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G-computation of average treatment
effects on the treated and the untreated
Aolin Wang1,2* , Roch A. Nianogo1,2 and Onyebuchi A. Arah1,2,3

Abstract

Background: Average treatment effects on the treated (ATT) and the untreated (ATU) are useful when there is
interest in: the evaluation of the effects of treatments or interventions on those who received them, the presence
of treatment heterogeneity, or the projection of potential outcomes in a target (sub-) population. In this paper we
illustrate the steps for estimating ATT and ATU using g-computation implemented via Monte Carlo simulation.

Methods: To obtain marginal effect estimates for ATT and ATU we used a three-step approach: fitting a model for
the outcome, generating potential outcome variables for ATT and ATU separately, and regressing each potential
outcome variable on treatment intervention.

Results: The estimates for ATT, ATU and average treatment effect (ATE) were of similar magnitude, with ATE being
in between ATT and ATU as expected. In our illustrative example, the effect (risk difference [RD]) of a higher
education on angina among the participants who indeed have at least a high school education (ATT) was −0.019
(95% CI: −0.040, −0.007) and that among those who have less than a high school education in India (ATU) was
−0.012 (95% CI: −0.036, 0.010).

Conclusions: The g-computation algorithm is a powerful way of estimating standardized estimates like the ATT
and ATU. Its use should be encouraged in modern epidemiologic teaching and practice.

Keywords: Average treatment effects on the treated (ATT), Average treatment effects on the untreated (ATU),
G-computation, Parametric g-formula, Resampling, Simulation

Background
In epidemiology, (bio)statistics and related fields, re-
searchers are often interested in the average treatment
effect in the total population (average treatment effect,
ATE). This quantity provides the average difference in
outcome between units assigned to the treatment and
units assigned to the placebo (control) [1]. However, in
economics and evaluation studies, it has been noted that
the average treatment effect among units who actually
receive the treatment or intervention (average treatment
effects on the treated, ATT) may be the implicit quantity
sought and the most relevant to policy makers [2]. For
instance, consider a scenario where a government has
implemented a smoking cessation campaign intervention
to decrease the smoking prevalence in a city and now

wishes to evaluate the impact of such intervention.
Although the overarching goal of such evaluation may
be to assess the impact of such intervention in reducing
the prevalence of smoking in the general population (i.e.
ATE), researchers and policymakers might be interested
in explicitly evaluating the effect of the intervention on
those who actually received the intervention (i.e. ATT)
but not that on those among whom the intervention was
never intended.
Alternatively, researchers may be interested in estimat-

ing the potential impact of an existing program in a new
target (sub-) population. For instance, one might wish to
project the effect of the smoking cessation intervention
in a city that did not receive the intervention in order to
gauge its potential impact when such intervention is
actually implemented. This latter quantity is referred to
as the average treatment effect on the untreated (ATU).
Interestingly, the ATE can be seen as a weighted average
of the ATT and the ATU. All three quantities will be
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equal when the covariate distribution is the same
among the treated and the untreated (e.g. under perfect
randomization with perfect compliance or when there
is no unmeasured confounders) and there is no effect
measure modification by the covariates.
Robins introduced the “g-methods” to estimate such

quantities using observational data [3]. Among these,
the marginal structural models (MSMs) were designed
to estimate marginal quantities (i.e., not conditional on
other covariates). The parameters of a MSM can be
consistently estimated using two classes of estimators: the
g-computation algorithm [4] and the inverse-probability
of treatment weighting (IPTW) [5]. G-computation is
often seen as a viable alternative to IPTW because g-
computation produces more efficient (i.e. small standard
errors) and more stable estimates in parametric settings
and can better handle heterogeneity involving time-
varying exposure and confounding [6]. To date, there
are several didactic demonstrations for g-computation
[7, 8] and applied examples for projecting the impact of
hypothetical interventions aimed at reducing risk factors
for coronary heart diseases [9] or diabetes in adult popu-
lations [10], or at reducing early childhood adiposity
[11]. However, these studies focused on ATE and there
are still no accessible demonstrations of g-computation
[4] applied to ATT and ATU. This manuscript aims to
present an easy-to-use g-computation technique using
Monte Carlo simulation for consistently estimating ATT
and ATU. We also present alternative ways to obtain
ATT and ATU via ATE with sample restriction or g-
computation technique without simulation.

Methods
Notation and g-computation steps
In the remaining, we will use capital letters to refer to
random variables and lowercase letters to represent the
specific realizations of the corresponding random vari-
ables. Let A denote the treatment, with a and a* as its
index and reference values, Y the outcome, C a set of
covariates sufficient for confounding control, and Ya the
potential outcome that would have occurred had treat-
ment A, perhaps contrary to fact, been set to a. Each
subject in the population has a pair of potential out-
comes, one being observed and the other being counter-
factual. Ya is the observed outcome had the subject
received the treatment A = a whereas Ya* is the counter-
factual outcome. Conversely, for subjects who receive
placebo (control), Ya* is the observed outcome while Ya
is the counterfactual outcome. The ATE, defined as E
Ya−Ya�ð Þ, is the average marginal treatment effect in the
total population. The ATT, defined as E Ya−Ya� jA ¼ að Þ
and the ATU, defined as E Ya−Ya� jA ¼ a�ð Þ , measure
the marginal treatment effect in the subpopulation that
received the treatment and the subpopulation that did

not, respectively. When the assumptions of consistency
[12], conditional exchangeability given C [13], and positiv-
ity [14] are met, the target causal parameters ATE, ATT
and ATU on the risk difference scale can be estimated
using observational data and the following estimators:

ATE ¼ Σc E Y jA ¼ 1;C ¼ cð Þ−E Y jA ¼ 0;C ¼ cð Þ½ �P C ¼ cð Þ;
ATT ¼ E Y jA ¼ að Þ−ΣcE Y jA ¼ a�;C ¼ cð ÞP C ¼ cjA ¼ að Þ; and
ATU ¼ ΣcE Y jA ¼ a;C ¼ cð ÞP C ¼ cjA ¼ a�ð Þ−E Y jA ¼ a�ð Þ:

Steps to implement g-computation using Monte Carlo
simulation are as follows:
Step 1: Fit a flexible model for Y on A and covariates

C (i.e. with all possible and relevant interaction terms)
and save the regression coefficients.
Step 2: Re-sample the original data with replacement

K times (e.g. 200 or as many as computationally feas-
ible). Create two copies of this pooled dataset and stack
them. Assign a new treatment intervention variable A = a
for every observation in the first copy and A = a* in the
second copy. Then, generate potential outcomes for ATT
and ATU separately using the regression coefficients ob-
tained from step 1. For ATT, assign the potential outcome
Ya for treated (i.e. A = a) individuals as their observed
outcome Y in the “intervention A = a” dataset copy (by
consistency), but impute their counterfactual outcome
Ya* in the “intervention A = a*” copy (by conditional ex-
changeability). This latter counterfactual outcome is
simulated under non-treatment, based on the outcome
model and regression coefficients from step 1. For ATU,
by consistency assumption, assign the potential outcome
Ya* = Y among the untreated (i.e. A = a*) individuals in
the “intervention A = a*” dataset copy, and impute their
counterfactual outcome Ya in the “intervention A = a”
copy. This counterfactual outcome Ya is simulated under
treatment, based on the outcome model and regression
coefficients from step 1. Note that the g-computation of
the ATT or ATU involves imputing or simulating only
half of the potential outcomes under the counterfactual
treatment since by consistency under factual treatment
the potential outcome is observed.
Step 3: For ATT and ATU respectively, regress the

corresponding potential outcome variable on the inter-
vention variable A for the entire pooled simulated sam-
ple to obtain the point estimate. Repeat steps 1 to 3 on
J (e.g. 500) bootstrapped samples taken at random with
replacement from the original data. We obtain the
standard errors (SEs) and 95% confidence intervals
(CIs) based on the J resultant point estimates from the
final regression in step 3. The standard deviation of
these J point estimates is taken as the standard error
and the corresponding 2.5th and 97.5th percentiles are
taken as the confidence limits of the 95% CI. Nonpara-
metric bootstrapping [15] can also be used to obtain
bias-corrected and accelerated CIs.
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One could also obtain ATT and ATU from average
treatment effect (ATE) by simply restricting the analysis
for ATE estimation to the treated (for ATT) or to the
untreated (for ATU) (Additional file 1: Section 1). An al-
ternative g-computation technique without simulation is
included in the Additional file 1: Section2.

Illustrations
We applied the above simulation method to the India
sample data from the cross-sectional World Health Sur-
vey (WHS) conducted by the WHO from 2002 to 2004
[16]. Samples were probabilistically selected with every
individual being assigned to a known non-zero selection
probability. All participants were interviewed face-to-
face with the standardized WHS survey, which included
questions regarding demographic, socioeconomic and
behavioral factors. Details of dataset description and
variable creation can be found elsewhere [17].
Table 1 displays the estimates for ATT, ATU and

ATE on the risk difference and odds ratio scale respect-
ively for binary education (treatment) and binary angina
indicator (outcome), accounting for age and gender
(covariates). We were interested in estimating the im-
pact of a hypothetical intervention (aimed at ensuring
that the target study participants have at least a high
school education) on angina diagnosis. The interven-
tion could be implemented (i) universally in the whole
population of India (ATE), (ii) among individuals of a
sub-population of India who actually completed high
school or had higher educational attainment (ATT), or
(iii) among individuals of a sub-population of India
who had less than a high school education (ATU)
when the survey was conducted. Detailed steps and the
accompanying SAS codes for this illustrative example
are included in the Additional file 1: Section 3 and
Additional file 1: Section 5.

Results
In the illustration, participants with at least a high
school education were less likely to report having an an-
gina diagnosis compared to those with less than a high
school education, based on both risk difference (RD) and
odds ratio (OR) measures (Table 1). The estimates for
ATT, ATU and ATE were of similar magnitude, with ATE
being in between ATT and ATU as expected. The ATT es-
timates were of slightly greater magnitude (RD: −0.019,
95% CI: −0.040, −0.007; OR: 0.773, 95% CI: 0.607, 0.944)
than the ATU estimates (RD: −0.012, 95% CI: −0.036,
0.010; OR: 0.910, 95% CI: 0.678, 1.177), suggesting that
the protective effect of a higher education on angina may
be stronger among the participants who indeed have at
least a high school education than among those who have
less than a high school education in India.
Similar results obtained via g-computation without

simulation are presented in the Additional file 1: Table S1.

Discussions
In this article, we presented a 3-step approach to esti-
mating ATT and ATU via Monte Carlo simulation. Since
ATE risk difference is the weighted average of ATT and
ATU, weighted by the relative sample size of those who
are treated and untreated, ATT and ATU can also be es-
timated from ATE via sample restriction.
When generating the potential outcomes in step 2, the

potential outcome will be the same as the observed
outcome if the intervention assignment (e.g. treatment) is
indeed what the subject originally received and the
consistency assumption is satisfied. Accordingly, the coun-
terfactual outcome for the same subjects will be imputed
(simulated) based on the outcome from those who received
the alternative to treatment (e.g. placebo) and are compar-
able (i.e., exchangeable) conditional on measured covariates
or confounders, if the assumption of conditional

Table 1 Effect estimates obtained from g-computation using the illustrative example dataseta (N = 7706)

G-computation (via Monte Carlo Simulation)b

Point Estimate Standard Error 95% Confidence Interval

Average Treatment Effect among the Treated (ATT)

Risk difference −0.019 0.009 −0.040, −0.007

Odds ratio 0.773 0.112 0.607, 0.944

Average Treatment Effect among the Untreated (ATU)

Risk difference −0.012 0.012 −0.036, 0.010

Odds ratio 0.910 0.133 0.678, 1.177

Average Treatment Effect (ATE)

Risk difference −0.015 0.011 −0.036, 0.007

Odds ratio 0.884 0.127 0.676, 1.130
aTreatment: education (1 = high school and beyond, 0 = less than high school); outcome: ever diagnosed with angina (1 = yes, 0 = no); covariates: age and gender
bThe outcome model included all possible 2- and 3-way product terms between education and covariates. Standard errors and the 95% confidence limits were
based on 500 bootstrap samples where the standard deviation of the 500 point estimates was taken as the standard error and the corresponding 2.5th and
97.5th percentiles were taken as the lower and upper limit of the 95% confidence interval
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exchangeability assumption is met. In step 2 of the alterna-
tive g-computation approach that does not require simula-
tion, the predicted outcomes [i.e., E(Y|A = a,C = c)] are
generated for both treated and untreated individuals. While
the approach via simulation clearly demonstrates the im-
portance of the two core assumptions—consistency and
conditional exchangeability—to estimate causal parameters
from observational data, the approach without simulation
is less computationally intensive.
We also need the positivity assumption which requires

that there exist participants who experienced all levels of
the treatment (such as being treated or untreated) for
every combination of the values of the observed con-
founders in the population under study [14]. This latter
assumption needs to be supported by the data at hand.
Steps for implementing g-computation for ATT and ATU
allow us to better understand the importance of assump-
tions that are often listed but seldom discussed.
Besides the consistency, conditional exchangeability

and positivity assumptions, other implicit assumptions
such as the absence of other biases (selection bias and
measurement error) and correct model specification
need to be satisfied in order to estimate ATE, ATT and
ATU consistently. G-computation relies heavily on out-
come model specification as shown in the above steps,
in which we used the regression coefficients we obtained
from the outcome regression model in step 1 to predict
potential outcomes. On the contrary, the IPTW method
relies on correct exposure model specification assump-
tions. Therefore, these two g-methods can sometimes
yield different results. Their strengths and limitations, and
performance under violation of the positivity assumption
have also been discussed in the literature [6, 18]. When
possible, researchers could use both methods, or use
doubly robust methods [19–21] where consistent esti-
mates for the target effects can be obtained as long as ei-
ther the outcome or exposure model is correctly specified.

Conclusion
The g-computation algorithm is a powerful way of esti-
mating standardized estimates like the ATT and ATU,
beyond routine age- and sex-standardization and as an
alternative to IPTW fitting of MSM [22]. It should be
used in modern epidemiologic teaching and practice.

Additional file

Additional file 1: In the supplementary file, we presented two alternative
ways for estimating ATT and ATU, and the detailed g-computation steps,
and the corresponding SAS code for the illustration. (DOCX 81 kb)
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