) and (—z, —y). The map fo3 is a branched covering map,

but it does not come from a rational map.

Thurston studied a restricted collection of branched covering maps, called Thurston
Maps. A branched covering map f is a Thurston map if its postcritical set of f post(f) =
{f"(c) € S* : n € N, ¢ a critical point} is finite. These maps are called Thurston maps. Given
a Thurston map f : S* — S2, Thurston asked when f is Thurston equivalent to a rational
map, i.e., when there exists a rational map R : C — C and homeomorphisms ¢, : S — C

such that ¢ and 1 are isotopic rel post(f) and the following diagram commutes:

]
o

I

-

S
(@)
: s

o

R

It turned out that, at least among generic Thurston maps f, the rational maps are charac-

terized by the topological behavior of f.

In [BM17], Bonk and Meyer introduced the notion of expanding Thurston maps. Similar
notions are studied by Haissinsky and Pilgrim in [HP09] and their subsequent papers [HP0S]
and [HP14]. An expanding Thurston maps that behaves like a rational Thurston map whose
Julia set is the whole Riemann sphere C. Rigorously speaking, a Thurston map is expanding

if there exists an open cover {U,};cr of the 2-sphere such that

lim sup{diam(V) : i € I,V connected component of f~'(U;)} = 0.

n—oo

~

Any rational Thurston map with J(f) = C is an expanding Thurston map. The map fo3
in the commutative diagram , which is not Thurston equivalent to any rational maps, is

also an expanding Thurston map.

When a Thurston map f is expanding, one can put a metric on the 2-sphere, called a

visual metric with respect to f, such that f is lipschitz and locally bilipschitz away from the
2



critical points. The 2-sphere S?, equipped with a visual metric, is called a visual sphere. See
Chapter [2| Section for the precise definition of visual spheres. In [HP09] and [BM17],

rational maps are characterized by the geometries of visual spheres:

Theorem 1.0.1. [HP09, Theorem 4.2.11][BM17, Theorem 18.1(ii’)] An expanding Thurston
map [ with no periodic critical points is Thurston equivalent to a rational map if and only

if one of its corresponding visual spheres is quasisymmetric to the standard 2-sphere.

Here, quasisymmetries are maps that sends balls to sets that look like balls. A homeomor-
phism f: X — Y between two metric spaces (X, dy) and (Y, dy) is a quasisymmetry if there

is a homeomorphism 7 : [0,00) — [0, 00) such that for all z,y,z € X, with = # z, we have

dY(f(x)>f<y>) dX(xvy)
dy(f(2). f(z) =" ( ) |

dX (ZB,Z)
Quasisymmetries define an equivalence relation on metric spaces. Given an expanding

Thurston map f, and two visual metrics p, p with respect to f, the identity map id : (S?, p) —
(S2,p) is a quasisymmetry. Thus the quasisymmetric equivalence of a visual sphere with re-
spect to f to the standard 2-sphere in Theorem depends only on f and not on the

choice of the visual sphere.

The study of expanding Thurston maps is related to Cannon’s conjecture in geometric
group theory. One of the equivalent formulations of Cannon’s conjecture concerns quasisym-

metric classes of metric spaces that are topologically 2-spheres:

Conjecture 1.0.2 (Cannon’s conjecture). Let G be a Gromov hyperbolic group. If 05G 1is
homeomorphic to the 2-sphere, then 05G is quasisymmetrically equivalent to the standard

2-sphere.

Just as rational Thurston maps can be considered as nice Thurston maps, Gromov hyperbolic
groups whose boundaries at infinity are quasisymmetrically equivalent to the standard 2-

sphere can be considered as nice Gromov hyperbolic groups:

Theorem 1.0.3. [KB0Z] A Gromov hyperbolic group G admits a hyperbolic action on H? if

and only if OG is quasisymmetrically equivalent to S?.
3



As we can see, the study of expanding Thurston maps has motivation stemming from
complex dynamics and geometric group theory. In fact, the two fields are often said to be
connected by Sullivan’s dictionary[Sul85]. In Sullivan’s dictionary, the dynamics of rational
maps are compared to the actions of by Kleinian groups G on the boundary at infinity of
their Cayley graphs 0,,G. However, it is not clear what should be the complex dynamical
analogue of the Cayley graphs of a Gromov hyperbolic group. One possible analogue is
called a tile graph of an expanding Thurston map, studied by Yin[YinlI] in her dissertation.
The definition of a tile graph of f is given in Chapter [6] Section[6.2] Yin showed that visual

spheres are boundaries at infinity of these tile graphs:

Theorem 1.0.4. [Yinll, Proposition IV.7] Let f be an expanding Thurston map. There
exists a Gromov hyperbolic space I', with a preferred based point, called the tile graph of f,
such that p is a visual metric on S* with respect to f if and only if p is a visual metric on

Osol' under the preferred based point.

See also [HP09, Chapter 3], where Haissinsky and Pilgirm made a similar construction

and proved the same result.

In [HPO9], Haissinsky and Pilgrim proposed several additions to Sullivan’s dictionary.
See also [Yinl6] for more possible entries in Sullivan’s dictionary. In particular, Theorem

and Theorem [1.0.3| could form one entry in Sullivan’s dictionary.

What Have We Done?

In this work study visual spheres expanding Thurston maps with an emphasis on quasisym-

metric invariant called the Ahlfors regular conformal dimension.

Let @@ > 0 be a constant. A metric space (X, d) is said to be @-Ahlfors regular if there

exists C' > 1 such that for any x € X and r < diam(X),
C % <HO(B(x,7)) < Cr@.

When our metric spaces are Ahlfors regular, as they are for visual spheres of expanding



Thurston maps, we can define the notion of Ahlfors regular conformal dimension:

dimag ([X]) = inf{dimy(Y") : Y Ahlfors regular, there exists a quasisymmetry f: X — Y'}.

Visual spheres of expanding Thurston maps without periodic critical points are Ahlfors
regular, but little is known of their Ahlfors regular conformal dimensions, except for those
whose Ahlfors regular conformal dimensions are guaranteed to be 2 by Theorem and
visual spheres of Lattes type maps[Yinlll Corollary II1.17]. In |[HPI4], Haissinsky and
Pilgrim proved that the Ahlfors regular conformal dimension of a visual sphere of a generic

expanding Thurston map without periodic critical points is not attainable.

In Chapter [2 we make some important definitions that will be used throughout the

dissertation.

Chapter [3| serves two purposes. The first is to clarify certain folklore beliefs about visual
metrics of expanding Thurston maps without periodic critical points that, unfortunately,

have not been well-documented in the literature.

Theorem 1.0.5. Let f be an expanding Thurston map without periodic critical points. Then

for any visual metric p of f, the visual sphere (S?, p) is approzimately self-similar.

Here we take the definition of approximate self-similarity from [Kle06, Section 3]. Ap-
proximate self-similarity of these visual spheres has been helpful the study of their weak

tangents. See, for instance, [HP14].

We proved the proposition by considering a particularly nice visual metric. Since we
are interested in quasisymmetric invariants, and any pair of visual metrics of an expanding
Thurston map f are quasisymmetrically equivalent, we will base the rest of the dissertation

of this particular visual metric.

The second goal of Chapter |3]is to study the solenoid S(f) of an expanding Thurston
map f, especially the path-components of S(f), also known as leaves of S(f). The solenoid

S(f) of f is the inverse limit of the system




Thus we have natural projection maps 7, : S(f) — S?. Having fixed a visual metric p of
f on S2, we introduce a metric dy, on each leaf L of S(f). Leaves are related to the weak
tangents of the visual sphere. Roughly speaking, a weak tangent of a metric space (X, d) is
a limit of (X, z,,, \,d), where x,, is a sequence of points in X and )\, is a sequence of positive
real numbers tending to +0o0. We will define the definition of a weak tangent of a metric

space in Chapter 2]

The following theorems, roughly speaking, say that every leaf is a weak tangent and
every weak tangent is a branched covering of a leaf. These results suggest that solenoids are

unions of weak tangents of visual spheres.

Theorem 1.0.6. Let x = {x,, }nen, be a point in S(f), and let L be the leaf in S(f) contain-
ing x. Then the sequence {(S?, x,, A"p)}nen, converges in pointed-Gromov-Hausdorff sense

to (L,x,dp).

Theorem 1.0.7. Let (T, a,d) be the weak tangent of (S*, p) with associated data (a,,r,), and

suppose {Ty }nen, € S(f) represents (ay,,ry,). Let L be the leaf of S(f) containing {x,}nen, -
Then the following statements hold.

(i) There exists a branched covering w:T — L.
(i) If sup,en, A" p(2y, post(f)) = oo, then the map m is an isomelry.

(111) If p = {pn}nen, € L is a periodic sequence of postcritical points, then p is the only

possible branched locus of 7, and 7=1(p) has exactly one point.
(iv) Let b= m"(p). Then there exists ng € N such that deg(m,b) = deg(f™).

(v) There exists qo € f~"(po) such that for all R > 0 there exists k € Ny and an isometry
12 Br(q, R) = Bosno+r(qo, R) such that the following diagram commutes:

B(T,dT) (ba R) % B(L,dL)(p7 R)

ll lﬂ'k
B(Sz7Ak+n0p)(q0, R) W B(SZ,Akp) (po, R)



In Chapter [4] we compare the Ahlfors regular conformal dimension of visual spheres with

that of their weak tangents.

Theorem 1.0.8. Let f be an expanding Thurston map f without periodic critical points.

Let (S?, p) be a visual sphere of f. Let (T,x) be a weak tangent of (S?, p). Then
dimag(S?, p) = dimag(7T),
and dimag(S?, p) is attainable if and only if dimar(T) is attainable.
When the Ahlfors regular conformal dimension in the above theorem is 2 and attainable,
we obtain the following corollary:
Theorem 1.0.9. Let (S?,p) be a visual sphere of an expanding Thurston map f without

periodic critical points. The following are equivalent:

(i) (S2,p) is quasisymmetrically equivalent to the standard 2-sphere.

(ii) Every weak tangent of (S%, p) is quasisymmetrically equivalent to the Euclidean plane

R2.

(iii) There exists a weak tangent of (S?, p) that is quasisymmetrically equivalent to the Fu-

clidean plane R?.

See also [Lil§].

Theorem and Theorem roughly say that one can understand the geometry
of visual spheres by looking at their weak tangents. The same assertion does not hold for

arbitrary metric spaces. Chapter [5] offers the following complementary result.

Theorem 1.0.10. For every n > 2, there exists a doubling, linearly locally contractible
metric space X, topologically an n-sphere, such that every weak tangent of X is isometric to

(R™,0) but X is not quasisymmetrically equivalent to the standard n-sphere.

In Chapter [6] we return to our investigation on expanding Thurston maps and their visual
spheres. Let f be an expanding Thurston map without periodic critical points. Chapter [0]

concerns f-invariant porous subsets of f.



Let (X, d) be a metric space, and K a compact subset of X. We say that K is porous
in X if there exists a € (0,1) such that for all z € K, and for every r > 0, there exists
y € Bx(z,r) such that B(y,ar) N K = . A porous subset K C S? is said to be f-invariant
if f(K)=K.

Definition 1.0.11. A family T of curves in (S?, p) is said to be p-thick if

}Yrellﬁ diam(vy) > 0

and

lim sup mod,,(I', ) > 0.

n—oo

For any p > 2, we ask when there can be a a p-thick curve family. The existence and

nonexistence of p-thick curve family is related to Ahlfors regular conformal dimension:

Ahlfors regular conformal dimension of visual spheres of expanding Thurston maps with
no periodic critical points are known to be related to Thurston matrices. Thurston matrices
encode how expanding Thurston maps interact with simple closed curves v in S?2. A simple
closed curve 7 in S?\ post(f) is peripheral if one of the components of S?\~y contains at most
one point in P, and non-peripheral otherwise. A multicurve is a finite collection of simple,
closed disjoint non-homotopic, non-peripheral curves in S*\ post(f). A multicurve I is said
to be f-stable if, for all v € T, each non-peripheral simple closed curve in f~!(~y) is homotopic

to a curve in T in S?\ post(f).

Let I' = {71,..., 7} be an f-stable multicurve I'. For each 4,5 € {1,...,n}, let 7; ;. be
the components of f~*(v;) homotopic to 7; in S?\ post(f), and let d; ;, > 0 be the degree

of the restriction map f|,, .. : ¥ija — 7;- Let p > 0 be arbitrary. Define
Jrp RN = RF

by

1—
Fro(i) = D Y digee
vel o
Since fr, is represented by a non-negative square matrix, Perron-Frobenius Theorem implies

that the matrix fr, has a real non-negative eigenvalue A(fr,) equal to its spectral radius.
8



A multicurve T' is called irreducible if there exists an iterate ff, of fr, such that every

entry of f' is positive. If I contains an irreducible multicurve, then the function
p= AT, p)

is strictly decreasing on [1,00) ([HP08, Lemma A2]), and there exists unique Q(I') > 1 such
that A(I', Q(I")) = 1. If " contains an irreducible multicurve, we define Q(I') = 0. Define

Q(f) = sup{Q(T) : I multicurve} Vv 2.
Definition 1.0.12. A family T of curves in (S?, p) is said to be p-thick if

f di
inf iam(y) >0

and

lim sup mod,,(I'; A™") > 0.

n—oo
Definition 1.0.13. An irreducible f-stable multicurve I' is said to be p-thick if either one
of the following condition holds:

1. XT,p) > 1; or

2. XT',p) =1 and there exists v € T such that f~(y) contains a peripheral component.

We prove the following theorem:

Theorem 1.0.14. Let f be an expanding Thurston map with no periodic critical point, and
let p > 2. If there exists a p-thick f-stable multicurve, then there exists a curve family T’

supported on a f-invariant porous subset such that I' is p-thick.

The above results are anticipated by Haissinsky and Pilgrim, who proved the following

inequality.

Theorem 1.0.15 (Haissinski, Pilgrim). If f is an expanding Thurston map with no periodic
critical point, then

pr < dimar(f). (1.0.1)
9



Ultimately, all our work is related to the following conjecture:

Conjecture 1.0.16.

pf = dll’IlAR(f)

10



CHAPTER 2

Preliminaries

2.1 A note on inequalities

Let A(z) and B(x) be two positive valued functions in x. We write
A(z) S B(x)
if there exists a constant C', independent of x, such that for all z,
A(z) < CB(x).

Similarly, we write

A(z) 2 B(x)
if there exists a constant C', independent of x, such that for all z,
A(x) > CB(x).

Lastly, we write

A(x) ~ B(x)

if A(x) S B(x) and A(z) 2 B(x).

2.2 Notations on metric spaces

Let (X, d) be a metric space. For any x € X and r > 0, we write

Bixay(z,7) ={y € X : d(z,y) <r}.

11



We also shorthand B(x,q)(z,r) as B(z,r) when the underlying metric space is understood,
and write B(x,q)(z,7) as Bx(z,r) when there is a need to emphasize the underlying metric
space. Occasionally we need to deal with multiple metrics on the same set X. In this case

we write Bx 4(z,7) as Bg(x,r) when the underlying set X is understood.

Let A, B C X be two subsets of a metric space (X, d). We define the distance between A
and B by
d(A, B) = inf{d(a,b) : a € A,b € B}.

If A= {a} is a singleton, we also write d(a, B) for d(A, B).
Let A C X be a subset of X. We define the diameter of A by

diamgy(A) = sup{d(a,b) : a,b € A}.

When there is no ambigurity, we write diam,(A) as diam(A).

2.3 Quasisymmetry

In this section we introduce the notion of quasisymmetry. We mention several related notions

in metric geometry that will appear frequently in the later chapters.

Definition 2.3.1. Let (X,dx) and (Y,dy) be two metric spaces. A homeomorphism f :
X — Y s bilipschitz if there exists a positive constant L > 1 such that for all x,y € X, we

have

L dx(z,y) < dy(f(2), f(y)) < Ldx(z,y).

If there exists a bilipschitz homeomorphisms between two metric spaces (X, dx) and (Y,dy),

then we say that (X, dx) and (Y,dy) are bilipschitz equivalent.

Definition 2.3.2. Let (X,dx) and (Y,dy) be two metric spaces. Let n : [0,00) — [0, 00)
be a homeomorphism. A homeomorphism f : X — Y 14s an n-quasisymmetry if for all

x,y,z € X, with x # z, we have




A homeomorphism is a quasisymmetry if it is an n-quasisymmetric for somen. The function

1 15 called the distortion function of f.

Note that if f: X — Y is a quasisymmetry, then f~!:Y — X is a quasisymmetry.

Definition 2.3.3. We say that X and Y are quasisymmetrically equivalent if there exists

a quasisymmetry [ between X and Y .

Definition 2.3.4. Let dy,dy be two metrics on X. We say that di and dy are quasisymmet-
rically equivalent if the identity map id : (X, dy) — (X, d2) is a quasisymmetry.

Below we list several properties of metric spaces that play crucial roles in our discussion.

Definition 2.3.5. Let N > 0. A metric space is N-doubling if for all R > 0, every open
ball of radius 2R can be covered by N balls of radius R. A metric space is doubling if it is
N -doubling for some N > 0.

Definition 2.3.6. A metric space X is uniformly perfect if there exists constant C' > 1 such
that for each x € X and for each r > 0, the set B(x,r)\B(z,r/C) is nonempty whenever

the set X\ B(x,r) is nonempty.

Definition 2.3.7. Let C' > 1. A metric space is C'-bounded turning if every pair of points
x,y in the space can be joined by a curve whose diameter dow not exceed C' |z — y|. A metric

space is bounded turning if it is C'-bounded turning for some C' > 1.

Recall that a continuum is a non-empty compact connected set.

Definition 2.3.8. Let C' > 1 be a constant. A metric space X is said to be C-linearly
locally connected if, for every open ball B(x,R), every pair of points in B(x, R) can be
joined in B(x,CR) by a continuum and every pair of points in X\B(z, R) can be joined in
X\B(z,R/C) by a continuum.

Doubling, uniform perfectness, bounded-turningness, and linear local connectivity are all

preserved under quasisymmetries([HeiO1]).
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Finally, we introduce the notion of Ahlfors regularity and Ahlfors regular conformal

dimension.
Let @ be a positive real number. A metric space (X, d) is Q-Ahlfors regular, or Q-AR if
there exists C' > 1 such that for all z € X and 0 < r < diamy(X), we have
C 9 < HO(B(x,r)) < Or,
where H? is the Hausdorff Q-measure of (X, 7).
We say that (X, d) is Ahlfors regular if it is Q-AR for some @) > 0. In this case, we have

@ = dimy(X), where dimy(X) denotes the Hausdorff dimension of X.

Proposition 2.3.9. [Hei(1, Corollary 14.15] A complete metric space is quasisymmetrically

equivalent to an Ahlfors reqular space if and only if it is uniformly perfect and doubling.

Let (X,d) be an Ahlfors regular metric space. Define the Ahlfors regular conformal

dimension
dimagr(X) = inf{dimg (¢(X)) : ¢ quasisymmetry, p(X) Ahlfors regular}.

We say that the Ahlfors regular conformal dimension of X is attainable if the infimum in
the above definition can be attained. We say that the Ahlfors regular conformal dimension

of X is attained if dimag(X) = dimy(X).

2.4 Gromov-Hausdorff limits and Weak Tangents

In this section, we review some basic concepts about Gromov-Hausdorff convergence of
pointed metric spaces. The notion of Gromov-Hausdorff limit allows us to make sense of
convergence of metric spaces that are not necessarily bounded. For example, we can “blow
up” a metric space at a point to get what we call the weak tangent of the space. Most of the
material in this section is standard. See Chapter 7 of [BBIOI] or Chapter 11 of [HKST15]

for reference.

Let (X, d) be a metric space and A be a subset of X. For any € > 0, we write

N.(A) ={z € X : diam(z, A) < €}.
14



Let A and B be two nonempty subsets of X. The Hausdorff distance between A and B is
dw(A,B) :==inf{e >0: AC N.(B) and B C N.(A)}.
The function dy defines a metric on the collection of all nonempty compact subsets of X.

Definition 2.4.1. A pointed metric space is a triple (X, a,d), where X is a set, a is a point

m X, and d is a metric on X.

Let X, Y bet two sets, a be a point in X, and b be a point in Y. A function f: (X,a) —
(Y,b) is a function f: X — Y such that f(a) = 0.

Definition 2.4.2. Let X be a metric space and let € > 0. We say that Y C X s e-dense in
X if forallz € X, d(z,Y) < e.

Definition 2.4.3. Let (X,a,dx) and (Y,b,dy) be pointed metric spaces and let € > 0. We
say that f: (X,a) — (Y,b) is an e-rough embedding of (X, a,dx) and (Y,b,dy) if for all
z,y € X,

dx(z,y) —e < dy(f(2), f(y)) < dx(z,y) +e.

The map f is an e-rough isometry if, in addition, f(X) is e-dense in X.

Note that e-rough embeddings and e-rough isometries need not be continuous or injective.
We are now ready to define a notion of distance between two pointed metric spaces that

generalizes Hausdorff distance.

Definition 2.4.4. Let (X, a) and (Y,b) be two bounded pointed metric spaces. The pointed-
Gromov-Hausdorff distance between (X, a) and (Y,b) is defined as

deu((X,a), (Y,b)) = inf{e > 0 : Fe-rough isometry f: (X,a) — (Y,b)}.

We are ready to define the notion of pointed-Gromov-Hausdorff convergence of pointed

metric spaces.

Definition 2.4.5. Let (X, an,d,), n=1,2,..., and (X, a,d) be a complete pointed metric

spaces. We say that the sequence of pointed metric spaces (X, an,d,) converges to (X, a,d)
15



in the pointed-Gromov-Hausdorff sense, and write (X,,, a,,d,) GH, (X,a,d), if for allr >0
and € > 0 there exists N € N such that for alln > N, there exists a map f: Bx, (an,7) = X
such that

1. f(a,) = a,
2. f is a e-rough embedding of Bx, (an,r) and Bx(a,r).
3. f(Bx, (an, 1)) is e-dense of Bx(a,r).

The following propositions are related to existence and uniqueness of pointed-Gromov-

Hausdorff limits.

Proposition 2.4.6. [Donll, Section 3.2] Let N be a natural number. Let M be the set of all
isometry classes of N-doubling pointed metric spaces. Then the pointed-Gromov-Hausdorff

convergence on M induces a metrizable topology on M.

Proposition 2.4.7 (Gromov’s compactness theorem). [HKST15, Theorem 11.8.16] Let N
be a positive integer, and let (X,,a,,d,) be a sequence of pointed metric spaces such that
(Xn,dy,) is N-doubling. Then there exists a subsequence of (X, an,d,) that converges in

pointed-Gromov-Hausdorff sense to a proper pointed metric space.

Some properties of metric spaces are retained by the Gromov-Hausdorff limits.
Proposition 2.4.8. Let {(X,,, an, d,) }nen be a sequence of pointed metric spaces and suppose
(X, dn) <5 (X, a,d).

1. [HKST15, Proposition 11.3.14] If each X,, is proper, then X is proper.

2. [HKST15, Proposition 11.3.17] If there is an integer N such that each X, is N-
doubling, then X is N?-doubling.

We now define the notion of weak tangent.

Definition 2.4.9. Let (X,d) be a metric space. We say that (T,b,dr) is a weak tangent of
(X, d) if there exists a sequence {a,} of points in X and a sequence {\,} of positive numbers

such that A, — oo and that (X, a,, \pd) converges to (T, b, dr) in Gromov-Hausdorff sense.
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In particular, we have (X, x,, \,dx) — (T, p,dr) if for all R > 0, and for all £ > 0 there
exists N > 0 such that for all n > N,

dett (Bray (70, R), Bay (0. B)) < .

The following proposition is a consequence of Proposition [2.4.7]

Proposition 2.4.10. If (X,d) is a doubling metric space, then for any a, € X and any
sequence {\,} of positive numbers such that N\, — oo, the spaces (X, a,, \,d) contains a

subsequence that converges to some pointed metric space (T,b,dr).

We end this section by stating the theorem that quasisymmetries pass over to weak

tangents.

Proposition 2.4.11. [KL0j, Lemma 2.4.7] Let {(Xn, pn,dn)} and {Yn, qn, 1)} be sequences
of proper pointed metric spaces that converge to (X,p,d) and (Y, q,l) respectively. Let f, :
X, = Y, be n-quasisymmetric homeomorphism for each n € N, where n is fived. Further
assume that f,(pn) = qn, and that there exists C' > 0, and that there exists a sequence {x,}

of points in X,, such that for everyn € N,
C7' < du(pp,2a) C and O™ < Ly(gn, f(n)) < C.

Then, after passing to a subsequence, the functions { f,,} converges to some n-quasisymmetric

homeomorphism between X and Y .

As a particular instance of Proposition [2.4.11] we have the following statement about

weak tangents.

Proposition 2.4.12. Let X, Y be doubling metric spaces, let f : X — Y be a quasisymmetry,
and let (T, x) be a weak tangent of X. Then there exists a weak tangent (S,y) of Y such that

T and Y are quasisymmetrically equivalent.

2.5 Expanding Thurston maps and Visual Metrics

Let X and Y be topological spaces. A map f : X — Y is a branched covering map if f is

continuous, open (i.e. image of open sets are open), and discrete (i.e. preimage of a point is
17



a discrete set). If X and Y are topological 2-manifolds, then by Stoilow’s Theorem [Sto28),
p. 372][LP19], for every x € X, there is a open neighborhood U of x, a positive integer m,

and homeomorphisms ¢ : U — D, ¢ : f(U) — D such that the following diagram commutes:

U — ()

ool

D =%, D.
The number d is the degree of f at x. The point x is a critical point of f if m # 1. Let
crit(f) be the set of critical points of f and let post(f) = {f"(c) : ¢ € crit(f),n > 1} be the

set of postcritical points of f.

A Thurston map is a postcritically finite branched covering map f : S? — S%. For any
n > 1, the point f™(z) is said to be a postcritical point of f. Here, and in what follows, f™

means the n-th iterate of f.

A Thurston map is an expanding Thurston map if there exists an open cover {U,} of S?
such that

lim sup{diam,V : V connected component of f~"(U,)} = 0.

n—oo

Here p is any metric on S? that generates the topology.

We have the following fact:

Proposition 2.5.1. [BM17, Theorem 15.1] Let f : S* — S? be an expanding Thurston map
with posteritical set post(f). Then there exist a natural number N € N and a Jordan curve

C C S? such that post(f) C C and fN(C) C C.

We say that C is f-invariant if f(C) C C. Replacing f by a higher iterate f~, we may

assume that there exists f-invariant Jordan curve C containing the postcritical set.

Suppose C C S? is an f-invariant Jordan curve such that post(f) C C. The Jordan curve
C divides S? into two connected components. The closure of each of the two complement
components of C is called a O-tile. In general, the preimages of C under f* divide S? into
several connected components. The closure of each such connected component is called an

n-tile. Each n-tile is contained in a unique (n — 1)-tile. We let D,,(S?) denote the collection
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of all n-tiles, and let D(S?) = |J,,cy Pn(S?) be the collection of all tiles. If 7 € D, (S?), we

call n the level of 7.

Let W, B be the two 0-tiles. The tile W will be called the white 0-tile and B will be
called the black 0-tile. For all n € N, a tile 7 € D,,(S?) is a white n-tile if f*(7) = W and
a black n-tile if f*(7) = B. A tile is white if it is a white n-tile for some n € Ny, and it is

black if it is a black n-tile for some n € Nj.

A 0-edge is a subarc of C with endpoints in post(f) and contains no other postcritical

point. For all n € Ny, an n-edge is a subset e of a n-tile such that f"(e) is a 0-edge.

Given an expanding Thurston map f, we define the notion of visual metric. Following

[BM17, Chapter 8], for any pair of distinct points x,y € S, x # y, we define

m(x,y) = myse(z,y) = max{n € Ny : there exist non-disjoint n-tiles X,V

for (f,C) with z € X,y € Y}
and

m'(x,y) = m)e(x,y) = min{n € Ny : there exist -disjoint n-tiles X,V

for (f,C) withz € X,y € Y}
We also define, for all z € 82,
m(z,x) =m'(z,x) = oo.

There exists constant k € N such that |m(z,y) — m/(z,y)| < k for all z,y € S* with x # y
[BM17, Lemma 8.7(v)].

A metric p on S? is a visual metric with respect to f, or a visual metric of f, if there

exists A > 1 and A > 1 such that
ATIATEY) < p(zy) < ANTEY),

The number A is then called the ezpansion factor of the visual metric p, and the metric

space (S?, p) is called a visual sphere of f.
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One can show ([BM17, Proposition 8.3]) that a visual metric exists. The collection of
tiles D and the value of the function m depend on the choice of C; but whether a metric is

a visual metric or not is independent of C([BM17, Proposition 8.3]).

In general, the notion of visual metric can be defined without a metric. See [BM17,

Chapter 7] for more detail. We have the following proposition:

Proposition 2.5.2. [BM17, Proposition 8.3] Let f be an expanding Thurston map, and let
n be a positive integer. A metric p on S? is a visual metric for f with expansion factor A if

and only if p is a visual metric for f™ with expansion factor A™.

We list two facts about visual spheres that we will need:

Proposition 2.5.3. [BM17, Proposition 18.5(iii)] Any visual sphere is linearly locally con-

nected.

Proposition 2.5.4. [BM17, Proposition 18.1(i) and Lemma 18.6] Let f be an expanding

Thurston map and p a visual metric of f. Then the following are equivalent.

1. (S?,p) is doubling.
2. f does not have any periodic critical points.

3. There exists N € N such that for allp € S* and n € N,
deg(f",p) < N.

Finally, we state one fact about weak tangents of visual spheres of expanding Thurston

maps without periodic critical points, which we will need later on:

Proposition 2.5.5. Let f be an expanding Thurston map without periodic critical points.

Then every weak tangent of a visual sphere of f is doubling and linearly locally connected.

Proof. Let p be a visual metric with respect to f. By Proposition m (S?, p) is doubling,.
By Proposition [2.4.8] for every weak tangent (7', z) of (S?, p), T is doubling.
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To see that T is linearly locally connected, we need a stronger condition on (S?, p) called
annular linear local connectedness, defined in [BM17, Section 18.1]. It can be shown|[MacI0]
that weak tangents of annular linear local connectedness metric spaces are annularly lin-
early locally connected. Since every visual sphere is annularly linearly locally connected,
every weak tangent of the visual sphere (S?, p) is annularly linearly locally connected. This

implies[MacI(] that every weak tangent of (S?, p) is linearly locally connected. ]

2.6 A Note on Inverse Limits

In one of the later chapters we will use the language of inverse limits from category theory.
For the sake of completeness, we include a short section on those terms. Readers can also

consult any standard reference on category theory.

We are concerned with the category of topological spaces and continuous maps only. Let

I be a set and < be a relation on a subset of I x I such that

1. forallie I, <i;
2. fori,5€l,iti <jand j <7, then 1 = j;
3. foralli,5,k eI, if1 <jand j <k, then i < k; and

4. for all 7,5 € I, there exists k € I such that £ <7 and k£ < j.

An inverse system of topological spaces is a family {X,};c; of topological spaces together
with continuous functions f;; : X; — X; whenever ¢ < j such that f;; o f;; = fix for all

i < j <k. An inverse limit of the inverse system {X;}c; is the space
X ={{ai}ier : fi,j(ai) = a;Vi < J}-

From the definition of inverse limit, we see that there exists continuous maps m; : X — X,

defined by

mi({a;}jer) = ai.
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Proposition 2.6.1 (The universal property of inverse limit). Let {X;}ic; be an inverse
system of topological spaces and let X be the inverse limit of {X;}icr. Let Y be another
topological space and {¢; : Y — X;}ier be continuous maps such that for each i < j,
fij o wi = @;. Then there exists a continuous map u :Y — X such that for each t < j, we

have the following commutative diagram:

Pi
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CHAPTER 3

Visual Spheres and Their Weak Tangents

3.1 Introduction

Let f:S* — S? be an expanding Thurston map. Let crit(f) be the set of critical points of
f and let post(f) = {f"(c) : ¢ € crit(f),n > 1} be the set of postcritical points of f. In
[BM17, Chapter 16] Bonk and Meyer obtained the following result:

Theorem 3.1.1. [BM17, Theorem 16.1] Given an expanding Thurston map f, there exists
Ao(f) > 1, called the combinatorial expansion factor of f, such that whenever1 < A < Ao(f),
there exists a visual metric p on S with expansion factor A, such that for every x € S?, there

exists r, > 0 such that for every y € B(x,r,),
p(f(x), f(y)) = Ap(z,y).

A stronger result can be found in [HP14]:

Theorem 3.1.2. [HP1J, Lemma 2.1] Let f be an expanding Thurston map without any
periodic critical points. There exists X\ > 1, a visual metric p of f with expansion factor A,

and ro > 0 such that for all x € X, for all 0 <r <1y, and k € Ny, we have
FH(B(x, A7) = B(f*(),7),

and if f* is injective on B(x,4rA~F), then
|[f5(a) = fF )| = A [a =¥,

for all a,b € B(xz, A Fr).
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In Section (3.2, we study this special visual metric p in greater detail. We are particularly
interested in the possible value for r, in Theorem and when f* in Theorem is
injective. When the point f(x) is away from the postcritical point, we establish an estimate

for the value r,:

Proposition 3.1.3. Given an expanding Thurston map [ and a visual sphere p from the

above theorem with expansion factor A. There exists ¢ € (0,1) such that for all x € S* with
f(z) & post(f), we can take r, = cp(f(x),post(f)).

Suppose f does not have any periodic critical point. When the point f(x) is in post(f),

we obtain the following statement:

Proposition 3.1.4. Let f be an expanding Thurston map without periodic critical points,
and let p be the visual sphere from the above theorem with expansion factor A . Let p € S? be
a posteritical point of f such that f(p) = p. Let ¢ € S* be another point such that f(q) = p.
Then there exists v > 0 and a scaling map f': B(q,r) — B(q,Ar) such that the following

diagram commutes:

B(q,r) N B(p, Ar)

lf ! lf

B(q, Ar) —— B(p, A?r)

Moreover, both f': B(q,r) — B(q,Ar) and f : B(p, Ar) — B(p, A*r) are invertible.

Towards the end of the section, we prove that the visual sphere is self-similar in some

sense.

Theorem (Theorem [1.0.5). Let f be an expanding Thurston map without periodic critical

points, for any visual metric p of f, the visual sphere (S?, p) is approximately self-similar.

The definition of approximate self-similarity will be defined in Section 3.2}

Having clarified some basic properties of the visual metric p, we move on to study the
solenoids of an expanding Thurston map f without periodic critical points. The solenoid

S(f) of f is the inverse limit of the system
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fos2 S g2 1 g2

Thus we have natural projection maps 7, : S(f) — S?. When restricted to a path-connected
component, also called a leaf, of S(f), these maps 7, are branched coverings (Theorem [3.3.8]).

Detailed discussion on the solenoid can be found in Section 3.

Leaves of the solenoid are closely related to weak tangents of the visual sphere. In Sections

4 and 5, we will see that a leaf of a solenoid is a weak tangent of the visual sphere:

Theorem (Theorem [1.0.6)). Let x = {z,}nen, be a point in S(f), and let L be the leaf
in S(f) containing x. Then the sequence {(S?, z,,, A"p) }nen, converges in pointed-Gromov-

Hausdorff sense to (L, z,dy).

Conversely, Theorem [1.0.7| states, among other conclusions, that every weak tangent T’

of a visual sphere is a branched covering of a leaf of the solenoid:

Theorem (Theorem [1.0.7)). Let (T,a,d) be the weak tangent of (S?, p) with associated
data (ay,r,), and suppose {xy}nen, € S(f) represents (an,7,). Let L be the leaf of S(f)

containing {x, }nen,. Then the following statements hold.

(i) There exists a branched covering 7 : T' — L.
(ii) If sup,ey, A"p(2n, post(f)) = oo, then the map = is an isometry.

(iii) If p = {pn}nen, € L is a periodic sequence of postcritical points, then p is the only

possible branched locus of 7, and 7~!(p) has exactly one point.
(iv) Let b= 7"'(p). Then there exists ny € N such that deg(m,b) = deg(f™).

(v) There exists gy € f~™(po) such that for all R > 0 there exists k € Ny and an isometry

v: Br(q, R) = Bano+r(qo, R) such that the following diagram commutes:

B(T,dT)(b7 R) — B(L,dL)(p> R)

lz lﬂk
B(SQ,Ak+”Op) (qO, R) W} B(§27Akp) (po, R) .
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3.2 A visual metric

In this section we construct a visual metric on S?. This construction first appears in [BM17,
Chapter 16]. We reexamine the metric p. Towards the end of the section, we generalize

Theorem 15.1 of [BM17] and Lemma 2.1 of [HP14].

A tile chain joining x and y is a sequence of tiles X, Xs,..., X,,, such that z € Xj,
y€ X,,andforalli =1,2,...,n—1, X;NX;1 # 0. Given a tile chain v = {X1, Xy, ..., X,,}

joining two points in a sphere, we define the length of v by
Uy) =D A,
i=1
where m; is the level of X;. Let A > 1. For z,y € S?, define

p(r,y) = L(7),

where the infimum is taken over all possible tile chains v joining x and y.

Lemma 3.2.1. |[BM17, Lemma 16.6 and Lemma 16.7] There exists Ao(f) > 1 such that for
all 1 < A < Ag, p is a visual metric. Moreover, for each x € S*, there exists r(x) > 0 such

that for all y € B(z,r(x)), we have

p(f(z), f(y)) = Ap(z, y).

Lemma 3.2.2. Let v,y € S%. If p(z,y) < 1, then

p(f(z), f(y) < Ap(z,y).

Proof. First assume that p(z,y) < 1. Given € € (0,1 — p(x,y)), there exists a tile chain
v ={X1, Xs,...X,} joining z and y such that

plz,y) +e>Ly) = A
=1

where m; is the level of X;. If p(x,y) < 1, then m; > 1 for all i = 1,... ,n, and f(X;) is
a (m; — 1)-tile. The tile chain f(v) := {f(X1), f(X2),..., f(X,)} joins f(x) and f(y), and
hence

p(f(x), f(y) <Uf(y) =A™ 4o AT <A (p(a,y) + )

Letting e — 0, we get p(f(2), f(y)) < Ap(z,y). O
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Lemma 3.2.3. There exists ¢ > 0 such that for all x,2’ € S?, if f(z) = f(2') and p(z,2') <
A~ p(f (), crit(/\{f(2)}), then x = a.

Proof. Suppose the lemma is false. Then for all n € N, there exists z,, !, € S? such that

2o # , flan) = f(2}) and
Pl ) < A7"0(f(2a), post(D\{F(za)}).

Hence p(z,,z!) — 0. Since S? is compact, we may, by taking a subsequence of (z,,z/) if

necessary, assume that x, converges to some x* € S%. Then 2/, converges to z* as well.

If f(z,) = f(z) = f(x*), then because f~!(f(z*)) is finite, z,, = !, for all sufficiently
large n, a contradiction to our assumption that =, # z,. Thus f(z,) = f(z)) # f(z%)
for large n. We claim that z* is a critical point. Suppose not. Then there exists an open
neighborhood U of z* on which f is injective. For all large n, z,, 2!, € U. Therefore it is
impossible to have z,, # x/, and f(x,) = f(z]) simultaneously. Thus x* must be a critical
point. Without loss of generality we assume that x,,, 2!, # x* and that z,,, ], are not critical

points for all n € N. Moreover, for all n € N, we will assume that f(z,) is close enough to
f(z*) € post(f) that f(z,) & post(f).

For each n € N, choose a tile chain {X7,..., X}, } joining x,, and 27, such that X' €
Dy (S?) for all i = 1,2, ..., k(n), such that

D AT < AT p(f (), post(f))
=1

Let 9y be the minimal distance between any pair of distinct postcritical points. Since f is
postcritically finite, by Lemma there exists 0 < 0 < dp/3 such that for all » € Ny, and
for all y € S?, if

p(f"(y), [7(@")) <6,
then

p(f (), fN (") = Ap(f7 (y), [ (x)).

For each n € N, choose r,, such that

A0 < A"p(z, 2*) < 6.
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Applying f™ to each X' we get a tile chain {f(X7),..., f(X}(,))} joining f™(x,) and
fr(z)) = f™(x,). By Lemma|3.2.2] we have

k(n)

U () € B (7). 0).

i=1
Therefore the set Ufg) fm(X) does not contain any postcritical point other than possibly
f"(x*). Since x, # x,, there exists a Jordan curve =, C Ufﬁ;) f(X7) passsing through
f(x,) such that either v is not null-homotopic in S?\ (post(f)\{f™(z*)}), or v contains
f(x*). Let K, be the closure of one component of S*\post(f), and L,, be the closure of

another component of S*\post(f). Then

inf diam(K,), ir€11£I diam(L,,) > p(f™(x,),post(f)) > 0,

neN
and
lim sup diam(~,,) < limsup A™ Z AT™
< limsup A™"A™ p(f (), post(f)\{f(zn)})
n—oo
< ClimsupA™
n—oo
= 0.

Thus along a subsequence of n, {K, } converges in Hausdorff sense to some compact set K,
{L,} converges in Hausdorff sense to some compact set L, and 7, = {K,, N L,,} converges in
Hausdorff sense to some compact set 7, such that diam(y) = 0, but diam(K,), diam(L,) > 0.

But this is impossible since (S?, p) is topologically a 2-sphere. O

Lemma 3.2.4. Take ¢ = min{c, 1}, where c is the constant in Lemma . If p(x,y) <
A7 p(f (), post(FN{f(2)}), then p(f(x), f(y)) = Ap(z,y).

Proof. Let x,y € S? be fixed such that
p(z,y) < A p(f (), post(F)\{f(2)}).
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By Lemma |3.2.2] we have

p(f (@), f(y)) < p(z,y) = %min{c, 1yp(f (@), post (SN f (2)})-

For any € > 0, we can find a tile chain {Y},Y5,...,Y,} joining f(z) and f(y) such that

each Y; is an m,-tile and
3 A e <l ) < A
For each z € |J;_, Y;, we have

p(z,post(F)\{f(2)}) = p(f(x), post(FI\{f(2)}) = p(f(x), 2)
p(f (@), post(SI\{f(x ZA m

IV

v
=

(f (@), post(/N\LSf (2)}) — (p(f (), F(y)) +¢€)
p(f (), post(FN{f(x)}) —

vV
DN | —

If ¢ is sufficiently small, then Y3, ... Y, do not contain any postcritical points except possibly
f(z). There exists a lift of the tile chain {Y,...,Y,} to a tile chain {X7,..., X,,} such that
y € X,,. Let 2/ € X; be the point such that f(z') = f(z). Then

p(x',y) <Y ATV KA (p(f(2), f () + ) < pla,y) + A

=1

Therefore
ple,a') < p(z,y) + p(x',y) < 2p(a,y) + A te,
Letting ¢ — 0, we have

pla, ") < 2p(x,y) < cp(f(x), post(S)\{f(z)}).

By Lemma [3.2.3] we have x = 2’. Thus Xi,..., X, is a tile chain that joins x and y, and

plz,y) <D AT AT (p(f(2), fy) +e).

i=1

Letting ¢ — 0, we conclude that

p(z,y) < A 'p(f(x), fy).
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Combining Lemma [3.2.2] and Lemma [3.2.4] we obtain the following propositions:

Proposition 3.2.5. There exists ¢ € (0,1] such that for all z,y € S?, if

p(x,y) < A7 p(f (), post(N\{f(2)}),

then
p(f(x), f(y)) = Ap(z, y).

Let (X,dx) and (Y,dy) be two metric spaces. A map f: X — Y from X onto YV is a

scaling map with scaling factor A > 0, or a A-scaling map, if for all xy, x5 € X, we have

dy (f(21), f(z2)) = Adx (21, 72).

Proposition (Proposition D . Let " = 216,, where ¢ is the constant in Proposition .

Let 2’ be a point in S?, and suppose that = = f(z') & post(f). Let R = p(z,post(f)\{z}).
Then the map
f: B A'"R) — B(z,d'R)

is a A-scaling map.

Proof. Since ¢’ <1 and R < 1, Lemma implies f(B(z',A"'¢"R)) C B(x,d"R).

For any y € B(z,c"R), let Y1,..., Y} be a tile chain joining z and y, and let my, ..., my
be the respective levels of Y7,...,Y,. Assume

k

Z A < 'R.

i=1

This is possible since p(z,y) < ¢’R. ThenY; C B(z,c’R) foralli =1,..., k. Since B(z,c"R)
contains no postcritical points other than possibly z, By [BM17, Lemma A.19], we can lift
Yi,...,Y: to a tile chain Xq,..., X} such that f(X;) =Y; for all i and 2’ € X;. This tile

chain has length
k
> AT < AR,

i=1

30



Therefore Xi,..., X} is a tile chain in B(z', A"'¢"R). Since y € Y}, = f(X;), y = f(y) for
some y' € X; C B(z', A='¢’R). This proves that the map

f:B@@,A"'"R) = B(x,d"R)
is surjective.
Let o/, 2" € B(z/,A"'¢"R), and let y = f(y'). Then
ply, 7)) <207 '"R.
Since x,y & post(f), we have post(f)\{y} = post(f)\{z}. Therefore

p(y, post(f)\{y}) > p(y, post(f)\{z})

> pla, post(F)\{z}) — p(z,y)
>R— 'R

For our choice of ¢”, we have
p(y',2") <20"R < (R — ¢"R) < dp(y, post(f)\{y})-

By Proposition [3.2.5] we have

O

In other words, away from f~!(post(f)), f is locally a scaling map with scaling factor A.

The next proposition describes the behavior of f near a preimage of a postcritical point.

Proposition (Proposition|3.1.4)). Suppose f is an expanding Thurston map without periodic
critical points. Let p € S? be a postcritical point of f such that f(p) = p. Let ¢ € S* be
another point such that f(q) = p. Then there exists r > 0 and a scaling map f’: B(q,r) —

B(q, Ar) such that the following diagram commutes:

B(q,r) SN B(p, Ar)
7 s
B(q, Ar) SN B(p, A®r)
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Moreover, both f': B(q,7) — B(q,Ar) and f : B(p, Ar) — B(p, A®r) are invertible.

Proof. The point p is a periodic postcritical point, so it cannot be a critical point. The same

argument as the proof of the previous proposition shows that the map
f: B(p,2Ar) — B(p,2A%r)

is surjective for sufficiently small r. By choose an even smaller r, we may assume that 2Ar

and the above map is also injective. We claim that by the map
f: B(p,Ar) — B(p, A"r)

is a scaling map with scaling factor A. Let y,z € (p,Ar). Then p(f(y), f(z)) < 2A%r.
Let € € (0,A% — max{p(f(vy), f(p)), p(f(2), f(p))}). We can therefore find a tile chain v =
{Y1,...,Y,} joining f(y) and f(z) such that

0(7) < p(f(y), f(2)) +e < 20%

For any z € |J;_, Y;, we have

p(p,z) < min{p(p,y) + p(y, ), p(p, 2) + p(z,2)} < 2Ar.

Therefore | J;, Y; C B(p, 2A%r). The tile chain {Y3,...,Y,} has a unique lift to a tile chain
{X1,..., X} in B(p,2Ar). The tile chain {Xi,...,X,} joins y and z by injectivity of
f: B(p,Ar) — B(p, A*r). Thus

p(y, 2) <A () < A (p(f(y), f(2)) + ).

Letting ¢ — 0, we get
p(y,2) <A Tp(f(y), f(2))-
Combining this inequality with Lemma [3.2.2] we get the desired conclusion.
Since the maps
[ Blg;r)\{q} = B(p, Ar)\{p}

and

£ B(g, Ar)\{q} — B(p, A’r)\{p}
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are covering maps of the same degree at ¢, we can lift f to a bijective map

[+ Bla,r)\{a} = Blq, Ar)\{q}
such that the following diagram commutes:

B(g,r)\{g} —— B(p,Ar)\{p}

lf ! lf

B(g, Ar)\{g} —— B(p, A2r)\{p}.

By continuity of f, we can extend f’ continuously to a bijection
f"+ Bg,r) — B(gq, Ar)

such that the following diagram commutes:

B(q,r) . B(p, Ar)

I I

B(Q? AT’) L) B(p7 AQT)'
Moreover, f' maps an n-tile in B(g,r) to an (n — 1)-tile in B(q, Ar).

Let ' = r/2. For any z,y € B(q,r’), we can find a tile chain Yj,...,Y) with levels

my, ..., my joining f'(x) and f'(y) such that
k
> AT <20
i=1
For allt =1,2,...,k, we have

p(q,Ys) <min{p(q, f'(y)) + p(f'(v),Yi), p(q, f'(x)) + p(f'(2),Y3)}

k
1
<A > AT <20 = Ar.
i=1

Therefore Y; C B(q, A*r) for all 7. The tile chain Yj,...,Y; can be lifted to a tile chain

X1,..., Xy joining x and y, and hence

k
plz,y) <Y AT
=1
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Infimizing over all tile chains joining f'(z) and f'(y), we get

p(x,y) < A p(f'(2), f'(y)).
Thus the map
f: B(qg,Ar") — B(q, \*)

is a scaling map with scaling factor A. O

Lastly, we prove that the visual sphere is self-similar in some sense.

Definition 3.2.6. A bounded metric space (X, d) is called approximately self-similar if there
exists R > 0 and L > 1 such that for all x € X and r < R, there exists a injective map

f: B(x,r) = X such that for all x1,z5 € B(x,r), we have

L7Hd(f(x1), f(x2)) < ;Rd(xhlé) < Ld(f(x1), f(x2)). (3.2.1)

See [Kle06l, Section 3] for more discussion on approximate self-similarity.

Theorem (Theorem [1.0.5). If f is an expanding Thurston map without periodic critical

points, then the visual sphere (S?, p) is approximately self-similar.

Proof. There exists n € N such that every periodic postcritical point of f is a fixed point
of f™. For instance, we can take n to be a common multiple of the periods of all periodic
postcritical points. By taking a sufficiently large multiple of n, we may assume that for every

critical point ¢ of f™, f**(c) is a postcritical fixed point. Let us assume n = 1.

By Proposition [3.1.4] for each = € f~!(post(f)), there exists r, > 0 and scaling maps
f": B(x,r,) = Bz, \*r,).

of scaling factor A?. By Proposition [3.1.3] for each z € S\ f~!(post(f)), there exists r, > 0
such that the map
f?: B(z,7,) — B(f*(z), A*r,)

is a scaling map by a factor A?. The collection {B(x,7,)},cs2 is an open cover of S

therefore there exists 1,2, ...,2, € S? such that {B(x;,r,)}", covers S?. Let r; = r,,
7 =1 k3
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and let B; = B(x;,r;). Then there exists R > 0 such that every open ball of radius R in S?
is contained in one of B;. We say that an open ball B(z,r) in S? is good if there exists a

scaling map ¢ : B(x,r) — X with scaling factor A\? such that AR < A\r < R.

Note that every ball of radius 7 in the range [A2R, R] is good, because the identity map
id : B(x,r) — X is a scaling map with scaling factor 1, and A™2R < r < R. Suppose not
every ball of radius less than R is good. Let ry be the supremum of the radii of the balls
B(z,r), with r < R, that are not good. Then every ball of radius r > rq is good but there

exists a ball B(z,r) of radius r € (A™?rg, ro] that is not good.

Since r < R, the ball B(z,r) is in one of the B;’s, and there exists a scaling map
f': B; — X with scaling factor A%, The same map f’, restricted to B(x,r), gives a scaling
map with scaling factor A? from B(z,r) to another ball B(y, A%r) of S%.. By our hypothesis
on r, B(y,A%r) is good, i.e., there exists a map g : B(y, A’r) — X with scaling factor A
such that A™2R < AA%r < AR. The composition g o f' : B(xz,r) — X is then a scaling
map with scaling factor A*X. This implies that B(x,r) is good, a contradiction to our choice
of B(z,r). Thus every open ball is good. In particular, the visual sphere is approximately

self-similar. O

3.3 Solenoids and Leaves: Definitions

Given an expanding Thurston map f without periodic critical points, we define the solenoid

S(f) = S(S% f) = {{an}neNo € (ST - fapy1) = an¥n € NO}.

The solenoid S(f), as a subset of the product space (S?)M°, inherits the product topology of

(S?)MNo. Tt is the inverse limit of

LY R B < R N ) (3.3.1)

Let p be the visual metric constructed in the previous section, and let A be the expansion

factor of p. We define a relation ~ on S(f) by {zn}neny ~ {Untnen, if and only if

sup A"p(xy,, y,) < 00.

n—>N0
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An equivalence class in S(f) is called a leaf of S(f).

Proposition 3.3.1. The relation ~ is an equivalence relation.

Proof. This is a consequence of the triangle inequality. O

Lemma 3.3.2. Let {x,}nen, € S(S?, f) be arbitrary. If the condition

sup A" p(x,,, post(f)) < oo
n€Ng

holds, then {x,}nen, ~ {Pntnen, for one and only one periodic sequence {p,}nen, of post-

critical points in S(f).

Proof. Because post(f) is finite, there exists ¢ > 0 so that the distance between any two
distinct points in post(f) is at least e. If sup,cy, A"p(2n, post(f)) < oo, then there exists
N € Ny such that

M = sup A"p(z,, post(f)) < EAN,
neNy 2

For each n € Ny, there exists p, € post(f) such that
p(Tn, pn) < MAT™.

Thus for all n > N,

P(Pns f(Pnt1)) < (@0, pn) + p(f (Tnt1)s f(Prr1))

< p(2p, pn) + Ap(Tpg1, Pps1)
< MA™™+ MA™

< E.

Therefore f(pny1) = pn. In other words, {pnin fnen,, and therefore { ¥ (pnyn) bnen,, belongs

to S(S?, f). As there are only finitely many postcritical points, { /Y (ppsn) hnen, is a periodic
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sequence of postcritical points, and

sup A"p(z, £ (prin)) < sup Ap(@n, N (pran)) + sup A p(an, [N (Poin))
nENg n<N n>N

= sup A" p(zp, N (pusn)) + sup A"p(2n, pn)

n<N n>N
< sup A" p(zp, [N (Ppan)) + M
n<N
< +00.

Suppose {¢,tnen, € S(f) is another periodic sequence of posteritical points such that

{xn}neNo ~ {Qn}nENo‘ Then {pn}nENo ~ {Qn}nGNo- In other WOI‘dS,

sup A" p(pn, ¢n) = C < 0.
n€ENg

Therefore, for all n € Ny, we have
p(Pnsqn) < CAT™. (3.3.2)

Since post(f) is a finite set, for all large n, (3.3.2)) forces p, = ¢,. But if p, = ¢,, then

Pn-1 = f(pn> = f(QTL) = Qn-1- Thus {pn}nENo = {Qn}neNo as pOthS in ’S(f) O

The equivalence relation ~ is the same as path-connectedness. To prove this we introduce

a few lemmas.

Lemma 3.3.3. For any {z,}nen, in S(f), there exists N € Ny such that for alln > N, x,,

18 not a critical point.

Proof. Suppose not. Then {x,},en, contains infinitely many critical points. Since the set
crit(f) is finite, there exists 0 < n; < ng such that x,, = x,, € crit(f). Since f"27"(z,,) =

Zn,, the point z,, is a periodic critical point, contradicting our assumption on f. O

Lemma 3.3.4. Let {z,}nen, be a point in S(f). Then for all R > 0, there exists N > 0
such that for all n > N, the map

[+ Banp(@n, R) = Bpn-1,(2p-1, R)

15 an 1sometry.
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Proof. Case 1: sup,cy, A"p(x,,post(f)) = +oo. Let Ny € Ny be an integer such that
whenever n > Nj, the point z, is not a critical point of f. Lemma [3.3.3| guarantees the
existence of such N;. Since sup,cy, A"p(x,, post(f)) = +oo, by Proposition there
exists ¢ > 0 such that for all n > N; and for all r < ¢p(x,_1, post(f)\{zn_1}), the map

f: Bz, A7) — B(x,_4,7) (3.3.3)
is a A-scaling map. For any R > 0, there exists N > N; such that

R < cAYp(xy, post(f)\{zn}).

By induction on n and the fact that the map in (3.3.3]) is a A-scaling map with scaling factor

A, for every n > N, we have

R < cA"p(zn, post(f)\{zn}).

Hence

f : BAnp(.TmR) — BAn—lp(xn_17 R)
is an isometry.

Case 2: sup,,cy, A"p(zn, post(f)) < +oo. Then by Lemma 3.3.2, there exists a periodic
sequence of postcritical points {p,}nen, € S(f) such that sup,cy, A"p(Tn, pn) < 00. Let €

be the minimum distance between pairs of distinct points in post(f). We have
sup A" p(pn, post(f)\{ps}) = sup A"e = +oc.
neNp n€Ng

The same arguement as in the previous case concludes for every R > 0, there exists N € Ny

such that for all n > N, the map
[ o Banp(pn, R+ sup A"p(zy, pp)) = Ban-1,(Pn—1, R + sup A"p(xn, py))
neNg n€No
is an isometry. Since
Bany(x, R) C Banp(pn, R+ su£ AN p(xp, pn)),
nelNg

the map
f: BAnp(pn,R) — BAnflp(pn_]_,R)

is an isometry. O
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Proposition 3.3.5. Two points {x,} and {y,} in S(S% f) are connected by a path in C(f)
if and only if {xn} ~ {yn}.

Proof. Suppose {z,} and {y,} in S(S?, f) are connected by a path ~y : [0,1] — S(S?, f). We
can write v = {70, 71, - - .}, where each path ~, : [0, 1] — S? joins z,, and y,, and foYu41 = Y-
We have

p(Tn, yn) < diam(y,) S A",

where the implicit constant is independent of n. Here the last inequality follows from [BM17,

Lemma 8.9]. Taking supremum over all n € N, we get

sup A"p(xy, yn) < 00.
n€Ng

Conversely, suppose sup,,cy, A"p(2n,yn) < 00. Let R = 2sup,cy, A"p(2n,yn). By
Lemma [3.3.4] there exists N € Ny such that for all n > N, the map

f : BAnp(l’n,R) — BAn—lp(.fn,l,R)

is an isometry.

Note that yn € Byn,(zy, R). Let vy be a curve in Byw,(2y, R) joining zx and yy. For
all n > N, we can lift vy by /" to a curve v, in Bpn,(,, R) that joins x,, and y,. For all
n=0,1,...,N—1,let v, = fN""(yy). This sequence {7, }nen, gives a path in S(f) joining

{xn}nENo and {yn}nENo' -

By Proposition [3.3.5] a leaf of S(S?, f) is a path-connected component of S(S?, f).

Let L C S(S?, f) be a leaf. For z = {x,},y = {yn} € L, define

dr(z,y) = sup A"p(x,, yn)-
neNg

Proposition 3.3.6. The function dy, is a metric on L.

Proof. By the definition of ~ and Proposition [3.3.5] we see that 0 < dp(z,y) < oo for all
x,y € L. Moreover dy(z,y) = 0 if and only if p(x,,y,) = 0 for all n € Ny if and only if

r=y.
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The symmetry of d, is inherited from the symmetry of p.

Let x = {z,},y = {yn}, 2 = {z.} be three elements in L. We have

dr(z,y) + dr(y, 2) = sup A" p(@n, Yn) + sup A" p(yn, 2,)
neNy neNp

> sup A" (p(@n, Yn) + P(Yn> 2n))

neNg

> sup A" (p(zn, 2n))
neNy

=dp(x, z).

Proposition 3.3.7. The metric space (L,dy) is complete.

Proof. Suppose ¥ = {z%} is a Cauchy sequence in (L,d;). Then for all n € N,

p(xk 2ty =0

n’r'n

k

as k,l — oo, which implies z}

converges to some x,, as k — 0o. As the space S(f) is closed

under the product topology of (S*)o, {z,} € S(f). For all n € Ny,

A"p(x), x,) < limsup A"p(xk, 2%) + A™p(2F, ,) < sup A"p(zl, o) < sup dp (2!, 2%).

n»*n n»*r'n

keNg keNg keNp

Therefore

sup A"p(z), x,) < sup sup dp(z', 2%) = sup dp (2!, 2%) < oo,
n€Ng neNg keNg keNy

For all k € Ny, let 7 : S(f) — S? denote the map

{xn}nENo = k.

Theorem 3.3.8. Let L be a leaf of S(f). Regard L as a metric space equipped with the
metric dy,. Then n € Ny, the map

7Tn|L3L—>S2

defines a branched covering from (L,dy) to S*. The only branched loci of m, are points in

post(f).
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Proof. We prove the theorem for my. By Lemma [3.3.2 there exists x = {x, }nen, in S(f)
that satisfies one of the two conditions in Lemma [3.3.4, Fix r > 0. By Lemma [3.3.4] there
exists N € Ny such that the map

7N Bpay)(z,r) — B(827ANP)<.TN,7’)

is an isometry. Postcomposing 7y with f%, we conclude that on Bp,a,)(z,r), the map m is
a continuous, open and discrete. This proves that | B(r,ap) (@) is a branched covering. The
argument works for all > 0. Thus 7 is a branched covering. The branched loci of f o7y

are the branched loci of fV, which have to be in post(f). O

The maps 7, enable us to define the notion of tiles on leafs. The map
mo : T\ *(post P) — S\ post(f)

is a covering map. For any tile ¢ in S?, and any point = € L such that my(z) € o\ post(f),
the map m lifts o\ post(f) uniquely to a subset 7 C L such that x € 7. The closure of 7 in

L is called a lift of o, and if ¢ is an n-tile, we call 7 an n-tile in L.

3.4 Weak Tangents and Leaves

In this section, we investigate the relation between weak tangents and leaves.

Theorem (Theorem [1.0.6)). Let x = {x,}nen, be a point in S(f), and let L be the leaf
in S(f) containing x. Then the sequence {(S?, z,,, A"p) }nen, converges in pointed-Gromov-

Hausdorff sense to (L, z,dy).

Proof. Let us first suppose that {z, },en, satisfies either one of the two conditions in Lemma
B.3.4 Let R > 0 be arbitrary. By Lemma|[3.3.4] there exists N € Ny such that for alln > N,
the map

[+ Banp(2n, R) = Bpn-1,(2y-1, R)

is an isometry. Hence the map

Tp : Br(z, R) — Bany(2,, R)
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is an isometry. This proves that (L, z,dy) is the pointed-Gromov-Hausdorff limit of the

sequence {(S?, z,,, A"p) }nen, - O

Theorem implies that every leaf of the solenoid is a weak tangent of the visual sphere
(S2, p). In what follows let (T, a, dr) be a weak tangent of (S?, p). Then (T, a,dr) is a pointed-
Gromov-Hausdorff limit of a sequence (S?, a,,, A™p), where a,, is a sequence of points in S?,
and 7, is a sequence of positive real numbers tending to +00. The pointed-Gromov-Hausdorff
limit of the sequence (S?, a,,, A™ p) is bilipschitz equivalent to the pointed-Gromov-Hausdorff
limit of the sequence (S?, a,, Al""1p). Since we are interested in studying the visual spheres
up to quasisymmetric equivalence, we will assume that each 7, is a positive integer. The

pointed metric space (T, a,dr) is said to be a weak tangent of (S?, p) with associated data

(GpyTh)-

Proposition 3.4.1. Suppose T is a weak tangent of the visual sphere (S?, p) with associated
data (an,m,). Then we can find a subsequence, indexed by ny, such that for each m € Ny,
the limit

lm f™"(ay,)
k—o0

exists. Moreover, if T, = limy_o f™ ™ (an, ), then {xm}nen, € S(f)-

Proof. Since (S?, p) is sequentially compact, for each m € Ny, the sequence f™ " (a,) sub-
converges in (S?, p). By diagonalization, we can replace (a,,r,) by a subsequence, indexed

by ny, such that for all m, the limit limg_,oo f™ ™ (ay,, ) exists. By continuity of f,

[man) = F(lim fo- ()

= lim f(f™ " (a,,))
k—o0

= lim f™ " (ay,,)
k—o0

= T

Therefore {2, }men, € S(f). O
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We say that the point {x, }men, € S(f) represents (an,75), or {Zm}men, IS a Tepresen-

tative of (ay,ry), if for all m € Ny, we have

Ty = lim " (ay,).
n—oo

Thus (a,,r,) may not always have a representative, but by Proposition [3.4.1} there exists a

subsequence (an,, 7y, ) of (an,7,) such that (a,,,r,,) has a representative.
The following proposition shows that any point {z, }nen, in S(f) represents (z,,n).
Proposition 3.4.2. Let {z,}nen, € S(f). Then x, = limy_.o f*7"(xx). In other words,

{Zn}nen, represents (x,,n).

Proof. For each n € Ny and each k € Ny such that £ > n, we have
() = Tk—(k—n) = Tn
O

Theorem (Theorem [1.0.7). Let (7,a,d) be the weak tangent of (S?, p) with associated
data (a,r,), and suppose {x,}nen, € S(f) represents (an,7,). Let L be the leaf of S(f)

containing {x, }nen,. Then the following statements hold.
(i) There exists a branched covering 7 : T" — L.
(ii) If sup,en, A"p(2n, post(f)) = oo, then the map 7 is an isometry.

(iii) If p = {pn}nen, € L is a periodic sequence of postcritical points, then p is the only

possible branched locus of 7, and 7~!(p) has exactly one point.

(iv) Let b = 7!(p). Then there exists ny € N such that deg(m,b) = deg(f™).

(v) There exists gy € f7"(po) such that for all R > 0 there exists k € Ny and an isometry

11 Br(q, R) — Bsno++(qo, R) such that the following diagram commutes:

B(1,4r)(b, R) ——— B(1,4,)(p, R)

l@ lﬂ'k
B(SQ,Ak+”0p) (qU, R) W B(SZ,Akp) (po, R) .

Theorem [1.0.7]is, in some sense, a converse of Theorem [1.0.6]
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3.5 The Proof of Theorem [1.0.7]

This section is devoted to the proof of Theorem [1.0.7]

Lemma 3.5.1. Let (T, a,d) be a weak tangent of (S?, p) with associated data (a,,r,). Let

{bp }nen, be a sequence of points in S* such that

lim A™ p(an, b,) < oo.

n—o0

Then there exists b € T such that d(a,b) = lim,_,oo A" p(an, b,) and (T,b) is a weak tangent

of the visual sphere (S?, p) with associated data (b, ,ry,), where (b, ,ry,) i a subsequence

of (bp,7n).

Proof. Without loss of generality we may assume that for all n € Ny there exists a %—rough
embedding ¢, : Bary(an,n) — T such that ¢,(a,) = a and ¢, (Byrm,(an, n)) is 2-dense in
Br(a,n).

For all large n, A™p(a,,b,) < n, and hence ¢, (b,) is well-defined. Moreover, we have

1 1
Arnp(a”’ b”) B E < d<a7 90n<bn>) < Arnp(ana bn) + E

As (T,d) is a complete doubling metric space, the sequence {y,(b,)} has a subsequence

{¢n, (bn, )} such that {¢,, (b,,)} converges to some point b € T whose distance from a is
d(a,b) = lim A™*p(an,, by, ).
k—o00

We will assume that n;, = n and that d(p,(b,),b) <

3=

For each n € Ny, define
Yt Barnp(by,n— A™p(an, by)) = T

by ¥, (by) = b and ¥, = @, on Byra,(by, n — A™ p(ay,, b,))\{b}. Since each ¢, is a t-rough
isometry, it follows that each 1, is a %—rough isometry. As n — oo, n— A™p(ay,b,) — +00.
We conclude that (T,b) is the weak tangent with associated data (b, , 7, ), where (by, , 7y, )
is a subsequence of (by, ). O
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Lemma 3.5.2. Let (T,a,d) be a weak tangent of (S*, p) with associated data (a,,,). Sup-
pose {Ty tnen, € S(f) represents (ay,,r,). Then for each k € N there exists by, € [~ (xq)
such that

lim A™p(bg,ax) =0,

k—o0

and for all n € Ny, there exists K € N such that for all k > K, f*"(by) = x,.

Proof. For all k, we can choose a path 7, that joins xg and f™ (ay). Since xy = limy_o [ (ag),
we may assume that 7 lies within B(xg, p(xo, 2f™ (ax)). Any lift of v, by f"* that lifts f™* (ax)

to aj will have another endpoint by € f~"*(zy).
Let r = ¢ p(xo, post(f)\{zo}), where ¢ is the constant defined in Lemma [3.2.5] Since

xo = limy_,00 ™ (ay), for all sufficiently large n, p(xo, f™*(ax)) < ¢'r/2, and the path ~; lies
inside B(zo, ' p(xg,r)). By Lemma [3.2.5]

p(br, ax) = A" p(xo, [ (ar)).

Therefore

lim Arkp(bky (lk;) = kh—{go P(IOa ka (ak)) = 0.

k—o00

Moreover, for each n € Ny, Lemma [3.2.5| gives

Jim p(f™ 7" (0), 7" (an)) = A p(f™ (k) f™ (ax)) = A" p(z0, [ (ax)) = 0.

Therefore

lim f™*7"(by) = lim f™* "(ay) = zp.
k—o00 k—o00

But for every k € Ny with 7, > n, f*7"(by) € f~"(x¢). Since |f~"(xg)| < oo, we must be

able to find K € Ny such that whenever k > K| f"*"(b;) = x,. O

Lemma 3.5.3. Let (T,a) be the weak tangent of (S, p) with associated data (an,r,), and
let {zp}nen, € S(f) be the representative of (an,ry). Suppose {x, tneny, ~ {P}nen, for some
p € post(f) such that f(p) = p. Then there exists b € T, q € crit(f) U post(f), and a
sequence of natural numbers s tending to +oc such that (S*, q, A% p) converges in pointed-

Gromov-Hausdorff sense to (T,b).
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Proof. Let {bx}ren, be a sequence given by Lemma [3.5.20 Then f(by) = x, for all k € Ny.
Let 7 = {tnfncsy © [0,1] = S(f) be a path in S(f) such that 7(0) = {zu}uery and 7(1) =

{p}nen,- For each k € Ny, let n; be the largest integer such that 0 < nj < r, and

frEE(bg) = T

Let 7" be a lift of v,, by f* ™ such that v*(0) = by, and set v¥(1) = b}. Then f™(},) = p.
We verify that
sup A p(ay, b)) < sup A" p(ag, by) + sup A p(by, b)) < 0+ sup A™ diam(y*) < oo.
k€No k€No k€No k€No
Here we use Lemma 8.9 of [BMI17] for the last inequality. By Lemma [3.5.1] there exists
b € T such that a subsequence of (S?, b/, A" p) converges in pointed-Gromov-Hausdorff sense
to (T,b). For the rest of the proof, we will assume that (S?, b}, A" p) converges in pointed-

Gromov-Hausdorff sense to (7, b)

Let s be the largest possible integer such that s, < 7 and f™ (b)) € crit(f)Upost(f).
Since crit(f) U post(f) is a finite set, we may assume by taking a subsequence of {(ag,7%)}
that there exists ¢ € crit(f) Upost(f) such that f"==% (b)) = ¢ for all k£ € Ny. We claim that
limg_,o s = +00. To prove out claim, let N € N be arbitrary. By Lemma there exists
K € Nj such that for all £ > K,

(k) = N

Therefore n;, > n. We have

Frot ) = () = N (p) = p € anit(f) U post(f).

This implies that r, — N < s;. Since lim,, ., there exists K; > K such that whenever

k > K, we have s, > N. This proves our claim.

It remains to prove that (S?, ¢, A*p) subconverges to (T,b). If s, < ry for only finitely
many k € N, then 0}, = ¢ and (S?, ¢, A%p) = (S?,b,, A" p) along a subsequence so that
they have the same pointed-Gromov-Hausdorff limit (7', b). If instead s; < 7y for infinitely

many k € N, then by taking a subsequence we may assume that s, < r, for all k, and that

deg,, (f™7%) = 1.
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By Proposition [3.1.3] there exists Rg > 0 such that for all » < Ry and k € Ny, the map
frETok Bp(b;,A’(rk’S’“)r) — B,(q,r)

is a scaling map with scaling factor of A%, Fix R > 0. Since limy_., S = 400, there

exists K € Ny such that for all £k > K, we have R < A®* min{ Ry, R}, and therefore the map
ST 7% Bariy(by, R) = Basio(gq; R)
is an isometry. This induces an isometry
Br(b, R) — Bysi,(q, R).
Thus (S?, q, A**p) subconverges to (T, b). O
We are ready to prove Theorem [1.0.7]

Proof of Theorem[1.0.7, We divide the proof into two cases:
Case 1: sup,,cy, A"p(zn, post(f)) = oo.

Fix R > 0. By Lemma [3.3.4] there exists N € Ny such that for every n > N, the map
f i By(#n1, A" R) = B,(z,, A" R)

is an isometry.

Take {b;} as defined in Lemma [3.5.2 Then there exists K’ > N such that for every
k> K’ f=N(b) = xx. The map

N Barip(bi, R) — Bpv,(zy, R)
is an isometry sending by to . This induces an isometry
T BT(b, R) — BL(x,R)

where (T,b,dr) is the limit of (S?, by, A™p). This holds for all R > 0. Thus we get an
isometry

m: T — L.
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Case 2: sup,,cy, A"p(2n, post(f)) < oo.

By Lemma3.3.2] there exists a periodic sequence {p;, }nen, in S(f) such that p, € post(f)
for each n € Ny and sup, ey, A"p(Tn, Pn) < 00. Let ng be the period of {py,}nen,, and let
g = fm™. By Lemma [3.5.3] there exist b € T, gy € crit(g) U post(g) and a sequence s; of
positive integers tending to 400 such that g(qo) = po and (T, b, dr) is the weak tangent with
associated data (qo, s;). Let R > 0. By Proposition , there exists k € Ny such that the

map
g = Bary(po, R) = Baw-1,(po, R)

is an isometry and there exists an isometry
gl . BAnO(k+1)p(q, R) — BAnOkp<q, R)
such that the following diagram commutes:

BAnO(k+1)p(qO, R) — BAnOkp(qo, R)

| s

Binok,(Po, R) ——5— Bpnots-1),(po, R).
From the above commutative diagram, and by the definitions of (7, ¢) and (L, da’), we have

Br(b, R)

k43 k41
k42
N
/ / /

I BA"O(k+3)p(q07R) — BAno<k+2>p(quR) — BAno(k“)p(qo’R)

gl lg

: L) BAnO(k+2)p(p0,R> L) BAnO(k+1)p(po,R) L) BAnOkp<p0,R).

Tng(k+1)
0
7T'no(k+2) 7Tn0k

BL(pa R)

Here p = {pn}nen, € S(f) is the constant sequence of postcritical points, and 241, 2512, - - -
are isometries. The two open balls Br(b, R) and By (p, R) are inverse limit of the two inverse
systems as above, and the arrows pointing to Br(a, R) and By (p, R) are all bijective maps.

By the universal property of inverse limits, we obtain a branched covering map

TR : BT(b, R) — BL(p, R)
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The only possible locus 7|z is p, and b € T is the only point in 771(p).

Since w|R; = mg, on Bp(b,min{R;, Ry}), we get a branched covering 7 : T — L as
required in (i). The point p € L is the only possible branched locus, and 71(b) has exactly
1 point, yielding (ii). The local degree of m on 7w~1(b) is the local degree of g at qq, yielding

(iv). Taking 2 = 2,,,(k41), we get the communicative diagram in (v). O

3.6 Tiles on Leafs and Weak Tangents

In this section we will define the notion of tiles on leafs and weak tangents, using the branched

covering maps we obtained in Theorem and Theorem [1.0.7]

Let L be a leaf of S(f). We extend the inverse system (3.3.1)) as follows:

S(f)
! 0 -1 (3.6.1)
PR

s
f f>S2 /

Nooe e
’ )

where the maps ; for i € Z are the natural projection maps from S(f) to S?. By Theorem
, for every non-negative integer i, the maps m; : L — S?, restricted to L, is a branched
covering map. When i is a negative integer, then m; : L — S? is the composition of branched
covering maps, hence it is a branched covering map. Moreover, for every i € Ny, all the

branched loci of 7; are contained in post(f).

Let k € Z, and let a € L\~ }(post(f)) be a point. Suppose m_(a) is a point in the 0-tile
7 € Dy(S?). Then there exists a unique lift o of 7 by m_; such that a € o. More precisely,
since the map 7_, : L\, ' (post(f)) — S?\ post(f) is a covering map, there exists a unique
lift o’ of 7\ post(f) by m_x such that a € o', and o is the closure of ¢’. We call o a k-tile
of L, and we say that k is the level of 0. We also call ¢ a tile of L when we do not wish to

specify the level of L.

For k € Z, let Dy(L) be the collection of k-tiles of L. Let D(L) = J,c; Dr(L) be the

collection of tiles in L.

Proposition 3.6.1. Let k,l € Z, and suppose k+1 > 0. Then for all 0 € Dy(L), m(o) is a
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(k +1)-tile in S*.

Proof. Let 7 = m(c). Then f*+)(r) = f*+D(m(0)) = 7_1(0) is a O-tile. The map 7_y, :
o — m_g(0) is injective, and w_(do) = O(m_k(0)) = C is the f-invariant Jordan curve,

therefore 7 N f~%(C) = 07. We conclude that 7 is a (k + [)-tile. O

Proposition 3.6.2. For all k € Z and o € Dy(L), we have
diam(c) ~ A7,
where the implicit constant of ~ is independent of o or k.

Proof. For each k € Z, it follows from Proposition [3.2.2) and the definition of the metric d,
on L that

7Tk|L : L—>Sz.

is a A~*-lipschits map. Let o € Dy(L) be arbitrary. We have
diam(m_g(0)) < A* diam(o).
But m_x(0) is a 0-tile. This proves

diam(c) > A7F.

To prove the other inequality, let * = {z,}nen, and y = {yn}nen, be two points in o.
Let [ € Ny be a non-negative integer such that k + 1 > 0. Then m(0) is a (k + [)-tile in S,
therefore

p('xla 3/1) ~ Ai(k+l)7

where the similarity constant does not depend on [, k,x,y. For I’ > [, we have the same
inequality

p($l’7 yl’) ~ A_(k+ll)7

with the same implicit constants. For [ < I’ we have

p(zr,yr) < AV p(ay,yp) ~ AR
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Therefore
dr ({2 nengs {Un bneny) = sup A"p(x, ) ~ A",
nelNg

This completes our proof. ]

Let (T, ) be a weak tangent of S%.. We can similarly define the notion of tiles in T by
considering the branched covering map 7 : T — L, where L is a suitable leaf of S(f), and
7 is the branched covering map in Theorem . If 7€ Dy(L)isatilein L, and a € T is
a point such that 7(a) is not a posteritical point, then there exists a unique lift o of 7 into
T by 7 such that a € 0. We call o a k-tile of T if 7 is a k-tile of S?. Let Dy(T) be the
collection of k-tiles in 7" and D(T') = |J,., Dr(T') be the collection of tiles in T'.

Proposition 3.6.3. For all k € Z and T € Dy(L), we have
diam(7) ~ A7,
where the implicit constant of ~ is independent of T or k.

Proof. This follows from Proposition and Theorem [1.0.7((ii) and (v). O
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CHAPTER 4

Ahlfors Regular Conformal Dimension of Visual

Spheres and Their Weak Tangents

4.1 Introduction

The goal of this chapter is to prove the following theorem:

Theorem (Theorem|1.0.8)). Let f be an expanding Thurston map f without periodic critical
points. Let (S%, p) be a visual sphere of f. Let (T, z) be a weak tangent of (S?, p). Then

dimag(S?, p) = dimagr(T),
and dimag(S?, p) is attainable if and only if dimag (7)) is attainable.

We will offer two proofs for the if part. The second proof is shorter, but the first proof
illustrates the use of gauge functions. Most of the chapter will be devoted to the first proof.

In the last section, we discuss the second proof.
We restate Theorem to provide a different perspective:

Theorem (Theorem [1.0.8] alternative formulation). Let f be an expanding Thurston map
f without periodic critical points. Let (S?, p) be a visual sphere of f. Let (T, ) be a weak
tangent of (S%, p). For any Q > 0, (S?, p) is quasisymmetrically equivalent to a Q-Ahlfors

regular space if and only if T" is quasisymmetrically equivalent to a ()-Ahlfors regular space.

One implication of Theorem holds in greater generality.

Theorem 4.1.1. Let X be a complete doubling metric space, and let T be a weak tangent of
X. If X 1s quasisymmetrically equivalent to a Q-Ahlfors reqular space, then T is quasisym-

metrically equivalent to a Q-Ahlfors reqular space.
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See [MT10, Section 6.1] for a proof of Theorem [4.1.1] The converse of Theorem [4.1.1]

does not hold, as we will see in the next chapter.

To prove the “if” implication of Theorem [1.0.8], suppose T is quasisymmetrically equiva-
lent to a @Q-AR space T. We first prove that every weak tangent T" of a visual sphere (S?, p)
is a branched covering of (S?, p). Then we make use of the branched covering 7 : T — S?

and the quasisymmetry between T and Tp to construct a @Q-Ahlfors regular metric on S2.

Note that the above statement is independent of the choice of visual metric p since
any two visual metrics are quasisymmetrically equivalent to each other, and if X and Y
are two quasisymmetrically equivalent metric spaces, then any weak tangent Tx of X is
quasisymmetrically equivalent to some weak tangent Ty of Y. Thus we will only prove
under a particular visual metric, which we constructed in Section [3.2l This visual metric

simplifies our proofs because it gives rise to isometries instead of bilipschitz maps.

In Section [4.2] we define a notion of gauge functions on visual spheres. Gauge functions
are used to construct an new metric on a metric space so that the new metric is quasisym-
metrically equivalent to the old one. In Section 4.3 we show how we can construct a gauge
function on S? from a gauge function on a weak tangent 7' of the visual sphere. Section
contains the proof Theorem based on the material built up in Section [4.2] and Section
[4.3] We also mention an application of Theorem [1.0.8 In Section [4.5] we give an alterna-
tive proof of Theorem [1.0.8] The second proof made use of a quasisymmetric gluing result,

proven in [Hai09], and has the potential to be generalized.

4.2 Gauge Functions on Visual Spheres

In this section, we introduce a tool to construct a (Q-Ahlfors regular metric on the visual
sphere (S?, p). Our tool, Proposition [4.2.2] is a modification of Theorem 1.1 of [CP13]. See
also [KL04l, Proposition 5.1.1] and [Kig1§| for uses of gauge functions in the study of Ahlfors
regular conformal dimension. Roughly speaking, instead of constructing a new metric on S?
directly, we assign each tile a new diameter. If the new diameters of the tiles are well-selected,

then we show that there exists a metric on S? realizing those new diameters.
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Definition 4.2.1. Let Q > 1 be a constant. A function g : D(S*) — [0,00) is called a

Q-gauge function on (S?, p) if g satisfies the following conditions:

(i) There exists 0 <y < ny < 1 such that for alln € Ny, 7 € D,(S?) and 7' € D, 41(S?)

with ™ C T.

< 19,

(ii) There exists a constant Ko > 1 such that for alln € Ny and for all 7', 7 € D,(S?) with
TNT #£0,

S K07

(i) There exists K1 > 0 such that for all x,y € S?, for all T € Dyypy)(S?) such that x € T

ory € 7, and for all tile chains v = {71, T2, ..., Tu} joining  and y, we have
le(v) = _g(m) = K'g(r).
i=1

(w) There exists a constant Ko > 1 such that for all n € Ny, for all T € D,(S?), and for

all m > n, we have

Ky'g(m?< > g(r)? < Kag(r)?.

T'€Dm (S2), 7' NT#0
(v) We have g(1) # 0 for all 7 € Dy(S?).
Proposition 4.2.2. Let g : D(S?) — [0,00) be a Q-gauge function on S*. For z,y € S?,

define
q(z,y) = inf{ly(7y) : v tile chain joining = and y}.

Then q is a Q-Ahlfors regular metric on S*, and the identity map id : (S*, p) — (S?,q) is a
quasisymmetry.
The proof of Proposition [4.2.2| will be broken up into Proposition 4.2.3, Proposition 4.2.4}

and Proposition [4.2.10]

Proposition 4.2.3. The function q defined in Proposition[{.2.3 is a metric.
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Proof. We have ¢(x,z) = 0. If x # y, then condition (iii) implies that

q(w,y) = Ky g(7),
where 7 is any m(x,y)-tile containing x or y. By condition (i) and (v), we have

q(z,y) > Ki'g(r) > K min g(7) > 0. (4.2.1)

Therefore ¢ is positive definite.

The symmetry of g follows from the fact that any tile chain v = {7, 7, ..., 7,} joining x
and y corresponds to the tile chain v = {7,,, 7,1, ..., 71} joining y and z, and £,(y) = £,(7').
If x,y, 2 € S? are three points, - is tile chain joining = and y, and +' is a tile chain joining

y and z, then 7 U~/ is a tile chain joining x and z. We have

q(x,2) < Ly(yU Y = lo(v) + gg('yl)-

Infimizing over all possible choice of v and +/, we get

q(z,z) < q(z,y) + q(y, ).
Thus ¢ is a metric on S2. O

Proposition 4.2.4. The identity map id : (S?, p) — (S?,q) is a quasisymmetry.

Proof. For all z,y € S?, and all 7 € Dy,(;,,)(S?) such that x € 7, there exists 7/ € Dy (S?)

such that y € 7/ and 7 N7’ # (). The tile chain {7, 7'} joins = and y, therefore
q4(z,y) < L({7, 7)) = g(7) + 9(7') < g(7) + Kog(7). (4.2.2)
Combining and , we get
Kytg(r) < qlz,y) < (1+ Ko)g(7).

For all z,y,z € S? with = # 2, let 71 be an m(z,y)-tile and 7, be an m(z, z)-tile such that
x € 71 N Ty. Assume that 7y C 75 or 7p C 7y. If m(z,y) > m(x, z), then 7y C 75, and

< Ki(1+ KO)M

9(72)

—logng

_ o)
o7, 2)
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where A is a constant. If m(x,y) < m(x, z), then 7, C 71, and

g(m1)
9(72)

— K1<1 +K0>nl—(m(%z)—m(%y))

< Ki(1+ Ky)

—logm

oy T

2

where B is a constant. Thus the map id : (S?, p) — (S?, ¢) is an n-quasisymmetry with

—logmny

— log 7
n(t) = max{ At Teh | Bt Tosh 1

]

For each k € Ny and = € S?, let T'(z, k) be the union of all k-tiles 7 in D(S?) such that
7N 71" # 0 for another 7/ € Dy (S?) with z € 7.

Lemma 4.2.5 (Tiles are quasi-balls). There exists a constant K3 > 0 such that for all

n € Ny and 7 € D,,(S?), there exists x € T such that
B(w, Kyg(r)) € 7 C B(w, g(7))-

Proof. There exists ng € Ny such that for all for all n € Ny and 7 € D,(S?) there exists

x € 7 such that T(x,n+ng) C 7. If y & T'(x,n + ng), then

q(z,y) > K 'g(r),

where 7’ is another (n + ng)-tile such that 7 C T'(z,n + ng). By Property (ii) of the gauge

function g, we have
g9(7") = ni°g(7).
Therefore

B(z, K;'ni°g(1)) € T(z,n+ng) C 7.

Conversely, if y € 7, then {7} is a tile chain joining = and y, and we have

q(z,y) < g(7).
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This proves

B(x, K3g(r)) C 7 C B(z, (7)),

where K3 = K| 'nj°. O
Corollary 4.2.6. For ecvery 7 € D,(S*) we have
K3g(7) < diam(7) < 2¢(7),

where K3 is the constant in Lemma [4.2.5.

Lemma 4.2.7. For any x € S?, and r < min{g(?(jepo(sz)}, there exists k € N such that

B(z,r) C T(z,k) and if T is a k-tile in T'(x, k), then
%r <g(r) < Kyr
where Ky = K2Kn, .
Proof. Let k be the largest integer such that
g(t) = Kur
for all k-tile containing x. Note that for every 1-tile 7, we have

g(t) > mmin{g(7) : 7 € Do(S?)} > K17,

Therefore k > 1.

For all y € T'(x, k), m(z,y) < k — 1, therefore
q(z,y) = Klg(r) > 7

for any k-tile containing x. This implies y € B(x,r). Therefore B(x,r) C T(x, k).

IF 7 is a k-tile containing x and 7’ is another k-tile such that 7/ C T'(x, k), then

g(7") = Ky'lg(r) > Ky 'Ky
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Since k is the largest integer such that g(7) > Kjr, if 7”7 is a (k + 1)-tile such that
o C T(x,k+1), and 7 is a k-tile such that 77 C 7/, and 7 is a k-tile containing z, then

7N 7 # (), and we have
g(r") = mg(r') > mKy g(1).
Therefore

g(1) < Kony " K.

Finally, if 7" is another k-tile such that 7 C T'(z, k), then
(") < Kog(r) < KgKing 'r.

]

Lemma 4.2.8. For any z € S?, and r < min{diamq(g):TEDO(S2)}, there exists T € D(S?) such
that T C B(x,r) and

mr < diam(7) < 7.

Proof. If 7 € D(S?) contains z and diam(7) < 7, then 7 C B(z,r). Let k be the smallest
integer such that there exists 7 € Dy(S?) with 7 C B(z,r). By our assumption on r, k > 1.

Moreover, if 7/ is a (k — 1)-tile containing 7, then diam(7") > r. We have

g(1) > mg(7") > m diam(7") > myr.

Proposition 4.2.9. Let H? be the Hausdorff Q-measure of (S?,q). Then
HO(T) ~ g(7)?
for all 7 € D(S?).

Proof. For all 7 € D(S?) and for all large n, {7’ € D,,(S?),7' C 7} is a cover of 7, therefore

HO(7) < limsup Z diam(7)%

neo T'€Dn(S?),7'CT

<limsup > g(7)? < Kag(n)“.

n—t+oo T'€.Dn(S?),7'CT
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Conversely, fix € > 0 and suppose that {B(x;, )}, is an open cover of 7 such that

HO(T) > ZTZQ — .
i=1

For each i = 1,2,...,n, there exists k; € Ny such that B(z;,r;) C T(x,k;) and for each
7 € D, (S?), g(1) ~ r;. Thus
re ~ > g(7')?.
T/EDki (SQ),’T/CT(QJ,ki)
Let kmax = max{ky, ..., k,}. By condition (iv) of the function g,
O o D D (o
7' €D, (S2),7'CT(z,k;) 7' €Dgpnax (S2),7' CT (2,k;)

Therefore

n

HOT) +e > zn:mQ 2 >, g(r")?.
i=1

1=1 7/€Dy, ... (S2),7' CT(z,k;)

As {B(w;, 1)}, covers T, {T'(x, k;)}_, covers 7, and

HOUT) +e2 ) > g(™)? 2 Y. 9@z (n)?

=1 7'€Dy, . (S2),7 CT (,k;) T/ €Dlmax (S?), 7' CT

Proposition 4.2.10. The metric q defined in Proposition[4.2.3 is Q-Ahlfors regular.

min{diamg(7):7€Dy(S?)}
2

Proof. By Lemma 4.2.8, for every r < , and every x € S?, there exists

7 € D(S?) such that 7 C B(z,r) and diam(7) > n;r. Applying Proposition [4.2.9| we get

HO(B(x,7)) > HOT) ~ diam(7)? ~ 7.

where the implicit constant is independent of x and 7.

1 min{g(7):7€Do(S?)}

e , and for every x € S?, there

Conversely, by Lemma 4.2.7], for every r < ~

exists k € Ny such that B(x,r) C T(x, k), and g(7) ~ r. Applying Proposition |4.2.9, we get

HO(B(x,1)) < HUT (2, k))
< > HU

TEDL(S2),7CT (k)
S Hr e Dp(SY : 7 C T(x, k)Y max{g(r) : 7 € Dp(S?), 7 C T(x,k)}¥
<79
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Here sup, , [{T € Dy(S?) : 7 C T(x,k)}| < 0o since sup,,cy, Sup,cgz deg, (f*) < oo, and if

x € f7"(post(f)), then the number of n-tiles containing x is equal to 2deg, (f™). O

We can similarly define the notion of gauge function on a tile 7 of S?.

Definition 4.2.11. Let Q > 1 be a constant. Let T be a tile in S* and let D(1) = {7’ €
D(r) : 7 C 7}. A function g : D(1) — [0,00) is called a Q-gauge function on (7,p) if g

satisfies the following conditions:

(1) there exists 0 < my < my < 1 such that for alln € Ny, 7 € D,,(7) and 7" € Dy, 41(T) such

that 7' C T, we have

<19,

(ii) there exists a constant Ko > 1 such that for all n € Ny and for all 7', 7 € D, (1) such

that TN 7" # 0, we have

S K07

(ii) there exists K1 > 0 such that for all x,y € S?, for all T € Dyy(yy)(T) such that z € T

ory € T, and for all tile chain v = {7, T2, ..., Ta} joining  and y, we have
le(v) = g(m) = K'g(7).
i=1

(iv) there exists a constant Ky > 1 such that for all n € Ny, for all T € D, (1), and for all

m > n, we have

K'lg(m?< Y g(?)? < Kag(n)“.

7' €D (1), 7' NTH#D
(v) g(7) # 0 for all T € Dy(7)

Proposition 4.2.12. Let 7 be a tile in S*. Let g : D(1) — [0,00) be a Q-gauge function on

S?. Then (7, p) is qusisymmetrically equivalent to a Q-Ahlfors reqular metric space.

The proof for Proposition also works for Proposition
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4.3 Construction of a Gauge Function

Let T be a weak tangent of the visual sphere (S?, p), let Ty be a Q-Ahlfors regular metric
space, and let ¢ : T' — Ty be a quasisymmetry. We construct a gauge function on the set
D(S?) of tiles on the visual sphere. Let m : T'— S? be a composition of a branched covering
map in Theorem [1.0.7] and 7y restricted to an appropriate leaf. By Theorem [3.3.8, the map

7 is a branched covering map.

Fix z € C\ post(f). Let {z, }nen be an enumeration of the preimages of x under 7 in 7.
Let W be the white 0-tile in S?, and let B be the black 0-tile in S?. For each n € N, let
Jn(W) be the unique lift of W by ¢ in T that contains z,, and let j,(B) be the unique lift
of the B by ¢ in T' that contains z,,. Let

Ky = J (W) U jn(B).
k<n
let
O =#{r:7a0tileof T,7 C K,,7NIK, # 0}.

Here 0K, is the boundary of K, as a subspace in T. By enumerating x,, appropriately we

may assume there exists a strictly increasing sequence {ny}ren of natural numbers such

lim % =0.

k—o0 ng

Let 7 € (S?) be an m-tile. Then for each n € N there exists a unique m-tile ¢ € D(T) such

that o C jun(W) U jn(B) and 7(0) = 7. We write j, (1) = 0.

For every tile o in T, let
_ diam(p(0))
diam(¢(00))’

where o0y is a O-tile in 7 that contains o.

g9(o)

For all 7 € D(S?), and for all n € N, let
1/, o\ ?
ga(r) = (= (9N + -+ (9GaTN?) ) -
Since D(S?) = U,en, Pm(S?) is countable, and g,(7) € [0,1] for all n € N and 7 € D(S?),

by an Arzela-Ascoli argument there exists a subsequence {n, },en of {1} such that for
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all 7 € D(S?),
Joo(T) = lim g, (7)

r—400

exists.

Proposition 4.3.1. The function g, : D(S*) — [0, 00) wverifies all the conditions in Propo-

sition [{.2.9

Proof. Verification of condition (i): If 7 € D,,(S?) and 7 € D,,,1(S?) are two tiles
in S? such that 7 c 7, then for all n € N, j,(7?) C j,(7™M), and
diam(p(jn (7))
diam (@ (jn (7))

where A, A', ¢, ¢ are constant, and K((k) constants depending only on k. Since Ky(k) — 0 as

diam(j,, (7))
diam (g, (D))

< An (c ) < A'n (A7) < Ko(k),

k — oo, by taking a higher iterate of f if necessary, we may assume that 0 < 7, = Ky(1) < 1.

Since ¢! is also quasisymmetry, when k = 1, we have

diam(p(jn (7))
diam(p(jin (1))

As this is true for all n € N, condition (i) is verified.

>m > 0.

Verification of condition (ii): For all m € Ny, there exists K,, > 0 such that for all

7 € D,,,(S?) and n € N, we have
L(m) < g(my) < K(m),

where 0 < L(m) < K(m) are constants depending only on m. Also note that if 0,0’ € D(T')

are adjacent tiles in 7" at the same level, then

diamn(p() _ 0 ( diam(o)\ _
diam(¢p(c’)) < A% ( diam(a’)) = Ko

where K is a constant. If oy, 0( are O-tiles in 7" such that ¢ C 0y and ¢’ C o{, then

oo N oy # 0, therefore

g(o) _ diam(p(o)) diam(p(op))
() = Tam(p(e") dim(alap) =

where Ky = (K})? is a constant.
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Now, suppose 71, 72) € D,,,(S?) are two adjacent m-tiles in S?. For any n € N, at most
S§np-many m-tiles among 7, (7)), ..., 7, (7)) are not adjacent to a tile among j1(7?), ..., 7. (7).
Moreover, there exist distinct numbers aq,...,a, s, € {1,2,...,n} and distinct numbers

bi,... bus, €{1,2,...,n} such that j,, (M) N jy, (7)) £ @ for all i = 1,2,...,n — 6,. We

have
) = (Ll o o)) )
5, (K(m)\? . . ) @
< ((1 L (L(m)) ) (907ar DN+ -+ + g (s, (7 )))Q)>
and

AN
VR
VN

—_

+

| [$
>,

S
VR
==
Sl
~

Q
~
—~
K
(.
2
=
©
)
+
+
N
<
5
3
—~
\]
[N}
S~—
SN—
Q
SN—"
~
Q=

Therefore
1
(1) 1+ la (K—"‘)>Q (D)@ : mne \
gn(T) _ n=b0 \Ztm) ) 9(ar (T))% + -+ g(Ja, 5, (7))
gu(m®) T\ 4 s (L(m))Qg(jbl(T@)))Q+---+g(jbn_5n (T@))@
n—0dn, \ K(m)
1
Q\ @
o K(m)
L+ n—~on <L(m)>
< 3 K.
o [ L(m)
L+ n—~on (K m)>
By our assumption that lim, % = 0, we obtain
(1) (1)
glr) ()

G (7@ Jim 9 (T®)

Thus we have prove condition (ii).

Verification of condition (iii): Let z,y € S* and 7 € D,y (1) (S?) be a tile containing

x. By enlarging K if necessary, we may assume that p(z,y) < do, where dy > 0 is the

shortest length of any tile chain that joins opposite 0-edges in S?. Let v = {7'(1), e ,T(k)}

be a tile chain in S joining = and y, and suppose that 7 € D,,.(S?). Since ¢ is a bounded

metric, the inequality in (iii) always hold if ¢,() is large. In particular, we may assume
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that v does not join opposite edges of C. We also assume that no tile appear in v twice, for

otherwise we may remove a portion of v and form a tile chain +' such that £,(7") < £,(7).

By the same logic we employed to verify condition (ii), for any n € N, there exists
integers a; j, where ¢ =1,...,k,and j =1,...,n — ké,, such that 1 < a;; <n, a;; # a; j if

1<j<j <n-—kb, and for each j =1,2...,n — kd,,

¥ = Uars (1), Gy (T}

is a tile chain in T'. Moreover, there exists distinct integer by, bo, ..., b,_5, € {1,...,n} such

that 7/ contains a tile that intersect m, for each j =1,2,...,n — kd,.

Fix 7 € {1,2,...,n — kd,}. Let o1,...,0; be all the O-tiles in 7" whose intersection with
Ua@j o is nonempty. Since v does not join opposite sides of C, o1,...,0; must intersect at
a common point p € T. Therefore for any *,t € {1,...,¢},

1 < diam(p(oy))

— < K.
Ky~ diam(p(oy)) — °

By triangle inequality, we have

diam(go(jm,j (T(l))) +eeet diam((tp(jak,j (T(k))> > ‘¢<x> - Qp(y)|TQ7

where [p(z) — ¢(y)|r, denotes the distance between ¢(x) and ¢(y) in Ty. Since ¢ is qua-
sisymmetry, and the distance between x and y in T is proportional to diam(jy, (7)), we

have

diam(¢(Jja, , (7)) + - - + diam((ja,, (7)) 2 le@) = ¢yl
diam (¢ (jp,; (7)) — diam(p(je, (7))

where K7 is a constant independent of x,y,, 5, (7). We thus have

> K, (4.3.1)

9(Jar, (7)) +-~ e g(jal,j<7'(1))) > _% > K.
g(jbj (7—)) KO

Here K > 1is a constant independent of z,y,, jy, (7). We have

N k . k 577, m, Q n—kon - i 5
EONEGOEDD ((1 T ke, <IL<<(m))> > ( 2 o U )))Q»

i=1 i=1 7j=1
. 60 (L) \\ = ("L ane)’
> n ? N () )
> mn <1+n_k5n (K@m))) > (3 o)
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By Minkowski inequaltiy and (4.3.1]), we have

Jun

k /n—kén ] n—kén [ k Q\ @ n—kén
> ( > g(jai,j(T(i)))Q> > Y < g(jai,j(T(“))> > K, ( S (9 Gy (M)

Thus
k O\ & /n—kén 5
] ‘ - ; 0 L(m;) ) Q
By > 1 n i
e ;g”(T )= K min | (1 ke, (K(mi)) ) ( ; (9 (e, (7)) )

> KflE(n)négn(T),

where m = m(x,y) is the level of 7, and

Again using lim, 5% =0, we get

Therefore

k
ng(T(i)) > Kl_lgn(T)'
=1

Verification of condition (iv): Condition (iv) holds for all g,,. Therefore it holds for

Joo- O

4.4 The First Proof of Theorem [1.0.8

Theorem (Theorem [1.0.8). Let (S?, p) be a visual sphere of an expanding Thurston map
f with no periodic critical point. Let (T, ) be a weak tangent of (S?, p). For any Q > 0,
(S2,p) is quasisymmetrically equivalent to a Q-Ahlfors regular space if and only if T is

quasisymmetrically equivalent to a ()-Ahlfors regular space.

Proof. As mentioned in the introduction of this chapter, the “only if” implication holds in

greater generality. To prove the “if” implication, suppose 7' is quasisymmetrically equivalent
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to a )-Ahlfors regular space Tp. By Theorem [4.3.1] there exists a gauge function g on the
collection D(S?) of tiles on S? satisfying all the conditions of Theorem [4.2.2] By Theorem
4.2.2] there exists a Q-Ahlfors regular metric ¢ on S? such that the identity map id : (S?, p) —

(S?,q) is a quasisymmetry. O

The case when the Ahlfors regular conformal dimension is attainable as 2 is of particular

interest.

Theorem 4.4.1. Let (S?, p) be a visual sphere of an expanding Thurston map f with no

periodic critical point. The followings are equivalent:

(i) (S2,p) is quasisymmetrically equivalent to the standard 2-sphere.

(ii) Every weak tangent of (S*, p) is quasisymmetrically equivalent to the Euclidean plane

R2.

(iii) There exists a weak tangent of (S?,p) that is quasisymmetrically equivalent to the Fu-

clidean plane R?.

Proof. (i) = (ii): The standard 2-sphere is 2-Ahlfors regular. If (S?, p) is quasisymmetri-
cally equivalent to a 2-Ahlfors regular space, then by Theorem [1.0.8] every weak tangent T
of (S?%, p) is quasisymmetrically equivalent to a 2-Ahlfors regular space. But T is LLC. By
[Wil08], the T is quasisymmetrically equivalent to the Euclidean plane.

(i) = (iii) is clear.

(i) = (i): If a weak tangent of (S? p) is quasisymmetrically equivalent to the
Euclidean plane R?, then by Theorem [1.0.8, (S?, p) is quasisymmetrically equivalent to a
2-Ahlfors regular space. Since (S?, p) is LLC, by [BK02], (S?, p) is quasisymmetrically equiv-

alent to the standard 2-sphere. O

4.5 An Alternative Proof of Theorem [1.0.8

As promised, we offer an alternative proof of the “if” implication of Theorem [1.0.8
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Lemma 4.5.1. For every tile T € D(S?), O is a porous subset of .

Proof. Suppose T is a k-tile. Let 2 € 07 be arbitrary, and suppose A~"+D < < A" for
some n > k. Regarding 7 as a metric space, every open ball in 7 with radius r contains a
(n + k)-tile (cf [BMI17, Lemma 8.11]). This tile contains a ball B of radius cr, where ¢ > 0

is a constant independent of z,r, and n, such that B € 7 and BN ot = 0. O

Lemma 4.5.2. Let (T, x) be a weak tangent of S*. Every tile o € D(T) is quasisymmetrically

equivalent to a Q-AR metric space.

Proof. This is a consequence of Theorem [4.2.12] m

Theorem 4.5.3. [Hai0d, Proposition 4.1] Let Xy, Xo be proper metric spaces containing
at least two points. Let us assume that Yy C X1, Yo C Xy are two closed uniformly perfect
subsets, and f :Y) — Yy is a quasisymmetry. Suppose that Xy is bounded if Yy is. Suppose
further that Y1 and Ys are porous, and X1 and Xy are both Q-AR. Then there exists a metric
don X = X, UXo/(f) and a constant ¢ > 0 such that

~ o~ -~

(1) For any (x1,22) € X1 X Xy, d(z1,72) > ¢~ infyey; d(z1,y) + d(f(y), 72).
(2) For j=1,2, the mapid : X; — X is quasisymmetric.
(3) X is Q-AR.

Theorem (Theorem [1.0.9). Let (S?, p) be a visual sphere of an expanding Thurston map f
with no periodic critical point. Let (T, z) be a weak tangent of (S?, p). If T is quasisymmet-
rically equivalent to a Q-Ahlfors regular space, then (S?, p) is quasisymmetrically equivalent

to a @Q-Ahlfors regular space.

Proof. Let (T,x) be a weak tangent of S%. By Theorem [1.0.7(ii) and (v), and by how we
defined tiles on T', there exists a white tile 7 in S? that is quasisymmetrically equivalent
to a white tile in 7. By Lemma [4.5.2] 7y is quasisymmetrically equivalent to a )-Ahlfors
regular space. Since 7y is bilipschitz equivalent, therefore quasisymmetrically equivalent, to

the white O-tile W, the white O-tile W in S? is also quasisymmetrically equivalent to a Q-AR
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space. Similarly, the black 0-tile in S? is quasisymmetrically equivalent to a Q-AR space. By
Lemma W N B is porous in W as well as B. Therefore we can apply Theorem [4.5.3

to conclude that (S?, p) is quasisymmetrically to a Q-Ahlfors regular space. m
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CHAPTER 5

A Metric Sphere Not a Quasisphere but Whose Weak

Tangents are Euclidean

5.1 Introduction

In [Kinl7] Kinneberg characterized metric circles that are quasisymmetric to the standard

circle in terms of weak tangents:

Theorem 5.1.1 (Kinneberg, [Kinl7]). A doubling metric circle C is quasisymmetrically
equivalent to the standard circle S' if and only if every weak tangent of C quasisymmetrically

equivalent to the real line R based at 0.

In this paper we prove that Kinneberg’s result cannot be extended to higher dimensions:

Theorem (Proposition [1.0.10). For every n > 2, there exists a doubling, linearly locally
contractible metric space X, topologically an n-sphere, such that every weak tangent of X

is isometric to (R™,0) but X is not quasisymmetrically equivalent to the standard n-sphere.

When n = 2, one can compare our result with the following Theorem:

Theorem 5.1.2 (Bonk and Kleiner, [BK02|). Let Z be a 2-Ahlfors reqular metric space
homeomorphic to S®. Then Z is quasisymmetric to S? if and only if Z is linearly locally

contractible.

Theorem [1.0.10] shows that the conclusion of Theorem is false if we replace 2-Ahlfors
regularity with -Ahlfors regularity for Q > 2.

Our study is also related to the following theorem, proven in [GW1S]:
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Theorem 5.1.3. Let (Z,d) be a doubling metric space homeomorphic to S®. The following

are equivalent:

(1) (Z,d) is quasisymmetrically equivalent to the standard 2-sphere.

(ii) For every x € Z, there exists an open neighborhood U of x in Z such that U is qua-

sisymmetrically equivalent to ID.

Roughly speaking, Theorem says local properties promote to global properties. Since

weak tangents are local, one could ask the following question:

Question 5.1.4. Suppose (Z, d) is doubling and linearly locally connected. Are the following

two statements equivalent?

(i) Z is quasisymmetrically equivalent to the standard d-sphere S%

(ii) Every weak tangent of Z is quasisymmetrically equivalent to R?.

When Z is a doubling and linearly locally connected metric sphere, statement (i) implies

statement (ii). However, our construction shows that statement (ii) does not imply statement

(i)-

5.2 The First Construction

In this section, we will outline the construction of a doubling, linearly locally contractible
metric space X', homeomorphic to the 2-sphere, such that every weak tangent of X' is
bilipschitz equivalent to (R? 0) but X’ itself is not quasisymmetrically equivalent to the
standard 2-sphere. The construction of X’ is not enough to prove Theorem [1.0.10} because
the weak tangents of X’ are only bilipschitz equivalent to R2. However, the construction
of X’ motivates the less intuitive second construction that proves Theorem [1.0.10] Tt is

therefore helpful to understand the first construction.

Our first construction is based on the idea of discretizing von-Koch snowflakes.
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Figure 5.1: L},L3, and L3.

For each n € N, let L? be the unit interval [0,1]. Let L. be the the curve obtained by
dividing L? into 2n+1 intervals of equal length, and replacing the middle interval with three
sides of a square. Thus each L} has 2n + 3 segments of length 1/(2n + 1). For each k € Ny,
we divide each segment in L* into 2n + 1 smaller intervals of equal length and replace the
middle interval with three sides of a square to obtain L*™!. Figure shows L}, L3, and
L3. The sequence L* converges in Hausdorff sense in R? to a curve L,,, whose Hausdorff

dimension is
_ log(2n + 3)
~ log(2n +1)°

The curves L,, are called snowflake curves. It is well-known that L,, is bilipschitz equivalent

dlmH(Ln>

to the metric ([0, 1], d*"), where d is the Euclidean metric and

1

Lk is called the k-step iteration of the curve L.
We need the following two lemmas:
Lemma 5.2.1. Let o be the chordal metric on the 2-sphere S?. Let A, B C S? be two subsets

such that (A, B), the distance between A and B, is positive. Let I'(A, B) be the family of

curves joining A and B. Then

mods(T'(A, B)) < 7 (1 n min{diam(A),diam(B)})2

(A, B)
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Lemma 5.2.2. Let L be a rectifiable curve of length ¢, X = L x [0,1], A = L x {0},
B =L x{1}. Then
mody(I'(A4, B)) > (.

Motivated by these two lemmas, and the belief that 2-moduli should behave well under
quasisymmetry, we choose a sequence k, of positive integers such that

lim ¢(L™) = oo.

n—o0

Here ¢(L) denotes the length of a curve L. We choose a sequence s,, of positive real numbers

such that s, < £ — 1. Let a, = * — s, and b, = %, so that [a,,b,] is a segment in
n n+1 n n g

[n%l, %] of length s,,. For each n € N, we construct a new metric space on R by replacing the
segments [a,, b,] with the snowflake curves L*» scaled by a factor s,. Call this topologically
1-dimensional space I'. Then we form I' x [0, 1] to produce a metric space of topological
dimension 2. FlInally, we smooth the boundary of " x [0, 1] and embed the construction into

the standard 2-sphere. We call the fimal metric sphere X”.

The two lemmas above imply that X’ is not quasisymmetric to the standard 2-sphere.
We now give a heruistic argument that every weak tangent of X’ is bilipschitz equivalent to
(R?,0). The metric space X’ is obtained by modifying part of the standard 2-sphere into
[ x [0,1]. Every weak tangnet of the standard 2-sphere is isometric to (R?,0). Every weak
tangent of LF» is bilipschitz equivalent to (R,0), thus every weak tangent of LF» x [0,1] is
bilipschitz equivalent (R?,0). Finally, if we zoom in near the point 0, then the curves Lk»
becomes milder in the sense that the curves L*» become closer to a line segment. Thus every

the weak tangents of our metric space is bilipschitz equivalent to R2.

One can verify that X’ is doubling and linearly locally contractible. This completes our

discussion of the first construction.
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5.3 The Second Construction

In this section, we replace LFr with another “discretized snowflake curve”. To begin the

construction let a € (0,1) and ¢ € (0,1) and define
L(a, o)z, z € [0,

(x_c(l_a)> , x € e 1],

1—c(l—a)

o= (=)

Lemma 5.3.1. The function @, : [0, 1] — 400 is the unique function on [0, 1] that has the

Soa,C(I) =

where

following properties:

(3.1) ¢a,c(0) =0,

(3.2) pac(l) =1,

(3.3) Ya. is linear on [0, ¢,

(3.4) There exists a,b € R, with a # 0, such that p,.(z) = (ax — b)* when = € [c, 1],

(3.5) Ya. is continuous and differentiable at c.

In addition to properties (3.1) - (3.5), ¢4 has the following extra properties:
(3.6) @a.:]0,1] = [0,1] is a homeomorphism,
(3.7) @a,c is concave on [0, 1].

Lemma 5.3.2. For any a € (0,1), ¢ € (0,1], and a,b € [0, 1], we have

Pa,e(@) < Pac(@)pac(D).

Proof. For fixed o € (0,1), the function ¢ — L(«,c) is decreasing on (0,1). Therefore if

0<61§02§1,then

Paer = Payeo-
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Let

o QOa,C(ax)
@*(‘T) - Soa,c(a) :

The function ¢, satisfies conditions (1)-(5) listed above for the same «a and ¢, = ca™! € [¢, 1],

therefore ¢, = ¢, .. This implies that ¢, < ¢, (2) for all z € [0, 1]. Taking « = b, we have

Pac(ab) < 0o o(@)Pac(D).

Lemma 5.3.3. For any a € (0,1), c€ (0,1), and 0 <t <z < 1, we have
0 < Paelt) + Pae(® = 1) = Pac(r) < (2= 2%) pac(r/2).
Proof. When z < ¢, we have
Pocll) + Pacl® —1) = ac(r) =0
for all t € [0, z]. When = > 2¢ is fixed, @q.c(t) + Pac(r —t) — @ac(z) is maximized when
Poc(t) = Pl —t) =0,
which is possible only if # — ¢ =t i.e. 2t = x. Thus we have

Pae(t) FPae(T = 1) = Pa,e(T) < 200,6(2/2) = Pa ()

< 2§0a7c($/2) - 2a9004,c(*r/2) = (2 - 2a)90a,c(x/2)'
When ¢ < x < 2¢, we have

xr
Spa,C(t) + 9004,6(1' - t) < L(Oz, C)'I = E(Pa,C(C)'

By the concavity of ¢, ., we also have

(Pa,C(x) > (Pa,C(QC)‘

T 2c
Therefore
T TPa.c(20) T
(Poz,C(t) + SDOc,C(x —t) — ‘Poc,C(fE) < 290046(6) T 90 = % (290046(6) - QDa,C(ZC)) .
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But since

200.0(€) = Yac(2¢) < (2 —2%pac(c) = (2 —2%)cL(a, ¢),
we obtain
x (0% «
(pa,c(t) + ()Oa,c(x - t) - Spa,c(w) S 2_0(2 -2 )CL(O(, C) = (2 -2 )Qpa,c(x/2)'
O
For any a € (0, 1), we have
lim L(a,c) = +oo. (5.3.1)

c—0t

Let «, be an increasing sequence in (0, 1) such that lim, . a;,, = 1. By (5.3.1]), we can

choose ¢, € (0,1) such that ¢, — 0, and

lim L(ay,c,) = +o0.
n—o0

1

n_+1)7 SpL(au,, ¢,) is decreasing

Let ¢, = @a,.c,- Choose a sequence s,, such that s,, < 2 (% —

inn, and Yy spL(an, c,) < 00.

For all n € N, let a, = + —s,, and b, = L. Write I, = [ay, by, and equip I,, with the

metric §,, = S, o (s, 'd), where d is the usual Euclidean metric on I,,. Note that

(i) The distance between the two endpoints of I, is d,(an, b,) = S,.

(i) I, is rectifiable and the length of I, is ¢(1,,) = s, L(c,, ¢p)-

For x <y, define

d(x,y), if ,y € R\U> I,
on(z,y), if v,y € I,
0(z,y) = { d(z, an) + 6 (an, y), if 2 € R\U,cy L1,y € I,
On(x,by) + d(bp,y), if v €l,,y€R\UenI,
L 0n(@,b0) + d(bn, am) + din(am, y), if 2 € Ly € L.

For x > y, define é(x,y) = d(y, z). Then § is a metric on R.
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5.4 The Weak Tangents of (R, )

The goal of this section is to prove the following proposition that describes all the weak

tangents of (R, ).

Proposition 5.4.1. For all a, € R, and for all positive integers A, — +00, (R, an, A\,0)

converges in pointed Gromov-Hausdorff sense to (R,0,d).

Note that Proposition m guarantees the existence of weak tangents of (R, d). To prove

the above proposition we will use the following three lemmas:

Lemma 5.4.2. Suppose z,y,z € R are three points so that v < y < z. Suppose N = inf{n €
N:{z,y, 2z} NI, # 0} <oo. Then

0 <d(z,y)+d(y,2) — d(z,x2) < (2—=2"")min{sy,0(z,y)}

Proof. If N = +o0, then é(x,y) + d(y, z) — 0(2,x) = 0. Otherwise, let
a=sup{a, <y:neN}Vsup{b, <y:neN}Vvz
b=inf{a, >y:n e N} Ainf{b, >y:ne N} Az

We have r < a <y < b < z. By definition of §, we have

0(z,y) +0(y,2) = d(x, 2) = (6(x, a) +0(a, y)) + (3(y,0) + 5(b, 2))
— (0(x,a) 4+ 0(a,b) +d(b, 2))
=0(a,y) + d(y,b) — d(a,b).

Bu our choice of a and b, either a,y,b € I, for some n > N, or (a,b) N, e In = 0. In the

latter case, we have
(S(x?y) + 5(y7 Z) - 5(27'T) = 5(0’7 y) + 6(3/7 b) - (5(@7 b) =0.
In the former case, Lemma [5.3.3| gives

0 <d(z,y) +0(y,2) — 6(z,x) = d(a,y) + 6(y,b) — §(a,b)
< (2—=2%)0(a,b) = (2 —2Y)min{sy, d(z,y)}.

Since ay < «, < 1, we have our desired conclusion. O
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Lemma 5.4.3. Let p € R and r > 0 be arbitrary. Suppose N = inf{n € N : Bs(p,r) N I, #
0} <oo. Leta=inf{x € R:d(x,p) <r} and b =sup{x € R: §(x,p) <r}. Then the map

1/} : ([a,b],p, 5) — ([—7’, T’],O,d)

—0(p,x), xz<p
Y(z) =
i(p, x), x> p.

is an e-rough isometry, where ¢ = (2 — 2*¥)min{sy, 2r}.

Proof. Since 1) is surjective and fixes p, it remains to check that for all z,y € [a, b], we have

(d(¥(2), ¥(y)) = d(z,y)) <e.

Suppose x < y. If v <y < p, then

|d((2), ¥ (y) — 0z, y)| = [[0(p, ) — 0(p, y)| — 6(z,y)]
= [6(p,y) — (p. x) — 6(z,y)|
< (2 —2"V)min{sy,d(p, )}
= (2 —2*V)min{sy, 2r}.

The second to last inequality is a consequence of Lemma [5.4.2] If z < p <y, then

|d((2), ¥ (y) — 0z, y)| = [[6(p, ) — 0(p, y)| — 6(z,y)]
= [6(p,y) +d(p,z) — o(z,y)|
< (2—2"V)min{sy, d(z, y)}
— (2 — 2°¥)min{sy, 2r’}.

If p <z <y, then following a similar argument as when z <y < p, we get

|d((z),¢(y)) = 0(z,y)| < (2= 2°¥) min{sy, 2r}
This verifies that 1) is an e-rough isometry. O]

Lemma 5.4.4. Forr € (0,1), we have
Su[g dGH((E(S(pa T)?p7 5)7 (§d<07 T'), 07 d)) = O(T)
pe

asr — 0.
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Proof. Let p € R and r > 0 be arbitrary. Let N = inf{n € N : Bs(p,7) N1, # 0}. If
N = +o0, then § = d on Bs(p,r). We have

dau((Bs(p,7),p,9), (B4(0,7),0,d)) = 0.

If N < oo, we consider two cases:

Case 1: r > *Foy(cy). Asr — 0, N — +00, and therefore (2 — 2%¥) — 0. In this case

Lemma [5.4.3| implies

dau((Bs(p,7),p,9), (Bg(0,7),0,d)) < 2(2 —2¥)r = o(r).

Case 2: r < *Fpy(cy). In this case, § is a length metric on [a,b], and ¢ is an isometry

between two length spaces. Thus we have

dGH(<§5(pv T),p, 5)7 (Ed(oa T)v 07 d)) = 0.

]

Proof of Proposition[5.4.1. Let {a,}nen be a sequence in R and {\,},en be a sequence of

positive numbers that diverges to +00. By Lemma [5.4.4]
dGH ((E)\né(ana R)a Qn, )\n5>7 (F)\nd(oa R)7 07 )\nd))
- )\ndGH ((E(s(ana )‘r_LlR)u Qs 5)7 (Ed(()? )\glR% 0, d)) = )\nO(/\ElR)
But (By,q(0, R),0,\,d) = B4(0,R),0,d)) by the symmetry of R. As n — oo, A;'R — 0,

and we have

(B, s(an, R), an,6) — B4(0, R),0,d).

This is true for all R > 0. We conclude that (R, an, \,0) — (R, 0,d). O

5.5 Linear Local Contractibility and Assouad Dimension of (R, 0)

In this section we establish two properties of the space (R, d). These properties often appear
in the study of quasisymmetry classes of metric spheres. Both properties are discussed in

detail in [HeiO1].
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Definition 5.5.1. Let C' > 1 be a constant. A metric space is C-linearly locally contractible
if every small ball is contractible inside a ball whose radius is C' times larger. A metric space

15 linearly locally contractible if it is C-linearly locally contractible for some C' > 0.

Definition 5.5.2. Let N > 0. A metric space is N-doubling if for all R > 0, every open ball
of 2R can be covered by N balls of radius R. A metric space is doubling if it is N-doubling

for some N > 0.

Both doubling and linear local contractibility are preserved under quasisymmetry. The
Euclidean spaces R™ or S™ are doubling and linearly locally contractible. The doubling

property also ensures the existence of weak tangents.

Proposition 5.5.3. The space (R, §) is 1-linearly locally contractible.

Proof. Any open ball B in (R, ) is an open interval (a,b). Denote p the center of B (in
(R,0).) Note that the map x — §(p,x) is increasing on {x € R : x > p, and decreasing on
{z € R: z < p}. Therefore the map H(z,t) =tz + (1 — t)p is a homotopy of (a,b) to {p}
in B. This proves that (R,d) is 1-linearly locally contractible. ]

Proposition 5.5.4. The space (R, §) is doubling.

If a metric space X is doubling, then there exists § > 0 and C' > 0 such that for all
e € (0,1/2) and r > 0, any set of diameter 7 in X can be covered by at most Ce™? subsets
of diameter at most er. The function € +— Ce™# is called the covering function of X. The
Assouad dimension of X is defined to be the infimum of all £ so that a covering function of
the form € — Ce™? of X exists. Conversely, any metric space of finite Assouad dimension is

doubling. Proposition will follow from the stronger proposition below.

Lemma 5.5.5. For eachn € N, the function f, () = 26~ is a covering function of (I,,0).

Proof. Every subinterval of I,, of é-diameter r € [0, s,] has d-diameter s,p, (s, 'r). Thus
our goal is to show that for every r € [0, s,], and every ¢ € (0,1/2), every subset of I, of

d-diameter s, (s, 'r) can be covered by no more than (¢~ + 1) subintervals of I,, of
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d-diameter at most s,, (s, *er). The number of subintervals we need can be bounded from
above by

s o (s 1r -1 -1
o (f1 ) f1< sup Pn W) wp Pn ()
Sny (s, er) ye(0,1] P (€Y) yelpn(en),1] P (€Y)
We claim that the last supremum is attained when y = 1. This is equivalent to
~1 -1
son(wn_l(é?y)) < n(son_l(ay)), (5.5.1)
en(0 ' (y) wnt(y)

which follows from Lemma [£.3.2]

+ 1

Suppose ., (z9) = . When € > ¢,(¢,), we have zg > ¢,, and

ozt 2o —c(l—ay)

< Zo-

c S l—c(l—a,) ~

When 0 < € < @,(cn), we have 29 < ¢, and € = ©,(20) = Lp,(cn). As on(c)™ < c, we

have

acl o
i:@:g_o‘;l <L) 180<c)n <€_a;1

xg ce o(c) c

In any case, we can take the covering function of I,, to be

emon' 41 < 9eo

Proposition 5.5.6. The Assouad dimension of (R,d) is 1.

Proof. Let 8 > 1 be arbitrary. There exists N € N such that when n > N, a™! < 3. Let
C = max,<x{2% #} > 1. Then the function & — 2C=~#, where ¢ € (0,1/2], is a covering

function of (I,,,d) for all n € N. Thus € — 4Ce~# is a covering function of (R, §). O

5.6 The Proof of Theorem [1.0.10

Let d > 2. We will denote by dgyuuiq the Euclidean metric on R?. Let

A= (R xR, V 0% + dQE'uclid>

be the product of (R,d) and (R, dpyuia). Write p, = \/0% + d%,,.;4- Here are some facts

about Xj.
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Proposition 5.6.1. (a) Every weak tangent of X, is isometric to (R0, dgueid)-

(b) X4 is doubling and linearly locally contractible.

Proof. (a) Every weak tangent of Xy is of the form (7' x R"™! (2,0),dr X dpyeia), Where
(T, z,dr) is a weak tangent of (R, J).

(b) Recall that (R,4) is doubling (Proposition [5.5.4). X, is the product of doubling
metric spaces, hence doubling. By Proposition m, (R, 0) is C-linearly locally contractible
for some C' > 1. Let # = (1, 73) be any point in R x R4 and 7 > 0 be arbitrary. The ball
B(z,r) in X, can first be contracted to {z1} x B(zy,r) within a B(z,Cr), which can then

be contracted to the point {zq,z5}. O

Every finite segment in (R,d) is rectifiable. Let u; be a the measure on (R,J) given
by length. For d > 2, let gy be the product measure p; x A\g_1 on Xy, where \;_; is the

(d — 1)-dimensional Lebesgue measure on R4L.
In the remaining of this section we show that X, is not quasisymmetrically equivalent to
R?. To do that we consider a geometric quantity, roughly preserved under quasisymmetry,

called modulus. Given a family I' of curves in a measured metric space (X, dx, u), we say

that a Borel function p : X — [0, 00) is admissible if for all locally rectifiable v € T',

/p(x) ds > 1.

.
Let @ > 0. We define the Q-modulus of I as

modg (') = inf{/X p? dy : p admissible }.
Let £/, ' C X be two disjoint nondegenerate continua in X. Let I'g  to be the collection
of all rectifiable curves joining E and F. We write modg(F, F') = modg(I'g r).
Moduli behave nicely under quasisymmetry, as illustrated by the following theorem.
Theorem 5.6.2 (Tyson, [Tys98]). Let X, Y be locally compact, connected, Q-Ahlfors reqular

metric spaces, where QQ > 1, and let f : X — Y be a quasisymmetric homeomorphism. Then

there exists C' > 1 such that for all curve family I' C X, we have

& modg(T) < modg(f(I) < € modg(1).
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See the next section for the definition of @-Ahlfors regularity.

We can now prove that X, is not quasisymmetrically equivalent to R%. The idea is
that if the two spaces are quasisymmetrically equivalent, then I' and f(I') should have
comparable moduli for any curve family I'. We know that R? has the property that any
disjoint nondegenerate continua E, F' in R? satisfy

d(E, F)
diam(E) A diam(F)) '

mody(E, F) < ¢ ( (5.6.1)

for some non-increasing function ¢ : [0,00) — (0,00). However, Proposition below
shows that some sequence disjoint nondegenerate continua E,,, F;, in X; do not satisfy .
The only problem is that X is not d-Ahlfors regular, so we cannot apply Theorem [5.6.2
directly. In Proposition however, we will show that the inequality

modd(En, Fn) S CmOdd<f(En>7 f(Fn))

holds for some C' independent of C'.

From now on, we will denote A(E, F) = %.

Proposition 5.6.3. There exists E,, F, C X4 such that A(E,, F,) = CIC0TY 1) R

diam E, Adiam F,

and mody(E,, F,) — +o0.

Proof. Take E,, = I,, x {0} x [0,8,]" 2, F, = I,, x {s,} x [0,5,]%% Then d(E,, F,) = s,
and diam F,, = diam F}, = s,,, therefore

d(E,, F,)
A(E,, F,) = — - =1.
( ) diam F,, A diam F,,

For each n € N, and for x € I,, and (vg,...,v4-1) € [0, $,)%2, 1et Yz, v, , be the path
t— (z,t,09,...,04-1),t €0, s,].

Let

Fn - {’Vw,vg,...,’ud,l RGNS Inv (U27 e 7Ud—1) S [07 Sn]d—Z}

be the family of straight lines joining F,, and F;,, that meet F,, orthogonally. Then

mody(E,, F,,) > mody(T,).
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Let p : X4 — R>¢ be an admissible function for I',,. This means for all v, 45 vs....0,_; € I'n,

/’Y;c,vz,’ug,...,’u

[+

we have

p(t)dt = / plx,t vy, ..., vg-1)dt > 1.
0

d—1

Integrating over I,, x [0, s,]%72 and applying Fubini’s theorem, we get

/ d,u1 X /\d_g < / / p(t) dt d(,u1 X /\d_g)
Inx[0,5n]9—2 I x[0,50]972 J vz 05 05,0

d—1
= / p dpg.
I, x[0,s,]41

Applying Holder’s inequality, we get

1 1
5 d
/ pdpg < ( / dﬁbd) < / P’ d,ud>
I, x[0,8p]9"1 I, x[0,s,]4"1 I, x[0,s,]4"1

£+ % =1). Thus we have

- d
/ pdpg > ( / dud> ( / dpiy X )\d—2)
I, x[0,8p]91 I, x[0,85]9"1 I, x[0,85]4—2

= () IL)) 7 ((52)"20(1,))
— 9"U(1,).

where ¢ is the conjugate exponent of d (so

d
5

This is true for all admissible function p, therefore
mody(T',,) > s (1)
As n — oo, s, (1) = L(ay,, ¢,) — +oo. We have

mody(E,, F,,) > mody(T',) — +oc.

Proposition 5.6.4. X, is not quasisymmetrically equivalent to any subset of R.
Proof. For each n € N, and for x € I,,, (v, ..., v4-1) € [0, 5,)97%}, let Vs, v, , be the path
s (l‘,t,vg, s 7Ud—1) 7t € [Ovsn]-
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Let

Ty = {Veswgs 2 T € Ly, (va, ..., va1) € [0,8,] %}

be the family of straight lines joining F, and F),, that meet FE, orthogonally. Suppose
f: Xy — R?is an n-quasisymmetric embedding. By abuse of notation, we also write v for
the image of the path v. For a path family I', define ['* = U'yEF 7, and define diam(I") =
inf{diam~y : vy € I'}.

Choose E, and F, as in Proposition [5.6.3, We know from diam(E,) A diam(F},) =

d(E,, F,) that
d(f(En), f(F))
diam(f(E,)) A diam(f(F},))

where the implicit constant for ~ depends only on 7. For the same reason, there exists

~ 1,

a > 1, depending only on «, § > 1, depending only on 7, so that f(I',)* C B, for a ball B,
with diameter r, < ad(FE,, F,) < fdiam(f(T)).

For each n € N, we can cover I'* by squares {R; }ics, of diameter s,¢,(c,) so that their
sides are either parallel to the paths in I" or orthogonal to the paths in I'. We can choose

{R;} so that these R;’s don’t overlap and their union is precisely I'*. For each rectifiable
path v, denote by £(v) its length. Let

pn = (diam f(T)) ™"

be a function on Xy. For all v € T,
We have

diam(f(R;))

/pn(s) ds = (diam f(T',,)) "

v ic€l,

For each i, f~1(B,)NR;Ny = R;Nvy. When R;N~y # 0, {(R;N7y) = diam(R;). As {R;}ier,

covers I'*, we have

/pn(s) ds > (diam f(I',)) ! Z diam(f(R;)) > (diam f(I',)) "' diam(f(v)) > 1.

v ieln,Riﬁ'y#@
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This means p,, is admissible for I',,. We have

4 diam(f(R;)) ¢ 1
mody I, < /pn dpg = (diam f(T' Z ( ) pa(f~ (Bn) N R;)

dlam

diam(R

— (diam f(I Z (dlam Ry) >dﬂd(Ri)

diam(R

— (diam (T Z (dlam )>ddiam(Ri)d.

For the last equality, we make use of the fact that R; are chosen so small that py(R;) =
diam(R;)?. We get

mody T, < (diam f(T,)) ™ Z (diam( f )4 < (diam f(T,)) "¢ Z Aa(f

leln lEIn
Here we use the fact that the Lebesgue A\; on R? is d-Ahlfors regular and that f is a

quasisymmetric. Since {f(R;)}nen are disjoint subsets of B,,, we have
mody 'y, S (diamf(rn))idkd(Bn) S L

where all the implicit constants for < depends only on 1. But this is a contradiction to

Proposition |5.6.3] O

From Proposition and Proposition [5.6.4, X, is homeomorphic to R¢, doubling and
linearly locally connected, it is not quasisymmetric to R?. Our proof shows that the any ball

in X, centered at 0 cannot be quasisymmetrically embedded into R€.

We conclude this section with a proof of Theorem [1.0.10}

Proof of Theorem [1.0.10. The d-dimensional unit ball B(0, 1) in R?, equipped with the met-

x Yy
P (1—|zw 1_—\y|>
1+p <1f|x|’ 1_—y\y|)

The completion of the space (B(0, 1), p) is B(0, 1), and the metric on the boundary is same as

ric

plr,y) =

the Euclidean metric. gluing the space B(0, 1) with another hemisphere to form a topological
d-sphere. This d-sphere is doubling, locally linearly contractible, and every weak tangent is

isometric to R?, but it cannot be a quasisphere. O
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5.7 Ahlfors Regularity

Let @ > 0. A measured metric space (X, d, u1) is said to be Q-Ahlfors regular if for all z € X

and r < diam X, we have

w(B(x,r)) ~ 9.

Ahlfors regularity and Assouad dimension are related concepts. We record a result from

[Hei01]:

Theorem 5.7.1. [Hei(1, Theorem 14.6] Let X be a complete, connected metric space of finite
Assouad dimension 8. Then for each (Q > [, there exists a quasisymmetric homeomorphism

of X onto a closed Q-Ahlfors reqular subset of some RY.

With these facts our example gives:

Theorem 5.7.2. For every Q > 2, there exists a Q-Ahlfors regular and linearly locally
contractible metric space X that is topologically a 2-sphere such that every weak tangent is

uniformly quasisymmetric to R? but X is not quasisymmetric to the standard 2-sphere.

Proof. Let ) > 2. By Proposition the Assouad dimension of X, is 2. Proposition
says that there exist a distortion function 7 : [0,00) — [0, 00) and an n-quasisymmetry

v : Xy — X', where X’ is a closed Q-Ahlfors regular subset of RY. By Proposition
and Proposition |5.6.1(b), X’ is not quasisymmetric to the standard 2-sphere, but every weak

tangent of X’ is n-quasisymmetric to (R?,0). O
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CHAPTER 6

Porous Subsets of Visual Spheres

6.1 Introduction

In this chapter, we study the f-invariant porous subsets of the visual sphere. We ask whether
there are porous subset that are large in some sense. This question turns out to be related

to the topological data of f that can be described by multicurves.

A simple closed curve v in S?\ post(f) is peripheral if one of the components of S?\~y
contains at most one point in post(f), and non-peripheral otherwise. A multicurve is a
finite, disjoint, non-isotopic collection of non-peripheral simple closed curves in S?\ post(f).
A multicurve T' is said to be f-stable if, for all v € ', each non-peripheral simple closed

curve in f~!(v) is isotopic relative post(f) to a curve in T.

Let I' = {71,..., 7} be an f-stable multicurve I'. For each 4,5 € {1,...,n}, let 7; ;. be

the components of f~*(;) isotopic to v; in S*\ post(f), and let d; ;, > 0 be the degree of

the restriction map f  Yija — V- Let p > 0 be arbitrary. Define

Yi,j, o
M(f,T,p):RY = R"

by
M(f,Tp) () = DD di o

el a

Since M (f,T', p) is represented by a non-negative square matrix, the Perron-Frobenius The-
orem implies that the matrix M(f,T',p) has a real non-negative eigenvalue A(M(f,T',p))

equal to its spectral radius.

When p = 2, the matrix fr is usually referred to as the Thurston matrix associated to f

and I". Let A(T",p) be the largest eigenvalue of M (f,p,I"). Thurston gave a characterization
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of the rationality of f in terms of these matrices if f has hyperbolic orbifold. An orbifold of
f can be described by a function a : S* — N U {oo}, such that «(z) is the lowest common
divisor of {deg, (f") : n € N, f*(z') = z}. Notice that a(z) = 1 for every z € S?\ post(f).

The Thurston map f is said to have hyperbolic orbifold if

z€post(f)

Theorem 6.1.1 (Thurston’s obstruction). A Thurston map f with hyperbolic orbifold is not
equivalent to a rational map if and only if there exists an f-stable family I' of non-isotopic

non-peripheral simple closed curves such that A(I',2) greater than or equal to 1.

The exact statement and the proof are contained in [DH93] and [Pil01].

A multicurve I is called irreducible if there exists an iterate f" of f such that every entry

of M(f",T',p) is positive. If I contains an irreducible multicurve, then the function
p—= AL, p)

is strictly decreasing on [1,00) ([HP08, Lemma A2]), and there exists unique Q(I') > 1 such
that A(I',Q(I')) = 1. If " does not contain any irreducible multicurve, we define Q(I") = 0.
Define

Q(f) = sup{Q(T) : I multicurve}.

When f is an expanding Thurston map without periodic critical points, we have the

following inequality.
Theorem 6.1.2 (Haissinski-Pilgrim, [HP0S]).

Q(f) < dimar(f)-

We are interested in the porous subsets of visual spheres.

Definition 6.1.3. Let (X, d) be a metric space, and K a compact subset of X. Leta € (0,1).
We say that K is a-porous in X if for all x € K, and for every 0 < r < diamy(X), there
exists y € Bx(x,r) such that B(y,ar) N K = 0. We say that K is porous if it is a-porous
for some a € (0,1). A compact subset K of a visual sphere of f is said to be f-invariant if

f(K) C K.
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We would like to know when f exists a “thick” family of curves.

Definition 6.1.4. An f-stable multicurve I is said to be p-thick if either one of the following

conditions holds:

1. A(T,p) > 1; or

2. N(T,p) =1 and there exists v € T such that f~'(~) contains a peripheral component.

The existence of a p-thick f-stable multicurve is related to the existence of a curve
family having large discrete p-modulus. For each n € N, let GG,, be the graph with vertex
set V,, = D,(S?), and join two tiles 7,7" € D,, by an edge if and only if 7N 7" # 0. Given a
curve family I" on a graph G,, = (V,,, E,,), we say that p : V,, — [0, 00) is I'-admissible if, for

all v € I', we have

> o>t

TEVp:TNy#D

Given p > 0, we define
mod,(I", A™") = inf{ Z p(T)? : p is I'-admissible}.
TEVn

Definition 6.1.5. A family T of curves in (S?, p) is said to be p-thick if

f di
ik diam(y) > 0

and

lim sup mod,,(I'; A™") > 0.

n—oo
Theorem 6.1.6. Let f be an expanding Thurston map without periodic critical points, and
let p > 2. If there exists a p-thick f-stable multicurve, then there exists a curve family I’

supported on an f-invariant porous subset such that I' is p-thick.

When p = 2, we give an example (Example|6.9.3)) to show that if f does not have 2-thick
f-stable multicurve, then every curve family I supported on a f-invariant porous subset is

not 2-thick.
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6.2 Discrete Moduli

Discrete moduli, also called combinatorial moduli, are used to study metric spaces that do
not have many locally rectifiable curves. They are particularly useful in the study of Ahlfors
regular conformal dimension. See [KLO04], [HPOg|, and [CP13]. In this section we define

discrete moduli of metric spaces and prove a few basic properties about discrete moduli.

Let G = (V, E) be a connected graph. A sequence of points v = {v1, v, ...,v,} is called
a curve in G if v; neighbors v; 1 foralli =1,2,...,n—1. A curve v in G is simple closed if
vy, neighbors v; and v;’s are distinct. For any function p : V' — [0, 00), we define the p-length

of v to be

L) = 7).

vey

Note that v may not be simple, but each vertex appears at most once in the above sum. Let
I' be a family of curves in V. We say that p is I"-admissible if ¢,(y) > 1 for all v € I'. Let
p > 0. Define the p-modulus of I in G by
mod, (T, G) = inf{) _ p(v)"},
p
veV

where the infimum is taken over all I'-admissible function p.

We list some basic properties of modulus. These propositions are related to the Serial

Law and Parallel Law from the theory of electrical networks, hence their names.

Proposition 6.2.1 (The Parallel Law). Let G = (V, E) be a connected graph, and let T be

a family of disjoint curves. Then

mod,(T',G) =Y " mod, ({7}, G).
yel
Proof. 1t p: V — [0, 00) is a I'-admissible function, then for each v € I', the function
p(v), if v ey

py(v) =
0, otherwise
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is {7 }admissible. We have

D p@P =3 pe) =) mod,({1},G).

veV vl vel’ vyel

Infimizing over all possible choice of p we get

mod, (T, G) > Y ~mod,({7},G).

vyel

Conversely, for each v € T', let p, be an admissible function for {7} on G. Then the function

, py(v), ifv €y
py(v) =
0, otherwise

is {7}-admissible. Let p =3 . p.. Then p is I-admissible, and we have

mod, (I G) < 37 p(0) = 3 s (0 < 303 py 0y

veV yel’ vey yel' vey

Infimizing over all possible choice of p,, we get

mod,,(I", G) < Z mod, ({7}, G).

yel

]

We can view G as a topological space on the underlying set V' U E, such that each edge

in £ is homeomorphic to the unit interval [0, 1] joining two vertices in V.

Proposition 6.2.2 (The Serial Law). Let G = (V, E), G = (V,E) be two connected graphs
and let 7 : G — G be a covering map such that (V) =V and 7(V) = V. Let T = {y} be
a family of closed curves in G and [ bea family of closed curves in G such that the map ©

lifts each curve v in T to a curve v in I". Let us further assume that there exists an integer

d € Ny such that for all v € T, U(y') = dl(y). Then

mod, (I, G) < d*? mod, (T, G).

Proof. Given a I-admissible function p on G, we define j: V — [0,00) by the formula
p= }1,0 om. Then p is T-admissible on é’, and we have

S =3 pw) = d Y plw)

veV weV weV
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Infimizing over all possible choices of p, we get the inequality
mod, (I, G) < d*~? mod, (T, G).

]

Following |[CP13], we describe the notion of hyperbolic filling of a doubling and uniformly
perfect metric space. Similar constructions can be found in [BP03], [Linl6], and [BS1§],
among other works. We do not need the full construction of a hyperbolic filling, but we
describe the construction in full regardless, as we believe this gives the reader the right

perspective.

Let (X,d) be a doubling and uniformly compact metric space. Let V be a cover of
(X, d). Suppose that there exists € > 0 such each 7 € V' contains a point z, € X such that
B(z,,e) C 7, and if 7,7" € V are two different sets, then B(z,,e) N B(z,,e) = 0. We call V

a e-thick e-separated cover of (X, d).

Let V' be a e-thick e-separated cover of (X, d). We construct a graph G, called the graph

of V', whose vertex set is V', and 7,7 € V are connected by an edge if and only if 7 # 7/ and

TN #0.

Let (X, d) be a metric space, let V' be a cover of X, and let G = (V, E) be a connected
graph. For each curve v : [0,1] — X, we say that the curve v = {vy,...,v,} is a projection
of v onto G if there exists a increasing onto map ¢ : [0,1] — {1,2,...,n} such that y(¢)) €
7 (p(t)). Given a family I' of curves in X, let I'¢ be the collection of projections of curves

in I onto GG, and call I'¢; the projection of I' onto G. For any p > 0, we write
mod, (', G) = mod,(I'¢, G).

Proposition 6.2.3. Let V, V' be two e-thick e-separated covers of (X,d). Let G,G" be the

graphs of V. and V' respectively. Assume
sup {w eV :wnov#0} =C < oo,
veV’

and

sup [{v e V':wnuv #£ 0} = Cy < .
weV
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Then there exists C' > 1, depending only on Cy and Cs, such that for all curve family T in
(X,d), and for any p > 1, we have

C ™ 'mod,(T',G) < mod,(I',G') < Cmod,(T,G).

Proof. Let p be an admissible function on G,,. Define p: V' — [0, 00) by

)= > pw).

weV :wNv#£)
Let v/ € T'¢: be a curve. Then 4 is a projection of some ¥ € I'. Let v € I'g be a
projection of ¥ onto G,,. Then for every w € ~, there exists v € 4/ such that wNwv N~y # (.
Thus

Yo=Y swz Y pw)=L

veV iy Nu#D vey weV iwNv#£D wEV :wNy#)

This shows that p is admissible in G.

Using the definitions of C; and C5, we get

doawyr=> 1 >, elw)

veV veV \weV:wnu#)
<>ty pw)y
veV weV wNv#£)

=y Y pw)?

weV veV iwNv#)

<crt Z Cip(w)?

weV

=Gy plwy

weV
Thus
mod,(I'g, G) < C,CY! Z p(w)?.

weV
The above inequality holds for every function p that is admissible for I';, on G,,. We conclude

that
mOdp(Fg, G) < C Il’lOdp<Fg, G)

where C'= C1C% ~!. The other symmetry is obtained by switching the role of G and G'. O
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We say that V' is an (e,¢’)-discretization of (X, d) if V' is a e-thick e-separated cover of

(X,d), and there exists ¢’ > € such that for each 7 € V, 7 C B(z,, ).

Fixa € (0,1) and A > 1, and suppose that for each n € N, V, is a (a”, Aa™)-discretization
of (X,d). Let V =[],y Va be the disjoint union of the sets V},. Let G whose vertex set is
V such that 7,7 € V are joined by an edge when 7N 7" # () and 7 € V,, and 7/ € V,, for
some m,n € N with |m —n| < 1. The graph G is called a hyperbolic filling of (X,d) with

parameter a, \.

Let G, be the graph of V,,. Let p > 0. For each 7 C V,,, and k > 1, let B be a ball
with radius Aa” such that 7 € B, and let I'; .41 be the set of paths in G, that connect an
element in {7 € V.4 : 7N B # (0} and an element in {7 € V4 : 7N (X\2B) # 0}. Here
AB is the ball with the same center as B and A times the radius of B. Define

M, = su‘r/) mod, (L7 ik, Grtk)-
TE

Let
Qn = inf{p € (0,00) : liminf M, = 0}.

Theorem 6.2.4. [CP13, Theorem 1.2] Let (X,d) be a doubling, uniformly perfect, compact

metric space. Then the dimagr(X) = Q.

Note that by Proposition [6.2.3] whether ()5 = 0 or not does not depend on the choice
of the hyperbolic filling V.

We are interested in the case that (X, d) is a visual sphere of an expanding Thurston map
f with no periodic critical point. Given such f, Yin[Yinll] constructed an object called the
tile graph of f. In that construction, the set V,, is taken to be the collection D,, of tiles at
level n. The graphs G,, are constructed by joining tiles 7,7’ € D,, such that 7N 7" # 0. We

call G,, the level n tile graph.

Theorem 6.2.5. [BM17, Lemma 8.11] Let (S?, p) be the visual sphere constructed in Chapter
[3. Then there exists a constant k > 1 such that for every n-tile 7 € D, there exists a point
p € T such that

B,(p, K_lA_") C 7 C By(p,kA™").
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Very similar mathematical objects were considered by Haissinsky and Pilgrim’s [HP09,
Chapter 2], and similar result as the above one is obtained. In view of Proposition and

Theorem [6.2.5] for any curve family I' in the visual sphere, and any p > 1, we write

mod,(I', A™") = mod, (I, G,)

6.3 Symbolic Dynamics on Curves

Let Ty be a f-stable multicurve in S?\ post(f). For all n > 1, let T',, be the union of all

non-peripheral components of f~"(v) over all v € I'.

We view curves in I, as functions from S! onto S?\ post(f). To do that, for each v € Ty,
we choose a parameterization of v, which we also denote as 7. Thus v can either be a
injective function from S* to S? post(f) or the image of the function. Now suppose v; € I'y is
a component in f~!(y). Then there exists unique integer d; € Z\{0} and a parameterization

7v; : St — post(f) such that the following diagram commutes:

SH\f~ (post(f))

/ I

St o S — S§?\ post(f).

Thus each ~; can also be regarded as a function v; : S' — post(f).

Let A' ={1,2,...,|I'1]}. For each j € A', v; is isotopic to v for exactly one v € T'g. Let
H; :S' x [0,1] — S\ post(f)
be an isotopy such that H;(-,0) = v; and H;(-,1) = 7. Suppose v; € I'; is a component in
f7Y(7). Then there exists a unique isotopy
Hi 8 x [0,1] - S2\f~ (post (f))
such that H;;(-,1) =+, and

S*\f~ (post(f))

St x [O, 1] W St x [O, 1] TJ) 82\pOSt(f)
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Let ~,;;(-) = Hi;(+,0).

Let iy,... i, € {1,2,...|'1|}. We say that i1is...1i, is an admissible word of length n for
(f, L) if for each k =1,2,...,k —1, v, €I is isotopic to a component of the preimage of
Yirs, € I'1 or the inverse of «;, .. Let A" be the collection of all admissible words of length
n for (f,Ty). We inductively define the parameterizations v;, _;, : S* — S?\ post(f) and the
isotopies H;, ;. : S' x [0,1] = S*\ post(f) in the following way.

Let 4 ...7, be an admissible word for (f,Ty). Suppose 7i,. i, : S' — S?\ post(f) and

i 0 ST x [0,1] x S?\ post(f) are defined. Then there exists unique H;, ; such that the

1.%n

following diagram commutes:

S*\f~ (post(f))

St x [0,1] T S' x [0, 1] ——— S*\ post(f).

ig..in
Now we set v;, . (1) = H;, i, (+,0).

The following estimate follows from [BM17, Lemma 8.9].

Lemma 6.3.1. There exists a constant C > 0 such that for alln € N, iy...4,41 € A",

and (z,t) € S* x [0, 1], we have

| Hiy i, (x,t) — H; z,t)| < CA™™

1~in+1(

Let i1,19,... € {1,...,|T'1|} be a sequence of letters. We say that i3y ... is an admissible
infinte word for (f,Ty) if and only if 4y ...i, € A" for all n € N. Let A> be the collection
of admissible infinte words for (f,T'y). As a corollary of Lemma we have the following

proposition:

Proposition 6.3.2. Let i1i5... € A® be an admissible infinite word for (f,Ty). Then the
sequence Yiiy..in - St — S? converges uniformly as a sequence of functions to a function

St — §?, which we denote by i, i,....

Proposition allows us to make sense of ~, for an admissible infinite word w for

(f,To). Let ' = {7 : w € A%},
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Proposition 6.3.3.

inf di :
nf diam(y) > 0

Proof. First note that there exists ¢ > 0 such that every simple closed curve «y in S?\ post(f)

that is isotopic to a curve in I'y satisfies
diam,(y) > c.

Thus for any n € N,

inf di > c.
nf iam(y) > ¢

Taking the Hausdorff limit, we get

inf di > 0.
mf iam(y) > ¢ >

6.4 Invariant Porous Subsets of Visual Spheres

In this section, we gave a few basic facts about existence and behavior of invariant porous

subsets of visual spheres.

Lemma 6.4.1. A compact subset K of S* is f-invariant if and only if K = S*\ U,—, [ "(S*\K).
Proof. Since f(K) C K, we have K C f~K) C f~2(K) C - -, therefore for all n € N,
s\ [ (@) = () £ = K
n=0 n=0
Conversely, if K =S*\ |7, [ (S*\K) =2, [ "(K), then

FE) = () FE) c (N FFE) (N FE) () F(E) =K

Lemma 6.4.2. An f-invariant subset K of the visual sphere is either S* or porous.
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Proof. Suppose K # S?. Then there exists an open ball B = B(xg, ¢) such that BN K # 0.
We may even assume, by choosing a smaller open ball if necessary, that B does not intersect
that f-invariant Jordan curve C. Without loss of generality, we may assume that B is in the

white 0-tile.

Let x € K be a point. Then there exists ng € Ny such that for all n € Ny, the open
ball B(x,r) contains a white (n + ng)-tile 7 such that ¢ 7. By Theorem 3.2.2) f~"(B) N7

contains a ball of radius A™"¢. Thus K is porous. O

Lemma 6.4.3. If K is an f™-invariant compact porous subset, then f(K) is compact, f"-

mvariant, and porous.

Proof. Since f is continuous, f(K) is compact. The set K is f"-invariant since

MK = (1K) C f(K).
Since f*(K) C K and K # S?, we have " !(f(K)) = f"(K) # S*. Therefore f(K) # S*.
By Lemma[6.4.2] f(K) is porous. O

Lemma 6.4.4. Let n € N. Every f"-invariant subset of the visual sphere (S?, p) of f is

contained in a f-invariant porous subset of the visual sphere.

Proof. Let K be a f"-invariant porous subset of the visual sphere. By Lemma [6.4.3]
f(K), fAK),..., f"1(K) are compact and porous. We claim that

K =Knf(K)n...nf"YK)
is compact, f-invariant and porous.

For each r € N, the map f7 is continuous, therefore f"(K) is compact. Union of compact
subsets are compact, thus K’ = K N f(K)N...N f*1(K) is compact. Using the fact that
fM(K) C K, we have

FK') = f(K A F(K) .0 (K))
CfE)NFAK)N...Nnf(K)
CHK)NfAK)N...NK
=K'
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Thus K’ is f-invariant.

Suppose K, f(K), fA(K),..., [*1(K) are a-porous for some a € (0,1). Suppose z € K,
and let 0 < r < diam,(S?). If B(z,7/2)N K = 0, then the ball B(z,ar/2) is a ball in B(z, )
and B(z,ar/2) N K = (). If instead B(x,r/2) N K # (), then for any vy, € B(z,7/2) N K,
there by porosity of K there exists a ball B(xy,ar/2) C B(y:,7/2) C B(z,r) such that
B(z1,ar/2) N K = (. In any case, we can find x; € B(z,r) such that B(xq,ar/2) C B(x,r)
and B(zy,ar/2)NK # (. Similarly, there exists xo € B(x1,ar/2) such that B(x, (a/2)%*r) C
B(x1,ar/2) and B(xy,(a/2)*r) N f(K) = 0. By induction, there exists x, € B(z,r) such
that B(z,, (a/2)"r) C B(z,r) and B(z,, (a/2)"r)NK N f(K)N---N f"YK)=0. Thus K’
is (a/2)"-porous. O

Recall from Section that A% is the space of all admissible words of length k, and A
is the space of all admissible infinite words. We define a shift map on A*> and study subsets

of A* that are invariant under the shift map.

Lemma 6.4.5. Letn > 2, and letiy, ... i, € {1,...,|To|}. Ifiria...ix € A¥, theniy... iy €
AR

Proof. 1fiyiy...i, € A¥ then for each k = 1,2,...,k—1, ~;, € I'; is isotopic to a component
of the preimage of ;. , € I'y or the inverse of 7;,,. In particular, v;, € I'y is isotopic to a
component of the preimage of ;, ., € I'y or the inverse of ~;, ,, for each k =2,3,...,k — 1.

Therefore is .. .4, € AF L. O

Here is a corollary of Lemma [6.4.5]

Corollary 6.4.6. Let 7:1, ig, RS {1, ceey |P0|} ]flllglg ... € AOO, then igig .. €A™,

Let o : A® — A™ be the map o(iyigis...) = igiz.... We call o the shift map on A>.

We say that £ C A* is o-invariant if o(F) C E.

Lemma 6.4.7. For anyw € E, (1) C Yow)-
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Proof. Write w = iyigi3.... For each n € N, we have

f(%lzn) = Yia... in

as sets. Taking Hausdorff limits on both sides, and noting that f is continuous, we have the

desired conclusion. O

For any subset E C A®, let 'y = {1, € ' :w € £}, and let Kp = UweE Y-

Lemma 6.4.8. If E C A* is o-invariant, then Kg is f-invariant.

Proof.

f(Kp)=f (U %) = U rw) = U e < U e

wekE weE weFE weklk

6.5 Constructing the Porous Subsets

If A is a square matrix with positive entries, then by the Perron-Frobenius theorem, there
exists A > 0 such that X is an eigenvalue of A, that the eigenspace of A with eigenvalue A
is 1-dimensional, and that A is the spectral radius of A. We let p(A) = A and call p(A) the

Perron-Frobenius root of A.

The proof of the following lemma comes from [js2].

Lemma 6.5.1. Let n > 1 be an integer. Let A, B be two n X n matrices with positive

entries. Let v be an eigenvector of A with eigenvalue p(A). Let k(A) = ||[v]| > 0. Then
p(A) = p(B)| < £(A) max|A;; — Byl

Proof. Let B* be the transpose of B, and let w be an eigenvector of B with eigenvalue p(B).
Let (-, -) denote the usual dot product on R™. Then

(A= B)v,w) = (Av,w) — (v, B'w) = (p(A) = p(B))(v, w).
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Note that

and
(A= B)o,w) < r(A) max|Ay; — Bigl [wll; -
Note that |Jwl||, > 0. Therefore
p(A) = p(B)| < K(A)[Ai; — Bijl.
0

Let p be a positive number such that p > 2. Assume I'y is a p-thick f-invariant multicurve.

Let us rewrite the matrix M (f, g, p), as follows. Define functions

so that for any n € N and w € A", ~, € ', is a component of the preimage of p(w) € 'y

under f", 7, is isotopic to h(w) € Ty, and deg(f|,,) = d(w). Then For each v € Iy, we have

M(f,To,p)(7) = D d(i)"Ph(i).
1€AL:p(i)=y
One can verify that for all n > 1,

M(f,Top)"(m) = Y dw)7"hw) = (f"rop-

wEA™:p(w)=y

Recall that A(Tg, p) is the Perron-Frobenius root of M(f, 'y, p), which is also the spectral
radius of M(f,To,p).
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Lemma 6.5.2. Let Ty be an irreducible f-stable multicurve. Let M = M(f,Ty,p), and
A= AM(f,To,p). If X\ > 1, then there exists N € N and wy € AN such that the matriz
defined by

Moo (v) = > )R,
weAM\{uobip(i)=1

has positive entries and p(M') > 1.

Proof. Let v be an eigenvector of M with eigenvalue A. Then for each n € N, v is an
eigenvector of M™ with eigenvalue \". Since I'y is irreducible, there exists N’ € N such
that for every n > N’, every entry of M™ is positive. Suppose w = iyiy...7, € A". Then
d(w) = d(iy)d(ia) . .. d(i,) > 2™ Therefore for all wy € A", if we set

Mo= > dw) "h() = (Mo

weA™\{wo }:p(w)=7

then every entry of M’ is positive, and the absolute value of any entry in M™— M, is bounded

from above by 2= By Lemma [6.5.1 we have
[p(M™) = p(Myy)| < r(M)207P",

Therefore

p(M,,) > A" — k(M)20-Pn,
Since A > 1 and 1 — p < 0, by choosing sufficiently large N > N’  we nave
p(M,,) > 1

for arbitrary choice of w in AV, O

6.6 Modulus Estimates

Throughout this section, we assume that I'y is an irreducible p-thick curve. We also assume
either one of the following:

Case 1: There exists v € I’y with a peripheral component in f~!(v). In this case, we let
E. = A*, and for every n € N, we let E,, = A*°. We also let

M = M(fa FOap)'
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Case 2: M(f,To,p) > 1, and there exists iy € A! such that every entry of the matrix

M= > d(i)""h).

€A\ {ip}

is positive, and p(M) > 1. In this case, we let E., be the set of admissible infinite words for
(f,To) that onto ig, and for every n € N, we let E,, be the set of admissible finite words of
length n for (f,Ty) that do not contain the letter 1.
In both cases, for every n € N, let I'}, = {7y, : w € E,}, and let K,, = U ,cp V0. Also let
I =Tg_,and let K, = Kg,.

To complete proof, we replace I'y by a slightly easier choice to work with, and we choose

an integer k € N such that G,, is a sufficiently fine discretization for each n > k.

Lemma 6.6.1. There exists a collection I'§ of f-stable multicurves and a bijection j : I'j —
Lo such that for all v € T, j(v) and v are isotopic in S*\ post(f), and there exists k € N
such that for all n > k, every simple closed curve in the subset UTEDn(SQ)ﬁm#@T of S? is

either isotopic in S*\ post(f) to v or null-isotopic in S*\ post(f), and for every v,~ € T

with v # 7', we have U, cp, ©2) yorz0 T 0 Urep, ) 0nrzn T = 0.

Proof. Since curves in T' are disjoint and avoid post(f), there exists k € Ny such that if

~v,v" € I'y are distinct, then for all n > k, we have

U TN T =10,

TEDR (S?) yNT#0 TEDR(S?), v/ NT#0

and

post(f) N U T =10.

TEDL(S?),yNT#£D

Each ~ can be replaced by a simple closed curve 7 in f=%(C) such that
v C U T.
T7ED(S?),yNT#D
such that 7 is isotopic to 7. This gives us the f-stable multicurve I'j. Since ¥ C f~*(C), for

every large n, every simple closed curve in the subset UTGDR(SQMHT 4T of S? is either isotopic

in S?\ post(f) to « or null-isotopic in S?\ post(f). O
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For the rest of this section, we will assume that I'y = ['; and k be the positive integer as

in Lemma [6.6.11

Lemma 6.6.2. There exists a vector w € RITl with positive entries such that for alln € Ny,

we have

mod, (I, A=) ~ o' (M (f,T,p))" w.

where v = (1,1,...,1)" is the column vector of |To|-entries, each entry being 1.
Proof. Note that by our choice of f, for every n > 1 and I € A", the map

e (T T E Dn+k(S2)=%ﬂT ?é) - (T "TE ,Dk(SQ)’fn(%)mT#@)

is a covering map satisfying the condition in Proposition [6.2.2] with d = deg(f"|,,) = di.

Moreover, if T € A", then every simple closed curve in the subset | J o T OF S?is

TEDn+k (S2)7’YI

either isotopic in S?\ post(f) to v or it is null-isotopic in S?\ post(f), and that if I, J € A"

are distinct, then

U 71N U 7| =0

TeDn+k (S2),’VIOT7£@ TEDn+k(S2),"/JﬂT7£@

By the Parallel Law (Proposition [6.2.1]),

mod, (I, A=) =} " mod, (1, A=), (6.6.1)

IeAn

For each n € N and I € A", the map

fre (T 7 € Dpyi(S?),mNT 7é) — (T tTE Dk(82)>fn(71)m77£@)

is a normal covering map as described in the Serial Law (Proposition [6.2.2)), hence the Serial

Law applies and we get
mod,,(yr, A=) = deg(f"],,)"F mod,,(f" (1), A7"). (6.6.2)
We compute that if I = iyis...4,, then

deg(f"|+,) = |didiy - . . d;,,| -
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Combining and , we get
mod, (T, A=) = ot M™w),
where v = (1,1,...,1)" is the column vector of |T'g|-entries, each entry being 1, and
w = (mod,(7, A™"))ser,
is a vector with positive entries. ]
Lemma 6.6.3. For every k € Ny, we have
mod,, (T, A="*F)) > mod, (I, A~("+0)

where the implicit constants are independent of n.

Proof. By Lemma [6.3.1] and Lemma [6.2.3| we have
mod,(Ie, A=) ~ mod, (T, GG 1),
where C' is the constant in [6.3.1], so that for all £ € N, we have the inclusion
(Fgo)GgM) D (M)a-eew-
The above inclusion implies that

mod,(I",., G(C;z-yk:)) 2 mod,(I', A_(n+k))-

Lemma 6.6.4. The set Kg__ is compact, f-invariant and porous.

Proof. Suppose z is a point in the closure of K. Then there exists a sequence {w"},ey in
E., such that p(x,y,») — 0 as n — +0o. Since the alphabet set A! is finite, there exists a
subsequence w™ of w™ and a sequence {iy }ren of letters such that for each k£ € N, the first &
letters of w™ is 4175 .. .19k. Let w =115 .... By Proposition Yorr : [0,1] — S% converges

uniformly as functions to ~,. Therefore

p(z,ym) < lim p(z, ) = 0.
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This proves that Kp_ is compact.

Since E is o-invariant, by Lemma Kg_ is f-invariant. We claim that Kp_ # S*
By Lemma [6.4.2] Kp__ is then porous.

To prove our claim, for each n € N, we count the number of n-tiles that intersect Kg_.

Let k € N be as in Lemma [6.6.1] Then Let A be a positive [Ig| X |To| matrix, defined by

Al =) d@)h()

1€E1:p(1)=y
for each v € I'y. Note that for each v € Ty,
S d(i) < deg(f),

1€E1:p(i)="y
where deg(f) is the global degree of f. Moreover, by our choice of Ej, there exists v € I'y
such that equality does not hold. This implies p(A) < deg(f). For each n € N, we have

H{T € Dpyr : TN Kp, # 0} =v"A™w.
Here v = (1,1,...,1)" is the column vector of |[y|-entries, each entry being 1, and

W= (#{T €Dpyp: TNy F# @})’YEFO

is a vector with non-negative entries. Since the graph G,,.; has uniformly bounded vertex

degree, By Lemma [6.4.8] we have
H#{r €Dyt TNKp, # 0} =Cv'A™w,

where C' is a constant. We have

. #{r €Dy TN Kg # 0} , Cvt AMw
lim = lim ——m——
n—00 #Dp ik n—oo 2 deg(f)m k)

= lim p(A) ' ¢ vt A" w
= Jm (deg(f)) 2deg(f)* p(A)"

=0.

Thus there exists n € N such that {7 € D,y : TN Kp, # 0} # Dpyx. Thus Kg #

0(S?). O
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Proposition 6.6.5. The curve family Iy, is supported on Kg_ with

lim inf mod,(I'w, G,,) > 0.

n—00

Proof. By the definition of Kp_, ' is supported on Kg_. By Proposition [6.6.3] for all
n € Ny, we have

mod, (T, A=) > mod,, (T, A= 0,

By Proposition [6.6.2 we have
mod, (I, A=K ~ ot M .

where v = (1,1,..., 1) is the column vector of |To|-entries, each entry being 1, and w € R/Tol

is a vector with positive entries. Thus
mod,, (T, ARy > ot M.

By the Perron-Frobenius Theorem,

n

p(M)"

lim |of
n—oo

w

€ (0,1).

Since p(M) > 1, we have

n

p(M)"

lim inf mod, (T, A=) > ! M™w > lim |o

n—o0 n—o0

ul a1y = oc.

6.7 The Proof of Theorem [6.1.6|

We are ready to put together the proof of Theorem [6.1.6

Proof of Theorem[6.1.6, Let p > 0. Let T’y be a p-thick irreducible f-stable multicurve.
Then either one of the two cases hold:
Case 1: There exists v € [y with a peripheral component in f~!(). In this case we take

r=1.
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Case 2: M(f,I'g,p) > 1. Then by Lemma there exists 7 € N and wy € A" such that

every entry of the matrix

M= Y dw) "hw).

weA™\{wo }

is positive, and p(M) > 1.

In either case, we can apply Lemma [6.3.3 Proposition and Proposition to f7 and
[’y to conclude the exists a curve family I" supported on an f"-invariant porous subset K for
some r € N that is p-thick. By Proposition [6.4.4] there exists an f-invariant porous subset
K’ such that K C K’. This completes the proof of Theorem [6.1.6] H

6.8 Flap construction

In this section we describe a procedure to construct a new expanding Thurston map from an
old one. The procedure, which we call the flap construction, was studied in by Pilgrim and
Tan in [PT98] where the construction took the name “blowing-up the arc”. However, the
existence of f-invariant Jordan curves gives us a straightforward combinatorial description

of the procedure when f is an expanding Thurston map.

Our description of the procedure relies on the notion of two-tile subdivision rules, stated
in [BM17, Chapter 12]. We start by recalling some language about two-tile subdivision rules.

Our exposition for cell decomposition mainly follows [BM17, Sections 5.1 and 5.2].

Let X be a locally compact Hausdorff space. For eachn € N, a n-cell in X isaset ¢ C X
that is homeomorphic to the closed unit ball B" in R”. We denote by Oc the set of points
corresponding to dB", and we denote by int(c) the set of points corresponding to B™. We
also write dim(c) = n. A 0-cell in X is a singleton in X'. In this case we define dc = (),

int(c) = ¢, and dim(c) = 0.

Definition 6.8.1 (Cell decompositions). Let X be a locally compact Hausdorff space. Sup-
pose that D is a collection of cells in a locally compact Hausdorff space X. We say that D

15 a cell decomposition of X if the following conditions are satisfied:

1. the union of all cells in D is equal to X,
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2. if o,7 € D are two distinct cells, then int(c) Nint(r) = .
3. if T € D, then 0T is a union of cells in D.
4. every point in X has a neighborhood that meets only finitely many cells in D.

Definition 6.8.2 (Refinement). Let D’ and D be two cell decompositions of the space X .

We say that D' is a refinement of D if the following conditions are satisfied:

1. every cell o € D' is a subset of a cell T € D.

2. every cell T € D is the union of the cells o € D' such that o C .

Definition 6.8.3 (Cellular maps and cellular Markov partition). Let D and D’ be two cell
decompositions of X, and let f : X — X be a continuous map. Then f is cellular for (D', D)
if, for all o € D', f(o) is a cell in D and f|, is a homeomorphism of o onto f(o). If f is
cellular with respect to (D', D) and D' is a refinement of D, then the pair (D', D) is called a

cellular Markov partition for f.

If X = S2, then any cell decomposition D of S? has to have finite number of cells, and
the dimension of each cell is at most 2. A 2-cell ¢ in a cell decomposition D of S? is an n-gon
if ¢ contains exactly n distinct O-cells of D.

An orientation on S? is a triple (cg,c1, o), where diam(c;) = 4 for i = 0,1,2, and
co C ¢1 C co. Two triples (co,c1,c2) and (), ¢}, c,) give the same orientation on S? if
and only if there exists an orientation-preserving homeomorphism f : S? — S? such that

o(c;) = ¢, for i = 0,1,2. One can check that there are two equivalence classes of orientations

on S2.

Definition 6.8.4 (Labeling). Let D', D° be two cell decompositions of S®. A map L : D* —
DY is a labeling of (D', D°) if the following conditions hold:

1. dim(L(7)) = dim(7) for all T € D',
2. for allo,7 € D', if o C 7, then L(c) C L(7).
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3. ifo,7,c€ D', 0,7 Ccand L(c) = L(7), then o = 7.

Definition 6.8.5. A labeling L of (D', D) is orientation-preserving if for all (co,cy,c2) in

DY, (L(c), L(cy), L(cz)) and (cg, c1,c2) have the same orientation.

Definition 6.8.6 (Two-tile subdivision rules). A two-tile subdivision rule for S* is a triple

(DY, D°, L) of cell decompositions D° and D' of S* and an orientation preserving labeling

L : D' = D° such that

1. D° has precisely two 2-cells.
2. D' is a refinement of D°, and D' contains more than two 2-cells.
3. If k is the number of 0-cells in D°, then k > 3 and every tile in D' is a k-gon.

4. Every 0-tile in D' is contained in an even number of 2-cells in D',

Given a Thurston map f : S* — S? and an f-invariant Jordan curve C, define D°(f,C)
to be the cell decomposition of S? consisting of the following cells: The 0O-cells for D will be
{z} for x € post(f). The 1-cells are the segments ¢ of D bounded by two points in post(f)
such that int(c) N post(f) = (0. The 2-cells of D are the closures of the two components of
S?\C.

Proposition 6.8.7. [BMI17, Lemma 5.12 and Proposition 12.2] If f : S* — S? is a Thurston
map with post(f) > 3 and C is an f-invariant Jordan curve, then there exists unique cell-
decomposition D(f,C) of S* and a labeling L : D' — D such that for all T € D, L(1) =
f(1). Moreover, (D*(f,C),D°(f,C), L) is a two-tile subdivision rule.

We call (D(f,C),D°(f,C)) in the above theorem the two-tile subdivision rule of (f,C).

In fact, every two-tile subdivision rule comes from an orientation preserving Thurston map.

Theorem 6.8.8. [BMI17, Proposition 12.2 and Proposition 12.3] Let (D', D° L) be a two-
tile subdivision rule on S®. Then there exists a Thurston map f : S* — S? and an f-invariant

Jordan curve C such that D° = D°(f,C), D' = D'(f,C) and for all T € D', f(1) = L(7).
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Let C be a f-invariant Jordan curve in S?, and (D', D?) be the corresponding two tile-
subdivision rule. A 2-cell ¢ of D' is said to join two opposite sides of C if |post(f)| = 3 and
there exists e, ¢’ € D! such that cNe,cNe’ fand cNnene =0, orif [post(f)] > 4 and
there exists e, e’ € D such that eNe’ =0 and cNe,cNe’ # 0. The above theorem gives a

combinatorial characterization of expanding Thurston maps among Thurston maps.

Theorem 6.8.9. Let f be a Thurston map, and let C be a f-invariant Jordan curve in S%.
Let (D', D?, L) be the corresponding two-tile subdivision rule. Suppose that no 2-cell ¢ in D*
joins two opposite sides. Then the map f is Thurston equivalent to an expanding Thurston
map. Conversely, if f is an expanding Thurston map, then there exists n € N and an f"-
invariant Jordan curve C such that in the corresponding two-tile subdivision rule (D', D°, L)

for f™, no 2-cells c in D' join opposite sides of C.

We can now define the notion of flap constructions. Let f be an expanding Thurston map
with no periodic critical points, and let C be an f-invariant Jordan curve. Let (D', D, L)
be a two-tile subdivision rule for (f,C). Let o be a 1-cell in D' such that a N post(f) = 0.

We will construction a new 2-tile subdivision rule (D', D°, L)

Think of D° and D! as cell decompositions of C, such that the union of 1-cells of D°
is OD. Suppose « is a 1-cell of D! in D. Fix an orientation on D°. Let cy and c_ be the
two 2-cells adjacent to «, and let p; and p,, be the two 0O-cells in da such that (py,«,cy) is

positively oriented. Then (p;, v, c_) is negatively oriented.

Let X = ((A:\oz. Let YV = ((Aj\ﬁ Then there exists a conformal map h : Y — X. This
conformal map h can be extended continuously to a map @\]D — @, which we will also
denote by h. The map h is surjective, h~!(a) = 9D, and for each p € da, |h~'(p)| = 1. By
precomposing h with a suitable Mobvious transformation, we may assume that A1 (9(a)) =
{-1,1}.

We would like to build a new cell decomposition on C by gluing a cell decomposition
on )y = @\]D) and cell decomposition on D. The cell decomposition on Y is essentially
the pullback of the cell decomposition D! on X. To be precise, let n = |post(f)]. Let

p1 = {—1} and p, = {1} be two O-cells in Y corresponding to the two points of E’l(ﬁ(a)).
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Let a_ = {e" : § € [0,7]}, and let ay = {e? : 6 € [r,27]}. For every 7 € D'\{a, d(a)},
either 7 € X, therefore h=!(7) is a cell in Y, or 7 is not a O-cell and int(7) C X, therefore
h=1(int(7)) is a cell in Y. Let h=*(D') be the collection of cells in ) obtained by one of the

2 ways described above. Let
R (DY) = k(DY) U {ay, a, pr, p2}-
Then h='(D') is a cell decomposition of ). Moreover, the map
h:Y —cX

gives us a map
n' o h (DY) — D
sending 7 to h(7). Let us orient h~!(D?') such that %' is orientation preserving.

We now construct a cell-decomposition on D, illustrated in Figure . Forj=2,...,n—

1, let p; = {% — 1} (this formula holds for j = 1,n as well). For j =1,2,...,n — 1, let

ej = [% —1,-2L —1] . Let ¢, 4 = DN {Im(z) < 0} and ¢,— = DN {Im(z) > 0}. Then
{p1,-- pns€1,- - n1,ap, 0, Cpy, Cp—} s & cell decomposition of D, which we call D).

two 2-cells in such that d(c,.) = Ul e; Ua_, and d(c,_) = U/~ & Uay. Then

for each i = 1,2,...,n — 1, (p;, €;,cn—) is positively oriented, and (p;, e;, ¢, +) is negatively

oriented.

Let

D' = hY(D)YuD;.
Define
D° = {h—1(7) : 7 € D°\{D}} U {D}.
We have a bijection
1’ D° — D°
given by
77:0(7') _ h(t), if 7 # o9

S?\og, if T = 0y.
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y4i D4

ot

Figure 6.1: The cell decomposition D with | post(f)| = 4

Proposition 6.8.10. The cell decomposition D! s a refinement of 150, and there exists
an orientation preserving labeling map L : D' — D° such that (51,50,5) 18 a two-tile

subdivision rule.

Proof. On h='(D"), we define
~ N1 ~
L= <h0> o Lokl
Let q1,qo,...,q, be the n O-cells in Dy, and fi,..., f, be the n 1-cells in Dy such that

Ofi=qUqip1 fori=1,2,....n—1, L(h(p1)) = q1, L(h(pn)) = gn, and L(«) = f,. Define

Then (D', D°, L) is a two-tile subdivision rule on Y N ¢ = S2. O

Proposition 6.8.11. The two tile subdivision rule (51, DO, Z) is the two-tile subdivision rule
of (g,g), where g is an expanding Thurston map without periodic critical points and Cisa

g-imwvariant Jordan curve.
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Proof. By Theorem m, two tile subdivision rule (D, D°, L) is the two-tile subdivision rule
of (g, 5), where g is a Thurston map and C is a g-invariant Jordan curve. By our assumption
that no 2-cells in D! join opposite sides of C, and the fact that the new 2-cells added to D!
do not join opposite sides of 5, no 2-cells in D* join opposite sides of C. By Theorem , g

is an expanding Thurston map. Finally, every 0-cell ¢ in DO s still adjacent to only 2 2-cells

in 51, therefore g does not have periodic critical points. O

6.9 Examples

In this section we mention some important examples in the study of expanding Thurston

maps.

Example 6.9.1 (m x n subdivision rule). The first example we are interested in comes from

affine maps on R2. Let m and n be two integers greater than 1. Let

n 0
A=

0 m

Then the matrix A can be viewed as an affine map on R?. There exists f4 : S* — S? that

makes the following diagram commute:

R? —4 R?
st s
where 7 is the map we obtained by identifying » € R? with z + w for all w € Z? and
identifying z with —z. The map f4 leaves {k+w : k € 1Z,y e R}U{z+1k :z € R,k € 17}
fixed, therefore there exists an f4-invariant curve C in S?.
The visual sphere is two isometric copies of Rickman’s rugs glued together along the
boundaries. A Rickman’s rug is a metric space of the form ([0, 1],d) x ([0, 1],d*, where d is

the usual Euclidean metric on [0, 1] and v € (0, 1). For the visual sphere, each Rickman’s rug

log(mn)
log(mAn) "

is of the form o = The fs-invariant Jordan curve C corresponds to the boundary

of the two Rickman’s rug.
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Aa d a d D

Figure 6.2: 3 x 2-subdivision rule.

By Theorem m (fa,C) gives us a two-tile subdivision subdivision rule. Figure
shows one side of the two-tile subdivision subdivision rule for n = 3, m = 2. The other side
is at the “back” of Figure When n = 3, m = 2, each 0-tile is a quadrilateral with vertices
A, B,C,D. The 1-tiles subdivide each 0-tile into 2 x 3-many small quadrilaterals. The map
fa sends vertices marked by a small letter to the vertices with the corresponding capital
letter. The shaded 1-tiles are sent to the large O-tile at the back of the picture, whereas the

white 1-tiles are sent to the large O-tile at the front of the picture.

If m = n, then A is a conformal map on R?, hence the induced map f4 : S? — S?
is Thurston equivalent to a rational map. Conversely, if m # n, then f4 has a Thurston

obstruction. In this case the Ahlfors regular conformal dimension of the visual sphere is

log(mn)

Tog(mAn)? and this Ahlfors regular conformal dimension is attainable.

Example 6.9.2 (2 x 2 subdivision rule with flaps). Let

A:

Y

0 2

and let f4 be the map defined in Example[6.9.1, We add a flap to the subdivision to obtain

a new subdivision rule, shown in Figure [6.3]

Let the new expanding Thurston map be g;. Then ¢ has hyperbolic orbifold, and a

horizontal loop «y separating {A, D} and {B, D} gives a irreducible g;-stable multicurve
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A a d a D

Figure 6.3: The Two-tile subdivision rule for 2 x 2 subdivision rule with a flap.

'y = {7} such that
ATy, 2) = 1.

Thus g is not Thurston equivalent to a rational map. Moreover, since g; *(I'g) has a periph-
eral component, there exists a 2-thick curve family I'y supported on a g;-invariant porous
subset. The porous subset can also be obtained by removing the 2 flaps added to the subdi-
vision rule and their preimages under the map g7 for n € N. Yet another way to visualize the
porous subset is to take a square, cut off certain open intervals with dyadic endpoints, then
take the completion of the metric space equipped with the length metric, to form a Sierpinski
carpets, and glue two Sierpinski carpets together. See Figure for an illustration. Similar

Sierpinski carpets have been studied in [HL19).

Example 6.9.3 (2 x 4 subdivision rule with flaps). Let

2 0
A= ,
0 2

and let f4 be the map defined in the previous example. We add eight flaps to the subdivision
to obtain a new subdivision rule. Figure [6.5|shows the position of 4 new flaps. The other 4
new flaps are at the “back” of Figure [6.5] so that the front and the back of the subdivision
rules are the same. Let the new expanding Thurston map be g». Then g, has hyperbolic

orbifold, and a vertical loop v separating {A, D} and {B, D} gives a gp-stable multicurve
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Figure 6.4: An invariant porous subset in a visual sphere of the 2 x 2 subdivision rule with

flaps.

Aa d a d a D

Figure 6.5: The Two-tile subdivision rule for 2 x 4 subdivision rule with 4 flaps on each side.

[' = {7} such that
AT, 2)=1.

Thus g- is not Thurston equivalent to a rational map. In contrast with Example there
are no 2-thick curve families supported on any gs-invariant porous subset of the visual sphere.
This is because any go-invariant porous subset K of the visual sphere must omit a tile 7 that
avoids post(f). Let h be a new expanding Thurston map obtained by adding a flap at each
edge of 7. Then h is a Thurston map with hyperbolic orbifold and h and every h-stable
multicurve Ty in S?\ post(h) satisfies A(Tg,p) < 1. By Thurston’s obstruction theorem, h

is Thurston equivalent to a rational map. By Theorem m, any visual sphere (S?, p) of h
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is quasisymmetrically equivalent to the standard 2-sphere. But the porous subset K can be
embedded quasisymmetrically into (S?, p), therefore K is quasisymmetrically equivalent to
a porous subset of the standard 2-sphere. The non-existence of gs-invariant porous subset

supporting a 2-thick curve families follows from the following Lemma:

Lemma 6.9.4. Let o is the chordal metric on the standard 2-sphere, and let p be a visual
metric of an expanding Thurston map f with no periodic critical points on S* with expansion
factor A. Assume that id : (S%, p) — (S?,0) is a quasisymmetry. Let K be a compact subset

of S? with Lebesque measure 0. Let I' be a curve family in S? supported on K such that

gellf“ diam,(y) > 0.

Then
lim sup mods(I', A7) = 0.

n—oo

Proof. First observe that

inf di .
Inf iam,(y) > 0

To see why, assume there exists 7, € I' such that diam,(~,) < % Since each 7, is a compact
subset of S%, a subsequence of 7, converges in Hausdorff sense to some compact subset
v € S2. We have

diam,(vy) > inlf\] diam,(y,) > 0
ne

and

diam, (y) < lim diam,(y,) =0,

n—oo

a contradiction.

Let

L = inf di .
Inf iam, ()

For each n € N, define p. : D,,(S?) — [0, 0) by

L~tdiam,(7), ifr7NK #0
pn(T) =
0, otherwise.
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For any curve v € ['g, the collection {7 € D,(S?) : 7 N~ # 0} forms a cover of v, therefore

Z pn(7) > L™ diam,(y) > 1.
TEDR(S?):mNy#0D
Thus p, is ['-admissible. Let 7,..., 7, be all the n-tiles that intersect K. Using the fact
that tiles in D(S?) are uniform quasiballs (Proposition |6.2.5)) and that quasisymmetry sends

quasiballs to quasiballs quantitatively, we get
17| ~ diam,(7)?
where |E| is the Lebesgue measure of E. We have

Y onPs Y Kl U A< INwE)L

TEDL(S?) TEDR(S?),TNK#) TEDR(S?),TNK#0

where €(n) = sup,¢p, s2) diamy (7). As n — oo, €(n) — 0. Therefore

lim sup Z pn(7)2 < |K| = 0.

T L eD, (S2?)
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