
UC Office of the President
Recent Work

Title
Communication-Aware Scheduling of Serial Tasks for Dispersed Computing

Permalink
https://escholarship.org/uc/item/5v53424j

Authors
Yang, Chien-Sheng
Avestimehr, A. Salman
Pedarsani, Ramtin

Publication Date
2018-08-16

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5v53424j
https://escholarship.org
http://www.cdlib.org/

Communication-Aware Scheduling of Serial Tasks
for Dispersed Computing

Chien-Sheng Yang†, Ramtin Pedarsani∗, and A. Salman Avestimehr†
† University of Southern California ∗ University of California, Santa Barbara

Abstract—There is a growing interest in development of in-
network dispersed computing paradigms that leverage the com-
puting capabilities of heterogeneous resources dispersed across
the network for processing massive amount of data is collected
at the edge of the network. We consider the problem of task
scheduling for such networks, in a dynamic setting in which
arriving computation jobs are modeled as chains, with nodes
representing tasks, and edges representing precedence constraints
among tasks. In our proposed model, motivated by significant
communication costs in dispersed computing environments, the
communication times are taken into account. More specifically,
we consider a network where servers are capable of serving all
task types, and sending the results of processed tasks from one
server to another server results in some communication delay
that makes the design of optimal scheduling policy significantly
more challenging than classical queueing networks. As the main
contributions of the paper, we first characterize the capacity
region of the network, then propose a novel virtual queueing
network encoding the state of the network. Finally, we propose a
Max-Weight type scheduling policy, and considering the virtual
queueing network in the fluid limit, we use a Lyapunov argument
to show that the policy is throughput-optimal.

I. INTRODUCTION

In many large-scale data analysis application domains, such
as surveillance, autonomous navigation, and cyber-security,
much of the needed data is collected at the edge of the
network via a collection of sensors, mobile platforms, and
users’ devices. In these scenarios, continuous transfer of the
massive amount of collected data from edge of the network
to back-end servers (e.g., cloud) for processing incurs sig-
nificant communication and latency costs. As a result, there
is a growing interest in development of in-network dispersed
computing paradigms that leverage the computing capabilities
of heterogeneous resources dispersed across the network (e.g.,
edge computing, fog computing, etc [1], [2]).

At a high level, a dispersed computing scenario consists of
a group of networked computation nodes, such as wireless
edge access points, network routers, and users’ computers
that can be utilized for offloading the computations. There
is, however, a broad range of computing capabilities that
may be supported by different computation nodes. Some
may perform certain kinds of operations at extremely high
rate, such as high throughput matrix multiplication on GPUs,
while the same node may perform worse on single threaded
performance. Communication bandwidth between different
nodes in dispersed computing scenarios can also be very
limited and heterogeneous. As a result, it is critical to design
efficient algorithms for scheduling of computation tasks in
such networks by carefully accounting for computation and
communication heterogeneity.

In this paper, we consider the task scheduling problem in
a dispersed computing network in which arriving jobs are
modeled as chains, with nodes representing tasks, and edges
representing precedence constraints among tasks. Each server
is capable of serving all the task types and the service rate
of a server depends on which task type it is serving. Our
computation and network models are related to [3]. However,
the model that we consider in this paper is more general, as the
communication times between servers are taken into account.
In our network model, sending the results of processed tasks
from one server to another results in some communication
constraints that makes the design of efficient scheduling policy
even more challenging. More specifically, after one task is
processed by a server, the server can either process the children
task locally or send the result to another server in the network
to continue with processing of the children task. However, each
server has a bandwidth constraint that determines the delay
for sending the results. Given this communication-aware task
scheduling problem, we are interested in finding a throughput-
optimal scheduling policy for the network.

A significant challenge in communication-aware scheduling
is that unlike traditional queueing networks, processed tasks
are not sent from one queue to another queue probabilistically.
Indeed, the scheduling decisions also determine the routing of
tasks in the network. Therefore, it is not clear what is the
maximum throughput (or, equivalently, the capacity region)
that one can achieve in such networks, and what scheduling
policy is throughput-optimal.

As the main contributions of the paper, we first character-
ize the capacity region of this problem (i.e., the set of all
arrival rate vectors of computations for which there exists
a scheduling policy that makes the network rate stable). To
capture the complicated computing and communication pro-
cedures in the network, we propose a novel virtual queueing
network encoding the state of the network. Then, we propose
a Max-Weight type scheduling policy for the virtual queueing
network, and show that it is throughput-optimal. To the best
of our knowledge, our work is the first throughput-optimal
communication-aware scheduling policy for scheduling tasks
with precedence constraints.

Since the proposed virtual queueing network is quite dif-
ferent from traditional queueing networks, it is not clear that
the capacity region of the proposed virtual queueing network
is equivalent to the capacity region of the original scheduling
problem. Thus, to prove throughput-optimality Max-Weight
policy, we first show the equivalence of two capacity regions:
one for the dispersed computing problem that is characterized

2018 IEEE International Symposium on Information Theory (ISIT)

978-1-5386-4780-6/18/$31.00©2018 IEEE 1226

by an LP, and one for the virtual queueing network character-
ized by a mathematical optimization problem that is not an LP.
Then, under the Max-Weight policy, we consider the stochastic
network in the fluid limit, and using a Lyapunov argument, we
show that the fluid model of the virtual queueing network is
weakly stable [4] for all arrival vectors in the capacity region,
and stable for all arrival vectors in the interior of the capacity
region. This implies that the Max-Weight policy is throughput-
optimal for the virtual queueing network as well as for the
original scheduling problem.

Related Work: Task scheduling problem has been widely
studied in the literature, which can be divided into two main
categories: static scheduling and dynamic scheduling. In the
static or offline scheduling problem, jobs are present at the
beginning, and the goal is to allocate tasks to servers such
that a performance metric such as average computation delay
is minimized. In most cases, the static scheduling problem is
computationally hard, and various heuristics or approximation
algorithms are proposed (see e.g., [5], [6]).

In the dynamic or online scheduling problem, which is more
relevant to this paper, jobs arrive to the network according
to a stochastic process and get scheduled dynamically over
time. In many prior works in the literature, the tasks have
dedicated servers for processing, and the goal is to establish
stability conditions for the network [7]. Given the stability
results, the next natural goal is to compute the expected
completion times of jobs or delay distributions. However, very
few analytical results are available for characterizing the delay
performance, except for the simplest models. When the tasks
do not have dedicated servers, one aims to find a throughput-
optimal scheduling policy (see e.g. [8]), i.e. a policy that
stabilizes the network, whenever it can be stabilized. Max-
Weight scheduling, proposed in [9], is known to be throughput-
optimal for wireless networks and flexible queueing networks.
However, there has been no work prior to our work that
develops a Max-Weight type policy for communication-aware
task scheduling.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Computation and Network Models

We consider the problem of dispersed computing, in which
jobs arrive to a network in an online fashion, and jobs are
processed across servers in the network. As shown in Fig. 1,
each job is modeled as a chain including serial tasks. Each
node of the chain represents one task type, and each edge of
the chain represents a precedence constraint. Moreover, we
consider M types of jobs, where each type is specified by one
chain structure.

For this scheduling problem, we define the following terms.
Let (Im, {ck}k∈Im) be the chain corresponding to the job
of type m, 1 ≤ m ≤ M , where Im denotes the set of
nodes of type-m jobs, and ck denotes the output size (bits)
of type-k task. Let the number of tasks of a type-m job
be Km, i.e. |Im| = Km, and the total number of task
types in the network be K, so that

∑M
m=1Km = K. Since

I1, I2, . . . , Im are disjoint, we can index the task types in
the network by k, 1 ≤ k ≤ K, starting from job type 1
to M . Therefore, task type-k belongs to job type m(k) if∑m(k)−1

m′=1
Km′ < k ≤

∑m(k)

m′=1
Km′ .

We call task k
′

a parent of task k if they belong to the same
chain and there is a directed edge from k

′
to k. Without loss

of generality, we let task k be the parent of task k+1, if task k
and task k+1 belong to the same chain, i.e. m(k) = m(k+1).
In order to process task k+1, the processing of task k should
be completed. Node k is said to be the root of chain type
m(k) if k = 1 +

∑m(k)−1
m′=1

Km′ . Also, node k is said to be
the last node of chain type m(k) if k =

∑m(k)

m′=1
Km′ . Then,

we denote H as the set of the last nodes of the chains, i.e.
H = {k : k =

∑i
m=1Km, ∀ 1 ≤ i ≤M}.

In the dispersed computing network, as shown in Fig. 1,
there are J servers that are connected to each other. Each
server can serve all types of tasks. We consider the network
in discrete time. We assume that the arrival process of jobs of
type m is a Bernoulli process with rate λm, 0 < λm < 1;
that is, in each time slot a job of type m arrives to the
network with probability λm independently over time. We
assume that the service times for the nodes are geometrically
distributed, independent across time slots and across different
nodes, and also independent from the arrival processes. When
server j processes type-k tasks, the service completion time
has mean µ−1(k,j).

1 Thus, µ(k,j) can be interpreted as the service
rate of type-k task when processed by server j. Similarly,
we model the communication times between two servers as
geometric distribution, which are independent across time
slots and across different nodes, and also independent from
the arrival processes. When server j communicates data of
size 1 bit to another server, the communication time has
mean b−1j . Therefore, bj can be interpreted as the average
bandwidth (bits/time slot) of server j for communicating data
of processed tasks.

B. Problem Formulation

Given the above system model, we formulate the dispersed
computing problem based on the following terms.
Definition 1. A network is rate stable if the number of jobs
in the network does not grow linearly with time.
Definition 2. We define the capacity region of the network
to be the set of all arrival rate vectors where there exists a
scheduling policy that makes the network rate stable.

Note that we later model the network as a network of virtual
queues. Since the arrival and service processes are memory-
less, given a scheduling policy, the queue-length vector in this
virtual queueing network is a Markov process.
Definition 3. A network is strongly stable if its underlying
Markov process is positive recurrent for all the arrival rate
vectors in the interior of the capacity region.

1The exponential distribution of servers’ processing times is commonly
observed in many computing scenarios (see e.g. [10]), and the considered
geometric distribution in this paper is the equivalent of exponential distribution
for discrete-time systems.

2018 IEEE International Symposium on Information Theory (ISIT)

1227

Fig. 1: Overview of task scheduling for dispersed computing. M classes of jobs come to a network which consists of J servers, where each
job is specified by serial tasks. Type m job arrives to the network with rate λm. Type k tasks with output size ck (bits) are processed by
server j with service rate µ(k,j). For communicating the data of processed tasks, server j has bandwidth bj (bits/time slot).

Definition 4. A scheduling policy is throughput-optimal if,
under this policy, the network is rate stable for all arrival rate
vectors in the capacity region; and strongly stable for all arrival
rate vectors in the interior of the capacity region.

Based on above definitions, our problem is now formulated
as the following.
Problem. Consider a dispersed computing network consisting
of network and computation models as defined in Section II-A,
we pose the following two questions:
• What is the capacity region of the network as defined in

Definition 2?
• What is the throughput-optimal scheduling policy for the

network as defined in Definition 4?

III. CAPACITY REGION CHARACTERIZATION

Before finding the throughput-optimal scheduling policy, we
first characterize the capacity region of the network.

Now, we consider an arbitrary scheduling policy. Let p(k,j)
be the long-run fraction of capacity that server j allocates
for processing type-k tasks. Let p = [p(k,j)] be the capacity
allocation vector. An allocation vector p is feasible if

K∑
k=1

p(k,j) ≤ 1, ∀ 1 ≤ j ≤ J. (1)

Let q(k,j) be the long-run fraction of the bandwidth that
server j allocates for communicating data of processed type-k
tasks. We can define q = [q(k,j)] to be the bandwidth allocation
vector. Therefore, an allocation vector q is feasible if∑

k∈{1,2,...,K}\H

q(k,j) ≤ 1, ∀ 1 ≤ j ≤ J. (2)

Given a capacity allocation vector p, consider task k and
task k + 1 which are in the same chain on server j. As time
t approaches infinity, t → ∞, up to time t, the number of
type-k tasks processed by server j is µ(k,j)p(k,j)t+ o(t) and
the number of type-(k + 1) tasks processed by server j is
µ(k+1,j)p(k+1,j)t+ o(t). Therefore, we can write

µ(k,j)p(k,j)t− µ(k+1,j)p(k+1,j)t+ o(t) (3)
as the number of type-(k + 1) tasks that server j is not
capable of serving up to time t, as t → ∞. Clearly, the
type-(k + 1) tasks which cannot be served by server j has

to be processed by other servers. Hence, up to time t and
t → ∞, server j has to at least communicate data of
µ(k,j)p(k,j)t−µ(k+1,j)p(k+1,j)t+ o(t) processed type-k tasks
to other servers.

On the other hand, given a bandwidth allocation vector q,
up to time t and t → ∞, the number of the type-k tasks
communicated by server j is bjq(k,j)t

ck
+ o(t). Therefore, to

make the network stable, we obtain the following constraints:

bjq(k,j)

ck
≥ µ(k,j)p(k,j) − µ(k+1,j)p(k+1,j), (4)

for ∀ 1 ≤ j ≤ J and ∀ k ∈ {1, 2, . . . ,K}\H.
We introduce a linear program (LP) that characterizes the

capacity region of the network. The nominal traffic rate to
all the tasks of job type m in the network is λm. Let ν =
[νk] ∈ RK

+ be the set of nominal rates of tasks in the network.
Then, νm = λm if m(k) = m, i.e., if

∑m−1
m′=1

Km′ ≤ k ≤∑m
m′=1Km′ . The LP that characterizes capacity region of the

network makes sure that the total service capacity allocated to
each node in the network is at least as large as the nominal
traffic rate to that node, and the communication rate of each
server is at least as large as the rate of tasks that the server
is not capable of serving. Thus, the LP known as the static
planning problem (SPP) [11] - is defined as follows:

Static Planning Problem (SPP):
Maximize δ (5)

subject to νk ≤
J∑

j=1

µ(k,j)p(k,j) − δ, ∀k. (6)

bjq(k,j)

ck
− δ ≥ µ(k,j)p(k,j) − µ(k+1,j)p(k+1,j),

∀j, ∀k ∈ {1, 2, . . . ,K}\H. (7)

1 ≥
K∑

k=1

p(k,j), p(k,j) ≥ 0, ∀j. (8)

1 ≥
∑

k∈{1,2,...,K}\H

q(k,j), q(k,j) ≥ 0, ∀j. (9)

Based on SPP above, the capacity region of the network
can be characterized by following proposition.

2018 IEEE International Symposium on Information Theory (ISIT)

1228

Proposition 1. The capacity region Λ of the network char-
acterizes the set of all rate vectors λ ∈ RM

+ for which
the corresponding optimal solution δ∗ to the static planning
problem (SPP) satisfies δ∗ ≥ 0.

The proof of Proposition 1 follows the standard fluid limit
argument for stochastic networks [4], provided in [12].

IV. QUEUEING NETWORK MODEL
Based on the computation model and network model de-

scribed in Section II, we first illustrate how we model a
network of virtual queues that encodes the state of the net-
work. The virtual queueing network consists of two kinds of
queues, processing queue and communication queue, which
are modeled in the following manner:

1) Processing Queue: We maintain one virtual queue called
(k, j) for type-k tasks which are processed at server j.

2) Communication Queue: For k /∈ H, we maintain one
virtual queue called (k, j), c for processed type-k tasks
to be sent to other servers by server j.

Now, we describe the dynamics of the virtual queues in the
network. Let’s consider one type of job which consists of
serial tasks. A root task k of the job is sent to processing
queue (k, j) if the task k is scheduled on server j when
a new job comes to the network. For any node k in this
chain, the result of process in queue (k, j) is sent to queue
(k + 1, j) if task k + 1 is scheduled on server j. Otherwise,
the result is sent to communication queue (k, j), c. If task
k + 1 in queue (k, j), c is scheduled on server l, it is sent
to queue (k + 1, l), where l ∈ {1, 2, . . . , J}\{j}. Clearly,
if k is a root of one chain, the traffic to queue (k, j) is
only the traffic of type-m(k) jobs coming to the network.
Otherwise, the traffic to queue (k, j) is from queue (k− 1, j)
and queues (k−1, l), c, ∀ l ∈ {1, 2, . . . , J}\{j}. Furthermore,
the traffic to queue (k, j), c is only from queue (k, j), where
k ∈ {1, 2, . . . ,K}\H.

Let Q(k,j) denote the length of queue (k, j) and Q(k,j),c

denote the length of queue (k, j), c. A task of type k can be
processed by server j iff Q(k,j) > 0 and a processed task of
type k can be sent by server j to other servers iff Q(k,j),c > 0.
Let dn(k,j) ∈ {0, 1} be the number of processed tasks of type
k by server j at time n, anm(k) ∈ {0, 1} be the number of jobs
of type m that arrives to the network at time n and dn(k,j),c ∈
{0, 1} be the number of processed type-k tasks sent to other
servers at time n. We denote unm→j ∈ {0, 1} as the decision
variable that root task of the type-m job is scheduled on server
j at time n, wn

k,j→l ∈ {0, 1} as the decision variable that
processed type-k task in queue (k, j), c is sent to queue (k +
1, l) at time n, and snk,j→j ∈ {0, 1} as the decision variable
that processed type-k task in queue (k, j) is sent to queue (k+
1, j) at time n. Thus, we state the dynamics of the queueing
network. If k is a root node of the chain, then

Qn+1
(k,j) = Qn

(k,j) + anm(k)u
n
m(k)→j − d

n
(k,j); (10)

else,
Qn+1

(k,j) = Qn
(k,j) +

∑
1≤l≤J, l 6=j

dn(k−1,l),cw
n
k−1,l→j

+ dn(k−1,j)s
n
k−1,j→j − dn(k,j). (11)

For all k ∈ {1, 2, . . . ,K}\H,
Qn+1

(k,j),c = Qn
(k,j),c + dn(k,j)(1− s

n
k,j→j)− dn(k,j),c. (12)

Before we introduce an optimization problem that charac-
terizes the capacity region of the described queueing network,
we first define the following terms.

Consider an arbitrary scheduling policy. Let um→j be
the long-run fraction that root tasks of the type-m job are
scheduled on server j. We define u = [um→j] to be the
root-node allocation vector. A root-node allocation vector u
is feasible if

J∑
j=1

um→j = 1, ∀ 1 ≤ m ≤M. (13)

For the type-k tasks served by server j, we denote sk,j→j as
the long-run fraction that their child tasks (type-(k + 1)) are
scheduled on server j. An allocation vector s = [sk,j→j] is
feasible if

0 ≤ sk,j→j ≤ 1, ∀ j, ∀ k ∈ {1, 2, . . . ,K}\H. (14)
For the outputs of process in virtual queue (k, j), c, we denote
wk,j→l as the long-run fraction that they are sent to queue
(k + 1, l). An allocation vector w = [wk,j→l] is feasible if∑

1≤l≤J, l 6=j

wk,j→l = 1, ∀ j, ∀ k ∈ {1, 2, . . . ,K}\H. (15)

For the type-k tasks processed by server j, we define fk,j→l

as the long-run fraction that their child tasks are scheduled on
server l. Given s and w, we can write fk,j→l as follows:

fk,j→l =

{
sk,j→j , if l = j

(1− sk,j→j)wk,j→l, otherwise
(16)

Let r(k,j) and r(k,j),c denote the nominal rates to the virtual
queues (k, j) and (k, j), c respectively. If k is a root of one
chain, the nominal rate r(k,j) can be written as

r(k,j) = λm(k)um(k)→j . (17)
If k is not a root of one chain, the rate r(k,j) can be obtained
by summing r(k−1,l) with fk−1,l→j over all servers, i.e.

r(k,j) =

J∑
l=1

r(k−1,l)fk−1,l→j , (18)

because of flow conservation. Similarly,
r(k,j),c = r(k,j)(1− sk,j→j). (19)

Now, we introduce an optimization problem called queue-
ing network planning problem (QNPP) that characterizes the
capacity region of the virtual queueing network. The problem
is defined as follows:

Queueing Network Planning Problem (QNPP):
Maximize γ (20)
subject to r(k,j) ≤ µ(k,j)p(k,j) − γ, ∀ j, ∀ k. (21)

r(k,j),c ≤
bjq(k,j)

ck
− γ, ∀ j, ∀ k ∈ {1, 2, . . . ,K}\H. (22)

and subject to allocation vectors being feasible, where r(k,j)
and r(k,j),c are defined in (17)-(19). Note that all the allocation
vectors p, q, u, s, w are feasible if (1), (2), (13)-(15) are
satisfied. The capacity region Λ

′
of the virtual queueing

network is the set of all λ for which the solution of QNPP
satisfies γ ≥ 0. This can be proved similar to Proposition 1.

2018 IEEE International Symposium on Information Theory (ISIT)

1229

V. THROUGHPUT-OPTIMAL POLICY

In this section, we propose Max-Weight scheduling policy
for the network of virtual queues in Section IV and show that
it is throughput-optimal for the network.

We give a description of the Max-Weight policy for the pro-
posed virtual queueing network. Given virtual queue-lengths
Qn

(k,j) and Qn
(k,j),c at time n, Max-Weight policy allocates the

vectors p, q, u, s and w that are
arg min

p,q,u,s,w

(
(Qn)TE[∆Qn|Fn] + (Qn

c)TE[∆Qn
c |Fn]

)
,

where Qn = [Qn
(k,j)] and Qn

c = [Qn
(k,j),c] are the vectors of

queue-lengths at time n. The Max-Weight policy is the choice
of p, q, u s and w that minimizes the drift of a Lyapunov
function V n =

∑
k,j(Q

n
(k,j))

2 +
∑

k,j(Q
n
(k,j),c)

2.
The following theorem shows the throughput-optimality of

Max-Weight policy.
Theorem 1. Max-Weight policy is throughput-optimal for the
network, i.e. Max-Weight policy is rate stable for all the arrival
vectors in the capacity region Λ defined in Proposition 1, and
it makes the underlying Markov process positive recurrent for
all the arrival rate vectors in the interior of Λ.

Sketch of Proof: In order to prove Theorem 1, we first state
the following lemma whose proof can be found in [12].
Lemma 1. The capacity region characterized by static plan-
ning problem is equivalent to the capacity region characterized
by queueing network planning problem, i.e. Λ = Λ

′
.

Having Lemma 1, we now show that the queueing network
is rate stable for all λ ∈ Λ

′
, and strongly stable for all λ in

the interior of Λ
′

under Max-Weight policy.
We consider the problem in the fluid limit. Define the

amount of fluid in queue (k, j) as X(k,j)(t) and the amount
of fluid in queue (k, j), c as X(k,j),c(t). If k is the root of a
chain, the dynamics of the fluid are as follows
X(k,j)(t) = X(k,j)(0) +λm(k)um(k)→jt−µ(k,j)p(k,j)t; (23)

else,

X(k,j)(t) = X(k,j)(0) + (
∑

1≤l≤J, l 6=j

blq(k−1,l)

ck−1
wk−1,l→j

+ µ(k−1,j)p(k−1,j)sk−1,j→j − µ(k,j)p(k,j))t (24)
For any k ∈ {1, 2, . . . ,K}\H, we have

X(k,j),c(t) = X(k,j),c(0)+(1−sk,j→j)µ(k,j)p(k,j)t−
bjq(k,j)

ck
t

(25)
Now, we define γ∗ as the optimal value of QNPP. If we
consider a vector λ in the interior of Λ

′
, then γ∗ > 0. It

follows that there exist p∗, q∗, u∗, s∗, w∗, ε(k,j) and ε(k,j),c
such that for ∀ 1 ≤ j ≤ J and ∀ 1 ≤ k ≤ K,

µ(k,j)p
∗
(k,j) = r∗(k,j) + ε(k,j); (26)

and for ∀ 1 ≤ j ≤ J and ∀ k ∈ {1, 2, . . . ,K}\H,
bjq
∗
(k,j)

ck
= r∗(k,j),c + ε(k,j),c (27)

where ε(k,j) =
(k−

∑m(k)−1

m
′
=1

K
m
′−1)J+1

(Km(k)−1)J+1 γ∗ and ε(k,j),c =
1

(Km(k)−1)J+1γ
∗.

From (17)-(19), (26) and (27), we have Ẋ∗(k,j)(t) < 0

and Ẋ∗(k,j),c(t) < 0. Then, we take V (t) = 1
2X

T (t)X(t) +
1
2X

T
c (t)Xc(t) as the Lyapunov function where X(t) =

[X(k,j)(t)] and Xc(t) = [X(k,j),c(t)]. The drift of V by using
Max-Weight policy is
V̇Max-Weight(t) = min

p,q,u,s,w
XT (t)Ẋ(t) +XT

c (t)Ẋc(t) (28)

≤ (X∗)T (t)Ẋ∗(t) + (X∗c)T (t)Ẋ∗c (t) < 0. (29)
Thus, we show that V̇Max-Weight(t) < 0 if λ in the interior of
Λ
′
. This proves that the fluid model is stable which implies

the positive recurrence of the underlying Markov chain [4].
If we consider a vector λ ∈ Λ

′
, there exist allocation

vectors p∗, q∗, u∗, s∗ and w∗ such that µ(k,j)p
∗
(k,j) =

r∗(k,j) and
bjq
∗
(k,j)

ck
= r∗(k,j),c. Similarly, one can show that

V̇Max-Weight(t) ≤ 0 which implies X(t) = ~0 and Xc(t) = ~0 if
X(0) = ~0 and Xc(0) = ~0. It proves that the fluid model is
weakly stable, i.e. the queueing network process is rate stable
[4]. Hence, Max-Weight policy is throughput-optimal for the
queueing network. The full proof can be found in [12]

VI. ACKNOWLEDGMENT
This material is based upon work supported by Defense

Advanced Research Projects Agency (DARPA) under Contract
No. HR001117C0053. The views, opinions, and/or findings
expressed are those of the author(s) and should not be in-
terpreted as representing the official views or policies of the
Department of Defense or the U.S. Government. This work
is also in part supported by ONR award N000141612189 and
NSF Grants CCF-1703575 and NeTS-1419632 and the UC
Office of President under grant No. LFR-18-548175.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing, pp. 13–16, ACM, 2012.

[2] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing—a key technology towards 5g,” ETSI White Paper, vol. 11,
no. 11, pp. 1–16, 2015.

[3] R. Pedarsani, J. Walrand, and Y. Zhong, “Robust scheduling for flexible
processing networks,” Advances in Applied Probability, vol. 49, 2017.

[4] J. G. Dai, “On positive harris recurrence of multiclass queueing net-
works: a unified approach via fluid limit models,” The Annals of Applied
Probability, 1995.

[5] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating
directed task graphs to multiprocessors,” ACM Computing Surveys
(CSUR), vol. 31, no. 4, pp. 406–471, 1999.

[6] Y.-H. Kao, B. Krishnamachari, M.-R. Ra, and F. Bai, “Hermes: Latency
optimal task assignment for resource-constrained mobile computing,”
IEEE Transactions on Mobile Computing, 2017.

[7] F. Baccelli, W. A. Massey, and D. Towsley, “Acyclic fork-join queuing
networks,” Journal of the ACM (JACM), vol. 36, no. 3, 1989.

[8] A. Eryilmaz, R. Srikant, and J. R. Perkins, “Stable scheduling policies
for fading wireless channels,” IEEE/ACM Transactions on Networking,
vol. 13, no. 2, pp. 411–424, 2005.

[9] J. G. Dai and W. Lin, “Maximum pressure policies in stochastic
processing networks,” Operations Research, vol. 53, no. 2, 2005.

[10] A. Reisizadeh, S. Prakash, R. Pedarsani, and S. Avestimehr, “Coded
computation over heterogeneous clusters,” in Information Theory (ISIT),
2017 IEEE International Symposium on, pp. 2408–2412, IEEE, 2017.

[11] J. M. Harrison, “Brownian models of open processing networks: Canon-
ical representation of workload,” Annals of Applied Probability, 2000.

[12] C.-S. Yang, R. Pedarsani, and A. S. Avestimehr, “Communication-aware
scheduling of serial tasks for dispersed computing,” arXiv preprint
arXiv:1804.06468, 2018.

2018 IEEE International Symposium on Information Theory (ISIT)

1230

		2018-08-07T12:11:33-0400
	Certified PDF 2 Signature

