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Abstract

Optical and Electronic Properties of Nano-Materials from First Principles
Computation

by

Jack Richard Deslippe

Doctor of Philosophy in Physics

University of California, Berkeley

Prof. Steven G. Louie, Chair

Recent advances in computational physics and chemistry have lead to greater understanding
and predictability of the electronic and optical properties of materials. This understanding
can be used to impact directly the development of future devices (whose properties depend
on the underlying materials) such as light-emitting diodes (LEDs) and photovoltaics. In par-
ticular, density functional theory (DFT) has become the standard method for predicting the
ground-state properties of solid-state systems, such-as total energies, atomic configurations
and phonon frequencies. In the same period, the so called many-body perturbation theory
techniques based on the dynamics of the single-particle and two-particle Green’s function
have become one of the standard methods for predicting the excited state properties asso-
ciated with the addition of an electron, hole or electron-hole pair into a material. The GW
and Bethe-Salpeter equation (GW-BSE) technique is a particularly robust methodology for
computing the quasiparticle and excitonic properties of materials.

The challenge over the last several years has been to apply these methods to in-
creasingly complex systems. Nano-materials are materials that are very small (on the order
of a nanometer) in at least one dimension (e.g. molecules, tubes/rods and sheets). These
materials are of great interest for researchers because they exhibit new and interesting
physical and electronic properties compared to those of conventional bulk crystals. These
physical properties can often be tuned by controlling the geometry of the materials (for ex-
ample the chiral angle of a nanotube). Various DFT computer packages have been optimized
to compute the ground-state properties of large systems and nano-materials. However, the
application of the GW-BSE methodology to large systems and large nano-materials is often
thought to be too computationally demanding.

In this work, we will discuss research towards understanding the electronic and
optical properties of nano-materials using (and extending) first-principles computational
techniques, namely the GW-BSE technique for applications to large systems and nano-
materials in particular. While, the GW-BSE approach has, in the past, been prohibitively
expensive on systems with more than 50 atoms, in Chapter 2, we show that through a com-
bination methodological and algorithmic improvements, the standard GW-BSE approach
can be applied to systems of 500-1000 atoms or 100 AU x 100 AU x 100 AU unit cells. We
show that nearly linear parallel scaling of the GW-BSE methodology can be obtained up
to tens of thousands (and beyond) of CPUs on current and future high performance super-
computers. In Chapter 3, we will discuss improving the DFT starting point of the GW-BSE
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approach through the use of COHSEX exchange-correlations functionals to create a nearly
diagonal self-energy matrix. We show applications of this new methodology to molecular
systems. In Chapter 4, we discuss the application of the GW-BSE methodology to semicon-
ducting single-walled carbon nanotubes (SWCNTs) and the discovery of novel many-body
physics in 1D semiconductors. In Chapter 5, we discuss the application of the GW-BSE
methodology to metallic SWCNTs and graphene and the discovery of unexpectedly strong
excitonic effects in low-dimensional metals and semi-metals.
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Chapter 1

Introduction

Over the past few decades, computational condensed matter physics has benefited
tremendously from the advancement of both theoretical and algorithmic methodologies as
well as the advancement in computer technology. Condensed matter physicists have used
high-performance computers (HPCs) to calculate the properties of solids, liquids and, more
recently, nano-materials such as individual molecules, clusters, nanotubes and nanowires.
The field has also benefited from the creation of new and more efficient computational
techniques that probe materials in novel ways. An example is the now widespread use of the
density functional theory (DFT) [60, 76] formalism for computing ground state properties
of materials and the so called many-body perturbation theory techniques for excited state
material properties [58, 62].

While DFT has been used effectively to study systems with hundreds and thou-
sands of atoms, the many-body perturbation theory techniques, such as the GW method,
[58, 62] have been limited to the study of systems whose unit-cell contains only a few or tens
of atoms. This severely limits the usefulness of these methods to the study of nanostuctures
- one of the classes of materials of greatest interest in current research.

In the following sections of the introduction, we briefly introduce the methods
for computing the ground state properties, quasiparticle properties and optical properties
of materials that has been developed at Berkeley in the last 25 years. In Chapter 2, we
discuss in detail a modern implementation of the GW-Bethe-Salpeter equation (GW-BSE)
approach that can compute the electronic and optical properties of large nanostructured
materials equivalent to bulk systems with 1000’s of atoms in the form of the BerkeleyGW
package which scales to tens of thousands of CPUs. In Chapter 3, we discuss the application
of this method to molecular systems and other systems that require many empty orbitals.
In Chapter 4, we discuss the computation of the quasiparticle and optical properties of
semiconducting single walled-carbon nanotubes (SWCNTs) and the unique nature of 1D
many-body physics. In the final chapter, Chapter 5, we discuss the application of the
GW-BSE method to metallic SWCNTs.
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1.1 Basic Electronic Structure Approaches

In principle all the electronic, structural and excited states properties of a material
can be determined from the many-body Hamiltonian (for simplicity, we have ommitted
relativistic effects):

Htot =
∑

j

P2
j

2Mj
+
∑

i

p2
i

2m
+
∑

j<j′

ZjZj′e
2

∣
∣Rj −Rj′

∣
∣

+
∑

i<i′

e2

|ri − ri′ |
+
∑

i,j

−Zje
2

|Rj − ri|
. (1.1)

Here Rj , Pj , Zj and Mj refer to nuclei postions, momenta, charge and masses, ri, pi

and mi refer to the positions, momenta and masses of the electrons. This Hamiltonian
is expressed in the form of the time-independent Schroedinger equation as the following
eigenvalue problem:

HΨ(r1, r2, ..., rN ) = EΨ(r1, r2, ..., rN ). (1.2)

In this manuscript, we will operate always in the Born-Oppenheimer, or adiabatic, ap-
proximation. This approximation assumes that the atomic positions are fixed and can be
considered as a set of parameters. This is justified by the fact that the atomic positions are
slowly varying compared to motion of the electrons because of the small ratio of masses:
(me/M). This approximation allows the elimination of two of the terms in Htot, leaving
just a Hamiltonian for the electron wavefunction:

Hel =
∑

i

p2
i

2m
+
∑

i<i′

e2

|ri − ri′ |
+
∑

i,j

−Zje
2

|Rj − ri|
. (1.3)

We can still determine structural properties, for example the set of atomic positions that
minimizes the energy, by considering the change in the total energy as a function of the
atomic positions.

An exact eigenvalue/eigenvector decomposition of the Hamiltonian, Eq. 1.3, is
intractable in all but the smallest systems. However, such an exact solution is not really
desirable. Instead, one is usually interested in computing the properties of a materials
that are measurable by experiment such as the response of the material to external probes
(optical absorption, photo-emission spectra etc..).

One way to proceed towards getting meaningful information from the Hamiltonian
in Eq. 1.3 is to limit the form of the ground state many-electron wavefunction in which
one diagonalizes the matrix in Eq. 1.3. This often leads to a set of decoupled single-orbital
Schroedinger-like equations in the presence of a mean-field potential. Early attempts at
such a formalism were devised by Hartree and Fock, where the self-consistent potential (or
mean-field potential) has the form:

VH(r) =
∑

n

e2|φn(r′)|2
|r− r′| , (1.4)

or
VHF = VH(r) + Vex, (1.5)

where, φn are the independent electron orbitals and Vex is the nonlocal exchange operator.
The first term, VH on the right side in Eq. 1.5, known as the Hartree potential, describes
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the electrostatic interaction of a single electron with the charge density produced by all the
electrons in the system in a completely non-correlated way. The second term, known as the
exchange-term, results from enforcing the Pauli exclusion principle - i.e. that the many-
body wavefunction has to be antisymmetric under particle exchange. The Hartree and
Hartree-Fock potentials can be derived from a minimization procedure of the total energy
with respect to the ground-state many-body wavefunction in a limited Hilbert space. The
many-body wavefunction is restricted to be a simple product of single particle orbitals, in
violation of the Pauli-exclusion principle, (the Hartree approximation) or limited to a single
Slater determinant of single-particle orbitals (the Hartree-Fock approximation):

ψH(r1, ...rN ) = Πiφi(ri) (1.6)

and,

ψHF (r1, ...rN ) =

∣
∣
∣
∣
∣
∣

φ1(r1 ... φN (r1)
... ... ...

φ1(rN ) ... φN (rN )

∣
∣
∣
∣
∣
∣

, (1.7)

where φi are effective single-particle orbitals.
The Hartree-Fock approach for computing the ground-state total energy is inex-

act because the true many-body wavefunction cannot, in general, be written as a single
Slater determinant; rather, it is composed of many Slater determinants that can be formed
from a complete set of single-particle orbitals with a given particle number. Minimizing
the total-energy in a Hilbert space beyond that of the Hartree-Fock approximation yields
corrections that lower the total energy of a many-electron system. The energy difference
between the Hartree-Fock ground state and the true many-body ground state is defined as
the correlation energy. Techniques exist that systematically improve the many-body wave-
function Hilbert space by including large numbers of Slater-determinants. For example, one
technique would be to all include Slater-determinants that can be achieved by swapping the
positions of an occupied and unoccupied orbital in the Hartree-fock theory, while another
would approach would be to include all Slater determinants that can be created by some
small number of single-particle orbitals. These techniques are called multi configuration in-
teraction (CI) techniques, and, their cost generally scales exponentially with the number of
single-particle orbitals included. Thus, the formalism becomes quickly prohibitively expen-
sive computationally except when applied to atoms and small molecules typically studied
in quantum chemistry.

Before going further it is worth separating physical properties of materials that are
associated with all the electrons in the ground state configuration (ground-state properties)
vs. properties associated with the addition of a single electron or hole and those associated
with the excitation of an electron and a hole simultaneously. Ground state properties
include total energies, atomic positions and structural properties like elastic constants and
phonon-modes. Measurable quantities related to single-particle excitations in solids include
photo-emission and inverse photo-emission as well as transport properties. Two particle
(neutral electron + hole) excitations account for most optical properties of solids where an
electron, roughly speaking, is promoted to a previously empty orbital, leaving behind a hole
in a valence state.
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1.2 Ground state properties within density functional theory
(DFT)

Density functional theory (DFT) has become a standard theory for computing
ground state properties of solid-state systems from first principles. Unlike the the Hartree
and Hartree-Fock theories described in the previous section, DFT, in principle (but not
necessarily in practice as we discuss below), yields the exact ground state total energies and
electron charge density of a many-body interacting system. Also unlike Hartree-Fock theory
and CI techniques, DFT does not attempt to solve for the ground state wavefunction of Eq.
1.3 within a restricted basis. Instead, it formulates the total-energy problem in terms of
the electron density - a much simpler quantity than the complete many-body wavefunction
of the grounds state.

The Hohenberg-Kohn theorem [60] sets up a one-to-one correspondence between
the external potential and the electron density of an interacting electron system. Theoreti-
cally, if one knows the external potential, one can solve for the eigenstates of Eq. 1.1 and
determine all the properties of the system. Therefore, all the relevant physical properties
of a material can be known, in principle, if one knows the ground-state density. That is to
say, all properties of interest may be written as a functional of the ground-state electron
density. In particular, there exists a functional of the density for the total energy of an
interacting system:

EV [ρ] =

∫

V (r) ρ(r) dr + Ts [ρ] +
1

2

∫
ρ(r)ρ(r′)

|r − r′| drdr
′ + Exc [ρ] , (1.8)

where V (r) is some external potential (for example the potential from the atomic nuclei)
and Ts is the kinetic energy of an equivalent non-interacting system with the same density.
The third term of the right hand site of Eq. 1.8 is the Hartree energy of the interacting
system. The final term on the right hand side represents the remaining contribution to the
total energy not captured in the previous three terms. This term is called the exchange-
correlation energy. It includes the exchange energy discussed above with respect to Hartree-
Fock theory and contributions to the total energy beyond the exchange (i.e. that derive from
the fact that the many-body wavefunction cannot be written as a single Slater determinant)
collectively termed “correlation.” Included in the DFT correlation energy is the correction
to the kinetic energy of the interacting system from that of the non-interacting counterpart
with the equivalent density.

From the variational principle, if the exact form of EV [ρ] was known, one could
find the ground-state total energy by minimizing the functional with respect to the density.
However, the exact form of Exc[ρ] is not known and is expected to be a non-trivial non-
analytic functional of the density. [121] In most practical applications, we do not minimize
the total energy with respect to the density directly, but instead we vary the density by
constructing the many-particle density from single-particle (non-interacting) orbitals. This
scheme is due to Kohn and Sham [76] and maps each interacting system to a non-interacting
system in the presence of a potential (the Kohn-Sham potential) where the ground-state
density matches that of the interacting system. The non-interacting wavefunctions are taken
to be a set of single-particle orbitals (as was the case in the Hartree-Fock approximation
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discussed above) subject to the following Kohn-Sham equations:

{
p2

2m
+ V (r) + VH (r) + Vxc(r)

}

ϕi(r) = εi ϕi(r) (1.9)

with

ρ(r) =

occ∑

i

|ϕi (r) |2 (1.10)

and

Vxc(r) =
δExc

δρ(r)
. (1.11)

Here VH(r) is the Hartree potential, Vxc(r) is the exchange-correlation potential (which must
be approximated) and εi are eigenvalues of the Kohn-Sham equations. In principle, if the
exact exchange-correlation functional (and therefore exchange-correlation potential) were
known, these equations would yield the exact ground state density of the interacting system.
In practice though, one must approximate the exchange-correlation potential. One of the
earliest and most successful approximations is known as the local density approximation.
[76] Here the exchange correlation energy is approximated as:

Exc[ρ] =

∫

ρ(r)ǫxc(ρ(r))dr (1.12)

where ǫxc(ρ(r)) is the exchange-correlation energy per volume of a homogeneous electron
gas of density ρ(r) [125, 30, 108]. In the calculations presented in Chapters 3-5, we use the
LDA approximation for the exchange-correlation functional unless otherwise noted.

It is important to note that the eigenvalues in the Kohn-Sham equations should not
be considered as exact quasiparticle energies. They are formally only Lagrange multipliers in
the minimization scheme. It was the misinterpretation of these eigenvalues as quasiparticle
energies that led to the well known “band gap problem” - that the Kohn-Sham eigenvalues
consistently underestimate the electronic band gap [121]. This underestimation can be by
as much as 50% in cases like Si or a qualitative difference in the band topology, such as in
the case of Ge where DFT within the local-density approximation (LDA) actually predicts
Ge to be a metal (i.e. to have a negative band gap) whereas the quasiparticle gap is finite.
See Figure 1.3 for a comparison between DFT gaps, GW gaps and experiment.

1.3 Quasiparticle properties and the GW Method

As mentioned in the previous section, the Kohn-Sham eigenvalues come into the
theory as Lagrange multipliers in the variational procedure. With the exception of the
eigenvalue of the valence band maximum (VBM) state corresponding to the ionization
energy [69], they should not be formally considered as the quasi-electron or quasi-hole
energies. Interpreting the Kohn-Sham eigenvalues as the quasiparticle energies leads to a
vast underestimation of the band gap in many materials. This is essentially because DFT,
within the Kohn-Sham formalism, is a theory for the ground-state. Therefore, we turn
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instead to a theory based on the Green’s function in order to describe electron excitations
in solids and nanostructures.

A theory of the Green’s function is more appropriate for describing electron exci-
tations (than a theory of the density for example) because the poles of the single-particle
Green’s function in frequency space are known to contain the excited state energies of the
N + 1 and N − 1 interacting electron systems. Here N is the number of electrons in the
orginal system with all electrons in the ground-state. The single-particle Green’s func-
tion describes directly the propagation of single-particle like excitations in the many-body
system. It is defined as:

G(r, r′, τ) = −i〈0
∣
∣
∣T{ψ(r, τ)ψ†(r′, 0)}

∣
∣
∣ 0〉, (1.13)

where ψ(r, t) are the second quantized operators for creating a particle at position r and time
t in the Heisenberg picture and |0〉 is the N -particle ground state. The physical meaning
of the Green’s function is the probability of finding a particle at time τ and position r

if one was added to the ground-state of the N -particle system at time 0 and position r′.
One may transform this expression to the basis of some appropriately chosen mean-field
single-particle orbitals and arrive at:

G(p, τ) = −i〈0
∣
∣
∣T{cp(τ)c†p(0)}

∣
∣
∣ 0〉, (1.14)

where cp(t) are the second quantized operators for creating a particle at quantum number
p (for example, band index n and crystal momentum k) and time t.

For system with periodic translation symmetry (such as bulk crystals), one can
express the Green’s function in another representation, the Lehmann representation (de-
scribed here for the interacting electron gas for simplicity): [43]

G(k, ω) = V
∑

i

[〈Ψ0|ψ(0)|Ψik〉〈Ψik|ψ+(0)|Ψ0〉
ω − µ− εi(N + 1) + iη

+
〈Ψ0|ψ(0)|Ψi−k〉〈Ψi−k|ψ+(0)|Ψ0〉

ω − µ+ εi(N − 1)− iη

]

(1.15)
where, Ψ is the many-body states (0 represents the N-particle system ground state and ik
represents the ith many-body excited state with wavevector k of the N + 1/N − 1 particle
system), µ is the chemical potential and εi is the energy of the ith excited state of the
N + 1/N − 1 particle system above the N + 1/N − 1 ground state energy, and the second
quantized destruction operator is ψ(r) = e−ip·rψ(0)eip·r. [43, 85] For a non-interacting
system, the Lehmann representations yields a Green’s function with simple poles at the
independent electron excitation energies of the N + 1 and N − 1 particle systems of a give
wavevector. For a non-interacting system, the ik state represents an addition or subtraction
from an electron from a single particle state that contributes to a single isolated pole in
the Green’s function. For a system with moderate electron-electron interactions, G(k, ω)
along the real ω axis consists of well-defined peaks, similar to the sharp poles in the case of
the noninteracting spectrum, but each peak now has a finite width corresponding to a pole
position in the analytical continuation of G off the real axis.

Each pole inG corresponds to pole in the spectral function, A(ω) = (1/π)|ImG(ω)|,
of the form:

A(p, ω) =
i
2πZp

ω − [Ep − µ]
+ c.c. + correction terms. (1.16)
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Figure 1.1: Diagram of the spectral function around a pole in the Green’s function. The
spectral function contains a quasiparticle peaks and a background. The main peak has a
Lorentzian shape and represents the quasiparticle. The width of the peak is related to the
quasiparticle lifetime.

See Fig. 1.1 for qualitative picture. Since, G can also be written in terms of the spectral
function as:

G(p, ω) =

∫

C

A(p, ω′)

ω − ω′ dω
′, (1.17)

(where C is an appropriate contour) we can approximate G around a pole as:

G(p, τ) = −iZpe
−iRe(Ep)τ e−Γpτ + correction terms, (1.18)

where Zp is the renormalization factor, and Ep is the real part of the complex energy whose
real-part gives the single-particle like time oscillation and whose imaginary part, Γp, gives
rise to a damping in time. The usual interpretation of this structure is that it represents a
quasiparticle (single-electron like) state. Since the quasiparticle is not a true eigenstate of
the N + 1 or N − 1 interacting electron system, it acquires a finite lifetime, 1/Γp.

It can be shown that the time evolution of the Green’s function obeys the following
Dyson’s equation:

G(r, r′;ω) = G0(r, r
′;ω) +

∫

G0(r, r1;ω)Σ(r1, r2;ω)G(r2, r
′;ω)dr1dr2 (1.19)

or equivalently,

(h̄ω −Ho − VH)G(r, r′;ω)−
∫

Σ(r, r′′, ω)G(r′′, r′;ω) = δ(r, r′). (1.20)

This equation is shown diagrammatically in Fig. 1.2. Here, Σ is a non-Hermitian, non-
local, energy dependent operator that includes the effects of exchange and correlation. If
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Figure 1.2: Diagramatic representation of the Dyson equation and the GW approximation
for Σ.

we express G in the spectral representation, as in Eq. 1.17,

G(r, r′;ω) =
∑

nk

ψnk(r)ψ
∗
nk(r

′)

ω − Enk − iδnk
, (1.21)

where Enk is a complex energy, we arrive at a reworked Dyson’s equation for the quasipar-
ticle wavefunctions and energies:

[Enk −Ho(r)− VH(r)] ψnk(r)−
∫

Σ(r, r′;Enk)ψnk(r
′)dr′ = 0. (1.22)

Here ψnk and Enk are the quasiparticle wavefunctions and complex energies respectively.
This set of equations looks similar to the Kohn-Sham equations with the exception that the
exchange-correlation potential, Vxc, is replaced by a non-local, non-Hermitian and energy
dependent operator, Σ.

Both the energy dependence and non-locality of Σ make solving the Dyson’s equa-
tion considerably more complex than solving the Kohn-Sham equations. As discussed in
Chapter 2, we typically do not construct Eq. 1.22 as a matrix equation and diagonalize to
find right and left eigenstates. Instead, we usually start with a suitable mean-field approx-
imation for Σ, such as the Vxc from DFT in a suitable approximation (such as LDA) and
treat the self energy operator in Eq. 1.22 as a perturbation. In other words we consider the
self-energy in terms of the perturbation Σ−Vxc. The validity of this approach requires that
the off-diagonal elements of Σ− Vxc are small. In Chapter 3, we discuss that in the case of
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molecular systems, this assumption often fails if one uses Vxc within DFT as the mean-field
starting point. In that chapter, we propose two more appropriate mean-field choices.

In order to proceed, we must have an approximation for the non-local, energy
dependent self energy operator, Σ, in Eq. 1.22. A systematic expansion of Σ in terms of the
screened-coulomb interaction, W , was first worked out by Hedin [58]. It leads to a series
of coupled equations for the Green’s function, G, the polarizability (or dielectric) matrix
P (used to screen the Coulomb interaction), and the vertex function Γ. The self energy
operator Σ is given by:

Σ(1, 2) = i

∫

G(1, 3+)W (1, 4)Γ(3, 2, 4)d(34) (1.23)

where each number corresponds to a composite space, time coordinate, (1) → (r1, t1), and
the + indicates an infinitesimal is added to the time coordinate. The vertex function, Γ, is
defined through:

Γ(1, 2, 3) = δ(1, 2)δ(2, 3) +

∫
δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7, 3)d(4567), (1.24)

and the screened Coulomb interaction W is defined as:

W (1, 2) = v(1, 2) +

∫

v(1, 3)χ(3, 4)W (4, 2)d(34). (1.25)

Here v(1, 2) is the bare Coulomb interaction, 1/|r1 − r2|, in atomic units and χ is the
polarizability matrix that can be related to G as:

χ(1, 2) = −i
∫

G(1, 3)Γ(3, 4, 2)G(4, 1+)d(34). (1.26)

The four equations 1.23 - 1.26 in combination with the Dyson’s equation are collectively
known as Hedin’s equations. [58, 59]

The prescription proposed by Hedin for evaluating this set of equations is to first
take the simplest approximation for the vertex function: Γ(1, 2, 3) ≈ δ(1, 2)δ(2, 3). In this
approximation we arrive at the following equations:

Σ(1, 2) = iG(1, 2)W (1+, 2), (1.27)

χ(1, 2) = iG(1, 2+)G(2, 1) (1.28)

and,

W (1, 2) = v(1, 2) +

∫

v(1, 3)χ(3, 4)W (4, 2)d(34). (1.29)

This level of approximation is the one typically used in first-principles GW implementations.
[63, 62]

Let us now discuss the mean-field starting point of GW calculations in more detail.
In principle, the GW formalism is not dependent on the density-functional formalism and
it can be solved in any basis, so long as the basis is complete and the Dyson’s equation
is solved in full within the basis in a self-consistent fashion. In practice, though, the GW
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calculations presented in this manuscript, with the exception of Chapter 3, take as input
the Kohn-Sham wavefunctions and eigenvalues. For the case of most bulk semiconductors,
and even the nanostructures considered presently, it is found that the Dyson’s equation,
expressed as a matrix equation in the Kohn-Sham basis is nearly diagonal. This is not to
say that DFT does an accurate job computing the quasiparticle energies in the system; it
only means that the Schroedinger-like equation with either the DFT Vxc or Σ = iGW often
have similar eigenfunctions. The eigenvalues may still differ significantly as was the case in
the band gap problem discussed above. In the case of silicon, the Kohn-Sham wavefunctions
within LDA differ from the fully diagonalized GW quasiparticle wavefunctions by less than
0.1% [63]. However, there are important cases, particularly in molecules, where expressing
Σ as a matrix within the LDA orbital basis does not yield a diagonal representation and a
more preferred basis set can be used. We will discuss such cases in Chapter 3.

Since in many cases, as discussed above, only the diagonal elements are sizable
within the Kohn-Sham orbital basis used throughout the manuscript, for the purposes of
the nanostructures studied, the effects of Σ can be treated perturbatively. Thus, for the
systems considered, we treat Σ as Σ = Vxc + (Σ − Vxc), where Vxc is an approximation
to the diagonal elements of the Kohn-Sham exchange-correlation potential. In principle,
the process of correcting the eigenfunctions and eigenvalues that are used to construct Σ
could be repeated until self-consistency is reached; however, in practice, it is found that
the first-order perturbation theory approach for a given Σ is sufficient. From practice, self-
consistency in Σ is found to only improve the accuracy of the GW result if it is coupled
with the inclusion of a vertex function in the Σ operator itself. [61]

The most computationally demanding ingredient of a GW calculation is the dy-
namic dielectric matrix. As we will discuss in the next chapter, the generation of this
matrix usually requires a sum over Kohn-Sham empty orbitals. Both the generation of the
required empty orbitals and the computation of the matrix elements are computationally
expensive. As described in Chapter 3, requiring an even larger number of empty orbitals is
the expression for Σ itself. Σ, within the GW approximation, can be broken into two terms
(see the next chapter for details): ΣCOH +ΣSEX. ΣSEX, called the screened-exchange term,
is simply the exchange, or Fock, operator from Hartee-Fock screened with the dielectric
matrix. ΣCOH is a term absent in Hartree-Fock theory describing the interaction of an elec-
tron with the induced-charge created around the charged quasiparticle. ΣCOH, in practice,
involves a sum over an even a larger number of empty Kohn-Sham orbitals than required in
the polarizability sum. In practice, the dependence of ΣCOH on empty orbitals significantly
increases the computational time needed to generate the unoccupied Kohn-Sham orbitals
- particularly in nanosystems such as molecules, where absolute quasiparticle energies are
required. As lot of recent research effort has been spent on approximating or eliminating
the required sum over empty states. [136, 49, 140, 141, 25, 113] We discuss in Chapter 3 a
new method to reduce the number of empty orbitals required for computing Σ.

The GW methodology has been successfully applied over the last two decades to a
variety of systems from bulk crystalline semiconductors, insulators and metals to molecules,
and more recently nanostructures of increasing complexity and size. Figure 1.3 shows
electronic band gaps of the GW methodology compared to DFT and experiment. For more
implementation details of the GW methodology with a particular emphasis towards the
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Figure 1.3: Comparison of the computed LDA (solid circles) and GW (empty circles) energy
gaps for a variety of sytems to experiment. The black line, y=x, represents the experimental
gaps. Data from [84].

extension of the method to the study of large systems and nanostructures, see Chapter 2.

1.4 Optical properties and the Bethe-Salpeter equation (BSE)

The single-particle Green’s function described in the previous section has poles
at complex energies with real parts related to the single particle excitation energies - the
energies associated with creating a single electron or single hole on top of the N -particle
ground state. However, since the GWmethodology is a one-particle theory, it is not intended
to yield accurate optical properties. This is because optical properties are related to neutral
excitations: that is, the excitation of both an electron and a hole. In many systems (with
the exception perhaps of bulk metals), the electron and the hole interact strongly. This
interaction leads to a qualitative difference in optical spectra. [115]

The approach we take, is to consider the two-particle Green’s function and the
Bethe-Salpeter equation method for its evaluation. [132, 115] In this scheme, we approxi-
mate the neutral excited states of an N -particle system as a superposition of quasi-electron
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Figure 1.4: Schematic of the single-particle like electron-hole transitions that make up the
basis set for which the interacting wavefunction AS

vc is expanded.

and quasi-hole states plus some correction (assumed to be small):

|N,S〉 =
hole∑

v

elec∑

c

AS
vc a

†
v b

†
c |N, 0〉 + ... (1.30)

where S is an index labeling a particular neutral two-particle excited state, called an exciton,
of the N -interacting electron system, and a† and b† are the creation operators for holes and
electrons respectively. The origin of this expression can be found from defining a quasi-two-
particle wavefunction analagous to the quasi-particle wavefunctions of the previous section
as:

χS(x,x
′) = − < N, 0|ψv(x

′)ψ†
c(x)|N,S > . (1.31)

Here, |N, 0 > and |N,S > refer to the N -particle ground state and two-particle excited
states respectively. x refers to a joint space, time coordinate (r, t). We can expand this
function in the basis of the quasi-electron and quasi-hole wavefunctions as:

χS(r,r
′)=

∑

cv

AS
cv ψc(r)ψ

∗
v(r

′), (1.32)

This is illustrated in Fig. 1.4.
In the works of Strinati [132] and Rohlfing and Louie [115], it is shown that χS

satisfies the following equation (shown within the Tamm-Dancoff approximation [115] for
simplicity):

(Ec −Ev)A
S
cv +

∑

cv,c′v′

Kcv,c′v′ (ΩS)A
S
c′v′ = ΩS A

S
cv . (1.33)
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Here, ΩS is the excitation energy of the two-particle excited state, ES − E0. For bound-
exciton states, i.e. states where the hole amplitude is localized around the electron position,
the exciton binding can be inferred from the difference in energy between ΩS and the minima
of all Ec − Ev non-interacting energies that contribute to the exciton state (i.e. have non-
zero AS

cv). This equation is termed the Bethe-Salpeter equation since it derives from the
Bethe-Salpeter equation for the two particle Green’s function in much the same way the
Dyson’s equation 1.22 derives from the Dyson’s equation for the single particle Green’s
function. K, termed the electron-hole interaction Kernel, contains the effective interaction
between the quasi-electron and quasi-hole and is given by:

K(12,34)=
δ[VHδ(1,3)+Σ(1,3)]

δG(4,2)
, (1.34)

and often approximated as: [115]

K(12, 34) = −iδ(1, 3)δ(2− , 4)Vc(1, 4) + iδ(1, 4)δ(3, 2)W (1+, 3) (1.35)

= Kx +Kd.

Here, Kx is a bare-exchange interaction similar to that discussed above in reference to
Hartree-Fock theory. Kd is a screened-direct interaction that can be physically understood
as the Coulomb interaction between the charged electron and charged hole and the induced
screening electrons of the background system.

One may compute directly the optical spectra from the two-particle excited states
|N,S >. For example the imaginary part of the macroscopic dielectric matrix (related to
many optics phenomena such as absorption and scattering spectroscopy) is:

ε2(ω) =
16π2e2

ω2

∑

s

|〈N, 0| ê · v |N,S〉|2 δ(ΩS − h̄ω), (1.36)

where the matrix elements defining the oscillator strength for each transition are:

〈N, 0| ê · v |N,S〉 =
∑

cv

AS
cv 〈c| ê · v |v〉 . (1.37)

With the excitation energies and amplitudes of the electron-hole pairs, A, one can
also obtain higher order optical effects such as multi-photon absorption and phonon-assisted
absorption spectra. When applying this method to isolated nanosystems in supercell calcu-
lations, it is important, as it is in the GW calculation, to replace W with the appropriate
screened truncated interaction. As will be illustrated in the final Chapter, even with well-
separated systems that are considered reasonable in DFT calculations, the nature of the
interaction between the electron and hole in an untruncated interaction calculation can be
very different from the isolated case owing to the unwanted influence of neighboring replicas.
Because of the generally reduced screening and confinement effects, one expects stronger ex-
citonic effects in reduced dimensional systems, which as we will see in the following chapters,
is indeed the case.
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Chapter 2

A Modern Implementation of the
GW-BSE Method for Complex
Materials and Nanostructures:

The GW formalism [58] laid out in Chapter 1 was first developed as an ab inito
methodology in computational research codes in the late 1980’s [63, 62] with mainly tradi-
tional bulk systems in mind. Over the last few decades, the methodology has been success-
fully applied to the study of the quasiparticle properties of a large range of material systems
from traditional bulk semiconductors, insulators and metals to, more recently, nanosystems
like polymers, nano-wires and molecules [62, 83, 127, 128, 37, 111]. The GW approach
has proven to yield quantitatively accurate quasiparticle band gaps and dispersion relations
from first principles.

Additionally, the Bethe-Salpeter equation (BSE) approach to the optical properties
of materials has proven exceptionally accurate in predicting the optical response of a simi-
larly large class of materials within the same approximations as GW for Σ [132, 115, 7, 20].

The combined GW-BSE approach is now arguably regarded as the most accurate
methodology commonly used for computing the quasiparticle and optical properties within
computational physics of condensed-matter systems from first principles. However, a per-
cieved drawback of the GW methodology is its computational cost; a GW-BSE calculation
is usually thought to be an order of magnitude (or worse) more than a typical DFT calcula-
tion for the same system. Since the pioneering work of Ref [62] many GW implementations
have been made, but all are limited to small systems of the size of 10’s of atoms, and scal-
ing to only small numbers of CPUs on the order of 100. Thus, there is a great need in the
community for a modern implementation of the GW-BSE methodology for use on large and
complex materials. We have developed such a modern implementation, in the form of the
BerkeleyGW package, over the past several years in order to meet this need.

BerkeleyGW is a massively parallel computer package that implements the ab initio
GW methodology of Hybertsen and Louie [62] and includes many more recent advances,
such as the Bethe-Salpeter equation approach for optical properties [115]. It alleviates the
restriction to small numbers of atoms and scales beyond thousands of CPUs. The package
is intended to be used on top of a number of mean-field (DFT and other) codes that focus
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on ground-state properties such as PARATEC [3], Quantum ESPRESSO [48], SIESTA [126, 104]
and an empirical pseudopotential code (EPM) included in the package (based on TBPW
[89]).

In this chapter, we will summarize some of the major sections, advances and imple-
mentation details of the BerkeleyGW package that are relevant for the study of nanostruc-
tured materials presented in the subsequent chapters. We present a breakdown of a typical
calculation on a large nano-system utilizing the package. We save for the appendix many of
the detailed implementation issues and performance details, including the parallel processor
scaling - an issue of great importance to utilizing the package on complex materials. For
the interested reader, the latest source code and help forums can be found by visiting the
website at http://berkeleygw.org/.

2.1 Theoretical Framework

Let us first summarize the relevant parts of the ab initio GW-BSE approach whose
theory was laid out in Chapter 1 as it is implemented in the BerkeleyGW package. The ab
initio GW-BSE approach is a many-body Green’s-function methodology whose only input
parameters are the constituent atoms and the approximate structure of the system [62, 115].
Typical calculations on the ground- and excited-state properties using the GW-BSE method
can be broken down into three steps: 1) the solution of the ground-state structural and
electronic properties within a suitable ground-state theory such as the pseudopotential
density-functional theory (DFT), 2) the calculation of the quasiparticle energy values and
wavefunctions within the GW approximation for the electron self-energy operator, and
3) the calculation of the two-particle correlated electron-hole excited states through the
solution of a Bethe-Salpeter equation.

DFT calculations, often the chosen starting point for GW, are performed by solving
the self-consistent Kohn-Sham equations with an approximate functional for the exchange-
correlation potential, Vxc – one common approximation being the local density approxima-
tion (LDA) [76]:

[

−1

2
∇2 + Vion + VH + V DFT

xc

]

ψDFT
nk = EDFT

nk ψDFT
nk (2.1)

where EDFT
nk and ψDFT

nk are the Kohn-Sham eigenvalues and eigenfunctions respectively,
Vion is the ionic potential, VH is the Hartree potential and Vxc is the exchange-correlation
potential within a suitable approximation. When DFT is chosen as the starting point
for GW, the Kohn-Sham wavefunctions and eigenvalues are used here as a first guess for
their quasiparticle counterparts. The quasiparticle energies and wavefunctions (i.e. the
one-particle excitations) are computed by solving the following Dyson equation [59, 62]:

[

−1

2
∇2 + Vion + VH +Σ(EQP

nk )

]

ψQP
nk = EQP

nk ψ
QP
nk (2.2)

where Σ is the self-energy operator within the GW approximation, and EQP
nk and ψQP

nk are
the quasiparticle energies and wavefunctions, respectively. For systems of dimension less
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than three, the Coulomb interaction may be replaced by a truncated interaction. The
interaction is set to zero for particle separation beyond the size of the material in order to
avoid unphysical interaction between the material and its periodic images in a super-cell [32]
calculation. The electron-hole excitation states (probed in optical or other measurements)
are calculated through the solution of a Bethe-Salpeter equation [115, 132] for each exciton
state S:

(
EQP

ck − EQP
vk

)
AS

vck +
∑

v′c′k′

〈

vck|Keh|v′c′k′
〉

= ΩSAS
vck (2.3)

where AS
vck is the exciton wavefunction (in the Bloch representation), ΩS is the excitation

energy, and Keh is the electron-hole interaction kernel. The exciton wavefunction can be
expressed in real space as:

Ψ(re, rh) =
∑

k,c,v

AS
vckψk,c(re)ψ

∗
k,v(rh), (2.4)

and the imaginary part of the dielectric function, if one is interested in the optical response,
can be expressed as

ǫ2(ω) =
16π2e2

ω2

∑

S

∣
∣e · 〈0|v|S〉

∣
∣2δ
(
ω − ΩS

)
(2.5)

where
〈0|v|S〉 =

∑

vck

AS
vck 〈vk|v|ck〉 , (2.6)

and where v is the velocity operator along the direction of the polarization of light, e. One
may compare this to the non-interacting absorption spectra:

ǫ2(ω) =
16π2e2

ω2

∑

vck

∣
∣e · 〈vk|v|ck〉

∣
∣2δ
(
ω −EQP

ck + EQP
vk

)
. (2.7)

An example absorption spectrum for silicon computed with the BerkeleyGW pack-
age at the GW and the GW-BSE levels is shown in Fig. 2.1. Only when both the quasipar-
ticle effects within the GW approximation and the excitonic effects through the solution of
the Bethe-Salpeter equation are included is good agreement with experiment reached.

2.2 Computational Layout

2.2.1 Major Components of a GW-BSE Calculation for Complex Mate-
rials

Figure 2.2 illustrates the procedure for carrying out an ab initio GW-BSE calcula-
tion to obtain quasiparticle and optical properties using the BerkeleyGW code. First, one
obtains the mean-field electronic orbitals and eigenvalues as well as the charge density. One
can utilize one of the many supported DFT codes [3, 48, 126] to construct this mean-field
starting point and convert it to the BerkeleyGW format using the included wrappers.
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Figure 2.1: The absorption spectra for silicon calculated at the GW (black-dashed) and
GW-BSE (red-solid) levels using the BerkeleyGW package. Experimental data from [46].
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Figure 2.2: Flow chart of a GW-BSE calculation performed using the BerkeleyGW package
described in this chapter.
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The epsilon executable produces the polarizability and inverse dielectric matrices.
In the epsilon executable, the static or frequency-dependent polarizability and dielectric
function are calculated within the random phase approximation (RPA) using the electronic
eigenvalues and eigenfunctions from a mean-field reference system. The main output is the
file epsmat that contains the inverse-dielectric matrix.

In the sigma executable, the screened Coulomb interaction, W , is constructed
from the inverse dielectric matrix and the one-particle Green’s function, G, is constructed
from the mean-field eigenvalues and eigenfunctions. We then calculate the diagonal and
(optionally) off-diagonal elements of the self-energy operator, Σ = iGW , as a matrix in the
mean-field basis. In many cases, only the diagonal elements are sizable within the chosen
mean-field orbital basis; in such cases, in applications to real materials, the effects of Σ can
be treated within first-order perturbation theory. If off-diagonal terms are not requested,
the sigma executable considers Σ in the form Σ = Vxc + (Σ − Vxc), where Vxc is the
independent-particle exchange-correlation potential of the chosen mean-field system. For
moderately correlated electron systems, the best available mean-field Hamiltonian may often
be taken to be the Kohn-Sham Hamiltonian [76]. However, many mean-field starting points
are consistent with the BerkeleyGW package such as Hartree-Fock, static COHSEX and
hybrid functionals. In principle, the process of correcting the eigenfunctions and eigenvalues
(which determine W and G) could be repeated until self-consistency is reached or the Σ
matrix is diagonalized in full; however, in practice, it is found that an adequate solution is
often obtained within first-order perturbation theory on the Dyson’s equation for a given Σ.
Comparison of calculated energies with experiment shows that this level of approximation
is very accurate for semiconductors and insulators and for most conventional metals. The
output of the sigma executable are EQP, the quasiparticle energies, which are written to
the file eqp.dat using the eqp.py post-processing utility on the generated sigma.log files
for each sigma run.

The BSE executable, kernel, takes as input the full dielectric matrix calculated
in the epsilon executable, which is used to screen the attractive direct electron-hole inter-
action, and the quasiparticle wavefunctions, which often times are taken to be the same as
the mean-field wavefunctions. The direct and exchange part of the electron-hole kernel are
calculated and output into the bsedmat and bsexmat files respectively. The absorption

executable uses these matrices, the quasiparticle energies and wavefunctions from a coarse
k-point grid GW calculation, as well as the wavefunctions from a fine k-point grid. The
quasiparticle energy corrections and the kernel matrix elements are interpolated onto the
fine grid. The Bethe-Salpeter Hamiltonian, consisting of the electron-hole kernel with the
addition of the kinetic-energy term, is constructed in the quasiparticle electron-hole pair
basis and diagonalized yielding the exciton wavefunctions and excitation energies, printed
in file eigenvectors. Exciton binding energies can be inferred from the energy of the
correlated exciton states relative to the interband-transition continuum edge. With the
excitation energies and amplitudes of the electron-hole pairs, one can then calculate the
macroscopic dielectric function for various light polarizations which is written to the file
absorption eh.dat. This may be compared to the absorption spectra without the electron-
hole interaction included, printed in file absorption noeh.dat.

Example input files for each executable are contained within the source code for
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Figure 2.3: The cross-section of the (20,20) SWCNT used throughout the chapter as a
benchmark system.

the package, as well as complete example calculations for silicon, the (8,0) and (5,5) single-
walled carbon nanotubes (SWCNTs), the CO molecule, and sodium metal.

Throughout the chapter, atomic units are used. Additionally, sums over k and q

are accompanied by an implicit division by the volume of the supercell, Vsc = NkVuc, where
Nk is the number of points in the k-grid and Vuc is the volume of the unit cell.

Throughout the chapter and appendices, we refer to benchmark numbers from
calculations on the (20,20) SWCNT. This system has 80 carbon atoms and 160 occupied
bands. We use 800 unoccupied bands in all sums requiring empty orbitals. We use a
supercell of size 80 × 80 × 4.6 au3 equivalent to a bulk system of greater than 500 atoms.
We use a 1× 1× 32 coarse k-grid and a 1× 1× 256 fine k-grid. We calculate the self-energy
corrections within the diagonal approximation for 8 conduction and 8 valence bands. The
Bethe-Salpeter equation is solved with 8 conduction and 8 valence bands. The relative costs
of the various steps in the GW-BSE calculation using the BerkeleyGW package is shown in
Table 2.1. As can be seen from the table, the actual time to solution for the GW-BSE part
of the calculation is smaller than that of the DFT parts.

2.2.2 Dielectric Matrix: epsilon

epsilon is a standalone executable that computes either the static or dynamic
RPA polarizability and corresponding inverse dielectric function from input electronic eigen-
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Step # CPUs CPU Hours Wall Hours

DFT Coarse 64 × 32 19000 9.1
DFT Fine 64 × 256 29000 1.8
epsilon 1600 × 32 61000 1.2
sigma 960 × 16 46000 3.0
kernel 1024 600 0.6

absorption 256 500 2.0

Table 2.1: Breakdown of the CPU and wall time spent on the calculation of the (20,20)
SWCNT with parameters described in the text. The × indicates an additional level of
trivial parallelization over the 256 or 32 (16 if time-reversal symmetry is utilized) k- or
q-points.

values and eigenvectors computed in a suitable mean-field code. As we discuss in detail
below, the input electronic eigenvalues and eigenvectors can come from a variety of dif-
ferent mean-field approximations including DFT within LDA/GGA [76, 107], generalized
Kohn-Sham hybrid-functional approximations as well as direct approximations to the GW
Dyson’s equation such as the static-COHSEX [59, 68] approximation and the Hartree-Fock
approximation.

We will first discuss the computation of the static polarizability and the inverse
dielectric matrix. The epsilon executable computes the static RPA polarizability using
the following expression [62]:

χGG′(q ; 0) =
occ∑

n

emp
∑

n′

∑

k

Mnn′(k,q,G)M∗
nn′(k,q,G′)

1

Enk+q−En′k

. (2.8)

where
Mnn′(k,q,G) = 〈nk+q| ei(q+G)·r ∣∣n′k

〉
(2.9)

are the plane-wave matrix elements. Here, q is a vector in the first Brillouin zone, G

is a reciprocal lattice vector, 〈nk| and Enk are the meanfield electronic eigenvectors and
eigenvalues. The matrix in Eq. 2.8 is to be evaluated up to |G2| < |Ecut| for both G

and G′ where Ecut defines the dielectric energy cutoff. The number of empty states, n′,
included in the summation must be such that the highest empty state included has an energy
corresponding to Ecut. There is therefore one, rather than two, convergence parameter in
evaluating Eq. 2.8 – one must either choose to converge with empty states or with the
dielectric energy cutoff and set the remaining parameter to match the chosen convergence
parameter. The epsilon code itself reports the convergence of Eq. 2.8 in an output
file called chi converge.dat (plotted in Fig. 2.4), that presents the computed value of
χGG′=0(q ; 0) and χGG′=Gmax

(q ; 0) using partial sums in Eq. 2.8 where Gmax is the largest
reciprocal-lattice vector included, and the number of empty states is varied between 1 and
the maximum number requested in the input file, epsilon.inp.

With the expression for χ above, we can obtain the dielectric matrix as

ǫGG′(q ; 0) = δGG′ − v(q+G)χGG′(q ; 0) (2.10)
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Figure 2.4: Example convergence output plotted from chi converge.dat showing the con-
vergence of the sum in Eq. 2.8 for the G,G′ = 0 and q = (0, 0, 0.5) component of χ in
ZnO.
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where v(q+G) is the bare Coulomb interaction defined as:

v(q+G) =
4π

|q+G|2
(2.11)

in the case of bulk crystals where no truncation is necessary. We discuss in Sec. 2.3 how to
generalize this expression for the case of nano-systems where truncating the interaction in
non-periodic directions greatly improves the convergence with supercell size.

It should be noted that we use an asymmetric definition of the Coulomb interac-
tion, as opposed to symmetric expressions such as

v(G,G′) =
4π

|q+G| |q+G′| . (2.12)

This causes ǫGG′(q ; 0) and χGG′(q ; 0) to be also asymmetric in G and G′. This asymmetry
is resolved when constructing the static screened Coulomb interaction using the expression:

WGG′(q ; 0) = ǫ−1
GG′(q ; 0)v

(
q+G′). (2.13)

Here W is symmetric in G and G′ even though both v and ǫ−1 individually are not.
The computation of ǫ−1

GG′(q ; 0) in the epsilon code involves three computationally
intensive steps: the computation of the matrix elements needed for the summation in Eq.
2.8, the summation itself and the inversion of the dielectric matrix to yield ǫ−1

GG′(q ; 0).
The epsilon code first computes all the matrix elements Mnn′ required in the

summation for Eq. 2.8. This step is generally the most time-consuming step in the execution
of the epsilon code. Naively, one might think this process scales as N4, where N is the
number of atoms in the system. This is because both the number of valence and conduction
bands needed scales linearly with N and the number of G vectors scales linearly with
the cell volume which itself scales linearly with the number of atoms. Thus, we must
calculate N3 matrix elements each of which involves a sum over the plane-wave basis set
for the eigenfunctions. We therefore have an N4 scaling. However, we can achieve N3 logN
scaling by using fast Fourier transforms (FFTs), noting that the expression in Eq. 2.9 is a
convolution in Fourier space [44]. Therefore, Eq. 2.9 can be written as the Fourier transform
of a direct product of the wavefunctions in real space:

Mnn′(k,q, {G}) = FFT−1
(
φn,k+q(r) ∗ φ∗n′,k(r)

)
. (2.14)

The FFTs are implemented with FFTW [45] and scale as N logN . The computation of
all the matrix elements needed for Eq. 2.8 therefore scales as N3 logN . We discuss in
the following sections that the computation of these matrix elements can be very trivially
parallelized up to tens of thousands of CPUs. Given an infinite resource of CPUs, our
implementation would have a wall-time scaling of N logN , nearly linear in the number of
atoms.

Having computed the individual matrix elements required in Eq. 2.8, we now turn
our attention to the summation involved in the same expression. It should be noted that
the formal scaling of this step with the number of atoms is N4 since one must sum over
the number of occupied bands and the number of unoccupied bands for every G and G′
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pair – each one of these quantities scaling linearly with the number of atoms. This step
therefore has formally the worst scaling of the entire GW process – leading many to claim
that GW as a whole scales like N4. However, in practice for most systems currently under
study within a generalized plasmon-pole (GPP) [62] or other approximation where this sum
is done only once for the static polarizability, this step represents less than 10 percent of
a typical calculation time even for systems of 100’s of atoms because it can be greatly
optimized and parallelized. In particular, Eq. 2.8 can be written very compactly as a single
matrix-matrix product for each q:

χGG′(q ; 0) = M(G,q, (n, n′,k)) ·MT (G′,q(n, n′,k)) (2.15)

where (n, n′,k) represents a single composite index that is summed over as the inner di-
mension in the matrix-matrix product. The matrices M can be expressed in terms of the
matrix elements M as:

M(G,q, (n, n′,k)) =Mnn′(k,q,G) · 1
√
Enk+q−En′k

. (2.16)

The single dense matrix-matrix product required in Eq. 2.15 still scales as N4

since the inner dimension, (n, n′,k), scales as N2 and dense matrix multiplication itself
scales as N2. However, in the BerkeleyGW package, this single step is still made quite
rapid for even systems as large as 100’s of atoms. The LEVEL 3 BLAS [8] libraries DGEMM
and ZGEMM and their parallel analogues are used to compute the single matrix product in
Eq. 2.15. As we discuss further in Sec. A.1.1, in the evaluation of Eq. 2.9, the parallel
wall-time scaling is N2 with the number of atoms.

Finally, once we have constructed χGG′(q ; 0) we can construct the RPA dielectric
matrix and inverse dielectric matrix required for the computation of the screened Coulomb
interaction, W . The dielectric matrix as implemented in the code is expressed in Eq. 2.10.

Here, we require for the first time the Coulomb interaction in reciprocal space
v(q+G), which can be computed trivially from Eq. 2.11 for the case of bulk crystals, but
requires an FFT for the case of nanostructured materials. We discuss this more in Sec. 2.3.

There is a clear problem in directly computing ǫ00(q = 0) due to the fact the
Coulomb interaction, Eq. 2.11, diverges as q → 0 except in the case of box-type truncation
schemes (see Sec. 2.3). For semiconducting systems, due to orthogonality, the matrix ele-
ments (Eq. 2.9) themselves go to 0 with the form |Mnn′(k,q,G = 0)| ∝ |q|. So, ǫ(q → 0)

contains a non-trivial q2

q2
limit. There are multiple ways to handle this limit, including

replacing the “velocity” operator in Eq. 2.9 with the momentum operator, plus the com-
mutators with the non-local part of the mean-field Hamiltonian. [15, 62]. The epsilon

code has implemented a simpler scheme, however, in which we numerically take the limit
as q → 0 by evaluating ǫ00(q0) at a small but finite q0 usually taken as approximately
1/1000th of the Brillouin zone. For semiconducting systems, where ǫ00(q = 0) → C, it
is sufficient to construct a separate k-grid for the conduction and valence bands shifted
by the small vector q0 in order to compute Mnn′(k,q0,G = 0), where n is a valence and

n′ a conduction band, and to evaluate the correct limiting q2

q2
ratio. For metals, however,

intraband transitions have |Mnn′(k,q,G = 0)| ∝ C, yielding ǫ00(q → 0) ∝ C′

q2
. In this case,
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the two-k-grid treatment is insufficient, because the proportionality coefficient C ′ depends
sensitively on the density of states (DOS) at the Fermi energy. Therefore a k-grid sampling
of the same spacing as q0 is required, although fewer conduction bands are necessary in the
sum since ǫ(q → 0) is dominated by intra-band transitions. Note that this treatment of
intraband transitions is still the zero-temperature limit in our code, as the effect of thermal
occupations is small in GW except at very large temperatures [21]. Effectively occupations
are taken as one below the Fermi level, zero above the Fermi level, and 1/2 at the Fermi
level (as needed for graphene at the Dirac point). This is despite any smearing that may
have been used in the underlying mean-field calculation.

The inversion of the dielectric matrix required to compute W , Eq. 2.13, is done
with LAPACK and ScaLAPACK (for parallel calculations) using ZGESV, DGESV and their
parallel counterparts. The inversion scales like N3 with the number of atoms and, as
we discuss below, scales well up to 100’s of processors with ScaLAPACK. In general, for
systems of up to 100’s of atoms, the inversion step represents less than 10 percent of the
total computation time for epsilon.

We have so far limited ourselves to situations in which only a direct calculation
of the static polarizability, Eq. 2.8, is required, such as in the static-COHSEX approxima-
tion [68] or when utilizing a GPP model [62] to extend the dielectric response to non-zero
frequencies. However, in order to do a more refined calculation, the dielectric matrix can
be computed directly at real frequencies without extrapolation, as is formally required in
the Dyson equation. We use in the package the advanced and retarded dielectric functions,
defined as:

ǫ
r/a

GG′(q ;E) = δGG′ − v(q+G)
occ∑

n

emp
∑

n′

∑

k

Mnn′(k,q,G)M∗
nn′(k,q,G′) (2.17)

× 1

2

[
1

Enk+q −En′k−E∓ iδ
+

1

Enk+q−En′k+E± iδ

]

where E is the evaluation frequency and δ is a broadening parameter chosen to be consistent
with the energy spacing afforded by the k-point sampling of the calculation, using the upper
(lower) signs for the retarded (advanced) function. In principle, one must converge the
calculation with respect to increasing the k-point sampling and decreasing this broadening
parameter.

In the epsilon code, we compute Eq. 2.17 on a grid of real frequencies, E,
specified by a frequency spacing, a low-frequency cutoff, a high-frequency cutoff and a
frequency-spacing increment. We sample the frequency on the real axis uniformly from 0
to the low-frequency cutoff with a sampling rate given by the frequency spacing. We then
increase the frequency spacing by the step increment until we reach the high-frequency
cutoff (Fig. 2.6). In general, one must also refine this frequency grid until convergence is
reached, but we find that for the purpose of calculating band gaps of typical semiconductors,
a frequency spacing of a few hundred meV and a high-frequency cutoff of twice the dielectric
energy cutoff is sufficient, though it should be noted this energy can be quite high (e.g. the
case of ZnO [122]).
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Figure 2.5: Example output plotted from EpsDyn showing the computed ǫ00(ω) in ZnO.
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Figure 2.6: Schematic of the frequency-grid parameters for a full-frequency calculation in
epsilon. The open circles are a continuation of the uniform grid that are omitted above
the low-frequency cutoff.
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In cases where the computation of the “full-frequency” dielectric response function
is required, the bottleneck of the calculation often does become the N4 summation step of
Eq. 2.15. This is because the computation of the matrix elements, Eq. 2.9, needs only be
done once, whereas the summation must be done for all frequencies separately. Because of
this, a full-frequency epsilon calculation of between 10-50 frequencies costs only twice the
time of a static epsilon calculation, but the cost scales linearly with frequencies after this
point.

2.2.3 Computation of the Self-Energy: sigma

The sigma executable takes as input the inverse epsilon matrix calculated from the
epsilon executable and a suitable set of mean-field electronic energies and wavefunctions.
It computes a representation of the Dyson’s equation, Eq. 2.2, in the basis of the mean-field
eigenfunctions through the computation of the diagonal and off-diagonal elements of Σ:

〈ψnk|HQP(E)|ψmk〉 = (2.18)

EMF
nk δn,m + 〈ψnk|Σ (E)−ΣMF (E) |ψmk〉

where E is an energy parameter that should be self-consistently set to the quasiparticle
eigenvalues, EMF

nk and ψnk are the mean-field eigenvalues and eigenvectors and ΣMF is a
mean-field approximation to the electronic self energy operator, such as Vxc in the case of
a DFT starting point.

It is often the case that the mean-field wavefunctions are sufficiently close to the
quasiparticle wavefunctions [62] that one may reduce Eq. 2.18 to include only diagonal ma-
trix elements. In this case the user may ask for only diagonal elements, and the quasiparticle
energies will be updated in the following way:

EQP
nk = EMF

nk + 〈ψnk|Σ (E)− ΣMF (E) |ψnk〉. (2.19)

The mean field in Eq. 2.19 and Eq. 2.18 can be DFT within the LDA or GGA schemes
as well as within a hybrid-functional approach, in which case ΣMF (E) = Vxc, which is
local and energy-independent in the case of LDA. The starting mean-field can also be an
approximation to the Dyson’s equation, Eq. 2.2, such as Hartree-Fock (the zero-screening
limit) or static COHSEX (the static-screening limit) [114, 26, 68] - see chapter 3 for a
discussion of COHSEX as a starting point. The use of these mean-field starting points
for construction of Eq. 2.18 and Eq. 2.19 is classified as a one-shot G0W0 calculation
(the 0 here means that both G and W are constructed from the mean-field eigenvalues
and eigenvectors). One can also start from a previous iteration of GW in an eigenvalue or
eigenvector self-consistency scheme [26, 144]. In this case, the ‘MF’ superscripts in Eq. 2.19
and 2.18 should be renamed “previous” to designate the self-consistency.

The sigma executable itself can evaluate the matrix elements of Σ in Eq. 2.19
and Eq. 2.18 within various approximations: Hartree-Fock, static COHSEX, GW within a
GPP model and full-frequency GW.

For GW and static-COHSEX calculations, Σ can be broken into two parts, Σ =
ΣSX + ΣCH, where ΣSX is the screened exchange operator and ΣCH is the Coulomb-hole
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operator. [62, 58, 59] These are implemented in the sigma executable in the following way
for a full-frequency calculation:

〈nk|ΣSX(E)
∣
∣n′k

〉
= −

occ∑

n′′

∑

qGG′

M∗
n′′n(k,−q,−G)Mn′′n′(k,−q,−G′) (2.20)

×
[
ǫrGG′

]−1 (
q ;E−En′′k−q

)
v
(
q+G′)

and

〈nk|ΣCH(E)
∣
∣n′k

〉
=

i

2π

∑

n′′

∑

qGG′

M∗
n′′n(k,−q,−G)Mn′′n′(k,−q,−G′) (2.21)

×
∫ ∞

0
dE′

[
ǫr
GG′

]−1
(q ;E′)−

[
ǫa
GG′

]−1
(q ;E′)

E−En′′k−q−E′ + iδ
v
(
q+G′)

where M is defined in Eq. 2.6 and ǫr and ǫa are the retarded and advanced dielectric
matrices defined in Eq. 2.17.[129] In practice the sigma executable computes the matrix
elements of bare exchange, ΣX and of ΣSX − ΣX, where the matrix elements of ΣX are
obtained by replacing

[
ǫr
GG′

]−1 (
q ;E −En′′k−q

)
with δG,G′ in Eq. 2.20 (as given by Eq.

2.29 below). The integral in Eq. 2.21 over frequency is done numerically on the frequency
grid used in the epsilon executable (Fig. 2.6).

For GPP calculations, the corresponding expressions used in the code are:

〈nk|ΣSX(E)
∣
∣n′k

〉
= −

occ∑

n′′

∑

qGG′

M∗
n′′n(k,−q,−G)Mn′′n′(k,−q,−G′) (2.22)

×
[

δGG′ +
Ω2
GG′(q)

(
E−En′′k−q

)2− ω̃2
GG′(q)

]

v
(
q+G′)

and

〈nk|ΣCH(E)
∣
∣n′k

〉
=

1

2

∑

n′′

∑

qGG′

M∗
n′′n(k,−q,−G)Mn′′n′(k,−q,−G′) (2.23)

×
Ω2
GG′(q)

ω̃GG′(q)
[
E−En′′k−q− ω̃GG′(q)

] v
(
q+G′)

where Ω and ω̃ are the effective bare plasma frequency and the GPP mode frequency [62]
defined as:

Ω2
GG′(q) = ω2

p

(q+G) · (q+G′)

|q+G|2
ρ(G−G′)

ρ(0)
(2.24)

and

ω̃2
GG′(q) =

Ω2
GG′(q)

δGG′ − ǫ−1
GG′(q; 0)

(2.25)

Here, ρ is the charge density in reciprocal space and ω2
p = 4πρ(0)e2/m is the classical plasma

frequency. In this case, the integral over energy that is necessary in the full-frequency
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expression, Eq. 2.21, is reduced to a single term using an analytical approximation to the
frequency dependence of the dielectric matrix requiring only the static dielectric matrix
ǫ−1
GG′(q; 0) in Eq. 2.25. The analytical approximation is done using the f -sum rule for
each GG′ pair as described in Ref. [62]. This reduces the computational cost of evaluating
the Σ matrix elements by a factor of the number of frequencies. It is important to note
that for systems without inversion symmetry, ρ in Eq. 2.24 and Vxc in Eqs. 2.18 and
2.19 are complex functions in reciprocal space (even though these are real functions when
transformed to real space).

For static COHSEX calculations, the expressions used in the code are:

〈nk|ΣSX(0)
∣
∣n′k

〉
= −

occ∑

n′′

∑

qGG′

M∗
n′′n(k,−q,−G)Mn′′n′(k,−q,−G′)ǫ−1

GG′(q ; 0)v
(
q+G′)

(2.26)

and

〈nk|ΣCH(0)
∣
∣n′k

〉
=

1

2

∑

n′′

∑

qGG′

M∗
n′′n(k,−q,−G)Mn′′n′(k,−q,−G′) (2.27)

×
[
ǫ−1
GG′(q ; 0)− δGG′

]
v
(
q+G′)

=
1

2

∑

qGG′

Mnn′(k,q = 0,G′ −G)
[
ǫ−1
GG′(q ; 0)− δGG′

]
v
(
q+G′) (2.28)

where Eqs. 2.26 and 2.27 can formally be derived from Eqs. 2.22 and 2.23 by setting
(
E−En′′k−q

)
to zero. Using the completeness relation for the sum over empty states, Eq.

2.27 can be written in a closed form given by Eq. 2.28, which now does not involve the
empty orbitals.

For Hartree-Fock calculations, we compute the matrix elements of bare exchange:

〈nk|ΣX

∣
∣n′k

〉
= −

occ∑

n′′

∑

qGG′

M∗
n′′n(k,−q,−G)Mn′′n′(k,−q,−G′)δGG′v

(
q+G′) (2.29)

In principle, the inner and outer orbitals used in Eqs. 2.20 – 2.29 originate from
the same mean-field solution. However, there is an option in the sigma executable to use
a different mean-field solution for the inner and outer states. This is useful if one wishes
to construct the Σ operator within one mean field but expand the Σ matrix using different
orbitals, i.e. in order to evaluate matrix elements in a different basis than the mean-field
wavefunctions when the quasiparticle wavefunctions are significantly different. This is also
useful for verifying the accuracy of the linearization approximation as given by Eq. 2.30
below.

Eq. 2.19 depends on the evaluation energy parameter E. This parameter should
be determined self-consistently to the quasiparticle energy EQP

nk . In principle, what one may
do is start by setting E = EMF

nk and find E0
nk using Eq. 2.19. One can then set E = E0

nk

and resolve Eq. 2.19 arriving at a new quasiparticle energy E1
nk. One can then repeat this

process until convergence is reached. This process can be achieved using the different set
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of inner and outer states as described in the previous paragraph – where the outer-state
eigenvalues are updated after each step, and the eigenfunctions are left unchanged. In many
cases, one can avoid this process by computing Σ(E) on a grid of energies and interpolating
or extrapolating to EQP

nk . In particular, in many systems, Σ(E) is a nearly linear function

of E so one may compute Σ(E) for two grid points and evaluate the self-consistent EQP
nk

using Newton’s method [62]:

EQP
nk = E0

nk +
dΣ/dE

1− dΣ/dE
(E0

nk − EMF
nk ) (2.30)

The derivative that appears here is also related to the quasiparticle renormalization factor:

Z =
dΣ/dE

1− dΣ/dE
(2.31)

For full-frequency calculations, Eq. 2.20 and Eq. 2.21 are evaluated on a frequency
grid, E, (not to be confused with the frequency grid over which the integrals are carried
out) specified by the user. One then has access directly to Re Σ(ω) and to Im Σ(ω), printed
in the file spectrum.dat, which can be used to construct the spectral function:

Ak(ω) =
1

π
· (2.32)

∑

n

|Im Σnk(ω)|
(ω − EMF

nk − Re Σnk(ω) + V nk
xc )2 + Im Σnk(ω)2

,

where we are using the mean-field exchange-correlation matrix element V nk
xc = 〈nk |Vxc|nk〉.

This quantity can be used to compare directly with the quasiparticle spectrum from photo-
emission experiments and various other measurements of the bandstructure.

The plane-wave matrix elements required in Eqs. 2.20 – 2.29 are similar to those of
Eq. 2.6 required for the construction of the irreducible polarizability matrix. In the current
case, however, we require additional matrix elements between valence-valence band pairs
as well as conduction-conduction band pairs. As was the case in the epsilon executable,
the matrix elements are computed using FFTs utilizing the FFTW library.[45] For each
pair of outer states, n and n′, we sum over all occupied and unoccupied inner states, n′′,
included in the calculation (typically states of energy up to the dielectric energy cutoff).
Therefore, the computational cost of computing all the necessary matrix elements scales as
N2 logN , where N is the number of atoms (a factor of N logN comes from the FFTs). If
one is interested in all the diagonal matrix elements, Eq. 2.19, in a given energy range (as
opposed to just a fixed small number of states – e.g. VBM and CBM) then an additional
factor of N is included in the scaling which becomes N3 logN . If one requires both diagonal
and off-diagonal elements within a given energy window (such as in a self-consistent GW
scheme), then the scaling becomes N4 logN .

Once the plane-wave matrix elements have been computed, the summations in the
Coulomb-hole terms of Eqs. 2.20 – 2.29 for a particular n, n′ pair scale individually as N3.
Again, if all diagonal or off-diagonal matrix elements of Σ in a given energy window must
be computed an additional factor of N or N2 respectively is added to the scaling.
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It is important to point out that the Coulomb-hole summations in terms of Eqs.
2.20 – 2.29 converge exceptionally slowly with respect to the number of empty states in-
cluded in the sums. The highest empty state included should have energy at least the
dielectric energy cutoff. Additionally, the convergence of the sums in 2.20 – 2.29 should be
tested with respect to the dielectric energy cutoff. As shown in Figure 2.7, the convergence
with respect to the dielectric energy cutoff, and the corresponding number of empty states,
is very slow in many cases. This problem is similar to convergence issues with respect to
empty states in the epsilon executable, as been discussed above. However, one finds that
in many cases (particularly for bulk systems) the final EQP converges much more slowly
with respect to the number of empty states in the Coulomb-hole expression than in the po-
larizability expression [122] – see Fig. 2.7 for a comparison of these two rates in ZnO. The
partial sums of the Coulomb-hole matrix elements with respect to number of states included
in the sum is written to the file ch converge.dat. Example output from ch converge.dat

is plotted in Fig. 2.7.

2.2.4 Optical Properties: BSE

The optical properties of materials are computed in the Bethe-Salpeter equation
(BSE) executables. Here the eigenvalue equation represented by the BSE, Eq. 2.3, is con-
structed and diagonalized yielding the excitation energies and wavefunctions of the corre-
lated electron-hole excited states. There are two main executables: kernel and absorption.
In the first, the electron-hole interaction kernel is constructed on a coarse k-point grid, and
in the second the kernel is (optionally) interpolated to a fine k-point grid and diagonalized.

The kernel executable constructs the second term of the left-hand side of Eq.
2.3 which is referred to as the electron-hole kernel. The kernel, K, as implemented in the
package, is limited to the static approximation, and contains two terms, a screened direct
interaction and a bare exchange interaction, Keh = Kd +Kx, defined in the following way
[115]:

〈vck|Kd|v′c′k′〉 = (2.33)

−
∫

drdr′ψ∗
c (r)ψc′(r)W (r, r′)ψ∗

v′(r
′)ψv(r

′)

and

〈vck|Kx|v′c′k′〉 = (2.34)
∫

drdr′ψ∗
c (r)ψv(r)v(r, r

′)ψ∗
v′(r

′)ψc′(r
′).

These matrices are constructed on a coarse grid of k-points, in most cases the same grid
used within the GW calculation because one must have previously constructed the dielectric
matrix ǫ−1(q) for q = k−k′. We calculate these matrices in G-space using the prescription
of Rohlfing and Louie [115]:

〈vck|Kd|v′c′k′〉 = (2.35)
∑

GG′

Mcc′(k,q,G)WGG′(q; 0)M∗
vv′ (k,q,G

′)
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Figure 2.7: ZnO Convergence of the VBM. Top: Example convergence output from file
ch convergence.dat showing the Coulomb-hole sum value vs. the number of bands in-
cluded in the sum. The black line is the best-guess converged value using the modified
static-remainder approach [35]. Bottom: The convergence of EQP with respect to empty
states in the polarizability sum, Eq. 2.8, and with respect to empty states in the Coulomb-
hole sum, Eq. 2.23. The red curve shows the VBM EQP in ZnO using a fixed 3,000 bands
in the Coulomb-hole summation and varying the number of bands included in the polar-
izability summation. The black curve shows the VBM EQP in ZnO using a fixed 1,000
bands in the polarizability summation and varying the number of bands included in the
Coulomb-hole summation.
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and

〈vck|Kx|v′c′k′〉 = (2.36)
∑

GG′

Mcv(k,q,G)v(q +G)δGG′M∗
c′v′(k,q,G

′)

where M is defined in Eq. 2.9 and calculated using FFTs as described above in Sec. 2.2.2.
For each k and k′, we must therefore calculate all the matrix elements Mvv′ , Mcc′ ,

andMvc. The number of valence and conduction bands required to calculate the absorption
spectra within a given energy window each scales linearly with the number of atoms N . So,
formally we again have N3 logN scaling with the use of FFTs. The summations involved in
Eq. 2.35 and Eq. 2.36, however, formally scale as N6 since there are N4 terms to compute
and each involves a sum over GG′. In practice, though, except for the largest systems
considered, the summations require less time than the matrix elements, and Nv and Nc

remain small compared to the values required in the GW step, for example where states
with energy up to the dielectric cutoff were required. Usually the energy window used in
solving the BSE is approximately 10 eV, giving a spectra converged beyond the visible
region. As we discuss below, within the BerkeleyGW package, the parallel wall-time scales
as N2 for this step. However, the N6 scaling will present a considerable challenge when
applying the code to systems of size greater than 100’s of atoms.

As was the case for GW code, the q → 0 limit must be handled carefully and
differently depending on the type of screening in the system. For the exchange kernel, we
zero out all G = G′ = 0 contributions to the kernel matrix elements, as was discussed in
Ref. [55] which gives directly Im ǫM where ǫM is the macroscopic dielectric constant. For
the direct term, however, we must handle the G = 0 case specially. For these purposes,
the G = 0 and G′ = 0 terms are removed from Eq. 2.35 and treated separately. For
each (kcv,k′c′v′) we save three terms: the body term, which contains the result of the sum
in Eq. 2.35 with the G = 0 or G′ = 0 terms removed; the wing term, which contains
all the sum of all the remaining terms in the sum with the exception of the single term
where G = G′ = 0; the head term, which contains the remaining term from the sum where
G = G′ = 0. For metallic systems, as we discussed above, ǫ−1(q,G = G′ = 0) ∝ 1/v(q)
so that W (q,G = G′ = 0) ∝ C, thus the head term in the kernel remains well behaved.
For semiconductors however, W (q,G = G′ = 0) ∝ 1/q2 so that the head term in the
kernel actually diverges as 1/q2 when q → 0. Similarly, the wing term diverges as 1/q when
q → 0 for semiconductors, while it again remains well behaved for metals. These limits are
summarized in Table 2.2.

Because exciton binding energies and absorption spectra depend sensitively on
quantities like the effective mass and joint density of states, it is essential in periodic systems
to sample the k-points on a very fine grid. Directly calculating the kernel on this grid in the
kernel executable would be prohibitively expensive; so instead we interpolate the kernel in
the absorption executable before diagonalization. For semiconductors, the head and wing
kernel terms are not smooth functions of k and k′ (as we have shown above, they diverge
for q = k− k′ → 0). Therefore, the quantities that we interpolate are q2 ·Kd

head, q ·Kd
wing

and the body term directly as they are now smooth quantities [115]. For metals, we directly
interpolate the kernel without any caveats because all the contributing terms are smooth
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functions of k and k′. As in GW, we treat metals with zero-temperature occupations.
The absorption executable requires as input both coarse- and fine-grid wavefunc-

tions. The interpolation is done through a simple expansion of the fine-grid wavefunction
in terms of nearest coarse-grid wavefunction:

unkfi
=
∑

n′

Ckco

n,n′un′kco
(2.37)

where kco is the closest coarse-grid point to the fine-grid point, kfi, and the coefficients Ckfi

n,n′

are defined as the overlaps between the coarse-grid and fine-grid wavefunctions:

Ckco

n,n′ =

∫

drunkfi
(r)u∗n′kco

(r). (2.38)

The coefficients Ckco

n,n′ are normalized so that
∑

n′ |Ckco

n,n′ |2 = 1. It should be noted that for a
given set of fine bands one can systematically improve the interpolation by including more
valence and conduction bands in the coarse grid due to the completeness of the Hilbert
space at each k. It should also be noted that we do restrict n and n′ to be either both
valence or both conduction bands – this is acceptable due to the different character of the
conduction and valence bands in most systems.

Using these coefficients we interpolate the kernel with the following formula:

〈vckfi|K|v′c′k′
fi〉 = (2.39)

∑

n1,n2,n3,n4

Ckco
c,n1

C∗kco
v,n2

C
∗k′

co

c′,n3
C

k′

co

v′,n4
〈n2n1kco|K|n4n3k′

co〉

whereK is one of the head, wing, body or exchange kernel terms. As in the case of epsilon,
this summation can be performed compactly as a set of matrix-matrix multiplications. We
utilize the Level 3 BLAS calls DGEMM and ZGEMM to optimize the performance.

One can systematically improve on the interpolation by using the closest four
coarse-grid points to each fine point and using a linear interpolation layer in addition to
the wavefunction-based interpolation described above. This is done by default for the
interpolation of the first term of Eq. 2.3 for the quasiparticle self-energy corrections EQP−
EMF:

EQP
n (kfi) = (2.40)

EMF
n (kfi) + 〈

∑

n′

|Ckco

n,n′ |2(EQP
n′ (kco)− EMF

n′ (kco))〉kco

where the brackets indicate linear interpolation using the tetrahedron method. In this case,
the wavefunction-based interpolation layer guarantees that the band crossings are properly
handled, and the linear interpolation layer ensures that we correctly capture the energy
dependence of the self-energy corrections. In this way, we can construct EQP on the fine
grid, or any arbitrary point, given EMF on the fine grid and EQP and EMF on the coarse
grid (Fig. 2.8).

As an alternative to calculating the quasiparticle corrections on the coarse grid and
interpolating them to the fine grid, the user may choose a less refined method of specifying
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the corrections using a three-parameter model involving a scissor-shift parameter ∆E to
open the energy gap at the Fermi energy, a zero energy E0 (typically the band edge),
and an energy-scaling parameter C changing the bandwidth (the parameters are specified
separately for valence and conduction bands):

EQP = EMF +∆E +C
(
EMF − E0

)
. (2.41)

Having constructed the kernel on the fine grid, we now consider the diagonalization
of the kernel. The kernel matrix is of dimension Nc · Nv · Nk where Nk is the number of
k-points on the fine grid. Formally, the kernel dimension scales as N for periodic systems
with small unit cells and N2 for large systems, where N is the number of atoms. For bulk
systems with small unit cells, Nk ∝ 1/N , but the reduction with increased cell size quickly
saturates for large systems and large molecules where Nk = O(1) (to compute a smooth
continuum absorption onset, it is necessary to include some level of k-point sampling even
for isolated systems). The matrix can be diagonalized exactly within LAPACK (zheevx)
or ScaLAPACK (pzheevx). The diagonalization therefore scales as N3 for periodic systems
with small unit cells and N6 for large systems.

The result of the diagonalization is the set of exciton eigenvalues ΩS and eigen-
functions AS

cvk which can be used to construct the absorption spectra (or Im ǫ2 (ω)) using
Eq. 2.5. There are a number of post-processing tools in the package, such as PlotXct,
which plots the exciton wavefunction in real space, to analyze the exciton states.

TheN6 scaling for large systems in the diagonalization is, in practice, more limiting
than theN6 step in the construction of the kernel. This is because the latter step can be very
efficiently parallelized while diagonalization, even with the use of ScaLAPACK, typically
saturates at O(1000) CPUs. Often one is only interested in the absorption spectrum, and
not all of the correlated exciton eigenfunctions and eigenvalues. For such systems, we use
the Haydock recursion iteration method [57, 19]. This is an iterative method based on
spectral decomposition and requires only matrix-vector products, which can be efficiently
parallelized. This method gives directly the absorption spectrum, the equivalent of Eq. 2.5.
In principle, one can get eigenvalues and eigenvectors for a small energy range of interest
using iterative Lanczos algorithms.

As mentioned above, the electron-hole kernel should be constructed with a suf-
ficient number of valence and conduction bands to cover the energy window of interest –
typically all bands within the desired energy window from the Fermi-energy should be in-
cluded so that the energy window of the bands included in the calculation is at least twice
that of the desired absorption energy window. The absorption executable computes the
percent deviation from the f -sum rule [62]:

∫ ∞

0
ǫ2(ω)ωdω = −

πω2
p

2
. (2.42)

One should converge this quantity with both the number of valence and conduction bands
included. The absorption spectra (or ǫ2) in the energy window of interest converges much
more quickly than ǫ1 if high-energy transitions outside of the window of interest contribute
greatly to the sum rule, since ǫ1(ω) is related to an integration over all frequencies of ǫ2(ω),
since ǫ via the Kramers-Kronig relation.
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Figure 2.8: Top: GW quasiparticle self-energy corrections, EQP−ELDA vs. the LDA energy
for (10,0) SWCNT. Both a rigid opening of the band gap and a non-linear energy scaling
are present. Bottom: The fine-grid quasiparticle bandstructure using the interpolated self-
energy corrections (black-open) and the LDA uninterpolated bandstructure (red-closed).
256 points are used to sample the Brillouin zone.
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2.3 Coulomb Interaction

The bare Coulomb interaction is used in many places throughout the code. In
all cases, the 1D array v(q + G) is generated from a single vcoul generator routine in
the Common directory. However, there is a lot that can be specified about the Coulomb
interaction in the code. The Coulomb interaction can be truncated to eliminate the spurious
interaction between periodic images of nanosystems in a supercell calculation. One can
implement a cell-averaging technique whereby the value of the interaction at each q-point
(or q → 0 in particular) can be replaced by the average of v(q + G) in the volume the
q-point represents. Finally, this average can be made to also include the q-dependence of
the inverse dielectric function if W is the final quantity of relevance for the application –
such as in the evaluation of W for the self energy.

The BerkeleyGW package contains five general choices for the Coulomb interaction.
Firstly, one may choose to use the bulk, untruncated value expressed in Eq. 2.11. There
are, in addition, 4 choices of Coulomb interaction that truncate the interaction beyond a
certain cutoff in real space, of generic form

vt(r) =
Θ(f(r))

r
(2.43)

where f is some function that describes the geometry in which the interaction is trun-
cated. The four choices available implement the methods of Ismail-Beigi [66]: Wigner-Seitz
slab truncation, Wigner-Seitz wire truncation, Wigner-Seitz box truncation, and spherical
truncation. The Wigner-Seitz box truncation and the spherical truncation truncate the
Coulomb interaction in all three spatial directions, yielding a finite value of vt(q = 0). All
the Wigner-Seitz truncation schemes truncate the interaction at the edges of the Wigner-
Seitz cell in the non-periodic directions. Slab truncation is intended for nano-systems with
slab-like geometry; the Coulomb interaction is truncated at the edges of the unit cell in the
direction (z) perpendicular to the slab plane (xy). Wire truncation is intended for nano-
systems with wire-like geometry; the Coulomb interaction is truncated at the edges of the
unit cell in the two directions (xy) perpendicular to the wire axis (z). Spherical trunca-
tion allows the user to manually specify a spherical truncation radius outside of which the
Coulomb interaction will be truncated.

Like the untruncated interaction, the slab-truncation and spherical-truncation
schemes have the benefit that vt(q+G) can be constructed analytically:

vspht (q) =
4π

q2
· (1− rc · q) (2.44)

vslabt (q) =
4π

q2
· (1− e−qxy·zc cos(qz · zc)) (2.45)

where rc and zc are the truncation distances in the radial and perpendicular directions,
respectively. The wire-truncation and box-truncation on the other hand are computed
numerically through the use of FFTs. First, the truncated interaction, (2K0(|qz|ρ) for
wire where ρ =

√

x2 + y2 and K0 is the modified Bessel function and 1/r for box), is
constructed on a real-space grid in the Wigner-Seitz cell and folded into the traditional unit
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Figure 2.9: ǫ−1(q) in the (14,0) single-walled carbon nanotube for q along the tube axis as
reported in the epsilon.log output file. The circles represent q-grid points included in a
1× 1× 32 sampling of the first Brillouin zone.

cell. The real-space grid is typically more dense than the charge density grid used in DFT
calculations. The density of points on the real-space grid relative to the charge density grid
in xy directions for wire-truncation and in xyz directions for box-truncation is specified
by parameters n in wire = 4 and n in box = 2, respectively. The origin of the Coulomb
potential is offset from the origin of the coordinate system by half a grid step to avoid the
singularity. We then FFT to yield the vt(q) directly. The FFT is done in parallel. For wire-
truncation, xy-planes are evenly distributed among processors and each processor performs
2D-FFTs in xy-planes it owns. For box-truncation, the parallel 3D-FFT is performed as
follows: xy-planes are distributed and 2D-FFTs in xy-planes are carried out the same way
as for wire-truncation; the data is then transferred from xy-planes to z-rods which are also
evenly distributed among processors; finally, each processor performs 1D-FFTs in z-rods it
owns. After the FFT, the origin of the Coulomb potential is shifted back to the origin of
the coordinate system by multiplying vt(G) with exp(i2πG · 1

2d) where d is the real-space
grid displacement vector.

As mentioned above, for all interaction choices with the exception of cell-box
and spherical truncation, the Coulomb interaction diverges as q → 0. For the case of no
truncation, v(q → 0) ∝ 1/q2; for slab truncation, vslabt (q → 0) ∝ 1/q; for wire truncation,
vwire
t (q → 0) ∝ − ln(q). As we mentioned in Sec. 2.2.2, this divergence is handled in
epsilon by taking a numerical limit – that is, evaluating ǫ at a small but finite q0. For sigma
and absorption on the other hand, we are interested in directly evaluating W (q,GG′)
matrix elements and the appropriate treatment is to replace the divergent (for non-metals)
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W (q → 0) with an average over the volume in reciprocal space that q = 0 represents:

W avg(q = 0,GG′ = 0) =
Nq ·Vol

2π

∫

cell
dnq W (q) (2.46)

where “cell” represents the volume in reciprocal space closer to q = 0 than any other q-
points, and dnq represents the appropriate dimensional differential for the truncation scheme
(e.g., d2q for slab truncation). Equation 2.46 yields a finite number in all truncation schemes
even when W (q → 0) itself is divergent because of the reduced phase-space around q → 0.

For metallic systems, it is particularly important to use Eq. 2.46 to average W , as
opposed to separately averaging v(q) and ǫ−1(q), since for metals ǫ(q) ∝ v(q) at small q,
yielding a constant limit: Wmetal(q → 0) = C. The user can tell the code which model to
use for the q-dependence of ǫ−1 by specifying one of the screening flags in the input files.
The q → 0 limits for the inverse dielectric function and screened Coulomb interaction are
enumerated in Table 2.2 for the semiconductor and metallic screening types.

As shown in Fig. 2.9, including ǫ−1 in the cell-averaging scheme is also important
when using a truncated interaction where ǫ(q = 0) = 1 but quickly rises by the first
non-zero q-point [66]. The figure shows ǫ−1(q) along the tube axis in the (14,0) SWCNT.
ǫ−1(0) = 1 but decreases nearly by half by the first non-zero grid point included in a
1×1×32 sampling of the first Brillouin zone. ǫ−1(0) = 1 is a general property of truncated
systems with semiconductor-type screening since the q2 dependence of the polarizability
approaches 0 faster than the Coulomb interaction diverges at q → 0. BerkeleyGW uses this
W -averaging procedure by default for cases with truncated Coulomb interaction.

In general, using an extension of Eq. 2.46 even for q,GG′ 6= 0 can speed up the
convergence of a sigma or absorption calculation with respect to the number of q-points
required in the calculation. This can be easily explained by the fact that one is replacing a
finite sum over q-points with an integral – mimicking a calculation on a much larger set of
q-points or a much larger unit cell. The user can ask that BerkeleyGW use the cell-averaged
W for all q and G below an energy cutoff specified in the input file.

The averaging is implemented in the code using a Monte Carlo integration method
with 2,500,000 random points in each cell.

To conclude this chapter, we want to point the interested reader to the appendices
of this work and www.berkeleygw.org to download the BerkeleyGW code and to find more
details of usage, methodology etc... The package may be used an example of a modern
GW-BSE implementation emphasizing the study of large and complex materials. The
extension of the GW-BSE methodology to the study of large and complex materials within
the BerkeleyGW package is the basis for the work presented in the next three chapters.
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ǫ−1
GG′ Semiconductor Semiconductor Metal Metal

Truncation Truncation

Head Constant 1 q2 1
V T
0
(q)

Wing q qǫ−1
00q q2 1

V T
0
(q)

Wing′ 1
q qǫ−1

00qV
T
0 (q) Constant Constant

WGG′ Semiconductor Semiconductor Metal Metal
Truncation Truncation

Head 1
q2 V T

0 (q)ǫ−1
00q Constant Constant

Wing 1
q qǫ−1

00qV
T
0 (q) Constant Constant

Wing′ 1
q qǫ−1

00qV
T
0 (q) Constant Constant

Table 2.2: Top: q → 0 limits of the head, ǫ−1
00 (q), wing, ǫ

−1
G0(q) and wing′, ǫ−1

0G′(q), of the
inverse dielectric matrix. Bottom: q → 0 limits of the head and wings of the screened
Coulomb interaction, WGG′(q).
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Chapter 3

Applications to molecules and
systems requiring many empty
states

As described in the previous chapter, the GW methodology has been successfully
applied to the study of the quasiparticle properties of a wide range of systems from tra-
ditional bulk semiconductors, insulators and metals [62, 83] to nanosystems like polymers,
nanotubes and molecules [127, 128, 37]. The approach yields quantitatively accurate quasi-
particle band gaps, dispersion relations and optical spectra from first principles. A perceived
drawback of the GW methodology is its computational cost; usually thought to be an order
of magnitude more than a typical DFT calculation. As discussed in the previous chapter,
the most expensive part of a tyical GW computation is actually the DFT step.

One of the main computational bottlenecks of the traditional GW method [62] is
the cost to generate the large number of empty orbitals needed to converge the Coulomb-
hole summation term of the self-energy. Even for relatively simple materials like ZnO [122],
the required number of empty bands to converge the Coulomb-hole summation is on the
order of several thousands.

For molecules the computational requirements can be even higher. The number
of empty orbitals required in the Coulomb-hole summation is fixed by the dielectric energy
cutoff Ecut and the supercell volume, VolSC:

Nb ∝ E
3/2
cut ∗ VolSC. (3.1)

For molecular systems, studied with plane-wave basis set and periodic boundary conditions
(as in the BerkeleyGW package described above) even when using a truncated Coulomb
interaction, the supercell volume must be taken as at least eight times the volume taken
up by the electronic charge-density. Typically, the volume containing 99% of the integrated
charge density is chosen. The factor of eight comes from the requirement that an equivalent
amount of vacuum is included in each direction; so that even if the Coulomb interaction
is truncated at a separation greater than that of the greatest separation of charge on the
molecule, there will be no interaction between charge on one molecule and it’s periodic
images.
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It should be pointed out that, the use of the plane-wave basis set over localized
basis set alternatives comes with significant advantages despite the problems above. Pre-
dominantly, the plane-wave basis sets describes with ease the free-electron like states above
the vacuum, whose inclusion is critical for computing a converged polarizability χ and self-
energy, Σ. Localized orbitals sufficiently describe the occupied molecular orbitals, but fail
to describe most of the empty orbitals above the vacuum. Therefore, one cannot greatly
reduce the cost of GW calculations on molecules by resorting to a localized-basis set alone.

Molecular systems also often require the costly computation of off-diagonal matrix
elements of the self-energy, Σ, operator. This is because within the G0W0 approximation
using the common starting point of DFT, the lowest unoccupied molecular orbital (LUMO)
is often bound (having energy below the vacuum levels) at the mean-field level, whereas the
true quasiparticle state is a resonant orbital with energy above the vacuum and wavefunction
including some free-electron like contribution. In such a case the diagonal approximation
of Σ in the DFT basis breaks down and one must in general compute off-diagonal elements
within a large energy window. This can increase the cost of such calculations by multiple
orders of magnitude.

Both the issue of empty orbital generation and off-diagonal elements of Σ are
discussed in the following two sections.

3.1 Empty States

There has been much research effort invested in recent years to reduce the need for
empty orbitals in the GW formalism [113, 140, 49, 25, 136]. In particular, it was proposed
by Tiago et. al. [136] that a truncation of the sum over empty orbitals in Eq. (3.2),
below, can be achieved with minimal loss of accuracy by adding the contribution of the
remaining orbitals within the static (COHSEX) approximation [59, 62]. This approach,
however, was shown to be of limited use by Bruneval et. al. [25], where instead of using
the static approximation for the remaining sum, the authors proposed using an approach
based on a common non-zero energy denominator in Eq. (3.2). The main drawback of
this common energy denominator approximation (CEDA) approach (known also as the
extrapolar method) is that the energy denominator is not uniquely defined and can only be
treated as a somewhat ad-hoc parameter, and the quasiparticle energy convergence is not
monotonic with this parameter. Recently, however, studies by Kang and Hybertsen [72] have
shown that a modified static COHSEX approach can be used to accurately minimize the
empty orbitals problem in the Coulomb-hole summation of Eq 3.2. Therefore, we propose a
modified static remainder approach based on Tiago’s results [136] that is more fully justified
by the recent Kang-Hybertsen result [72]. The new approach yields accurate GW Coulomb-
hole absolute energies with less than 10% of the traditionally necessary empty orbitals.
Furthermore, unlike the extrapolar method of Bruneval [25], this approach yields an easy to
implement procedure with no adjustable parameters. For simplicity of presentation, we shall
discuss our approach within the generalized plasmon pole model for the dielectric matrix.
However the approach can be applied straightforwardly to full frequency calculations.

Within the GW and static-COHSEX (the zero-frequency limit of GW) approxima-
tions for the self energy, the self-energy operator, Σ, can be broken into two parts, [62, 59]
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Σ = ΣSX+ΣCH where ΣSX is the screened-exchange operator and ΣCH is the Coulomb-hole
operator. In a conventional GW calculation within the generalized plasmon-pole approxi-
mation, both the calculation of the Coulomb-hole self energy term:

〈nk|ΣN
CH

(
r, r′;E

) ∣
∣n′k

〉
=

1

2

N∑

n′′

∑

qGG′

〈nk| ei(q+G)·r ∣∣n′′k−q
〉 〈
n′′k−q

∣
∣ e−i(q+G′)·r′ ∣∣n′k

〉
(3.2)

×{
Ω2
GG′(q)

ω̃GG′(q)
[
E−En′′k−q− ω̃GG′(q)

] v
(
q+G′)}

and the calculation of the dielectric screening matrix, ǫ = 1 + 4πχ, at ω = 0:

ǫGG′(q ; 0) = δGG′ (3.3)

− v(q+G)

occ∑

n

N∑

n′

∑

k

〈nk+q| ei(q+G)·r ∣∣n′k
〉

〈
n′k
∣
∣ e−i(q+G′)·r′ |nk+q〉 × 1

Enk+q−En′k

,

involve a summation over empty orbitals. Here N is the number of empty orbitals in the
truncated sum, nk is a Bloch orbital with a given crystal momentum k, band index n and
energy Enk, v(q+G) is the bare Coulomb interaction in reciprocal space and ΩGG′(q) and
ω̃GG′(q) are plasmon-pole parameters [62]. The dielectric matrix ǫGG′(q ;ω) is required to
construct the screened Coulomb interaction WGG′(q ;ω) = ǫ−1

GG′(q ;ω)v(q+G′) where v is
the bare Coulomb interaction.

In practice, the band convergence of absolute energy levels in ΣCH with the number
of empty orbitals is extremely slow. For many systems, the quasiparticle energy dependence
on the number of empty orbitals in the dielectric screening (e.g. Eq. (3.3)) converges
much faster than with the number of empty orbitals in Eq. (3.2). For example, recent
calculations for ZnO show that the Coulomb-hole contribution to the electronic band gap
does not converge until 3,000+ empty orbitals are included in the summation in Eq. (3.2)
[122]. In Fig. 3.1, we demonstrate the slow convergence of Eq. (3.2) in ZnO. The situation
is even worse for nanosystems where absolute energies are often required for applications
involving interfaces over which absolute energy level alignment is needed such as the cases
for molecular electronics or photovoltaic applications.

From the bottom panel of Fig. 3.1, it is immediately evident that the quasiparticle
energy converges much more slowly with respect to the number of empty orbitals included in
the Coulomb-hole summation, Eq. (3.2) than from the ǫ summation, Eq. (3.3). Addition-
ally, one may compute Eq. (3.3) in an alternative density functional perturbation theory
approach that avoids the sum over empty orbitals. Similar techniques [49, 141] to avoid the
empty orbitals for Eq. (3.2) have been proposed but they are more difficult to implement
and use. Therefore, any reduction in the summation in Eq. (3.2) over large numbers of
empty orbitals can greatly reduce the cost of calculation for standard GW approaches.

The Coulomb-hole self-energy contribution to the convergence of energy levels and
electronic gaps in bulk silicon (using a 5x5x5 k-point grid) and the silane (SiH4) molecule
(in a supercell calculation) are shown in Fig. 3.2 as a function of the band cutoff, N , in
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Figure 3.1: Left: The convergence of the Coulomb hole contribution to the self-energy,
Eq. (3.2), with respect to the number of orbitals included in the summation, N , using a
dielectric matrix calculated with 1000 empty bands. For all calculations on ZnO, a 5x5x4
k-point grid is used. Right: The convergence of the quasiparticle energy, EQP, with respect
to empty states in the polarizability sum Eq. (3.3) and with respect to empty states in the
Coulomb-hole sum Eq. (3.2). The red curve shows the VBM EQP in ZnO using a fixed
3,000 bands in the Coulomb-hole summation and varying the number of bands included in
the polarizability summation. The black curve shows the VBM EQP in ZnO using a fixed
1,000 bands in the polarizability summation and varying the number of bands included in
the Coulomb-hole summation.
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Figure 3.2: Comparison between the contributions to the Coulomb-hole sum for the
full GW operator vs. results from the 1/2 the static COHSEX Coulomb-hole op-
erator for orbitals beyond the number of real DFT bands/orbitals used: 12 in sil-
icon and 100 in Silane. A 5x5x5 k grid is used in Si. The plotted quantity
is
∑N

n′′=nDFT+1

∑

qGG′ 〈nk| ei(q+G)·r |n′′k−q〉 〈n′′k−q| e−i(q+G′)·r′ |n′k〉 ×ICH
GG′(q, n, n′, n′′)

where ICH is the term in {} in Eqs. (3.2) and (3.4) respectively.

Eq. (3.2). The convergence on energy levels in silane is significantly slower than that in
silicon [115] because of the large number of free-electron like vacuum states. The silicon
calculations were done with a 25 Rydberg wavefunction cutoff and a 10 Rydberg dielectric
matrix cutoff. The silane calculations were done with a 75 Rydberg wavefunction cutoff and
a 6 Rydberg dielectric matrix cutoff. The needed volume of the supercell used, (25au)3, and
the corresponding number of vacuum states, is minimized by using a truncated Coulomb
interaction [66]. Despite this, the largest computational cost in the GW calculation on
silane is the DFT generation of the empty orbitals, representing more than 50% of the
total computational expense. The calculation of the polarizability and the evaluation of the
self energy require less computational time, and they scale nearly linearly to thousands of
CPUs.

The static COHSEX method is the static limit of the GW approximation for the
self energy – where everywhere ǫ(G,G′, ω) is replaced by ǫ(G,G′,0). The static remainder
approach is based on the fact that the expectation value of the static COHSEX Coulomb-
hole operator can be expressed either in a closed form or as a sum over empty orbitals:
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Σ
Stat/N
CH (n,k) = (3.4)

1

2

N∑

n′′

∑

qGG′

〈nk| ei(q+G)·r ∣∣n′′k−q
〉 〈
n′′k−q

∣
∣ e−i(q+G′)·r′ |nk〉

× {
[
ǫ−1
GG′(q ; 0)− δGG′

]
v
(
q+G′)}

and,

Σ
Coh/∞
CH (n,k) =

1

2

∑

qGG′

〈nk| ei(G−G′)·r |nk〉
[
ǫ−1
GG′(q ; 0)− δGG′

]
v
(
q+G′) (3.5)

where N and ∞ denote a truncated empty state summation and closed form expression,
respectively. Equation (3.4) is equal to Eq. (3.2) in the limit of static dielectric screening.
In our modified static remainder approach, we calculate both the GW ΣCH partial sum
(Eq. (3.2)) and the COHSEX ΣCH partial sum (Eq. (3.4)) up to the number of DFT bands
available. We then add a modified static correction to the GW Coulomb-hole energies:

〈nk|Σ∞
CH

(
r, r′;E

) ∣
∣n′k

〉
= (3.6)

〈nk|ΣN
CH

(
r, r′;E

) ∣
∣n′k

〉
+

1

2

(

〈nk|ΣStat/∞
CH

(
r, r′

) ∣
∣n′k

〉
− 〈nk|ΣStat/N

CH

(
r, r′

) ∣
∣n′k

〉
)

.

The factor of 1/2 in Eq. (3.6) is justified from the recent work of Kang and Hybertsen [72],
where the authors show that the GW contribution of high energy bands (corresponding to
large G-vectors) to the Coulomb-hole self energy asymptotes to 1/2 of the equivalent static
COHSEX band contribution. In that paper, the authors propose using a specific modified
static-COHSEX operator to entirely remove the need for empty orbitals. They alter the
static-COHSEX operator to mimic the full-dynamical behavior even for contributions from
the low energy orbitals. In our current approach, we include the full GW contribution from
the low energy orbitals and add a single correction for the high-energy orbitals, where the
static approximation is expected to perform well. One advantage of the present approach
is that it can be used in conjunction with a full-frequency (as opposed to GPP model)
screening approach to both calculate the fine structure of energy dependence of the self
energy, Σ(ω), as well as converging the absolute value with respect to empty orbitals.

A comparison between the convergence of the residual value of the GW expression
(Eq. (3.2)) and 1/2 of the static COHSEX approximation (Eq. (3.4)) for the Coulomb-hole
contribution to the electron self-energy starting at some nDFT is shown in Fig. 3.2. The
figure shows the cumulative contributions of the high-energy orbitals to ΣCH for both the
GW operator and the 1/2 static COHSEX operator for orbitals above 12 and 100 for silicon
and silane, respectively. The residual value of the 1/2 static COHSEX results reproduce
the equivalent GW curves extremely well. Therefore, replacing the GW operator with the
modified static remainder in Eq. (3.6) yields very good agreement with a fully converged
GW calculation. This justifies the truncation of the partial sum in Eq. (3.2) and the
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Figure 3.3: Coulomb-hole energies of the valence band maximum in Si (left) and ZnO (right)
in the modified static-remainder approach compared to the energies from the standard
approach of truncating the Coulomb-hole summation in Eq. (3.2) as a function of the
number of DFT bands. In the static-remainder approach the summation is also truncated
at the same number of bands but the modified static remainder is added to the sum. A
5x5x5 and 5x5x4 k-point grid is used in Si and ZnO respectively.

addition of the modified static remainder correction. For both silicon and silane, one can
get a converged ΣCH to within 10’s of meV with less than 10% of the original number of
empty orbitals required. This is a very high level of accuracy considering the modified static
correction in both cases is greater than 1 eV. Even higher accuracy may be reached if one
increases the number of actual DFT empty orbitals used. In the case of Si, a converged
ΣCH can be reached with the use of only 10 empty bands. A 5x5x5 k-point grid was used
for Si. Furthermore, the convergence for this approach is nearly monotonic in terms of the
number of empty Kohn-Sham orbitals employed in the calculation. Figure 3.3 shows the
convergence of the modified static remainder corrected ΣCH and the uncorrected GW ΣCH

as a function of DFT empty bands used for Si an ZnO.
To test the modified static reminder approach on a large molecular system, we

compute the Coulomb-hole contribution to the self-energy for the BND (bithiophene naph-
thalene diimide) molecule containing 46 atoms [134]. The supercell was set to 76.93 x 36.31
x 20.18 atomic units. The calculations were done with a 60 Rydberg wavefunction cutoff
and a 6 Rydberg dielectric matrix cutoff. The polarizability was computed with 953 orbitals
(78 occupied + 875 empty orbitals up to 1 Rydberg cutoff in DFT eigenvalues), and the
Coulomb-hole part of the self-energy was evaluated as a function of the number of orbitals,
as shown in Fig. 3.4. One can see that the Coulomb-hole term computed with 953 orbitals
without the addition of the remainder is only converged to within 1 eV. Including the static
remainder correction improves the convergence to better than 0.1 eV.

In conclusion, a modified static remainder approach that reduces the number of
empty states involved in evaluating ΣCH by over an order of magnitude has been presented.
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Figure 3.4: (left) Model of the BND (bithiophene naphthalene diimide) molecule. (right)
Coulomb-hole part of the self-energy, with and without the static-remainder, for the highest
occupied molecular orbital (HOMO) of the BND molecule as a function of the number of
DFT orbitals included in the Coulomb-hole sum.
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This approach is particularly useful when applying the GW method to molecules and other
nanostructures where absolute energies, as opposed to just energy gaps, are desired. A
limitation of this method is that it does not address the problem of the sum over empty
states required in evaluating the dielectric matrix (Eq. (3.3)). However, the dielectric matrix
converges faster than the absolute energies of ΣCH for many solids [122] and can more easily
be replaced by calculation using the density functional perturbation theory approaches. Our
approach here shows nearly monotonic convergence towards the converged GW ΣCH values
and can be implemented in a simple and automatic way in standard GW computer codes.

3.2 Off-diagonal Elements of Σ

As mentioned in the previous chapters and section, the GW approximation to the
electron self energy has become the method of choice for treating the excited-state properties
of solids from first principles [59, 62]. This approach is typically implemented starting
from a DFT mean-field within the plane wave pseudo-potential formalism [63, 62, 50], and
has been shown to work extremely well for a wide variety of condensed matter systems –
metals [99, 100], semiconductors and insulators, [63, 62, 50] and for nanostructures [127, 37].
However, one of the commonly used approximations, that the DFT Kohn-Sham orbitals are
the same as the quasiparticle wavefunctions, can sometimes break-down, leading to errors.

Some notable examples where such a break-down may occur are in the calcu-
lation of electron affinity in molecular systems and defect levels in solids. In molecular
systems, quasiparticle states of interest could have a mean-field energy below the vacuum
level whereas the actual quasiparticle level (after the self-energy correction) may be above
the vacuum level. The former is a localized bound state; the latter is a resonant state
[51]. A similar problem can occur with defect states in solids. The defect level within DFT
can be within the conduction band continuum (a resonant state), however after the GW
self-energy correction within the band gap of the solid (a localized state).

There have been several attempts to address this problem [41, 26, 53]. One method
would be to expand the quasiparticle wavefunctions in terms of the Kohn-Sham orbitals.
But the approach involves the calculation of the off-diagonal elements of Σ on a grid of fre-
quencies which is conceptually and numerically difficult. Another method is the QPscGW
approach of Faleev et al. [41] that iteratively constructs a mean-field starting point such
that, by construction, the quasiparticle wavefunctions and mean-field orbitals are close.
However, as we discuss below, the utility of this approach is limited due to its high compu-
tational cost. Alternatively, several groups [26, 53] have constructed the full Hamiltonian
in so-called static-COHSEX and carried the calculation to varying levels of self-consistency
as a mean-field starting point for a subsequent GW calculation. Unfortunately, again the
off-diagonal matrix elements of the GW Hamiltonian in the Kohn-Sham basis can some-
times converge slowly with respect to Hamiltonian size. As a result, these approaches often
suffer due to a small basis set used for constructing the static-COHSEX Hamiltonian.

Below, two alternative methods are presented based on the static-COHSEX ap-
proximation that allow us to efficiently construct the improved quasiparticle wavefunc-
tions and subsequently perform a GW calculation with Σ nearly diagonal in the new
basis. The first method is a fully self-consistent static-COHSEX followed by GW (sc-
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COHSEX+GW) method, where approximate quasiparticle wavefunctions are obtained from
a self-consistent solution to the static-COHSEX Hamiltonian. The second, the static-
offdiagonal GW method, allows for a computationally less intensive treatment of effectively
just the off-diagonal matrix elements (in the Kohn-Sham basis) within the static-COHSEX
Hamiltonian to obtain approximate quasiparticle wavefunctions. Both these approaches
have been implemented within a plane-wave basis set. The main advantage of these meth-
ods over the previous ones is that we work completely in a plane-wave basis. Both ap-
proaches do not require an explicit construction of the Hamiltonian, as in a typical DFT
calculation, where only the Hamiltonian times the wavefunction is required. We also ap-
ply these methods to molecular and bulk solid examples of silane and silicon respectively.
These methods make significant improvement to the electron affinity of silane. In silicon,
the static-offdiagonal GW gives virtually identical quasiparticle energies to a conventional
GW calculation. The sc-COHSEX+GW on the other hand overestimates the band gaps for
reasons to be discussed below.

The quasiparticle energies within a conventional GW approach are typically cal-
culated within a first-order perturbation theory approximation:

ǫQP = ǫDFT + 〈ψDFT|ΣGW(ψDFT, ε−1
DFT)− VXC|ψDFT〉 (3.7)

which is known as the diagonal G0W0 approximation. In Eq. (3.7), ǫQP is the quasiparticle
energy, ψDFT and ǫDFT are DFT eigenfunctions and eigenvalues. ΣGW(ψDFT, ε−1

DFT) is
the self energy operator constructed with DFT eigenvalues, eigenfunctions and dielectric
matrix ε−1

DFT, and VXC is the DFT exchange-correlation potential. Within this approach,
the dynamic ΣGW is to be evaluated at ǫQP in a self-consistent way.

As seen from Eq. (3.7), the diagonal G0W0 approach assumes that the DFT (often
LDA or GGA) eigenfunctions are a good approximation to the quasiparticle wavefunctions.
As discussed previously, there are known limitations of this approximation (where ψQP 6≈
ψDFT). One way to solve this problem is to diagonalize the full G0W0 matrix [115, 53],
ǫDFTδij+〈ψDFT

i |ΣGW(ǫQP)−VXC|ψDFT
j 〉, constructed in the DFT eigenfunction basis ψDFT

j .
However, in practice, the matrix is limited to a small number of states (rows/columns) due
to computational cost. Additionally, all the matrix elements should be evaluated at ǫQP

for each separate quasiparticle level, which is challenging to evaluate in a self-consistent
fashion. Thus, diagonalizing the full G0W0 matrix with sufficient rows and columns is
extremely difficult.

Instead of constructing and diagonalizing the full G0W0 matrix in the ψDFT ba-
sis, we propose the static-offdiagonal GW approach as shown in the left track of Figure
3.5. In this approach, using the DFT eigenvalues and eigenfunctions, we construct the
static-COHSEX operator in a plane-wave basis set up to the convergent plane-wave DFT
wavefunction cutoff. In particular, in the static-COHSEX operator, the screened exchange
(SEX) and Coloumb hole (COH) terms are computed from the DFT eigenfunctions and
eigenvalues, but expressed as matrices in the plane-wave basis. We then diagonalize the
COHSEX Hamiltonian, (HDFT

0 + ΣCOHSEX) using an iterative alogrithm. Here HDFT
0 is

defined as the DFT Hamiltonian without the exchange-correlation term, Vxc. It is worth-
while to point out that solving this eigensystem iteratively only requires one to compute
(HDFT

0 + ΣCOHSEX)φ products, where φ is some trial quasiparticle wavefunction. This is
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(HDFT
0 + V DFT

XC )ψDFT = ǫDFTψDFT

{ψDFT, ǫDFT} → ε−1
DFT

(HDFT
0 + ΣCOHSEX(ψ

DFT, ε−1
DFT))ψ

i = ǫiψi

ǫQP = ǫi + 〈ψi|ΣGW(ψDFT, ε−1
DFT)

− ΣCOHSEX(ψ
DFT, ε−1

DFT)|ψi〉

(H i
0 + ΣCOHSEX(ψ

i, ε−1
i−1))ψ

i = ǫiψi

{ψi, ǫi} → ε−1
i

ǫQP = ǫi + 〈ψi|ΣGW(ψi, ε−1
i )

− ΣCOHSEX(ψ
i, ε−1

i−1)|ψi〉

sc-COHSEX+GWstatic-offdiagonal GW

Figure 3.5: Outline of the static-offdiagonal GW and the sc-COHSEX+GW methodologies.
The H i

0 refers to the kinetic, ionic and hartree potentials constructed with density from ψi.
See text for details.

similar to any non self-consistent DFT hybrid functional calculation. Having solved this
eigensytem, one then does a diagonal G0W0 calculation as shown in the left track of Figure
3.5, but now in the basis of the quasiparticle wavefunctions. Note that this procedure does
not change the mean-field in the GW calculation. This approach, which is equivalent to
diagonalizing the G0W0 matrix in the static limit in a complete plane-wave basis, is an ef-
fective scheme for the inclusion of the offdiagonal G0W0 matrix elements of the Kohn-Sham
basis. It can also be seen as a transformation to a basis within which the G0W0 matrix
(still constructed from G0 and W0 using the DFT eigenvalues and eigenfunctions) is nearly
diagonal.

Alternatively, one could replace the DFT mean-field starting point completely
by replacing the DFT mean-field Hamiltonian with a self-consistent static-COHSEX (sc-
COHSEX) mean-field Hamiltonian. This approach is outlined on the right track of Figure
3.5. As before, we use the DFT eigenfunctions and eigenvalues to construct an initial po-
larizabilty. However, in this second approach, the SEX operator (with fixed screening) is
updated self-consistently as we diagonalize the static-COHSEX Hamiltonian. The eigenval-
ues and eigenfunctions from this diagonalization are used to construct a new polarizabilty
and dielectric matrix. This process is repeated to reach self-consistency in the dielectric
matrix. In practice, for the systems considered, we find that one update of the polariz-
ability is sufficient. We then do a standard diagonal G0W0 calculation, in the basis of
the SC-COHSEX orbitals, using the sc-COHSEX eigenvalues, eigenfunctions and updated
polarizabilty as our mean-field starting point.

Lets now compare our sc-COHSEX method with previous self-consistent quasipar-
ticle methods of Bruneval et al [26] and QPscGW [41]. In the work of Bruneval et al [26], a
similar self-consistent COHSEX approach is used, with the important difference that they
work in the DFT Kohn-Sham orbital basis. In particular, they construct the offdiagonal



52

matrix elements of the static-COHSEX operator only for valence band and low-energy con-
duction band states (a small fraction of the DFT orbitals needed to construct ΣCOH). This
restricts the freedom that the quasiparticle wavefunctions have. We avoid this problem by
working directly in plane-wave basis to construct and diagonalize the sc-COHSEX Hamilto-
nian operator. Using this complete basis removes any bias on the low-energy DFT orbitals.
The QPscGW approach [41] does not make use of static-COHSEX approximation. It seeks
a mean field that gives eigenvalues closest to the quasiparticle energies iteratively. However,
the QPscGW approach also suffers from the same problem of working in a restricted basis.
In this case, the restricted basis is required due to the extremely high computational costs of
constructing the Σ matrix that includes some dynamical effects, because one must sum over
a large number of empty states as well as integrate over frequencies when constructing each
matrix element of Σ. Additionally, this method (as well as the sc-COHSEX+GW methods
described above) tends to over-estimate band gaps because the gap in the self-consistent
mean-field used to construct the polarizability is higher than the optical gap of the system.
It is well known [61, 12] that self-consistency in the polarizability cancels vertex (or exci-
tonic) effects, and so including only self-consistency without higher order corrections leads
to larger gaps. The static-offdiagonal GW approach, on the other hand, does not suffer
from this problem. In the static-offdiagonal GW approach, we continue to use the DFT
(LDA or GGA) polarizability and Σ, but include the important off-diagonal effects in the
quasiparticle wavefunctions in the static approximation.

An illustrative example for our methods is the silane molecule. It has been shown
[115, 53] that the LUMO level is below the vacuum level in DFT – but the correct quasi-
particle LUMO level is above the vacuum level. This leads to a qualitative difference in the
DFT and quasiparticle wavefuntion – the Kohn-Sham wavefunction is too localized, while
the quasiparticle one mixes with continuum states and is a resonant state.

Table 3.1 shows the calculated HOMO and LUMO energies from different meth-
ods and experiment. In particular, with the traditional diagonal only G0W0 method, the
quasiparticle LUMO levels range from 0.63 – 1.1 eV. In the full-Σ approaches of [115, 51]
and [53] the LUMO is found to be nearly 1 eV lower than the respective diagonal G0W0

energies and in much better agreement with the quantum monte carlo (QMC) results. The
results with our new methods for the LUMO level agrees well with the QMC result.

Our DFT calculations were performed using plane waves and pseudopotentials
as implemented in PARATEC [3]. We expanded the wavefunctions in plane waves up
to an energy cutoff of 75 Ry. We used the Γ point sampling of the Brillouin zone and
spherical truncation of the coulomb interaction to avoid silane-silane interactions. For
the GW calculations, we used the BerkeleyGW [1] package. We used a dielectric matrix
energy cutoff of 6 Ry. The dynamical contributions to the self-energy were treated within
a generalized plasmon pole model [63, 62]. We performed all calculations at two volumes
in a simple cubic lattice corresponding to lattice constants of 22.5 au and 25 au. All the
results presented were extrapolated to infinite volume limit.

The HOMO and LUMO charge distributions within LDA and within our sc-
COHSEX and static-offdiagonal GW approaches are plotted in Figure 3.6. While the
HOMO wavefunctions do not change between all three methods, the LUMO quasiparti-
cle wavefunctions are much more delocalized in sc-COHSEX and static-offdiagonal GW.
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Figure 3.6: HOMO (bottom) and LUMO (top) quasiparticle wavefunction of the silane
molecule within (a) LDA+GW, (b) static-offdiagonal GW and (c) sc-COHSEX + GW. The
plotted quantity is an iso-surface of |ψ5(~r)|2 for the LUMO and

∑

n=2,3,4 |ψn(~r)|2 for the

HOMO at iso-value of 1/3 of the maximum for the wavefunction amplitude.

This is consistent with the results shown in table 3.1, that shows the electron affinity within
sc-COHSEX+GW and static-offdiagonal-GW approaches to be ∼ 0 eV. The ionization po-
tential does not get affected in these approaches.

Figure 3.7 shows the contribution to the second-order perturbation correction to
the LUMO energy, EQP

LUMO, from ΣGW(ELUMO)−Σmf (where mf stands for mean-field) from
intermediate states 1 to 32. The LDA mean-field (Σmf = VXC) starting point shows large
corrections to the quasiparticle energy coming from states 9, 17 and 29. This corresponds
to large offdiagonal elements in the Σ matrix illustrating a failure of LDA to correctly
describe the LUMO quasiparticle orbital. If one accounts for these second order corrections,
the electron affinity becomes close to those from more accurate approaches. However,
this comes at an additional cost of evaluating offdiagonal Σ matrix elements. Also seen
in Figure 3.7, the contributions in both the sc-COHSEX+GW approach and the static-
offdiagonal GW approach are small. This shows that, in both new approaches, the off-
diagonal elements of Σ are effectively included in the mean-field starting point (sc-COHSEX)
or treated adequately within the static approximation (static-offdiagonal approach). In
other words, this means that the quasiparticle wavefunctions are well described by the
static-offdiagonal and sc-COHSEX wavefunctions respectively. It is worth pointing out
that the reason the quasiparticle wavefunctions in Figure 3.6 for both the sc-COHSEX and
static-offdiagonal approaches are not the same is because the corresponding ΣGW operators
are not the same.

Table 3.2 shows the result of application of these approaches to silicon. These
calculations were done with a 6× 6× 6 k-point sampling of the Brillouin zone, 35 Ry cutoff
for the wavefunctions and 12 Ry cutoff for the dielectric matrix. The generalized plasmon
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Starting HOMO LUMO
Mean-Field mf mf+G0W0 mf mf+G0W0

LDA –8.53 –12.49 –0.46 0.79
LDA [51] –8.4 –12.7 –0.6 1.1
LDA [53] –8.42 –12.67 –0.50 0.63
Full-Σ [53] — –12.66 — –0.42
Full-Σ [51] — –12.7 — 0.3

static-offdiagonal GW –14.49 –12.50 –0.02 –0.02

sc-COHSEX+GW –14.13 –12.86 –0.02 0.00

QMC [51] — –12.6 — 0.2

Experiment [67] — –12.6 — —

Table 3.1: HOMO and LUMO quasiparticle energies calculated in the present and previous
approaches. All values are in eV.
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energy of the LUMO, state 5, in silane within the LDA+GW, sc-COHSEX+GW and static-
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approaches are multiplied by a factor of 10 for clarity.
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Direct Gap Band Gap
Mean-Field mf mf+G0W0 mf mf+G0W0

LDA 2.56 3.29 0.53 1.29
LDA [62] 2.57 3.35 0.52 1.29
LDA [26] 2.57 3.20 0.51 1.14
sc-COHSEX+GW [26] — 3.69 — 1.56

static-offdiagonal GW 3.79 3.32 1.82 1.29

sc-COHSEX+GW 3.74 3.69 1.72 1.63

Experiment [78] — 3.40 — 1.17

Table 3.2: Direct gap at Γ and indirect band gap for silicon calculated within various
approximations. All values are in eV.

pole model [63, 62] was used to extend the static dielectric matrix to finite frequencies.
Table 3.2 shows our calculated values of the direct and indirect band gaps in silicon. As can
be seen in the table the static-offdiagonal GW approach gives the same gaps as previous
calculations using the diagonal Σ approximation within the Kohn-Sham basis. [63] The sc-
COHSEX [26] approach tends to overestimate the gaps slightly due to the aforementioned
reasons.

In summary, we presented two approaches for going beyond the diagonal Σ con-
structed within G0W0 and the DFT mean-field. The sc-COHSEX+GW approach, can be
viewed as a diagonal G0W0 approach with an improved mean-field starting point where the
offdiagonal matrix elements of Σ−Σmf are small. The static-offdiagonal-GW approach does
not change the mean-field starting point of a typical DFT+GW calculation but constructs
and diagonalizes the Σ − Vxc in the static approximation. The latter approach is signifi-
cantly less computationally expensive than the former. We showed that both methods give
good quasiparticle wavefunctions and energies for the electron affinity of silane and that
with both approaches the offdiagonal elements of Σ are small. In silicon, static-offdiagonal
GW gives band gaps in good agreement with experiment, while sc-COHSEX+GW slightly
overestimates them as in other self-consistent GW methods.

Combined with the modified static-remainder method of the previous section and
the advancements in the GW-BSE methodology presented in the previous chapter, the
methods here provide a robust system for calculating the excited electronic and optical
properties of large isolated molecules and other nanostuctures.
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Chapter 4

Semiconducting single-walled
carbon nanotubes

Carbon nanotubes are sp2-bonded tubular structures with a diameter on the or-
der of a nanometer but with length which can be up to centimeters long. These structures
possess unique structural and electronic properties. [117] Single-walled carbon nanotubes
(SWCNTs) can be metals or semiconductors depending sensitively on their geometric struc-
ture, which is indexed by a pair of numbers (m, n) where m and n are the two integers
specifying the circumferential vector in units of the two primitive translation vectors of
graphene. [118, 91, 54, 9, 127, 128] Because of the reduced dimensionality of carbon nan-
otubes, many-electron (both self-energy and excitonic) effects are shown to be extraordinar-
ily important in the optical properties of these systems. [127, 37] The strong excitonic effects
(the result of the correlation between an excited quasi-electron in a conduction state and
the quasi-hole in the valence state) in their optical properties have been predicted by first-
principles theory [127, 37] and have subsequently been confirmed by experiment. [146, 90]
Other experimental advances have allowed the measurement and characterization of the
excitation features in the optical response of individual isolated SWCNTs. [80, 81, 39, 145]
In this chapter, we discuss several novel theoretical results that have been obtained from
first-principles calculations on the SWCNTs and related 1D nanostructures. Because of the
importance of the electron-electron interactions, an accurate description of the quasiparticle
and optical properties of nanotubes and other quasi-one dimensional materials requires the
use of many-body perturbation theory methods which accurately account for the electron
self energy and the electron-hole interaction in optically excited states. The first-principles
GW-Bethe-Salpeter equation (GW-BSE) methodology [62, 115, 127] has proven to be the
ideal tool in describing these properties of nanostructures.

The basic electronic properties of SWCNTs may be understood from the appli-
cation of a simple band-folding technique of the graphene bandstructure. The graphene π
electron bandstructure, derived within tight-binding (with the overlap matrix set to zero)
[117], is:

E(kx, ky) = ±t{1 + 4cos

(

31/2kxa

2

)

cos

(
kya

2

)

+ 4cos2
(
kya

2

)

}1/2, (4.1)
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where t is a hopping parameter and a is the lattice constant. This band structure is shown in
Fig. 4.1, and is characterized by two Dirac points in the Brillouin zone at the Fermi energy
where the bands take a conical structure. When a graphene sheet is rolled into a tube
forming a SWCNT, additional periodic boundary conditions arise in the circumferential
direction. Imposing these boundary conditions restricts the kx and ky values to parallel
lines within the graphene phase space, as is shown in Fig. 4.1. Thus, the band structure
of a SWCNT can be thought of, in this simplified tight-binding picture, as derived from
various cross sections of the 2D graphene bandstructure that are consistent with the periodic
boundary conditions. Additionally, depending on the rolling angle (quantified by chiral
indices (m,n) [117]) and diameter, the Dirac point may or may not be included in one of
the cross-sections. Thus, both semiconducting and metallic nanotubes are possible. In this
chapter, we will consider the electronic and optical properties of semiconducting tubes. We
discuss the properties of metallic tubes in the next chapter.

The bandstructure of the (14,0) semiconducting nanotube is shown in Fig. 4.2.

4.1 Ab Initio Results and Two-Photon Experiments

The first ab initio GW-Bethe-Salpeter equation calculations on SWCNTs were
performed in 2004 by Spataru et. al. [127, 128]. They found remarkable results: that the
electron-hole interaction qualitatively changed the nature of the optically excited states in
SWCNTs. When the electron-hole interaction effects are included, the spectrum is domi-
nated by bound and resonant exciton states. With the electron-hole interactions included,
each of the optically allowed subband transitions (derived from a van Hove singularity in
the non-interacting joint density of states) gives rise to a series of exciton states, labeled
1A2, 2A1, 3A2, 4A1 etc.. everywhere in this chapter for simplicity - see Fig. 4.4. The exci-
ton states are labeled as nΓ, where n − 1 is the number of nodes in the envelope function
and Γ labels its irreducible representation in the “group of the wave vector” formalism [18].
Therefore, the 1A2 exciton refers to the lowest one-photon-bright exciton with a nodeless
envelope function (sometimes also labeled 1u, 1s or 0A

−
0 ) and the 2A1 exciton refers to

the two-photon-bright exciton with a one-node envelope function (sometimes also labeled
2g, 2p or 0A

+
0 in the literature). This notation is formally used only for chiral tubes. For

zigzag tubes, the proper notation would be 1A2u and 2A1g. For simplicity, everywhere in
this chapter we use the chiral notation. Unless otherwise noted, we are always referring
to excitons associated with the lowest optically allowed, E11, interband transition. Due to
optical selection rules only the 1A2, 3A2 ... states (i.e. states with even electron-hole enve-
lope functions) are bright under single-photon spectra. The even n states are bright under
two-photon spectroscopy. For the (8,0) tube, the lowest-energy bound exciton has a binding
energy of nearly 1 eV. [127] Note that the exciton binding energy for bulk semiconductors
of similar size bandgap is in general only of the order of tens of meVs, illustrating the
dominance of many-electron Coulomb interaction effects in reduced dimensional systems.

More recently, we have repeated the ab initio GW-BSE calculations on many
nanotubes between (7,0)-(20,0). We use DFT within the LDA and a plane wave basis set
as our mean-field starting point. We use a 60 Ry wavefunction planewave cutoff and a 9 Ry
dielectric function plane wave cutoff. The Coulomb interaction is truncated using the wire
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Figure 4.1: (Top) Graphene tight-binding bandstructure in the 2D plane, E(kx, ky) plotted
in arbitrary units. The points at which the top band touch the bottom band are called the
Dirac points owing to the conical dispersion relation present near these points. (Bottom)
First Brillouin zone in graphene and schematic of nanotube cutting lines - correspond-
ing to cross-sections of the graphene bandstructure consistent with the nanotube periodic
boundary conditions. The tube axis points along the direction of the cutting lines.
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Figure 4.2: LDA bandstructure of the (14,0) SWCNT.

geometry method of Ismail-Beigi. [66] Fig. 4.3 shows the optical absorption spectra for the
(14,0) nanotube. Notice the dramatic difference in both position and line-shape between the
calculations, including and neglecting exctonic effects. The many-body effects are crucial
for even a qualitative understanding of the excited state properties. This can be seen as
a consequence of two general principles: first, the Coulomb interaction is more effective in
lower dimensions, and, second, screening has a unique nature in two or less dimensional
systems.

The prediction of bound exciton states that qualitatively change the absorption
spectra of SWCNTs was first met with a great deal of skepticism because bound exciton
states in most bulk semiconductors do not significantly affect the optical response of large
frequency ranges. However, experimentalists using two-photon absorption techniques [146,
90] were able to verify the predicted excitonic picture in SWCNTs.

In the two-photon optical experiments of Wang et al. [146], the binding energy
of the lowest exciton in a given interband transition is not directly measured. What is
measured is the energy difference between the excitation energy of the lowest even envelope
function exciton state, E1A2

, and of the first odd envelope function exciton state, E2A1
.

See. Fig. 4.4. The fact that there is an energy difference of 100’s of meV between these
states confirms the excitonic picture shown in Fig. 4.4. Without bound exciton states, no
energy difference between the 1-photon and 2-photon absorption onset would be predicted;
a large energy difference only occurs when the spectra is characterized by discrete states of
specific symmetry with well separated energy levels.

Using the energy difference between E1A2
and E2A1

, the binding energy of the
lowest energy state, Ebind

1A2
, was then extrapolated from the measured value of (E2A1

−E1A2
).

This was done by fitting this energy difference to the energy difference between the two
lowest quantum states obtained from the following 1D hydrogenic-like potential by varying
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Figure 4.3: The calculated optical absorption spectra for the (14,0) SWCNT with (solid)
and without (dashed) the electron-hole interaction included.

the parameter ǫ:

Vh(z) =
−e2

(|z|+ z0) · ǫ
(4.2)

where, z0 = 0.3d, is a parameter approximating the diameter, d, dependence of the bare
Coulomb interaction. Using this approach, one obtains a relationship for the binding energy
of Ebind

1A2
≈ 1.4 · (E2A1

− E1A2
). A mystery arose from this result. The value of the binding

energy for the tubes measured in experiment ((7,5),(6,5) and (8,3)) were significantly lower
than those predicted by calculations using the ab initio GW-BSE methodology [28, 127]
(see Table 4.1). The ab initio GW-BSE predictions of the exciton binding energy in the
(8,0), (10,0) and (11,0) nanotubes, for example, obey the following relationship Ebind

1A2
≈

2.5 · (E2A1
− E1A2

). The discrepancy between this relationship and the one derived from
the hydrogenic model suggests an inadequacy of the hyrdogenic model interaction given in
Eq. 4.2. See Fig. 4.5 for an illustration of this discrepancy.

In order to resolve the discrepancy between the binding energies obtained from
the hydrogenic interaction and those obtained from the full GW-BSE methodology, we
evaluate the validity and form of the model interaction. The biggest approximation in the
model electron-hole interaction, Eq. 4.2, is the use of a spatially independent dielectric
constant ǫ. Such an approximation may be appropriate for the study of excitons in bulk
semiconductors, but is untested in one-dimensional systems. In order to evaluate the validity
of this model, we relax the spatially independent screening approximation and seek a more
physical electron-hole interaction.

Starting with the Bethe-Salpeter equation [115], we show in the next sections
that, within an effective mass approximation, the exciton binding energy Eex and envelope
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Figure 4.4: Diagram of the optically excited states of a SWCNT. (A) The two-photon
luminescence spectra. The system is excited into the 2A1 excited states by two photon
absorption and emits a single photon from the 1A2 state after losing energy due to scattering
events. (B) The optically allowed single-photon transitions. Here E11 refers to the transition
between the first valence and conduction subband pair that is optical allowed.
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Figure 4.5: Excitation spectra predicted by various model electron-hole interactions for
the (10,0) SWCNT. The E2A1 − E1A2 energy has been fit in each case. The black stars
represent the ab initio result with spatial dependent screening, whereas the hydrogenic and
Ohno potentials have a constant dielectric screening.
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function F (z), for a given state, satisfy

[

− h̄2

2m∗
∂2

∂z2
− Vdir(z) + Jδ(z)

]

F (z) = EexF (z) (4.3)

where, J is the exchange between the valence and conduction bands and

Vdir(z) =

∫

dx′dy′dr2W (r′ + r2, r2)ρc(r
′ + r2)ρv(r2) (4.4)

is the screened direct interaction, where, ρc = |ψc(r)|2 and ρv = |ψv(r)|2, and W is the
screened Coulomb interaction. This effective interaction, Vdir, physically corresponds to a
density weighted average of W over the electron-hole individual positions perpendicular to
the tube axis (x′, y′) and the relative position of the center mass throughout one unit cell.
We derive this interaction in the following section.

4.2 From the Bethe-Salpeter Equation to an Effective Mass

Equation

We first show how to arrive at an effective mass equation for the electron-hole
interaction from the Bethe-Salpeter Equation by making certain approximations. This is
useful because it extracts the essential physics from the BSE necessary for the correct
effective 1D electron-hole interaction potential. The full Bethe-Salpeter equation is:

[Ecvk − ES ]A
S
cvk +

∑

c′v′k′

〈φcvk|K|φc′v′k′〉AS
c′v′k′ = 0, (4.5)

where capital K is the electron-hole kernel including both the direct term and the exchange
term, AS is the exciton eigenvector such that, in real space:

ΨS(re, rh) =
∑

cvk

AS
cvkφck(re)φvk(rh) (4.6)

and Ecvk = Ec(k)−Ev(k) is the quasiparticle energy difference between the conduction and
valence bands. Lets first discuss only the direct interaction part of K. This term can be
expressed as:

< dir >=

∫ ∫

dr1dr2W (r1, r2)e
−i(k−k′)·(r1−r2)u∗ck(r1)uck′(r1)u

∗
vk(r2)uvk′(r2). (4.7)

where u is the periodic part of the corresponding Bloch function and W is the screened
Coulomb interaction. We now make a couple of approximations. First, we assume we are
dealing only with two bands (one conduction and one valence band). We also assume that
the excitons are reasonably weakly bound - i.e. that Ak is sharply peaked in in k-space. We
assume because of this that the u’s do not change appreciably in this region. So, the term
involving the four u’s can be replaced by:

ρc(r1)ρv(r2) = |uck0(r1)|2|uvk0(r2)|2 (4.8)
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where k0 is the location of the band minimum. We can now write the direct term as:

< dir >≈
∫ ∫

dr1dr2ρc(r1)ρv(r2)W (r1, r2)e
−i(k−k′)·(r1−r2). (4.9)

Now, we define F (z) =
∑

k e
ikzA(k), noting that all k’s are along the z direction for a

nanotube. Thus, we have the following result:
∑

k′

< dir > A(k′) =

∫ ∫

dr1dr2ρc(r1)ρv(r2)F (z1 − z2)W (r1, r2)e
−ik·(z1−z2). (4.10)

Now, we define r′ = r1 − r2. Noting that the Jacobian of this tranformation is 1, we can
rewrite Eq. 4.10 as:

∑

k′

< dir > A(k′) =

∫

dz′
[∫

dx′dy′dr2ρc(r
′ + r2)ρv(r2)W (r′ + r2, r2)

]

F (z′)e−ikz′ .

(4.11)
This term is the direct part of the second term on the left hand side of Eq. 4.5; we will
include the exchange below. We now multiply the entirety of Eq. 4.5 by eikz and sum over
k to obtain the following effective mass equation:

[

Ecv(−i
∂

∂z
)− Vdir(z)

]

F (z) = EexF (z) (4.12)

where,

Vdir(z) =

∫

dx′dy′dr2W (r′ + r2, r2)ρc(r
′ + r2)ρv(r2). (4.13)

and Ecv(−i ∂
∂z )[F (z)] ≈ 1

2m∗

∂2F (z)
∂z2

where m∗ is the effective reduced mass of the valence
and conduction bands. This is the equation and potential that we were searching for. We
see that the effective 1D potential is an averaged potential of the electron-hole screened
interaction over the 5 remaining free coordinates weighted by the electron and hole charge
density. This function is plotted in Fig. 4.6 using the ab initio W and ρ from a GW-BSE
calculation. In the next section, we discuss approximate models for this potential based on
approximations for both W and ρ.

To include the exchange term in the Kernel, we start again with the full interaction:

< exchange >=

∫ ∫

dr1dr2
−1

|r1 − r2|
u∗ck(r1)u

∗
vk′(r2)uvk(r1)uck′(r2). (4.14)

We again assume two bands and weak binding so that the u’s can be replaced by uk0 .
Following the same procedure as above for the direct term yields an exchange potential of
the form:

Vex(z) = Jδ(z) (4.15)

with

J =

∫ ∫

dr1dr2
−1

|r1 − r2|
u∗ck0(r1)u

∗
vk0(r2)uvk0(r1)uck0(r2). (4.16)

Thus, the complete effective mass equation is:
[

Ecv(−i
∂

∂z
)− Vdir(z) + Jδ(z)

]

F (z) = EexF (z) (4.17)

where Vdir is given by Eq. 4.13.
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Figure 4.6: The direct interaction of Eq. 4.4 computed for the (8,0) SWCNT using the
ab initio charge density and dielectric function from a GW-BSE calculation. The bare
interaction is the same quantity with the dielectric matrix everywhere set to unity.

4.3 Model Interaction

What one would like in general is an analytic model for the 1D interaction be-
tween an excited electron and hole in nanotubes for various chiralities and diameters. Or,
more gernerally, one would like a prescription for creating quickly such a model given the
parameters of the nanotube. There are many physical approximations that could be made
to simplifyW and ρ in Eq. 4.4. We start by approximating the interaction between the two
particles as the interaction between two rings of charge of plus and minus unity, noting that
the charge density in Eq. 4.4 is localized very near the tube diameter (within one π-orbital)
for real nanotube systems. Thus, we start by deriving the effective Coulomb interaction
between two rings of charge confined to the surface of a cylinder.

4.3.1 Bare Interaction

The problem amounts to solving the following Poisson equation in the presence of
rings of charge:

−∇2φ (r) =
4πρ(z)

2πR
δ(s −R) (4.18)

where ρ(z) is the charge density per unit length along the z direction of the cylinder (i.e.
the ring charge density) and R is the radius of the tube. In this equation, we will make
use of cylindrical coordinates: (z, s, θ). We transform the equation to Fourier space in the
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z direction with the following definitions: φ(r) =
∑

q e
iqzFq(s) and ρ(z) =

∑

q e
iqzρ(q). The

equation for the radial function, F , now becomes:

1

s
F ′
q + F ′′

q − q2Fq =
2ρ(q)

s
δ(s −R) (4.19)

where the derivative is with respect the radial coordinate, s. We are interested mainly in the
solution to this equation at s = R which corresponds to a point on another ring separated
by some distance z. This solution, which can be found in the textbook of Arfken and Weber
[11], is:

Fq(s = R) = 2ρ(q)I0(qR)K0(qR) (4.20)

where I0 and K0 are the two zeroth modified Bessel functions. Thus, we can define the
effective interaction between two rings in this geometry by:

v(q) ≡ 2I0(qR)K0(qR). (4.21)

We can now write the 1D potential for a distribution of ring charges as V (q) = v(q)ρ(q).
The function v has the following real space form:

v(z) =
− 2

πK
(
d2

z2

)

|z| (4.22)

where d is the tube diameter and K is an elliptic function of the first kind. This represents
the bare electrostatic interaction between two rings of charge unity with equal diameters,
d. The interaction diverges as z → 0 due to the fact, as we will see later, that the rings
have zero thickness. However, the integral of the interaction,

∫ ǫ
0 v(z) remains finite, unlike

the function 1
z .

4.3.2 1D Dielectric Screening

Simply applying the bare interaction to the effective mass theory of excitons yields
poor results for binding energies and wavefunctions. As in bulk systems, it is important
to describe the dielectric screening of the medium. However, we will see that in 1D, the
dielectric screening has very interesting properties.

First, note that in the previous section, we introduced the well-defined one dimen-
sional quantities v(q) and ρ(q). Similarly we define the total potential V (q) as the potential
felt by a test ring-charge of charge unity in the system and the external potential Vext(q)
as the potential function a test ring-charge would feel from charges external to the system
alone. We next define a 1D dielectric function, ǫ(q) through the relation:

V (q) =
Vext(q)

ǫ(q)
. (4.23)

Similarly, the induced ring-charge density is defined to be related to the total potential by:

ρind(q) = χ(q)V (q). (4.24)
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Using these definitions, we have that:

V (q)− Vext(q) = v(q) (ρ(q)− ρext(q))

= v(q)χ(q)V (q)

⇒ ǫ(q) = 1− χ(q)v(q). (4.25)

So, putting all the pieces together, we have, similar to 3D, that the total potential from a
single ring of charge unity in a dielectric cylinder is:

V (q) =
v(q)

1− χ(q)v(q)
(4.26)

What is left now is to determine χ(q) for our cylindrical system.

4.4 Models for χ(q)

4.4.1 Semiconducting Tubes

For all nanotubes, χ(q) can be expressed in the usual perturbation theory form:

χ(q) = −
∑

k,c,v

|
〈
v, k|eiqz |c, k + q

〉
|2

Ec,k+q − Ev,k
(f(v, k) − f(c, k + q)) . (4.27)

Our strategy will be to find a functional form for χ(q) based on physical grounds with
adjustable parameters to obtain the electron-hole screened potential for any SWNT with
a given diameter and chirality. One possible approach is to generalize the Penn model for
dielectric screening [106], developed for 3D semiconductors, and use it for 1D systems [34].
In accordance with the Penn model, we expect that χ(q) ∼ (q/Eg)

2, where Eg is the energy
gap, when q → 0 and χ(q) ∼ constant when q → ∞. One way of interpolation between
these two limits is

χ(q) = −C2
αq2

E2
g + αq2

(4.28)

where C2 and α are adjustable parameters. The gap energy EG can be obtained by summing
the first optical transition energy extracted from Ref. [14] and the ground state exciton
binding energy calculated in Ref. [28]. In this way, χ(q) will contain diameter and chirality
dependences.

In expression (4.28), the electric susceptibility goes like q2 for small q, i.e., the
electron-hole screening becomes negligible for large distances, which is consistent with the
1D geometry of carbon nanotubes. This quadratic dependence in susceptibility was also
obtained by Leonard and Tersoff [82] using a simple tight-binding model.

One can derive the form of Eq. 4.28 using a 1D generalized Penn model. In
the typical Penn approximations, the polarizabilty can be written as |M(q)|2ESum(q) =
(( 2qEw√

3Egkf
)2/(1 + ( 2qEw√

3Egkf
)2)(

∑

kocc,k+qunocc

1
Ek−Ek+q

+
∑

kocc,k′unocc

1
Ek−Ek′

). Where k′ = k +

q − 2kf , Ew is the band width, M(q) is the matrix element between state k and k + q
or k and k′ and is roughly independent of k. In ref. [34], the explict gap dependence of
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the polarizability was removed in favor of a simpler diameter dependence leaving the usual
dominant d2 scaling of χ, whereas, one might include the explicit gap dependence in order
to capture accurate family patterns of exciton binding energies.

4.4.2 Metallic Tubes

In addition to the interband contribution to screening discussed in the above sub-
section, metallic nanotubes have a large contribution of screening from the intraband tran-
sitions (i.e. free electrons). To approximate the contribution of these electrons to screening,
we will apply the Thomas-Fermi approximation. In this approximation, the local density of
screening electrons is determined by occupying all states up to a local Fermi energy, µ−V (z)
where µ is the chemical potential. That is to say, ρind(z) = [ρTF (µ+ V (z)) − ρTF (µ)]. So,
to first order:

ρind(z) =
∂ρ

∂µ
V (z). (4.29)

This implies that, for a metal, there is an additional contribution to χ given by − ∂ρ
∂µ =

−D(EF ), i.e. the density of states per unit length at the Fermi Energy. So, the total
response for a metal is:

χM (q) ≈ − αq2

E∗2
g + αq2

· C2 − βD(EF ) (4.30)

where E∗
g is the lowest gap of the system apart from the two metallic like bands. Thus,

we have now created a model for both semiconducting and metallic tubes that depends on
their diameters, chirality (through Eg) and the parameters C2 and α.

4.5 Properties of the Dielectric Function

Combining Eq. 4.28, Eq. 4.25 and Eq. 4.21, we see that the dielectric function
for rings in semiconducting SWCNTs can be written as:

ǫ(q) = 1 + 2C2
αq2

E2
g + αq2

ρ(q)I0(qR)K0(qR). (4.31)

Notice that this function approaches 1 at both small and large q because the small q limit
of v(q) is Log(q) like all 1D potentials. In three dimensions, the q2 term in the numerator
of χ is canceled by the 1

q2
dependence of vCoul(q) which causes the q = 0 component of ǫ to

equal a non-unity constant.
We compare ǫ(q) = 1−χ(q)Vbare(q) using Eq. 4.31 with the full ab initio dielectric

function for the (8,0) tube in Fig. 4.7. In the figure we fit the two constants α and C2 in order
to best fit the ab initio curve. The dielectric function plotted has interesting characteristics
that are not found in bulk semiconductors where a constant ǫ model is appropriate. As
just mentioned, it is a unique property of reduced dimensional systems that the dielectric
function approaches one in both the limit of large and small q. As was pointed out by
Leonard et al. [82], this implies that there is no screening at both large and short distances
in such systems.
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Figure 4.7: Spatially dependent dielectric screening in semiconducting SWCNTs. (a) Com-
parison between the qz dependent ab initio inverse dielectric function, ǫ−1

Gxy=G′

xy=0(q +Gz)

(points) and the result of the 1D ring Penn model (solid line) of the (8,0) SWCNT derived
in the text. The parameters of the model were fit to give the best agreement. (b) The in-
duced ring charge distribution from the Penn model polarizability plotted around an added
positive ring charge (at z = 0), plotted as a function of z along the tube axis. The total
induced charge integrates to zero.
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The spatially dependent screening can be demonstrated by the induced charge
distributions in 1D vs 3D systems under a perturbation of a single additional charge or
ring-charge. In 3D, the approximate induced charge is given by:

ρ3Dind(q) = χ(q)V (q) ∝
q2

1+αq2
1
q2

1 + q2

1+αq2
1
q2

≈ C, (4.32)

for some constant C. In other words, for small q (or large distances), the induced charge is
a delta function which integrates to give a finite total induced charge. In 1D however, the
induced charge is:

ρ1Dind(q) = χ(q)V (q) ∝
q2

1+αq2
v(q)

1 + q2

1+αq2
v(q)

≈ q2v(q). (4.33)

Unlike the 3D case, this function goes to zero as q tends to zero. Hence, the integrated
induced charge is zero, which is consistent with having no screening at large distances.

Given the induced charge distribution above, we see that in bulk semiconductors,
ǫ(q = 0) is a non trivial constant, meaning that, at large distances, there appears to be a
finite induced charge of opposite sign surrounding the external charge. In one-dimensional
materials, on the other hand, the induced charge that surrounds the external charged parti-
cle actually integrates to zero. ρind(q) = χ(q)V (q), is plotted for the (8,0) tube in real space
in Fig. 4.7. Nearby the external charge, screening charges of opposite sign are induced;
whereas, further away from the external charge, charges of the same sign are induced. This
leads to a counter-intuitive prediction that for some electron-hole separations along the tube
axis the electron-hole interaction is enhanced (see Fig. 4.8).

Fig. 4.8 shows the effective interaction in real space for the (8,0) semiconducting
SWCNT. In this figure, an interesting phenomena is evident: the screened interaction drops
below the bare interaction, Vbare(z), in the region where screening charges of the same sign
as the added external charge are induced (we call this the anti-screening region). Such
“anti-screening” behavior was first deduced by van den Brink and Sawatzky for molecular
nanostructures [143, 142] using a simple dipole interaction model. Because the screened
Coulomb interaction is very different in 1D, a very distinct excitation spectrum is created
for the higher energy exciton states formed from a given interband transition. The actual
spectra is qualitatively and quantitatively different from those of excitons in 3D or in 1D
models that neglect the anti-screening effect. The higher states in the excitonic series,
with large amplitudes in this region, are considerably more bound due to the presence of
the anti-screening region; evidences consistent with this prediction have been observed in
recent measurements on semiconducting SWCNT. [80, 81] We have now shown that this
effect comes out explicitly from the first principles GW/BSE calculations and causes the
higher states in the series (2A1, 3A2, 4A1, . . .) to have binding energies that are a relatively
higher fraction of the 1A2 binding energy then is the case in a hydrogenic like electron-hole
model. Therefore, the physical origin of the failure of Eq. 4.2 in describing the excitonic
spectrum of isolated SWCNTs is the lack of the spatially dependent dielectric screening.

A qualitative explanation for the phenomenon is shown in Fig. 4.9 where the
polarizable charge distribution of a semiconducting system is modeled by a simple ball-and-
spring dielectric medium [34]. In three-dimensions, because the surface area of a spherical
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E2A1
− E1A2

Ebind
1A2

Expt Present Expt. Present Ab Initio
(Measured) Work (Extrap.) Work (Extrap.)

(6,4) 0.33b 0.41 0.42b 0.98 0.91c

(6,5) 0.31a, 0.28b 0.38 0.43a, 0.37b 0.85 0.81c

(7,5) 0.28a, 0.23b 0.34 0.39a, 0.31b 0.77 0.77c

(7,6) 0.20a 0.31 0.35a 0.70 0.70c

(8,3) 0.30a, 0.29b 0.37 0.42a, 0.38b 0.84 0.84c

(8,6) 0.25a 0.28 0.35a 0.64 0.66c

(8,7) 0.20a 0.26 0.29a 0.60 0.61c

(9,1) 0.32b 0.38 0.42b 0.88 0.87c

(9,4) 0.24a, 0.27b 0.30 0.34a, 0.38b 0.69 0.71c

(9,5) 0.23a 0.28 0.33a 0.62 0.62c

(9,7) 0.22a 0.24 0.30a 0.55 0.58c

(10,2) 0.24a 0.31 0.34a 0.73 0.75c

(11,3) 0.22a 0.27 0.31a 0.62 0.65c

(11,6) 0.19a 0.21 0.27a 0.51 0.55c

(12,4) 0.20a 0.21 0.27a 0.53 0.58c

a From [146, 39] b From [90] c From [28]

Table 4.1: Comparison of experimentally measured and theoretically predicted values for
the E11 exciton excitation energy difference, E2A1

− E1A2
, and the lowest exciton binding

energy Ebind
1A2

(in eV).
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Figure 4.8: Model 1D electron-hole interaction potentials. Comparison of the Penn model
screened interaction for the (8,0) zigzag tube with the bare interaction between two ring
charges. There is a region in which the screened interaction becomes stronger than the bare
interaction.
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Figure 4.9: Schematic of the different screening behaviors in 3D/2D vs 1D. A positive charge
(red circle) is added to the system at the origin. The screening electrons are bound to the
nuclei via a spring. In 3D, the amount of charge that has crossed the surface of a spherical
shell of radius r is constant with respect to r. In 1D, for pillboxes of length z, the amount
of charge to cross into the pillbox is large at small z but goes to zero as z → ∞.

shell is proportional to the radius squared and the force generated by a charge at the origin
on a spring at distance r is proportional to 1/r2, the total induced charge in a shell of radius
r is constant with respect to r. So, at large distances from the external charge, there is a
net induced charge of the opposite sign observed surrounding the external charge. In quasi
one dimension, however, the surface area perpendicular to the tube axis of a box does not
change as the box length changes in the z direction. The total induced charge in larger and
larger size boxes drops to zero; so at large length scales, there is effectively no screening.
[34]

4.5.1 Model Results

We obtain the parameters α and C2 in our model by fitting the exciton binding
energies to several ab initio GW-BSE calculations on the exciton binding energies of first
(E11) and second (E22) optically allowed interband transition. In particular, we use GW-
BSE calculations on the (8,0), (10,0) and (11,0) tubes. The effective masses used in solving
the BSE were taken from an interpolation formula by Jorio et al. [70]. Figure 4.10 compares
the binding energies from the ab initio GW-BSE calculations on these SWCNTs and those
predicted in the present model.

Table 4.1 shows the predicted exciton binding energies of the present effective
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mass model for the tubes measured by Wang et al. [146] and Maultzsch et al. [90]. The
new model results agree to within 0.1 eV with the directly measured E2A1

− E1A2
values.

This small differences shows that dielectric environment and the anti-screening effect does
not affect this quantity because electron-hole amplitude for the 2A1 and 1A2 states are
concentrated near the origin of Fig. 2 where there is no anti-screening effect. We illustrate
this insensitivity directly in the following paragraphs. However, the spatially screened
effective mass model disagrees with the extrapolated binding energies reported based on the
hydrogenic model. In particular, the exciton binding energies from the spatially screened
model does not obey the Ebind

1A2
≈ 1.4·(E2A1

− E1A2
) rule. With the inclusion of the spatially-

dependent dielectric function, we find, in the present model, that Ebind
1A2

≈ 2.3·(E2A1
− E1A2

)
for this range of tubes, showing that the hydrogenic model systematically underestimates
the exciton binding energy of isolated SWCNTs.

Recent experiments on isolated SWCNTs have been able to confirm the novel
spectra we predict. Shown in Fig. 4.11 are the excitations features assigned to the 3A1 and
5A1 excitons for tubes measured in the work of Lefebvre et al. [80]. The observed features
above the E1A2

energy in the experimental spectra lie in the energy range our predicted
bright 3A2, 5A2 and continuum exciton states of the E11 transition. Thus, our current
model supports the assignment of these features to a higher exciton states. Also shown in
Table 4.1 is a comparison of the binding energies predicted in the current model for the 1A2

exciton with binding energies extrapolated directly from ab initio GW-BSE calculations
[28]. Thus the experiments of Lefebvre et al. reproduce the main qualitative difference
between the spectra obtained from our “anti-screening” model and the spectra obtained
from the hydrogenic model: that the present spectra contains discrete energy levels that
are much more spread-out in energy.

In a more recent work, Lefebvre et al. [81] have further confirmed our assignment
of the higher energy peaks in their spectra to the 3A1, 5A1 and continuum states. The most
convincing piece of evidence is a comparison of the measured excitation spectra before and
after a “cleaning process” - achieved by heating the staging area to 450C. After heating,
the isolated nanotube is expected to be free of adsorbents present when the tube is exposed
to ambient air. The experiments show a blue shift in the excitation peak energies after the
cleaning process, where the peaks they assign to the continuum and 5A2 transitions blue
shift the most and the peak they assign to the 1A2 blue shifts the least.

This behavior is strong evidence in support of the assignment of these peaks in
the excitation energy as the 1A2, 3A2, 5A2 and continuum peaks. The behavior can be
explained in the following way. The affect of the cleaning process is to reduce the external
dielectric screening environment the tube sees. The reduction of the dielectric screening has
two effects: 1) The quasiparticle band gap is increased. And 2) the exciton binding energy
is decreased. These two effects shift the optical-transition energies in opposites directions.
For the 1A2 state, the exciton binding energy is also large, and, therefore, the change in the
exciton binding energy due to the different dielectric environment almost perfectly cancels
the change in the quasiparticle gap. For the 5A2 and continuum states however, the binding
energy is small to begin with; thus, when changing the dielectric environment, the transition
energy is increased by approximately the same amount as the quasiparticle gap is increased.

To demonstrate this, we have done calculations using our effective mass model on
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Figure 4.11: Comparison of the energy positions of the absorption spectra features for
different diameter semiconducting tubes in the work of Lefebvre et. al. [80] to the 3A2 and
5A2 excitonic state energies in the E11 interband transition exciton series. The black circles
represent the calculated continuum level in the present model while the black diamonds and
triangles represent the 5A2 and 3A2 states respectively. The red diamonds and triangles
are the L1* and L1 features in the work by Lefebvre et. al. [80]
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the (10,0) SWCNT. We add an external screening source to mimic the cleaning/dirtying
process:

ǫ(q) = 1 + 4πχNT (q)V (q) + 4πχext(q)V (q) (4.34)

where χNT is the polarizability intrinsic to the nanotube and χext is a parameter represent-
ing the screening from external sources, such as adsorbents. Fig 4.12 shows our calculated
excitation spectra with values of 4πχext(q)V (q) between 0 and 1. The results show the exact
same trend as discovered in the experiment [81]. Notice also that the anti-screening effect
is almost completely wiped out with external screening that amounts to 4πχext(q)V (q) ≈ 1.
Thus, only isolated and relatively clean nanotubes will demonstrate the anti-screening ef-
fect. The anti-screening effect is thus not expected to be apparent for tubes in solution, for
example. A full experimental and theoretical treatment of the environmental effects would
be a fruitful avenue for future research.
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Chapter 5

Graphene and Metallic Nanotubes

The quasi-electron and quasi-hole states near the Fermi energy in graphene and
metallic armchair single-walled carbon nanotubes (SWNTs) obey a linear energy-wave-
vector dispersion relation characteristic of two- and one- dimensional Dirac fermions. The
existence of Dirac-fermions in graphene has been verified by recent experiments demonstrat-
ing a unique quantum Hall effect in single graphene sheets [101, 153]. These experiments
were able to infer a Fermi velocity between 1 and 1.1 · 106m/s for the quasielectrons in
graphene.

In bulk metals, excitonic effects play only a small role in the optical absorption
spectra, and bound exciton states are non-existent due to the almost perfect screening
of the interaction between the electron and hole. As we discussed in Chapter 2, there
is perfect screening at large distances because the inverse dielectric function in reciprocal
space, ǫ−1(q) ∝ q2, cancels the long wavelength divergence of the Coulomb interaction.
Within the Thomas-Fermi model the screened interaction is effectively:

W (r) =
1

r
e−k0r (5.1)

where k0 is the inverse Thomas-Fermi screening length related to the density of states at the
Fermi energy. The interaction is particularly weak in three-dimensions because the phase
space near the singularity (the origin) vanishes as r2. Thus, the singularity does not greatly
affect the potential energy of the electron-hole pair and one sees no bound exciton states in
bulk metals. This is illustrated schematically in Fig. 5.1.

However, as we discussed in Chapter 4, the effective Coulomb interaction is stronger
in lower dimensions due to the confinement of the electrons and holes. In two dimensions
the phase space near the singularity goes to zero only as r, the same rate at which the
interaction diverges. In one dimension, the phase space near the origin is constant and the
singularity is unavoidable. We therefore expect the interactions in two- and one-dimensions
to be stronger. We therefore investigate the many-body interaction effects on the quasi-
particle and optical properties in two dimensions on graphene (a semi-metal) and in one
dimension on the metallic single-walled carbon nanotubes.
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Figure 5.1: Schematic of the 1D vs 2D/3D Coulomb interaction as described in the text.

5.1 Graphene

Excitonic (electron-hole pair) effects are noticeable in the optical response of semi-
conductors, while they are typically unimportant in that of conventional bulk metals because
of the strong screening effect from free carriers. As we mentioned above, it is of consider-
able interest to see if there are significant excitonic effects in two-dimensional metallic or
semi-metallic systems.

The electronic and optical properties of graphene have been a subject of tremen-
dous research effort in the last several years [102, 153, 47]. The optical properties in par-
ticular display interesting characteristics. For example, the low frequency absorbance per
sheet is a constant with respect to the frequency of light/ [52, 95, 86, 147] More recently
the discovery of a Fano line shape in the main absorption peak has been observed [87, 77].
It is therefore of great interest to study the quasiparticle and optical properties of graphene
within a first-principles approach to discover whether novel many-body effects may be in
play. In this section, we present the result of such a study on both graphene and bilayer
graphene. We employ the basic GW-BSE methodology [115] laid out in Chapter 2 within
the BerkeleyGW package.

As we will discuss more in the following sections of this chapter, we find that there
is a significant renormalization of the graphene Fermi velocity near the Dirac point due to
electron-electron interaction effects. Only with the inclusion of this self-energy renormaliza-
tion can agreement with experiment be achieved for the velocity of the Dirac quasiparticles.
Secondly, predict a major shift in the energy of the predominant absorption peak in the
spectra. We show at the end of the section, that our predicted position and lineshape
agree well with recent experimental measurements. Again, it is only with the inclusion of
many-body effects that agreement can be reached. Despite the large many-body effects on
the main absorption peak, we are able to confirm that the infrared spectral absorbance is
relatively insensitive to many body effects and remains approximately a constant 2.4%, in
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agreement with experiment [95, 86]
We use a relaxed atomic structure within the LDA for the Kohn-Sham exchange-

correlation potential. However, in bilayer graphene we choose the experimental sheet sep-
aration (0.334 nm). All calculations are done in a supercell geometry [32] with a 1.2nm
inter sheet distance. We studied graphene using both a Coulomb truncation scheme and
without Coulomb truncation. Due to the semi-metal nature of graphene, we find only small
differences between the two techniques. We use a plane-wave basis and the BerkeleyGW
code as laid out in Chapter 2. The biggest computational problem in describing graphene
within the GW-BSE technique is the large number of k-points required for the various lev-
els of computation. We find that a 32x32x1 k-point grid is required to accurately describe
the charge-density with DFT. A 64x64x1 k-point grid is required to accurately compute
the electron self-energy. For computing the optical absorption spectra we use a 64x64x1
k-point grid in order to compute the electron-hole interaction kernel. The diagonalization
of the kernel and computation of the absorption spectra requires a 200x200x1 k-point grid.
For the self-energy computation, we include 96 empty orbitals. For the computation of the
absorption spectra, we include 2 valence and 2 conduction bands (tested with 4 valence and
4 conduction bands). This is found to be sufficient for describing the absorption spectra
below 10 eV. The Bethe-Salpeter equation is solved within the static approximation. All
spectra is broadened with a 0.5 eV Lorentzian broadening.

We show that a large renormalization of band-velocity in graphene near the Dirac
point due to self-energy effects in Fig. 5.2 (a). As we discuss more in the next sections, only
when self-energy effects are included, do we have agreement with experiment. In particular,
the LDA Fermi velocity of graphene is 0.82 × 106 m/s, while we find the GW value is
1.05 × 106 m/s. The GW number is agrees very well with the measurement of the velocity
using the quantum Hall effect [153]. It also agrees favorably with previous GW calculations
[138, 13]. We show the GW bandstructure for bilayer graphene in Fig. 5.2 (b). Again we
see that there is a large renormalization effect on the band dispersion near the Dirac point.

The optical spectra of graphene is shown in Figure 5.3 (a). In order to obtain a
quantity that is not dependent on the inter-sheet separation, we show the quantity α2(ω),
the imaginary part of the polarizability per unit area, which is defined as the product of the
polarizability of the supercell geomerty, χ = (ε− 1)/4π, and the distance between adjacent
graphene layers. In order to compare to a measurable polarizability, one should multiply by
the graphene or bilayer graphene area. When electron-hole interaction effects are neglected,
we see a major peak in the optical absorption spectra at around 5.15 eV. This corresponds
to the interband transition near the M point in the graphene Brillouin zone. In this region
the bands form a saddlepoint Van Hove singularity. When the electron-hole interaction
is turned on (through the solution of the Bethe-Salpeter equation) however, the peak is
significantly red-shifted. The peak position with excitonic effects included occurs at 4.55
eV - a 600 meV redshift from the position in the non-interacting spectra. Additionally,
the peak lineshape is significantly more asymmetric with excitonic effects included. As we
discuss at the end of this section, both of these predictions have been confirmed by recent
experiment.

What causes the apparent shift of 600 meV in the absorption peak? It is tempting
to attribute the shift to the formation of strongly bound exciton states as in the case of the
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semiconducting tubes of the previous chapter. However, it should be remembered that bulk
metals and semi-metals typically do not allow bound exciton states (due to the nearly perfect
screening between the electron and hole). Additionally, as we will see in the next section,
even one dimensional metals have bound exciton states with binding energies of only 100
meV. Indeed, upon further analysis, we find that bound-exciton states are not responsible
for the change in peak position. This is illustrated in Fig. 5.3 (b), where we see that the
joint density of states (JDOS) of quasiparticles from the GW calculation and the density
of excitonic states are identical. This implies that the change in peak position results from
a redistribution of oscillator strength from high energy to low energy transitions, and not
from the creation of bound exciton states. This is similar to the redistribution of oscillator
strength that occurs in bulk silicon for example [115].

In order to determine the mechanism behind this redistribution of oscillator strength,
we consider the optical transition probability of a transition from the ground state to an
exciton state resolved in terms of the interband electron-hole transitions at a given energy,
ω, that make up the exciton state:

〈0|v|i〉 =
∑

v

∑

c

∑

k

Ai
vck〈vk|~v|ck〉 =

∫

Si(ω)dω, (5.2)

where
Si(ω) =

∑

v,c,k

Ai
vck〈vk|~v|ck〉δ[ω − (Eck − Evk)]. (5.3)

Note that for graphene, Si(ω) is as a real function because the system has inversion sym-
metry. This quantity is plotted in Fig. 5.4.

Figure 5.4 (a) shows Si(ω) for an exciton state with excitation energy 1.6 eV.
The state is composed of electron-hole pairs from only a very narrow energy window. This
implies that the electron-hole interaction is unimportant in this area of the spectra since
it does not significantly mix the non-interacting states. In Fig. 5.4 (b) the exciton state
considered has an excitation energy around 4.5 eV. The energy distribution of states that
contribute to this exciton is much more broad - this is characteristic of a region in the
spectra where electron-hole interaction effects are important.

Notice that the function Si(ω) in Fig. 5.4 changes sign as ω, the energy con-
tributing electron-hole pairs, crosses the excitation energy of the correlated exciton state in
consideration. In Fig. 5.4 (b), for the exciton state around 4.5 eV, there is a long tail of
contributions to the exciton state from higher energy electron hole pairs. Therefore, this
exciton state effectively “steals” oscillator strength from higher energy excitons. In other
words, much of the absorption spectra that was in the peak at 5.1 eV is shifted into exciton
states near 4.5 eV.

On the other hand, Fig. 5.4 (c) shows Si(ω) for a typical exciton with excitation
energy near 5.1 eV. Electron-hole pairs from a large energy window again contribute to the
state, however, the exciton has a greater contribution of oscillator strength deriving from
states to the left of the excitation energy. Additionally, the contribution of states to the
left and right of the excitation energy effectively cancel, giving an overall reduction to the
absorption peak near 5.1 eV. Therefore, we see that the oscillator strength from the peak
originating at 5.1 eV in the non-interacting spectra has moved to 4.5 eV. The fact that
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Figure 5.3: (Color online) (a) The GW-BSE predicted optical absorption spectra, (b) joint
density of excited states, and (c) absorbance of a single layer of graphene with and without
electron-hole interaction effects included.
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graphene bilayer graphene graphite

Epeak (Expt.) 4.6 [87, 77] 4.55 [133, 38]
Epeak (GW+BSE) 4.55 4.52 4.50

δΣ +1.10 +0.91 +0.69
δexciton -0.60 -0.45 -0.27

Table 5.1: Position (in eV) of the main absorption peak in graphene, bilayer graphene and
graphite, and change in peak position from the inclusion of self-energy effects (δΣ) and from
electron-hole interaction effects (δexciton).

an enhancement in the absorption spectra in one region is accompanied by a reduction in
another energy region is required by the f-sum rules discussed in Chapter 2.

From simple models for the graphene bandstructure, the low-frequency optical
absorption per graphene sheet is expected to be a constant (2.29%) [52, 95, 130, 150, 86,
10, 97, 109]. Figure 5.3 (c) shows the calculated absorbance of graphene in this region,
A(ω) = 4πω

c α2(ω). Notice that the low-frequency value does not change significantly be-
tween the calculations including and excluding excitonic effects. In both cases, we find
that the absorbance is around 2.4%. This result agrees well with experiment and previous
calculations. [73, 86, 95].

We have additionally computed the optical absorption spectra of bilayer graphene
and graphite within the GW-BSE methodology. Table 5.1 shows a comparison between
the absorption peak positions predicted by our GW-BSE calculations with experiement. As
multiple layers are added, we find that the change in the quasiparticle self-energy correction
and excitonic effects nearly cancel, and that the main absorption peak position is nearly
unchanged between graphene, bilayer graphene and graphite. This cancellation effect is
discussed more in the following sections in regards to metallic nanotubes. [127, 148, 110].

Our predicted absorption peak position for single-layer graphene has been recently
confirmed by experiments [87, 77] where significant asymmetry due to excitonic affects is
also confirmed. Figure 5.5 shows a comparison between our calculated absorption spectra,
broadened by 350 meV and the two experimental results.

To conclude, we have utilized the GW-BSE methodology implemented in the
BerkeleyGW code to study the electronic and optical properties of graphene. We found
that many-body effects play an important role. We see a large renormalization of the Fermi
velocity near the Dirac point due to self-energy effects. Additionally, we see a 600 meV
red-shift of the main absorption peak due to excitonic effects. These large effects are sur-
prising for a semi-metallic system. But, as we will see in the next section, they are part of
a larger trend - that many-body effects are important in reduced-dimensional metals and
semi-metals, and failing to include them can lead to a lack of even qualitative predictability.
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5.2 Metallic Nanotubes

As we discussed in Chapter 4, single-walled carbon nanotubes (SWCNTs) are
quasi-1D structures made by rolling up graphene strips. The electronic properties of SWC-
NTs are determined uniquely by the tube diameter and chiral angle; SWCNTs can be either
metallic or semiconducting depending on these two features. [118, 54, 91] As discussed in the
previous chapter, ab initio calculations [127, 128, 34] have predicted that excitonic effects
qualitatively change the optical properties of single-walled carbon nanotubes. The effects
are stronger in one-dimension due to the enhanced electron-electron interaction in quasi-1D
materials. [9, 34] In the previous chapter, we showed ab initio GW-BSE calculations predict
the existence of discrete strongly bound exciton states below the electron-hole continuum.
[115, 63, 62] It is therefore of great interest to determine whether such excitonic states exist
and affect the optical spectrum of metallic SWCNTs with large enough diameters to be
measured in experiment. [127, 128] Previous ab initio calculations of metallic tubes were
limited to tubes with small diameter, (3,3) and (5,0), and the analysis was only done for
excitons associated with the first peak in the spectrum. We present in this section ab ini-
tio calculations showing the existence of excitons in larger diameter metallic SWCNTs. In
particulary we consider the (10,10), (12,0) and (21,21) tubes. We will show that bound
excitons do exist in such systems, a prediction that has been experimentally verified.

As mentioned in the previous chapter, the excitonic picture for the optical spectra
of semiconducting tubes has been confirmed both by experiments using two-photon pho-
toluminescence spectroscopy techniques and more recently by single-photon luminescence
experiments on isolated tubes. [146, 90, 80, 81] However, because metallic tubes do not have
efficient luminescence, these experimental technique are not directly applicable to metallic
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SWCNTs. However, as we show below, new experiments (along with the predictions of the
GW-BSE technique) that measure directly the absorption spectra and lineshape of isolated
single-walled nanotubes can determine whether bound exciton states exist in metallic tubes.

Using the GW-BSE methodology of Chapter 2, we find that the optical spectra
of the lowest allowed interband transition, E11, in the (10,10), (12,0) and (21,21) SWCNTs
are characterized by bound exciton states with binding energies ranging between 40 and 60
meV. Additionally we find that the 2nd and 3rd optical peaks (corresponding to E22, E33

in the notation of the previous chapter) are also characterized by narrow resonant exciton
states with similar exciton binding energies as E11. In the previous chapter, we saw that for
semiconducting SWCNTs, each interband transition (E11, E22 etc...) gave rise to a series of
bound exciton states similar to a hydrogenic series. In metallic nanotubes, however, we find
only a single noticeably bright bound or resonant excitonic state per optically allowed inter-
band transition because of the strong metallic screening. It is possible higher bound states
just below the continuum do exist but are not optically distinguishable from the continuum.
The single bound or resonant state from each optically active interband transition, acounts
for more than 50% of the absorption probability associated with the interband transition.
Thus, the peak in the optical spectrum is derived predominatly from a single Lorentzian
peak and acquires a highly symmetric lineshape. This is distinguishable from that of an
independent electron-hole picture where the lineshape follows that of a one-dimensional Van
Hove singularity 1/

√
E − Eb, where Eb is the optical band gap. These theoretical predic-

tions of the GW-BSE methodology have been recently verified by experiment as we discuss
below.

5.2.1 Calculation Details and Results

We use the GW-BSE method implemented in the BerkeleyGW package laid out
in Chapter 2. In particular, we compute the ground-state atomic coordinates and charge
density of the (10,10), (12,0) and (21,21) tubes within ab initio pseudopotential density func-
tional theory (DFT) using a planewave basis and the local density approximation, LDA,
for the exchange correlation potential as discussed in Chapter 1. The quasiparticle energy
are obtained by solving the Dyson’s equation using first order perturbation theory within
the diagonal approximation for Σ in the LDA basis. [59, 63, 62] We then calculate the
two-particle electron-hole excitation energies, exciton wavefunctions and optical response
functions by solving the two-particle Bethe-Salpeter equation (BSE). [115] The DFT eigen-
states and eigenvalues are obtained using a 60 Ry cutoff for the plane wave basis and using
ab initio Troullier-Martins pseudopotentials in the Kleinman-Bylander form with a cutoff
of rc = 1.4 a.u.). [139, 74] In order to simulate isolated tubes, we use a hexagonal supercell
geometry with an intertube distance of at least 7.6 Å in all cases.

Figure 5.6 shows the Kohn-Sham bandstructure for an isolated (10,10) tube cal-
culated within the LDA. We find that only light with an electric field polarized along the
tube axis gives a strong optical response. [127, 128, 6] For the rest of this section, this
polarization is taken for all the optical properties presented below. In this case, the optical
perturbation Hamiltonian, ∝ ~A · ~p, is unchanged under application of operators from the
symmetry group of the k-vector. Therefore, it is a unique property of nanotubes, that the
optical transitions obey well defined selection rules that apply to the entire Brillouin zone
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Figure 5.6: The (10,10) SWCNT LDA bandstructure with the zero of energy set at the
Fermi energy. Dashed arrows indicate optically forbidden transitions for light polarized
along the tube axis. The solid arrow indicates the lowest allowed optical transition.

in k-space. [18, 33] - i.e. transitions obey well-defined optical selection rules across entire
bands. In SWCNTs, every k-point lies along a high symmetry direction! In the (10,10)
tube, this first allowed optical transition, E11, occurs between the second and third valence
subbands (where each band is doubly degenerate) and the second and third conduction
subbands. This allowed transition is shown by the solid black transition line drawn in Fig-
ure 5.6). The dashed lines correspond to optically forbidden interband transitions under
the polarized light. The E22 and E33 transitions occur between higher sets of valence and
conduction subbands. Similar symmetry rules hold for the allowed transitions in the (12,0)
and (21,21) SWCNTs.

Figure 5.7 shows the GW quasiparticle corrections to the Kohn-Sham, within the
LDA, eigenvalues for the (10,10) tube. For the (10,10) and (12,0) tubes, we find the slope in
the quasiparticle dispersion relation of the metallic bands increases by approximately 24%
over the LDA result. We find that the (21,21) tube has an 29% increase in the slope of the
quasiparticle energy dispersion relation. However, the (5,5) tube sees a 19% increase, while
the (3,3) tube sees a 15% increase [127]. We discuss in the next subsection the origin of
the diameter dependence of the quasiparticle shifts. The corrections are somewhat larger
for larger diameter tubes because of the reduced local screening as the average distance of
neighboring atoms increases with tube diameter.

Figure 5.8 shows the optical absorption spectra for the first allowed transition
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Figure 5.7: The quasiparticle energy corrections versus ELDA for the (10,10) SWCNT. The
linear regression slope is approximately 0.24. This slope represents a scaling of LDA energy
eigenvalues by 25 percent for the (10,10) tube due to self-energy effects.
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(denoted E11) in the (10,10) tube. If one were to increase the supercell size by including
more vacuum in the calculation, ǫ2 would systematically approach 0. In order to show a
quantity that independent of supercell size, we use α = Im{A(ǫ − 1)/4π}, where ǫ is the
calculated supercell dielectric function, and A is the cross-sectional area of the supercell in
the calculation. This quantity is the imaginary part of the polarizability per tube and can
be directly related to the absorption cross-section per tube length. To get a experimentally
measured dielectric response, one should multiply this quantity by the density of tubes per
unit area in a matrix or in a bundle.

For the (10,10), (12,0) and (21,21) nanotubes studied, the existence of bound
excitons qualitatively changes the absorption spectrum. In the (10,10) tube, the first bound
exciton state has a binding energy of 50 meV. In Fig. 5.8a, it is seen that the optical
transition probability for the interband transition comes predominantly from the single
exciton state (this is also obtained directly from the exciton wavefunctions and oscillator
strengths resulting from the BSE). The absorption lineshape with excitonic effects included
is significantly different from the interband transition case. As a guide to the eye, Fig. 5.8c
shows both the interacting and non-interacting spectra with the non-interacting specturm
scaled and shifted to match the peak height in the interacting case. It is clear that the
non-interacting spectra is qualitatively different, being significantly more asymmetric than
the interacting spectrum. As we will discuss below, this line-shape analysis has been used
by experiments on the isolated metallic (21,21) SWCNT to confirm the excitonic picture.

For the (12,0) and (21,21) tubes, the first transition is due to a similar bound
exciton state with a binding energy of approximately 50 meV and 40 meV respectively.
These bindings are significantly smaller than the binding energies of semiconducting tubes
that we discussed in the previous chapter due to the enhanced metallic screening and the
absence of the anti-screening effect. However, these binding energies are still large compared
even to bulk semiconductors such as Si and GaAs. In bulk metals, no bound excitons
are found due to the nearly perfect screening between the electron and hole. The fact
that optically active bound excitons can exist in lower dimensions, even in the presence of
metallic screening, is due to quantum confinement effects and of the existence of optical
symmetry gaps described above. In one dimensional quantum systems, it has been shown
that any external potential (other than V = 0) that satisfies

∫
V (x)dx ≤ 0 (i.e. is negative

on average) is guaranteed to have at least one negative energy eigenstate. [75, 124] However,
if the binding energy were low and the absorption from the metallic bands strong enough,
we would still be unable to see bound exciton states manifested in the absorption spectra.
Luckily, in metallic SWCNTs, the valence and conduction bands that make up the metallic-
like bands that cross at the Fermi level are from different representations of the group of
the k-vector [18, 17], and the probability of optical transitions between those states is zero.
Thus, as long as the repulsive exchange term in the electron-hole kernel is weak, a bound
state from the E11 interband transition, as predicted with the GW-BSE methodology, is
expected to be present in measured absorption spectra. Unlike the case in similar diameter
semiconducting tubes discussed in the previous chapter, however, GW-BSE guarantee only
one bound state per van Hove singularity and not a series of measurable excitonic states.
This is due to the absence of the anti-screening effect in metallic tubes.

One comparison that can be made to experiment is in the absolute energy of
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absorption peak. For the (10,10) tube, the GW-BSE absorption peak position is calculated
to be 1.84 eV. The experimental peak position has been measured to 1.89 eV. [42] For
the (12,0) tube the calculated absorption peak position is 2.25 eV, whereas experimental
measurement gives a value of 2.16 eV for the position. [42, 135] In both cases, we see
agreement to better than 5 percent, demonstrating the accuracy of the combined GW-BSE
technique.

Figure 5.9 shows the optical absorption spectra for the E22 and E33 optically
allowed transitions in the (10,10) SWCNT. The absorption spectra look qualitatively similar
to the E11 spectra. However, in this case, we find resonant exciton states because the
electron-hole states from the E11 continuum, being of the same symmetry, mix with the
E22 and E33 electon-hole states forming the exciton states. However, due to the relatively
lower JDOS of the E11 continuum when compared to the van Hove singularity of the E22,
for example, we find that the resonant states contain only a 15% contribution from the
E11 continuum. Thus, the E22 and E33 transitions are still associated with excitons with
binding energy of 60 meV and 50 meV respectively. Thus, the GW-BSE calculations predicts
that the second and third van Hove singularities give rise to resonant excitonic states with
binding energies similar to the exciton arising from E11 transition.

From analyzing the exciton wave functions, AS
vck, computed by diagonalizing the

BSE as discussed in Chapters 1 and 2, we find that the bright exciton states that dominate
the absorption spectra are composed from a single valence and conduction band pair and
mixed over a range of k-points making up approximately 1

50 of the Brillouin zone centered
at the band minima. The exciton wavefunction in real space are defined from the electron
and hole wavefunction as:

Ψ (~re, ~rh) =
∑

kvc

Avckφc,k(~re)φv,k(~rh). (5.4)

Figure 5.10 shows the squared magnitude, |Ψ(~re, ~rh = const) |2, of this function for the
lowest optically bright bound exciton state for the (10,10) tube with the hole position fixed
in the center of a orbital. In Fig. 5.10 (a), the electron’s amplitude is averaged over the
radial and angular components and plotted along the tube axis, with the hole positioned
at the origin (z=0). For the (10,10) tube, the axial width (analogous to the exciton radius)
is approximately 30 Å. Figure 5.10 (b) shows |Ψ|2 in a cross-sectional cut across the tube
axis where again the hole is represented by the green dot. The wavefunction is delocalized
over the entire diameter is a result of the fact that exciton derives from only one interband
transition.

In this section, we showed that bound excitons exist in metallic SWCNTs and that
excitonic effects are important in achieving even a qualitative description of the optical
properties of metallic SWCNTs. [127, 37] These predictions were tested by experiment
on an absorption study of an isolated (21,21) SWCNT. [145] The experimental absorption
lineshape can be compared to the theoretical lineshapes calculated with and without the
excitonic effects included to both qualitatively confirm whether excitonic effects are present
in the experimental spectra and to quantitatively determine the binding energy.

Our initial comparison to experiments utilized the ab initio calculation of (10,10)
SWCNT E11 described above. This approach is justified because the E22 transition in the
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Figure 5.8: The calculated E11 absorption lineshape in the (10,10) SWCNT with (a) 20 meV
and (b) 80 meV Lorentzian broadening. The solid curves include excitonic effects and the
dashed curves were calculated without the electron-hole interaction. Panel (c) compares the
two spectra with 80 meV broadening where the noninteracting spectrum has been scaled
and shifted to match the peak in the interacting case.
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Figure 5.9: Calculated optical absorption peaks the (a) E22 and (b) E33 interband transitions
in the (10,10) SWCNT.
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Figure 5.10: The exciton wave function in real-space: the electron amplitude squared in
real space with the hole position fixed (a) plotted along the tube axis with the hole located
at the origin and radial and angular degrees of freedom integrated out and (b) plotted on
a cross section cut across the tube axis. The hole is located at the X in the figure.
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Figure 5.11: Comparison of the ab intio absorption spectrum to experiment. The (left)
theoretical spectra without excitonic effects and (right) theoretical spectra with excitonic
effects are compared to the experiment from Wang. et. al. [145]

(21,21) tube comes from nearly the same k-points in the graphene bandstructure as the E11

transition. To further match the (21,21) tube spectra we scaled the electron-hole kernel in
order to tune the theoretical binding energy to reach maximum agreement with experiment.
Surprisingly, the best agreement was achieved when the Kernel was left unchanged (100%
of its original value). We discuss in the next sub-section the origin of this insensitivity to
the tube diameter.

With the improvements to the BerkeleyGW package as described in Chapter 2, it
is now possible to study directly the optical spectrum of the (21,21) SWCNT. Figure 5.11
shows a comparison of the ab initio optical absorption spectrum of the (21,21) nanotube to
experiment. The line shape when excitonic effects (yielding an exciton with binding energy
of 40 meV) have been turned on in the calculation agrees remarkably well with the exper-
imental lineshape [145]. Without excitonic effects included however, the spectra disagrees
even qualitatively - the non-interacting spectra having a significantly more asymmetrical
peak.

5.2.2 Diameter Dependence

Density functional theory calculations using the local density approximation (LDA)
described above yield a Fermi velocity for graphene of ≈ 0.82 · 106m/s [149]. Comparison
of this estimate with experiment (1.1 · 106m/s [101, 153]) suggests that there must be a
strong positive renormalization of the graphene Fermi velocity due to electron-electon inter-
actions. Indeed, ab initio calculations of the electron self-energy of undoped graphene show
an electron-electron positive energy renormalization of 30% and an electron-phonon contri-
bution to the electron self-energy that contributes a reduction in the Fermi Velocity of ≈ 4
percent [105, 149]. This large quasiparticle energy shift is also anticipated in metallic nan-
otubes of large diameter. Additionally, as we just saw, excitonic effects have been shown to
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be strong in metallic SWCNTs [37] and the exciton binding seemingly insensitive to changes
in the tube diameter in the small number of tubes studied from first-principles [34]. For
these reasons, it is interesting to investigate the diameter dependence of the many-body
effects in metallic nanotubes.

In order to study the diameter dependence of the quasiparticle renormalization
and exciton binding energies, we use the GW approximation [62] to the electron self-energy
to accurately estimate the electron-electron contribution to the Fermi velocity renormal-
ization of graphene. We further carry out similar computations of the band and excitonic
renormalization in the armchair (3,3) [128], (5,5), (10,10) and (21,21) single walled carbon
nanotubes, whose bands at the Fermi level are derived from cross sections cutting through
the center of the graphene Dirac cone.

We calculate the ground state electronic properties within ab initio Kohn-Sham
density functional theory [76, 83] with a planewave basis using the local density approxi-
mation (LDA) to the exchange-correlation potential and using ab initio Troullier-Martins
pseudopotentials in the Kleinman-Bylander form [139, 74] with a cutoff of rc = 1.4 a.u.. The
calculations for graphene are performed in a supercell geometry with a planar separation of
10 Å for graphene and at least 8 Å tube-tube separation in the case of metallic nanotubes.
In graphene, this separation was tested by extending the separation to 20 Å and noting
the small change in EQP

nk for tested k on the Dirac cone. The graphene calculations were
performed on a 64x64 k-point grid, while the nanotube calculations were done using a 32
k-point one dimensional grid. For the optical spectroscopy on SWCNT, fine grids of up to
512 k-points are used.

Figure 5.12 shows the LDA bandstructures for the (5,5) and (20,20) metallic nan-
otubes along the Γ−K direction. The LDA values for the Fermi velocities near the Dirac
points in each case can be found in Table 5.2. While the (10,10) LDA Fermi velocity agrees
well with the graphene Fermi velocity, the smaller diameter tubes have an increasingly
smaller Fermi velocity. [24, 112]

An important implementation detail worth discussing is the convergence of the
GW corrections for graphene. The bandstructure near the Dirac point converges extremely
slowly, showing a small, unphysical energy gap for calculations with too few k-points. This
gap is systematically reduced when one converges with respect to k-points, however away
from the Dirac point, the spectra remains nearly the same. Convergence is only reached
when a k-point sampling of the Brillouin zone greater than a 64x64 grid is used.

The calculated renormalization of the LDA energy dispersion using the GWmethod
is shown in Fig. 5.14 for the (5,5) and (10,10) nanotubes as well as for graphene. Having
included the electron-electron contribution to the quasiparticle self-energy, we obtain a lin-
ear quasiparticle dispersion near the Dirac point, but with a rescaled Fermi velocity. This
energy scaling is largest in the case of graphene which has a calculated renormalization of
30 percent as illustrated in Fig. 5.15. Thus, the calculated Fermi velocity using the GW
method is 1.05 · 106m/s. The effective change in the graphene bandstructure is shown in
Figure 3. Shown in Table 5.2 are the corresponding LDA and GW calculated Fermi veloc-
ities for the (3,3) [127], (5,5) and (10,10) armchair SWNTs. Similarly to the LDA Fermi
Velocity, the GW renormalization factor is reduced as the tube diameter is reduced. In the
case of the (3,3) SWCNT, the quasiparticle Fermi Velocity is predicted to be, 0.65 ·106m/s,



97

−3

−2

−1

 0

 1

 2

 3

 0  0.1  0.2  0.3  0.4  0.5

E
(k

)

k 2π/a

(5,5)

−3

−2

−1

 0

 1

 2

 3

 0  0.1  0.2  0.3  0.4  0.5

E
(k

)

k 2π/a

(20,20)

Figure 5.12: LDA bandstructure for the (5,5) (Top) and (20,20) (Bottom) SWCNTs



98

-4 -2 0 2 4

E
LDA

(eV)

-1

-0.5

0

0.5

1

E
Q
P
-
E

L
D
A
(e
V
)

32x32 kpoints

16x16 kpoints

64x64 kpoints

Figure 5.13: Convergence of the GW energy renormalization in graphene with respect to
k-point sampling.

which is only two thirds of the measured graphene Fermi velocity. It is important to note
that we do not consider the effects of the Luttinger liquid behavior of graphene near the
Dirac point within our theory.

The trend in the value of the renormalization with changing tube diameter can be
understood in terms of the decrease in effective screening as the tube diameter increases.
As effective screening is decreased, the screened-exchange term in the self-energy operator
reduces to the bare or Hartree-Fock exchange term which is well known to increase band
gaps and band widths, which in turn cause an increase in band velocity. In a Thomas-Fermi
approximation for screening, the dielectric function of a quasi-one-dimensional nanotube is:

ǫ(q) = ǫ∞ − χM (q)Vbare(q) where χM (q) ∝ −D(Ef ) (5.5)

System LDA (106m/s) GW Shift QP (106m/s)

(3,3) 0.56 15% 0.65
(5,5) 0.72 19% 0.85
(10,10) 0.81 24% 1.00

Graphene 0.82 30% 1.05

Table 5.2: Quasiparticle Fermi Velocities
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[145]. Here we have approximated the electron-electron interaction by the interaction
between charged rings along the tube diameter, as in Chapter 4, and ǫ∞ represents the
residual screening at distances smaller than the tube diameter where this approximation
breaks down. Vbare(q) is the bare coulomb interaction from a ring of charge, Vbare(q) =

2I0

(
qd
2

)(

K0
qd
2

)

, where I0 and K0 are the zeroth order modified Bessel functions of the

first and second kind. Here D(Ef ) is the density of states at the Fermi level. This bare
interaction is appropriate for describing the electron-hole interaction since the electron-hole
wavefunctions from a single set of bands are delocalized around the tube diameter. As
we mention below, for the exchange interaction of two electrons, this approximation is not
appropriate, but the qualitative features of the dielectric function are the same for the
description of the screening. This density of states at the Fermi energy is approximately
constant with changing diameter, decreasing slightly with increased diameter due to the
larger LDA Fermi velocities. Thus, the number of free screening electrons per distance
around the tube circumference decreases with increasing tube diameter and the screening
becomes less effective. The velocity renormalization continues to rise in armchair tubes with
increasing nanotube diameter until it reaches the value in graphene, where the normalized
D(Ef ) is zero

The discrepancy between the computed band velocity of graphene within Density
Functional Theory using LDA and experiment can therefore be explained, as anticipated, by
the large quasiparticle energy corrections obtained by the ab initio GW technique. The GW
value for the band velocity (away from the exact Dirac point), 1.05 ·106m/s agrees very well
with the values obtained in experiments on the quantum Hall effect in graphene [101, 153]
even after the inclusion of the smaller than 4 percent negatve band renormalization due to
the electron-phonon interaction. The Fermi velocity renormalization of 30 percent is larger
than that of ≈ 10 − 15 percent typically found in metallic systems due to the vanishing
density of states at the Fermi energy in graphene. The renormalization in the case of small
diameter nanotubes becomes more typical of a metallic system due to the relative increase
in magnitude of the density of states at the Fermi energy.

This diameter dependence of the dielectric screening has important consequences
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Tube Ebind(eV )

(5,5) 0.07
(10,10) 0.05
(21,21) 0.04

Table 5.3: Exciton binding energy of various metallic nanotubes calculated within the GW-
BSE formalism.

in the optical spectra of metallic SWCNTs as well. Table 5.3 shows the diameter dependence
of the exciton binding energy in metallic SWCNTs. The exciton binding energy is relatively
insensitive to the tube diameter due to a cancellation effect. The bare Coulomb interaction
between ring charges (appropriate since the exciton interaction involves only a single set of
degenerate bands) is deeper for small diameter tubes, but the interaction is shorter in range
due to increased screening.

The net result of the of the GW quasiparticle energy correction and the exciton
binding energy dependence on diameter is that optical transitions in larger diameter tubes
have a blue-shift compared to the corresponding transitions in smaller diameters tubes.
For example, the E22 transition of the (20,20) tube has a higher transition energy than
the E11 transition energy in the (10,10) tube, though they come from the same k-points
in the graphene Brillouin zone. The reason why the GW shifts are diameter dependent
whereas the exciton-binding energies are insensitive to the diameter is explained when we
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look at the exchange contribution to the valence band self-energy (the term that contributes
most to the bandgap opening). We see that, unlike the excitonic interaction, where only
a single pair of bands is involved, the exchange interaction involves many valence bands.
This means that the exchange-hole, unlike the excitonic electron-hole amplitude, is localized
in the circumferential direction as well as the axial direction. Therefore, in the exchange
interaction, treating the electrons as interacting rings, as we did in the previous chapter,
is inappropriate. We should instead treat the electrons and holes as point particles on the
surface of the tube. In this case, the bare interaction is the same for tubes of different
diameters, but the screening remains more efficient for tubes of smaller diameters (there
is more screening charge nearby). Thus we get a stronger exchange interaction for larger
diameter tubes and hence a larger quasiparticle band-gap opening. This is illustrated in
Fig. 5.16 where we compare the effective screened Coulomb interactions for three nanotube
systems. Notice that the semiconducting (10,0) interaction only differs from the metallic
interaction substantially near q = 0, and, outside of this region, the strongest interaction
corresponds to the largest diameter tube.

Interestingly, this net blue shift in the optical transition energies of larger diameter
metallic tubes also exists for semiconducting tubes. This is because, the reduction in screen-
ing in semi-conducting nanotubes leads to both an increase in the quasiparticle gap and an
increased exciton binding energy. When going from a metallic tube to a semiconducting
with similar diameter, the increased quasiparticle gap and increased exciton binding energy
nearly perfectly cancel. To illustrate this, we calculated the absorption spectra for the (5,5)
tube normally (i.e., with metallic screening) and with artificial semiconducting screening,
achieved by setting ǫ(q = 0) = 1. The results are shown in Figure 5.17. Notice that,
though the lineshape changes, the peak position remains relatively unchanged between the
two approaches.

The unusual diameter dependence mentioned above is yet one more example of
the trend we have seen in this chapter, that, unlike bulk metals, the quasiparticle and
optical properties of reduced dimensional metals and semi-metals are greatly affected by
many-body interactions.
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[13] C. Attaccalite, A. Grüeneis, T. Pichler, and A. Rubio. Ab-initio band structure of
doped graphene. ArXiv e-prints, August 2008.



104

[14] Sergei M. Bachilo, Michael S. Strano, Carter Kittrell, Robert H. Hauge, Richard E.
Smalley, and R. Bruce Weisman. Structure-assigned optical spectra of single-walled
carbon nanotubes. Science, 298(5602):2361–2366, 2002.

[15] A. Baldereschi and E. Tosatti. Mean-value point and dielectric properties of semicon-
ductors and insulators. Phys. Rev. B, 17(12):4710–4717, Jun 1978.

[16] V. Barone, J. E. Peralta, and G. E. Scuseria. Optical transitions in metallic single-
walled carbon nanotubes. Nano Letters, 9:1830–3, 2005.

[17] E. B. Barros, R. B. Capaz, A. Jorio, G. G. Samsonidze, A. G. Souza Filho, S. Ismail-
Beigi, C. D. Spataru, S. G. Louie, G. Dresselhaus, and M. S. Dresselhaus. Selection
rules for one- and two-photon absorption by excitons in carbon nanotubes. Phys. Rev.
B, 73:241406, 2006.

[18] Eduardo B. Barros, Ado Jorio, Georgii G. Samsonidze, Rodrigo B. Capaz, Antonio
G. Souza Filho, Josue Mendes Filho, Gene Dresselhaus, and Mildred S. Dresselhaus.
Review on the symmetry-related properties of carbon nanotubes. Physics Reports,
431:261, 2006.

[19] Lorin X. Benedict and Eric L. Shirley. Ab initio calculation of ǫ2(ω) including the
electron-hole interaction: Application to GaN and CaF2. Phys. Rev. B, 59(8):5441–
5451, 1999.

[20] Lorin X. Benedict, Eric L. Shirley, and Robert B. Bohn. Optical absorption of insu-
lators and the electron-hole interaction: An ab initio calculation. Phys. Rev. Lett.,
80(20):4514–4517, May 1998.

[21] Lorin X. Benedict, Catalin D. Spataru, and Steven G. Louie. Quasiparticle properties
of a simple metal at high electron temperatures. Phys. Rev. B, 66(8):085116, Aug
2002.

[22] J. A. Berger, Lucia Reining, and Francesco Sottile. Ab initio calculations of electronic
excitations: Collapsing spectral sums. Phys. Rev. B, 82:041103(R), 2010.

[23] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Don-
garra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Wha-
ley. ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1997.

[24] X. Blase, Lorin X. Benedict, Eric L. Shirley, and Steven G. Louie. Hybridization effects
and metallicity in small radius carbon nanotubes. Phys. Rev. B, 72 no 12:1878, 1994.

[25] Fabien Bruneval and Xavier Gonze. Accurate GW self-energies in a plane-wave basis
using only a few empty states: Towards large systems. Phys. Rev. B, 78:085125, 2008.

[26] Fabien Bruneval, Nathalie Vast, and Lucia Reining. Effect of self-consistency on
quasiparticles in solids. Phys. Rev. B, 74:045102, 2006.



105

[27] K. A. Bulashevich, R. A. Suris, and S. V. Rotkin. Excitons in single-wall carbon
nanotubes. Int. Journ. Nanoscience, 2 issue 6:561, 2003.

[28] Rodrigo B. Capaz, Catalin D. Spataru, Sohrab Ismail-Beigi, and Steven G. Louie.
Diameter and chirality dependence of exciton properties in carbon nanotubes. Phys.
Rev. B, 74:121401, 2006.

[29] Alberto Castro, Heiko Appel, Micael Oliveira, Carlo A. Rozzi, Xavier Andrade, Flo-
rian Lorenzen, M. A. L. Marques, E. K. U. Gross, and Angel Rubio. octopus: a tool
for the application of time-dependent density functional theory. Phys. Status Solidi
B, 243(11):2465–2488, 2006.

[30] D. M. Ceperley and B. J. Alder. Ground state of the electron gas by a stochastic
method. Phys. Rev. Lett., 45(7):566–569, Aug 1980.

[31] M. L. Cohen and T. K. Bergstresser. Band structures and pseudopotential form
factors for fourteen semiconductors of the diamond and zinc-blende structures. Phys.
Rev., 141:789, 1966.
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Appendix A

BerkeleyGW Additional Details

A.1 Parallelization and Performance

A.1.1 epsilon

The parallelization of epsilon is characterized by two distinct schemes for the
two main sections of the code: 1) the computation of matrix elements (Eq. 2.9), and 2) the
matrix multiplication (Eq. 2.15) and inversion.

For the computation of the matrix elements in Eq. 2.9, the code is parallelized
with nearly linear scaling up to Nv · Nc processors, where Nv and Nc are the number of
valence and conduction bands respectively used in the sum of Eq. 2.8. Each processor owns
an approximately equal fraction of the total number of (v, c) pairs for all k – and performs
serial FFTs to compute the matrix elements, Eq. 2.9, for all G and k associated with the
pair. Note that for large systems, Nv is on the order of 100s and Nc is on the order of 1000s
or more; so that this section of the code scales well up to 100,000 CPUs.

All wavefunctions are stored in memory unless the optional comm disk flag is given.
Each processor holds in memory the wavefunctions for all the pairs it owns. If comm disk

is specified (as opposed to the default comm mpi option), the distribution of pairs is the
same, but each processor saves the conduction wavefunctions it needs on disk and reads the
wavefunctions back into memory one pair at time for the purposes of computation. Using
comm disk can therefore reduce the amount of memory required for the computation, but
comes with a substantial performance reduction.

The processors are distributed out into valence and conduction band pools in order
to minimize the memory required using a complete search algorithm. For example, if one
calculates a material with few valence and many conduction bands, all the processors will
be in one or two valence pools (holding all or half the valence bands in memory each) but
spread over a large number conduction pools because the relative cost of holding all the
valence bands in memory is much smaller than holding all the conduction bands in memory.
In such as scheme, the amount of memory required per processor drops linearly with small
numbers of processors and decreases as 1/

√
Nproc for large number of processors (Fig. A.1).

In the second section of the epsilon code, we switch from a parallelization over
bands to parallelization scheme over GG′ for the polarizability (Eq. 2.8) and dielectric
matrices (Eq. 2.10). We use the ScaLAPACK block-cyclic layout [23] in anticipation of
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utilizing the ScaLAPACK libraries for the inversion of the dielectric matrix. The transition
between the band distribution of the matrix elements in Eq. 2.9 and the block-cyclic layout
of the polarizability matrix is achieved naturally in the process of doing the parallel matrix-
matrix multiplication involved in Eq. 2.15. There is, however, a significant amount of
communication involved at this step. To minimize this communication we have two options
for the parallel multiplication.

In the first scheme, corresponding to the gcomm matrix flag in epsilon.inp, we
loop over processors (for simplicity, we label the loop index i) who own a piece of the
polarizability matrix χ(G,G′). Each processor does the fraction of the matrix multiplication
in Eq. 2.15 relating to the (n, n′) pairs it owns and for submatrix χ(Gi,G

′
i) that the ith

processor stores. The processors then MPI-reduce their contribution to the ith processor.
Thus the total communication in this scheme is an eventual reduction of the entire χ(G,G′)
to the processors that store it. It is important to note that we must do this one processor
at time (or at most in chunks of processors – chosen often as the number of CPUs per
node) because no single processor can hold in memory the entire χ(G,G′) matrix for large
systems.

In the second scheme, corresponding to the gcomm elements flag in epsilon.inp,
we again loop over processors, but this time, we have the ith processor MPI-broadcast to
all processors that hold a piece of the polarizability matrix the set of matrix elements for
all the (v, c) pairs it owns. Each processor then uses these matrix elements to compute
the contribution of the matrix-matrix product, Eq. 2.15, for the submatrix of χ(G,G′) it
stores. In this scheme, all the matrix elements (Eq. 2.6) are eventually broadcast.

Whether the use of the gcomm elements flag or the gcomm matrix flag is optimal
depends on whether it is faster to reduce the χ(G,G′;ω) or broadcast all the matrix ele-
ments, Mnn′(k,q, {G}). In particular if NG ·Nfreq < Nv ·Nc ·Nk, where Nfreq is the number
of frequencies in a full frequency calculation, then it is cheaper to use gcomm matrix. If no
flag is specified, the epsilon code will make this choice for the user based on the above
criteria.

Because we use the block-cyclic layout, the memory required to store the χ(G,G′)
decreases linearly with the number of CPUs. However, the cost of the inversion utilizing
ScaLAPACK can saturate at 100s of CPUs and the cost of the summation can saturate
with a few thousand CPUs, see Figure A.2. In general, the number of CPUs used for the
block-cyclic distribution of χ can be tuned.

Beyond the more sophisticated level of parallelization described above, there is a
more trivial level of parallelization available to small systems requiring large numbers of
k-points: Eq. 2.8 is completely separable as a function of q. One may run a separate
epsilon calculation for each q required and merge the dielectric matrices – in such a way, a
user can obtain perfectly linear artificial scaling with CPUs to Nk times the number CPUs
mentioned above.

The scaling of memory and computation time with respect to the number of CPUs
used per q-point in epsilon for the example (20,20) SWCNT calculation is shown in Fig.
A.1 and Fig A.2. We find nearly linear scaling up to 3200 CPUs per q-point. Since there
are 32 q-points in this calculation that are trivially parallelized, we find nearly linear scaling
of the epsilon computation up to 100,000 CPUs.
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Figure A.1: The memory required per CPU vs. the number of CPUs used for a epsilon

calculation on the (20,20) nanotube. See text for parameters used.
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Figure A.2: The wall-time required vs. the number of CPUs per q-point used for a epsilon
calculation on the (20,20) single-walled carbon nanotube. There is near linear scaling up to
1,600 CPUs. Since there is an additional layer of trivial parallelization over the 32 q-points
required, the epsilon calculation scales to over 50,000 CPUs. See text for parameters used.
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A.1.2 sigma

Within a sigma calculation, one computes a requested number of diagonal, Eq.
2.19, or off-diagonal, Eq. 2.18, Σ matrix elements. For each matrix element there are two
computationally intensive steps. The first is to calculate all the plane-wave matrix elements
Mnn′′ and Mn′n′′ , Eq. 2.6, for the outer states of interest, n and n′, and for all occupied
and empty states, n′′. Secondly, we compute the sum over states, n′′, as well as G, G′ and
q in the expressions in Eqs. 2.20 – 2.29.

The sigma execution is parallelized over both outer bands, n and n′, and inner
bands, n′′. As in the case of epsilon this is done by defining pools and distributing the
n, n′ pairs evenly among the pools. We then distribute the n′′ bands evenly within the
pools. As was the case for epsilon, we define the number of pools using a complete search
algorithm to minimize the amount of memory per CPU required to store the inner and
outer wavefunctions.

As described above, the CPU time required for the computation of all plane-wave
matrix elements, Mnn′′ and Mn′n′′ , scales as N2 logN , where N is the number of atoms, for
each Σ matrix element of interest. As described above, the outer-state pairs are parallelized
over pools and the inner states are parallelized over the CPUs within each pool. The wall-
time for the computation of all the plane-wave matrix elements required for every Σ matrix
element scales as N logN with unlimited CPU resources. As was the case in the epsilon

executable, each CPU computes the plane-wave matrix elements between all the (n, n′′) and
(n′, n′′) pairs it owns for all G through serial FFTs using FFTW [45].

The summations required in Eqs. 2.20 – 2.29 are parallelized by again distributing
the outer-state pairs over the pools and then distributing the inner states over the CPUs
within each pool. The wall-time for the summations, therefore, scales as N2 (for the sums
over G and G′) regardless of the number of diagonal or off-diagonal elements requested,
given unlimited CPU resources.

As was the case for epsilon, the wavefunctions are distributed in memory, with
each CPU owning only the n, n′ and n′′ wavefunctions that it needs for the computations
described above. The dielectric matrix, ǫ−1

G,G′(q;E) for each q and E, is distributed globally
over the matrix rows, G.

The scaling of memory and computation time with respect to the number of CPUs
used per k-point in sigma for the example (20,20) SWCNT calculation is shown in Fig. A.3
and Fig A.4. We find nearly linear scaling up to 1600 CPUs per k-point. Since there are 16
irreducible k-points in this calculation that are trivially parallelized, we find nearly linear
scaling of the sigma computation up to 25,000 CPUs.

A.1.3 BSE

As mentioned in the above sections, in the kernel executable, for each k and
k′, we must calculate all the matrix elements Mvv′ , Mcc′ , and Mvc and then perform the
summations involved Eq. 2.35 and Eq. 2.36 for each (vck, v′c′k′) pair. BerkeleyGW au-
tomatically parallelizes this in different schemes depending on the system and number of
CPUs provided.

If the number of CPUs is less than N2
k , the square of the number of coarse k-points,
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Figure A.3: The memory required per CPU vs. the number of CPUs used for a sigma

calculation on the (20,20) nanotube. See text for parameters used.
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Figure A.4: The wall-time required vs. the number of CPUs per k-point used for a sigma

calculation on the (20,20) single-walled carbon nanotube. There is near linear scaling up to
1,920 CPUs. Since there is an additional layer of trivial parallelization over the 16 k-points
required, the epsilon calculation scales to over 30,000 CPUs. See text for parameters used.
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we distribute out the (k,k′) pairs evenly over the CPUs and each CPU calculates all the
matrix elements, Mvv′ , Mcc′ , and Mvc, required for the k-point pairs it owns through serial
FFTs. It then computes the sums in Eq. 2.35 and Eq. 2.36 for all of its pairs.

If the number of CPUs is greater than N2
k , as is often the case for large systems

and molecules, but less than N2
k · N2

c , we distribute the (ck, c′k′) pairs out evenly among
the processors; first distributing the processors evenly over k-point pairs and then creating
pools to distribute the (c, c′) evenly among the pools. In this scheme, each CPU computes
Mcc′ for only the (ck, c′k′) it owns but computes Mvv′ and Mvc for all v and v′ at each
(ck, c′k′) pairs it owns. Each CPU does the summations in Eq. 2.35 and Eq. 2.36 for all v,
v′ for the (ck, c′k′) it owns.

If the number of CPUs is greater than N2
k · N2

c , we distribute the entire set of
(vck, v′c′k′) pairs out evenly among the processors; first distributing the processors evenly
over (ck, c′k′) pairs and then creating pools to distribute the (v, v′) evenly among the pools.
In this scheme, each CPU computes only the Mvv′ , Mcc′ , and Mvc for the (vck, v

′c′k′) pairs
it owns. Additionally, each CPU does the summations in Eq. 2.35 and Eq. 2.36 for only
the pairs it owns.

In the last scheme, the calculation of the matrix elements has a parallel wall-time
scaling of N and the summations scale as N2 (accounting for the sum over GG′) if a
limitless number of CPU resources is assumed.

The large arrays that must be stored in memory are the dielectric matrix, the
wavefunctions and the computed kernel itself. The computed kernel is distributed evenly
in memory among the processors and computed directly by the CPUs who own the various
(vck, v′c′k′) pairs. The dielectric matrix is distributed, as in the sigma executable, over its
rows G and must be broadcast during each calculation of the sums in Eq. 2.35 and Eq.
2.36. It is for the purposes of minimizing the communication of the dielectric matrix that
we use the three different parallelization schemes above – i.e., so that we might work on
the biggest blocks of (v, v′) and (c, c′) at once. For example, in the first scheme, where the
number of CPUs is less than N2

k , we do the sums in Eq. 2.35 and Eq. 2.36 for all (vc, v′c′)
at once; so that we need only broadcast the dielectric matrix one time.

The wall-time scaling for the example kernel (20,20) SWCNT calculation is shown
in Fig. A.5. We see nearly linear scaling up to 1024 CPUs – which is the square of the
number of k-points, 32.

In the absorption executable, as described above, the first computational chal-
lenge is the interpolation of the kernel from the coarse k-grid onto the fine k-grid. The
computation of the interpolation coefficients, Eq. 2.38, is done by distributing the fine-grid
k-points evenly among the processors. For molecules or other large systems, this does not
represent a problem because the computation of the coefficients is very quick in these cases
regardless of the lack of parallelization.

The parallelization of the kernel interpolation is different from the parallelization
scheme in the kernel executable. However, the parallelization is also described by three
different schemes:

First, if the number of CPUs is less than Nk, where Nk is the number of fine-grid
k-points, we distribute the Nk k-vectors on the fine grid evenly among the CPUs. Each
processor owns all the (vck, v′c′k′) pairs consistent with the k-vectors it was assigned. It
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Figure A.5: (left) Memory per CPU required vs the number of CPUs for a kernel calcula-
tion on the (20,20) SWCNT. (right) The wall-time required vs. the number of CPUs used
for a kernel calculation on the (20,20) SWCNT. The parameters used are described in the
text.
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then serially performs the interpolation in Eq. 2.39 by replacing the simple loops that
represent the sums with four matrix-matrix multiplications. For example, for each n1 and
n3, one can write the sum over n2 as a matrix-matrix product between the coarse kernel
matrix (whose outer dimension is n4) and C∗kco

v,n2
matrix (whose outer dimension is Nv on

the fine grid). We write the remaining sums as a similar matrix-matrix product.
If the number of CPUs is greater than Nk but less than Nk · Nc, we distribute

the Nk ·Nc k-point and conduction-band pairs evenly among the processors. Again, each
processor owns all the (vck, v′c′k′) pairs consistent with the (k, c) it was assigned. In the
previous scheme, we utilized matrix-matrix products to interpolate many kernel elements
at once. This required the allocation of an array of size N2

v · N2
c as described above. In

the present scheme, we avoid storing large intermediate arrays by doing more of the sums
in Eq. 2.39 as simple loops rather than matrix products. By default we do two simple
loops of two matrix products. However, if the user selects the low memory option, we do
all four summations as four nested loops without the aid of matrix-matrix multiplications,
obtaining one fine-grid matrix element at a time without the need for any intermediate
matrices.

If the number of CPUs is greater than Nk ·Nc, we distribute the Nk ·Nc ·Nv k-point
and conduction- and valence-band pairs evenly among the processors. Each processor owns
all the (vck, v′c′k′) pairs consistent with the (k, c, v) it was assigned. The interpolation is
done exactly as in the previous case.

Once the fine-grid kernel has been constructed, in the absorption executable, the
matrix is diagonalized using ScaLAPACK with a block-cyclic layout [23]. This diagonaliza-
tion scales well to O(1000) CPUs but quickly saturates beyond this point.

In order to calculate the absorption spectrum as per Eq. 2.5, we compute all
the necessary matrix elements, Eq. 2.6, by distributing the fine-grid k-points evenly over
processors.

In order to diagonalize large matrices (e.g, graphene on a 256× 256 k-point grid)
[149], we turn to iterative diagonalization methods, in particularly the Haydock Recursion
Iteration – since it requires only matrix-vector products, this method scales well to larger
number of processors. It should be pointed out that the kernel matrix is in general not
sparse, so methods designed for the diagonalization of sparse matrices are not appropriate
here.

A.2 Symmetry and degeneracy

A.2.1 Mean field

As was mentioned in the Chapter 2, the largest cost when performing a GW
calculation with the BerkeleyGW package is the generation of the input mean-field states.
In order to reduce this cost, all the codes allow the user to input the wavefunctions in only
the reduced Brillouin zone and construct the wavefunctions in the full zone by the following
relation:

φR(k)(G) = φk(R
−1(G))e−ik·τ . (A.1)
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where the symmetry operation is defined by a rotation matrix R and a fractional translation
τ .

A.2.2 Dielectric matrix

The wavefunctions in the full zone are then used for the sum over k in Eq. 2.8
in epsilon. sigma, kernel and absorption which require not only the wavefunctions in
the full zone but also the dielectric matrix. While in principle one could construct the
dielectric matrices at all the q-points required in Eqs. 2.20 – 2.29 and 2.35, in practice one
can use symmetry to reduce the required q-points. The epsilon code requires the user to
calculate the dielectric matrices on a reduced set of q-points and the other codes generate
the dielectric matrices in the full zone. If one defines q1 = R(q) + GR, where GR is a
G-vector chosen to ensure that q and q1 are in the first Brillouin zone,that can be required
to ensure that, and R, τ are rotation matrix and translation respectively, then one can use
the relation [62, 64] :

ǫ−1
GG′(q1;E) = e−i(G−G′)·τ ǫ−1

G1G
′

1

(q;E) (A.2)

where G1 = R−1(G+GR). Given ǫ−1 in the reduced zone, this allows one to construct it
in the full zone.

A.2.3 Truncation of sums

Both the dielectric matrix and the self-energy operator involve infinite sums over
unoccupied states, which must in practice be truncated in the epsilon and sigma codes.
The dielectric matrix and self-energy operator only retain the full symmetry of the system
if the truncation does not cut through any degenerate subspaces. Consider a subspace of
states belonging to a degenerate representation of a symmetry operation. Only the whole
subspace is invariant under that operation, while just a part of it is not necessarily. As a
result, a calculation using only part of the subspace will produce self-energies that break
degeneracies due to that operation. Moreover, the actual values obtained are not well defined
because the states used are arbitrary linear combinations in the subspace, which could even
differ from run to run of a DFT code depending on how the calculation is initialized. These
considerations are particularly acute for sums over a small number of states, since the
contribution of the last few bands may be significant. Therefore, the epsilon and sigma

codes check that the highest band requested for the sum is not degenerate with the next one,
and block calculations that will break degeneracy. However, it is also possible to override
this behavior with the flag degeneracy check override, for testing purposes and because
in some cases there may be overlapping degenerate subspaces on different k-points that
make it difficult to find acceptable numbers of bands; for large numbers of bands, the effect
of truncation in a degenerate subspace will be small.

A.2.4 Self-energy operator

Degeneracy is also important from the point of view of the states on which self
energies are calculated, as opposed to those appearing in the sum. Since the self-energy
operator has the full symmetry of the system, the matrix elements between states belonging
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to different representations are zero by symmetry. In the presence of high symmetry, this
consideration can make the matrix quite sparse. To take advantage fully of symmetry here
would require a careful analysis of each wavefunction’s behavior under various symmetry
operations and comparison to character tables of space groups. Users can certainly do this
in deciding which off-diagonal self-energy matrix elements to calculate. The Sigma takes a
very simple approach to identify some of the elements which are zero by symmetry, based
on degeneracy. The multiplicity of the degenerate subspace to which each states belongs
is counted (1, 2, or 3 for the standard space groups), and clearly two states in subspaces
of different multiplicity must belong to different representations, and their matrix element
can be set to zero without calculation. This saves time and enforces symmetry.

Application of symmetry in a degenerate subspace can also speed up calculation
of diagonal elements of the self-energy operator. The expressions for the exchange, screened
exchange, and Coulomb-hole parts contain a sum over q. In general, this must be done over
the whole Brillouin zone, but to calculate the sum of the self energies within a degenerate
subspace it is sufficient to use the irreducible part of the Brillouin zone. Each part of Σ, in
the various approximations, has the generic form

〈nk|Σ
∣
∣n′k

〉
= −

∑

n′′

∑

qGG′

〈

nk
∣
∣
∣ei(q+G)·r

∣
∣
∣n′′k− q

〉〈

n′′k− q

∣
∣
∣e−i(q+G′)·r

∣
∣
∣n′k

〉

F
(
q,G,G′)

(A.3)

The summand is invariant under application of a symmetry operation O in the
subgroup of k provided that n = n′ and n and n′′ are non-degenerate, since in that case
the action of the operation simply introduces a phase: O |mk〉 = eiθ |mk〉 (degenerate states
may instead transform into linear combinations in the degenerate subspace). These phases
are cancelled by the fact that each state appears also with its complex conjugate. If the
states n′′ in the sum are degenerate, the summand is not invariant but the sum is, if the
whole degenerate subspace is summed over, since then we are taking the trace of the pro-
jector matrix |n′′k〉 〈n′′k| in that subspace, which is invariant [64]. If n is degenerate, then
〈nk|Σ |nk〉 is not invariant, but the trace of the self-energy in the degenerate subspace,
∑

n 〈nk|Σ |nk〉, is invariant. Therefore, to calculate diagonal elements for a whole degen-
erate subspace, for each state we sum only over q in the irreducible zone, with weight Wq

from the number of q-vectors related to q by symmetry. We then symmetrize by assigning
the average to each:

〈mk|Σ |mk〉 = 1

Ndeg

deg
∑

n

〈nk|Σ |nk〉

= −
deg
∑

n

∑

n′′

∑

GG′

irr∑

q

Wq

〈

nk
∣
∣
∣ei(q+G)·r

∣
∣
∣n′′k− q

〉〈

n′′k− q

∣
∣
∣e−i(q+G′)·r

∣
∣
∣nk

〉

(A.4)

× F
(
q,G,G′)
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If we are calculating only part of a degenerate subspace, this trick does not work,
and we must perform the complete sum. For diagonal elements, the code by default uses
the irreducible q-sum and will write an error if the calculation requires the full sum because
of degeneracy, directing the user to enable via the flag no symmetries q grid, or include
all states in the degenerate subspace. For off-diagonal elements (n 6= n′′), even if both
are non-degenerate, application of the symmetry operation introduces in general different
phases from the two states, which are not canceled. Thus the contributions from different
q-points related by symmetry differ, so that the full sum must always be used.

A.2.5 Bethe-Salpeter equation

Degeneracy must be considered in BSE calculations as well, when choosing the
subspace in which to work. If the set of occupied or unoccupied states includes only part of
a degenerate subspace, then the solutions found by absorption will break symmetry and
can give qualitatively incorrect results. For example, an excitation that should have zero
oscillator strength by symmetry, due to interference between transitions to two degenerate
states, may not be dark if only one of those transitions is included. This issue is quite general
and applies to the choice of active spaces in other theories as well, such as configuration
interaction [151].

A.2.6 Degeneracy utility

We provide a utility called degeneracy check.x which reads wavefunction files
and writes out a list of acceptable numbers of bands. Multiple wavefunction files can be
checked at once, for example the shifted and unshifted grids in epsilon or shifted, unshifted,
coarse, and fine grids for Bethe-Salpeter equation calculations, in which case the utility will
identify numbers of bands which are consistent with degeneracy for every file.

A.2.7 Real and complex flavors

The component executables come in two “flavors,” real and complex, specified at
compile time and denoted by the suffix .real.x or .cplx.x. When the system has inversion
and time-reversal symmetry, we can choose the wavefunctions to be real in reciprocal space.
The plane-wave expansions are:

u (r) =
∑

G

uGe
iG·r (A.5)

u (−r) =
∑

G

uGe
−iG·r (A.6)

u∗ (r) =
∑

G

u∗Ge
−iG·r (A.7)

The symmetry conditions mean that wavefunctions can be chosen to satisfy u (−r) = au (r)
(inversion symmetry) and u∗ (r) = bu (r) (time-reversal, equivalent to taking the complex
conjugate of the Schrödinger equation), with a, b each equal to ±1 depending on whether the
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wavefunction belongs to an odd or even representation. Thus we can choose u (−r) = cu∗ (r)
with c = ab also equal to ±1. Combining this with the plane-wave expansions,

∑

G

uGe
−iG·r = c

∑

G

u∗Ge
−iG·r (A.8)

uG = cu∗G (A.9)

The choice c = 1 corresponds to real coefficients; c = −1 corresponds to pure imaginary
coefficients. Most plane-wave electronic-structure codes always use complex coefficients,
and so the coefficients will in general not be real, even in the presence of inversion and
time-reversal symmetry. For a non-degenerate state, the coefficients will be real times an
arbitrary global phase, determined by the initialization of the solution procedure. We must
divide out this global phase to make the coefficients real. In a degenerate subspace, the
states need not be eigenstates of inversion, and so in general they may not just be real
times a global phase. Instead, in each subspace of degeneracy n we take the 2n vectors
given by the real and imaginary parts of each wavefunction, and then use a Gram-Schmidt
process to find n real orthonormal wavefunctions spanning the subspace. The density and
exchange-correlation potential are real already in the presence of inversion symmetry and
there is no arbitrary phase possible.

The real-space density is always real: ρ (r) = ρ∗ (r). With inversion symmetry, we
also have ρ (r) = ρ (−r). In reciprocal space,

ρ (r) =
∑

G

ρGe
iG·r (A.10)

ρ∗ (r) =
∑

G

ρ∗Ge
−iG·r (A.11)

ρ (−r) =
∑

G

ρGe
−iG·r (A.12)

Together, these relations imply ρG = ρ∗G, i.e. the reciprocal-space coefficients are real.
Precisely the same equations apply for the exchange-correlation potential.

The wavefunction, density, and exchange-correlation potential are then all stored
as real coefficients, saving disk space (for the files), memory, and operations compared to
the complex representation.

A.3 Computational Issues

A.3.1 Memory estimation

In the beginning of each run, all the major code components print the amount of
memory available per CPU and an estimate of memory required per CPU to perform the
calculation. If the latter exceeds the former the job is likely to fail with memory allocation
error. The amount of memory required is estimated by determining the sizes of the largest
arrays after reading in the parameters of the system from the input files. A straightfor-
ward approach to estimating the amount of available memory is to allocate memory by



126

incremental amounts until the allocation call returns with an error. Unfortunately, in many
implementations the allocation call returns without an error even if the requested amount
of memory is not physically available, but the system fails when trying to access this “al-
located” memory. We implement another approach based on the Linux /proc file system.
First, each CPU opens file /proc/meminfo and reads in the values of MemFree and Cached.
The sum of these two values gives the amount of memory available per node. Second, each
CPU calls hostnm routine (hostnm for XLF and hostnam for Intel compilers) that returns
the host name which is unique for each node. By comparing host names reported by differ-
ent CPUs we identify the number of CPUs per node. The amount of memory available per
CPU is then given by the ratio of the amount of memory available per node to the number
of CPUs per node. This approach works on almost all modern high-performance computing
systems where the Linux /proc File System is accessible.

A.3.2 Makefiles

The main codes are in the Epsilon, Sigma, BSE, PlotXct, and MeanField directo-
ries. Routines used by all parts are in the Common directory, and routines common to some of
the MeanField codes are in the Symmetry directory. The Makefiles are designed for GNU
Make, and enable targets in a directory to be built from any level of the directory hierarchy.
They contain a full set of dependencies, including those between directories, to ensure that
the build is correct after any changes to source, for ease in development and modification.
This also enables use of parallel make on large numbers of processors for rapid builds – any
omissions in the dependencies generally cause a failure for a parallel make. The special make
target all-j (i.e. make -j all-j) begins by using all processes to build the Common and
Symmetry directories, which contain files required by files in a large number of directories;
otherwise, the build would fail due to attempts by multiple processes to read and write the
same files in the Common and Symmetry directories. Commonly, Fortran Makefiles are set up
with object files depending on other object files. However, the real situation is that object
files depend on module files (.mod) for the modules they use, and only executables depend
on object files. Therefore we have dependencies directly on the module files to ensure the
required files are present for compilation, particularly for parallel builds.

A.3.3 Installation instructions

The code can be installed via the following steps:

cp [flavor_real.mk/flavor_cplx.mk] flavor.mk

ln -s config/[mysystem].mk arch.mk

make all

make check

First a flavor is selected by copying the appropriate file to flavor.mk. Then
a configuration file must be put as arch.mk. Configurations appropriate for various su-
percomputers as well as for using standard Ubuntu packages are provided in the config

directory. Appropriate paths, libraries, and compiler flags can be selected here for other
systems.
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A.3.4 Validation and verification

The importance of verification and validation of complicated scientific software
packages is receiving increasing attention. We use standard open-source tools for code de-
velopment, following accepted best practices. [92] Development is done with the subversion
(SVN) version-control system [4] and Trac, an issue-tracking system and interface to SVN
[5]. All code runs identify the version and revision number used in the output for trace-
ability of results, implemented via a special source file called svninfo.f90 which all SVN
revisions must modify (enforced via a pre-commit hook). Debug mode can be enabled via
-DDEBUG in the arch.mk file, which produces more verbose output and also performs extra
checking of dynamic memory allocation and deallocation. A macro enables a check of the
status returned by the system after an allocation attempt, and reports failures, identifying
the array name, size, source file, and line number, as well as which processor failed to allo-
cate the array. Additionally, it keeps track of the amount of memory dynamically allocated
and deallocated, so the code can report at the end of each run how much memory remains
allocated, and the maximum and minimum memory ‘high-water-mark’ among the proces-
sors. In debug mode, a stack trace can also be enabled, either on just the root processor, or
on all processors (causing the code to run much slower), which can be used to locate where
problems such as segmentation faults are occurring (possibly on only one processor).

The package contains a comprehensive testsuite to test the various executables, run
modes, and options, in the testsuite directory. Calculations of several different physical
systems, with mean-field, epsilon, sigma, and BSE calculations, are carried out (including
use of PlotXct and some utilities), detecting any run-time errors and showing any warnings
generated. Then selected results are extracted from the output and compared to reference
information within a specified tolerance. The actual calculated values, as well as timing for
each step, are displayed. Each match is shown as either OK or FAIL, and a final summary
is written of failures. The calculations are small and generally underconverged, to make
them quick enough for routine testing and rapid feedback. The mean-field steps are either
EPM (quick serial calculations) or stored compressed output from DFT calculations. The
Epsilon, Sigma, and BSE calculations are run either in serial or on 4 processors (for par-
allel builds). The testsuite has numerous uses. It is useful for users to verify the success
of a new build of the code on their platform (failures could be due to library problems,
excessive optimizations, etc.). It is used for developers to verify that the code is giving re-
producible answers, ensure consistency between serial/parallel runs, as well as real/complex
and spin-polarized/unpolarized runs, and check that the code works with new compilers
or libraries. On a routine basis, the testsuite is also useful for developers to check that
changes to the code do not introduce problems. The driver scripts (run testsuite.sh and
run regression test.pl) and specifications for the files defining the test steps are origi-
nally based on, and developed in conjunction with, those of the Octopus code. [29, 88] This
framework is quite general and can easily be used for constructing a testsuite for another
code. It can be run in serial with the command make check (or make check-save to retain
the working directories from the runs), or in parallel with make check-jobscript (or make
check-jobscript-save). The system configuration file arch.mk can specify how to sub-
mit an appropriate jobscript for parallel execution on a supercomputer using a scheduler.
Scripts are provided in the testsuite directory for some supercomputers. The testsuite
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is used with a continuous-integration system, the open-source tool BuildBot, [2] to ensure
the integrity of the code during development. Each commit to the SVN repository trig-
gers a build of the code on each of 10 “buildslaves,” which have different configurations
with respect to serial/parallel, compilers, and libraries. After the build, the testsuite is
run. BuildBot will report to the developers if the either the build or test runs failed, so
the problem can be quickly remedied. Use of the various different buildslave configurations
helps ensure that the code remains portable across different platforms and in accordance
with the language standards. Two of the buildslaves are on a supercomputer with a sched-
uler, a situation for which standard BuildBot usage is problematic. We provide a Perl
script buildbot mpi.pl that can submit jobs, monitor their status, capture their output
for BuildBot, and determine success or failure. This script is general for any PBS scheduler
and can be used for other codes too.




