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The Alzheimer's Disease Neuroimaging Initiative (ADNI) recently added diffusion tensor imaging (DTI), among
several other new imaging modalities, in an effort to identify sensitive biomarkers of Alzheimer's disease (AD).
While anatomical MRI is the main structural neuroimaging method used in most AD studies and clinical trials,
DTI is sensitive tomicroscopic whitematter (WM) changes not detectablewith standardMRI, offering additional
markers of neurodegeneration. Prior DTI studies of AD report lower fractional anisotropy (FA), and increased
mean, axial, and radial diffusivity (MD, AxD, RD) throughout WM. Here we assessed which DTI measures may
best identify differences among AD, mild cognitive impairment (MCI), and cognitively healthy elderly control
(NC) groups, in region of interest (ROI) and voxel-based analyses of 155 ADNI participants (mean age: 73.5 ±
7.4; 90 M/65 F; 44 NC, 88 MCI, 23 AD). Both VBA and ROI analyses revealed widespread group differences in
FA and all diffusivity measures. DTI maps were strongly correlated with widely-used clinical ratings (MMSE,
CDR-sob, and ADAS-cog). When effect sizes were ranked, FA analyses were least sensitive for picking up group
differences. Diffusivity measures could detect more subtle MCI differences, where FA could not. ROIs showing
strongest group differentiation (lowest p-values) included tracts that pass through the temporal lobe, and poste-
rior brain regions. The left hippocampal component of the cingulum showed consistently high effect sizes for
distinguishing groups, across all diffusivity and anisotropy measures, and in correlations with cognitive scores.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Alzheimer's disease (AD) is the most common type of dementia, af-
fecting 1 in 8 people over age 65 in the U.S. alone (Alzheimer's Disease
Association, 2012). Its prevalence is predicted to more than double in
the next 40 years (Hebert et al., 2003). It is important to identify
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individuals most likely to develop AD, so that those at greater risk can
be treated earlier. One high-risk group consists of peoplewithmild cog-
nitive impairment (MCI) — a transitional stage between normal aging
and AD. People with MCI convert to AD at a rate of about 10–15% per
year (Petersen et al., 2001; Bruscoli and Lovestone, 2004). In addition
to the more widely-accepted measures from anatomical MRI, PET, and
CSF measures of pathology, one major neuroimaging study of AD – the
Alzheimer's Disease Neuroimaging Initiative (ADNI) – recently incorpo-
rated additional neuroimaging techniques including diffusion tensor
imaging (DTI) (Jack et al., 2010; Jahanshad et al., 2010a; Zhan et al., in
press). DTI is a variant of MRI that measures the diffusion of water mol-
ecules in brain tissue. Here we set out to assess which standard DTI
measures may best identify neuroanatomical differences between AD,
MCI, and normal aging. In the end, DTI offers a range of measures that
might be sensitive to pathology, includingmeasures of brain connectiv-
ity (Daianu et al., 2012, 2013a,b; Nir et al., 2012; Prasad et al., 2013; Toga
and Thompson, 2013). For these initial analyses, however, we aimed to
analyze more traditional measures and maps that are perhaps most
likely to be used in standardized multi-site DTI analyses, at least in the
near future (Jahanshad et al., 2013).
ved.
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MRI-based image analysis methods have long been used to track
structural atrophy of the aging brain. MRI studies of AD reveal wide-
spread neuronal loss and atrophy in the brain's gray matter, especially
in medial temporal and hippocampal regions (Atiya et al., 2003;
Chetelat and Baron, 2003; Thompson et al., 2003; Anderson et al.,
2005; Apostolova and Thompson, 2008; Bakkour et al., 2009; Risacher
et al., 2009; Apostolova et al., 2010; Desikan et al., 2010a; Desikan
et al., 2010b; Chiang et al., 2011; Weiner et al., 2012; Leung et al.,
2013). Beta-amyloid and tau proteins accumulate in the brain, leading
to inflammation, neuronal atrophy and cell death (Braak and Braak,
1991; Braak and Braak, 1995). As neurons are lost, white matter volume
is also reduced, due to bothmyelin degeneration and axon loss in neural
fiber tracts (Braak and Braak, 1996; Bartzokis, 2011; Braskie et al., 2011;
Hua et al., 2013). Standard anatomical MRI is still the imaging technique
most often used in AD studies and clinical trials, but DTI is sensitive to
microscopic changes in white matter (WM) integrity not always
detectable with standard anatomical MRI (Xie et al., 2006; Canu
et al., 2010). Although this is debatable until more evidence is col-
lected, some DTI changes may even precede and predict volume loss
(Hugenschmidt et al., 2008; Nir et al., 2012), making it a potentially
beneficial tool for capturing additional or complementary markers of
early neurodegeneration. Carriers of some AD risk genes show differ-
ences on DTI as young adults, decades before the typical age of onset
of AD (Braskie et al., 2011).

Fractional anisotropy (FA) is perhaps the most widely accepted DTI
measure and reflects how directionally constrained the diffusion of
water is along axons. While higher FA values may imply more coherent
or intact axons, or a higher degree of myelination, lower FA may reflect
loss ofWM integrity and injury. These physiological correlates of the DTI
signal are widely accepted, but the differences may have other interpre-
tations, especially where fibers cross (Leow et al., 2009; Zhan et al.,
2009). Mean diffusivity (MD) captures the average rate of diffusion in
all directions, and generally increases with WM injury, especially if nor-
mal barriers to diffusion are damaged (such as myelin sheaths on
axons). Axial diffusivity (AxD) captures diffusion parallel to axonal fi-
bers, while radial diffusivity (RD) reflects perpendicular diffusion.
These measures are linked to axonal injury and demyelination, respec-
tively (Song et al., 2003; Songet al., 2005). To date, numerousDTI studies
of AD andMCI find that greater cognitive impairment, or poorer diagno-
sis, is associated with lower FA in the corpus callosum, fornix, cingulum,
superior longitudinal fasciculus, and inferior longitudinal fasciculus
(Ukmar et al., 2008; Stricker et al., 2009; Mielke et al., 2009; Liu et al.,
2011) and DTI measures correlate with widely used clinical or cognitive
ratings including the mini-mental state exam (MMSE) (Bozzali et al.,
2002).

Despite growing diffusion imaging evidence of AD-related WM
changes, it is not clearwhich regions andDTImeasures are themost sen-
sitive for detecting diagnostic differences. In order to evaluate the power
of drug trial treatment to counteract degeneration, optimizing statistical
power for discerning differences and changes is crucial. We focused this
current paper on cross-sectional differences in patients and controls, as
there are a number of DTI measures, regions, and approaches that need
to be compared and ranked in terms of their effect sizes for picking up
group differences. We set out to rank the effect sizes for different DTI-
based scalar measures in detecting differences in both white matter
voxel-based analyses (VBA) and within regions of interest (ROIs). We
first examined differences in DTI anisotropy and diffusivitymeasures be-
tween groups of cognitively healthy normal elderly controls (NC), MCI,
and AD patients in both voxel-based and ROI analyses. We also exam-
ined the association of anisotropy and diffusivity maps with widely
used clinical or cognitive ratings including the MMSE (Folstein et al.,
1975), the “sum-of-boxes” clinical dementia rating (CDR-sob) (Berg,
1988), and the Alzheimer's Disease Assessment Scale-Cognitive (ADAS-
cog) (Rosen et al., 1984). Finally, in a supplementary test, we compared
our ROI results to ROIs extracted along the skeleton from thewidely used
tract-based spatial statistics (TBSS) method (Smith et al., 2006). Despite
the popularity of FA, we hypothesized that wewould find the highest ef-
fect size and discriminative power for MD measures, as recently sug-
gested in a review of DTI studies of AD by Clerx et al. (Clerx et al.,
2012).We also hypothesized thatwewould find the greatest differences
in temporal lobeWMand the corpus callosum (CC), as the temporal lobe
is usually the earliest region to be affected by amyloid and tau pathology
in AD, andDTI studies are often better powered to find group differences
in regions such as the CC where fiber coherence is highest.

2. Materials and methods

2.1. Clinical sample and demographics

Baseline MRI, DTI, clinical, and neuropsychological data were
downloaded from the ADNI database (http://adni.loni.ucla.edu). When
the analysis was performed (September 2012), data collection for the
ADNI2 project was still in progress. Here we performed an initial analy-
sis of 155 participants from 14 data acquisition sites, of whom 44 were
normal controls (NC), 88 amnestic MCI subjects, and 23 AD patients
(see Inline Supplementary Table S1 for distribution of subjects across
sites). Unlike ADNI1, ADNI2 MCI participants include the enrollment
of a new early MCI cohort (e-MCI; n = 62), with milder episodic mem-
ory impairment than the MCI group of ADNI1. The MCI group of ADNI1
is now referred to as late MCI (l-MCI; n = 26) in ADNI2. Levels of MCI
(early or late) were determined using the Wechsler Memory Scale —

Logical Memory II (Wechsler, 1987). We evaluated the l-MCI and e-
MCI groups both separately and as one large MCI group. Detailed inclu-
sion and exclusion criteria are found in the ADNI2 protocol (http://adni-
info.org/Scientists/Pdfs/ADNI2_Protocol_FINAL_20100917.pdf).

Inline Supplementary Table S1 can be found online at http://dx.doi.
org/10.1016/j.nicl.2013.07.006.

Each subject underwent cognitive evaluations. The Mini-Mental
State Examination (MMSE) was used to provide a global measure of
cognitive status, based on evaluating cognitive domains including ori-
entation to place, orientation to time, registration, attention and con-
centration, recall, language, and visual construction (Folstein et al.,
1975). The total score ranges from 1 to 30, with lower scores indicating
impairment. The Clinical Dementia Rating (CDR) was also used as a
global measure of dementia severity (Berg, 1988). The “sum-of-boxes”
CDR (CDR-sob) score is the sum of 6 measures each assessing the de-
gree of impairment in memory, orientation, judgment and problem
solving, community affairs, home and hobbies, and personal care. The
CDR-sob score ranges from0 to 18 (no dementia to severe dementia, re-
spectively). Finally, theAlzheimer's Disease Assessment Scale-Cognitive
(ADAS-cog), a global measure encompassing memory, reasoning, lan-
guage, orientation, ideational, praxis and constructional praxis (Rosen
et al., 1984), was collected where scores range from 0 to 70 (no demen-
tia to severe dementia respectively). In post-hoc analyses, we further
homed in on specific cognitive domains using the available ADNI
composite scores for executive function (ADNI-EF) (Gibbons et al.,
2012) and memory (ADNI-MEM) (Crane et al., 2012) derived using
data from the ADNI neuropsychological battery. Detailed psychometric
calculation protocols are available for download at https://ida.loni.ucla.
edu/. ADNI-EF was calculated using a combination of WAIS-R Digit
Symbol Substitution, Digit Span Backwards, Trails A and B, Category Flu-
ency, and Clock Drawing scores (Gibbons et al., 2012), and ADNI-MEM
was calculated as a composite of the Rey Auditory Verbal Learning
Test (RAVLT), ADAS-Cog, and Logical Memory data (Crane et al., 2012).

Demographics and diagnostic information for the participants are
shown in Table 1. Diagnostic groups did not differ in age, however, edu-
cation, an AD risk factor (Sattler et al., 2012), was marginally significant
between controls and AD. As would be expected, clinical measures
that index cognitive decline (MMSE, ADAS-cog, CDR-sob, ADNI-MEM,
ADNI-EF) did show significant graded differences between groups.

We further assessed whether these measures revealed more fine-
grained differences between the l-MCI and e-MCI subgroups. We found

http://adni.loni.ucla.edu
http://adni-info.org/Scientists/Pdfs/ADNI2_Protocol_FINAL_20100917.pdf
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Table 1
Demographics and clinical scores for the participants.

NC MCI e-MCI l-MCI AD p-value for group difference

(n = 44) (n = 88) (n = 62) (n = 26) (n = 23) NC vs MCI MCI vs AD e-MCI vs l-MCI NC vs AD

Age 72.7 ± 5.9 73.3 ± 7.3 74.0 ± 7.9 71.8 ± 5.3 75.8 ± 10.0 0.59 0.27 0.15 0.17
Sex 22 M/22 F 53 M/35 F 38 M/24 F 15 M/11 F 15 M/8 F – – – –

Education 16.6 ± 2.7 15.9 ± 2.7 15.8 ± 2.8 16.2 ± 2.5 15.0 ± 3.0 0.18 0.22 0.50 0.05
MMSE 28.9 ± 1.3 27.8 ± 1.6 28.0 ± 1.5 27.5 ± 1.8 23.0 ± 1.9 1.01E−4 4.90E−12 0.24 1.57E−14
ADAS-coga 5.3 ± 2.9 9.6 ± 4.2 8.4 ± 3.7 12.7 ± 4.0 20.4 ± 7.3 2.90E−9 2.04E−6 1.45E−4 1.04E−8
CDR-sob 0.03 ± 0.1 1.3 ± 0.7 1.2 ± 0.6 1.4 ± 0.9 4.96 ± 1.4 1.38E−27 2.69E−12 0.27 2.68E−14
ADNI-MEMb 0.84 ± 0.52 0.22 ± 0.46 0.36 ± 0.42 −0.12 ± 0.38 −0.74 ± 0.68 1.01E−8 4.14E−6 5.97E−6 3.64E−10
ADNI-EFb 0.79 ± 0.74 0.16 ± 0.64 0.14 ± 0.61 0.19 ± 0.73 −0.86 ± 0.87 1.65E−5 5.16E−5 0.75 2.51E−8

Bold entries signify p b 0.05.
a ADAS-cog data were available only for a subset of the subjects, with the following numerical breakdown: NC n = 41, MCI n = 78 (e-MCI = 57, l-MCI = 21), AD n = 20.
b ADNI-MEM and ADNI-EF composite scores were available only for a subset of the subjects, with the following numerical breakdown: NC n = 41, MCI n = 82 (e-MCI = 58, l-MCI =

24), AD n = 20.

Table 2
Index of 43 ROIs from the WM tract atlas (Mori et al., 2008) followed by their
abbreviations.

Genu of corpus callosum GCC Posterior thalamic radiation PTR L,R
Body of corpus callosum BCC Sagittal stratum SS L,R
Splenium of corpus callosum SCC External capsule EC L,R
Full corpus callosum CC Cingulum (cingulate gyrus) CGC L,R
Corticospinal tract CST L,R Cingulum (hippocampus) CGH L,R
Cerebral peduncle CP L,R Fornix (crus)/Stria terminalis FX/ST L,R
Anterior limb of internal
capsule

ALIC L,R Superior longitudinal
fasciculus

SLF L,R

Posterior limb of internal
capsule

PLIC L,R Superior fronto-occipital
fasciculus

SFO L,R

Retrolenticular part of internal
capsule

RLIC L,R Inferior fronto-occipital
fasciculus

IFO L,R

Anterior corona radiata ACR L,R Uncinate fasciculus UNC L,R
Superior corona radiata SCR L,R Tapetum TAP L,R
Posterior corona radiata PCR L,R All ROIs TOTAL
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differences in ADAS-cog scores — a measure developed specifically
for Alzheimer's disease, and the most widely used primary outcome
measure in clinical trials that test AD drug treatment efficacy (Mohs
et al., 1983). ADNI-MEMwas also significantly different as it is calculated
using both ADAS-cog and LogicalMemory data, themeasure used to ini-
tially classify the two MCI subgroups.

2.2. MRI and DTI scanning

All subjects underwent whole-brain MRI scanning on 3 Tesla GE
Medical Systems scanners at 14 acquisition sites across North America.
Anatomical T1-weighted SPGR (spoiled gradient echo) sequences
(256 × 256 matrix; voxel size = 1.2 × 1.0 × 1.0 mm3; TI = 400 ms;
TR = 6.98 ms; TE = 2.85 ms; flip angle = 11°), and diffusion-
weighted images (DWI; 256 × 256 matrix; voxel size: 2.7 × 2.7 ×
2.7 mm3; TR = 9000 ms; scan time = 9 min; more imaging details
can be found at http://adni.loni.ucla.edu/wp-content/uploads/2010/
05/ADNI2_GE_3T_22.0_T2.pdf) were collected. 46 separate images
were acquired for each DTI scan: 5 T2-weighted images with no diffu-
sion sensitization (b0 images) and 41 diffusion-weighted images
(b = 1000 s/mm2). This protocol was chosen after conducting a de-
tailed comparison of several different DTI protocols, to optimize the
signal-to-noise ratio in a fixed scan time (Jahanshad et al., 2010a;
Zhan et al., in press). All T1-weightedMRandDWI imageswere checked
visually for quality assurance to exclude scans with excessive motion
and/or artifacts; all scans were included.

2.3. Image analysis

2.3.1. Preprocessing steps
For each subject, all rawDWI volumeswere aligned to the average b0

image (DTI volume with no diffusion sensitization) using the FSL
eddy_correct tool (www.fmrib.ox.ac.uk/fsl) to correct for head motion
and eddy current distortions. All extra-cerebral tissue was roughly re-
moved from the T1-weighted anatomical scans using a number of soft-
ware packages, primarily ROBEX, a robust automated brain extraction
program trained on manually “skull-stripped” MRI data (Iglesias et al.,
2011) and FreeSurfer (Fischl et al., 2004). Skull-stripped volumes
were visually inspected, and the best one selected and sometimes fur-
thermanually edited. Anatomical scans subsequently underwent inten-
sity inhomogeneity normalization using theMNI nu_correct tool (www.
bic.mni.mcgill.ca/software/). Non-brain tissue was also removed from
the diffusion-weighted images using the Brain Extraction Tool (BET)
from FSL (Smith, 2002). To align data from different subjects into the
same 3D coordinate space, each T1-weighted anatomical imagewas lin-
early aligned to a standard brain template (the downsampled Colin27
(Holmes et al., 1998): 110 × 110 × 110, with 2 mm isotropic voxels)
using FSL flirt (Jenkinson et al., 2002) with 6 degrees of freedom (dof)
to allow translations and rotations in 3D. To correct for echo-planar
imaging (EPI) induced susceptibility artifacts, which can cause distor-
tions at tissue–fluid interfaces, skull-stripped b0 images were linearly
aligned (FSL flirt, 9 dof) and then elastically registered to their respec-
tive T1-weighted structural scans using an inverse-consistent registra-
tion algorithm with a mutual information cost function (Leow et al.,
2007) as described in (Jahanshad et al., 2010b). The resulting 3D defor-
mation fields were then applied to the remaining 41 DWI volumes prior
to estimating diffusion parameters. To account for the linear registration
of the DWI images to the structural T1-weighted scan, a corrected gra-
dient table was calculated.

2.3.2. DTI maps
A single diffusion tensor (Basser et al., 1994), or ellipsoid, was

modeled at each voxel in the brain from the eddy- and EPI-corrected
DWI scans using FSL dtifit, and scalar anisotropy and diffusivity maps
were obtained from the resulting diffusion tensor eigenvalues (λ1, λ2,
λ3) which capture the length of the longest, middle, and shortest axes
of the ellipsoid. The tensormodel in DTI has limitations, especially in re-
gions where fibers cross, but we do not investigate it further here; our
other papers consider this in more detail (Zhan et al., 2008; Leow
et al., 2009; Zhan et al., 2009; Zhan et al., 2010; Zhan et al., 2011; Zhan
et al., 2012b; Zhan et al., in press). Fractional anisotropy (FA), ameasure
of the degree of diffusion anisotropy, was calculated from the standard
formula:

FA ¼
ffiffiffi
3
2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1 − b λ Nð Þ2 þ λ2 − b λ Nð Þ2 þ λ3 − b λ Nð Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2
1 þ λ2

2 þ λ2
3

q ∈ 0;1½ �

b λ N ¼ λ1 þ λ2 þ λ3

3
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- where bλN is themean diffusivity (MD), or average rate of diffusion in
all directions. Axial diffusivity was defined as the primary (largest)
eigenvalue (AxD = λ1), and captures the longitudinal diffusivity, or
the diffusivity parallel to axonal fibers (assuming of course that the
principal eigenvector is indeed following the dominant fiber direction,
which may be unclear in regions with extensive fiber crossing). Radial
diffusivity (RD), which captures the average diffusivity perpendicular
to axonal fibers, was calculated as the average of the two smaller eigen-
values:

RD ¼ λ2 þ λ3

2
:

2.3.3. White matter tract atlas ROI summary measures
We linearly, then elastically registered (Leow et al., 2007) the FA

image from the Johns Hopkins University (JHU) DTI atlas (Mori et al.,
2008) to each subject's distortion corrected FA image. We then applied
that deformation to the stereotaxic JHU “Eve” atlas WM labels (http://
cmrm.med.jhmi.edu/cmrm/atlas/human_data/file/AtlasExplanation2.
htm), using nearest neighbor interpolation to avoid intermixing of la-
bels. This is not the atlas that had the problem pointed out by Rohlfing
(2013). We then superimposed the atlas ROIs into the same coordinate
space as our results. We removed 10 ROIs from the analyses (including
the left and right middle cerebellar peduncle, pontine crossing tract,
medial lemniscus, inferior and superior peduncles) as they often fell
partially or completely out of the field-of-view (FOV) of the images.
We also excluded the body of the fornix as it is small and prone to
misregistration and partial voluming. AD researchers are specifically in-
terested in the fornix as it is the primary posterior pathway coming out
of the back of the hippocampus, a key target of pathology. While we in-
cluded the crus of the fornix/stria terminalis, the body is just too small to
be resolvedwell on DTI at this resolution. In addition to the JHU labels, 4
more ROIs were evaluated: bilateral genu, body, and splenium of the
corpus callosum (as opposed to just the lateralized measures), as well
as the entire corpus callosum, and a large “TOTAL” WM ROI made up
of all the other ROIs, to obtain total summarymeasures of these regions.
Wewere then able to calculate the average FA, MD, RD and AxD, within
the boundaries of each of the 43 ROIs for each subject (Table 2).2

2.3.4. TBSS tract atlas ROI summary measures
Tract-based spatial statistics (TBSS) (Smith et al., 2006), provided in

the FSL software package (http://www.fmrib.ox.ac.uk/fsl/), was also
performed according to protocols outlined by the ENIGMA-DTI group:
http://enigma.loni.ucla.edu/ongoing/dti-working-group/. All subjects'
corrected FA maps were linearly, then elastically registered (Leow
et al., 2007) to the ENIGMA-DTI template in ICBM space. The resulting
3D deformation fields were then applied to the three diffusivity maps.
All subjects' spatially normalized FA, MD, RD and AxD data were
projected onto the skeletonized ENIGMA-DTI template. Mean anisotro-
py and diffusivity measures were calculated along the skeleton in the
same 43 ROIs (Table 2). This type of analysis has been used previously
in both genetic studies and studies of disease to home in on associated
WM tracts (Kochunov et al., 2011; Jahanshad et al., 2013).

2.3.5. Template creation and spatial normalization
A study-specific minimal deformation template (MDT) (Gutman

et al., 2012) was created using 29 cognitively healthy elderly control
(NC) spatially aligned FA maps. An MDT deviates, on average, the least
(in some metric) from the anatomy of the subjects, and can often im-
prove registration accuracy and statistical power (Gutman et al., 2012;
Lepore et al., 2007). The MDT was generated by creating an initial affine
mean template from all 29 subjects, then registering all the aligned
2 Except for the total WM ROI, all these ROI measures for all subjects are available for
download at https://ida.loni.ucla.edu/.
individual scans to that mean using a fluid registration (Leow et al.,
2007) while regularizing the Jacobians (Yanovsky et al., 2007). A new
mean was created from the registered scans; this process was iterated
several times. Each subject's initial FA map was elastically registered to
the final MDT and the resulting deformation fields were applied to the
3 diffusivity maps to align them to the same coordinate space. To ensure
white matter alignment across subjects, registered FA maps were
thresholded at FA N 0.2 to include only highly anisotropic anatomy and
the thresholded maps were elastically registered to the thresholded
MDT (FA N 0.2). Again, the resulting deformation fields were applied to
all previously registered DTI maps. We also used the tissue-specific,
smoothing-compensated method (T-SPOON) proposed by Lee et al.
(2009) to improve tissue specificity and reduce confounds caused by
morphometric differences that are not fully corrected by the elastic
registration.

2.4. Statistical analysis

We ran voxel-wisemultiple linear regressions, covarying for age and
sex, to test for statistical effects of AD and MCI diagnosis relative to the
NC group, onmeasures ofwhitematter integrity in FA,MD, RD, and AxD
maps. We also tested for associations between these DTI measures and
MMSE, CDR-sob, and ADAS-cog scores, controlling for age and sex,
across the entire study sample (i.e., including all AD, MCI and NC sub-
jects), and also within each subgroup. We also ran all of the regressions
using a random-effects regression model, grouping the data by acquisi-
tion site. To limit statistical testing to white matter, where the power is
greater to detect differences, statistics were run only on voxels within
the boundaries of the MDT thesholded at FA N 0.2. Prior studies have
thresholded FA values between 0.2 and 0.3 to successfully exclude
gray matter or CSF (Wakana et al., 2005; Smith et al., 2006). As we
were studying a clinical population, we chose the more conservative
(lower) limit of the recommended FA threshold.We also only ran statis-
tics on voxels of the thresholded MDT present in all subject scans, as
some scans had a slightly cropped FOV. As such, we did not consider
the inferior parts of the cerebellum and brain stem.

We ran random-effects regressions on the average anisotropy and
diffusivity measures within the 43 full ROIs, again covarying for age
and sex, testing for statistical effects of diagnosis (NC vs. MCI, or AD),
3 global clinical test scores, and post-hoc tests on ADNI-MEM and
ADNI-EF. We further tested and compared TBSS ROI measures.

Computing multiple association tests for each ROI, or thousands of
tests on a voxel-wise level can introduce a high false positive error
rate. To account for these errors, we used the standard false discovery
rate (FDR) method to control the false positive rate of each map at
q = 0.05 (Benjamini and Hochberg, 1995). All statistical maps shown
in this paper (Figs. 1–5) were thresholded at the FDR critical p-value.

To visualize and compare effect sizes in the anisotropy and diffusiv-
ity maps, we computed and graphed the cumulative distribution func-
tions (CDF) of the p-values obtained from the voxel-wise and ROI
random-effects regressions. The ordered set of observed p-values was
plotted against the expected null distribution. If there are no group dif-
ferences (a null distribution), then the plot would fall approximately
along the y = x diagonal line. However, if the CDF initially rises at
a rate steeper than 20 times the null CDF (y = 20x), then the corre-
sponding maps are FDR significant at q = 0.05. A greater slope reflects
a larger effect size; the FDR critical p-value (at q = 0.05) is the point at
which the curve intersects the y = 20x line.

DTI measures calculated from a single-tensor diffusion model have
limitations in regions with extensive fiber crossing. For example, in AD
we might expect FA deficits throughout the brain, but FA may appear
to be artificially increased where crossing fibers deteriorate (Douaud
et al., 2011). To make sure that these results were not false positives
we separated the full p-value map (irrespective of the significance
level of the voxels) into twomaps: (1) voxels that showed a negative as-
sociation, and (2) positively associated voxels. We then independently

http://cmrm.med.jhmi.edu/cmrm/atlas/human_data/file/AtlasExplanation2.htm
http://cmrm.med.jhmi.edu/cmrm/atlas/human_data/file/AtlasExplanation2.htm
http://cmrm.med.jhmi.edu/cmrm/atlas/human_data/file/AtlasExplanation2.htm
http://www.fmrib.ox.ac.uk/fsl/
http://enigma.loni.ucla.edu/ongoing/dti-working-group/
https://ida.loni.ucla.edu/
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corrected each p-map for multiple statistical comparisons using FDR
(Benjamini and Hochberg, 1995).

As an alternative way to visualize white matter integrity differences
between patients and controls, we also created maps showing the “per-
cent difference” in mean DTI measures between AD patients and NC,
within the FDR significant regions.

%Diff ¼ AD−NC
NC

:

There is a mild bias in doing this, in that it selects voxels that show
effects, and then computes the magnitude of the effects. Even so, it
was used to simply describe how much difference was seen in the re-
gions shown, bearing in mind that the same difference would not be
found in the rest of the brain.

3. Results

3.1. Voxel-based analyses

3.1.1. White matter integrity differences between diagnostic groups

3.1.1.1. AD vs controls. Asmeasured by FA, AD patients showed pervasive
deficits in fiber integrity (lower FA) compared to healthy controls,
throughout theWM across the entire brain, when using a general linear
regression model to adjust for age and sex (critical p b 0.016; 31.9% of
voxels survived the FDR threshold (Benjamini and Hochberg, 1995);
minimum p-value, 1.65 × 10−8). However, when we used a random-
effects regression model at every voxel to take into account acquisition
site differences, we found more significant and even more widespread
results (critical p b 0.020; 40.1% of voxels survived the FDR threshold
(Benjamini and Hochberg, 1995); minimum p-value, 6.66 × 10−9;
Fig. 1a). We therefore proceeded with this model – fitting a site effect –
for the remainder of the analyses. A few significant voxels exhibited as-
sociations in a direction opposite to the great majority of the brain map,
and contrary towhatwould traditionally be accepted as showing impair-
ment. For example, we found regions where the AD group had a higher
mean FA (Fig. 1e; blue regions). These regions were largely found at the
junction of the corpus callosum commissural fibers and the corona
radiata. Such regions are notorious for fiber crossings, which may artifi-
cially reduce FA, if FA is estimated using the single-tensor diffusion
model (Oishi et al., 2011). This pattern has been reported in other AD
studies, and may reflect a selective sparing or selective degeneration of
one of the pathways in a region with crossing fibers (Douaud et al.,
2011). When we separated (and independently FDR-corrected) the
map of voxels that showed a negative association with AD and the
map of the positively associated voxels, the diffuse negative associations
were still significant, but the previously significant positive associations
were not.

This pervasive pattern of significance was largely replicated for
the three other diffusivity measures. As predicted, we found higher
mean RD, AxD and MD values in AD patients relative to controls
(Fig. 1 b–d) and the effects were larger and even more diffuse than for
FA. CDF plots confirm that FA was not the most sensitive measure for
differentiating groups. Comparisons of NC to AD patients (Fig. 2a) re-
vealed that RDwas themost sensitivemeasure followed closely byMD.

3.1.1.2. Early, late and all MCI vs controls. No significant difference was
detected between e-MCI and l-MCI groups for any of the DTI measures,
so we first assessed the MCI group as a whole, followed by these sub-
groups. We found no significant differences between NC and MCI as a
whole (n = 88), or NC and the e-MCI (n = 62) subgroup, for any of
the anisotropy or diffusivity measures. However, for NC compared to
l-MCI subjects (n = 26), we did find significantly higher diffusivity
measures in the left hippocampal part of the cingulum (MD: FDR critical
p b 3.05 × 10−5; RD: FDR critical p b 2.72 × 10−5; AxD: FDR critical
p b 2.46 × 10−5; Fig. 3). While these measures are significant on their
own, the Nwas small. These contrasts will benefit from further analysis,
as the ADNI dataset grows.

3.1.2. Correlation with MMSE, CDR-sob, and ADAS-cog neuropsychological
scores

3.1.2.1. Full cohort.Wefirst assessed anisotropy and diffusivitymapasso-
ciations with widely used clinical cognitive ratings in the entire study
population, including AD patients, MCI, and NC subjects (Fig. 4). Fig. 4a
shows WM regions where anisotropy and diffusivity differences corre-
lated with the MMSE scores in the entire study population (n = 155).
MMSE was significantly positively associated with FA (FDR critical
p b 0.018), and negatively associated with diffusivity (MD: FDR critical
p b 0.037; RD: FDR critical p b 0.040; AxD: FDR critical p b 0.028).
That is, lower FA and higher diffusivity, which typically indicate greater
WM deficits, were associated with lower MMSE scores, indicative of
greater impairment. Fig. 4b showsWM regions where FA and diffusivity
differences correlated with the CDR-sob scores (n = 155). As expected,
FAwas negatively associatedwith CDR-sob (FDR critical p b 0.027), and
diffusivity was positively associated (MD: FDR critical p b 0.039; RD:
FDR critical p b 0.042; AxD: FDR critical p b 0.029). Fig. 4c shows WM
regions where FA was negatively associated with ADAS-cog (n = 139;
FDR critical p b 0.016), and diffusivity positively associated (MD: FDR
critical p b 0.040; RD: FDR critical p b 0.041; AxD: FDR critical
p b 0.029). Lower FA and higher diffusivity were associated with higher
(worse) ADAS-cog and CDR-sob scores. CDF plots of MMSE, ADAS-cog,
and CDR-sob voxel-wise associations again reveal that FA associations,
while FDR significant, show the smallest effect size, while MD and RD
have the largest effect sizes (Fig. 2d).

As with diagnostic group differences, in all clinical score analyses we
found small significant regions with associations in a direction opposite
to what would traditionally be accepted as showing impairment. Again,
when we corrected for multiple comparisons on voxel-wise p-maps of
each association direction separately, the associations in the unexpected
direction were no longer significant and only the intuitive direction
remained.

3.1.2.2. Early, late and all MCI.We further assessed associations between
cognitive scores and DTI measures in just the MCI group, as well as
e-MCI and l-MCI subgroups. We found a significant positive association
between all three diffusivity measures and CDR-sob within the MCI
group (MD: FDR critical p b 0.006; RD: FDR critical p b 0.006; AxD:
FDR critical p b 0.002; Fig. 5) and a small positive association between
ADAS-cog and MD in the middle or lateral occipital WM in l-MCI (FDR
critical p b 5.35 × 10−6). However, there was no detectable association
with anisotropy or diffusivity measures and MMSE scores.

3.2. ROI analyses

3.2.1. ROI differences between diagnostic groups

3.2.1.1. AD vs controls.We sorted the JHU atlas ROI results by p-value to
assess which ROIs showed the greatest differences between groups. In
doing so, we have to bear inmind that this is not a ranking of the disease
effects on the brain by severity; results may also be affected by how ac-
curately each region can be measured, which in turn depends on the
size and the homogeneity of the region. With these caveats in mind,
Tables 3–4 list the ‘top 10’ most significant ROIs for each regression
analysis (here and in what follows, we use the term ‘most significant’
to mean lowest p-values in the tests of group differences in mean
values; we acknowledge that this term is not always preferred by stat-
isticians as the p-values from different tests cannot necessarily be com-
pared). When comparing NC to AD patients (Table 3a), the splenium of
the corpus callosum, left fornix (crus)/stria terminalis, left hippocampal
part of the cingulum, and total ROI map, were in the top 10 most



Fig. 1. (Top panels) Statisticalmaps show−log10 p-valueswithin regionswhereADpatients exhibit significantlyhigher (a)MD (FDR criticalp b 0.038), (b) RD (FDR critical p b 0.041), and
(c) AxD (FDR critical p b 0.027) than healthy controls (NC). The cingulum, temporal lobe (including the hippocampal part of the cingulum) and spleniumof the corpus callosum show the
“most significant” differences, i.e. greatest effect sizes in themaps. (d) Significant but slightly less profuse FA differences between groupswere also found (FDR critical p b 0.020). (e) Beta-
values (non-normalized slope of the regression) within FDR significant regions largely revealed regions with lower FA in AD, but there are small regions, notorious for crossing fibers,
where AD patients have higher mean FA than controls (dark blue), contrary to what would traditionally be accepted as showing impairment. (Bottom panel) Maps show the percent dif-
ference in FA and diffusivitymeasures between ADpatients and NCwithin FDR significant regions. Again, the corpus callosum, temporal lobe, cingulum (including the hippocampal part of
the cingulum), and the posterior thalamic radiations show the greatest degree of difference (up to ~33%); we note that the significance values and effect sizes in these regions depend on
the mean group differences and its standard error, which is more completely reflected in top panels. In both figures, MD and RD differences are greater andmore widespread. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Effect sizes for FA, MD, RD and AxD measures in AD, MCI and NC group comparisons and clinical cognitive test score associations reveal that FA is consistently the least sensitive
measure. This type of plot is used to compare effect sizes in statistical maps based on different diffusivity measures. We used it to help decide which DTI measures best distinguish the
diagnostic groups. Here we show cumulative distribution function (CDF) plots of the distribution of the p-values obtained from (a,d) voxel-wise and (b–c, e) ROI linear regressions,
which are subjected to multiple comparisons correction using standard FDR (Benjamini and Hochberg, 1995). (a) VBA comparisons of NC to AD patients revealed that RD was the
most sensitive measure (denoted by the higher critical p-values controlling the FDR, i.e., the highest non-zero x-coordinate where the CDF crosses the y = 20x line) followed closely
byMD. (b) ROI comparisons of NC vs AD confirm that FA was the least sensitivemeasure. (c) ROI comparisons of NC vsMCI reveal that AxD measures had the largest effect size, followed
by MD (VBA comparisons were not significant). (d) Voxel-wise and (e) ROI linear regressions on associations between cognitive scores (MMSE, CDR-sob, and ADAS-cog) in the entire
cohort and anisotropy and diffusivity measures confirm that FA associations, while FDR significant, show the smallest effect size, while MD and RD have the largest effect sizes.
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significant ROIs, across all anisotropy and diffusivity measures. While
the superior corona radiata and left sagittal stratum (which includes in-
ferior longitudinal fasciculus and inferior fronto-occipital fasciculus)
were in the top 10, across all diffusivity measures.
3.2.1.2. Early, late and allMCI.As therewere no significant differences be-
tween l-MCI and e-MCI subjects across any of the measures, we com-
pared the entire MCI group to NC subjects (Table 3b). While no ROI
showed significant FA differences, the splenium of the corpus callosum,
left tapetum, left hippocampal part of the cingulum, and left fornix
(crus)/stria terminaliswere in the top 10, among all diffusivitymeasures.
We further assessed differences between e-MCI and NC and l-MCI and
NC. The left hippocampal part of the cingulum was significant across
all three diffusivity measures in both comparisons (Table 3c–d). FA
showed no statistically significant differences.

CDF plots of the ROI p-values for NC vs AD (Fig. 2b) confirm VBA
findings that FA was the least sensitive measure, and that RD has a
slightly higher effect size than other measures. However, CDF plots of
the ROI p-values, for NC vs MCI, reveal that AxDmeasures had the larg-
est effect size, followed by MD (Fig. 2c). Table 3d also reveals that AxD
has a larger effect size when comparing l-MCI and NC.
3.2.2. ROI correlations with clinical global neuropsychological scores
The strongest associations with MMSE score (Table 4a) across all

fourmeasures were found in the left hippocampal part of the cingulum,
the left fornix (crus)/stria terminalis, and the total ROImap. All three dif-
fusivity measures were additionally associated with MMSE in the left
cingulum, and the bilateral sagittal stratum (this includes the inferior
longitudinal fasciculus and inferior fronto-occipital fasciculus).

The strongest associations with CDR-sob score (Table 4b) across all
four measures were found in the entire corpus callosum, the left hippo-
campal part of the cingulum, and the total ROI map. All three diffusivity
measures additionally associatedwithCDR-sob in the left cingulum, and
bilaterally in the sagittal stratum and inferior fronto-occipital fasciculus.

The strongest associations with the ADAS score (Table 4c) across all
four measures were found in the left hippocampal part of the cingulum,
and in all three diffusivity measures in the left cingulum, bilaterally in
the sagittal stratum and inferior fronto-occipital fasciculus, and in the
total ROI map.

As with voxel-wise measures, we further assessed the association
between cognitive scores and ROI DTI measures in just the MCI group
as a whole and also in the e-MCI and l-MCI groups separately
(Table 5). As would be predicted, we found significant negative MMSE
associations with diffusivity in both theMCI group and e-MCI subgroup



Fig. 3. Statistical maps show the−log10 p-values within regions where l-MCI subjects ex-
hibit significantly higher AxD (FDR critical p b 2.46 × 10−5) than healthy controls (NC).
The left hippocampal part of the cingulum was also significant in MD and RD maps. This
region is small, but it passes the conventional FDR correction for multiple comparisons,
and is in a region implicated in early changes in AD (medial temporal regions). With a
greater sample size, this effect may be detectable in the other hemisphere as well.
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in the left hippocampal part of the cingulum. We found significant pos-
itive associations between MD and AxD and CDR-sob scores in the MCI
group and no associations with ADAS-cog.

Again, CDF plots of the ROI p-values for cognitive score associations
(Fig. 2b) confirm that FA was the least sensitive measure.

3.2.3. ROI analyses summary
ROIs that were consistently most significant across all three diffusiv-

itymeasures inmore than one analysis (Fig. 6) included the splenium of
the CC, the left cingulum, particularly the hippocampal part, the left
fornix (crus)/stria terminalis which projects to the dorsal region of the
hippocampus, bilateral temporal lobe sagittal stratum, and the average
measure across all ROIs. They also included the bilateral inferior
fronto-occipital fasciculus in clinical score analyses. Of these ROIs, the
left fornix (crus)/stria terminalis and hippocampal cingulum, and total
ROImapweremost significant across all anisotropy and diffusivitymea-
sures in at least two analyses. However, the left hippocampal part of the
cingulum was in the top 10 ROIs in by far the most analyses.

For complete tables of TBSS ROI diagnostic group and cognitive score
analyses results, please see Inline Supplementary Tables S2–S4. To sum-
marize, TBSS ROIs that were consistently most significant (i.e., giving
greatest effect sizes) across all four anisotropy and diffusivity measures
inmore than one analysis included the splenium of the CC, bilateral hip-
pocampal part of the cingulum, the left sagittal stratum and uncinate,
and the average measure across all ROIs (Inline Supplementary
Fig. S1). While full ROI analyses additionally revealed bilateral inferior
fronto-occipital fasciculus, left fornix (crus)/stria terminalis, left cingu-
lum, and right sagittal stratum, as top ROIs and TBSS did not, TBSS
ROIs additionally revealed the left uncinate and right hippocampal
part of the cingulum. For a comparison of TBSS and full ROI analyses
p-value CDF plots see Inline Supplementary Fig. S2.

Inline Supplementary Tables S2–S4, Figs. S1 and S2 can be found on-
line at http://dx.doi.org/10.1016/j.nicl.2013.07.006.

3.2.4. Post-hoc ROI correlations with memory and executive function scores
The strongest associations between full ROI measures and ADNI-EF

(Table 6a) in the entire study cohort (n = 143) across all four DTI mea-
sures were found in the bilateral sagittal stratum and the total ROI map.
All three diffusivity measures were additionally associated with ADNI-
EF in the bilateral cingulum, left hippocampal cingulum, and left superi-
or longitudinal fasciculus.

There were no associations between FA and ADNI-MEM (Table 6b)
in the entire cohort, but all three diffusivity measures were associated
withADNI-MEMbilaterally in the cingulumandhippocampal cingulum,
bilateral inferior fronto-occipital fasciculus and sagittal stratum, and left
uncinate and external capsule.

Thesemeasureswere not linked to DTImeasures in theMCI group as
a whole, nor the e-MCI and l-MCI groups separately.

4. Discussion

In this ADNI study, we found that DTI indicators of white matter im-
pairment have the potential to emerge as useful clinical tools for differ-
entiating diagnostic groups in studies of AD. We had three main
findings: (1) in ROI and VBA analyses, we found widespread anisotropy
and diffusivity disruptions, often in tracts that pass through the tempo-
ral lobe and posterior brain regions (especially the left hippocampal cin-
gulum), in elderly AD andMCI patients; (2) these disruptions were also
associated with neuropsychological and cognitive deficits; and (3) dif-
fusivity (MD, RD, AxD) measures were more sensitive for detecting dif-
ferences than FA measures, and could detect more subtle MCI
differences, where FA could not.

Alzheimer's disease (AD) is characterized by neuronal loss andwide-
spread graymatter atrophy, but it is alsomarked by a disturbance in the
brain'sWMpathways, perhaps secondary to the effect of cortical neuro-
nal loss. Changes in white matter neuropathology include partial loss of
axons, myelin sheaths, and oligodendroglial cells (Brun and Englund,
1986; Sjobeck et al., 2005). AD patients have been shown to have signif-
icantly moreWMhyperintensities (WMH) than controls. WMH are sig-
nificantly related to cortical atrophy (Capizzano et al., 2004), entorhinal
cortex (Guzman et al., in press) and hippocampal atrophy (de Leeuw
et al., 2004) in AD patients. Significant WM atrophy has also been re-
ported (Hua et al., 2008; Hua et al., 2010; Migliaccio et al., 2012).

There is growing diffusion imaging evidence of AD related WM
changes as well. Most studies report lower FA and higher MD in all
lobes of the brain in both MCI and AD when compared to cognitively
healthy controls, with emphasis on medial temporal lobe structures
(Kantarci et al., 2001; Bozzali et al., 2002; Takahashi et al., 2002;
Fellgiebel et al., 2004; Medina et al., 2006; Rose et al., 2006; Xie et al.,
2006; Zhang et al., 2007; Kavcic et al., 2008; Stebbins and Murphy,
2009), consistent with regions showing earliest pathological changes
(Braak and Braak, 1991; Braak and Braak, 1995; Thompson et al., 2007)
and our results. Many DTI methods have been used to assessWMdiffer-
ences in AD including TBSS (Smith et al., 2006) and tract or connectivity
analyses (Daianu et al., 2012, 2013a,b). Here we use the most common
methods, VBA and ROI analyses, with ROIs based on a stereotaxic WM
ROI atlas (Mori et al., 2008), which has been shown to accurately
parcellate anatomical regions in AD patients with severe atrophy
(Oishi et al., 2009). Using predetermined, template-based ROIs can
limit findings, and registration across subjects may vary due to morpho-
logical differences. However, using a common atlas helps to make quan-
tification efficient and easier to standardize across sites (Jahanshad et al.,
2013). Given that VBA findings are diffuse, ROIs are arguably helpful to
begin to rank the most sensitive regions for detecting group differences.

When comparing AD patients to NC, the largest VBA differences
were found in the corpus callosum (CC), temporal lobe, cingulum and
hippocampal cingulum, and regions near the posterior thalamic radia-
tions. ROI analyses revealed similar diffuse patterns with the CC
splenium, the left fornix (crus)/stria terminalis, and average measure
across all ROIs in the top 10 most significant (lowest p-values) ROIs
across all anisotropy and diffusivity measures. However, we found
that the most significant ROIs were not necessarily the most coherent
tracts. Large clinical DTI studies with limited spatial and directional res-
olution are often better powered to find deficits in regionswhere the FA
and fiber coherence is highest, such as the splenium of the CC. In a sup-
plementary test, we assessed whether the ROI average FA values in the
NC groupwas correlatedwith the effect size of each ROI (which is relat-
ed to the p-values obtained) in the NC vs AD comparison (see supple-
mentary text). Inline Supplementary Fig. S3 shows that the ROI
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Fig. 4. Statistical maps show that clinical scores on the (a) MMSE, (b) CDR-sob, and (c) ADAS-cog are related to detectable differences in fractional anisotropy, and mean, radial and axial
diffusivity in the entire cohort. These maps show the−log10 p-values within regions that significantly correlate with cognitive scores. RD andMD show the most widespread and robust
associations. The hippocampal part of the cingulum and surrounding temporal lobes show the “most significant” associations (i.e., lowest p-values and highest voxel-wise effect sizes)
between cognitive performance and white matter integrity.
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average FA values in the NC group were not correlated with the effect
size (defined by the Z-score corresponding to the p-values) of each ROI.

Only diffusivitymeasureswere sensitive enough to detectmore sub-
tle differences between NC and MCI groups. ROIs including the
splenium of the CC, left tapetum, left hippocampal part of the cingulum
and left fornix (crus)/stria terminalis consistently differed in all diffusiv-
ity measures but not FA. Only the left hippocampal part of the cingulum
was significant across all three diffusivitymeasures in both comparisons
of e-MCI and l-MCI to controls. Similarly, only the left hippocampal part
of the cingulum displayed significant increased diffusivity in l-MCI in
the VBA analyses.

Inline Supplementary Fig. S3 can be found online at http://dx.doi.
org/10.1016/j.nicl.2013.07.006.

The lack of larger differences between the MCI and normal control
groups is surprising in light of other studies showing that these groups
often differ on other neuroimagingmeasures. Thismay be due the small
sample size and also heterogeneity in theMCI cohort. TheMCI group re-
ferred to in papers using ADNI1 data is now called late MCI (l-MCI) in
ADNI2. In ADNI2, themajority of theMCI group includes the enrollment
of a new cohort called earlyMCI (e-MCI), with milder episodic memory
impairment than the l-MCI group. Among the MCI subjects with DTI
data available, a smaller percent will be l-MCI than in phase one of
ADNI, perhaps contributing to the apparent discrepancy with other
ADNI studies/results. This difference in the ADNI2 versus ADNI1 and
other MCI cohorts should be considered in expectations of what the ef-
fect sizes should be.

Strongest ROI associations with cognitive scores in the full cohort
were consistently found in the left hippocampal part of the cingulum
across all anisotropy and diffusivity measures. The total ROI map was
also one of the top 10 lowest p-values in almost all FA and diffusivity
analyses, while left cingulum and bilateral sagittal stratum were in the
top 10 in all diffusivity analyses. The bilateral inferior fronto-occipital
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Fig. 5. Statistical maps show where CDR-sob scores are significantly positively associated with diffusivity measures in the MCI group, considered on its own (n = 88). Higher diffusivity,
indicative of greaterWMdeficits, is associatedwith greater CDR-sob scores indicative of greater impairment.We find the “most significant” association (i.e., strongest voxel-wise effect) in
the splenium of the corpus callosum and the posterior cingulum.
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fasciculus was in the top 10 in almost all full cohort diffusivity analyses.
When it came to picking up subtle differences within the MCI group,
CDR-sob scores were most widely correlated with diffusivity in both
VBA and ROI analyses. Prior studies also suggest that CDR-sob is a more
sensitive clinical assessment thanADAS-cog andMMSE, and itmay better
relate to measures of atrophy on anatomical MRI (Hua et al., 2009).

Post-hoc analyses were conducted to assess if there was any associ-
ation between DTI summary measures and executive function (ADNI-
EF) and memory (ADNI-MEM) scores. These analyses revealed some
of the strongest associations in temporal lobe tracts that subserve a va-
riety of functions known to deteriorate during aging, including the bilat-
eral sagittal stratum, that carries parts of the inferior fronto-occipital
fasciculus and inferior longitudinal fasciculus, the hippocampal cingu-
lum as well as the cingulum. ADNI-EF associations were additionally
found in the total ROI and superior longitudinal fasciculus, while
ADNI-MEM was associated with DTI measures in the external capsule,
inferior fronto-occipital fasciculus and uncinate fasciculus. These re-
gional differences could shed light on the network of brain regions,
connected via white matter fiber bundles, involved in each task. Prior
DTI studies have linked similar regions to performance in executive
function and memory (Kantarci et al., 2011; Sasson et al., 2013).

As patterns of differences were often diffuse across the VBA WM
map, the total WM ROI was sometimes one of the 10 lowest p-values,
but it was never the absolute best. Therefore assessing individual ROIs
may offer slightlymore power to detect changes than a global summary
measure (Jahanshad et al., 2013). In general, the most significant ROIs
were found mainly in the left hemisphere (for example, the left hippo-
campal part of the cingulum was in the top 10 ROIs in by far the most
analyses), which has also been found in some prior MRI and DTI studies
(Fox et al., 1996; Thompson et al., 2001; Scahill et al., 2002; Thompson
et al., 2003; Muller et al., 2005). A supplementary analysis revealed no
evidence of greater variability in ROI measures in the right hemisphere
thatmay be causing the better performance of left hemisphere ROIs (see
supplementary text). TBSS ROI results did not differ dramatically from
the full average ROI results and left hippocampal cingulum was again
‘top 10’ in the most analyses; however, it was closely followed by the
right hippocampal cingulum.

Aside from the total ROI and bilateral IFO, the ROIs that were consis-
tently significant in at least two analyses (Fig. 6) corroborate a pattern of
degeneration in the temporal lobe and posterior temporo-parietal cir-
cuitry found in many other DTI studies of MCI and AD (Head et al.,
2004; Stahl et al., 2007; Chua et al., 2008; Stebbins and Murphy,
2009); these include limbic tracts in the parahippocampalwhitematter,
posterior cingulum, fornix, and splenium of the CC, and have been
linked to lower cognitive scores (Rose et al., 2000; Bozzali et al., 2002;
Takahashi et al., 2002; Yoshiura et al., 2002; Fellgiebel et al., 2004;
Fellgiebel et al., 2005; Duan et al., 2006; Medina et al., 2006; Rose
et al., 2006; Zhang et al., 2007; Medina and Gaviria, 2008; Mielke
et al., 2009). DTI studies have found lower anisotropy in thewhite mat-
ter pathway of the cingulate gyrus, particularly the posterior cingulum,
which connects to the entorhinal cortex and plays a role in the choliner-
gic system, known to be impaired in AD (Perry, 1980; Selden et al.,
1998; Takahashi et al., 2002; Medina et al., 2006; Zhang et al., 2007).
In fact, it has been highly implicated in studies comparing MCI to con-
trols, especially on the left as in our study (Fellgiebel et al., 2005;
Medina et al., 2006; Rose et al., 2006; Zhang et al., 2007; Chua et al.,



Table 3
Atlas ROI average anisotropy and diffusivity. While many regions were statistically significant (Benjamini and Hochberg, 1995), here we highlight regions with the “top 10” significant p-
values (greatest effect sizes)when comparingmean values between diagnostic groups (in the left columnwe show the diagnostic groups being compared).We also note the total number
of significant ROIs (after FDR correction) out of the 43 tested and the critical FDR p-value.

FA MD RD AxD

ROI p-value ROI p-value ROI p-value ROI p-value

a)
NC
vs
AD

Fx/ST L 1.44E−7 SS L 2.09E−11 SS L 6.19E−11 SS L 6.29E−11
SCC 1.40E−6 CGH L 1.23E−9 CGH L 1.69E−09 CGH L 1.68E−9
TAP L 2.46E−6 TOTAL 4.63E−9 TOTAL 6.89E−09 TOTAL 7.47E−9
PTR L 2.07E−5 SCR L 1.11E−8 SCR L 6.22E−08 SCR L 1.74E−8
CC 4.41E−5 SCC 6.54E−8 PTR L 7.64E−08 IFO L 3.04E−8
SFO R 5.86E−5 Fx/ST L 1.07E−7 Fx/ST L 7.70E−08 SS R 9.02E−8
TAP R 8.79E−5 PTR L 1.10E−7 SCC 8.05E−08 Fx/ST L 2.54E−7
ACR L 1.35E−4 SS R 1.24E−7 TAP L 1.25E−07 EC L 3.21E−7
TOTAL 1.62E−4 TAP L 1.43E−7 ACR L 1.40E−07 SCC 3.34E−7
CGH L 1.84E−4 IFO L 2.77E−7 SCR R 2.82E−07 UNC L 3.46E−7

# sig/43 24 (p b 2.32E−2) 42 (p b 2.54E−2) 42 (p b 2.72E−2) 41 (p b 4.23E−2)

b)
NC
vs
MCI

– – CGH L 5.65E−5 CGH L 8.47E−5 CGH L 6.91E−5
– – SCC 2.60E−3 SCC 3.23E−3 SS L 3.18E−3
– – Fx/ST L 4.39E−3 Fx/ST L 3.89E−3 SCC 3.65E−3
– – TAP L 5.14E−3 TAP L 4.48E−3 Fx/ST L 6.06E−3
– – SS L 5.48E−3 – – TOTAL 6.14E−3
– – – – – – SS R 6.92E−3
– – – – – – PTR L 7.20E−3
– – – – – – SCR L 8.80E−3
– – – – – – TAP L 8.86E−3
– – – – – – EC R 1.01E−2

# sig/43 0 5 (p b 5.47E−3) 4 (p b 4.48E−3) 12 (p b 1.23E−2)

c)
NC
vs
e-MCI

– – CGH L 6.16E−4 CGH L 7.33E−4 CGH L 8.92E−4
– – SCR L 3.18E−3 – – – –

– – SCC 3.35E−3 – – – –

# sig/43 0 3 (p b 3.35E−3) 1 (p b 7.33E−4) 1 (p b 8.92E−4)

d)
NC
vs
l-MCI

– – CGH L 4.71E−5 CGH L 9.53E−5 CGH L 3.01E−5
– – – – – – SS L 1.88E−4
– – – – – – SS R 1.47E−3
– – – – – – Fx/ST L 5.38E−3
– – – – – – PTR L 5.68E−3

# sig/43 0 1 (p b 4.71E−5) 1 (p b 9.53E−5) 5 (p b 5.678E−3)
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2008). Cognitive scores likeMMSE have also been linked to DTI diffusiv-
ity values in the posterior cingulate gyrus in AD (Yoshiura et al., 2002;
Fellgiebel et al., 2005). Most AD studies also findWMdeficits in the cor-
pus callosum, but it is not clear whether the genu is more affected (Xie
et al., 2006), in line with the hypothesis that later maturing regions are
the first affected, or the splenium, corroborating a pattern of degenera-
tion in the posterior temporal parietal circuitry (Takahashi et al., 2002;
Medina et al., 2006; Duan et al., 2006). A review by Chua et al. (2008)
reports that in healthy aging, DTI abnormalities occur in the frontal re-
gions, specifically the frontal white matter, anterior cingulum and the
genu of the corpus callosum, while in AD, DTI abnormalities are concen-
trated in theposterior regions. Some studies have dissociated the region-
al effects of age and dementia, with age effects greater in the anterior
corpus callosum and frontal white matter, suggesting an anterior-to-
posterior gradient, while individuals with early-stage dementia exhibit
minimal additional frontal deficits, but rather showgreaterwhitematter
deterioration in posterior lobar regions (Head et al., 2004).

As in prior studies of aging and AD (Sullivan et al., 2010; Acosta-
Cabronero et al., 2010), FA was the least sensitive measure when com-
paring diagnostic groups and cognitive score associations in both ROI
and VBA analyses (Fig. 2). A recent study found that FA measured
using TBSS was more strongly associated with spectroscopic measure-
ments than FAmeasured using voxel-wise averaging which is suscepti-
ble to partial-averaging artifacts (Wijtenburg et al., 2012). However, we
found that TBSS ROI results were not substantially different from
data computed from averaging diffusion indices in full ROIs (Inline
Supplementary Fig. S2). A recent AD DTI review – based on 55 different
studies – noted thatMDvalues havemore discriminative power than FA
values and higher effect sizes for case–control differences in the frontal,
parietal, occipital and temporal lobes (Clerx et al., 2012). To explain age
related increases in MD without significant FA changes, Zhang et al.
(2011) suggested that brain degeneration in aging may be caused, in
part, by tissue damage due to processes such as focal ischemia. This
may result in lower tissue density, increasing water diffusivity but
maintaining underlying directional structure.

FA and MD are summary measures based on the ratio and mean of
the eigenvalues respectively, but AxD may reflect axonal injury, and
RD may reflect demyelination (Song et al., 2003; Song et al., 2005; Sun
et al., 2006; Hofling et al., 2009). Here, when comparing NC to AD pa-
tients in both ROI and VBA analyses, RDwas themost strongly associat-
ed with WM deficits (Fig. 2a–b), followed by MD. Increased RD in AD
relative to controls, therefore, may reflect demyelination in AD. As in
prior studies that reported AxD increases in normal aging and
Alzheimer's disease (Fellgiebel et al., 2004; Sullivan et al., 2010;
Acosta-Cabronero et al., 2010; Agosta et al., 2011), we also found higher
AxD in MCI, AD, and associated with clinical impairment. In fact, we
found slightly larger effect sizes for AxD when comparing CN and l-
MCI subjects in the VBA analyses, and CN and MCI subjects in the full
ROI analyses (Table 3b). Recent longitudinal and cross-sectional studies
suggest that AxD might be more sensitive to detecting early changes,
while RD becomes progressively better as disease progresses
(O'Dwyer et al., 2011; Acosta-Cabronero et al., 2012). Ultimately, the



Table 4
Atlas ROI average anisotropy and diffusivity. Herewe highlight regionswith the 10 lowest FDR significant (Benjamini andHochberg, 1995) p-values (greatest effect sizes) when assessing
cognitive test score associations in the entire study population. We also note the total number of significant ROIs (after FDR correction) out of the 43 tested and the critical FDR p-value.

FA MD RD AxD

ROI p-value ROI p-value ROI p-value ROI p-value

a) MMSE Fx/ST L 3.14E−5 CGH L 8.01E−15 CGH L 1.96E−14 CGH L 1.96E−14
PTR L 2.11E−4 CGC L 2.05E−8 SS L 5.86E−8 SS R 4.47E−8
ACR L 2.13E−4 SS L 2.98E−8 CGC L 9.93E−8 SS L 6.95E−8
ACR R 3.60E−4 ACR L 1.57E−7 ACR L 1.22E−7 TOTAL 1.23E−7
TOTAL 5.95E−4 SS R 1.83E−7 TOTAL 5.06E−7 UNC L 1.67E−7
SCC 6.18E−4 TOTAL 2.46E−7 ACR R 7.63E−7 CGC L 3.61E−7
CC 7.59E−4 IFO L 3.99E−7 SS R 9.68E−7 EC L 4.56E−7
CP R 1.27E−3 Fx/ST L 9.60E−7 IFO L 1.17E−6 Fx/ST L 6.33E−7
CGH L 1.42E−3 ACR R 1.17E−6 Fx/ST L 1.28E−6 CGH R 1.42E−6
BCC 1.46E−3 CGH R 1.32E−6 IFO R 1.91E−6 RLIC L 2.04E−6

# sig/43 24 (p b 2.78E−2) 43 (p b 1.76E−2) 43 (p b 3.66E−2) 42 (p b 2.37E−2)

b) CDR-sob SCC 1.02E−5 CGH L 2.21E−12 CGH L 2.34E−12 CGH L 1.47E−11
CC 1.38E−5 IFO R 1.06E−9 IFO R 4.29E−9 SS L 4.52E−9
PTR L 4.49E−5 SS L 2.96E−9 SS L 9.54E−9 SS R 9.72E−9
GCC 8.80E−5 IFO L 6.57E−9 IFO L 1.98E−8 IFO R 1.36E−8
TOTAL 9.75E−5 CGC L 9.75E−9 TOTAL 6.20E−8 TOTAL 3.48E−8
BCC 1.09E−4 SS R 3.75E−8 CGC L 6.69E−8 IFO L 5.56E−8
Fx/ST L 1.28E−4 TOTAL 3.80E−8 ACR L 1.10E−7 CGC L 9.34E−8
TAP L 2.17E−4 ACR L 1.44E−7 SS R 2.16E−7 CC 2.57E−7
CGH L 2.75E−4 CC 1.48E−7 CC 2.68E−7 PCR L 2.79E−7
ACR L 4.61E−4 SCR L 2.23E−7 SCR L 4.76E−7 UNC L 4.09E−7

# sig/43 25 (p b 2.71E−2) 42 (p b 3.59E−2) 42 (p b 2.83E−2) 40 (p b 4.22E−2)

c) ADAS-cog CGH L 1.68E−4 CGH L 3.26E−12 CGH L 2.14E−12 CGH L 6.56E−11
PTR L 4.28E−4 SS L 2.09E−10 SS L 5.39E−10 SS L 4.55E−10
SCC 6.74E−4 SS R 3.16E−9 SS R 2.43E−8 SS R 6.36E−10
Fx/ST L 8.57E−4 IFO R 1.91E−8 IFO R 1.09E−7 EC L 3.63E−8
GCC 1.32E−3 IFO L 8.13E−8 IFO L 6.38E−7 IFO R 1.19E−7
CC 1.71E−3 CGC L 1.24E−7 CGC L 7.75E−7 TOTAL 2.01E−7
SFO R 1.74E−3 TOTAL 5.02E−7 TOTAL 1.30E−6 IFO L 2.99E−7
ACR R 1.75E−3 EC L 2.49E−6 ACR R 3.45E−6 CGC L 6.08E−7
PTR R 3.29E−3 CGC R 3.61E−6 PTR L 1.06E−5 UNC L 8.48E−7
TAP L 3.35E−3 ACR R 5.54E−6 ACR L 1.36E−5 SLF L 9.20E−7

# sig/43 17 (p b 1.8E−2) 41 (p b 3.62E−2) 41 (p b 4.70E−2) 39 (p b 3.80E−2)
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positive relationships between AD and both AxD and RD may explain
why FA, a function of the ratio of thesemeasures, reveals the least differ-
ences (Acosta-Cabronero et al., 2010), and could not pick up more sub-
tle deficits in MCI (Fig. 2b,c; Table 3b–d, Table 4).

In addition, a summary measure such as FA, derived from a simple
tensormodel, may not capture the complexity of whitematter architec-
ture. DTI has some limitations in gauging fiber integrity in regions with
extensive fiber crossing and mixing. High angular diffusion imaging
(HARDI) can better resolve white matter multi-fiber distribution than
DTI single-tensor models (Leow et al., 2009; Zhan et al., 2009). More
Table 5
Atlas ROI average anisotropy and diffusivity. Here we highlight regions with the “top 10” FDR s
cognitive test score associations within diagnostic subgroups. We also note the total number o

FA MD

ROI p-value ROI p-value

MMSE
MCI

– – CGH L 2.65E−6

# sig/43 0 1 (p b 2.65E−6)

MMSE
e-MCI

– – CGH L 9.37E−5

# sig/43 0 1 (p b 9.37E−5)

CDR-sob
MCI

– – SLF R 4.15E−4
– – – –

– – – –

– – – –

– – – –

# sig/43 0 1 (p b 4.15E−4)
sophisticated measures, such as a modified version of FA calculated
from the HARDI data “tensor distribution function” (TDF), can better
characterize the anisotropy in regions of fiber crossings (Zhan et al.,
2009), and may better reveal FA differences that are due to loss in
fiber coherence rather than simply partial-volume effects.

Further limitations of this study include the small sample size from
each of the 14 sites, and unequal distribution of cases across sites (see
Inline Supplementary Table S1). Despite accounting for site effects
using a random-effects regression model and grouping the data by ac-
quisition site, some cross-site differences may be unaccounted for in
ignificant (Benjamini and Hochberg, 1995) p-values (greatest effect sizes) when assessing
f significant ROIs (after FDR correction) out of the 43 tested and the critical FDR p-value.

RD AxD

ROI p-value ROI p-value

CGH L 5.02E−6 CGH L 3.50E−6

1 (p b 5.02E−6) 1 (p b 3.50E−6)

CGH L 1.52E−4 CGH L 1.03E−4

1 (p b 1.52E−4) 1 (p b 1.03E−4)

– – SLF R 6.94E−5
– – SLF L 2.98E−4
– – PCR R 1.03E−3
– – SCC 1.64E−3
– – CGC L 3.46E−3
0 5 (p b 3.46E−3)



Fig. 6. Average FA and RD Y axis looks so much bigger than Average AxD and RD Y axis of the 43 ROIs, these 9 ROIs were consistently more sensitive to detecting differences across dif-
fusivity and anisotropy measures in at least two cognitive and/or diagnostic analyses. These graphs show the average FA, MD, RD and AxD in the ROIs in each diagnostic group. “TOTAL”
refers to the ROI generated by combining all the atlas ROIs. Overall, we see a decrease in anisotropy and increase in diffusivity with each stage of the disease.
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the studydesign. Additionallywe did not adjust forWMHburden, or ex-
plore the extent the DTI metrics corresponded with WMH. Finally, the
ADNI data set is constantly re-evaluating subject diagnosis, cognitive,
and basic demographic data. The data evaluated here was what was
available at the time of download and may be modified by ADNI.

5. Conclusion

DTI offers an extensive set of biomarkers for disease detection and
monitoring of cognitive decline. We found anisotropy and even more
widespread diffusivity disruptions in projection, association, and com-
missural tracts, particularly in tracts that pass through the temporal
Table 6
Cognitive correlates of the average anisotropy and diffusivity in different atlas regions of intere
1995) p-values (greatest effect sizes) when assessing executive function (ADNI-EF) and memo
ulation. We also note the total number of significant ROIs (after FDR correction) out of the 43

FA MD

ROI p-value ROI p-va

a) ADNI-EF SS L 5.77E−5 SS L 1.85
TOTAL 1.38E−4 SS R 8.12
GCC 2.46E−4 CGC L 4.68
SS R 3.42E−4 CGC R 3.10
PTR R 4.33E−4 CGH L 6.04
ACR L 4.66E−4 RLIC L 1.46
CC 4.83E−4 TOTAL 1.61
Fx/ST L 7.55E−4 IFO R 3.31
PTR L 7.90E−4 SLF L 4.27E
SCC 8.84E−4 EC L 8.76

# sig/43 28 (p b 2.39E−2) 43 (p b 3.24E−2)

b) ADNI-MEM – – CGH L 1.38
– – SS L 4.70
– – CGC L 4.14
– – IFO R 5.05
– – IFO L 1.03
– – SS R 2.21
– – CGC R 4.87
– – EC L 2.14
– – CGH R 1.33E
– – UNC L 1.65

# sig/43 0 35 (p b 3.06E−2)
lobe and posterior brain regions (especially the left hippocampal cingu-
lum), in elderly AD andMCI patients. These disruptionswere associated
with neuropsychological and cognitive deficits. As ADNI2 progresses,
new subjects are scanned and new measures of WMH are being added
to the database. These results should be verified with larger sample
sizes and the relationship between DTI based WM disturbances and
WMH can be further resolved. Future tract-based connectivity studies
may also shed light on how integrity in the tracts affects regional gray
matter. We may also be able to create a statistical region-of-interest
that may outperform atlas based ROIs (Hua et al., 2013; Gutman et al.,
2013). ADNI2 is a longitudinal study that will eventually allow us to in-
vestigate which of these subjects develop AD, and if these early WM
st. Here we highlight regions with the “top 10” FDR significant (Benjamini and Hochberg,
ry (ADNI-MEM) composite neuropsychological score associations in the entire study pop-
tested and the critical FDR p-value.

RD AxD

lue ROI p-value ROI p-value

E−9 SS L 9.15E−10 SS L 4.21E−8
E−9 SS R 8.81E−9 SS R 4.78E−8
E−8 CGC L 1.39E−7 CGC L 1.55E−6
E−7 CGH L 3.29E−7 CGC R 1.75E−6
E−7 CGC R 1.62E−6 RLIC L 2.17E−6
E−6 TOTAL 1.63E−6 TOTAL 4.02E−6
E−6 IFO R 7.14E−6 CGH L 5.08E−6
E−6 ACR L 9.49E−6 EC L 5.85E−6
−6 ACR R 1.08E−5 SCC 7.35E−6

E−6 SLF L 1.85E−5 SLF L 1.21E−5
43 (p b 3.27E−2) 41 (p b 3.49E−2)

E−9 CGH L 1.68E−9 CGH L 5.28E−9
E−8 SS L 1.26E−7 SS L 7.59E−8
E−7 IFO R 2.41E−6 CGC L 2.88E−7
E−7 CGC L 4.24E−6 SS R 4.83E−7
E−6 IFO L 8.30E−6 EC L 8.94E−7
E−6 SS R 9.67E−6 IFO R 1.40E−6
E−6 CGC R 3.68E−5 IFO L 1.44E−6
E−5 EC L 2.22E−4 CGC R 3.15E−6
−4 CGH R 3.36E−4 UNC L 4.44E−5

E−4 UNC L 3.69E−4 CGH R 5.00E−5
33 (p b 3.35E−2) 35 (p b 3.51E−2)
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aberrations help predict future deficits and conversion to AD. Future
studies combining machine learning methods with different
modalities – including CSF and proteomicmarkers –may ultimately de-
termine the best way to distinguish diagnostic groups.
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